linux/tools/lib/bpf/libbpf.c
<<
>>
Prefs
   1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
   2
   3/*
   4 * Common eBPF ELF object loading operations.
   5 *
   6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
   7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
   8 * Copyright (C) 2015 Huawei Inc.
   9 * Copyright (C) 2017 Nicira, Inc.
  10 * Copyright (C) 2019 Isovalent, Inc.
  11 */
  12
  13#ifndef _GNU_SOURCE
  14#define _GNU_SOURCE
  15#endif
  16#include <stdlib.h>
  17#include <stdio.h>
  18#include <stdarg.h>
  19#include <libgen.h>
  20#include <inttypes.h>
  21#include <limits.h>
  22#include <string.h>
  23#include <unistd.h>
  24#include <endian.h>
  25#include <fcntl.h>
  26#include <errno.h>
  27#include <ctype.h>
  28#include <asm/unistd.h>
  29#include <linux/err.h>
  30#include <linux/kernel.h>
  31#include <linux/bpf.h>
  32#include <linux/btf.h>
  33#include <linux/filter.h>
  34#include <linux/list.h>
  35#include <linux/limits.h>
  36#include <linux/perf_event.h>
  37#include <linux/ring_buffer.h>
  38#include <linux/version.h>
  39#include <sys/epoll.h>
  40#include <sys/ioctl.h>
  41#include <sys/mman.h>
  42#include <sys/stat.h>
  43#include <sys/types.h>
  44#include <sys/vfs.h>
  45#include <sys/utsname.h>
  46#include <sys/resource.h>
  47#include <libelf.h>
  48#include <gelf.h>
  49#include <zlib.h>
  50
  51#include "libbpf.h"
  52#include "bpf.h"
  53#include "btf.h"
  54#include "str_error.h"
  55#include "libbpf_internal.h"
  56#include "hashmap.h"
  57#include "bpf_gen_internal.h"
  58
  59#ifndef BPF_FS_MAGIC
  60#define BPF_FS_MAGIC            0xcafe4a11
  61#endif
  62
  63#define BPF_INSN_SZ (sizeof(struct bpf_insn))
  64
  65/* vsprintf() in __base_pr() uses nonliteral format string. It may break
  66 * compilation if user enables corresponding warning. Disable it explicitly.
  67 */
  68#pragma GCC diagnostic ignored "-Wformat-nonliteral"
  69
  70#define __printf(a, b)  __attribute__((format(printf, a, b)))
  71
  72static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
  73static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
  74
  75static int __base_pr(enum libbpf_print_level level, const char *format,
  76                     va_list args)
  77{
  78        if (level == LIBBPF_DEBUG)
  79                return 0;
  80
  81        return vfprintf(stderr, format, args);
  82}
  83
  84static libbpf_print_fn_t __libbpf_pr = __base_pr;
  85
  86libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
  87{
  88        libbpf_print_fn_t old_print_fn = __libbpf_pr;
  89
  90        __libbpf_pr = fn;
  91        return old_print_fn;
  92}
  93
  94__printf(2, 3)
  95void libbpf_print(enum libbpf_print_level level, const char *format, ...)
  96{
  97        va_list args;
  98
  99        if (!__libbpf_pr)
 100                return;
 101
 102        va_start(args, format);
 103        __libbpf_pr(level, format, args);
 104        va_end(args);
 105}
 106
 107static void pr_perm_msg(int err)
 108{
 109        struct rlimit limit;
 110        char buf[100];
 111
 112        if (err != -EPERM || geteuid() != 0)
 113                return;
 114
 115        err = getrlimit(RLIMIT_MEMLOCK, &limit);
 116        if (err)
 117                return;
 118
 119        if (limit.rlim_cur == RLIM_INFINITY)
 120                return;
 121
 122        if (limit.rlim_cur < 1024)
 123                snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
 124        else if (limit.rlim_cur < 1024*1024)
 125                snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
 126        else
 127                snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
 128
 129        pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
 130                buf);
 131}
 132
 133#define STRERR_BUFSIZE  128
 134
 135/* Copied from tools/perf/util/util.h */
 136#ifndef zfree
 137# define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
 138#endif
 139
 140#ifndef zclose
 141# define zclose(fd) ({                  \
 142        int ___err = 0;                 \
 143        if ((fd) >= 0)                  \
 144                ___err = close((fd));   \
 145        fd = -1;                        \
 146        ___err; })
 147#endif
 148
 149static inline __u64 ptr_to_u64(const void *ptr)
 150{
 151        return (__u64) (unsigned long) ptr;
 152}
 153
 154/* this goes away in libbpf 1.0 */
 155enum libbpf_strict_mode libbpf_mode = LIBBPF_STRICT_NONE;
 156
 157int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
 158{
 159        /* __LIBBPF_STRICT_LAST is the last power-of-2 value used + 1, so to
 160         * get all possible values we compensate last +1, and then (2*x - 1)
 161         * to get the bit mask
 162         */
 163        if (mode != LIBBPF_STRICT_ALL
 164            && (mode & ~((__LIBBPF_STRICT_LAST - 1) * 2 - 1)))
 165                return errno = EINVAL, -EINVAL;
 166
 167        libbpf_mode = mode;
 168        return 0;
 169}
 170
 171enum kern_feature_id {
 172        /* v4.14: kernel support for program & map names. */
 173        FEAT_PROG_NAME,
 174        /* v5.2: kernel support for global data sections. */
 175        FEAT_GLOBAL_DATA,
 176        /* BTF support */
 177        FEAT_BTF,
 178        /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */
 179        FEAT_BTF_FUNC,
 180        /* BTF_KIND_VAR and BTF_KIND_DATASEC support */
 181        FEAT_BTF_DATASEC,
 182        /* BTF_FUNC_GLOBAL is supported */
 183        FEAT_BTF_GLOBAL_FUNC,
 184        /* BPF_F_MMAPABLE is supported for arrays */
 185        FEAT_ARRAY_MMAP,
 186        /* kernel support for expected_attach_type in BPF_PROG_LOAD */
 187        FEAT_EXP_ATTACH_TYPE,
 188        /* bpf_probe_read_{kernel,user}[_str] helpers */
 189        FEAT_PROBE_READ_KERN,
 190        /* BPF_PROG_BIND_MAP is supported */
 191        FEAT_PROG_BIND_MAP,
 192        /* Kernel support for module BTFs */
 193        FEAT_MODULE_BTF,
 194        /* BTF_KIND_FLOAT support */
 195        FEAT_BTF_FLOAT,
 196        __FEAT_CNT,
 197};
 198
 199static bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id);
 200
 201enum reloc_type {
 202        RELO_LD64,
 203        RELO_CALL,
 204        RELO_DATA,
 205        RELO_EXTERN_VAR,
 206        RELO_EXTERN_FUNC,
 207        RELO_SUBPROG_ADDR,
 208};
 209
 210struct reloc_desc {
 211        enum reloc_type type;
 212        int insn_idx;
 213        int map_idx;
 214        int sym_off;
 215};
 216
 217struct bpf_sec_def;
 218
 219typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec,
 220                                        struct bpf_program *prog);
 221
 222struct bpf_sec_def {
 223        const char *sec;
 224        size_t len;
 225        enum bpf_prog_type prog_type;
 226        enum bpf_attach_type expected_attach_type;
 227        bool is_exp_attach_type_optional;
 228        bool is_attachable;
 229        bool is_attach_btf;
 230        bool is_sleepable;
 231        attach_fn_t attach_fn;
 232};
 233
 234/*
 235 * bpf_prog should be a better name but it has been used in
 236 * linux/filter.h.
 237 */
 238struct bpf_program {
 239        const struct bpf_sec_def *sec_def;
 240        char *sec_name;
 241        size_t sec_idx;
 242        /* this program's instruction offset (in number of instructions)
 243         * within its containing ELF section
 244         */
 245        size_t sec_insn_off;
 246        /* number of original instructions in ELF section belonging to this
 247         * program, not taking into account subprogram instructions possible
 248         * appended later during relocation
 249         */
 250        size_t sec_insn_cnt;
 251        /* Offset (in number of instructions) of the start of instruction
 252         * belonging to this BPF program  within its containing main BPF
 253         * program. For the entry-point (main) BPF program, this is always
 254         * zero. For a sub-program, this gets reset before each of main BPF
 255         * programs are processed and relocated and is used to determined
 256         * whether sub-program was already appended to the main program, and
 257         * if yes, at which instruction offset.
 258         */
 259        size_t sub_insn_off;
 260
 261        char *name;
 262        /* sec_name with / replaced by _; makes recursive pinning
 263         * in bpf_object__pin_programs easier
 264         */
 265        char *pin_name;
 266
 267        /* instructions that belong to BPF program; insns[0] is located at
 268         * sec_insn_off instruction within its ELF section in ELF file, so
 269         * when mapping ELF file instruction index to the local instruction,
 270         * one needs to subtract sec_insn_off; and vice versa.
 271         */
 272        struct bpf_insn *insns;
 273        /* actual number of instruction in this BPF program's image; for
 274         * entry-point BPF programs this includes the size of main program
 275         * itself plus all the used sub-programs, appended at the end
 276         */
 277        size_t insns_cnt;
 278
 279        struct reloc_desc *reloc_desc;
 280        int nr_reloc;
 281        int log_level;
 282
 283        struct {
 284                int nr;
 285                int *fds;
 286        } instances;
 287        bpf_program_prep_t preprocessor;
 288
 289        struct bpf_object *obj;
 290        void *priv;
 291        bpf_program_clear_priv_t clear_priv;
 292
 293        bool load;
 294        bool mark_btf_static;
 295        enum bpf_prog_type type;
 296        enum bpf_attach_type expected_attach_type;
 297        int prog_ifindex;
 298        __u32 attach_btf_obj_fd;
 299        __u32 attach_btf_id;
 300        __u32 attach_prog_fd;
 301        void *func_info;
 302        __u32 func_info_rec_size;
 303        __u32 func_info_cnt;
 304
 305        void *line_info;
 306        __u32 line_info_rec_size;
 307        __u32 line_info_cnt;
 308        __u32 prog_flags;
 309};
 310
 311struct bpf_struct_ops {
 312        const char *tname;
 313        const struct btf_type *type;
 314        struct bpf_program **progs;
 315        __u32 *kern_func_off;
 316        /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
 317        void *data;
 318        /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
 319         *      btf_vmlinux's format.
 320         * struct bpf_struct_ops_tcp_congestion_ops {
 321         *      [... some other kernel fields ...]
 322         *      struct tcp_congestion_ops data;
 323         * }
 324         * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
 325         * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
 326         * from "data".
 327         */
 328        void *kern_vdata;
 329        __u32 type_id;
 330};
 331
 332#define DATA_SEC ".data"
 333#define BSS_SEC ".bss"
 334#define RODATA_SEC ".rodata"
 335#define KCONFIG_SEC ".kconfig"
 336#define KSYMS_SEC ".ksyms"
 337#define STRUCT_OPS_SEC ".struct_ops"
 338
 339enum libbpf_map_type {
 340        LIBBPF_MAP_UNSPEC,
 341        LIBBPF_MAP_DATA,
 342        LIBBPF_MAP_BSS,
 343        LIBBPF_MAP_RODATA,
 344        LIBBPF_MAP_KCONFIG,
 345};
 346
 347static const char * const libbpf_type_to_btf_name[] = {
 348        [LIBBPF_MAP_DATA]       = DATA_SEC,
 349        [LIBBPF_MAP_BSS]        = BSS_SEC,
 350        [LIBBPF_MAP_RODATA]     = RODATA_SEC,
 351        [LIBBPF_MAP_KCONFIG]    = KCONFIG_SEC,
 352};
 353
 354struct bpf_map {
 355        char *name;
 356        int fd;
 357        int sec_idx;
 358        size_t sec_offset;
 359        int map_ifindex;
 360        int inner_map_fd;
 361        struct bpf_map_def def;
 362        __u32 numa_node;
 363        __u32 btf_var_idx;
 364        __u32 btf_key_type_id;
 365        __u32 btf_value_type_id;
 366        __u32 btf_vmlinux_value_type_id;
 367        void *priv;
 368        bpf_map_clear_priv_t clear_priv;
 369        enum libbpf_map_type libbpf_type;
 370        void *mmaped;
 371        struct bpf_struct_ops *st_ops;
 372        struct bpf_map *inner_map;
 373        void **init_slots;
 374        int init_slots_sz;
 375        char *pin_path;
 376        bool pinned;
 377        bool reused;
 378};
 379
 380enum extern_type {
 381        EXT_UNKNOWN,
 382        EXT_KCFG,
 383        EXT_KSYM,
 384};
 385
 386enum kcfg_type {
 387        KCFG_UNKNOWN,
 388        KCFG_CHAR,
 389        KCFG_BOOL,
 390        KCFG_INT,
 391        KCFG_TRISTATE,
 392        KCFG_CHAR_ARR,
 393};
 394
 395struct extern_desc {
 396        enum extern_type type;
 397        int sym_idx;
 398        int btf_id;
 399        int sec_btf_id;
 400        const char *name;
 401        bool is_set;
 402        bool is_weak;
 403        union {
 404                struct {
 405                        enum kcfg_type type;
 406                        int sz;
 407                        int align;
 408                        int data_off;
 409                        bool is_signed;
 410                } kcfg;
 411                struct {
 412                        unsigned long long addr;
 413
 414                        /* target btf_id of the corresponding kernel var. */
 415                        int kernel_btf_obj_fd;
 416                        int kernel_btf_id;
 417
 418                        /* local btf_id of the ksym extern's type. */
 419                        __u32 type_id;
 420                } ksym;
 421        };
 422};
 423
 424static LIST_HEAD(bpf_objects_list);
 425
 426struct module_btf {
 427        struct btf *btf;
 428        char *name;
 429        __u32 id;
 430        int fd;
 431};
 432
 433struct bpf_object {
 434        char name[BPF_OBJ_NAME_LEN];
 435        char license[64];
 436        __u32 kern_version;
 437
 438        struct bpf_program *programs;
 439        size_t nr_programs;
 440        struct bpf_map *maps;
 441        size_t nr_maps;
 442        size_t maps_cap;
 443
 444        char *kconfig;
 445        struct extern_desc *externs;
 446        int nr_extern;
 447        int kconfig_map_idx;
 448        int rodata_map_idx;
 449
 450        bool loaded;
 451        bool has_subcalls;
 452
 453        struct bpf_gen *gen_loader;
 454
 455        /*
 456         * Information when doing elf related work. Only valid if fd
 457         * is valid.
 458         */
 459        struct {
 460                int fd;
 461                const void *obj_buf;
 462                size_t obj_buf_sz;
 463                Elf *elf;
 464                GElf_Ehdr ehdr;
 465                Elf_Data *symbols;
 466                Elf_Data *data;
 467                Elf_Data *rodata;
 468                Elf_Data *bss;
 469                Elf_Data *st_ops_data;
 470                size_t shstrndx; /* section index for section name strings */
 471                size_t strtabidx;
 472                struct {
 473                        GElf_Shdr shdr;
 474                        Elf_Data *data;
 475                } *reloc_sects;
 476                int nr_reloc_sects;
 477                int maps_shndx;
 478                int btf_maps_shndx;
 479                __u32 btf_maps_sec_btf_id;
 480                int text_shndx;
 481                int symbols_shndx;
 482                int data_shndx;
 483                int rodata_shndx;
 484                int bss_shndx;
 485                int st_ops_shndx;
 486        } efile;
 487        /*
 488         * All loaded bpf_object is linked in a list, which is
 489         * hidden to caller. bpf_objects__<func> handlers deal with
 490         * all objects.
 491         */
 492        struct list_head list;
 493
 494        struct btf *btf;
 495        struct btf_ext *btf_ext;
 496
 497        /* Parse and load BTF vmlinux if any of the programs in the object need
 498         * it at load time.
 499         */
 500        struct btf *btf_vmlinux;
 501        /* vmlinux BTF override for CO-RE relocations */
 502        struct btf *btf_vmlinux_override;
 503        /* Lazily initialized kernel module BTFs */
 504        struct module_btf *btf_modules;
 505        bool btf_modules_loaded;
 506        size_t btf_module_cnt;
 507        size_t btf_module_cap;
 508
 509        void *priv;
 510        bpf_object_clear_priv_t clear_priv;
 511
 512        char path[];
 513};
 514#define obj_elf_valid(o)        ((o)->efile.elf)
 515
 516static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
 517static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
 518static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
 519static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
 520static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr);
 521static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
 522static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
 523
 524void bpf_program__unload(struct bpf_program *prog)
 525{
 526        int i;
 527
 528        if (!prog)
 529                return;
 530
 531        /*
 532         * If the object is opened but the program was never loaded,
 533         * it is possible that prog->instances.nr == -1.
 534         */
 535        if (prog->instances.nr > 0) {
 536                for (i = 0; i < prog->instances.nr; i++)
 537                        zclose(prog->instances.fds[i]);
 538        } else if (prog->instances.nr != -1) {
 539                pr_warn("Internal error: instances.nr is %d\n",
 540                        prog->instances.nr);
 541        }
 542
 543        prog->instances.nr = -1;
 544        zfree(&prog->instances.fds);
 545
 546        zfree(&prog->func_info);
 547        zfree(&prog->line_info);
 548}
 549
 550static void bpf_program__exit(struct bpf_program *prog)
 551{
 552        if (!prog)
 553                return;
 554
 555        if (prog->clear_priv)
 556                prog->clear_priv(prog, prog->priv);
 557
 558        prog->priv = NULL;
 559        prog->clear_priv = NULL;
 560
 561        bpf_program__unload(prog);
 562        zfree(&prog->name);
 563        zfree(&prog->sec_name);
 564        zfree(&prog->pin_name);
 565        zfree(&prog->insns);
 566        zfree(&prog->reloc_desc);
 567
 568        prog->nr_reloc = 0;
 569        prog->insns_cnt = 0;
 570        prog->sec_idx = -1;
 571}
 572
 573static char *__bpf_program__pin_name(struct bpf_program *prog)
 574{
 575        char *name, *p;
 576
 577        name = p = strdup(prog->sec_name);
 578        while ((p = strchr(p, '/')))
 579                *p = '_';
 580
 581        return name;
 582}
 583
 584static bool insn_is_subprog_call(const struct bpf_insn *insn)
 585{
 586        return BPF_CLASS(insn->code) == BPF_JMP &&
 587               BPF_OP(insn->code) == BPF_CALL &&
 588               BPF_SRC(insn->code) == BPF_K &&
 589               insn->src_reg == BPF_PSEUDO_CALL &&
 590               insn->dst_reg == 0 &&
 591               insn->off == 0;
 592}
 593
 594static bool is_ldimm64_insn(struct bpf_insn *insn)
 595{
 596        return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
 597}
 598
 599static bool is_call_insn(const struct bpf_insn *insn)
 600{
 601        return insn->code == (BPF_JMP | BPF_CALL);
 602}
 603
 604static bool insn_is_pseudo_func(struct bpf_insn *insn)
 605{
 606        return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
 607}
 608
 609static int
 610bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
 611                      const char *name, size_t sec_idx, const char *sec_name,
 612                      size_t sec_off, void *insn_data, size_t insn_data_sz)
 613{
 614        if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
 615                pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
 616                        sec_name, name, sec_off, insn_data_sz);
 617                return -EINVAL;
 618        }
 619
 620        memset(prog, 0, sizeof(*prog));
 621        prog->obj = obj;
 622
 623        prog->sec_idx = sec_idx;
 624        prog->sec_insn_off = sec_off / BPF_INSN_SZ;
 625        prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
 626        /* insns_cnt can later be increased by appending used subprograms */
 627        prog->insns_cnt = prog->sec_insn_cnt;
 628
 629        prog->type = BPF_PROG_TYPE_UNSPEC;
 630        prog->load = true;
 631
 632        prog->instances.fds = NULL;
 633        prog->instances.nr = -1;
 634
 635        prog->sec_name = strdup(sec_name);
 636        if (!prog->sec_name)
 637                goto errout;
 638
 639        prog->name = strdup(name);
 640        if (!prog->name)
 641                goto errout;
 642
 643        prog->pin_name = __bpf_program__pin_name(prog);
 644        if (!prog->pin_name)
 645                goto errout;
 646
 647        prog->insns = malloc(insn_data_sz);
 648        if (!prog->insns)
 649                goto errout;
 650        memcpy(prog->insns, insn_data, insn_data_sz);
 651
 652        return 0;
 653errout:
 654        pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
 655        bpf_program__exit(prog);
 656        return -ENOMEM;
 657}
 658
 659static int
 660bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
 661                         const char *sec_name, int sec_idx)
 662{
 663        Elf_Data *symbols = obj->efile.symbols;
 664        struct bpf_program *prog, *progs;
 665        void *data = sec_data->d_buf;
 666        size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
 667        int nr_progs, err, i;
 668        const char *name;
 669        GElf_Sym sym;
 670
 671        progs = obj->programs;
 672        nr_progs = obj->nr_programs;
 673        nr_syms = symbols->d_size / sizeof(GElf_Sym);
 674        sec_off = 0;
 675
 676        for (i = 0; i < nr_syms; i++) {
 677                if (!gelf_getsym(symbols, i, &sym))
 678                        continue;
 679                if (sym.st_shndx != sec_idx)
 680                        continue;
 681                if (GELF_ST_TYPE(sym.st_info) != STT_FUNC)
 682                        continue;
 683
 684                prog_sz = sym.st_size;
 685                sec_off = sym.st_value;
 686
 687                name = elf_sym_str(obj, sym.st_name);
 688                if (!name) {
 689                        pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
 690                                sec_name, sec_off);
 691                        return -LIBBPF_ERRNO__FORMAT;
 692                }
 693
 694                if (sec_off + prog_sz > sec_sz) {
 695                        pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
 696                                sec_name, sec_off);
 697                        return -LIBBPF_ERRNO__FORMAT;
 698                }
 699
 700                if (sec_idx != obj->efile.text_shndx && GELF_ST_BIND(sym.st_info) == STB_LOCAL) {
 701                        pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
 702                        return -ENOTSUP;
 703                }
 704
 705                pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
 706                         sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
 707
 708                progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
 709                if (!progs) {
 710                        /*
 711                         * In this case the original obj->programs
 712                         * is still valid, so don't need special treat for
 713                         * bpf_close_object().
 714                         */
 715                        pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
 716                                sec_name, name);
 717                        return -ENOMEM;
 718                }
 719                obj->programs = progs;
 720
 721                prog = &progs[nr_progs];
 722
 723                err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
 724                                            sec_off, data + sec_off, prog_sz);
 725                if (err)
 726                        return err;
 727
 728                /* if function is a global/weak symbol, but has restricted
 729                 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
 730                 * as static to enable more permissive BPF verification mode
 731                 * with more outside context available to BPF verifier
 732                 */
 733                if (GELF_ST_BIND(sym.st_info) != STB_LOCAL
 734                    && (GELF_ST_VISIBILITY(sym.st_other) == STV_HIDDEN
 735                        || GELF_ST_VISIBILITY(sym.st_other) == STV_INTERNAL))
 736                        prog->mark_btf_static = true;
 737
 738                nr_progs++;
 739                obj->nr_programs = nr_progs;
 740        }
 741
 742        return 0;
 743}
 744
 745static __u32 get_kernel_version(void)
 746{
 747        __u32 major, minor, patch;
 748        struct utsname info;
 749
 750        uname(&info);
 751        if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
 752                return 0;
 753        return KERNEL_VERSION(major, minor, patch);
 754}
 755
 756static const struct btf_member *
 757find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
 758{
 759        struct btf_member *m;
 760        int i;
 761
 762        for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
 763                if (btf_member_bit_offset(t, i) == bit_offset)
 764                        return m;
 765        }
 766
 767        return NULL;
 768}
 769
 770static const struct btf_member *
 771find_member_by_name(const struct btf *btf, const struct btf_type *t,
 772                    const char *name)
 773{
 774        struct btf_member *m;
 775        int i;
 776
 777        for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
 778                if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
 779                        return m;
 780        }
 781
 782        return NULL;
 783}
 784
 785#define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
 786static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
 787                                   const char *name, __u32 kind);
 788
 789static int
 790find_struct_ops_kern_types(const struct btf *btf, const char *tname,
 791                           const struct btf_type **type, __u32 *type_id,
 792                           const struct btf_type **vtype, __u32 *vtype_id,
 793                           const struct btf_member **data_member)
 794{
 795        const struct btf_type *kern_type, *kern_vtype;
 796        const struct btf_member *kern_data_member;
 797        __s32 kern_vtype_id, kern_type_id;
 798        __u32 i;
 799
 800        kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
 801        if (kern_type_id < 0) {
 802                pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
 803                        tname);
 804                return kern_type_id;
 805        }
 806        kern_type = btf__type_by_id(btf, kern_type_id);
 807
 808        /* Find the corresponding "map_value" type that will be used
 809         * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
 810         * find "struct bpf_struct_ops_tcp_congestion_ops" from the
 811         * btf_vmlinux.
 812         */
 813        kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
 814                                                tname, BTF_KIND_STRUCT);
 815        if (kern_vtype_id < 0) {
 816                pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
 817                        STRUCT_OPS_VALUE_PREFIX, tname);
 818                return kern_vtype_id;
 819        }
 820        kern_vtype = btf__type_by_id(btf, kern_vtype_id);
 821
 822        /* Find "struct tcp_congestion_ops" from
 823         * struct bpf_struct_ops_tcp_congestion_ops {
 824         *      [ ... ]
 825         *      struct tcp_congestion_ops data;
 826         * }
 827         */
 828        kern_data_member = btf_members(kern_vtype);
 829        for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
 830                if (kern_data_member->type == kern_type_id)
 831                        break;
 832        }
 833        if (i == btf_vlen(kern_vtype)) {
 834                pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
 835                        tname, STRUCT_OPS_VALUE_PREFIX, tname);
 836                return -EINVAL;
 837        }
 838
 839        *type = kern_type;
 840        *type_id = kern_type_id;
 841        *vtype = kern_vtype;
 842        *vtype_id = kern_vtype_id;
 843        *data_member = kern_data_member;
 844
 845        return 0;
 846}
 847
 848static bool bpf_map__is_struct_ops(const struct bpf_map *map)
 849{
 850        return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
 851}
 852
 853/* Init the map's fields that depend on kern_btf */
 854static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
 855                                         const struct btf *btf,
 856                                         const struct btf *kern_btf)
 857{
 858        const struct btf_member *member, *kern_member, *kern_data_member;
 859        const struct btf_type *type, *kern_type, *kern_vtype;
 860        __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
 861        struct bpf_struct_ops *st_ops;
 862        void *data, *kern_data;
 863        const char *tname;
 864        int err;
 865
 866        st_ops = map->st_ops;
 867        type = st_ops->type;
 868        tname = st_ops->tname;
 869        err = find_struct_ops_kern_types(kern_btf, tname,
 870                                         &kern_type, &kern_type_id,
 871                                         &kern_vtype, &kern_vtype_id,
 872                                         &kern_data_member);
 873        if (err)
 874                return err;
 875
 876        pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
 877                 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
 878
 879        map->def.value_size = kern_vtype->size;
 880        map->btf_vmlinux_value_type_id = kern_vtype_id;
 881
 882        st_ops->kern_vdata = calloc(1, kern_vtype->size);
 883        if (!st_ops->kern_vdata)
 884                return -ENOMEM;
 885
 886        data = st_ops->data;
 887        kern_data_off = kern_data_member->offset / 8;
 888        kern_data = st_ops->kern_vdata + kern_data_off;
 889
 890        member = btf_members(type);
 891        for (i = 0; i < btf_vlen(type); i++, member++) {
 892                const struct btf_type *mtype, *kern_mtype;
 893                __u32 mtype_id, kern_mtype_id;
 894                void *mdata, *kern_mdata;
 895                __s64 msize, kern_msize;
 896                __u32 moff, kern_moff;
 897                __u32 kern_member_idx;
 898                const char *mname;
 899
 900                mname = btf__name_by_offset(btf, member->name_off);
 901                kern_member = find_member_by_name(kern_btf, kern_type, mname);
 902                if (!kern_member) {
 903                        pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
 904                                map->name, mname);
 905                        return -ENOTSUP;
 906                }
 907
 908                kern_member_idx = kern_member - btf_members(kern_type);
 909                if (btf_member_bitfield_size(type, i) ||
 910                    btf_member_bitfield_size(kern_type, kern_member_idx)) {
 911                        pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
 912                                map->name, mname);
 913                        return -ENOTSUP;
 914                }
 915
 916                moff = member->offset / 8;
 917                kern_moff = kern_member->offset / 8;
 918
 919                mdata = data + moff;
 920                kern_mdata = kern_data + kern_moff;
 921
 922                mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
 923                kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
 924                                                    &kern_mtype_id);
 925                if (BTF_INFO_KIND(mtype->info) !=
 926                    BTF_INFO_KIND(kern_mtype->info)) {
 927                        pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
 928                                map->name, mname, BTF_INFO_KIND(mtype->info),
 929                                BTF_INFO_KIND(kern_mtype->info));
 930                        return -ENOTSUP;
 931                }
 932
 933                if (btf_is_ptr(mtype)) {
 934                        struct bpf_program *prog;
 935
 936                        prog = st_ops->progs[i];
 937                        if (!prog)
 938                                continue;
 939
 940                        kern_mtype = skip_mods_and_typedefs(kern_btf,
 941                                                            kern_mtype->type,
 942                                                            &kern_mtype_id);
 943
 944                        /* mtype->type must be a func_proto which was
 945                         * guaranteed in bpf_object__collect_st_ops_relos(),
 946                         * so only check kern_mtype for func_proto here.
 947                         */
 948                        if (!btf_is_func_proto(kern_mtype)) {
 949                                pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
 950                                        map->name, mname);
 951                                return -ENOTSUP;
 952                        }
 953
 954                        prog->attach_btf_id = kern_type_id;
 955                        prog->expected_attach_type = kern_member_idx;
 956
 957                        st_ops->kern_func_off[i] = kern_data_off + kern_moff;
 958
 959                        pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
 960                                 map->name, mname, prog->name, moff,
 961                                 kern_moff);
 962
 963                        continue;
 964                }
 965
 966                msize = btf__resolve_size(btf, mtype_id);
 967                kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
 968                if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
 969                        pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
 970                                map->name, mname, (ssize_t)msize,
 971                                (ssize_t)kern_msize);
 972                        return -ENOTSUP;
 973                }
 974
 975                pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
 976                         map->name, mname, (unsigned int)msize,
 977                         moff, kern_moff);
 978                memcpy(kern_mdata, mdata, msize);
 979        }
 980
 981        return 0;
 982}
 983
 984static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
 985{
 986        struct bpf_map *map;
 987        size_t i;
 988        int err;
 989
 990        for (i = 0; i < obj->nr_maps; i++) {
 991                map = &obj->maps[i];
 992
 993                if (!bpf_map__is_struct_ops(map))
 994                        continue;
 995
 996                err = bpf_map__init_kern_struct_ops(map, obj->btf,
 997                                                    obj->btf_vmlinux);
 998                if (err)
 999                        return err;
1000        }
1001
1002        return 0;
1003}
1004
1005static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
1006{
1007        const struct btf_type *type, *datasec;
1008        const struct btf_var_secinfo *vsi;
1009        struct bpf_struct_ops *st_ops;
1010        const char *tname, *var_name;
1011        __s32 type_id, datasec_id;
1012        const struct btf *btf;
1013        struct bpf_map *map;
1014        __u32 i;
1015
1016        if (obj->efile.st_ops_shndx == -1)
1017                return 0;
1018
1019        btf = obj->btf;
1020        datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
1021                                            BTF_KIND_DATASEC);
1022        if (datasec_id < 0) {
1023                pr_warn("struct_ops init: DATASEC %s not found\n",
1024                        STRUCT_OPS_SEC);
1025                return -EINVAL;
1026        }
1027
1028        datasec = btf__type_by_id(btf, datasec_id);
1029        vsi = btf_var_secinfos(datasec);
1030        for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1031                type = btf__type_by_id(obj->btf, vsi->type);
1032                var_name = btf__name_by_offset(obj->btf, type->name_off);
1033
1034                type_id = btf__resolve_type(obj->btf, vsi->type);
1035                if (type_id < 0) {
1036                        pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1037                                vsi->type, STRUCT_OPS_SEC);
1038                        return -EINVAL;
1039                }
1040
1041                type = btf__type_by_id(obj->btf, type_id);
1042                tname = btf__name_by_offset(obj->btf, type->name_off);
1043                if (!tname[0]) {
1044                        pr_warn("struct_ops init: anonymous type is not supported\n");
1045                        return -ENOTSUP;
1046                }
1047                if (!btf_is_struct(type)) {
1048                        pr_warn("struct_ops init: %s is not a struct\n", tname);
1049                        return -EINVAL;
1050                }
1051
1052                map = bpf_object__add_map(obj);
1053                if (IS_ERR(map))
1054                        return PTR_ERR(map);
1055
1056                map->sec_idx = obj->efile.st_ops_shndx;
1057                map->sec_offset = vsi->offset;
1058                map->name = strdup(var_name);
1059                if (!map->name)
1060                        return -ENOMEM;
1061
1062                map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1063                map->def.key_size = sizeof(int);
1064                map->def.value_size = type->size;
1065                map->def.max_entries = 1;
1066
1067                map->st_ops = calloc(1, sizeof(*map->st_ops));
1068                if (!map->st_ops)
1069                        return -ENOMEM;
1070                st_ops = map->st_ops;
1071                st_ops->data = malloc(type->size);
1072                st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1073                st_ops->kern_func_off = malloc(btf_vlen(type) *
1074                                               sizeof(*st_ops->kern_func_off));
1075                if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1076                        return -ENOMEM;
1077
1078                if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1079                        pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1080                                var_name, STRUCT_OPS_SEC);
1081                        return -EINVAL;
1082                }
1083
1084                memcpy(st_ops->data,
1085                       obj->efile.st_ops_data->d_buf + vsi->offset,
1086                       type->size);
1087                st_ops->tname = tname;
1088                st_ops->type = type;
1089                st_ops->type_id = type_id;
1090
1091                pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1092                         tname, type_id, var_name, vsi->offset);
1093        }
1094
1095        return 0;
1096}
1097
1098static struct bpf_object *bpf_object__new(const char *path,
1099                                          const void *obj_buf,
1100                                          size_t obj_buf_sz,
1101                                          const char *obj_name)
1102{
1103        struct bpf_object *obj;
1104        char *end;
1105
1106        obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1107        if (!obj) {
1108                pr_warn("alloc memory failed for %s\n", path);
1109                return ERR_PTR(-ENOMEM);
1110        }
1111
1112        strcpy(obj->path, path);
1113        if (obj_name) {
1114                strncpy(obj->name, obj_name, sizeof(obj->name) - 1);
1115                obj->name[sizeof(obj->name) - 1] = 0;
1116        } else {
1117                /* Using basename() GNU version which doesn't modify arg. */
1118                strncpy(obj->name, basename((void *)path),
1119                        sizeof(obj->name) - 1);
1120                end = strchr(obj->name, '.');
1121                if (end)
1122                        *end = 0;
1123        }
1124
1125        obj->efile.fd = -1;
1126        /*
1127         * Caller of this function should also call
1128         * bpf_object__elf_finish() after data collection to return
1129         * obj_buf to user. If not, we should duplicate the buffer to
1130         * avoid user freeing them before elf finish.
1131         */
1132        obj->efile.obj_buf = obj_buf;
1133        obj->efile.obj_buf_sz = obj_buf_sz;
1134        obj->efile.maps_shndx = -1;
1135        obj->efile.btf_maps_shndx = -1;
1136        obj->efile.data_shndx = -1;
1137        obj->efile.rodata_shndx = -1;
1138        obj->efile.bss_shndx = -1;
1139        obj->efile.st_ops_shndx = -1;
1140        obj->kconfig_map_idx = -1;
1141        obj->rodata_map_idx = -1;
1142
1143        obj->kern_version = get_kernel_version();
1144        obj->loaded = false;
1145
1146        INIT_LIST_HEAD(&obj->list);
1147        list_add(&obj->list, &bpf_objects_list);
1148        return obj;
1149}
1150
1151static void bpf_object__elf_finish(struct bpf_object *obj)
1152{
1153        if (!obj_elf_valid(obj))
1154                return;
1155
1156        if (obj->efile.elf) {
1157                elf_end(obj->efile.elf);
1158                obj->efile.elf = NULL;
1159        }
1160        obj->efile.symbols = NULL;
1161        obj->efile.data = NULL;
1162        obj->efile.rodata = NULL;
1163        obj->efile.bss = NULL;
1164        obj->efile.st_ops_data = NULL;
1165
1166        zfree(&obj->efile.reloc_sects);
1167        obj->efile.nr_reloc_sects = 0;
1168        zclose(obj->efile.fd);
1169        obj->efile.obj_buf = NULL;
1170        obj->efile.obj_buf_sz = 0;
1171}
1172
1173static int bpf_object__elf_init(struct bpf_object *obj)
1174{
1175        int err = 0;
1176        GElf_Ehdr *ep;
1177
1178        if (obj_elf_valid(obj)) {
1179                pr_warn("elf: init internal error\n");
1180                return -LIBBPF_ERRNO__LIBELF;
1181        }
1182
1183        if (obj->efile.obj_buf_sz > 0) {
1184                /*
1185                 * obj_buf should have been validated by
1186                 * bpf_object__open_buffer().
1187                 */
1188                obj->efile.elf = elf_memory((char *)obj->efile.obj_buf,
1189                                            obj->efile.obj_buf_sz);
1190        } else {
1191                obj->efile.fd = open(obj->path, O_RDONLY);
1192                if (obj->efile.fd < 0) {
1193                        char errmsg[STRERR_BUFSIZE], *cp;
1194
1195                        err = -errno;
1196                        cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1197                        pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1198                        return err;
1199                }
1200
1201                obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1202        }
1203
1204        if (!obj->efile.elf) {
1205                pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1206                err = -LIBBPF_ERRNO__LIBELF;
1207                goto errout;
1208        }
1209
1210        if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) {
1211                pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1212                err = -LIBBPF_ERRNO__FORMAT;
1213                goto errout;
1214        }
1215        ep = &obj->efile.ehdr;
1216
1217        if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) {
1218                pr_warn("elf: failed to get section names section index for %s: %s\n",
1219                        obj->path, elf_errmsg(-1));
1220                err = -LIBBPF_ERRNO__FORMAT;
1221                goto errout;
1222        }
1223
1224        /* Elf is corrupted/truncated, avoid calling elf_strptr. */
1225        if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) {
1226                pr_warn("elf: failed to get section names strings from %s: %s\n",
1227                        obj->path, elf_errmsg(-1));
1228                err = -LIBBPF_ERRNO__FORMAT;
1229                goto errout;
1230        }
1231
1232        /* Old LLVM set e_machine to EM_NONE */
1233        if (ep->e_type != ET_REL ||
1234            (ep->e_machine && ep->e_machine != EM_BPF)) {
1235                pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1236                err = -LIBBPF_ERRNO__FORMAT;
1237                goto errout;
1238        }
1239
1240        return 0;
1241errout:
1242        bpf_object__elf_finish(obj);
1243        return err;
1244}
1245
1246static int bpf_object__check_endianness(struct bpf_object *obj)
1247{
1248#if __BYTE_ORDER == __LITTLE_ENDIAN
1249        if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB)
1250                return 0;
1251#elif __BYTE_ORDER == __BIG_ENDIAN
1252        if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB)
1253                return 0;
1254#else
1255# error "Unrecognized __BYTE_ORDER__"
1256#endif
1257        pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1258        return -LIBBPF_ERRNO__ENDIAN;
1259}
1260
1261static int
1262bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1263{
1264        memcpy(obj->license, data, min(size, sizeof(obj->license) - 1));
1265        pr_debug("license of %s is %s\n", obj->path, obj->license);
1266        return 0;
1267}
1268
1269static int
1270bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1271{
1272        __u32 kver;
1273
1274        if (size != sizeof(kver)) {
1275                pr_warn("invalid kver section in %s\n", obj->path);
1276                return -LIBBPF_ERRNO__FORMAT;
1277        }
1278        memcpy(&kver, data, sizeof(kver));
1279        obj->kern_version = kver;
1280        pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1281        return 0;
1282}
1283
1284static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1285{
1286        if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1287            type == BPF_MAP_TYPE_HASH_OF_MAPS)
1288                return true;
1289        return false;
1290}
1291
1292int bpf_object__section_size(const struct bpf_object *obj, const char *name,
1293                             __u32 *size)
1294{
1295        int ret = -ENOENT;
1296
1297        *size = 0;
1298        if (!name) {
1299                return -EINVAL;
1300        } else if (!strcmp(name, DATA_SEC)) {
1301                if (obj->efile.data)
1302                        *size = obj->efile.data->d_size;
1303        } else if (!strcmp(name, BSS_SEC)) {
1304                if (obj->efile.bss)
1305                        *size = obj->efile.bss->d_size;
1306        } else if (!strcmp(name, RODATA_SEC)) {
1307                if (obj->efile.rodata)
1308                        *size = obj->efile.rodata->d_size;
1309        } else if (!strcmp(name, STRUCT_OPS_SEC)) {
1310                if (obj->efile.st_ops_data)
1311                        *size = obj->efile.st_ops_data->d_size;
1312        } else {
1313                Elf_Scn *scn = elf_sec_by_name(obj, name);
1314                Elf_Data *data = elf_sec_data(obj, scn);
1315
1316                if (data) {
1317                        ret = 0; /* found it */
1318                        *size = data->d_size;
1319                }
1320        }
1321
1322        return *size ? 0 : ret;
1323}
1324
1325int bpf_object__variable_offset(const struct bpf_object *obj, const char *name,
1326                                __u32 *off)
1327{
1328        Elf_Data *symbols = obj->efile.symbols;
1329        const char *sname;
1330        size_t si;
1331
1332        if (!name || !off)
1333                return -EINVAL;
1334
1335        for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) {
1336                GElf_Sym sym;
1337
1338                if (!gelf_getsym(symbols, si, &sym))
1339                        continue;
1340                if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL ||
1341                    GELF_ST_TYPE(sym.st_info) != STT_OBJECT)
1342                        continue;
1343
1344                sname = elf_sym_str(obj, sym.st_name);
1345                if (!sname) {
1346                        pr_warn("failed to get sym name string for var %s\n",
1347                                name);
1348                        return -EIO;
1349                }
1350                if (strcmp(name, sname) == 0) {
1351                        *off = sym.st_value;
1352                        return 0;
1353                }
1354        }
1355
1356        return -ENOENT;
1357}
1358
1359static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1360{
1361        struct bpf_map *new_maps;
1362        size_t new_cap;
1363        int i;
1364
1365        if (obj->nr_maps < obj->maps_cap)
1366                return &obj->maps[obj->nr_maps++];
1367
1368        new_cap = max((size_t)4, obj->maps_cap * 3 / 2);
1369        new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps));
1370        if (!new_maps) {
1371                pr_warn("alloc maps for object failed\n");
1372                return ERR_PTR(-ENOMEM);
1373        }
1374
1375        obj->maps_cap = new_cap;
1376        obj->maps = new_maps;
1377
1378        /* zero out new maps */
1379        memset(obj->maps + obj->nr_maps, 0,
1380               (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps));
1381        /*
1382         * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin)
1383         * when failure (zclose won't close negative fd)).
1384         */
1385        for (i = obj->nr_maps; i < obj->maps_cap; i++) {
1386                obj->maps[i].fd = -1;
1387                obj->maps[i].inner_map_fd = -1;
1388        }
1389
1390        return &obj->maps[obj->nr_maps++];
1391}
1392
1393static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1394{
1395        long page_sz = sysconf(_SC_PAGE_SIZE);
1396        size_t map_sz;
1397
1398        map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1399        map_sz = roundup(map_sz, page_sz);
1400        return map_sz;
1401}
1402
1403static char *internal_map_name(struct bpf_object *obj,
1404                               enum libbpf_map_type type)
1405{
1406        char map_name[BPF_OBJ_NAME_LEN], *p;
1407        const char *sfx = libbpf_type_to_btf_name[type];
1408        int sfx_len = max((size_t)7, strlen(sfx));
1409        int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1,
1410                          strlen(obj->name));
1411
1412        snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1413                 sfx_len, libbpf_type_to_btf_name[type]);
1414
1415        /* sanitise map name to characters allowed by kernel */
1416        for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1417                if (!isalnum(*p) && *p != '_' && *p != '.')
1418                        *p = '_';
1419
1420        return strdup(map_name);
1421}
1422
1423static int
1424bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1425                              int sec_idx, void *data, size_t data_sz)
1426{
1427        struct bpf_map_def *def;
1428        struct bpf_map *map;
1429        int err;
1430
1431        map = bpf_object__add_map(obj);
1432        if (IS_ERR(map))
1433                return PTR_ERR(map);
1434
1435        map->libbpf_type = type;
1436        map->sec_idx = sec_idx;
1437        map->sec_offset = 0;
1438        map->name = internal_map_name(obj, type);
1439        if (!map->name) {
1440                pr_warn("failed to alloc map name\n");
1441                return -ENOMEM;
1442        }
1443
1444        def = &map->def;
1445        def->type = BPF_MAP_TYPE_ARRAY;
1446        def->key_size = sizeof(int);
1447        def->value_size = data_sz;
1448        def->max_entries = 1;
1449        def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1450                         ? BPF_F_RDONLY_PROG : 0;
1451        def->map_flags |= BPF_F_MMAPABLE;
1452
1453        pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1454                 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1455
1456        map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1457                           MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1458        if (map->mmaped == MAP_FAILED) {
1459                err = -errno;
1460                map->mmaped = NULL;
1461                pr_warn("failed to alloc map '%s' content buffer: %d\n",
1462                        map->name, err);
1463                zfree(&map->name);
1464                return err;
1465        }
1466
1467        if (data)
1468                memcpy(map->mmaped, data, data_sz);
1469
1470        pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1471        return 0;
1472}
1473
1474static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1475{
1476        int err;
1477
1478        /*
1479         * Populate obj->maps with libbpf internal maps.
1480         */
1481        if (obj->efile.data_shndx >= 0) {
1482                err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1483                                                    obj->efile.data_shndx,
1484                                                    obj->efile.data->d_buf,
1485                                                    obj->efile.data->d_size);
1486                if (err)
1487                        return err;
1488        }
1489        if (obj->efile.rodata_shndx >= 0) {
1490                err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1491                                                    obj->efile.rodata_shndx,
1492                                                    obj->efile.rodata->d_buf,
1493                                                    obj->efile.rodata->d_size);
1494                if (err)
1495                        return err;
1496
1497                obj->rodata_map_idx = obj->nr_maps - 1;
1498        }
1499        if (obj->efile.bss_shndx >= 0) {
1500                err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1501                                                    obj->efile.bss_shndx,
1502                                                    NULL,
1503                                                    obj->efile.bss->d_size);
1504                if (err)
1505                        return err;
1506        }
1507        return 0;
1508}
1509
1510
1511static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1512                                               const void *name)
1513{
1514        int i;
1515
1516        for (i = 0; i < obj->nr_extern; i++) {
1517                if (strcmp(obj->externs[i].name, name) == 0)
1518                        return &obj->externs[i];
1519        }
1520        return NULL;
1521}
1522
1523static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1524                              char value)
1525{
1526        switch (ext->kcfg.type) {
1527        case KCFG_BOOL:
1528                if (value == 'm') {
1529                        pr_warn("extern (kcfg) %s=%c should be tristate or char\n",
1530                                ext->name, value);
1531                        return -EINVAL;
1532                }
1533                *(bool *)ext_val = value == 'y' ? true : false;
1534                break;
1535        case KCFG_TRISTATE:
1536                if (value == 'y')
1537                        *(enum libbpf_tristate *)ext_val = TRI_YES;
1538                else if (value == 'm')
1539                        *(enum libbpf_tristate *)ext_val = TRI_MODULE;
1540                else /* value == 'n' */
1541                        *(enum libbpf_tristate *)ext_val = TRI_NO;
1542                break;
1543        case KCFG_CHAR:
1544                *(char *)ext_val = value;
1545                break;
1546        case KCFG_UNKNOWN:
1547        case KCFG_INT:
1548        case KCFG_CHAR_ARR:
1549        default:
1550                pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n",
1551                        ext->name, value);
1552                return -EINVAL;
1553        }
1554        ext->is_set = true;
1555        return 0;
1556}
1557
1558static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1559                              const char *value)
1560{
1561        size_t len;
1562
1563        if (ext->kcfg.type != KCFG_CHAR_ARR) {
1564                pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value);
1565                return -EINVAL;
1566        }
1567
1568        len = strlen(value);
1569        if (value[len - 1] != '"') {
1570                pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1571                        ext->name, value);
1572                return -EINVAL;
1573        }
1574
1575        /* strip quotes */
1576        len -= 2;
1577        if (len >= ext->kcfg.sz) {
1578                pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n",
1579                        ext->name, value, len, ext->kcfg.sz - 1);
1580                len = ext->kcfg.sz - 1;
1581        }
1582        memcpy(ext_val, value + 1, len);
1583        ext_val[len] = '\0';
1584        ext->is_set = true;
1585        return 0;
1586}
1587
1588static int parse_u64(const char *value, __u64 *res)
1589{
1590        char *value_end;
1591        int err;
1592
1593        errno = 0;
1594        *res = strtoull(value, &value_end, 0);
1595        if (errno) {
1596                err = -errno;
1597                pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1598                return err;
1599        }
1600        if (*value_end) {
1601                pr_warn("failed to parse '%s' as integer completely\n", value);
1602                return -EINVAL;
1603        }
1604        return 0;
1605}
1606
1607static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1608{
1609        int bit_sz = ext->kcfg.sz * 8;
1610
1611        if (ext->kcfg.sz == 8)
1612                return true;
1613
1614        /* Validate that value stored in u64 fits in integer of `ext->sz`
1615         * bytes size without any loss of information. If the target integer
1616         * is signed, we rely on the following limits of integer type of
1617         * Y bits and subsequent transformation:
1618         *
1619         *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1620         *            0 <= X + 2^(Y-1) <= 2^Y - 1
1621         *            0 <= X + 2^(Y-1) <  2^Y
1622         *
1623         *  For unsigned target integer, check that all the (64 - Y) bits are
1624         *  zero.
1625         */
1626        if (ext->kcfg.is_signed)
1627                return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1628        else
1629                return (v >> bit_sz) == 0;
1630}
1631
1632static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1633                              __u64 value)
1634{
1635        if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1636                pr_warn("extern (kcfg) %s=%llu should be integer\n",
1637                        ext->name, (unsigned long long)value);
1638                return -EINVAL;
1639        }
1640        if (!is_kcfg_value_in_range(ext, value)) {
1641                pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n",
1642                        ext->name, (unsigned long long)value, ext->kcfg.sz);
1643                return -ERANGE;
1644        }
1645        switch (ext->kcfg.sz) {
1646                case 1: *(__u8 *)ext_val = value; break;
1647                case 2: *(__u16 *)ext_val = value; break;
1648                case 4: *(__u32 *)ext_val = value; break;
1649                case 8: *(__u64 *)ext_val = value; break;
1650                default:
1651                        return -EINVAL;
1652        }
1653        ext->is_set = true;
1654        return 0;
1655}
1656
1657static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1658                                            char *buf, void *data)
1659{
1660        struct extern_desc *ext;
1661        char *sep, *value;
1662        int len, err = 0;
1663        void *ext_val;
1664        __u64 num;
1665
1666        if (strncmp(buf, "CONFIG_", 7))
1667                return 0;
1668
1669        sep = strchr(buf, '=');
1670        if (!sep) {
1671                pr_warn("failed to parse '%s': no separator\n", buf);
1672                return -EINVAL;
1673        }
1674
1675        /* Trim ending '\n' */
1676        len = strlen(buf);
1677        if (buf[len - 1] == '\n')
1678                buf[len - 1] = '\0';
1679        /* Split on '=' and ensure that a value is present. */
1680        *sep = '\0';
1681        if (!sep[1]) {
1682                *sep = '=';
1683                pr_warn("failed to parse '%s': no value\n", buf);
1684                return -EINVAL;
1685        }
1686
1687        ext = find_extern_by_name(obj, buf);
1688        if (!ext || ext->is_set)
1689                return 0;
1690
1691        ext_val = data + ext->kcfg.data_off;
1692        value = sep + 1;
1693
1694        switch (*value) {
1695        case 'y': case 'n': case 'm':
1696                err = set_kcfg_value_tri(ext, ext_val, *value);
1697                break;
1698        case '"':
1699                err = set_kcfg_value_str(ext, ext_val, value);
1700                break;
1701        default:
1702                /* assume integer */
1703                err = parse_u64(value, &num);
1704                if (err) {
1705                        pr_warn("extern (kcfg) %s=%s should be integer\n",
1706                                ext->name, value);
1707                        return err;
1708                }
1709                err = set_kcfg_value_num(ext, ext_val, num);
1710                break;
1711        }
1712        if (err)
1713                return err;
1714        pr_debug("extern (kcfg) %s=%s\n", ext->name, value);
1715        return 0;
1716}
1717
1718static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1719{
1720        char buf[PATH_MAX];
1721        struct utsname uts;
1722        int len, err = 0;
1723        gzFile file;
1724
1725        uname(&uts);
1726        len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1727        if (len < 0)
1728                return -EINVAL;
1729        else if (len >= PATH_MAX)
1730                return -ENAMETOOLONG;
1731
1732        /* gzopen also accepts uncompressed files. */
1733        file = gzopen(buf, "r");
1734        if (!file)
1735                file = gzopen("/proc/config.gz", "r");
1736
1737        if (!file) {
1738                pr_warn("failed to open system Kconfig\n");
1739                return -ENOENT;
1740        }
1741
1742        while (gzgets(file, buf, sizeof(buf))) {
1743                err = bpf_object__process_kconfig_line(obj, buf, data);
1744                if (err) {
1745                        pr_warn("error parsing system Kconfig line '%s': %d\n",
1746                                buf, err);
1747                        goto out;
1748                }
1749        }
1750
1751out:
1752        gzclose(file);
1753        return err;
1754}
1755
1756static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1757                                        const char *config, void *data)
1758{
1759        char buf[PATH_MAX];
1760        int err = 0;
1761        FILE *file;
1762
1763        file = fmemopen((void *)config, strlen(config), "r");
1764        if (!file) {
1765                err = -errno;
1766                pr_warn("failed to open in-memory Kconfig: %d\n", err);
1767                return err;
1768        }
1769
1770        while (fgets(buf, sizeof(buf), file)) {
1771                err = bpf_object__process_kconfig_line(obj, buf, data);
1772                if (err) {
1773                        pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1774                                buf, err);
1775                        break;
1776                }
1777        }
1778
1779        fclose(file);
1780        return err;
1781}
1782
1783static int bpf_object__init_kconfig_map(struct bpf_object *obj)
1784{
1785        struct extern_desc *last_ext = NULL, *ext;
1786        size_t map_sz;
1787        int i, err;
1788
1789        for (i = 0; i < obj->nr_extern; i++) {
1790                ext = &obj->externs[i];
1791                if (ext->type == EXT_KCFG)
1792                        last_ext = ext;
1793        }
1794
1795        if (!last_ext)
1796                return 0;
1797
1798        map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
1799        err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
1800                                            obj->efile.symbols_shndx,
1801                                            NULL, map_sz);
1802        if (err)
1803                return err;
1804
1805        obj->kconfig_map_idx = obj->nr_maps - 1;
1806
1807        return 0;
1808}
1809
1810static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict)
1811{
1812        Elf_Data *symbols = obj->efile.symbols;
1813        int i, map_def_sz = 0, nr_maps = 0, nr_syms;
1814        Elf_Data *data = NULL;
1815        Elf_Scn *scn;
1816
1817        if (obj->efile.maps_shndx < 0)
1818                return 0;
1819
1820        if (!symbols)
1821                return -EINVAL;
1822
1823        scn = elf_sec_by_idx(obj, obj->efile.maps_shndx);
1824        data = elf_sec_data(obj, scn);
1825        if (!scn || !data) {
1826                pr_warn("elf: failed to get legacy map definitions for %s\n",
1827                        obj->path);
1828                return -EINVAL;
1829        }
1830
1831        /*
1832         * Count number of maps. Each map has a name.
1833         * Array of maps is not supported: only the first element is
1834         * considered.
1835         *
1836         * TODO: Detect array of map and report error.
1837         */
1838        nr_syms = symbols->d_size / sizeof(GElf_Sym);
1839        for (i = 0; i < nr_syms; i++) {
1840                GElf_Sym sym;
1841
1842                if (!gelf_getsym(symbols, i, &sym))
1843                        continue;
1844                if (sym.st_shndx != obj->efile.maps_shndx)
1845                        continue;
1846                nr_maps++;
1847        }
1848        /* Assume equally sized map definitions */
1849        pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n",
1850                 nr_maps, data->d_size, obj->path);
1851
1852        if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) {
1853                pr_warn("elf: unable to determine legacy map definition size in %s\n",
1854                        obj->path);
1855                return -EINVAL;
1856        }
1857        map_def_sz = data->d_size / nr_maps;
1858
1859        /* Fill obj->maps using data in "maps" section.  */
1860        for (i = 0; i < nr_syms; i++) {
1861                GElf_Sym sym;
1862                const char *map_name;
1863                struct bpf_map_def *def;
1864                struct bpf_map *map;
1865
1866                if (!gelf_getsym(symbols, i, &sym))
1867                        continue;
1868                if (sym.st_shndx != obj->efile.maps_shndx)
1869                        continue;
1870
1871                map = bpf_object__add_map(obj);
1872                if (IS_ERR(map))
1873                        return PTR_ERR(map);
1874
1875                map_name = elf_sym_str(obj, sym.st_name);
1876                if (!map_name) {
1877                        pr_warn("failed to get map #%d name sym string for obj %s\n",
1878                                i, obj->path);
1879                        return -LIBBPF_ERRNO__FORMAT;
1880                }
1881
1882                if (GELF_ST_TYPE(sym.st_info) == STT_SECTION
1883                    || GELF_ST_BIND(sym.st_info) == STB_LOCAL) {
1884                        pr_warn("map '%s' (legacy): static maps are not supported\n", map_name);
1885                        return -ENOTSUP;
1886                }
1887
1888                map->libbpf_type = LIBBPF_MAP_UNSPEC;
1889                map->sec_idx = sym.st_shndx;
1890                map->sec_offset = sym.st_value;
1891                pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n",
1892                         map_name, map->sec_idx, map->sec_offset);
1893                if (sym.st_value + map_def_sz > data->d_size) {
1894                        pr_warn("corrupted maps section in %s: last map \"%s\" too small\n",
1895                                obj->path, map_name);
1896                        return -EINVAL;
1897                }
1898
1899                map->name = strdup(map_name);
1900                if (!map->name) {
1901                        pr_warn("failed to alloc map name\n");
1902                        return -ENOMEM;
1903                }
1904                pr_debug("map %d is \"%s\"\n", i, map->name);
1905                def = (struct bpf_map_def *)(data->d_buf + sym.st_value);
1906                /*
1907                 * If the definition of the map in the object file fits in
1908                 * bpf_map_def, copy it.  Any extra fields in our version
1909                 * of bpf_map_def will default to zero as a result of the
1910                 * calloc above.
1911                 */
1912                if (map_def_sz <= sizeof(struct bpf_map_def)) {
1913                        memcpy(&map->def, def, map_def_sz);
1914                } else {
1915                        /*
1916                         * Here the map structure being read is bigger than what
1917                         * we expect, truncate if the excess bits are all zero.
1918                         * If they are not zero, reject this map as
1919                         * incompatible.
1920                         */
1921                        char *b;
1922
1923                        for (b = ((char *)def) + sizeof(struct bpf_map_def);
1924                             b < ((char *)def) + map_def_sz; b++) {
1925                                if (*b != 0) {
1926                                        pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n",
1927                                                obj->path, map_name);
1928                                        if (strict)
1929                                                return -EINVAL;
1930                                }
1931                        }
1932                        memcpy(&map->def, def, sizeof(struct bpf_map_def));
1933                }
1934        }
1935        return 0;
1936}
1937
1938const struct btf_type *
1939skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
1940{
1941        const struct btf_type *t = btf__type_by_id(btf, id);
1942
1943        if (res_id)
1944                *res_id = id;
1945
1946        while (btf_is_mod(t) || btf_is_typedef(t)) {
1947                if (res_id)
1948                        *res_id = t->type;
1949                t = btf__type_by_id(btf, t->type);
1950        }
1951
1952        return t;
1953}
1954
1955static const struct btf_type *
1956resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
1957{
1958        const struct btf_type *t;
1959
1960        t = skip_mods_and_typedefs(btf, id, NULL);
1961        if (!btf_is_ptr(t))
1962                return NULL;
1963
1964        t = skip_mods_and_typedefs(btf, t->type, res_id);
1965
1966        return btf_is_func_proto(t) ? t : NULL;
1967}
1968
1969static const char *__btf_kind_str(__u16 kind)
1970{
1971        switch (kind) {
1972        case BTF_KIND_UNKN: return "void";
1973        case BTF_KIND_INT: return "int";
1974        case BTF_KIND_PTR: return "ptr";
1975        case BTF_KIND_ARRAY: return "array";
1976        case BTF_KIND_STRUCT: return "struct";
1977        case BTF_KIND_UNION: return "union";
1978        case BTF_KIND_ENUM: return "enum";
1979        case BTF_KIND_FWD: return "fwd";
1980        case BTF_KIND_TYPEDEF: return "typedef";
1981        case BTF_KIND_VOLATILE: return "volatile";
1982        case BTF_KIND_CONST: return "const";
1983        case BTF_KIND_RESTRICT: return "restrict";
1984        case BTF_KIND_FUNC: return "func";
1985        case BTF_KIND_FUNC_PROTO: return "func_proto";
1986        case BTF_KIND_VAR: return "var";
1987        case BTF_KIND_DATASEC: return "datasec";
1988        case BTF_KIND_FLOAT: return "float";
1989        default: return "unknown";
1990        }
1991}
1992
1993const char *btf_kind_str(const struct btf_type *t)
1994{
1995        return __btf_kind_str(btf_kind(t));
1996}
1997
1998/*
1999 * Fetch integer attribute of BTF map definition. Such attributes are
2000 * represented using a pointer to an array, in which dimensionality of array
2001 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2002 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2003 * type definition, while using only sizeof(void *) space in ELF data section.
2004 */
2005static bool get_map_field_int(const char *map_name, const struct btf *btf,
2006                              const struct btf_member *m, __u32 *res)
2007{
2008        const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2009        const char *name = btf__name_by_offset(btf, m->name_off);
2010        const struct btf_array *arr_info;
2011        const struct btf_type *arr_t;
2012
2013        if (!btf_is_ptr(t)) {
2014                pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2015                        map_name, name, btf_kind_str(t));
2016                return false;
2017        }
2018
2019        arr_t = btf__type_by_id(btf, t->type);
2020        if (!arr_t) {
2021                pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2022                        map_name, name, t->type);
2023                return false;
2024        }
2025        if (!btf_is_array(arr_t)) {
2026                pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2027                        map_name, name, btf_kind_str(arr_t));
2028                return false;
2029        }
2030        arr_info = btf_array(arr_t);
2031        *res = arr_info->nelems;
2032        return true;
2033}
2034
2035static int build_map_pin_path(struct bpf_map *map, const char *path)
2036{
2037        char buf[PATH_MAX];
2038        int len;
2039
2040        if (!path)
2041                path = "/sys/fs/bpf";
2042
2043        len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map));
2044        if (len < 0)
2045                return -EINVAL;
2046        else if (len >= PATH_MAX)
2047                return -ENAMETOOLONG;
2048
2049        return bpf_map__set_pin_path(map, buf);
2050}
2051
2052int parse_btf_map_def(const char *map_name, struct btf *btf,
2053                      const struct btf_type *def_t, bool strict,
2054                      struct btf_map_def *map_def, struct btf_map_def *inner_def)
2055{
2056        const struct btf_type *t;
2057        const struct btf_member *m;
2058        bool is_inner = inner_def == NULL;
2059        int vlen, i;
2060
2061        vlen = btf_vlen(def_t);
2062        m = btf_members(def_t);
2063        for (i = 0; i < vlen; i++, m++) {
2064                const char *name = btf__name_by_offset(btf, m->name_off);
2065
2066                if (!name) {
2067                        pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2068                        return -EINVAL;
2069                }
2070                if (strcmp(name, "type") == 0) {
2071                        if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2072                                return -EINVAL;
2073                        map_def->parts |= MAP_DEF_MAP_TYPE;
2074                } else if (strcmp(name, "max_entries") == 0) {
2075                        if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2076                                return -EINVAL;
2077                        map_def->parts |= MAP_DEF_MAX_ENTRIES;
2078                } else if (strcmp(name, "map_flags") == 0) {
2079                        if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2080                                return -EINVAL;
2081                        map_def->parts |= MAP_DEF_MAP_FLAGS;
2082                } else if (strcmp(name, "numa_node") == 0) {
2083                        if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2084                                return -EINVAL;
2085                        map_def->parts |= MAP_DEF_NUMA_NODE;
2086                } else if (strcmp(name, "key_size") == 0) {
2087                        __u32 sz;
2088
2089                        if (!get_map_field_int(map_name, btf, m, &sz))
2090                                return -EINVAL;
2091                        if (map_def->key_size && map_def->key_size != sz) {
2092                                pr_warn("map '%s': conflicting key size %u != %u.\n",
2093                                        map_name, map_def->key_size, sz);
2094                                return -EINVAL;
2095                        }
2096                        map_def->key_size = sz;
2097                        map_def->parts |= MAP_DEF_KEY_SIZE;
2098                } else if (strcmp(name, "key") == 0) {
2099                        __s64 sz;
2100
2101                        t = btf__type_by_id(btf, m->type);
2102                        if (!t) {
2103                                pr_warn("map '%s': key type [%d] not found.\n",
2104                                        map_name, m->type);
2105                                return -EINVAL;
2106                        }
2107                        if (!btf_is_ptr(t)) {
2108                                pr_warn("map '%s': key spec is not PTR: %s.\n",
2109                                        map_name, btf_kind_str(t));
2110                                return -EINVAL;
2111                        }
2112                        sz = btf__resolve_size(btf, t->type);
2113                        if (sz < 0) {
2114                                pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2115                                        map_name, t->type, (ssize_t)sz);
2116                                return sz;
2117                        }
2118                        if (map_def->key_size && map_def->key_size != sz) {
2119                                pr_warn("map '%s': conflicting key size %u != %zd.\n",
2120                                        map_name, map_def->key_size, (ssize_t)sz);
2121                                return -EINVAL;
2122                        }
2123                        map_def->key_size = sz;
2124                        map_def->key_type_id = t->type;
2125                        map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2126                } else if (strcmp(name, "value_size") == 0) {
2127                        __u32 sz;
2128
2129                        if (!get_map_field_int(map_name, btf, m, &sz))
2130                                return -EINVAL;
2131                        if (map_def->value_size && map_def->value_size != sz) {
2132                                pr_warn("map '%s': conflicting value size %u != %u.\n",
2133                                        map_name, map_def->value_size, sz);
2134                                return -EINVAL;
2135                        }
2136                        map_def->value_size = sz;
2137                        map_def->parts |= MAP_DEF_VALUE_SIZE;
2138                } else if (strcmp(name, "value") == 0) {
2139                        __s64 sz;
2140
2141                        t = btf__type_by_id(btf, m->type);
2142                        if (!t) {
2143                                pr_warn("map '%s': value type [%d] not found.\n",
2144                                        map_name, m->type);
2145                                return -EINVAL;
2146                        }
2147                        if (!btf_is_ptr(t)) {
2148                                pr_warn("map '%s': value spec is not PTR: %s.\n",
2149                                        map_name, btf_kind_str(t));
2150                                return -EINVAL;
2151                        }
2152                        sz = btf__resolve_size(btf, t->type);
2153                        if (sz < 0) {
2154                                pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2155                                        map_name, t->type, (ssize_t)sz);
2156                                return sz;
2157                        }
2158                        if (map_def->value_size && map_def->value_size != sz) {
2159                                pr_warn("map '%s': conflicting value size %u != %zd.\n",
2160                                        map_name, map_def->value_size, (ssize_t)sz);
2161                                return -EINVAL;
2162                        }
2163                        map_def->value_size = sz;
2164                        map_def->value_type_id = t->type;
2165                        map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2166                }
2167                else if (strcmp(name, "values") == 0) {
2168                        char inner_map_name[128];
2169                        int err;
2170
2171                        if (is_inner) {
2172                                pr_warn("map '%s': multi-level inner maps not supported.\n",
2173                                        map_name);
2174                                return -ENOTSUP;
2175                        }
2176                        if (i != vlen - 1) {
2177                                pr_warn("map '%s': '%s' member should be last.\n",
2178                                        map_name, name);
2179                                return -EINVAL;
2180                        }
2181                        if (!bpf_map_type__is_map_in_map(map_def->map_type)) {
2182                                pr_warn("map '%s': should be map-in-map.\n",
2183                                        map_name);
2184                                return -ENOTSUP;
2185                        }
2186                        if (map_def->value_size && map_def->value_size != 4) {
2187                                pr_warn("map '%s': conflicting value size %u != 4.\n",
2188                                        map_name, map_def->value_size);
2189                                return -EINVAL;
2190                        }
2191                        map_def->value_size = 4;
2192                        t = btf__type_by_id(btf, m->type);
2193                        if (!t) {
2194                                pr_warn("map '%s': map-in-map inner type [%d] not found.\n",
2195                                        map_name, m->type);
2196                                return -EINVAL;
2197                        }
2198                        if (!btf_is_array(t) || btf_array(t)->nelems) {
2199                                pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n",
2200                                        map_name);
2201                                return -EINVAL;
2202                        }
2203                        t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2204                        if (!btf_is_ptr(t)) {
2205                                pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2206                                        map_name, btf_kind_str(t));
2207                                return -EINVAL;
2208                        }
2209                        t = skip_mods_and_typedefs(btf, t->type, NULL);
2210                        if (!btf_is_struct(t)) {
2211                                pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2212                                        map_name, btf_kind_str(t));
2213                                return -EINVAL;
2214                        }
2215
2216                        snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2217                        err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2218                        if (err)
2219                                return err;
2220
2221                        map_def->parts |= MAP_DEF_INNER_MAP;
2222                } else if (strcmp(name, "pinning") == 0) {
2223                        __u32 val;
2224
2225                        if (is_inner) {
2226                                pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2227                                return -EINVAL;
2228                        }
2229                        if (!get_map_field_int(map_name, btf, m, &val))
2230                                return -EINVAL;
2231                        if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2232                                pr_warn("map '%s': invalid pinning value %u.\n",
2233                                        map_name, val);
2234                                return -EINVAL;
2235                        }
2236                        map_def->pinning = val;
2237                        map_def->parts |= MAP_DEF_PINNING;
2238                } else {
2239                        if (strict) {
2240                                pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2241                                return -ENOTSUP;
2242                        }
2243                        pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2244                }
2245        }
2246
2247        if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2248                pr_warn("map '%s': map type isn't specified.\n", map_name);
2249                return -EINVAL;
2250        }
2251
2252        return 0;
2253}
2254
2255static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2256{
2257        map->def.type = def->map_type;
2258        map->def.key_size = def->key_size;
2259        map->def.value_size = def->value_size;
2260        map->def.max_entries = def->max_entries;
2261        map->def.map_flags = def->map_flags;
2262
2263        map->numa_node = def->numa_node;
2264        map->btf_key_type_id = def->key_type_id;
2265        map->btf_value_type_id = def->value_type_id;
2266
2267        if (def->parts & MAP_DEF_MAP_TYPE)
2268                pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2269
2270        if (def->parts & MAP_DEF_KEY_TYPE)
2271                pr_debug("map '%s': found key [%u], sz = %u.\n",
2272                         map->name, def->key_type_id, def->key_size);
2273        else if (def->parts & MAP_DEF_KEY_SIZE)
2274                pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2275
2276        if (def->parts & MAP_DEF_VALUE_TYPE)
2277                pr_debug("map '%s': found value [%u], sz = %u.\n",
2278                         map->name, def->value_type_id, def->value_size);
2279        else if (def->parts & MAP_DEF_VALUE_SIZE)
2280                pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2281
2282        if (def->parts & MAP_DEF_MAX_ENTRIES)
2283                pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2284        if (def->parts & MAP_DEF_MAP_FLAGS)
2285                pr_debug("map '%s': found map_flags = %u.\n", map->name, def->map_flags);
2286        if (def->parts & MAP_DEF_PINNING)
2287                pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2288        if (def->parts & MAP_DEF_NUMA_NODE)
2289                pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2290
2291        if (def->parts & MAP_DEF_INNER_MAP)
2292                pr_debug("map '%s': found inner map definition.\n", map->name);
2293}
2294
2295static const char *btf_var_linkage_str(__u32 linkage)
2296{
2297        switch (linkage) {
2298        case BTF_VAR_STATIC: return "static";
2299        case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2300        case BTF_VAR_GLOBAL_EXTERN: return "extern";
2301        default: return "unknown";
2302        }
2303}
2304
2305static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2306                                         const struct btf_type *sec,
2307                                         int var_idx, int sec_idx,
2308                                         const Elf_Data *data, bool strict,
2309                                         const char *pin_root_path)
2310{
2311        struct btf_map_def map_def = {}, inner_def = {};
2312        const struct btf_type *var, *def;
2313        const struct btf_var_secinfo *vi;
2314        const struct btf_var *var_extra;
2315        const char *map_name;
2316        struct bpf_map *map;
2317        int err;
2318
2319        vi = btf_var_secinfos(sec) + var_idx;
2320        var = btf__type_by_id(obj->btf, vi->type);
2321        var_extra = btf_var(var);
2322        map_name = btf__name_by_offset(obj->btf, var->name_off);
2323
2324        if (map_name == NULL || map_name[0] == '\0') {
2325                pr_warn("map #%d: empty name.\n", var_idx);
2326                return -EINVAL;
2327        }
2328        if ((__u64)vi->offset + vi->size > data->d_size) {
2329                pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2330                return -EINVAL;
2331        }
2332        if (!btf_is_var(var)) {
2333                pr_warn("map '%s': unexpected var kind %s.\n",
2334                        map_name, btf_kind_str(var));
2335                return -EINVAL;
2336        }
2337        if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2338                pr_warn("map '%s': unsupported map linkage %s.\n",
2339                        map_name, btf_var_linkage_str(var_extra->linkage));
2340                return -EOPNOTSUPP;
2341        }
2342
2343        def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2344        if (!btf_is_struct(def)) {
2345                pr_warn("map '%s': unexpected def kind %s.\n",
2346                        map_name, btf_kind_str(var));
2347                return -EINVAL;
2348        }
2349        if (def->size > vi->size) {
2350                pr_warn("map '%s': invalid def size.\n", map_name);
2351                return -EINVAL;
2352        }
2353
2354        map = bpf_object__add_map(obj);
2355        if (IS_ERR(map))
2356                return PTR_ERR(map);
2357        map->name = strdup(map_name);
2358        if (!map->name) {
2359                pr_warn("map '%s': failed to alloc map name.\n", map_name);
2360                return -ENOMEM;
2361        }
2362        map->libbpf_type = LIBBPF_MAP_UNSPEC;
2363        map->def.type = BPF_MAP_TYPE_UNSPEC;
2364        map->sec_idx = sec_idx;
2365        map->sec_offset = vi->offset;
2366        map->btf_var_idx = var_idx;
2367        pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2368                 map_name, map->sec_idx, map->sec_offset);
2369
2370        err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2371        if (err)
2372                return err;
2373
2374        fill_map_from_def(map, &map_def);
2375
2376        if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2377                err = build_map_pin_path(map, pin_root_path);
2378                if (err) {
2379                        pr_warn("map '%s': couldn't build pin path.\n", map->name);
2380                        return err;
2381                }
2382        }
2383
2384        if (map_def.parts & MAP_DEF_INNER_MAP) {
2385                map->inner_map = calloc(1, sizeof(*map->inner_map));
2386                if (!map->inner_map)
2387                        return -ENOMEM;
2388                map->inner_map->fd = -1;
2389                map->inner_map->sec_idx = sec_idx;
2390                map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2391                if (!map->inner_map->name)
2392                        return -ENOMEM;
2393                sprintf(map->inner_map->name, "%s.inner", map_name);
2394
2395                fill_map_from_def(map->inner_map, &inner_def);
2396        }
2397
2398        return 0;
2399}
2400
2401static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2402                                          const char *pin_root_path)
2403{
2404        const struct btf_type *sec = NULL;
2405        int nr_types, i, vlen, err;
2406        const struct btf_type *t;
2407        const char *name;
2408        Elf_Data *data;
2409        Elf_Scn *scn;
2410
2411        if (obj->efile.btf_maps_shndx < 0)
2412                return 0;
2413
2414        scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2415        data = elf_sec_data(obj, scn);
2416        if (!scn || !data) {
2417                pr_warn("elf: failed to get %s map definitions for %s\n",
2418                        MAPS_ELF_SEC, obj->path);
2419                return -EINVAL;
2420        }
2421
2422        nr_types = btf__get_nr_types(obj->btf);
2423        for (i = 1; i <= nr_types; i++) {
2424                t = btf__type_by_id(obj->btf, i);
2425                if (!btf_is_datasec(t))
2426                        continue;
2427                name = btf__name_by_offset(obj->btf, t->name_off);
2428                if (strcmp(name, MAPS_ELF_SEC) == 0) {
2429                        sec = t;
2430                        obj->efile.btf_maps_sec_btf_id = i;
2431                        break;
2432                }
2433        }
2434
2435        if (!sec) {
2436                pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2437                return -ENOENT;
2438        }
2439
2440        vlen = btf_vlen(sec);
2441        for (i = 0; i < vlen; i++) {
2442                err = bpf_object__init_user_btf_map(obj, sec, i,
2443                                                    obj->efile.btf_maps_shndx,
2444                                                    data, strict,
2445                                                    pin_root_path);
2446                if (err)
2447                        return err;
2448        }
2449
2450        return 0;
2451}
2452
2453static int bpf_object__init_maps(struct bpf_object *obj,
2454                                 const struct bpf_object_open_opts *opts)
2455{
2456        const char *pin_root_path;
2457        bool strict;
2458        int err;
2459
2460        strict = !OPTS_GET(opts, relaxed_maps, false);
2461        pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2462
2463        err = bpf_object__init_user_maps(obj, strict);
2464        err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2465        err = err ?: bpf_object__init_global_data_maps(obj);
2466        err = err ?: bpf_object__init_kconfig_map(obj);
2467        err = err ?: bpf_object__init_struct_ops_maps(obj);
2468
2469        return err;
2470}
2471
2472static bool section_have_execinstr(struct bpf_object *obj, int idx)
2473{
2474        GElf_Shdr sh;
2475
2476        if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh))
2477                return false;
2478
2479        return sh.sh_flags & SHF_EXECINSTR;
2480}
2481
2482static bool btf_needs_sanitization(struct bpf_object *obj)
2483{
2484        bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2485        bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2486        bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2487        bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2488
2489        return !has_func || !has_datasec || !has_func_global || !has_float;
2490}
2491
2492static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2493{
2494        bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2495        bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2496        bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2497        bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2498        struct btf_type *t;
2499        int i, j, vlen;
2500
2501        for (i = 1; i <= btf__get_nr_types(btf); i++) {
2502                t = (struct btf_type *)btf__type_by_id(btf, i);
2503
2504                if (!has_datasec && btf_is_var(t)) {
2505                        /* replace VAR with INT */
2506                        t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2507                        /*
2508                         * using size = 1 is the safest choice, 4 will be too
2509                         * big and cause kernel BTF validation failure if
2510                         * original variable took less than 4 bytes
2511                         */
2512                        t->size = 1;
2513                        *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2514                } else if (!has_datasec && btf_is_datasec(t)) {
2515                        /* replace DATASEC with STRUCT */
2516                        const struct btf_var_secinfo *v = btf_var_secinfos(t);
2517                        struct btf_member *m = btf_members(t);
2518                        struct btf_type *vt;
2519                        char *name;
2520
2521                        name = (char *)btf__name_by_offset(btf, t->name_off);
2522                        while (*name) {
2523                                if (*name == '.')
2524                                        *name = '_';
2525                                name++;
2526                        }
2527
2528                        vlen = btf_vlen(t);
2529                        t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2530                        for (j = 0; j < vlen; j++, v++, m++) {
2531                                /* order of field assignments is important */
2532                                m->offset = v->offset * 8;
2533                                m->type = v->type;
2534                                /* preserve variable name as member name */
2535                                vt = (void *)btf__type_by_id(btf, v->type);
2536                                m->name_off = vt->name_off;
2537                        }
2538                } else if (!has_func && btf_is_func_proto(t)) {
2539                        /* replace FUNC_PROTO with ENUM */
2540                        vlen = btf_vlen(t);
2541                        t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2542                        t->size = sizeof(__u32); /* kernel enforced */
2543                } else if (!has_func && btf_is_func(t)) {
2544                        /* replace FUNC with TYPEDEF */
2545                        t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2546                } else if (!has_func_global && btf_is_func(t)) {
2547                        /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2548                        t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2549                } else if (!has_float && btf_is_float(t)) {
2550                        /* replace FLOAT with an equally-sized empty STRUCT;
2551                         * since C compilers do not accept e.g. "float" as a
2552                         * valid struct name, make it anonymous
2553                         */
2554                        t->name_off = 0;
2555                        t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2556                }
2557        }
2558}
2559
2560static bool libbpf_needs_btf(const struct bpf_object *obj)
2561{
2562        return obj->efile.btf_maps_shndx >= 0 ||
2563               obj->efile.st_ops_shndx >= 0 ||
2564               obj->nr_extern > 0;
2565}
2566
2567static bool kernel_needs_btf(const struct bpf_object *obj)
2568{
2569        return obj->efile.st_ops_shndx >= 0;
2570}
2571
2572static int bpf_object__init_btf(struct bpf_object *obj,
2573                                Elf_Data *btf_data,
2574                                Elf_Data *btf_ext_data)
2575{
2576        int err = -ENOENT;
2577
2578        if (btf_data) {
2579                obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2580                err = libbpf_get_error(obj->btf);
2581                if (err) {
2582                        obj->btf = NULL;
2583                        pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2584                        goto out;
2585                }
2586                /* enforce 8-byte pointers for BPF-targeted BTFs */
2587                btf__set_pointer_size(obj->btf, 8);
2588        }
2589        if (btf_ext_data) {
2590                if (!obj->btf) {
2591                        pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2592                                 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2593                        goto out;
2594                }
2595                obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2596                err = libbpf_get_error(obj->btf_ext);
2597                if (err) {
2598                        pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2599                                BTF_EXT_ELF_SEC, err);
2600                        obj->btf_ext = NULL;
2601                        goto out;
2602                }
2603        }
2604out:
2605        if (err && libbpf_needs_btf(obj)) {
2606                pr_warn("BTF is required, but is missing or corrupted.\n");
2607                return err;
2608        }
2609        return 0;
2610}
2611
2612static int bpf_object__finalize_btf(struct bpf_object *obj)
2613{
2614        int err;
2615
2616        if (!obj->btf)
2617                return 0;
2618
2619        err = btf__finalize_data(obj, obj->btf);
2620        if (err) {
2621                pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err);
2622                return err;
2623        }
2624
2625        return 0;
2626}
2627
2628static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
2629{
2630        if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
2631            prog->type == BPF_PROG_TYPE_LSM)
2632                return true;
2633
2634        /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
2635         * also need vmlinux BTF
2636         */
2637        if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
2638                return true;
2639
2640        return false;
2641}
2642
2643static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
2644{
2645        struct bpf_program *prog;
2646        int i;
2647
2648        /* CO-RE relocations need kernel BTF */
2649        if (obj->btf_ext && obj->btf_ext->core_relo_info.len)
2650                return true;
2651
2652        /* Support for typed ksyms needs kernel BTF */
2653        for (i = 0; i < obj->nr_extern; i++) {
2654                const struct extern_desc *ext;
2655
2656                ext = &obj->externs[i];
2657                if (ext->type == EXT_KSYM && ext->ksym.type_id)
2658                        return true;
2659        }
2660
2661        bpf_object__for_each_program(prog, obj) {
2662                if (!prog->load)
2663                        continue;
2664                if (prog_needs_vmlinux_btf(prog))
2665                        return true;
2666        }
2667
2668        return false;
2669}
2670
2671static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
2672{
2673        int err;
2674
2675        /* btf_vmlinux could be loaded earlier */
2676        if (obj->btf_vmlinux || obj->gen_loader)
2677                return 0;
2678
2679        if (!force && !obj_needs_vmlinux_btf(obj))
2680                return 0;
2681
2682        obj->btf_vmlinux = libbpf_find_kernel_btf();
2683        err = libbpf_get_error(obj->btf_vmlinux);
2684        if (err) {
2685                pr_warn("Error loading vmlinux BTF: %d\n", err);
2686                obj->btf_vmlinux = NULL;
2687                return err;
2688        }
2689        return 0;
2690}
2691
2692static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
2693{
2694        struct btf *kern_btf = obj->btf;
2695        bool btf_mandatory, sanitize;
2696        int i, err = 0;
2697
2698        if (!obj->btf)
2699                return 0;
2700
2701        if (!kernel_supports(obj, FEAT_BTF)) {
2702                if (kernel_needs_btf(obj)) {
2703                        err = -EOPNOTSUPP;
2704                        goto report;
2705                }
2706                pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
2707                return 0;
2708        }
2709
2710        /* Even though some subprogs are global/weak, user might prefer more
2711         * permissive BPF verification process that BPF verifier performs for
2712         * static functions, taking into account more context from the caller
2713         * functions. In such case, they need to mark such subprogs with
2714         * __attribute__((visibility("hidden"))) and libbpf will adjust
2715         * corresponding FUNC BTF type to be marked as static and trigger more
2716         * involved BPF verification process.
2717         */
2718        for (i = 0; i < obj->nr_programs; i++) {
2719                struct bpf_program *prog = &obj->programs[i];
2720                struct btf_type *t;
2721                const char *name;
2722                int j, n;
2723
2724                if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
2725                        continue;
2726
2727                n = btf__get_nr_types(obj->btf);
2728                for (j = 1; j <= n; j++) {
2729                        t = btf_type_by_id(obj->btf, j);
2730                        if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
2731                                continue;
2732
2733                        name = btf__str_by_offset(obj->btf, t->name_off);
2734                        if (strcmp(name, prog->name) != 0)
2735                                continue;
2736
2737                        t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
2738                        break;
2739                }
2740        }
2741
2742        sanitize = btf_needs_sanitization(obj);
2743        if (sanitize) {
2744                const void *raw_data;
2745                __u32 sz;
2746
2747                /* clone BTF to sanitize a copy and leave the original intact */
2748                raw_data = btf__get_raw_data(obj->btf, &sz);
2749                kern_btf = btf__new(raw_data, sz);
2750                err = libbpf_get_error(kern_btf);
2751                if (err)
2752                        return err;
2753
2754                /* enforce 8-byte pointers for BPF-targeted BTFs */
2755                btf__set_pointer_size(obj->btf, 8);
2756                bpf_object__sanitize_btf(obj, kern_btf);
2757        }
2758
2759        if (obj->gen_loader) {
2760                __u32 raw_size = 0;
2761                const void *raw_data = btf__get_raw_data(kern_btf, &raw_size);
2762
2763                if (!raw_data)
2764                        return -ENOMEM;
2765                bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
2766                /* Pretend to have valid FD to pass various fd >= 0 checks.
2767                 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
2768                 */
2769                btf__set_fd(kern_btf, 0);
2770        } else {
2771                err = btf__load(kern_btf);
2772        }
2773        if (sanitize) {
2774                if (!err) {
2775                        /* move fd to libbpf's BTF */
2776                        btf__set_fd(obj->btf, btf__fd(kern_btf));
2777                        btf__set_fd(kern_btf, -1);
2778                }
2779                btf__free(kern_btf);
2780        }
2781report:
2782        if (err) {
2783                btf_mandatory = kernel_needs_btf(obj);
2784                pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
2785                        btf_mandatory ? "BTF is mandatory, can't proceed."
2786                                      : "BTF is optional, ignoring.");
2787                if (!btf_mandatory)
2788                        err = 0;
2789        }
2790        return err;
2791}
2792
2793static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
2794{
2795        const char *name;
2796
2797        name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
2798        if (!name) {
2799                pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
2800                        off, obj->path, elf_errmsg(-1));
2801                return NULL;
2802        }
2803
2804        return name;
2805}
2806
2807static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
2808{
2809        const char *name;
2810
2811        name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
2812        if (!name) {
2813                pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
2814                        off, obj->path, elf_errmsg(-1));
2815                return NULL;
2816        }
2817
2818        return name;
2819}
2820
2821static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
2822{
2823        Elf_Scn *scn;
2824
2825        scn = elf_getscn(obj->efile.elf, idx);
2826        if (!scn) {
2827                pr_warn("elf: failed to get section(%zu) from %s: %s\n",
2828                        idx, obj->path, elf_errmsg(-1));
2829                return NULL;
2830        }
2831        return scn;
2832}
2833
2834static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
2835{
2836        Elf_Scn *scn = NULL;
2837        Elf *elf = obj->efile.elf;
2838        const char *sec_name;
2839
2840        while ((scn = elf_nextscn(elf, scn)) != NULL) {
2841                sec_name = elf_sec_name(obj, scn);
2842                if (!sec_name)
2843                        return NULL;
2844
2845                if (strcmp(sec_name, name) != 0)
2846                        continue;
2847
2848                return scn;
2849        }
2850        return NULL;
2851}
2852
2853static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr)
2854{
2855        if (!scn)
2856                return -EINVAL;
2857
2858        if (gelf_getshdr(scn, hdr) != hdr) {
2859                pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
2860                        elf_ndxscn(scn), obj->path, elf_errmsg(-1));
2861                return -EINVAL;
2862        }
2863
2864        return 0;
2865}
2866
2867static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
2868{
2869        const char *name;
2870        GElf_Shdr sh;
2871
2872        if (!scn)
2873                return NULL;
2874
2875        if (elf_sec_hdr(obj, scn, &sh))
2876                return NULL;
2877
2878        name = elf_sec_str(obj, sh.sh_name);
2879        if (!name) {
2880                pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
2881                        elf_ndxscn(scn), obj->path, elf_errmsg(-1));
2882                return NULL;
2883        }
2884
2885        return name;
2886}
2887
2888static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
2889{
2890        Elf_Data *data;
2891
2892        if (!scn)
2893                return NULL;
2894
2895        data = elf_getdata(scn, 0);
2896        if (!data) {
2897                pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
2898                        elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
2899                        obj->path, elf_errmsg(-1));
2900                return NULL;
2901        }
2902
2903        return data;
2904}
2905
2906static bool is_sec_name_dwarf(const char *name)
2907{
2908        /* approximation, but the actual list is too long */
2909        return strncmp(name, ".debug_", sizeof(".debug_") - 1) == 0;
2910}
2911
2912static bool ignore_elf_section(GElf_Shdr *hdr, const char *name)
2913{
2914        /* no special handling of .strtab */
2915        if (hdr->sh_type == SHT_STRTAB)
2916                return true;
2917
2918        /* ignore .llvm_addrsig section as well */
2919        if (hdr->sh_type == SHT_LLVM_ADDRSIG)
2920                return true;
2921
2922        /* no subprograms will lead to an empty .text section, ignore it */
2923        if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
2924            strcmp(name, ".text") == 0)
2925                return true;
2926
2927        /* DWARF sections */
2928        if (is_sec_name_dwarf(name))
2929                return true;
2930
2931        if (strncmp(name, ".rel", sizeof(".rel") - 1) == 0) {
2932                name += sizeof(".rel") - 1;
2933                /* DWARF section relocations */
2934                if (is_sec_name_dwarf(name))
2935                        return true;
2936
2937                /* .BTF and .BTF.ext don't need relocations */
2938                if (strcmp(name, BTF_ELF_SEC) == 0 ||
2939                    strcmp(name, BTF_EXT_ELF_SEC) == 0)
2940                        return true;
2941        }
2942
2943        return false;
2944}
2945
2946static int cmp_progs(const void *_a, const void *_b)
2947{
2948        const struct bpf_program *a = _a;
2949        const struct bpf_program *b = _b;
2950
2951        if (a->sec_idx != b->sec_idx)
2952                return a->sec_idx < b->sec_idx ? -1 : 1;
2953
2954        /* sec_insn_off can't be the same within the section */
2955        return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
2956}
2957
2958static int bpf_object__elf_collect(struct bpf_object *obj)
2959{
2960        Elf *elf = obj->efile.elf;
2961        Elf_Data *btf_ext_data = NULL;
2962        Elf_Data *btf_data = NULL;
2963        int idx = 0, err = 0;
2964        const char *name;
2965        Elf_Data *data;
2966        Elf_Scn *scn;
2967        GElf_Shdr sh;
2968
2969        /* a bunch of ELF parsing functionality depends on processing symbols,
2970         * so do the first pass and find the symbol table
2971         */
2972        scn = NULL;
2973        while ((scn = elf_nextscn(elf, scn)) != NULL) {
2974                if (elf_sec_hdr(obj, scn, &sh))
2975                        return -LIBBPF_ERRNO__FORMAT;
2976
2977                if (sh.sh_type == SHT_SYMTAB) {
2978                        if (obj->efile.symbols) {
2979                                pr_warn("elf: multiple symbol tables in %s\n", obj->path);
2980                                return -LIBBPF_ERRNO__FORMAT;
2981                        }
2982
2983                        data = elf_sec_data(obj, scn);
2984                        if (!data)
2985                                return -LIBBPF_ERRNO__FORMAT;
2986
2987                        obj->efile.symbols = data;
2988                        obj->efile.symbols_shndx = elf_ndxscn(scn);
2989                        obj->efile.strtabidx = sh.sh_link;
2990                }
2991        }
2992
2993        scn = NULL;
2994        while ((scn = elf_nextscn(elf, scn)) != NULL) {
2995                idx++;
2996
2997                if (elf_sec_hdr(obj, scn, &sh))
2998                        return -LIBBPF_ERRNO__FORMAT;
2999
3000                name = elf_sec_str(obj, sh.sh_name);
3001                if (!name)
3002                        return -LIBBPF_ERRNO__FORMAT;
3003
3004                if (ignore_elf_section(&sh, name))
3005                        continue;
3006
3007                data = elf_sec_data(obj, scn);
3008                if (!data)
3009                        return -LIBBPF_ERRNO__FORMAT;
3010
3011                pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3012                         idx, name, (unsigned long)data->d_size,
3013                         (int)sh.sh_link, (unsigned long)sh.sh_flags,
3014                         (int)sh.sh_type);
3015
3016                if (strcmp(name, "license") == 0) {
3017                        err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3018                        if (err)
3019                                return err;
3020                } else if (strcmp(name, "version") == 0) {
3021                        err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3022                        if (err)
3023                                return err;
3024                } else if (strcmp(name, "maps") == 0) {
3025                        obj->efile.maps_shndx = idx;
3026                } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3027                        obj->efile.btf_maps_shndx = idx;
3028                } else if (strcmp(name, BTF_ELF_SEC) == 0) {
3029                        btf_data = data;
3030                } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3031                        btf_ext_data = data;
3032                } else if (sh.sh_type == SHT_SYMTAB) {
3033                        /* already processed during the first pass above */
3034                } else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) {
3035                        if (sh.sh_flags & SHF_EXECINSTR) {
3036                                if (strcmp(name, ".text") == 0)
3037                                        obj->efile.text_shndx = idx;
3038                                err = bpf_object__add_programs(obj, data, name, idx);
3039                                if (err)
3040                                        return err;
3041                        } else if (strcmp(name, DATA_SEC) == 0) {
3042                                obj->efile.data = data;
3043                                obj->efile.data_shndx = idx;
3044                        } else if (strcmp(name, RODATA_SEC) == 0) {
3045                                obj->efile.rodata = data;
3046                                obj->efile.rodata_shndx = idx;
3047                        } else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3048                                obj->efile.st_ops_data = data;
3049                                obj->efile.st_ops_shndx = idx;
3050                        } else {
3051                                pr_info("elf: skipping unrecognized data section(%d) %s\n",
3052                                        idx, name);
3053                        }
3054                } else if (sh.sh_type == SHT_REL) {
3055                        int nr_sects = obj->efile.nr_reloc_sects;
3056                        void *sects = obj->efile.reloc_sects;
3057                        int sec = sh.sh_info; /* points to other section */
3058
3059                        /* Only do relo for section with exec instructions */
3060                        if (!section_have_execinstr(obj, sec) &&
3061                            strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3062                            strcmp(name, ".rel" MAPS_ELF_SEC)) {
3063                                pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3064                                        idx, name, sec,
3065                                        elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>");
3066                                continue;
3067                        }
3068
3069                        sects = libbpf_reallocarray(sects, nr_sects + 1,
3070                                                    sizeof(*obj->efile.reloc_sects));
3071                        if (!sects)
3072                                return -ENOMEM;
3073
3074                        obj->efile.reloc_sects = sects;
3075                        obj->efile.nr_reloc_sects++;
3076
3077                        obj->efile.reloc_sects[nr_sects].shdr = sh;
3078                        obj->efile.reloc_sects[nr_sects].data = data;
3079                } else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) {
3080                        obj->efile.bss = data;
3081                        obj->efile.bss_shndx = idx;
3082                } else {
3083                        pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3084                                (size_t)sh.sh_size);
3085                }
3086        }
3087
3088        if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3089                pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3090                return -LIBBPF_ERRNO__FORMAT;
3091        }
3092
3093        /* sort BPF programs by section name and in-section instruction offset
3094         * for faster search */
3095        qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3096
3097        return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3098}
3099
3100static bool sym_is_extern(const GElf_Sym *sym)
3101{
3102        int bind = GELF_ST_BIND(sym->st_info);
3103        /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3104        return sym->st_shndx == SHN_UNDEF &&
3105               (bind == STB_GLOBAL || bind == STB_WEAK) &&
3106               GELF_ST_TYPE(sym->st_info) == STT_NOTYPE;
3107}
3108
3109static bool sym_is_subprog(const GElf_Sym *sym, int text_shndx)
3110{
3111        int bind = GELF_ST_BIND(sym->st_info);
3112        int type = GELF_ST_TYPE(sym->st_info);
3113
3114        /* in .text section */
3115        if (sym->st_shndx != text_shndx)
3116                return false;
3117
3118        /* local function */
3119        if (bind == STB_LOCAL && type == STT_SECTION)
3120                return true;
3121
3122        /* global function */
3123        return bind == STB_GLOBAL && type == STT_FUNC;
3124}
3125
3126static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3127{
3128        const struct btf_type *t;
3129        const char *tname;
3130        int i, n;
3131
3132        if (!btf)
3133                return -ESRCH;
3134
3135        n = btf__get_nr_types(btf);
3136        for (i = 1; i <= n; i++) {
3137                t = btf__type_by_id(btf, i);
3138
3139                if (!btf_is_var(t) && !btf_is_func(t))
3140                        continue;
3141
3142                tname = btf__name_by_offset(btf, t->name_off);
3143                if (strcmp(tname, ext_name))
3144                        continue;
3145
3146                if (btf_is_var(t) &&
3147                    btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3148                        return -EINVAL;
3149
3150                if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3151                        return -EINVAL;
3152
3153                return i;
3154        }
3155
3156        return -ENOENT;
3157}
3158
3159static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3160        const struct btf_var_secinfo *vs;
3161        const struct btf_type *t;
3162        int i, j, n;
3163
3164        if (!btf)
3165                return -ESRCH;
3166
3167        n = btf__get_nr_types(btf);
3168        for (i = 1; i <= n; i++) {
3169                t = btf__type_by_id(btf, i);
3170
3171                if (!btf_is_datasec(t))
3172                        continue;
3173
3174                vs = btf_var_secinfos(t);
3175                for (j = 0; j < btf_vlen(t); j++, vs++) {
3176                        if (vs->type == ext_btf_id)
3177                                return i;
3178                }
3179        }
3180
3181        return -ENOENT;
3182}
3183
3184static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3185                                     bool *is_signed)
3186{
3187        const struct btf_type *t;
3188        const char *name;
3189
3190        t = skip_mods_and_typedefs(btf, id, NULL);
3191        name = btf__name_by_offset(btf, t->name_off);
3192
3193        if (is_signed)
3194                *is_signed = false;
3195        switch (btf_kind(t)) {
3196        case BTF_KIND_INT: {
3197                int enc = btf_int_encoding(t);
3198
3199                if (enc & BTF_INT_BOOL)
3200                        return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3201                if (is_signed)
3202                        *is_signed = enc & BTF_INT_SIGNED;
3203                if (t->size == 1)
3204                        return KCFG_CHAR;
3205                if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3206                        return KCFG_UNKNOWN;
3207                return KCFG_INT;
3208        }
3209        case BTF_KIND_ENUM:
3210                if (t->size != 4)
3211                        return KCFG_UNKNOWN;
3212                if (strcmp(name, "libbpf_tristate"))
3213                        return KCFG_UNKNOWN;
3214                return KCFG_TRISTATE;
3215        case BTF_KIND_ARRAY:
3216                if (btf_array(t)->nelems == 0)
3217                        return KCFG_UNKNOWN;
3218                if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3219                        return KCFG_UNKNOWN;
3220                return KCFG_CHAR_ARR;
3221        default:
3222                return KCFG_UNKNOWN;
3223        }
3224}
3225
3226static int cmp_externs(const void *_a, const void *_b)
3227{
3228        const struct extern_desc *a = _a;
3229        const struct extern_desc *b = _b;
3230
3231        if (a->type != b->type)
3232                return a->type < b->type ? -1 : 1;
3233
3234        if (a->type == EXT_KCFG) {
3235                /* descending order by alignment requirements */
3236                if (a->kcfg.align != b->kcfg.align)
3237                        return a->kcfg.align > b->kcfg.align ? -1 : 1;
3238                /* ascending order by size, within same alignment class */
3239                if (a->kcfg.sz != b->kcfg.sz)
3240                        return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3241        }
3242
3243        /* resolve ties by name */
3244        return strcmp(a->name, b->name);
3245}
3246
3247static int find_int_btf_id(const struct btf *btf)
3248{
3249        const struct btf_type *t;
3250        int i, n;
3251
3252        n = btf__get_nr_types(btf);
3253        for (i = 1; i <= n; i++) {
3254                t = btf__type_by_id(btf, i);
3255
3256                if (btf_is_int(t) && btf_int_bits(t) == 32)
3257                        return i;
3258        }
3259
3260        return 0;
3261}
3262
3263static int add_dummy_ksym_var(struct btf *btf)
3264{
3265        int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3266        const struct btf_var_secinfo *vs;
3267        const struct btf_type *sec;
3268
3269        if (!btf)
3270                return 0;
3271
3272        sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3273                                            BTF_KIND_DATASEC);
3274        if (sec_btf_id < 0)
3275                return 0;
3276
3277        sec = btf__type_by_id(btf, sec_btf_id);
3278        vs = btf_var_secinfos(sec);
3279        for (i = 0; i < btf_vlen(sec); i++, vs++) {
3280                const struct btf_type *vt;
3281
3282                vt = btf__type_by_id(btf, vs->type);
3283                if (btf_is_func(vt))
3284                        break;
3285        }
3286
3287        /* No func in ksyms sec.  No need to add dummy var. */
3288        if (i == btf_vlen(sec))
3289                return 0;
3290
3291        int_btf_id = find_int_btf_id(btf);
3292        dummy_var_btf_id = btf__add_var(btf,
3293                                        "dummy_ksym",
3294                                        BTF_VAR_GLOBAL_ALLOCATED,
3295                                        int_btf_id);
3296        if (dummy_var_btf_id < 0)
3297                pr_warn("cannot create a dummy_ksym var\n");
3298
3299        return dummy_var_btf_id;
3300}
3301
3302static int bpf_object__collect_externs(struct bpf_object *obj)
3303{
3304        struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3305        const struct btf_type *t;
3306        struct extern_desc *ext;
3307        int i, n, off, dummy_var_btf_id;
3308        const char *ext_name, *sec_name;
3309        Elf_Scn *scn;
3310        GElf_Shdr sh;
3311
3312        if (!obj->efile.symbols)
3313                return 0;
3314
3315        scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3316        if (elf_sec_hdr(obj, scn, &sh))
3317                return -LIBBPF_ERRNO__FORMAT;
3318
3319        dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3320        if (dummy_var_btf_id < 0)
3321                return dummy_var_btf_id;
3322
3323        n = sh.sh_size / sh.sh_entsize;
3324        pr_debug("looking for externs among %d symbols...\n", n);
3325
3326        for (i = 0; i < n; i++) {
3327                GElf_Sym sym;
3328
3329                if (!gelf_getsym(obj->efile.symbols, i, &sym))
3330                        return -LIBBPF_ERRNO__FORMAT;
3331                if (!sym_is_extern(&sym))
3332                        continue;
3333                ext_name = elf_sym_str(obj, sym.st_name);
3334                if (!ext_name || !ext_name[0])
3335                        continue;
3336
3337                ext = obj->externs;
3338                ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3339                if (!ext)
3340                        return -ENOMEM;
3341                obj->externs = ext;
3342                ext = &ext[obj->nr_extern];
3343                memset(ext, 0, sizeof(*ext));
3344                obj->nr_extern++;
3345
3346                ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3347                if (ext->btf_id <= 0) {
3348                        pr_warn("failed to find BTF for extern '%s': %d\n",
3349                                ext_name, ext->btf_id);
3350                        return ext->btf_id;
3351                }
3352                t = btf__type_by_id(obj->btf, ext->btf_id);
3353                ext->name = btf__name_by_offset(obj->btf, t->name_off);
3354                ext->sym_idx = i;
3355                ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK;
3356
3357                ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3358                if (ext->sec_btf_id <= 0) {
3359                        pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3360                                ext_name, ext->btf_id, ext->sec_btf_id);
3361                        return ext->sec_btf_id;
3362                }
3363                sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3364                sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3365
3366                if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3367                        if (btf_is_func(t)) {
3368                                pr_warn("extern function %s is unsupported under %s section\n",
3369                                        ext->name, KCONFIG_SEC);
3370                                return -ENOTSUP;
3371                        }
3372                        kcfg_sec = sec;
3373                        ext->type = EXT_KCFG;
3374                        ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3375                        if (ext->kcfg.sz <= 0) {
3376                                pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3377                                        ext_name, ext->kcfg.sz);
3378                                return ext->kcfg.sz;
3379                        }
3380                        ext->kcfg.align = btf__align_of(obj->btf, t->type);
3381                        if (ext->kcfg.align <= 0) {
3382                                pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3383                                        ext_name, ext->kcfg.align);
3384                                return -EINVAL;
3385                        }
3386                        ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3387                                                        &ext->kcfg.is_signed);
3388                        if (ext->kcfg.type == KCFG_UNKNOWN) {
3389                                pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name);
3390                                return -ENOTSUP;
3391                        }
3392                } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3393                        if (btf_is_func(t) && ext->is_weak) {
3394                                pr_warn("extern weak function %s is unsupported\n",
3395                                        ext->name);
3396                                return -ENOTSUP;
3397                        }
3398                        ksym_sec = sec;
3399                        ext->type = EXT_KSYM;
3400                        skip_mods_and_typedefs(obj->btf, t->type,
3401                                               &ext->ksym.type_id);
3402                } else {
3403                        pr_warn("unrecognized extern section '%s'\n", sec_name);
3404                        return -ENOTSUP;
3405                }
3406        }
3407        pr_debug("collected %d externs total\n", obj->nr_extern);
3408
3409        if (!obj->nr_extern)
3410                return 0;
3411
3412        /* sort externs by type, for kcfg ones also by (align, size, name) */
3413        qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3414
3415        /* for .ksyms section, we need to turn all externs into allocated
3416         * variables in BTF to pass kernel verification; we do this by
3417         * pretending that each extern is a 8-byte variable
3418         */
3419        if (ksym_sec) {
3420                /* find existing 4-byte integer type in BTF to use for fake
3421                 * extern variables in DATASEC
3422                 */
3423                int int_btf_id = find_int_btf_id(obj->btf);
3424                /* For extern function, a dummy_var added earlier
3425                 * will be used to replace the vs->type and
3426                 * its name string will be used to refill
3427                 * the missing param's name.
3428                 */
3429                const struct btf_type *dummy_var;
3430
3431                dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3432                for (i = 0; i < obj->nr_extern; i++) {
3433                        ext = &obj->externs[i];
3434                        if (ext->type != EXT_KSYM)
3435                                continue;
3436                        pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3437                                 i, ext->sym_idx, ext->name);
3438                }
3439
3440                sec = ksym_sec;
3441                n = btf_vlen(sec);
3442                for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3443                        struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3444                        struct btf_type *vt;
3445
3446                        vt = (void *)btf__type_by_id(obj->btf, vs->type);
3447                        ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3448                        ext = find_extern_by_name(obj, ext_name);
3449                        if (!ext) {
3450                                pr_warn("failed to find extern definition for BTF %s '%s'\n",
3451                                        btf_kind_str(vt), ext_name);
3452                                return -ESRCH;
3453                        }
3454                        if (btf_is_func(vt)) {
3455                                const struct btf_type *func_proto;
3456                                struct btf_param *param;
3457                                int j;
3458
3459                                func_proto = btf__type_by_id(obj->btf,
3460                                                             vt->type);
3461                                param = btf_params(func_proto);
3462                                /* Reuse the dummy_var string if the
3463                                 * func proto does not have param name.
3464                                 */
3465                                for (j = 0; j < btf_vlen(func_proto); j++)
3466                                        if (param[j].type && !param[j].name_off)
3467                                                param[j].name_off =
3468                                                        dummy_var->name_off;
3469                                vs->type = dummy_var_btf_id;
3470                                vt->info &= ~0xffff;
3471                                vt->info |= BTF_FUNC_GLOBAL;
3472                        } else {
3473                                btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3474                                vt->type = int_btf_id;
3475                        }
3476                        vs->offset = off;
3477                        vs->size = sizeof(int);
3478                }
3479                sec->size = off;
3480        }
3481
3482        if (kcfg_sec) {
3483                sec = kcfg_sec;
3484                /* for kcfg externs calculate their offsets within a .kconfig map */
3485                off = 0;
3486                for (i = 0; i < obj->nr_extern; i++) {
3487                        ext = &obj->externs[i];
3488                        if (ext->type != EXT_KCFG)
3489                                continue;
3490
3491                        ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3492                        off = ext->kcfg.data_off + ext->kcfg.sz;
3493                        pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3494                                 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3495                }
3496                sec->size = off;
3497                n = btf_vlen(sec);
3498                for (i = 0; i < n; i++) {
3499                        struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3500
3501                        t = btf__type_by_id(obj->btf, vs->type);
3502                        ext_name = btf__name_by_offset(obj->btf, t->name_off);
3503                        ext = find_extern_by_name(obj, ext_name);
3504                        if (!ext) {
3505                                pr_warn("failed to find extern definition for BTF var '%s'\n",
3506                                        ext_name);
3507                                return -ESRCH;
3508                        }
3509                        btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3510                        vs->offset = ext->kcfg.data_off;
3511                }
3512        }
3513        return 0;
3514}
3515
3516struct bpf_program *
3517bpf_object__find_program_by_title(const struct bpf_object *obj,
3518                                  const char *title)
3519{
3520        struct bpf_program *pos;
3521
3522        bpf_object__for_each_program(pos, obj) {
3523                if (pos->sec_name && !strcmp(pos->sec_name, title))
3524                        return pos;
3525        }
3526        return errno = ENOENT, NULL;
3527}
3528
3529static bool prog_is_subprog(const struct bpf_object *obj,
3530                            const struct bpf_program *prog)
3531{
3532        /* For legacy reasons, libbpf supports an entry-point BPF programs
3533         * without SEC() attribute, i.e., those in the .text section. But if
3534         * there are 2 or more such programs in the .text section, they all
3535         * must be subprograms called from entry-point BPF programs in
3536         * designated SEC()'tions, otherwise there is no way to distinguish
3537         * which of those programs should be loaded vs which are a subprogram.
3538         * Similarly, if there is a function/program in .text and at least one
3539         * other BPF program with custom SEC() attribute, then we just assume
3540         * .text programs are subprograms (even if they are not called from
3541         * other programs), because libbpf never explicitly supported mixing
3542         * SEC()-designated BPF programs and .text entry-point BPF programs.
3543         */
3544        return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3545}
3546
3547struct bpf_program *
3548bpf_object__find_program_by_name(const struct bpf_object *obj,
3549                                 const char *name)
3550{
3551        struct bpf_program *prog;
3552
3553        bpf_object__for_each_program(prog, obj) {
3554                if (prog_is_subprog(obj, prog))
3555                        continue;
3556                if (!strcmp(prog->name, name))
3557                        return prog;
3558        }
3559        return errno = ENOENT, NULL;
3560}
3561
3562static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3563                                      int shndx)
3564{
3565        return shndx == obj->efile.data_shndx ||
3566               shndx == obj->efile.bss_shndx ||
3567               shndx == obj->efile.rodata_shndx;
3568}
3569
3570static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3571                                      int shndx)
3572{
3573        return shndx == obj->efile.maps_shndx ||
3574               shndx == obj->efile.btf_maps_shndx;
3575}
3576
3577static enum libbpf_map_type
3578bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3579{
3580        if (shndx == obj->efile.data_shndx)
3581                return LIBBPF_MAP_DATA;
3582        else if (shndx == obj->efile.bss_shndx)
3583                return LIBBPF_MAP_BSS;
3584        else if (shndx == obj->efile.rodata_shndx)
3585                return LIBBPF_MAP_RODATA;
3586        else if (shndx == obj->efile.symbols_shndx)
3587                return LIBBPF_MAP_KCONFIG;
3588        else
3589                return LIBBPF_MAP_UNSPEC;
3590}
3591
3592static int bpf_program__record_reloc(struct bpf_program *prog,
3593                                     struct reloc_desc *reloc_desc,
3594                                     __u32 insn_idx, const char *sym_name,
3595                                     const GElf_Sym *sym, const GElf_Rel *rel)
3596{
3597        struct bpf_insn *insn = &prog->insns[insn_idx];
3598        size_t map_idx, nr_maps = prog->obj->nr_maps;
3599        struct bpf_object *obj = prog->obj;
3600        __u32 shdr_idx = sym->st_shndx;
3601        enum libbpf_map_type type;
3602        const char *sym_sec_name;
3603        struct bpf_map *map;
3604
3605        if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
3606                pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
3607                        prog->name, sym_name, insn_idx, insn->code);
3608                return -LIBBPF_ERRNO__RELOC;
3609        }
3610
3611        if (sym_is_extern(sym)) {
3612                int sym_idx = GELF_R_SYM(rel->r_info);
3613                int i, n = obj->nr_extern;
3614                struct extern_desc *ext;
3615
3616                for (i = 0; i < n; i++) {
3617                        ext = &obj->externs[i];
3618                        if (ext->sym_idx == sym_idx)
3619                                break;
3620                }
3621                if (i >= n) {
3622                        pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
3623                                prog->name, sym_name, sym_idx);
3624                        return -LIBBPF_ERRNO__RELOC;
3625                }
3626                pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
3627                         prog->name, i, ext->name, ext->sym_idx, insn_idx);
3628                if (insn->code == (BPF_JMP | BPF_CALL))
3629                        reloc_desc->type = RELO_EXTERN_FUNC;
3630                else
3631                        reloc_desc->type = RELO_EXTERN_VAR;
3632                reloc_desc->insn_idx = insn_idx;
3633                reloc_desc->sym_off = i; /* sym_off stores extern index */
3634                return 0;
3635        }
3636
3637        /* sub-program call relocation */
3638        if (is_call_insn(insn)) {
3639                if (insn->src_reg != BPF_PSEUDO_CALL) {
3640                        pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
3641                        return -LIBBPF_ERRNO__RELOC;
3642                }
3643                /* text_shndx can be 0, if no default "main" program exists */
3644                if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
3645                        sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3646                        pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
3647                                prog->name, sym_name, sym_sec_name);
3648                        return -LIBBPF_ERRNO__RELOC;
3649                }
3650                if (sym->st_value % BPF_INSN_SZ) {
3651                        pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
3652                                prog->name, sym_name, (size_t)sym->st_value);
3653                        return -LIBBPF_ERRNO__RELOC;
3654                }
3655                reloc_desc->type = RELO_CALL;
3656                reloc_desc->insn_idx = insn_idx;
3657                reloc_desc->sym_off = sym->st_value;
3658                return 0;
3659        }
3660
3661        if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
3662                pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
3663                        prog->name, sym_name, shdr_idx);
3664                return -LIBBPF_ERRNO__RELOC;
3665        }
3666
3667        /* loading subprog addresses */
3668        if (sym_is_subprog(sym, obj->efile.text_shndx)) {
3669                /* global_func: sym->st_value = offset in the section, insn->imm = 0.
3670                 * local_func: sym->st_value = 0, insn->imm = offset in the section.
3671                 */
3672                if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
3673                        pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
3674                                prog->name, sym_name, (size_t)sym->st_value, insn->imm);
3675                        return -LIBBPF_ERRNO__RELOC;
3676                }
3677
3678                reloc_desc->type = RELO_SUBPROG_ADDR;
3679                reloc_desc->insn_idx = insn_idx;
3680                reloc_desc->sym_off = sym->st_value;
3681                return 0;
3682        }
3683
3684        type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
3685        sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3686
3687        /* generic map reference relocation */
3688        if (type == LIBBPF_MAP_UNSPEC) {
3689                if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
3690                        pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
3691                                prog->name, sym_name, sym_sec_name);
3692                        return -LIBBPF_ERRNO__RELOC;
3693                }
3694                for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3695                        map = &obj->maps[map_idx];
3696                        if (map->libbpf_type != type ||
3697                            map->sec_idx != sym->st_shndx ||
3698                            map->sec_offset != sym->st_value)
3699                                continue;
3700                        pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
3701                                 prog->name, map_idx, map->name, map->sec_idx,
3702                                 map->sec_offset, insn_idx);
3703                        break;
3704                }
3705                if (map_idx >= nr_maps) {
3706                        pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
3707                                prog->name, sym_sec_name, (size_t)sym->st_value);
3708                        return -LIBBPF_ERRNO__RELOC;
3709                }
3710                reloc_desc->type = RELO_LD64;
3711                reloc_desc->insn_idx = insn_idx;
3712                reloc_desc->map_idx = map_idx;
3713                reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
3714                return 0;
3715        }
3716
3717        /* global data map relocation */
3718        if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
3719                pr_warn("prog '%s': bad data relo against section '%s'\n",
3720                        prog->name, sym_sec_name);
3721                return -LIBBPF_ERRNO__RELOC;
3722        }
3723        for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3724                map = &obj->maps[map_idx];
3725                if (map->libbpf_type != type)
3726                        continue;
3727                pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
3728                         prog->name, map_idx, map->name, map->sec_idx,
3729                         map->sec_offset, insn_idx);
3730                break;
3731        }
3732        if (map_idx >= nr_maps) {
3733                pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
3734                        prog->name, sym_sec_name);
3735                return -LIBBPF_ERRNO__RELOC;
3736        }
3737
3738        reloc_desc->type = RELO_DATA;
3739        reloc_desc->insn_idx = insn_idx;
3740        reloc_desc->map_idx = map_idx;
3741        reloc_desc->sym_off = sym->st_value;
3742        return 0;
3743}
3744
3745static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
3746{
3747        return insn_idx >= prog->sec_insn_off &&
3748               insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
3749}
3750
3751static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
3752                                                 size_t sec_idx, size_t insn_idx)
3753{
3754        int l = 0, r = obj->nr_programs - 1, m;
3755        struct bpf_program *prog;
3756
3757        while (l < r) {
3758                m = l + (r - l + 1) / 2;
3759                prog = &obj->programs[m];
3760
3761                if (prog->sec_idx < sec_idx ||
3762                    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
3763                        l = m;
3764                else
3765                        r = m - 1;
3766        }
3767        /* matching program could be at index l, but it still might be the
3768         * wrong one, so we need to double check conditions for the last time
3769         */
3770        prog = &obj->programs[l];
3771        if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
3772                return prog;
3773        return NULL;
3774}
3775
3776static int
3777bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data)
3778{
3779        Elf_Data *symbols = obj->efile.symbols;
3780        const char *relo_sec_name, *sec_name;
3781        size_t sec_idx = shdr->sh_info;
3782        struct bpf_program *prog;
3783        struct reloc_desc *relos;
3784        int err, i, nrels;
3785        const char *sym_name;
3786        __u32 insn_idx;
3787        Elf_Scn *scn;
3788        Elf_Data *scn_data;
3789        GElf_Sym sym;
3790        GElf_Rel rel;
3791
3792        scn = elf_sec_by_idx(obj, sec_idx);
3793        scn_data = elf_sec_data(obj, scn);
3794
3795        relo_sec_name = elf_sec_str(obj, shdr->sh_name);
3796        sec_name = elf_sec_name(obj, scn);
3797        if (!relo_sec_name || !sec_name)
3798                return -EINVAL;
3799
3800        pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
3801                 relo_sec_name, sec_idx, sec_name);
3802        nrels = shdr->sh_size / shdr->sh_entsize;
3803
3804        for (i = 0; i < nrels; i++) {
3805                if (!gelf_getrel(data, i, &rel)) {
3806                        pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
3807                        return -LIBBPF_ERRNO__FORMAT;
3808                }
3809                if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
3810                        pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n",
3811                                relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i);
3812                        return -LIBBPF_ERRNO__FORMAT;
3813                }
3814
3815                if (rel.r_offset % BPF_INSN_SZ || rel.r_offset >= scn_data->d_size) {
3816                        pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
3817                                relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i);
3818                        return -LIBBPF_ERRNO__FORMAT;
3819                }
3820
3821                insn_idx = rel.r_offset / BPF_INSN_SZ;
3822                /* relocations against static functions are recorded as
3823                 * relocations against the section that contains a function;
3824                 * in such case, symbol will be STT_SECTION and sym.st_name
3825                 * will point to empty string (0), so fetch section name
3826                 * instead
3827                 */
3828                if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0)
3829                        sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx));
3830                else
3831                        sym_name = elf_sym_str(obj, sym.st_name);
3832                sym_name = sym_name ?: "<?";
3833
3834                pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
3835                         relo_sec_name, i, insn_idx, sym_name);
3836
3837                prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
3838                if (!prog) {
3839                        pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
3840                                relo_sec_name, i, sec_name, insn_idx);
3841                        continue;
3842                }
3843
3844                relos = libbpf_reallocarray(prog->reloc_desc,
3845                                            prog->nr_reloc + 1, sizeof(*relos));
3846                if (!relos)
3847                        return -ENOMEM;
3848                prog->reloc_desc = relos;
3849
3850                /* adjust insn_idx to local BPF program frame of reference */
3851                insn_idx -= prog->sec_insn_off;
3852                err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
3853                                                insn_idx, sym_name, &sym, &rel);
3854                if (err)
3855                        return err;
3856
3857                prog->nr_reloc++;
3858        }
3859        return 0;
3860}
3861
3862static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map)
3863{
3864        struct bpf_map_def *def = &map->def;
3865        __u32 key_type_id = 0, value_type_id = 0;
3866        int ret;
3867
3868        /* if it's BTF-defined map, we don't need to search for type IDs.
3869         * For struct_ops map, it does not need btf_key_type_id and
3870         * btf_value_type_id.
3871         */
3872        if (map->sec_idx == obj->efile.btf_maps_shndx ||
3873            bpf_map__is_struct_ops(map))
3874                return 0;
3875
3876        if (!bpf_map__is_internal(map)) {
3877                ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size,
3878                                           def->value_size, &key_type_id,
3879                                           &value_type_id);
3880        } else {
3881                /*
3882                 * LLVM annotates global data differently in BTF, that is,
3883                 * only as '.data', '.bss' or '.rodata'.
3884                 */
3885                ret = btf__find_by_name(obj->btf,
3886                                libbpf_type_to_btf_name[map->libbpf_type]);
3887        }
3888        if (ret < 0)
3889                return ret;
3890
3891        map->btf_key_type_id = key_type_id;
3892        map->btf_value_type_id = bpf_map__is_internal(map) ?
3893                                 ret : value_type_id;
3894        return 0;
3895}
3896
3897int bpf_map__reuse_fd(struct bpf_map *map, int fd)
3898{
3899        struct bpf_map_info info = {};
3900        __u32 len = sizeof(info);
3901        int new_fd, err;
3902        char *new_name;
3903
3904        err = bpf_obj_get_info_by_fd(fd, &info, &len);
3905        if (err)
3906                return libbpf_err(err);
3907
3908        new_name = strdup(info.name);
3909        if (!new_name)
3910                return libbpf_err(-errno);
3911
3912        new_fd = open("/", O_RDONLY | O_CLOEXEC);
3913        if (new_fd < 0) {
3914                err = -errno;
3915                goto err_free_new_name;
3916        }
3917
3918        new_fd = dup3(fd, new_fd, O_CLOEXEC);
3919        if (new_fd < 0) {
3920                err = -errno;
3921                goto err_close_new_fd;
3922        }
3923
3924        err = zclose(map->fd);
3925        if (err) {
3926                err = -errno;
3927                goto err_close_new_fd;
3928        }
3929        free(map->name);
3930
3931        map->fd = new_fd;
3932        map->name = new_name;
3933        map->def.type = info.type;
3934        map->def.key_size = info.key_size;
3935        map->def.value_size = info.value_size;
3936        map->def.max_entries = info.max_entries;
3937        map->def.map_flags = info.map_flags;
3938        map->btf_key_type_id = info.btf_key_type_id;
3939        map->btf_value_type_id = info.btf_value_type_id;
3940        map->reused = true;
3941
3942        return 0;
3943
3944err_close_new_fd:
3945        close(new_fd);
3946err_free_new_name:
3947        free(new_name);
3948        return libbpf_err(err);
3949}
3950
3951__u32 bpf_map__max_entries(const struct bpf_map *map)
3952{
3953        return map->def.max_entries;
3954}
3955
3956struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
3957{
3958        if (!bpf_map_type__is_map_in_map(map->def.type))
3959                return errno = EINVAL, NULL;
3960
3961        return map->inner_map;
3962}
3963
3964int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
3965{
3966        if (map->fd >= 0)
3967                return libbpf_err(-EBUSY);
3968        map->def.max_entries = max_entries;
3969        return 0;
3970}
3971
3972int bpf_map__resize(struct bpf_map *map, __u32 max_entries)
3973{
3974        if (!map || !max_entries)
3975                return libbpf_err(-EINVAL);
3976
3977        return bpf_map__set_max_entries(map, max_entries);
3978}
3979
3980static int
3981bpf_object__probe_loading(struct bpf_object *obj)
3982{
3983        struct bpf_load_program_attr attr;
3984        char *cp, errmsg[STRERR_BUFSIZE];
3985        struct bpf_insn insns[] = {
3986                BPF_MOV64_IMM(BPF_REG_0, 0),
3987                BPF_EXIT_INSN(),
3988        };
3989        int ret;
3990
3991        if (obj->gen_loader)
3992                return 0;
3993
3994        /* make sure basic loading works */
3995
3996        memset(&attr, 0, sizeof(attr));
3997        attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3998        attr.insns = insns;
3999        attr.insns_cnt = ARRAY_SIZE(insns);
4000        attr.license = "GPL";
4001
4002        ret = bpf_load_program_xattr(&attr, NULL, 0);
4003        if (ret < 0) {
4004                attr.prog_type = BPF_PROG_TYPE_TRACEPOINT;
4005                ret = bpf_load_program_xattr(&attr, NULL, 0);
4006        }
4007        if (ret < 0) {
4008                ret = errno;
4009                cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4010                pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4011                        "program. Make sure your kernel supports BPF "
4012                        "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4013                        "set to big enough value.\n", __func__, cp, ret);
4014                return -ret;
4015        }
4016        close(ret);
4017
4018        return 0;
4019}
4020
4021static int probe_fd(int fd)
4022{
4023        if (fd >= 0)
4024                close(fd);
4025        return fd >= 0;
4026}
4027
4028static int probe_kern_prog_name(void)
4029{
4030        struct bpf_load_program_attr attr;
4031        struct bpf_insn insns[] = {
4032                BPF_MOV64_IMM(BPF_REG_0, 0),
4033                BPF_EXIT_INSN(),
4034        };
4035        int ret;
4036
4037        /* make sure loading with name works */
4038
4039        memset(&attr, 0, sizeof(attr));
4040        attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4041        attr.insns = insns;
4042        attr.insns_cnt = ARRAY_SIZE(insns);
4043        attr.license = "GPL";
4044        attr.name = "test";
4045        ret = bpf_load_program_xattr(&attr, NULL, 0);
4046        return probe_fd(ret);
4047}
4048
4049static int probe_kern_global_data(void)
4050{
4051        struct bpf_load_program_attr prg_attr;
4052        struct bpf_create_map_attr map_attr;
4053        char *cp, errmsg[STRERR_BUFSIZE];
4054        struct bpf_insn insns[] = {
4055                BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4056                BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4057                BPF_MOV64_IMM(BPF_REG_0, 0),
4058                BPF_EXIT_INSN(),
4059        };
4060        int ret, map;
4061
4062        memset(&map_attr, 0, sizeof(map_attr));
4063        map_attr.map_type = BPF_MAP_TYPE_ARRAY;
4064        map_attr.key_size = sizeof(int);
4065        map_attr.value_size = 32;
4066        map_attr.max_entries = 1;
4067
4068        map = bpf_create_map_xattr(&map_attr);
4069        if (map < 0) {
4070                ret = -errno;
4071                cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4072                pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4073                        __func__, cp, -ret);
4074                return ret;
4075        }
4076
4077        insns[0].imm = map;
4078
4079        memset(&prg_attr, 0, sizeof(prg_attr));
4080        prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4081        prg_attr.insns = insns;
4082        prg_attr.insns_cnt = ARRAY_SIZE(insns);
4083        prg_attr.license = "GPL";
4084
4085        ret = bpf_load_program_xattr(&prg_attr, NULL, 0);
4086        close(map);
4087        return probe_fd(ret);
4088}
4089
4090static int probe_kern_btf(void)
4091{
4092        static const char strs[] = "\0int";
4093        __u32 types[] = {
4094                /* int */
4095                BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4096        };
4097
4098        return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4099                                             strs, sizeof(strs)));
4100}
4101
4102static int probe_kern_btf_func(void)
4103{
4104        static const char strs[] = "\0int\0x\0a";
4105        /* void x(int a) {} */
4106        __u32 types[] = {
4107                /* int */
4108                BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4109                /* FUNC_PROTO */                                /* [2] */
4110                BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4111                BTF_PARAM_ENC(7, 1),
4112                /* FUNC x */                                    /* [3] */
4113                BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4114        };
4115
4116        return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4117                                             strs, sizeof(strs)));
4118}
4119
4120static int probe_kern_btf_func_global(void)
4121{
4122        static const char strs[] = "\0int\0x\0a";
4123        /* static void x(int a) {} */
4124        __u32 types[] = {
4125                /* int */
4126                BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4127                /* FUNC_PROTO */                                /* [2] */
4128                BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4129                BTF_PARAM_ENC(7, 1),
4130                /* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
4131                BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4132        };
4133
4134        return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4135                                             strs, sizeof(strs)));
4136}
4137
4138static int probe_kern_btf_datasec(void)
4139{
4140        static const char strs[] = "\0x\0.data";
4141        /* static int a; */
4142        __u32 types[] = {
4143                /* int */
4144                BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4145                /* VAR x */                                     /* [2] */
4146                BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4147                BTF_VAR_STATIC,
4148                /* DATASEC val */                               /* [3] */
4149                BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4150                BTF_VAR_SECINFO_ENC(2, 0, 4),
4151        };
4152
4153        return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4154                                             strs, sizeof(strs)));
4155}
4156
4157static int probe_kern_btf_float(void)
4158{
4159        static const char strs[] = "\0float";
4160        __u32 types[] = {
4161                /* float */
4162                BTF_TYPE_FLOAT_ENC(1, 4),
4163        };
4164
4165        return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4166                                             strs, sizeof(strs)));
4167}
4168
4169static int probe_kern_array_mmap(void)
4170{
4171        struct bpf_create_map_attr attr = {
4172                .map_type = BPF_MAP_TYPE_ARRAY,
4173                .map_flags = BPF_F_MMAPABLE,
4174                .key_size = sizeof(int),
4175                .value_size = sizeof(int),
4176                .max_entries = 1,
4177        };
4178
4179        return probe_fd(bpf_create_map_xattr(&attr));
4180}
4181
4182static int probe_kern_exp_attach_type(void)
4183{
4184        struct bpf_load_program_attr attr;
4185        struct bpf_insn insns[] = {
4186                BPF_MOV64_IMM(BPF_REG_0, 0),
4187                BPF_EXIT_INSN(),
4188        };
4189
4190        memset(&attr, 0, sizeof(attr));
4191        /* use any valid combination of program type and (optional)
4192         * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4193         * to see if kernel supports expected_attach_type field for
4194         * BPF_PROG_LOAD command
4195         */
4196        attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK;
4197        attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE;
4198        attr.insns = insns;
4199        attr.insns_cnt = ARRAY_SIZE(insns);
4200        attr.license = "GPL";
4201
4202        return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
4203}
4204
4205static int probe_kern_probe_read_kernel(void)
4206{
4207        struct bpf_load_program_attr attr;
4208        struct bpf_insn insns[] = {
4209                BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),   /* r1 = r10 (fp) */
4210                BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),  /* r1 += -8 */
4211                BPF_MOV64_IMM(BPF_REG_2, 8),            /* r2 = 8 */
4212                BPF_MOV64_IMM(BPF_REG_3, 0),            /* r3 = 0 */
4213                BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4214                BPF_EXIT_INSN(),
4215        };
4216
4217        memset(&attr, 0, sizeof(attr));
4218        attr.prog_type = BPF_PROG_TYPE_KPROBE;
4219        attr.insns = insns;
4220        attr.insns_cnt = ARRAY_SIZE(insns);
4221        attr.license = "GPL";
4222
4223        return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
4224}
4225
4226static int probe_prog_bind_map(void)
4227{
4228        struct bpf_load_program_attr prg_attr;
4229        struct bpf_create_map_attr map_attr;
4230        char *cp, errmsg[STRERR_BUFSIZE];
4231        struct bpf_insn insns[] = {
4232                BPF_MOV64_IMM(BPF_REG_0, 0),
4233                BPF_EXIT_INSN(),
4234        };
4235        int ret, map, prog;
4236
4237        memset(&map_attr, 0, sizeof(map_attr));
4238        map_attr.map_type = BPF_MAP_TYPE_ARRAY;
4239        map_attr.key_size = sizeof(int);
4240        map_attr.value_size = 32;
4241        map_attr.max_entries = 1;
4242
4243        map = bpf_create_map_xattr(&map_attr);
4244        if (map < 0) {
4245                ret = -errno;
4246                cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4247                pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4248                        __func__, cp, -ret);
4249                return ret;
4250        }
4251
4252        memset(&prg_attr, 0, sizeof(prg_attr));
4253        prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4254        prg_attr.insns = insns;
4255        prg_attr.insns_cnt = ARRAY_SIZE(insns);
4256        prg_attr.license = "GPL";
4257
4258        prog = bpf_load_program_xattr(&prg_attr, NULL, 0);
4259        if (prog < 0) {
4260                close(map);
4261                return 0;
4262        }
4263
4264        ret = bpf_prog_bind_map(prog, map, NULL);
4265
4266        close(map);
4267        close(prog);
4268
4269        return ret >= 0;
4270}
4271
4272static int probe_module_btf(void)
4273{
4274        static const char strs[] = "\0int";
4275        __u32 types[] = {
4276                /* int */
4277                BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4278        };
4279        struct bpf_btf_info info;
4280        __u32 len = sizeof(info);
4281        char name[16];
4282        int fd, err;
4283
4284        fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4285        if (fd < 0)
4286                return 0; /* BTF not supported at all */
4287
4288        memset(&info, 0, sizeof(info));
4289        info.name = ptr_to_u64(name);
4290        info.name_len = sizeof(name);
4291
4292        /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4293         * kernel's module BTF support coincides with support for
4294         * name/name_len fields in struct bpf_btf_info.
4295         */
4296        err = bpf_obj_get_info_by_fd(fd, &info, &len);
4297        close(fd);
4298        return !err;
4299}
4300
4301enum kern_feature_result {
4302        FEAT_UNKNOWN = 0,
4303        FEAT_SUPPORTED = 1,
4304        FEAT_MISSING = 2,
4305};
4306
4307typedef int (*feature_probe_fn)(void);
4308
4309static struct kern_feature_desc {
4310        const char *desc;
4311        feature_probe_fn probe;
4312        enum kern_feature_result res;
4313} feature_probes[__FEAT_CNT] = {
4314        [FEAT_PROG_NAME] = {
4315                "BPF program name", probe_kern_prog_name,
4316        },
4317        [FEAT_GLOBAL_DATA] = {
4318                "global variables", probe_kern_global_data,
4319        },
4320        [FEAT_BTF] = {
4321                "minimal BTF", probe_kern_btf,
4322        },
4323        [FEAT_BTF_FUNC] = {
4324                "BTF functions", probe_kern_btf_func,
4325        },
4326        [FEAT_BTF_GLOBAL_FUNC] = {
4327                "BTF global function", probe_kern_btf_func_global,
4328        },
4329        [FEAT_BTF_DATASEC] = {
4330                "BTF data section and variable", probe_kern_btf_datasec,
4331        },
4332        [FEAT_ARRAY_MMAP] = {
4333                "ARRAY map mmap()", probe_kern_array_mmap,
4334        },
4335        [FEAT_EXP_ATTACH_TYPE] = {
4336                "BPF_PROG_LOAD expected_attach_type attribute",
4337                probe_kern_exp_attach_type,
4338        },
4339        [FEAT_PROBE_READ_KERN] = {
4340                "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4341        },
4342        [FEAT_PROG_BIND_MAP] = {
4343                "BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4344        },
4345        [FEAT_MODULE_BTF] = {
4346                "module BTF support", probe_module_btf,
4347        },
4348        [FEAT_BTF_FLOAT] = {
4349                "BTF_KIND_FLOAT support", probe_kern_btf_float,
4350        },
4351};
4352
4353static bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4354{
4355        struct kern_feature_desc *feat = &feature_probes[feat_id];
4356        int ret;
4357
4358        if (obj->gen_loader)
4359                /* To generate loader program assume the latest kernel
4360                 * to avoid doing extra prog_load, map_create syscalls.
4361                 */
4362                return true;
4363
4364        if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4365                ret = feat->probe();
4366                if (ret > 0) {
4367                        WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4368                } else if (ret == 0) {
4369                        WRITE_ONCE(feat->res, FEAT_MISSING);
4370                } else {
4371                        pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4372                        WRITE_ONCE(feat->res, FEAT_MISSING);
4373                }
4374        }
4375
4376        return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4377}
4378
4379static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4380{
4381        struct bpf_map_info map_info = {};
4382        char msg[STRERR_BUFSIZE];
4383        __u32 map_info_len;
4384
4385        map_info_len = sizeof(map_info);
4386
4387        if (bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len)) {
4388                pr_warn("failed to get map info for map FD %d: %s\n",
4389                        map_fd, libbpf_strerror_r(errno, msg, sizeof(msg)));
4390                return false;
4391        }
4392
4393        return (map_info.type == map->def.type &&
4394                map_info.key_size == map->def.key_size &&
4395                map_info.value_size == map->def.value_size &&
4396                map_info.max_entries == map->def.max_entries &&
4397                map_info.map_flags == map->def.map_flags);
4398}
4399
4400static int
4401bpf_object__reuse_map(struct bpf_map *map)
4402{
4403        char *cp, errmsg[STRERR_BUFSIZE];
4404        int err, pin_fd;
4405
4406        pin_fd = bpf_obj_get(map->pin_path);
4407        if (pin_fd < 0) {
4408                err = -errno;
4409                if (err == -ENOENT) {
4410                        pr_debug("found no pinned map to reuse at '%s'\n",
4411                                 map->pin_path);
4412                        return 0;
4413                }
4414
4415                cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4416                pr_warn("couldn't retrieve pinned map '%s': %s\n",
4417                        map->pin_path, cp);
4418                return err;
4419        }
4420
4421        if (!map_is_reuse_compat(map, pin_fd)) {
4422                pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4423                        map->pin_path);
4424                close(pin_fd);
4425                return -EINVAL;
4426        }
4427
4428        err = bpf_map__reuse_fd(map, pin_fd);
4429        if (err) {
4430                close(pin_fd);
4431                return err;
4432        }
4433        map->pinned = true;
4434        pr_debug("reused pinned map at '%s'\n", map->pin_path);
4435
4436        return 0;
4437}
4438
4439static int
4440bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4441{
4442        enum libbpf_map_type map_type = map->libbpf_type;
4443        char *cp, errmsg[STRERR_BUFSIZE];
4444        int err, zero = 0;
4445
4446        if (obj->gen_loader) {
4447                bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
4448                                         map->mmaped, map->def.value_size);
4449                if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
4450                        bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
4451                return 0;
4452        }
4453        err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4454        if (err) {
4455                err = -errno;
4456                cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4457                pr_warn("Error setting initial map(%s) contents: %s\n",
4458                        map->name, cp);
4459                return err;
4460        }
4461
4462        /* Freeze .rodata and .kconfig map as read-only from syscall side. */
4463        if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
4464                err = bpf_map_freeze(map->fd);
4465                if (err) {
4466                        err = -errno;
4467                        cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4468                        pr_warn("Error freezing map(%s) as read-only: %s\n",
4469                                map->name, cp);
4470                        return err;
4471                }
4472        }
4473        return 0;
4474}
4475
4476static void bpf_map__destroy(struct bpf_map *map);
4477
4478static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
4479{
4480        struct bpf_create_map_attr create_attr;
4481        struct bpf_map_def *def = &map->def;
4482
4483        memset(&create_attr, 0, sizeof(create_attr));
4484
4485        if (kernel_supports(obj, FEAT_PROG_NAME))
4486                create_attr.name = map->name;
4487        create_attr.map_ifindex = map->map_ifindex;
4488        create_attr.map_type = def->type;
4489        create_attr.map_flags = def->map_flags;
4490        create_attr.key_size = def->key_size;
4491        create_attr.value_size = def->value_size;
4492        create_attr.numa_node = map->numa_node;
4493
4494        if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) {
4495                int nr_cpus;
4496
4497                nr_cpus = libbpf_num_possible_cpus();
4498                if (nr_cpus < 0) {
4499                        pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
4500                                map->name, nr_cpus);
4501                        return nr_cpus;
4502                }
4503                pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
4504                create_attr.max_entries = nr_cpus;
4505        } else {
4506                create_attr.max_entries = def->max_entries;
4507        }
4508
4509        if (bpf_map__is_struct_ops(map))
4510                create_attr.btf_vmlinux_value_type_id =
4511                        map->btf_vmlinux_value_type_id;
4512
4513        create_attr.btf_fd = 0;
4514        create_attr.btf_key_type_id = 0;
4515        create_attr.btf_value_type_id = 0;
4516        if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) {
4517                create_attr.btf_fd = btf__fd(obj->btf);
4518                create_attr.btf_key_type_id = map->btf_key_type_id;
4519                create_attr.btf_value_type_id = map->btf_value_type_id;
4520        }
4521
4522        if (bpf_map_type__is_map_in_map(def->type)) {
4523                if (map->inner_map) {
4524                        int err;
4525
4526                        err = bpf_object__create_map(obj, map->inner_map, true);
4527                        if (err) {
4528                                pr_warn("map '%s': failed to create inner map: %d\n",
4529                                        map->name, err);
4530                                return err;
4531                        }
4532                        map->inner_map_fd = bpf_map__fd(map->inner_map);
4533                }
4534                if (map->inner_map_fd >= 0)
4535                        create_attr.inner_map_fd = map->inner_map_fd;
4536        }
4537
4538        if (obj->gen_loader) {
4539                bpf_gen__map_create(obj->gen_loader, &create_attr, is_inner ? -1 : map - obj->maps);
4540                /* Pretend to have valid FD to pass various fd >= 0 checks.
4541                 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
4542                 */
4543                map->fd = 0;
4544        } else {
4545                map->fd = bpf_create_map_xattr(&create_attr);
4546        }
4547        if (map->fd < 0 && (create_attr.btf_key_type_id ||
4548                            create_attr.btf_value_type_id)) {
4549                char *cp, errmsg[STRERR_BUFSIZE];
4550                int err = -errno;
4551
4552                cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4553                pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
4554                        map->name, cp, err);
4555                create_attr.btf_fd = 0;
4556                create_attr.btf_key_type_id = 0;
4557                create_attr.btf_value_type_id = 0;
4558                map->btf_key_type_id = 0;
4559                map->btf_value_type_id = 0;
4560                map->fd = bpf_create_map_xattr(&create_attr);
4561        }
4562
4563        if (map->fd < 0)
4564                return -errno;
4565
4566        if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
4567                if (obj->gen_loader)
4568                        map->inner_map->fd = -1;
4569                bpf_map__destroy(map->inner_map);
4570                zfree(&map->inner_map);
4571        }
4572
4573        return 0;
4574}
4575
4576static int init_map_slots(struct bpf_object *obj, struct bpf_map *map)
4577{
4578        const struct bpf_map *targ_map;
4579        unsigned int i;
4580        int fd, err = 0;
4581
4582        for (i = 0; i < map->init_slots_sz; i++) {
4583                if (!map->init_slots[i])
4584                        continue;
4585
4586                targ_map = map->init_slots[i];
4587                fd = bpf_map__fd(targ_map);
4588                if (obj->gen_loader) {
4589                        pr_warn("// TODO map_update_elem: idx %td key %d value==map_idx %td\n",
4590                                map - obj->maps, i, targ_map - obj->maps);
4591                        return -ENOTSUP;
4592                } else {
4593                        err = bpf_map_update_elem(map->fd, &i, &fd, 0);
4594                }
4595                if (err) {
4596                        err = -errno;
4597                        pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
4598                                map->name, i, targ_map->name,
4599                                fd, err);
4600                        return err;
4601                }
4602                pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
4603                         map->name, i, targ_map->name, fd);
4604        }
4605
4606        zfree(&map->init_slots);
4607        map->init_slots_sz = 0;
4608
4609        return 0;
4610}
4611
4612static int
4613bpf_object__create_maps(struct bpf_object *obj)
4614{
4615        struct bpf_map *map;
4616        char *cp, errmsg[STRERR_BUFSIZE];
4617        unsigned int i, j;
4618        int err;
4619
4620        for (i = 0; i < obj->nr_maps; i++) {
4621                map = &obj->maps[i];
4622
4623                if (map->pin_path) {
4624                        err = bpf_object__reuse_map(map);
4625                        if (err) {
4626                                pr_warn("map '%s': error reusing pinned map\n",
4627                                        map->name);
4628                                goto err_out;
4629                        }
4630                }
4631
4632                if (map->fd >= 0) {
4633                        pr_debug("map '%s': skipping creation (preset fd=%d)\n",
4634                                 map->name, map->fd);
4635                } else {
4636                        err = bpf_object__create_map(obj, map, false);
4637                        if (err)
4638                                goto err_out;
4639
4640                        pr_debug("map '%s': created successfully, fd=%d\n",
4641                                 map->name, map->fd);
4642
4643                        if (bpf_map__is_internal(map)) {
4644                                err = bpf_object__populate_internal_map(obj, map);
4645                                if (err < 0) {
4646                                        zclose(map->fd);
4647                                        goto err_out;
4648                                }
4649                        }
4650
4651                        if (map->init_slots_sz) {
4652                                err = init_map_slots(obj, map);
4653                                if (err < 0) {
4654                                        zclose(map->fd);
4655                                        goto err_out;
4656                                }
4657                        }
4658                }
4659
4660                if (map->pin_path && !map->pinned) {
4661                        err = bpf_map__pin(map, NULL);
4662                        if (err) {
4663                                pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
4664                                        map->name, map->pin_path, err);
4665                                zclose(map->fd);
4666                                goto err_out;
4667                        }
4668                }
4669        }
4670
4671        return 0;
4672
4673err_out:
4674        cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4675        pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
4676        pr_perm_msg(err);
4677        for (j = 0; j < i; j++)
4678                zclose(obj->maps[j].fd);
4679        return err;
4680}
4681
4682#define BPF_CORE_SPEC_MAX_LEN 64
4683
4684/* represents BPF CO-RE field or array element accessor */
4685struct bpf_core_accessor {
4686        __u32 type_id;          /* struct/union type or array element type */
4687        __u32 idx;              /* field index or array index */
4688        const char *name;       /* field name or NULL for array accessor */
4689};
4690
4691struct bpf_core_spec {
4692        const struct btf *btf;
4693        /* high-level spec: named fields and array indices only */
4694        struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN];
4695        /* original unresolved (no skip_mods_or_typedefs) root type ID */
4696        __u32 root_type_id;
4697        /* CO-RE relocation kind */
4698        enum bpf_core_relo_kind relo_kind;
4699        /* high-level spec length */
4700        int len;
4701        /* raw, low-level spec: 1-to-1 with accessor spec string */
4702        int raw_spec[BPF_CORE_SPEC_MAX_LEN];
4703        /* raw spec length */
4704        int raw_len;
4705        /* field bit offset represented by spec */
4706        __u32 bit_offset;
4707};
4708
4709static bool str_is_empty(const char *s)
4710{
4711        return !s || !s[0];
4712}
4713
4714static bool is_flex_arr(const struct btf *btf,
4715                        const struct bpf_core_accessor *acc,
4716                        const struct btf_array *arr)
4717{
4718        const struct btf_type *t;
4719
4720        /* not a flexible array, if not inside a struct or has non-zero size */
4721        if (!acc->name || arr->nelems > 0)
4722                return false;
4723
4724        /* has to be the last member of enclosing struct */
4725        t = btf__type_by_id(btf, acc->type_id);
4726        return acc->idx == btf_vlen(t) - 1;
4727}
4728
4729static const char *core_relo_kind_str(enum bpf_core_relo_kind kind)
4730{
4731        switch (kind) {
4732        case BPF_FIELD_BYTE_OFFSET: return "byte_off";
4733        case BPF_FIELD_BYTE_SIZE: return "byte_sz";
4734        case BPF_FIELD_EXISTS: return "field_exists";
4735        case BPF_FIELD_SIGNED: return "signed";
4736        case BPF_FIELD_LSHIFT_U64: return "lshift_u64";
4737        case BPF_FIELD_RSHIFT_U64: return "rshift_u64";
4738        case BPF_TYPE_ID_LOCAL: return "local_type_id";
4739        case BPF_TYPE_ID_TARGET: return "target_type_id";
4740        case BPF_TYPE_EXISTS: return "type_exists";
4741        case BPF_TYPE_SIZE: return "type_size";
4742        case BPF_ENUMVAL_EXISTS: return "enumval_exists";
4743        case BPF_ENUMVAL_VALUE: return "enumval_value";
4744        default: return "unknown";
4745        }
4746}
4747
4748static bool core_relo_is_field_based(enum bpf_core_relo_kind kind)
4749{
4750        switch (kind) {
4751        case BPF_FIELD_BYTE_OFFSET:
4752        case BPF_FIELD_BYTE_SIZE:
4753        case BPF_FIELD_EXISTS:
4754        case BPF_FIELD_SIGNED:
4755        case BPF_FIELD_LSHIFT_U64:
4756        case BPF_FIELD_RSHIFT_U64:
4757                return true;
4758        default:
4759                return false;
4760        }
4761}
4762
4763static bool core_relo_is_type_based(enum bpf_core_relo_kind kind)
4764{
4765        switch (kind) {
4766        case BPF_TYPE_ID_LOCAL:
4767        case BPF_TYPE_ID_TARGET:
4768        case BPF_TYPE_EXISTS:
4769        case BPF_TYPE_SIZE:
4770                return true;
4771        default:
4772                return false;
4773        }
4774}
4775
4776static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind)
4777{
4778        switch (kind) {
4779        case BPF_ENUMVAL_EXISTS:
4780        case BPF_ENUMVAL_VALUE:
4781                return true;
4782        default:
4783                return false;
4784        }
4785}
4786
4787/*
4788 * Turn bpf_core_relo into a low- and high-level spec representation,
4789 * validating correctness along the way, as well as calculating resulting
4790 * field bit offset, specified by accessor string. Low-level spec captures
4791 * every single level of nestedness, including traversing anonymous
4792 * struct/union members. High-level one only captures semantically meaningful
4793 * "turning points": named fields and array indicies.
4794 * E.g., for this case:
4795 *
4796 *   struct sample {
4797 *       int __unimportant;
4798 *       struct {
4799 *           int __1;
4800 *           int __2;
4801 *           int a[7];
4802 *       };
4803 *   };
4804 *
4805 *   struct sample *s = ...;
4806 *
4807 *   int x = &s->a[3]; // access string = '0:1:2:3'
4808 *
4809 * Low-level spec has 1:1 mapping with each element of access string (it's
4810 * just a parsed access string representation): [0, 1, 2, 3].
4811 *
4812 * High-level spec will capture only 3 points:
4813 *   - intial zero-index access by pointer (&s->... is the same as &s[0]...);
4814 *   - field 'a' access (corresponds to '2' in low-level spec);
4815 *   - array element #3 access (corresponds to '3' in low-level spec).
4816 *
4817 * Type-based relocations (TYPE_EXISTS/TYPE_SIZE,
4818 * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their
4819 * spec and raw_spec are kept empty.
4820 *
4821 * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access
4822 * string to specify enumerator's value index that need to be relocated.
4823 */
4824static int bpf_core_parse_spec(const struct btf *btf,
4825                               __u32 type_id,
4826                               const char *spec_str,
4827                               enum bpf_core_relo_kind relo_kind,
4828                               struct bpf_core_spec *spec)
4829{
4830        int access_idx, parsed_len, i;
4831        struct bpf_core_accessor *acc;
4832        const struct btf_type *t;
4833        const char *name;
4834        __u32 id;
4835        __s64 sz;
4836
4837        if (str_is_empty(spec_str) || *spec_str == ':')
4838                return -EINVAL;
4839
4840        memset(spec, 0, sizeof(*spec));
4841        spec->btf = btf;
4842        spec->root_type_id = type_id;
4843        spec->relo_kind = relo_kind;
4844
4845        /* type-based relocations don't have a field access string */
4846        if (core_relo_is_type_based(relo_kind)) {
4847                if (strcmp(spec_str, "0"))
4848                        return -EINVAL;
4849                return 0;
4850        }
4851
4852        /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
4853        while (*spec_str) {
4854                if (*spec_str == ':')
4855                        ++spec_str;
4856                if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
4857                        return -EINVAL;
4858                if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
4859                        return -E2BIG;
4860                spec_str += parsed_len;
4861                spec->raw_spec[spec->raw_len++] = access_idx;
4862        }
4863
4864        if (spec->raw_len == 0)
4865                return -EINVAL;
4866
4867        t = skip_mods_and_typedefs(btf, type_id, &id);
4868        if (!t)
4869                return -EINVAL;
4870
4871        access_idx = spec->raw_spec[0];
4872        acc = &spec->spec[0];
4873        acc->type_id = id;
4874        acc->idx = access_idx;
4875        spec->len++;
4876
4877        if (core_relo_is_enumval_based(relo_kind)) {
4878                if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t))
4879                        return -EINVAL;
4880
4881                /* record enumerator name in a first accessor */
4882                acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off);
4883                return 0;
4884        }
4885
4886        if (!core_relo_is_field_based(relo_kind))
4887                return -EINVAL;
4888
4889        sz = btf__resolve_size(btf, id);
4890        if (sz < 0)
4891                return sz;
4892        spec->bit_offset = access_idx * sz * 8;
4893
4894        for (i = 1; i < spec->raw_len; i++) {
4895                t = skip_mods_and_typedefs(btf, id, &id);
4896                if (!t)
4897                        return -EINVAL;
4898
4899                access_idx = spec->raw_spec[i];
4900                acc = &spec->spec[spec->len];
4901
4902                if (btf_is_composite(t)) {
4903                        const struct btf_member *m;
4904                        __u32 bit_offset;
4905
4906                        if (access_idx >= btf_vlen(t))
4907                                return -EINVAL;
4908
4909                        bit_offset = btf_member_bit_offset(t, access_idx);
4910                        spec->bit_offset += bit_offset;
4911
4912                        m = btf_members(t) + access_idx;
4913                        if (m->name_off) {
4914                                name = btf__name_by_offset(btf, m->name_off);
4915                                if (str_is_empty(name))
4916                                        return -EINVAL;
4917
4918                                acc->type_id = id;
4919                                acc->idx = access_idx;
4920                                acc->name = name;
4921                                spec->len++;
4922                        }
4923
4924                        id = m->type;
4925                } else if (btf_is_array(t)) {
4926                        const struct btf_array *a = btf_array(t);
4927                        bool flex;
4928
4929                        t = skip_mods_and_typedefs(btf, a->type, &id);
4930                        if (!t)
4931                                return -EINVAL;
4932
4933                        flex = is_flex_arr(btf, acc - 1, a);
4934                        if (!flex && access_idx >= a->nelems)
4935                                return -EINVAL;
4936
4937                        spec->spec[spec->len].type_id = id;
4938                        spec->spec[spec->len].idx = access_idx;
4939                        spec->len++;
4940
4941                        sz = btf__resolve_size(btf, id);
4942                        if (sz < 0)
4943                                return sz;
4944                        spec->bit_offset += access_idx * sz * 8;
4945                } else {
4946                        pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n",
4947                                type_id, spec_str, i, id, btf_kind_str(t));
4948                        return -EINVAL;
4949                }
4950        }
4951
4952        return 0;
4953}
4954
4955static bool bpf_core_is_flavor_sep(const char *s)
4956{
4957        /* check X___Y name pattern, where X and Y are not underscores */
4958        return s[0] != '_' &&                                 /* X */
4959               s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
4960               s[4] != '_';                                   /* Y */
4961}
4962
4963/* Given 'some_struct_name___with_flavor' return the length of a name prefix
4964 * before last triple underscore. Struct name part after last triple
4965 * underscore is ignored by BPF CO-RE relocation during relocation matching.
4966 */
4967static size_t bpf_core_essential_name_len(const char *name)
4968{
4969        size_t n = strlen(name);
4970        int i;
4971
4972        for (i = n - 5; i >= 0; i--) {
4973                if (bpf_core_is_flavor_sep(name + i))
4974                        return i + 1;
4975        }
4976        return n;
4977}
4978
4979struct core_cand
4980{
4981        const struct btf *btf;
4982        const struct btf_type *t;
4983        const char *name;
4984        __u32 id;
4985};
4986
4987/* dynamically sized list of type IDs and its associated struct btf */
4988struct core_cand_list {
4989        struct core_cand *cands;
4990        int len;
4991};
4992
4993static void bpf_core_free_cands(struct core_cand_list *cands)
4994{
4995        free(cands->cands);
4996        free(cands);
4997}
4998
4999static int bpf_core_add_cands(struct core_cand *local_cand,
5000                              size_t local_essent_len,
5001                              const struct btf *targ_btf,
5002                              const char *targ_btf_name,
5003                              int targ_start_id,
5004                              struct core_cand_list *cands)
5005{
5006        struct core_cand *new_cands, *cand;
5007        const struct btf_type *t;
5008        const char *targ_name;
5009        size_t targ_essent_len;
5010        int n, i;
5011
5012        n = btf__get_nr_types(targ_btf);
5013        for (i = targ_start_id; i <= n; i++) {
5014                t = btf__type_by_id(targ_btf, i);
5015                if (btf_kind(t) != btf_kind(local_cand->t))
5016                        continue;
5017
5018                targ_name = btf__name_by_offset(targ_btf, t->name_off);
5019                if (str_is_empty(targ_name))
5020                        continue;
5021
5022                targ_essent_len = bpf_core_essential_name_len(targ_name);
5023                if (targ_essent_len != local_essent_len)
5024                        continue;
5025
5026                if (strncmp(local_cand->name, targ_name, local_essent_len) != 0)
5027                        continue;
5028
5029                pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5030                         local_cand->id, btf_kind_str(local_cand->t),
5031                         local_cand->name, i, btf_kind_str(t), targ_name,
5032                         targ_btf_name);
5033                new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5034                                              sizeof(*cands->cands));
5035                if (!new_cands)
5036                        return -ENOMEM;
5037
5038                cand = &new_cands[cands->len];
5039                cand->btf = targ_btf;
5040                cand->t = t;
5041                cand->name = targ_name;
5042                cand->id = i;
5043
5044                cands->cands = new_cands;
5045                cands->len++;
5046        }
5047        return 0;
5048}
5049
5050static int load_module_btfs(struct bpf_object *obj)
5051{
5052        struct bpf_btf_info info;
5053        struct module_btf *mod_btf;
5054        struct btf *btf;
5055        char name[64];
5056        __u32 id = 0, len;
5057        int err, fd;
5058
5059        if (obj->btf_modules_loaded)
5060                return 0;
5061
5062        if (obj->gen_loader)
5063                return 0;
5064
5065        /* don't do this again, even if we find no module BTFs */
5066        obj->btf_modules_loaded = true;
5067
5068        /* kernel too old to support module BTFs */
5069        if (!kernel_supports(obj, FEAT_MODULE_BTF))
5070                return 0;
5071
5072        while (true) {
5073                err = bpf_btf_get_next_id(id, &id);
5074                if (err && errno == ENOENT)
5075                        return 0;
5076                if (err) {
5077                        err = -errno;
5078                        pr_warn("failed to iterate BTF objects: %d\n", err);
5079                        return err;
5080                }
5081
5082                fd = bpf_btf_get_fd_by_id(id);
5083                if (fd < 0) {
5084                        if (errno == ENOENT)
5085                                continue; /* expected race: BTF was unloaded */
5086                        err = -errno;
5087                        pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5088                        return err;
5089                }
5090
5091                len = sizeof(info);
5092                memset(&info, 0, sizeof(info));
5093                info.name = ptr_to_u64(name);
5094                info.name_len = sizeof(name);
5095
5096                err = bpf_obj_get_info_by_fd(fd, &info, &len);
5097                if (err) {
5098                        err = -errno;
5099                        pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5100                        goto err_out;
5101                }
5102
5103                /* ignore non-module BTFs */
5104                if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5105                        close(fd);
5106                        continue;
5107                }
5108
5109                btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5110                err = libbpf_get_error(btf);
5111                if (err) {
5112                        pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5113                                name, id, err);
5114                        goto err_out;
5115                }
5116
5117                err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5118                                        sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5119                if (err)
5120                        goto err_out;
5121
5122                mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5123
5124                mod_btf->btf = btf;
5125                mod_btf->id = id;
5126                mod_btf->fd = fd;
5127                mod_btf->name = strdup(name);
5128                if (!mod_btf->name) {
5129                        err = -ENOMEM;
5130                        goto err_out;
5131                }
5132                continue;
5133
5134err_out:
5135                close(fd);
5136                return err;
5137        }
5138
5139        return 0;
5140}
5141
5142static struct core_cand_list *
5143bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5144{
5145        struct core_cand local_cand = {};
5146        struct core_cand_list *cands;
5147        const struct btf *main_btf;
5148        size_t local_essent_len;
5149        int err, i;
5150
5151        local_cand.btf = local_btf;
5152        local_cand.t = btf__type_by_id(local_btf, local_type_id);
5153        if (!local_cand.t)
5154                return ERR_PTR(-EINVAL);
5155
5156        local_cand.name = btf__name_by_offset(local_btf, local_cand.t->name_off);
5157        if (str_is_empty(local_cand.name))
5158                return ERR_PTR(-EINVAL);
5159        local_essent_len = bpf_core_essential_name_len(local_cand.name);
5160
5161        cands = calloc(1, sizeof(*cands));
5162        if (!cands)
5163                return ERR_PTR(-ENOMEM);
5164
5165        /* Attempt to find target candidates in vmlinux BTF first */
5166        main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5167        err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5168        if (err)
5169                goto err_out;
5170
5171        /* if vmlinux BTF has any candidate, don't got for module BTFs */
5172        if (cands->len)
5173                return cands;
5174
5175        /* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5176        if (obj->btf_vmlinux_override)
5177                return cands;
5178
5179        /* now look through module BTFs, trying to still find candidates */
5180        err = load_module_btfs(obj);
5181        if (err)
5182                goto err_out;
5183
5184        for (i = 0; i < obj->btf_module_cnt; i++) {
5185                err = bpf_core_add_cands(&local_cand, local_essent_len,
5186                                         obj->btf_modules[i].btf,
5187                                         obj->btf_modules[i].name,
5188                                         btf__get_nr_types(obj->btf_vmlinux) + 1,
5189                                         cands);
5190                if (err)
5191                        goto err_out;
5192        }
5193
5194        return cands;
5195err_out:
5196        bpf_core_free_cands(cands);
5197        return ERR_PTR(err);
5198}
5199
5200/* Check two types for compatibility for the purpose of field access
5201 * relocation. const/volatile/restrict and typedefs are skipped to ensure we
5202 * are relocating semantically compatible entities:
5203 *   - any two STRUCTs/UNIONs are compatible and can be mixed;
5204 *   - any two FWDs are compatible, if their names match (modulo flavor suffix);
5205 *   - any two PTRs are always compatible;
5206 *   - for ENUMs, names should be the same (ignoring flavor suffix) or at
5207 *     least one of enums should be anonymous;
5208 *   - for ENUMs, check sizes, names are ignored;
5209 *   - for INT, size and signedness are ignored;
5210 *   - any two FLOATs are always compatible;
5211 *   - for ARRAY, dimensionality is ignored, element types are checked for
5212 *     compatibility recursively;
5213 *   - everything else shouldn't be ever a target of relocation.
5214 * These rules are not set in stone and probably will be adjusted as we get
5215 * more experience with using BPF CO-RE relocations.
5216 */
5217static int bpf_core_fields_are_compat(const struct btf *local_btf,
5218                                      __u32 local_id,
5219                                      const struct btf *targ_btf,
5220                                      __u32 targ_id)
5221{
5222        const struct btf_type *local_type, *targ_type;
5223
5224recur:
5225        local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
5226        targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
5227        if (!local_type || !targ_type)
5228                return -EINVAL;
5229
5230        if (btf_is_composite(local_type) && btf_is_composite(targ_type))
5231                return 1;
5232        if (btf_kind(local_type) != btf_kind(targ_type))
5233                return 0;
5234
5235        switch (btf_kind(local_type)) {
5236        case BTF_KIND_PTR:
5237        case BTF_KIND_FLOAT:
5238                return 1;
5239        case BTF_KIND_FWD:
5240        case BTF_KIND_ENUM: {
5241                const char *local_name, *targ_name;
5242                size_t local_len, targ_len;
5243
5244                local_name = btf__name_by_offset(local_btf,
5245                                                 local_type->name_off);
5246                targ_name = btf__name_by_offset(targ_btf, targ_type->name_off);
5247                local_len = bpf_core_essential_name_len(local_name);
5248                targ_len = bpf_core_essential_name_len(targ_name);
5249                /* one of them is anonymous or both w/ same flavor-less names */
5250                return local_len == 0 || targ_len == 0 ||
5251                       (local_len == targ_len &&
5252                        strncmp(local_name, targ_name, local_len) == 0);
5253        }
5254        case BTF_KIND_INT:
5255                /* just reject deprecated bitfield-like integers; all other
5256                 * integers are by default compatible between each other
5257                 */
5258                return btf_int_offset(local_type) == 0 &&
5259                       btf_int_offset(targ_type) == 0;
5260        case BTF_KIND_ARRAY:
5261                local_id = btf_array(local_type)->type;
5262                targ_id = btf_array(targ_type)->type;
5263                goto recur;
5264        default:
5265                pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n",
5266                        btf_kind(local_type), local_id, targ_id);
5267                return 0;
5268        }
5269}
5270
5271/*
5272 * Given single high-level named field accessor in local type, find
5273 * corresponding high-level accessor for a target type. Along the way,
5274 * maintain low-level spec for target as well. Also keep updating target
5275 * bit offset.
5276 *
5277 * Searching is performed through recursive exhaustive enumeration of all
5278 * fields of a struct/union. If there are any anonymous (embedded)
5279 * structs/unions, they are recursively searched as well. If field with
5280 * desired name is found, check compatibility between local and target types,
5281 * before returning result.
5282 *
5283 * 1 is returned, if field is found.
5284 * 0 is returned if no compatible field is found.
5285 * <0 is returned on error.
5286 */
5287static int bpf_core_match_member(const struct btf *local_btf,
5288                                 const struct bpf_core_accessor *local_acc,
5289                                 const struct btf *targ_btf,
5290                                 __u32 targ_id,
5291                                 struct bpf_core_spec *spec,
5292                                 __u32 *next_targ_id)
5293{
5294        const struct btf_type *local_type, *targ_type;
5295        const struct btf_member *local_member, *m;
5296        const char *local_name, *targ_name;
5297        __u32 local_id;
5298        int i, n, found;
5299
5300        targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
5301        if (!targ_type)
5302                return -EINVAL;
5303        if (!btf_is_composite(targ_type))
5304                return 0;
5305
5306        local_id = local_acc->type_id;
5307        local_type = btf__type_by_id(local_btf, local_id);
5308        local_member = btf_members(local_type) + local_acc->idx;
5309        local_name = btf__name_by_offset(local_btf, local_member->name_off);
5310
5311        n = btf_vlen(targ_type);
5312        m = btf_members(targ_type);
5313        for (i = 0; i < n; i++, m++) {
5314                __u32 bit_offset;
5315
5316                bit_offset = btf_member_bit_offset(targ_type, i);
5317
5318                /* too deep struct/union/array nesting */
5319                if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
5320                        return -E2BIG;
5321
5322                /* speculate this member will be the good one */
5323                spec->bit_offset += bit_offset;
5324                spec->raw_spec[spec->raw_len++] = i;
5325
5326                targ_name = btf__name_by_offset(targ_btf, m->name_off);
5327                if (str_is_empty(targ_name)) {
5328                        /* embedded struct/union, we need to go deeper */
5329                        found = bpf_core_match_member(local_btf, local_acc,
5330                                                      targ_btf, m->type,
5331                                                      spec, next_targ_id);
5332                        if (found) /* either found or error */
5333                                return found;
5334                } else if (strcmp(local_name, targ_name) == 0) {
5335                        /* matching named field */
5336                        struct bpf_core_accessor *targ_acc;
5337
5338                        targ_acc = &spec->spec[spec->len++];
5339                        targ_acc->type_id = targ_id;
5340                        targ_acc->idx = i;
5341                        targ_acc->name = targ_name;
5342
5343                        *next_targ_id = m->type;
5344                        found = bpf_core_fields_are_compat(local_btf,
5345                                                           local_member->type,
5346                                                           targ_btf, m->type);
5347                        if (!found)
5348                                spec->len--; /* pop accessor */
5349                        return found;
5350                }
5351                /* member turned out not to be what we looked for */
5352                spec->bit_offset -= bit_offset;
5353                spec->raw_len--;
5354        }
5355
5356        return 0;
5357}
5358
5359/* Check local and target types for compatibility. This check is used for
5360 * type-based CO-RE relocations and follow slightly different rules than
5361 * field-based relocations. This function assumes that root types were already
5362 * checked for name match. Beyond that initial root-level name check, names
5363 * are completely ignored. Compatibility rules are as follows:
5364 *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5365 *     kind should match for local and target types (i.e., STRUCT is not
5366 *     compatible with UNION);
5367 *   - for ENUMs, the size is ignored;
5368 *   - for INT, size and signedness are ignored;
5369 *   - for ARRAY, dimensionality is ignored, element types are checked for
5370 *     compatibility recursively;
5371 *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5372 *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5373 *   - FUNC_PROTOs are compatible if they have compatible signature: same
5374 *     number of input args and compatible return and argument types.
5375 * These rules are not set in stone and probably will be adjusted as we get
5376 * more experience with using BPF CO-RE relocations.
5377 */
5378static int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5379                                     const struct btf *targ_btf, __u32 targ_id)
5380{
5381        const struct btf_type *local_type, *targ_type;
5382        int depth = 32; /* max recursion depth */
5383
5384        /* caller made sure that names match (ignoring flavor suffix) */
5385        local_type = btf__type_by_id(local_btf, local_id);
5386        targ_type = btf__type_by_id(targ_btf, targ_id);
5387        if (btf_kind(local_type) != btf_kind(targ_type))
5388                return 0;
5389
5390recur:
5391        depth--;
5392        if (depth < 0)
5393                return -EINVAL;
5394
5395        local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
5396        targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
5397        if (!local_type || !targ_type)
5398                return -EINVAL;
5399
5400        if (btf_kind(local_type) != btf_kind(targ_type))
5401                return 0;
5402
5403        switch (btf_kind(local_type)) {
5404        case BTF_KIND_UNKN:
5405        case BTF_KIND_STRUCT:
5406        case BTF_KIND_UNION:
5407        case BTF_KIND_ENUM:
5408        case BTF_KIND_FWD:
5409                return 1;
5410        case BTF_KIND_INT:
5411                /* just reject deprecated bitfield-like integers; all other
5412                 * integers are by default compatible between each other
5413                 */
5414                return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
5415        case BTF_KIND_PTR:
5416                local_id = local_type->type;
5417                targ_id = targ_type->type;
5418                goto recur;
5419        case BTF_KIND_ARRAY:
5420                local_id = btf_array(local_type)->type;
5421                targ_id = btf_array(targ_type)->type;
5422                goto recur;
5423        case BTF_KIND_FUNC_PROTO: {
5424                struct btf_param *local_p = btf_params(local_type);
5425                struct btf_param *targ_p = btf_params(targ_type);
5426                __u16 local_vlen = btf_vlen(local_type);
5427                __u16 targ_vlen = btf_vlen(targ_type);
5428                int i, err;
5429
5430                if (local_vlen != targ_vlen)
5431                        return 0;
5432
5433                for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
5434                        skip_mods_and_typedefs(local_btf, local_p->type, &local_id);
5435                        skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id);
5436                        err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id);
5437                        if (err <= 0)
5438                                return err;
5439                }
5440
5441                /* tail recurse for return type check */
5442                skip_mods_and_typedefs(local_btf, local_type->type, &local_id);
5443                skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id);
5444                goto recur;
5445        }
5446        default:
5447                pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
5448                        btf_kind_str(local_type), local_id, targ_id);
5449                return 0;
5450        }
5451}
5452
5453/*
5454 * Try to match local spec to a target type and, if successful, produce full
5455 * target spec (high-level, low-level + bit offset).
5456 */
5457static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
5458                               const struct btf *targ_btf, __u32 targ_id,
5459                               struct bpf_core_spec *targ_spec)
5460{
5461        const struct btf_type *targ_type;
5462        const struct bpf_core_accessor *local_acc;
5463        struct bpf_core_accessor *targ_acc;
5464        int i, sz, matched;
5465
5466        memset(targ_spec, 0, sizeof(*targ_spec));
5467        targ_spec->btf = targ_btf;
5468        targ_spec->root_type_id = targ_id;
5469        targ_spec->relo_kind = local_spec->relo_kind;
5470
5471        if (core_relo_is_type_based(local_spec->relo_kind)) {
5472                return bpf_core_types_are_compat(local_spec->btf,
5473                                                 local_spec->root_type_id,
5474                                                 targ_btf, targ_id);
5475        }
5476
5477        local_acc = &local_spec->spec[0];
5478        targ_acc = &targ_spec->spec[0];
5479
5480        if (core_relo_is_enumval_based(local_spec->relo_kind)) {
5481                size_t local_essent_len, targ_essent_len;
5482                const struct btf_enum *e;
5483                const char *targ_name;
5484
5485                /* has to resolve to an enum */
5486                targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id);
5487                if (!btf_is_enum(targ_type))
5488                        return 0;
5489
5490                local_essent_len = bpf_core_essential_name_len(local_acc->name);
5491
5492                for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) {
5493                        targ_name = btf__name_by_offset(targ_spec->btf, e->name_off);
5494                        targ_essent_len = bpf_core_essential_name_len(targ_name);
5495                        if (targ_essent_len != local_essent_len)
5496                                continue;
5497                        if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) {
5498                                targ_acc->type_id = targ_id;
5499                                targ_acc->idx = i;
5500                                targ_acc->name = targ_name;
5501                                targ_spec->len++;
5502                                targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
5503                                targ_spec->raw_len++;
5504                                return 1;
5505                        }
5506                }
5507                return 0;
5508        }
5509
5510        if (!core_relo_is_field_based(local_spec->relo_kind))
5511                return -EINVAL;
5512
5513        for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
5514                targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
5515                                                   &targ_id);
5516                if (!targ_type)
5517                        return -EINVAL;
5518
5519                if (local_acc->name) {
5520                        matched = bpf_core_match_member(local_spec->btf,
5521                                                        local_acc,
5522                                                        targ_btf, targ_id,
5523                                                        targ_spec, &targ_id);
5524                        if (matched <= 0)
5525                                return matched;
5526                } else {
5527                        /* for i=0, targ_id is already treated as array element
5528                         * type (because it's the original struct), for others
5529                         * we should find array element type first
5530                         */
5531                        if (i > 0) {
5532                                const struct btf_array *a;
5533                                bool flex;
5534
5535                                if (!btf_is_array(targ_type))
5536                                        return 0;
5537
5538                                a = btf_array(targ_type);
5539                                flex = is_flex_arr(targ_btf, targ_acc - 1, a);
5540                                if (!flex && local_acc->idx >= a->nelems)
5541                                        return 0;
5542                                if (!skip_mods_and_typedefs(targ_btf, a->type,
5543                                                            &targ_id))
5544                                        return -EINVAL;
5545                        }
5546
5547                        /* too deep struct/union/array nesting */
5548                        if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
5549                                return -E2BIG;
5550
5551                        targ_acc->type_id = targ_id;
5552                        targ_acc->idx = local_acc->idx;
5553                        targ_acc->name = NULL;
5554                        targ_spec->len++;
5555                        targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
5556                        targ_spec->raw_len++;
5557
5558                        sz = btf__resolve_size(targ_btf, targ_id);
5559                        if (sz < 0)
5560                                return sz;
5561                        targ_spec->bit_offset += local_acc->idx * sz * 8;
5562                }
5563        }
5564
5565        return 1;
5566}
5567
5568static int bpf_core_calc_field_relo(const struct bpf_program *prog,
5569                                    const struct bpf_core_relo *relo,
5570                                    const struct bpf_core_spec *spec,
5571                                    __u32 *val, __u32 *field_sz, __u32 *type_id,
5572                                    bool *validate)
5573{
5574        const struct bpf_core_accessor *acc;
5575        const struct btf_type *t;
5576        __u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id;
5577        const struct btf_member *m;
5578        const struct btf_type *mt;
5579        bool bitfield;
5580        __s64 sz;
5581
5582        *field_sz = 0;
5583
5584        if (relo->kind == BPF_FIELD_EXISTS) {
5585                *val = spec ? 1 : 0;
5586                return 0;
5587        }
5588
5589        if (!spec)
5590                return -EUCLEAN; /* request instruction poisoning */
5591
5592        acc = &spec->spec[spec->len - 1];
5593        t = btf__type_by_id(spec->btf, acc->type_id);
5594
5595        /* a[n] accessor needs special handling */
5596        if (!acc->name) {
5597                if (relo->kind == BPF_FIELD_BYTE_OFFSET) {
5598                        *val = spec->bit_offset / 8;
5599                        /* remember field size for load/store mem size */
5600                        sz = btf__resolve_size(spec->btf, acc->type_id);
5601                        if (sz < 0)
5602                                return -EINVAL;
5603                        *field_sz = sz;
5604                        *type_id = acc->type_id;
5605                } else if (relo->kind == BPF_FIELD_BYTE_SIZE) {
5606                        sz = btf__resolve_size(spec->btf, acc->type_id);
5607                        if (sz < 0)
5608                                return -EINVAL;
5609                        *val = sz;
5610                } else {
5611                        pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n",
5612                                prog->name, relo->kind, relo->insn_off / 8);
5613                        return -EINVAL;
5614                }
5615                if (validate)
5616                        *validate = true;
5617                return 0;
5618        }
5619
5620        m = btf_members(t) + acc->idx;
5621        mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id);
5622        bit_off = spec->bit_offset;
5623        bit_sz = btf_member_bitfield_size(t, acc->idx);
5624
5625        bitfield = bit_sz > 0;
5626        if (bitfield) {
5627                byte_sz = mt->size;
5628                byte_off = bit_off / 8 / byte_sz * byte_sz;
5629                /* figure out smallest int size necessary for bitfield load */
5630                while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) {
5631                        if (byte_sz >= 8) {
5632                                /* bitfield can't be read with 64-bit read */
5633                                pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n",
5634                                        prog->name, relo->kind, relo->insn_off / 8);
5635                                return -E2BIG;
5636                        }
5637                        byte_sz *= 2;
5638                        byte_off = bit_off / 8 / byte_sz * byte_sz;
5639                }
5640        } else {
5641                sz = btf__resolve_size(spec->btf, field_type_id);
5642                if (sz < 0)
5643                        return -EINVAL;
5644                byte_sz = sz;
5645                byte_off = spec->bit_offset / 8;
5646                bit_sz = byte_sz * 8;
5647        }
5648
5649        /* for bitfields, all the relocatable aspects are ambiguous and we
5650         * might disagree with compiler, so turn off validation of expected
5651         * value, except for signedness
5652         */
5653        if (validate)
5654                *validate = !bitfield;
5655
5656        switch (relo->kind) {
5657        case BPF_FIELD_BYTE_OFFSET:
5658                *val = byte_off;
5659                if (!bitfield) {
5660                        *field_sz = byte_sz;
5661                        *type_id = field_type_id;
5662                }
5663                break;
5664        case BPF_FIELD_BYTE_SIZE:
5665                *val = byte_sz;
5666                break;
5667        case BPF_FIELD_SIGNED:
5668                /* enums will be assumed unsigned */
5669                *val = btf_is_enum(mt) ||
5670                       (btf_int_encoding(mt) & BTF_INT_SIGNED);
5671                if (validate)
5672                        *validate = true; /* signedness is never ambiguous */
5673                break;
5674        case BPF_FIELD_LSHIFT_U64:
5675#if __BYTE_ORDER == __LITTLE_ENDIAN
5676                *val = 64 - (bit_off + bit_sz - byte_off  * 8);
5677#else
5678                *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8);
5679#endif
5680                break;
5681        case BPF_FIELD_RSHIFT_U64:
5682                *val = 64 - bit_sz;
5683                if (validate)
5684                        *validate = true; /* right shift is never ambiguous */
5685                break;
5686        case BPF_FIELD_EXISTS:
5687        default:
5688                return -EOPNOTSUPP;
5689        }
5690
5691        return 0;
5692}
5693
5694static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo,
5695                                   const struct bpf_core_spec *spec,
5696                                   __u32 *val)
5697{
5698        __s64 sz;
5699
5700        /* type-based relos return zero when target type is not found */
5701        if (!spec) {
5702                *val = 0;
5703                return 0;
5704        }
5705
5706        switch (relo->kind) {
5707        case BPF_TYPE_ID_TARGET:
5708                *val = spec->root_type_id;
5709                break;
5710        case BPF_TYPE_EXISTS:
5711                *val = 1;
5712                break;
5713        case BPF_TYPE_SIZE:
5714                sz = btf__resolve_size(spec->btf, spec->root_type_id);
5715                if (sz < 0)
5716                        return -EINVAL;
5717                *val = sz;
5718                break;
5719        case BPF_TYPE_ID_LOCAL:
5720        /* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */
5721        default:
5722                return -EOPNOTSUPP;
5723        }
5724
5725        return 0;
5726}
5727
5728static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo,
5729                                      const struct bpf_core_spec *spec,
5730                                      __u32 *val)
5731{
5732        const struct btf_type *t;
5733        const struct btf_enum *e;
5734
5735        switch (relo->kind) {
5736        case BPF_ENUMVAL_EXISTS:
5737                *val = spec ? 1 : 0;
5738                break;
5739        case BPF_ENUMVAL_VALUE:
5740                if (!spec)
5741                        return -EUCLEAN; /* request instruction poisoning */
5742                t = btf__type_by_id(spec->btf, spec->spec[0].type_id);
5743                e = btf_enum(t) + spec->spec[0].idx;
5744                *val = e->val;
5745                break;
5746        default:
5747                return -EOPNOTSUPP;
5748        }
5749
5750        return 0;
5751}
5752
5753struct bpf_core_relo_res
5754{
5755        /* expected value in the instruction, unless validate == false */
5756        __u32 orig_val;
5757        /* new value that needs to be patched up to */
5758        __u32 new_val;
5759        /* relocation unsuccessful, poison instruction, but don't fail load */
5760        bool poison;
5761        /* some relocations can't be validated against orig_val */
5762        bool validate;
5763        /* for field byte offset relocations or the forms:
5764         *     *(T *)(rX + <off>) = rY
5765         *     rX = *(T *)(rY + <off>),
5766         * we remember original and resolved field size to adjust direct
5767         * memory loads of pointers and integers; this is necessary for 32-bit
5768         * host kernel architectures, but also allows to automatically
5769         * relocate fields that were resized from, e.g., u32 to u64, etc.
5770         */
5771        bool fail_memsz_adjust;
5772        __u32 orig_sz;
5773        __u32 orig_type_id;
5774        __u32 new_sz;
5775        __u32 new_type_id;
5776};
5777
5778/* Calculate original and target relocation values, given local and target
5779 * specs and relocation kind. These values are calculated for each candidate.
5780 * If there are multiple candidates, resulting values should all be consistent
5781 * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity.
5782 * If instruction has to be poisoned, *poison will be set to true.
5783 */
5784static int bpf_core_calc_relo(const struct bpf_program *prog,
5785                              const struct bpf_core_relo *relo,
5786                              int relo_idx,
5787                              const struct bpf_core_spec *local_spec,
5788                              const struct bpf_core_spec *targ_spec,
5789                              struct bpf_core_relo_res *res)
5790{
5791        int err = -EOPNOTSUPP;
5792
5793        res->orig_val = 0;
5794        res->new_val = 0;
5795        res->poison = false;
5796        res->validate = true;
5797        res->fail_memsz_adjust = false;
5798        res->orig_sz = res->new_sz = 0;
5799        res->orig_type_id = res->new_type_id = 0;
5800
5801        if (core_relo_is_field_based(relo->kind)) {
5802                err = bpf_core_calc_field_relo(prog, relo, local_spec,
5803                                               &res->orig_val, &res->orig_sz,
5804                                               &res->orig_type_id, &res->validate);
5805                err = err ?: bpf_core_calc_field_relo(prog, relo, targ_spec,
5806                                                      &res->new_val, &res->new_sz,
5807                                                      &res->new_type_id, NULL);
5808                if (err)
5809                        goto done;
5810                /* Validate if it's safe to adjust load/store memory size.
5811                 * Adjustments are performed only if original and new memory
5812                 * sizes differ.
5813                 */
5814                res->fail_memsz_adjust = false;
5815                if (res->orig_sz != res->new_sz) {
5816                        const struct btf_type *orig_t, *new_t;
5817
5818                        orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id);
5819                        new_t = btf__type_by_id(targ_spec->btf, res->new_type_id);
5820
5821                        /* There are two use cases in which it's safe to
5822                         * adjust load/store's mem size:
5823                         *   - reading a 32-bit kernel pointer, while on BPF
5824                         *   size pointers are always 64-bit; in this case
5825                         *   it's safe to "downsize" instruction size due to
5826                         *   pointer being treated as unsigned integer with
5827                         *   zero-extended upper 32-bits;
5828                         *   - reading unsigned integers, again due to
5829                         *   zero-extension is preserving the value correctly.
5830                         *
5831                         * In all other cases it's incorrect to attempt to
5832                         * load/store field because read value will be
5833                         * incorrect, so we poison relocated instruction.
5834                         */
5835                        if (btf_is_ptr(orig_t) && btf_is_ptr(new_t))
5836                                goto done;
5837                        if (btf_is_int(orig_t) && btf_is_int(new_t) &&
5838                            btf_int_encoding(orig_t) != BTF_INT_SIGNED &&
5839                            btf_int_encoding(new_t) != BTF_INT_SIGNED)
5840                                goto done;
5841
5842                        /* mark as invalid mem size adjustment, but this will
5843                         * only be checked for LDX/STX/ST insns
5844                         */
5845                        res->fail_memsz_adjust = true;
5846                }
5847        } else if (core_relo_is_type_based(relo->kind)) {
5848                err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val);
5849                err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val);
5850        } else if (core_relo_is_enumval_based(relo->kind)) {
5851                err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val);
5852                err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val);
5853        }
5854
5855done:
5856        if (err == -EUCLEAN) {
5857                /* EUCLEAN is used to signal instruction poisoning request */
5858                res->poison = true;
5859                err = 0;
5860        } else if (err == -EOPNOTSUPP) {
5861                /* EOPNOTSUPP means unknown/unsupported relocation */
5862                pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n",
5863                        prog->name, relo_idx, core_relo_kind_str(relo->kind),
5864                        relo->kind, relo->insn_off / 8);
5865        }
5866
5867        return err;
5868}
5869
5870/*
5871 * Turn instruction for which CO_RE relocation failed into invalid one with
5872 * distinct signature.
5873 */
5874static void bpf_core_poison_insn(struct bpf_program *prog, int relo_idx,
5875                                 int insn_idx, struct bpf_insn *insn)
5876{
5877        pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n",
5878                 prog->name, relo_idx, insn_idx);
5879        insn->code = BPF_JMP | BPF_CALL;
5880        insn->dst_reg = 0;
5881        insn->src_reg = 0;
5882        insn->off = 0;
5883        /* if this instruction is reachable (not a dead code),
5884         * verifier will complain with the following message:
5885         * invalid func unknown#195896080
5886         */
5887        insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */
5888}
5889
5890static int insn_bpf_size_to_bytes(struct bpf_insn *insn)
5891{
5892        switch (BPF_SIZE(insn->code)) {
5893        case BPF_DW: return 8;
5894        case BPF_W: return 4;
5895        case BPF_H: return 2;
5896        case BPF_B: return 1;
5897        default: return -1;
5898        }
5899}
5900
5901static int insn_bytes_to_bpf_size(__u32 sz)
5902{
5903        switch (sz) {
5904        case 8: return BPF_DW;
5905        case 4: return BPF_W;
5906        case 2: return BPF_H;
5907        case 1: return BPF_B;
5908        default: return -1;
5909        }
5910}
5911
5912/*
5913 * Patch relocatable BPF instruction.
5914 *
5915 * Patched value is determined by relocation kind and target specification.
5916 * For existence relocations target spec will be NULL if field/type is not found.
5917 * Expected insn->imm value is determined using relocation kind and local
5918 * spec, and is checked before patching instruction. If actual insn->imm value
5919 * is wrong, bail out with error.
5920 *
5921 * Currently supported classes of BPF instruction are:
5922 * 1. rX = <imm> (assignment with immediate operand);
5923 * 2. rX += <imm> (arithmetic operations with immediate operand);
5924 * 3. rX = <imm64> (load with 64-bit immediate value);
5925 * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64};
5926 * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64};
5927 * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}.
5928 */
5929static int bpf_core_patch_insn(struct bpf_program *prog,
5930                               const struct bpf_core_relo *relo,
5931                               int relo_idx,
5932                               const struct bpf_core_relo_res *res)
5933{
5934        __u32 orig_val, new_val;
5935        struct bpf_insn *insn;
5936        int insn_idx;
5937        __u8 class;
5938
5939        if (relo->insn_off % BPF_INSN_SZ)
5940                return -EINVAL;
5941        insn_idx = relo->insn_off / BPF_INSN_SZ;
5942        /* adjust insn_idx from section frame of reference to the local
5943         * program's frame of reference; (sub-)program code is not yet
5944         * relocated, so it's enough to just subtract in-section offset
5945         */
5946        insn_idx = insn_idx - prog->sec_insn_off;
5947        insn = &prog->insns[insn_idx];
5948        class = BPF_CLASS(insn->code);
5949
5950        if (res->poison) {
5951poison:
5952                /* poison second part of ldimm64 to avoid confusing error from
5953                 * verifier about "unknown opcode 00"
5954                 */
5955                if (is_ldimm64_insn(insn))
5956                        bpf_core_poison_insn(prog, relo_idx, insn_idx + 1, insn + 1);
5957                bpf_core_poison_insn(prog, relo_idx, insn_idx, insn);
5958                return 0;
5959        }
5960
5961        orig_val = res->orig_val;
5962        new_val = res->new_val;
5963
5964        switch (class) {
5965        case BPF_ALU:
5966        case BPF_ALU64:
5967                if (BPF_SRC(insn->code) != BPF_K)
5968                        return -EINVAL;
5969                if (res->validate && insn->imm != orig_val) {
5970                        pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n",
5971                                prog->name, relo_idx,
5972                                insn_idx, insn->imm, orig_val, new_val);
5973                        return -EINVAL;
5974                }
5975                orig_val = insn->imm;
5976                insn->imm = new_val;
5977                pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n",
5978                         prog->name, relo_idx, insn_idx,
5979                         orig_val, new_val);
5980                break;
5981        case BPF_LDX:
5982        case BPF_ST:
5983        case BPF_STX:
5984                if (res->validate && insn->off != orig_val) {
5985                        pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n",
5986                                prog->name, relo_idx, insn_idx, insn->off, orig_val, new_val);
5987                        return -EINVAL;
5988                }
5989                if (new_val > SHRT_MAX) {
5990                        pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n",
5991                                prog->name, relo_idx, insn_idx, new_val);
5992                        return -ERANGE;
5993                }
5994                if (res->fail_memsz_adjust) {
5995                        pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. "
5996                                "Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n",
5997                                prog->name, relo_idx, insn_idx);
5998                        goto poison;
5999                }
6000
6001                orig_val = insn->off;
6002                insn->off = new_val;
6003                pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n",
6004                         prog->name, relo_idx, insn_idx, orig_val, new_val);
6005
6006                if (res->new_sz != res->orig_sz) {
6007                        int insn_bytes_sz, insn_bpf_sz;
6008
6009                        insn_bytes_sz = insn_bpf_size_to_bytes(insn);
6010                        if (insn_bytes_sz != res->orig_sz) {
6011                                pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n",
6012                                        prog->name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz);
6013                                return -EINVAL;
6014                        }
6015
6016                        insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz);
6017                        if (insn_bpf_sz < 0) {
6018                                pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n",
6019                                        prog->name, relo_idx, insn_idx, res->new_sz);
6020                                return -EINVAL;
6021                        }
6022
6023                        insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code);
6024                        pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n",
6025                                 prog->name, relo_idx, insn_idx, res->orig_sz, res->new_sz);
6026                }
6027                break;
6028        case BPF_LD: {
6029                __u64 imm;
6030
6031                if (!is_ldimm64_insn(insn) ||
6032                    insn[0].src_reg != 0 || insn[0].off != 0 ||
6033                    insn_idx + 1 >= prog->insns_cnt ||
6034                    insn[1].code != 0 || insn[1].dst_reg != 0 ||
6035                    insn[1].src_reg != 0 || insn[1].off != 0) {
6036                        pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n",
6037                                prog->name, relo_idx, insn_idx);
6038                        return -EINVAL;
6039                }
6040
6041                imm = insn[0].imm + ((__u64)insn[1].imm << 32);
6042                if (res->validate && imm != orig_val) {
6043                        pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n",
6044                                prog->name, relo_idx,
6045                                insn_idx, (unsigned long long)imm,
6046                                orig_val, new_val);
6047                        return -EINVAL;
6048                }
6049
6050                insn[0].imm = new_val;
6051                insn[1].imm = 0; /* currently only 32-bit values are supported */
6052                pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n",
6053                         prog->name, relo_idx, insn_idx,
6054                         (unsigned long long)imm, new_val);
6055                break;
6056        }
6057        default:
6058                pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n",
6059                        prog->name, relo_idx, insn_idx, insn->code,
6060                        insn->src_reg, insn->dst_reg, insn->off, insn->imm);
6061                return -EINVAL;
6062        }
6063
6064        return 0;
6065}
6066
6067/* Output spec definition in the format:
6068 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>,
6069 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b
6070 */
6071static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec)
6072{
6073        const struct btf_type *t;
6074        const struct btf_enum *e;
6075        const char *s;
6076        __u32 type_id;
6077        int i;
6078
6079        type_id = spec->root_type_id;
6080        t = btf__type_by_id(spec->btf, type_id);
6081        s = btf__name_by_offset(spec->btf, t->name_off);
6082
6083        libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s);
6084
6085        if (core_relo_is_type_based(spec->relo_kind))
6086                return;
6087
6088        if (core_relo_is_enumval_based(spec->relo_kind)) {
6089                t = skip_mods_and_typedefs(spec->btf, type_id, NULL);
6090                e = btf_enum(t) + spec->raw_spec[0];
6091                s = btf__name_by_offset(spec->btf, e->name_off);
6092
6093                libbpf_print(level, "::%s = %u", s, e->val);
6094                return;
6095        }
6096
6097        if (core_relo_is_field_based(spec->relo_kind)) {
6098                for (i = 0; i < spec->len; i++) {
6099                        if (spec->spec[i].name)
6100                                libbpf_print(level, ".%s", spec->spec[i].name);
6101                        else if (i > 0 || spec->spec[i].idx > 0)
6102                                libbpf_print(level, "[%u]", spec->spec[i].idx);
6103                }
6104
6105                libbpf_print(level, " (");
6106                for (i = 0; i < spec->raw_len; i++)
6107                        libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]);
6108
6109                if (spec->bit_offset % 8)
6110                        libbpf_print(level, " @ offset %u.%u)",
6111                                     spec->bit_offset / 8, spec->bit_offset % 8);
6112                else
6113                        libbpf_print(level, " @ offset %u)", spec->bit_offset / 8);
6114                return;
6115        }
6116}
6117
6118static size_t bpf_core_hash_fn(const void *key, void *ctx)
6119{
6120        return (size_t)key;
6121}
6122
6123static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
6124{
6125        return k1 == k2;
6126}
6127
6128static void *u32_as_hash_key(__u32 x)
6129{
6130        return (void *)(uintptr_t)x;
6131}
6132
6133/*
6134 * CO-RE relocate single instruction.
6135 *
6136 * The outline and important points of the algorithm:
6137 * 1. For given local type, find corresponding candidate target types.
6138 *    Candidate type is a type with the same "essential" name, ignoring
6139 *    everything after last triple underscore (___). E.g., `sample`,
6140 *    `sample___flavor_one`, `sample___flavor_another_one`, are all candidates
6141 *    for each other. Names with triple underscore are referred to as
6142 *    "flavors" and are useful, among other things, to allow to
6143 *    specify/support incompatible variations of the same kernel struct, which
6144 *    might differ between different kernel versions and/or build
6145 *    configurations.
6146 *
6147 *    N.B. Struct "flavors" could be generated by bpftool's BTF-to-C
6148 *    converter, when deduplicated BTF of a kernel still contains more than
6149 *    one different types with the same name. In that case, ___2, ___3, etc
6150 *    are appended starting from second name conflict. But start flavors are
6151 *    also useful to be defined "locally", in BPF program, to extract same
6152 *    data from incompatible changes between different kernel
6153 *    versions/configurations. For instance, to handle field renames between
6154 *    kernel versions, one can use two flavors of the struct name with the
6155 *    same common name and use conditional relocations to extract that field,
6156 *    depending on target kernel version.
6157 * 2. For each candidate type, try to match local specification to this
6158 *    candidate target type. Matching involves finding corresponding
6159 *    high-level spec accessors, meaning that all named fields should match,
6160 *    as well as all array accesses should be within the actual bounds. Also,
6161 *    types should be compatible (see bpf_core_fields_are_compat for details).
6162 * 3. It is supported and expected that there might be multiple flavors
6163 *    matching the spec. As long as all the specs resolve to the same set of
6164 *    offsets across all candidates, there is no error. If there is any
6165 *    ambiguity, CO-RE relocation will fail. This is necessary to accomodate
6166 *    imprefection of BTF deduplication, which can cause slight duplication of
6167 *    the same BTF type, if some directly or indirectly referenced (by
6168 *    pointer) type gets resolved to different actual types in different
6169 *    object files. If such situation occurs, deduplicated BTF will end up
6170 *    with two (or more) structurally identical types, which differ only in
6171 *    types they refer to through pointer. This should be OK in most cases and
6172 *    is not an error.
6173 * 4. Candidate types search is performed by linearly scanning through all
6174 *    types in target BTF. It is anticipated that this is overall more
6175 *    efficient memory-wise and not significantly worse (if not better)
6176 *    CPU-wise compared to prebuilding a map from all local type names to
6177 *    a list of candidate type names. It's also sped up by caching resolved
6178 *    list of matching candidates per each local "root" type ID, that has at
6179 *    least one bpf_core_relo associated with it. This list is shared
6180 *    between multiple relocations for the same type ID and is updated as some
6181 *    of the candidates are pruned due to structural incompatibility.
6182 */
6183static int bpf_core_apply_relo(struct bpf_program *prog,
6184                               const struct bpf_core_relo *relo,
6185                               int relo_idx,
6186                               const struct btf *local_btf,
6187                               struct hashmap *cand_cache)
6188{
6189        struct bpf_core_spec local_spec, cand_spec, targ_spec = {};
6190        const void *type_key = u32_as_hash_key(relo->type_id);
6191        struct bpf_core_relo_res cand_res, targ_res;
6192        const struct btf_type *local_type;
6193        const char *local_name;
6194        struct core_cand_list *cands = NULL;
6195        __u32 local_id;
6196        const char *spec_str;
6197        int i, j, err;
6198
6199        local_id = relo->type_id;
6200        local_type = btf__type_by_id(local_btf, local_id);
6201        if (!local_type)
6202                return -EINVAL;
6203
6204        local_name = btf__name_by_offset(local_btf, local_type->name_off);
6205        if (!local_name)
6206                return -EINVAL;
6207
6208        spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
6209        if (str_is_empty(spec_str))
6210                return -EINVAL;
6211
6212        if (prog->obj->gen_loader) {
6213                pr_warn("// TODO core_relo: prog %td insn[%d] %s %s kind %d\n",
6214                        prog - prog->obj->programs, relo->insn_off / 8,
6215                        local_name, spec_str, relo->kind);
6216                return -ENOTSUP;
6217        }
6218        err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec);
6219        if (err) {
6220                pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n",
6221                        prog->name, relo_idx, local_id, btf_kind_str(local_type),
6222                        str_is_empty(local_name) ? "<anon>" : local_name,
6223                        spec_str, err);
6224                return -EINVAL;
6225        }
6226
6227        pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog->name,
6228                 relo_idx, core_relo_kind_str(relo->kind), relo->kind);
6229        bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec);
6230        libbpf_print(LIBBPF_DEBUG, "\n");
6231
6232        /* TYPE_ID_LOCAL relo is special and doesn't need candidate search */
6233        if (relo->kind == BPF_TYPE_ID_LOCAL) {
6234                targ_res.validate = true;
6235                targ_res.poison = false;
6236                targ_res.orig_val = local_spec.root_type_id;
6237                targ_res.new_val = local_spec.root_type_id;
6238                goto patch_insn;
6239        }
6240
6241        /* libbpf doesn't support candidate search for anonymous types */
6242        if (str_is_empty(spec_str)) {
6243                pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n",
6244                        prog->name, relo_idx, core_relo_kind_str(relo->kind), relo->kind);
6245                return -EOPNOTSUPP;
6246        }
6247
6248        if (!hashmap__find(cand_cache, type_key, (void **)&cands)) {
6249                cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
6250                if (IS_ERR(cands)) {
6251                        pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
6252                                prog->name, relo_idx, local_id, btf_kind_str(local_type),
6253                                local_name, PTR_ERR(cands));
6254                        return PTR_ERR(cands);
6255                }
6256                err = hashmap__set(cand_cache, type_key, cands, NULL, NULL);
6257                if (err) {
6258                        bpf_core_free_cands(cands);
6259                        return err;
6260                }
6261        }
6262
6263        for (i = 0, j = 0; i < cands->len; i++) {
6264                err = bpf_core_spec_match(&local_spec, cands->cands[i].btf,
6265                                          cands->cands[i].id, &cand_spec);
6266                if (err < 0) {
6267                        pr_warn("prog '%s': relo #%d: error matching candidate #%d ",
6268                                prog->name, relo_idx, i);
6269                        bpf_core_dump_spec(LIBBPF_WARN, &cand_spec);
6270                        libbpf_print(LIBBPF_WARN, ": %d\n", err);
6271                        return err;
6272                }
6273
6274                pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog->name,
6275                         relo_idx, err == 0 ? "non-matching" : "matching", i);
6276                bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec);
6277                libbpf_print(LIBBPF_DEBUG, "\n");
6278
6279                if (err == 0)
6280                        continue;
6281
6282                err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, &cand_spec, &cand_res);
6283                if (err)
6284                        return err;
6285
6286                if (j == 0) {
6287                        targ_res = cand_res;
6288                        targ_spec = cand_spec;
6289                } else if (cand_spec.bit_offset != targ_spec.bit_offset) {
6290                        /* if there are many field relo candidates, they
6291                         * should all resolve to the same bit offset
6292                         */
6293                        pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n",
6294                                prog->name, relo_idx, cand_spec.bit_offset,
6295                                targ_spec.bit_offset);
6296                        return -EINVAL;
6297                } else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) {
6298                        /* all candidates should result in the same relocation
6299                         * decision and value, otherwise it's dangerous to
6300                         * proceed due to ambiguity
6301                         */
6302                        pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n",
6303                                prog->name, relo_idx,
6304                                cand_res.poison ? "failure" : "success", cand_res.new_val,
6305                                targ_res.poison ? "failure" : "success", targ_res.new_val);
6306                        return -EINVAL;
6307                }
6308
6309                cands->cands[j++] = cands->cands[i];
6310        }
6311
6312        /*
6313         * For BPF_FIELD_EXISTS relo or when used BPF program has field
6314         * existence checks or kernel version/config checks, it's expected
6315         * that we might not find any candidates. In this case, if field
6316         * wasn't found in any candidate, the list of candidates shouldn't
6317         * change at all, we'll just handle relocating appropriately,
6318         * depending on relo's kind.
6319         */
6320        if (j > 0)
6321                cands->len = j;
6322
6323        /*
6324         * If no candidates were found, it might be both a programmer error,
6325         * as well as expected case, depending whether instruction w/
6326         * relocation is guarded in some way that makes it unreachable (dead
6327         * code) if relocation can't be resolved. This is handled in
6328         * bpf_core_patch_insn() uniformly by replacing that instruction with
6329         * BPF helper call insn (using invalid helper ID). If that instruction
6330         * is indeed unreachable, then it will be ignored and eliminated by
6331         * verifier. If it was an error, then verifier will complain and point
6332         * to a specific instruction number in its log.
6333         */
6334        if (j == 0) {
6335                pr_debug("prog '%s': relo #%d: no matching targets found\n",
6336                         prog->name, relo_idx);
6337
6338                /* calculate single target relo result explicitly */
6339                err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, NULL, &targ_res);
6340                if (err)
6341                        return err;
6342        }
6343
6344patch_insn:
6345        /* bpf_core_patch_insn() should know how to handle missing targ_spec */
6346        err = bpf_core_patch_insn(prog, relo, relo_idx, &targ_res);
6347        if (err) {
6348                pr_warn("prog '%s': relo #%d: failed to patch insn #%zu: %d\n",
6349                        prog->name, relo_idx, relo->insn_off / BPF_INSN_SZ, err);
6350                return -EINVAL;
6351        }
6352
6353        return 0;
6354}
6355
6356static int
6357bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
6358{
6359        const struct btf_ext_info_sec *sec;
6360        const struct bpf_core_relo *rec;
6361        const struct btf_ext_info *seg;
6362        struct hashmap_entry *entry;
6363        struct hashmap *cand_cache = NULL;
6364        struct bpf_program *prog;
6365        const char *sec_name;
6366        int i, err = 0, insn_idx, sec_idx;
6367
6368        if (obj->btf_ext->core_relo_info.len == 0)
6369                return 0;
6370
6371        if (targ_btf_path) {
6372                obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
6373                err = libbpf_get_error(obj->btf_vmlinux_override);
6374                if (err) {
6375                        pr_warn("failed to parse target BTF: %d\n", err);
6376                        return err;
6377                }
6378        }
6379
6380        cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
6381        if (IS_ERR(cand_cache)) {
6382                err = PTR_ERR(cand_cache);
6383                goto out;
6384        }
6385
6386        seg = &obj->btf_ext->core_relo_info;
6387        for_each_btf_ext_sec(seg, sec) {
6388                sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
6389                if (str_is_empty(sec_name)) {
6390                        err = -EINVAL;
6391                        goto out;
6392                }
6393                /* bpf_object's ELF is gone by now so it's not easy to find
6394                 * section index by section name, but we can find *any*
6395                 * bpf_program within desired section name and use it's
6396                 * prog->sec_idx to do a proper search by section index and
6397                 * instruction offset
6398                 */
6399                prog = NULL;
6400                for (i = 0; i < obj->nr_programs; i++) {
6401                        prog = &obj->programs[i];
6402                        if (strcmp(prog->sec_name, sec_name) == 0)
6403                                break;
6404                }
6405                if (!prog) {
6406                        pr_warn("sec '%s': failed to find a BPF program\n", sec_name);
6407                        return -ENOENT;
6408                }
6409                sec_idx = prog->sec_idx;
6410
6411                pr_debug("sec '%s': found %d CO-RE relocations\n",
6412                         sec_name, sec->num_info);
6413
6414                for_each_btf_ext_rec(seg, sec, i, rec) {
6415                        insn_idx = rec->insn_off / BPF_INSN_SZ;
6416                        prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
6417                        if (!prog) {
6418                                pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n",
6419                                        sec_name, insn_idx, i);
6420                                err = -EINVAL;
6421                                goto out;
6422                        }
6423                        /* no need to apply CO-RE relocation if the program is
6424                         * not going to be loaded
6425                         */
6426                        if (!prog->load)
6427                                continue;
6428
6429                        err = bpf_core_apply_relo(prog, rec, i, obj->btf, cand_cache);
6430                        if (err) {
6431                                pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
6432                                        prog->name, i, err);
6433                                goto out;
6434                        }
6435                }
6436        }
6437
6438out:
6439        /* obj->btf_vmlinux and module BTFs are freed after object load */
6440        btf__free(obj->btf_vmlinux_override);
6441        obj->btf_vmlinux_override = NULL;
6442
6443        if (!IS_ERR_OR_NULL(cand_cache)) {
6444                hashmap__for_each_entry(cand_cache, entry, i) {
6445                        bpf_core_free_cands(entry->value);
6446                }
6447                hashmap__free(cand_cache);
6448        }
6449        return err;
6450}
6451
6452/* Relocate data references within program code:
6453 *  - map references;
6454 *  - global variable references;
6455 *  - extern references.
6456 */
6457static int
6458bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
6459{
6460        int i;
6461
6462        for (i = 0; i < prog->nr_reloc; i++) {
6463                struct reloc_desc *relo = &prog->reloc_desc[i];
6464                struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6465                struct extern_desc *ext;
6466
6467                switch (relo->type) {
6468                case RELO_LD64:
6469                        if (obj->gen_loader) {
6470                                insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
6471                                insn[0].imm = relo->map_idx;
6472                        } else {
6473                                insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6474                                insn[0].imm = obj->maps[relo->map_idx].fd;
6475                        }
6476                        break;
6477                case RELO_DATA:
6478                        insn[1].imm = insn[0].imm + relo->sym_off;
6479                        if (obj->gen_loader) {
6480                                insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6481                                insn[0].imm = relo->map_idx;
6482                        } else {
6483                                insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6484                                insn[0].imm = obj->maps[relo->map_idx].fd;
6485                        }
6486                        break;
6487                case RELO_EXTERN_VAR:
6488                        ext = &obj->externs[relo->sym_off];
6489                        if (ext->type == EXT_KCFG) {
6490                                if (obj->gen_loader) {
6491                                        insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6492                                        insn[0].imm = obj->kconfig_map_idx;
6493                                } else {
6494                                        insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6495                                        insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6496                                }
6497                                insn[1].imm = ext->kcfg.data_off;
6498                        } else /* EXT_KSYM */ {
6499                                if (ext->ksym.type_id) { /* typed ksyms */
6500                                        insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6501                                        insn[0].imm = ext->ksym.kernel_btf_id;
6502                                        insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6503                                } else { /* typeless ksyms */
6504                                        insn[0].imm = (__u32)ext->ksym.addr;
6505                                        insn[1].imm = ext->ksym.addr >> 32;
6506                                }
6507                        }
6508                        break;
6509                case RELO_EXTERN_FUNC:
6510                        ext = &obj->externs[relo->sym_off];
6511                        insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6512                        insn[0].imm = ext->ksym.kernel_btf_id;
6513                        break;
6514                case RELO_SUBPROG_ADDR:
6515                        if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6516                                pr_warn("prog '%s': relo #%d: bad insn\n",
6517                                        prog->name, i);
6518                                return -EINVAL;
6519                        }
6520                        /* handled already */
6521                        break;
6522                case RELO_CALL:
6523                        /* handled already */
6524                        break;
6525                default:
6526                        pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6527                                prog->name, i, relo->type);
6528                        return -EINVAL;
6529                }
6530        }
6531
6532        return 0;
6533}
6534
6535static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6536                                    const struct bpf_program *prog,
6537                                    const struct btf_ext_info *ext_info,
6538                                    void **prog_info, __u32 *prog_rec_cnt,
6539                                    __u32 *prog_rec_sz)
6540{
6541        void *copy_start = NULL, *copy_end = NULL;
6542        void *rec, *rec_end, *new_prog_info;
6543        const struct btf_ext_info_sec *sec;
6544        size_t old_sz, new_sz;
6545        const char *sec_name;
6546        int i, off_adj;
6547
6548        for_each_btf_ext_sec(ext_info, sec) {
6549                sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
6550                if (!sec_name)
6551                        return -EINVAL;
6552                if (strcmp(sec_name, prog->sec_name) != 0)
6553                        continue;
6554
6555                for_each_btf_ext_rec(ext_info, sec, i, rec) {
6556                        __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6557
6558                        if (insn_off < prog->sec_insn_off)
6559                                continue;
6560                        if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6561                                break;
6562
6563                        if (!copy_start)
6564                                copy_start = rec;
6565                        copy_end = rec + ext_info->rec_size;
6566                }
6567
6568                if (!copy_start)
6569                        return -ENOENT;
6570
6571                /* append func/line info of a given (sub-)program to the main
6572                 * program func/line info
6573                 */
6574                old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6575                new_sz = old_sz + (copy_end - copy_start);
6576                new_prog_info = realloc(*prog_info, new_sz);
6577                if (!new_prog_info)
6578                        return -ENOMEM;
6579                *prog_info = new_prog_info;
6580                *prog_rec_cnt = new_sz / ext_info->rec_size;
6581                memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6582
6583                /* Kernel instruction offsets are in units of 8-byte
6584                 * instructions, while .BTF.ext instruction offsets generated
6585                 * by Clang are in units of bytes. So convert Clang offsets
6586                 * into kernel offsets and adjust offset according to program
6587                 * relocated position.
6588                 */
6589                off_adj = prog->sub_insn_off - prog->sec_insn_off;
6590                rec = new_prog_info + old_sz;
6591                rec_end = new_prog_info + new_sz;
6592                for (; rec < rec_end; rec += ext_info->rec_size) {
6593                        __u32 *insn_off = rec;
6594
6595                        *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6596                }
6597                *prog_rec_sz = ext_info->rec_size;
6598                return 0;
6599        }
6600
6601        return -ENOENT;
6602}
6603
6604static int
6605reloc_prog_func_and_line_info(const struct bpf_object *obj,
6606                              struct bpf_program *main_prog,
6607                              const struct bpf_program *prog)
6608{
6609        int err;
6610
6611        /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6612         * supprot func/line info
6613         */
6614        if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6615                return 0;
6616
6617        /* only attempt func info relocation if main program's func_info
6618         * relocation was successful
6619         */
6620        if (main_prog != prog && !main_prog->func_info)
6621                goto line_info;
6622
6623        err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6624                                       &main_prog->func_info,
6625                                       &main_prog->func_info_cnt,
6626                                       &main_prog->func_info_rec_size);
6627        if (err) {
6628                if (err != -ENOENT) {
6629                        pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6630                                prog->name, err);
6631                        return err;
6632                }
6633                if (main_prog->func_info) {
6634                        /*
6635                         * Some info has already been found but has problem
6636                         * in the last btf_ext reloc. Must have to error out.
6637                         */
6638                        pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6639                        return err;
6640                }
6641                /* Have problem loading the very first info. Ignore the rest. */
6642                pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6643                        prog->name);
6644        }
6645
6646line_info:
6647        /* don't relocate line info if main program's relocation failed */
6648        if (main_prog != prog && !main_prog->line_info)
6649                return 0;
6650
6651        err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6652                                       &main_prog->line_info,
6653                                       &main_prog->line_info_cnt,
6654                                       &main_prog->line_info_rec_size);
6655        if (err) {
6656                if (err != -ENOENT) {
6657                        pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6658                                prog->name, err);
6659                        return err;
6660                }
6661                if (main_prog->line_info) {
6662                        /*
6663                         * Some info has already been found but has problem
6664                         * in the last btf_ext reloc. Must have to error out.
6665                         */
6666                        pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6667                        return err;
6668                }
6669                /* Have problem loading the very first info. Ignore the rest. */
6670                pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6671                        prog->name);
6672        }
6673        return 0;
6674}
6675
6676static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6677{
6678        size_t insn_idx = *(const size_t *)key;
6679        const struct reloc_desc *relo = elem;
6680
6681        if (insn_idx == relo->insn_idx)
6682                return 0;
6683        return insn_idx < relo->insn_idx ? -1 : 1;
6684}
6685
6686static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6687{
6688        return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6689                       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6690}
6691
6692static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6693{
6694        int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6695        struct reloc_desc *relos;
6696        int i;
6697
6698        if (main_prog == subprog)
6699                return 0;
6700        relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6701        if (!relos)
6702                return -ENOMEM;
6703        memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6704               sizeof(*relos) * subprog->nr_reloc);
6705
6706        for (i = main_prog->nr_reloc; i < new_cnt; i++)
6707                relos[i].insn_idx += subprog->sub_insn_off;
6708        /* After insn_idx adjustment the 'relos' array is still sorted
6709         * by insn_idx and doesn't break bsearch.
6710         */
6711        main_prog->reloc_desc = relos;
6712        main_prog->nr_reloc = new_cnt;
6713        return 0;
6714}
6715
6716static int
6717bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6718                       struct bpf_program *prog)
6719{
6720        size_t sub_insn_idx, insn_idx, new_cnt;
6721        struct bpf_program *subprog;
6722        struct bpf_insn *insns, *insn;
6723        struct reloc_desc *relo;
6724        int err;
6725
6726        err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6727        if (err)
6728                return err;
6729
6730        for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6731                insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6732                if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6733                        continue;
6734
6735                relo = find_prog_insn_relo(prog, insn_idx);
6736                if (relo && relo->type == RELO_EXTERN_FUNC)
6737                        /* kfunc relocations will be handled later
6738                         * in bpf_object__relocate_data()
6739                         */
6740                        continue;
6741                if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6742                        pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6743                                prog->name, insn_idx, relo->type);
6744                        return -LIBBPF_ERRNO__RELOC;
6745                }
6746                if (relo) {
6747                        /* sub-program instruction index is a combination of
6748                         * an offset of a symbol pointed to by relocation and
6749                         * call instruction's imm field; for global functions,
6750                         * call always has imm = -1, but for static functions
6751                         * relocation is against STT_SECTION and insn->imm
6752                         * points to a start of a static function
6753                         *
6754                         * for subprog addr relocation, the relo->sym_off + insn->imm is
6755                         * the byte offset in the corresponding section.
6756                         */
6757                        if (relo->type == RELO_CALL)
6758                                sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6759                        else
6760                                sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6761                } else if (insn_is_pseudo_func(insn)) {
6762                        /*
6763                         * RELO_SUBPROG_ADDR relo is always emitted even if both
6764                         * functions are in the same section, so it shouldn't reach here.
6765                         */
6766                        pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6767                                prog->name, insn_idx);
6768                        return -LIBBPF_ERRNO__RELOC;
6769                } else {
6770                        /* if subprogram call is to a static function within
6771                         * the same ELF section, there won't be any relocation
6772                         * emitted, but it also means there is no additional
6773                         * offset necessary, insns->imm is relative to
6774                         * instruction's original position within the section
6775                         */
6776                        sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6777                }
6778
6779                /* we enforce that sub-programs should be in .text section */
6780                subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6781                if (!subprog) {
6782                        pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6783                                prog->name);
6784                        return -LIBBPF_ERRNO__RELOC;
6785                }
6786
6787                /* if it's the first call instruction calling into this
6788                 * subprogram (meaning this subprog hasn't been processed
6789                 * yet) within the context of current main program:
6790                 *   - append it at the end of main program's instructions blog;
6791                 *   - process is recursively, while current program is put on hold;
6792                 *   - if that subprogram calls some other not yet processes
6793                 *   subprogram, same thing will happen recursively until
6794                 *   there are no more unprocesses subprograms left to append
6795                 *   and relocate.
6796                 */
6797                if (subprog->sub_insn_off == 0) {
6798                        subprog->sub_insn_off = main_prog->insns_cnt;
6799
6800                        new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6801                        insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6802                        if (!insns) {
6803                                pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6804                                return -ENOMEM;
6805                        }
6806                        main_prog->insns = insns;
6807                        main_prog->insns_cnt = new_cnt;
6808
6809                        memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6810                               subprog->insns_cnt * sizeof(*insns));
6811
6812                        pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6813                                 main_prog->name, subprog->insns_cnt, subprog->name);
6814
6815                        /* The subprog insns are now appended. Append its relos too. */
6816                        err = append_subprog_relos(main_prog, subprog);
6817                        if (err)
6818                                return err;
6819                        err = bpf_object__reloc_code(obj, main_prog, subprog);
6820                        if (err)
6821                                return err;
6822                }
6823
6824                /* main_prog->insns memory could have been re-allocated, so
6825                 * calculate pointer again
6826                 */
6827                insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6828                /* calculate correct instruction position within current main
6829                 * prog; each main prog can have a different set of
6830                 * subprograms appended (potentially in different order as
6831                 * well), so position of any subprog can be different for
6832                 * different main programs */
6833                insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6834
6835                pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6836                         prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6837        }
6838
6839        return 0;
6840}
6841
6842/*
6843 * Relocate sub-program calls.
6844 *
6845 * Algorithm operates as follows. Each entry-point BPF program (referred to as
6846 * main prog) is processed separately. For each subprog (non-entry functions,
6847 * that can be called from either entry progs or other subprogs) gets their
6848 * sub_insn_off reset to zero. This serves as indicator that this subprogram
6849 * hasn't been yet appended and relocated within current main prog. Once its
6850 * relocated, sub_insn_off will point at the position within current main prog
6851 * where given subprog was appended. This will further be used to relocate all
6852 * the call instructions jumping into this subprog.
6853 *
6854 * We start with main program and process all call instructions. If the call
6855 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6856 * is zero), subprog instructions are appended at the end of main program's
6857 * instruction array. Then main program is "put on hold" while we recursively
6858 * process newly appended subprogram. If that subprogram calls into another
6859 * subprogram that hasn't been appended, new subprogram is appended again to
6860 * the *main* prog's instructions (subprog's instructions are always left
6861 * untouched, as they need to be in unmodified state for subsequent main progs
6862 * and subprog instructions are always sent only as part of a main prog) and
6863 * the process continues recursively. Once all the subprogs called from a main
6864 * prog or any of its subprogs are appended (and relocated), all their
6865 * positions within finalized instructions array are known, so it's easy to
6866 * rewrite call instructions with correct relative offsets, corresponding to
6867 * desired target subprog.
6868 *
6869 * Its important to realize that some subprogs might not be called from some
6870 * main prog and any of its called/used subprogs. Those will keep their
6871 * subprog->sub_insn_off as zero at all times and won't be appended to current
6872 * main prog and won't be relocated within the context of current main prog.
6873 * They might still be used from other main progs later.
6874 *
6875 * Visually this process can be shown as below. Suppose we have two main
6876 * programs mainA and mainB and BPF object contains three subprogs: subA,
6877 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6878 * subC both call subB:
6879 *
6880 *        +--------+ +-------+
6881 *        |        v v       |
6882 *     +--+---+ +--+-+-+ +---+--+
6883 *     | subA | | subB | | subC |
6884 *     +--+---+ +------+ +---+--+
6885 *        ^                  ^
6886 *        |                  |
6887 *    +---+-------+   +------+----+
6888 *    |   mainA   |   |   mainB   |
6889 *    +-----------+   +-----------+
6890 *
6891 * We'll start relocating mainA, will find subA, append it and start
6892 * processing sub A recursively:
6893 *
6894 *    +-----------+------+
6895 *    |   mainA   | subA |
6896 *    +-----------+------+
6897 *
6898 * At this point we notice that subB is used from subA, so we append it and
6899 * relocate (there are no further subcalls from subB):
6900 *
6901 *    +-----------+------+------+
6902 *    |   mainA   | subA | subB |
6903 *    +-----------+------+------+
6904 *
6905 * At this point, we relocate subA calls, then go one level up and finish with
6906 * relocatin mainA calls. mainA is done.
6907 *
6908 * For mainB process is similar but results in different order. We start with
6909 * mainB and skip subA and subB, as mainB never calls them (at least
6910 * directly), but we see subC is needed, so we append and start processing it:
6911 *
6912 *    +-----------+------+
6913 *    |   mainB   | subC |
6914 *    +-----------+------+
6915 * Now we see subC needs subB, so we go back to it, append and relocate it:
6916 *
6917 *    +-----------+------+------+
6918 *    |   mainB   | subC | subB |
6919 *    +-----------+------+------+
6920 *
6921 * At this point we unwind recursion, relocate calls in subC, then in mainB.
6922 */
6923static int
6924bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6925{
6926        struct bpf_program *subprog;
6927        int i, err;
6928
6929        /* mark all subprogs as not relocated (yet) within the context of
6930         * current main program
6931         */
6932        for (i = 0; i < obj->nr_programs; i++) {
6933                subprog = &obj->programs[i];
6934                if (!prog_is_subprog(obj, subprog))
6935                        continue;
6936
6937                subprog->sub_insn_off = 0;
6938        }
6939
6940        err = bpf_object__reloc_code(obj, prog, prog);
6941        if (err)
6942                return err;
6943
6944
6945        return 0;
6946}
6947
6948static void
6949bpf_object__free_relocs(struct bpf_object *obj)
6950{
6951        struct bpf_program *prog;
6952        int i;
6953
6954        /* free up relocation descriptors */
6955        for (i = 0; i < obj->nr_programs; i++) {
6956                prog = &obj->programs[i];
6957                zfree(&prog->reloc_desc);
6958                prog->nr_reloc = 0;
6959        }
6960}
6961
6962static int
6963bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6964{
6965        struct bpf_program *prog;
6966        size_t i, j;
6967        int err;
6968
6969        if (obj->btf_ext) {
6970                err = bpf_object__relocate_core(obj, targ_btf_path);
6971                if (err) {
6972                        pr_warn("failed to perform CO-RE relocations: %d\n",
6973                                err);
6974                        return err;
6975                }
6976        }
6977
6978        /* Before relocating calls pre-process relocations and mark
6979         * few ld_imm64 instructions that points to subprogs.
6980         * Otherwise bpf_object__reloc_code() later would have to consider
6981         * all ld_imm64 insns as relocation candidates. That would
6982         * reduce relocation speed, since amount of find_prog_insn_relo()
6983         * would increase and most of them will fail to find a relo.
6984         */
6985        for (i = 0; i < obj->nr_programs; i++) {
6986                prog = &obj->programs[i];
6987                for (j = 0; j < prog->nr_reloc; j++) {
6988                        struct reloc_desc *relo = &prog->reloc_desc[j];
6989                        struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6990
6991                        /* mark the insn, so it's recognized by insn_is_pseudo_func() */
6992                        if (relo->type == RELO_SUBPROG_ADDR)
6993                                insn[0].src_reg = BPF_PSEUDO_FUNC;
6994                }
6995        }
6996
6997        /* relocate subprogram calls and append used subprograms to main
6998         * programs; each copy of subprogram code needs to be relocated
6999         * differently for each main program, because its code location might
7000         * have changed.
7001         * Append subprog relos to main programs to allow data relos to be
7002         * processed after text is completely relocated.
7003         */
7004        for (i = 0; i < obj->nr_programs; i++) {
7005                prog = &obj->programs[i];
7006                /* sub-program's sub-calls are relocated within the context of
7007                 * its main program only
7008                 */
7009                if (prog_is_subprog(obj, prog))
7010                        continue;
7011
7012                err = bpf_object__relocate_calls(obj, prog);
7013                if (err) {
7014                        pr_warn("prog '%s': failed to relocate calls: %d\n",
7015                                prog->name, err);
7016                        return err;
7017                }
7018        }
7019        /* Process data relos for main programs */
7020        for (i = 0; i < obj->nr_programs; i++) {
7021                prog = &obj->programs[i];
7022                if (prog_is_subprog(obj, prog))
7023                        continue;
7024                err = bpf_object__relocate_data(obj, prog);
7025                if (err) {
7026                        pr_warn("prog '%s': failed to relocate data references: %d\n",
7027                                prog->name, err);
7028                        return err;
7029                }
7030        }
7031        if (!obj->gen_loader)
7032                bpf_object__free_relocs(obj);
7033        return 0;
7034}
7035
7036static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
7037                                            GElf_Shdr *shdr, Elf_Data *data);
7038
7039static int bpf_object__collect_map_relos(struct bpf_object *obj,
7040                                         GElf_Shdr *shdr, Elf_Data *data)
7041{
7042        const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
7043        int i, j, nrels, new_sz;
7044        const struct btf_var_secinfo *vi = NULL;
7045        const struct btf_type *sec, *var, *def;
7046        struct bpf_map *map = NULL, *targ_map;
7047        const struct btf_member *member;
7048        const char *name, *mname;
7049        Elf_Data *symbols;
7050        unsigned int moff;
7051        GElf_Sym sym;
7052        GElf_Rel rel;
7053        void *tmp;
7054
7055        if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
7056                return -EINVAL;
7057        sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
7058        if (!sec)
7059                return -EINVAL;
7060
7061        symbols = obj->efile.symbols;
7062        nrels = shdr->sh_size / shdr->sh_entsize;
7063        for (i = 0; i < nrels; i++) {
7064                if (!gelf_getrel(data, i, &rel)) {
7065                        pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
7066                        return -LIBBPF_ERRNO__FORMAT;
7067                }
7068                if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
7069                        pr_warn(".maps relo #%d: symbol %zx not found\n",
7070                                i, (size_t)GELF_R_SYM(rel.r_info));
7071                        return -LIBBPF_ERRNO__FORMAT;
7072                }
7073                name = elf_sym_str(obj, sym.st_name) ?: "<?>";
7074                if (sym.st_shndx != obj->efile.btf_maps_shndx) {
7075                        pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
7076                                i, name);
7077                        return -LIBBPF_ERRNO__RELOC;
7078                }
7079
7080                pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n",
7081                         i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value,
7082                         (size_t)rel.r_offset, sym.st_name, name);
7083
7084                for (j = 0; j < obj->nr_maps; j++) {
7085                        map = &obj->maps[j];
7086                        if (map->sec_idx != obj->efile.btf_maps_shndx)
7087                                continue;
7088
7089                        vi = btf_var_secinfos(sec) + map->btf_var_idx;
7090                        if (vi->offset <= rel.r_offset &&
7091                            rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size)
7092                                break;
7093                }
7094                if (j == obj->nr_maps) {
7095                        pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n",
7096                                i, name, (size_t)rel.r_offset);
7097                        return -EINVAL;
7098                }
7099
7100                if (!bpf_map_type__is_map_in_map(map->def.type))
7101                        return -EINVAL;
7102                if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
7103                    map->def.key_size != sizeof(int)) {
7104                        pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
7105                                i, map->name, sizeof(int));
7106                        return -EINVAL;
7107                }
7108
7109                targ_map = bpf_object__find_map_by_name(obj, name);
7110                if (!targ_map)
7111                        return -ESRCH;
7112
7113                var = btf__type_by_id(obj->btf, vi->type);
7114                def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
7115                if (btf_vlen(def) == 0)
7116                        return -EINVAL;
7117                member = btf_members(def) + btf_vlen(def) - 1;
7118                mname = btf__name_by_offset(obj->btf, member->name_off);
7119                if (strcmp(mname, "values"))
7120                        return -EINVAL;
7121
7122                moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
7123                if (rel.r_offset - vi->offset < moff)
7124                        return -EINVAL;
7125
7126                moff = rel.r_offset - vi->offset - moff;
7127                /* here we use BPF pointer size, which is always 64 bit, as we
7128                 * are parsing ELF that was built for BPF target
7129                 */
7130                if (moff % bpf_ptr_sz)
7131                        return -EINVAL;
7132                moff /= bpf_ptr_sz;
7133                if (moff >= map->init_slots_sz) {
7134                        new_sz = moff + 1;
7135                        tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
7136                        if (!tmp)
7137                                return -ENOMEM;
7138                        map->init_slots = tmp;
7139                        memset(map->init_slots + map->init_slots_sz, 0,
7140                               (new_sz - map->init_slots_sz) * host_ptr_sz);
7141                        map->init_slots_sz = new_sz;
7142                }
7143                map->init_slots[moff] = targ_map;
7144
7145                pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n",
7146                         i, map->name, moff, name);
7147        }
7148
7149        return 0;
7150}
7151
7152static int cmp_relocs(const void *_a, const void *_b)
7153{
7154        const struct reloc_desc *a = _a;
7155        const struct reloc_desc *b = _b;
7156
7157        if (a->insn_idx != b->insn_idx)
7158                return a->insn_idx < b->insn_idx ? -1 : 1;
7159
7160        /* no two relocations should have the same insn_idx, but ... */
7161        if (a->type != b->type)
7162                return a->type < b->type ? -1 : 1;
7163
7164        return 0;
7165}
7166
7167static int bpf_object__collect_relos(struct bpf_object *obj)
7168{
7169        int i, err;
7170
7171        for (i = 0; i < obj->efile.nr_reloc_sects; i++) {
7172                GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr;
7173                Elf_Data *data = obj->efile.reloc_sects[i].data;
7174                int idx = shdr->sh_info;
7175
7176                if (shdr->sh_type != SHT_REL) {
7177                        pr_warn("internal error at %d\n", __LINE__);
7178                        return -LIBBPF_ERRNO__INTERNAL;
7179                }
7180
7181                if (idx == obj->efile.st_ops_shndx)
7182                        err = bpf_object__collect_st_ops_relos(obj, shdr, data);
7183                else if (idx == obj->efile.btf_maps_shndx)
7184                        err = bpf_object__collect_map_relos(obj, shdr, data);
7185                else
7186                        err = bpf_object__collect_prog_relos(obj, shdr, data);
7187                if (err)
7188                        return err;
7189        }
7190
7191        for (i = 0; i < obj->nr_programs; i++) {
7192                struct bpf_program *p = &obj->programs[i];
7193                
7194                if (!p->nr_reloc)
7195                        continue;
7196
7197                qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
7198        }
7199        return 0;
7200}
7201
7202static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
7203{
7204        if (BPF_CLASS(insn->code) == BPF_JMP &&
7205            BPF_OP(insn->code) == BPF_CALL &&
7206            BPF_SRC(insn->code) == BPF_K &&
7207            insn->src_reg == 0 &&
7208            insn->dst_reg == 0) {
7209                    *func_id = insn->imm;
7210                    return true;
7211        }
7212        return false;
7213}
7214
7215static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
7216{
7217        struct bpf_insn *insn = prog->insns;
7218        enum bpf_func_id func_id;
7219        int i;
7220
7221        if (obj->gen_loader)
7222                return 0;
7223
7224        for (i = 0; i < prog->insns_cnt; i++, insn++) {
7225                if (!insn_is_helper_call(insn, &func_id))
7226                        continue;
7227
7228                /* on kernels that don't yet support
7229                 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
7230                 * to bpf_probe_read() which works well for old kernels
7231                 */
7232                switch (func_id) {
7233                case BPF_FUNC_probe_read_kernel:
7234                case BPF_FUNC_probe_read_user:
7235                        if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7236                                insn->imm = BPF_FUNC_probe_read;
7237                        break;
7238                case BPF_FUNC_probe_read_kernel_str:
7239                case BPF_FUNC_probe_read_user_str:
7240                        if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7241                                insn->imm = BPF_FUNC_probe_read_str;
7242                        break;
7243                default:
7244                        break;
7245                }
7246        }
7247        return 0;
7248}
7249
7250static int
7251load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt,
7252             char *license, __u32 kern_version, int *pfd)
7253{
7254        struct bpf_prog_load_params load_attr = {};
7255        char *cp, errmsg[STRERR_BUFSIZE];
7256        size_t log_buf_size = 0;
7257        char *log_buf = NULL;
7258        int btf_fd, ret;
7259
7260        if (prog->type == BPF_PROG_TYPE_UNSPEC) {
7261                /*
7262                 * The program type must be set.  Most likely we couldn't find a proper
7263                 * section definition at load time, and thus we didn't infer the type.
7264                 */
7265                pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
7266                        prog->name, prog->sec_name);
7267                return -EINVAL;
7268        }
7269
7270        if (!insns || !insns_cnt)
7271                return -EINVAL;
7272
7273        load_attr.prog_type = prog->type;
7274        /* old kernels might not support specifying expected_attach_type */
7275        if (!kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE) && prog->sec_def &&
7276            prog->sec_def->is_exp_attach_type_optional)
7277                load_attr.expected_attach_type = 0;
7278        else
7279                load_attr.expected_attach_type = prog->expected_attach_type;
7280        if (kernel_supports(prog->obj, FEAT_PROG_NAME))
7281                load_attr.name = prog->name;
7282        load_attr.insns = insns;
7283        load_attr.insn_cnt = insns_cnt;
7284        load_attr.license = license;
7285        load_attr.attach_btf_id = prog->attach_btf_id;
7286        if (prog->attach_prog_fd)
7287                load_attr.attach_prog_fd = prog->attach_prog_fd;
7288        else
7289                load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
7290        load_attr.attach_btf_id = prog->attach_btf_id;
7291        load_attr.kern_version = kern_version;
7292        load_attr.prog_ifindex = prog->prog_ifindex;
7293
7294        /* specify func_info/line_info only if kernel supports them */
7295        btf_fd = bpf_object__btf_fd(prog->obj);
7296        if (btf_fd >= 0 && kernel_supports(prog->obj, FEAT_BTF_FUNC)) {
7297                load_attr.prog_btf_fd = btf_fd;
7298                load_attr.func_info = prog->func_info;
7299                load_attr.func_info_rec_size = prog->func_info_rec_size;
7300                load_attr.func_info_cnt = prog->func_info_cnt;
7301                load_attr.line_info = prog->line_info;
7302                load_attr.line_info_rec_size = prog->line_info_rec_size;
7303                load_attr.line_info_cnt = prog->line_info_cnt;
7304        }
7305        load_attr.log_level = prog->log_level;
7306        load_attr.prog_flags = prog->prog_flags;
7307
7308        if (prog->obj->gen_loader) {
7309                bpf_gen__prog_load(prog->obj->gen_loader, &load_attr,
7310                                   prog - prog->obj->programs);
7311                *pfd = -1;
7312                return 0;
7313        }
7314retry_load:
7315        if (log_buf_size) {
7316                log_buf = malloc(log_buf_size);
7317                if (!log_buf)
7318                        return -ENOMEM;
7319
7320                *log_buf = 0;
7321        }
7322
7323        load_attr.log_buf = log_buf;
7324        load_attr.log_buf_sz = log_buf_size;
7325        ret = libbpf__bpf_prog_load(&load_attr);
7326
7327        if (ret >= 0) {
7328                if (log_buf && load_attr.log_level)
7329                        pr_debug("verifier log:\n%s", log_buf);
7330
7331                if (prog->obj->rodata_map_idx >= 0 &&
7332                    kernel_supports(prog->obj, FEAT_PROG_BIND_MAP)) {
7333                        struct bpf_map *rodata_map =
7334                                &prog->obj->maps[prog->obj->rodata_map_idx];
7335
7336                        if (bpf_prog_bind_map(ret, bpf_map__fd(rodata_map), NULL)) {
7337                                cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7338                                pr_warn("prog '%s': failed to bind .rodata map: %s\n",
7339                                        prog->name, cp);
7340                                /* Don't fail hard if can't bind rodata. */
7341                        }
7342                }
7343
7344                *pfd = ret;
7345                ret = 0;
7346                goto out;
7347        }
7348
7349        if (!log_buf || errno == ENOSPC) {
7350                log_buf_size = max((size_t)BPF_LOG_BUF_SIZE,
7351                                   log_buf_size << 1);
7352
7353                free(log_buf);
7354                goto retry_load;
7355        }
7356        ret = errno ? -errno : -LIBBPF_ERRNO__LOAD;
7357        cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7358        pr_warn("load bpf program failed: %s\n", cp);
7359        pr_perm_msg(ret);
7360
7361        if (log_buf && log_buf[0] != '\0') {
7362                ret = -LIBBPF_ERRNO__VERIFY;
7363                pr_warn("-- BEGIN DUMP LOG ---\n");
7364                pr_warn("\n%s\n", log_buf);
7365                pr_warn("-- END LOG --\n");
7366        } else if (load_attr.insn_cnt >= BPF_MAXINSNS) {
7367                pr_warn("Program too large (%zu insns), at most %d insns\n",
7368                        load_attr.insn_cnt, BPF_MAXINSNS);
7369                ret = -LIBBPF_ERRNO__PROG2BIG;
7370        } else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) {
7371                /* Wrong program type? */
7372                int fd;
7373
7374                load_attr.prog_type = BPF_PROG_TYPE_KPROBE;
7375                load_attr.expected_attach_type = 0;
7376                load_attr.log_buf = NULL;
7377                load_attr.log_buf_sz = 0;
7378                fd = libbpf__bpf_prog_load(&load_attr);
7379                if (fd >= 0) {
7380                        close(fd);
7381                        ret = -LIBBPF_ERRNO__PROGTYPE;
7382                        goto out;
7383                }
7384        }
7385
7386out:
7387        free(log_buf);
7388        return ret;
7389}
7390
7391static int bpf_program__record_externs(struct bpf_program *prog)
7392{
7393        struct bpf_object *obj = prog->obj;
7394        int i;
7395
7396        for (i = 0; i < prog->nr_reloc; i++) {
7397                struct reloc_desc *relo = &prog->reloc_desc[i];
7398                struct extern_desc *ext = &obj->externs[relo->sym_off];
7399
7400                switch (relo->type) {
7401                case RELO_EXTERN_VAR:
7402                        if (ext->type != EXT_KSYM)
7403                                continue;
7404                        if (!ext->ksym.type_id) {
7405                                pr_warn("typeless ksym %s is not supported yet\n",
7406                                        ext->name);
7407                                return -ENOTSUP;
7408                        }
7409                        bpf_gen__record_extern(obj->gen_loader, ext->name, BTF_KIND_VAR,
7410                                               relo->insn_idx);
7411                        break;
7412                case RELO_EXTERN_FUNC:
7413                        bpf_gen__record_extern(obj->gen_loader, ext->name, BTF_KIND_FUNC,
7414                                               relo->insn_idx);
7415                        break;
7416                default:
7417                        continue;
7418                }
7419        }
7420        return 0;
7421}
7422
7423static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id);
7424
7425int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver)
7426{
7427        int err = 0, fd, i;
7428
7429        if (prog->obj->loaded) {
7430                pr_warn("prog '%s': can't load after object was loaded\n", prog->name);
7431                return libbpf_err(-EINVAL);
7432        }
7433
7434        if ((prog->type == BPF_PROG_TYPE_TRACING ||
7435             prog->type == BPF_PROG_TYPE_LSM ||
7436             prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) {
7437                int btf_obj_fd = 0, btf_type_id = 0;
7438
7439                err = libbpf_find_attach_btf_id(prog, &btf_obj_fd, &btf_type_id);
7440                if (err)
7441                        return libbpf_err(err);
7442
7443                prog->attach_btf_obj_fd = btf_obj_fd;
7444                prog->attach_btf_id = btf_type_id;
7445        }
7446
7447        if (prog->instances.nr < 0 || !prog->instances.fds) {
7448                if (prog->preprocessor) {
7449                        pr_warn("Internal error: can't load program '%s'\n",
7450                                prog->name);
7451                        return libbpf_err(-LIBBPF_ERRNO__INTERNAL);
7452                }
7453
7454                prog->instances.fds = malloc(sizeof(int));
7455                if (!prog->instances.fds) {
7456                        pr_warn("Not enough memory for BPF fds\n");
7457                        return libbpf_err(-ENOMEM);
7458                }
7459                prog->instances.nr = 1;
7460                prog->instances.fds[0] = -1;
7461        }
7462
7463        if (!prog->preprocessor) {
7464                if (prog->instances.nr != 1) {
7465                        pr_warn("prog '%s': inconsistent nr(%d) != 1\n",
7466                                prog->name, prog->instances.nr);
7467                }
7468                if (prog->obj->gen_loader)
7469                        bpf_program__record_externs(prog);
7470                err = load_program(prog, prog->insns, prog->insns_cnt,
7471                                   license, kern_ver, &fd);
7472                if (!err)
7473                        prog->instances.fds[0] = fd;
7474                goto out;
7475        }
7476
7477        for (i = 0; i < prog->instances.nr; i++) {
7478                struct bpf_prog_prep_result result;
7479                bpf_program_prep_t preprocessor = prog->preprocessor;
7480
7481                memset(&result, 0, sizeof(result));
7482                err = preprocessor(prog, i, prog->insns,
7483                                   prog->insns_cnt, &result);
7484                if (err) {
7485                        pr_warn("Preprocessing the %dth instance of program '%s' failed\n",
7486                                i, prog->name);
7487                        goto out;
7488                }
7489
7490                if (!result.new_insn_ptr || !result.new_insn_cnt) {
7491                        pr_debug("Skip loading the %dth instance of program '%s'\n",
7492                                 i, prog->name);
7493                        prog->instances.fds[i] = -1;
7494                        if (result.pfd)
7495                                *result.pfd = -1;
7496                        continue;
7497                }
7498
7499                err = load_program(prog, result.new_insn_ptr,
7500                                   result.new_insn_cnt, license, kern_ver, &fd);
7501                if (err) {
7502                        pr_warn("Loading the %dth instance of program '%s' failed\n",
7503                                i, prog->name);
7504                        goto out;
7505                }
7506
7507                if (result.pfd)
7508                        *result.pfd = fd;
7509                prog->instances.fds[i] = fd;
7510        }
7511out:
7512        if (err)
7513                pr_warn("failed to load program '%s'\n", prog->name);
7514        zfree(&prog->insns);
7515        prog->insns_cnt = 0;
7516        return libbpf_err(err);
7517}
7518
7519static int
7520bpf_object__load_progs(struct bpf_object *obj, int log_level)
7521{
7522        struct bpf_program *prog;
7523        size_t i;
7524        int err;
7525
7526        for (i = 0; i < obj->nr_programs; i++) {
7527                prog = &obj->programs[i];
7528                err = bpf_object__sanitize_prog(obj, prog);
7529                if (err)
7530                        return err;
7531        }
7532
7533        for (i = 0; i < obj->nr_programs; i++) {
7534                prog = &obj->programs[i];
7535                if (prog_is_subprog(obj, prog))
7536                        continue;
7537                if (!prog->load) {
7538                        pr_debug("prog '%s': skipped loading\n", prog->name);
7539                        continue;
7540                }
7541                prog->log_level |= log_level;
7542                err = bpf_program__load(prog, obj->license, obj->kern_version);
7543                if (err)
7544                        return err;
7545        }
7546        if (obj->gen_loader)
7547                bpf_object__free_relocs(obj);
7548        return 0;
7549}
7550
7551static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7552
7553static struct bpf_object *
7554__bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7555                   const struct bpf_object_open_opts *opts)
7556{
7557        const char *obj_name, *kconfig;
7558        struct bpf_program *prog;
7559        struct bpf_object *obj;
7560        char tmp_name[64];
7561        int err;
7562
7563        if (elf_version(EV_CURRENT) == EV_NONE) {
7564                pr_warn("failed to init libelf for %s\n",
7565                        path ? : "(mem buf)");
7566                return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7567        }
7568
7569        if (!OPTS_VALID(opts, bpf_object_open_opts))
7570                return ERR_PTR(-EINVAL);
7571
7572        obj_name = OPTS_GET(opts, object_name, NULL);
7573        if (obj_buf) {
7574                if (!obj_name) {
7575                        snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7576                                 (unsigned long)obj_buf,
7577                                 (unsigned long)obj_buf_sz);
7578                        obj_name = tmp_name;
7579                }
7580                path = obj_name;
7581                pr_debug("loading object '%s' from buffer\n", obj_name);
7582        }
7583
7584        obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7585        if (IS_ERR(obj))
7586                return obj;
7587
7588        kconfig = OPTS_GET(opts, kconfig, NULL);
7589        if (kconfig) {
7590                obj->kconfig = strdup(kconfig);
7591                if (!obj->kconfig)
7592                        return ERR_PTR(-ENOMEM);
7593        }
7594
7595        err = bpf_object__elf_init(obj);
7596        err = err ? : bpf_object__check_endianness(obj);
7597        err = err ? : bpf_object__elf_collect(obj);
7598        err = err ? : bpf_object__collect_externs(obj);
7599        err = err ? : bpf_object__finalize_btf(obj);
7600        err = err ? : bpf_object__init_maps(obj, opts);
7601        err = err ? : bpf_object__collect_relos(obj);
7602        if (err)
7603                goto out;
7604        bpf_object__elf_finish(obj);
7605
7606        bpf_object__for_each_program(prog, obj) {
7607                prog->sec_def = find_sec_def(prog->sec_name);
7608                if (!prog->sec_def) {
7609                        /* couldn't guess, but user might manually specify */
7610                        pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7611                                prog->name, prog->sec_name);
7612                        continue;
7613                }
7614
7615                if (prog->sec_def->is_sleepable)
7616                        prog->prog_flags |= BPF_F_SLEEPABLE;
7617                bpf_program__set_type(prog, prog->sec_def->prog_type);
7618                bpf_program__set_expected_attach_type(prog,
7619                                prog->sec_def->expected_attach_type);
7620
7621                if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING ||
7622                    prog->sec_def->prog_type == BPF_PROG_TYPE_EXT)
7623                        prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0);
7624        }
7625
7626        return obj;
7627out:
7628        bpf_object__close(obj);
7629        return ERR_PTR(err);
7630}
7631
7632static struct bpf_object *
7633__bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags)
7634{
7635        DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7636                .relaxed_maps = flags & MAPS_RELAX_COMPAT,
7637        );
7638
7639        /* param validation */
7640        if (!attr->file)
7641                return NULL;
7642
7643        pr_debug("loading %s\n", attr->file);
7644        return __bpf_object__open(attr->file, NULL, 0, &opts);
7645}
7646
7647struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr)
7648{
7649        return libbpf_ptr(__bpf_object__open_xattr(attr, 0));
7650}
7651
7652struct bpf_object *bpf_object__open(const char *path)
7653{
7654        struct bpf_object_open_attr attr = {
7655                .file           = path,
7656                .prog_type      = BPF_PROG_TYPE_UNSPEC,
7657        };
7658
7659        return libbpf_ptr(__bpf_object__open_xattr(&attr, 0));
7660}
7661
7662struct bpf_object *
7663bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7664{
7665        if (!path)
7666                return libbpf_err_ptr(-EINVAL);
7667
7668        pr_debug("loading %s\n", path);
7669
7670        return libbpf_ptr(__bpf_object__open(path, NULL, 0, opts));
7671}
7672
7673struct bpf_object *
7674bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7675                     const struct bpf_object_open_opts *opts)
7676{
7677        if (!obj_buf || obj_buf_sz == 0)
7678                return libbpf_err_ptr(-EINVAL);
7679
7680        return libbpf_ptr(__bpf_object__open(NULL, obj_buf, obj_buf_sz, opts));
7681}
7682
7683struct bpf_object *
7684bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz,
7685                        const char *name)
7686{
7687        DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7688                .object_name = name,
7689                /* wrong default, but backwards-compatible */
7690                .relaxed_maps = true,
7691        );
7692
7693        /* returning NULL is wrong, but backwards-compatible */
7694        if (!obj_buf || obj_buf_sz == 0)
7695                return errno = EINVAL, NULL;
7696
7697        return libbpf_ptr(__bpf_object__open(NULL, obj_buf, obj_buf_sz, &opts));
7698}
7699
7700int bpf_object__unload(struct bpf_object *obj)
7701{
7702        size_t i;
7703
7704        if (!obj)
7705                return libbpf_err(-EINVAL);
7706
7707        for (i = 0; i < obj->nr_maps; i++) {
7708                zclose(obj->maps[i].fd);
7709                if (obj->maps[i].st_ops)
7710                        zfree(&obj->maps[i].st_ops->kern_vdata);
7711        }
7712
7713        for (i = 0; i < obj->nr_programs; i++)
7714                bpf_program__unload(&obj->programs[i]);
7715
7716        return 0;
7717}
7718
7719static int bpf_object__sanitize_maps(struct bpf_object *obj)
7720{
7721        struct bpf_map *m;
7722
7723        bpf_object__for_each_map(m, obj) {
7724                if (!bpf_map__is_internal(m))
7725                        continue;
7726                if (!kernel_supports(obj, FEAT_GLOBAL_DATA)) {
7727                        pr_warn("kernel doesn't support global data\n");
7728                        return -ENOTSUP;
7729                }
7730                if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7731                        m->def.map_flags ^= BPF_F_MMAPABLE;
7732        }
7733
7734        return 0;
7735}
7736
7737static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7738{
7739        char sym_type, sym_name[500];
7740        unsigned long long sym_addr;
7741        const struct btf_type *t;
7742        struct extern_desc *ext;
7743        int ret, err = 0;
7744        FILE *f;
7745
7746        f = fopen("/proc/kallsyms", "r");
7747        if (!f) {
7748                err = -errno;
7749                pr_warn("failed to open /proc/kallsyms: %d\n", err);
7750                return err;
7751        }
7752
7753        while (true) {
7754                ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7755                             &sym_addr, &sym_type, sym_name);
7756                if (ret == EOF && feof(f))
7757                        break;
7758                if (ret != 3) {
7759                        pr_warn("failed to read kallsyms entry: %d\n", ret);
7760                        err = -EINVAL;
7761                        goto out;
7762                }
7763
7764                ext = find_extern_by_name(obj, sym_name);
7765                if (!ext || ext->type != EXT_KSYM)
7766                        continue;
7767
7768                t = btf__type_by_id(obj->btf, ext->btf_id);
7769                if (!btf_is_var(t))
7770                        continue;
7771
7772                if (ext->is_set && ext->ksym.addr != sym_addr) {
7773                        pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n",
7774                                sym_name, ext->ksym.addr, sym_addr);
7775                        err = -EINVAL;
7776                        goto out;
7777                }
7778                if (!ext->is_set) {
7779                        ext->is_set = true;
7780                        ext->ksym.addr = sym_addr;
7781                        pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr);
7782                }
7783        }
7784
7785out:
7786        fclose(f);
7787        return err;
7788}
7789
7790static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7791                            __u16 kind, struct btf **res_btf,
7792                            int *res_btf_fd)
7793{
7794        int i, id, btf_fd, err;
7795        struct btf *btf;
7796
7797        btf = obj->btf_vmlinux;
7798        btf_fd = 0;
7799        id = btf__find_by_name_kind(btf, ksym_name, kind);
7800
7801        if (id == -ENOENT) {
7802                err = load_module_btfs(obj);
7803                if (err)
7804                        return err;
7805
7806                for (i = 0; i < obj->btf_module_cnt; i++) {
7807                        btf = obj->btf_modules[i].btf;
7808                        /* we assume module BTF FD is always >0 */
7809                        btf_fd = obj->btf_modules[i].fd;
7810                        id = btf__find_by_name_kind(btf, ksym_name, kind);
7811                        if (id != -ENOENT)
7812                                break;
7813                }
7814        }
7815        if (id <= 0) {
7816                pr_warn("extern (%s ksym) '%s': failed to find BTF ID in kernel BTF(s).\n",
7817                        __btf_kind_str(kind), ksym_name);
7818                return -ESRCH;
7819        }
7820
7821        *res_btf = btf;
7822        *res_btf_fd = btf_fd;
7823        return id;
7824}
7825
7826static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7827                                               struct extern_desc *ext)
7828{
7829        const struct btf_type *targ_var, *targ_type;
7830        __u32 targ_type_id, local_type_id;
7831        const char *targ_var_name;
7832        int id, btf_fd = 0, err;
7833        struct btf *btf = NULL;
7834
7835        id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &btf_fd);
7836        if (id < 0)
7837                return id;
7838
7839        /* find local type_id */
7840        local_type_id = ext->ksym.type_id;
7841
7842        /* find target type_id */
7843        targ_var = btf__type_by_id(btf, id);
7844        targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7845        targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7846
7847        err = bpf_core_types_are_compat(obj->btf, local_type_id,
7848                                        btf, targ_type_id);
7849        if (err <= 0) {
7850                const struct btf_type *local_type;
7851                const char *targ_name, *local_name;
7852
7853                local_type = btf__type_by_id(obj->btf, local_type_id);
7854                local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7855                targ_name = btf__name_by_offset(btf, targ_type->name_off);
7856
7857                pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7858                        ext->name, local_type_id,
7859                        btf_kind_str(local_type), local_name, targ_type_id,
7860                        btf_kind_str(targ_type), targ_name);
7861                return -EINVAL;
7862        }
7863
7864        ext->is_set = true;
7865        ext->ksym.kernel_btf_obj_fd = btf_fd;
7866        ext->ksym.kernel_btf_id = id;
7867        pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7868                 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7869
7870        return 0;
7871}
7872
7873static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7874                                                struct extern_desc *ext)
7875{
7876        int local_func_proto_id, kfunc_proto_id, kfunc_id;
7877        const struct btf_type *kern_func;
7878        struct btf *kern_btf = NULL;
7879        int ret, kern_btf_fd = 0;
7880
7881        local_func_proto_id = ext->ksym.type_id;
7882
7883        kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC,
7884                                    &kern_btf, &kern_btf_fd);
7885        if (kfunc_id < 0) {
7886                pr_warn("extern (func ksym) '%s': not found in kernel BTF\n",
7887                        ext->name);
7888                return kfunc_id;
7889        }
7890
7891        if (kern_btf != obj->btf_vmlinux) {
7892                pr_warn("extern (func ksym) '%s': function in kernel module is not supported\n",
7893                        ext->name);
7894                return -ENOTSUP;
7895        }
7896
7897        kern_func = btf__type_by_id(kern_btf, kfunc_id);
7898        kfunc_proto_id = kern_func->type;
7899
7900        ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7901                                        kern_btf, kfunc_proto_id);
7902        if (ret <= 0) {
7903                pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n",
7904                        ext->name, local_func_proto_id, kfunc_proto_id);
7905                return -EINVAL;
7906        }
7907
7908        ext->is_set = true;
7909        ext->ksym.kernel_btf_obj_fd = kern_btf_fd;
7910        ext->ksym.kernel_btf_id = kfunc_id;
7911        pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n",
7912                 ext->name, kfunc_id);
7913
7914        return 0;
7915}
7916
7917static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7918{
7919        const struct btf_type *t;
7920        struct extern_desc *ext;
7921        int i, err;
7922
7923        for (i = 0; i < obj->nr_extern; i++) {
7924                ext = &obj->externs[i];
7925                if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7926                        continue;
7927
7928                if (obj->gen_loader) {
7929                        ext->is_set = true;
7930                        ext->ksym.kernel_btf_obj_fd = 0;
7931                        ext->ksym.kernel_btf_id = 0;
7932                        continue;
7933                }
7934                t = btf__type_by_id(obj->btf, ext->btf_id);
7935                if (btf_is_var(t))
7936                        err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7937                else
7938                        err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7939                if (err)
7940                        return err;
7941        }
7942        return 0;
7943}
7944
7945static int bpf_object__resolve_externs(struct bpf_object *obj,
7946                                       const char *extra_kconfig)
7947{
7948        bool need_config = false, need_kallsyms = false;
7949        bool need_vmlinux_btf = false;
7950        struct extern_desc *ext;
7951        void *kcfg_data = NULL;
7952        int err, i;
7953
7954        if (obj->nr_extern == 0)
7955                return 0;
7956
7957        if (obj->kconfig_map_idx >= 0)
7958                kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7959
7960        for (i = 0; i < obj->nr_extern; i++) {
7961                ext = &obj->externs[i];
7962
7963                if (ext->type == EXT_KCFG &&
7964                    strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7965                        void *ext_val = kcfg_data + ext->kcfg.data_off;
7966                        __u32 kver = get_kernel_version();
7967
7968                        if (!kver) {
7969                                pr_warn("failed to get kernel version\n");
7970                                return -EINVAL;
7971                        }
7972                        err = set_kcfg_value_num(ext, ext_val, kver);
7973                        if (err)
7974                                return err;
7975                        pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver);
7976                } else if (ext->type == EXT_KCFG &&
7977                           strncmp(ext->name, "CONFIG_", 7) == 0) {
7978                        need_config = true;
7979                } else if (ext->type == EXT_KSYM) {
7980                        if (ext->ksym.type_id)
7981                                need_vmlinux_btf = true;
7982                        else
7983                                need_kallsyms = true;
7984                } else {
7985                        pr_warn("unrecognized extern '%s'\n", ext->name);
7986                        return -EINVAL;
7987                }
7988        }
7989        if (need_config && extra_kconfig) {
7990                err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7991                if (err)
7992                        return -EINVAL;
7993                need_config = false;
7994                for (i = 0; i < obj->nr_extern; i++) {
7995                        ext = &obj->externs[i];
7996                        if (ext->type == EXT_KCFG && !ext->is_set) {
7997                                need_config = true;
7998                                break;
7999                        }
8000                }
8001        }
8002        if (need_config) {
8003                err = bpf_object__read_kconfig_file(obj, kcfg_data);
8004                if (err)
8005                        return -EINVAL;
8006        }
8007        if (need_kallsyms) {
8008                err = bpf_object__read_kallsyms_file(obj);
8009                if (err)
8010                        return -EINVAL;
8011        }
8012        if (need_vmlinux_btf) {
8013                err = bpf_object__resolve_ksyms_btf_id(obj);
8014                if (err)
8015                        return -EINVAL;
8016        }
8017        for (i = 0; i < obj->nr_extern; i++) {
8018                ext = &obj->externs[i];
8019
8020                if (!ext->is_set && !ext->is_weak) {
8021                        pr_warn("extern %s (strong) not resolved\n", ext->name);
8022                        return -ESRCH;
8023                } else if (!ext->is_set) {
8024                        pr_debug("extern %s (weak) not resolved, defaulting to zero\n",
8025                                 ext->name);
8026                }
8027        }
8028
8029        return 0;
8030}
8031
8032int bpf_object__load_xattr(struct bpf_object_load_attr *attr)
8033{
8034        struct bpf_object *obj;
8035        int err, i;
8036
8037        if (!attr)
8038                return libbpf_err(-EINVAL);
8039        obj = attr->obj;
8040        if (!obj)
8041                return libbpf_err(-EINVAL);
8042
8043        if (obj->loaded) {
8044                pr_warn("object '%s': load can't be attempted twice\n", obj->name);
8045                return libbpf_err(-EINVAL);
8046        }
8047
8048        if (obj->gen_loader)
8049                bpf_gen__init(obj->gen_loader, attr->log_level);
8050
8051        err = bpf_object__probe_loading(obj);
8052        err = err ? : bpf_object__load_vmlinux_btf(obj, false);
8053        err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
8054        err = err ? : bpf_object__sanitize_and_load_btf(obj);
8055        err = err ? : bpf_object__sanitize_maps(obj);
8056        err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
8057        err = err ? : bpf_object__create_maps(obj);
8058        err = err ? : bpf_object__relocate(obj, attr->target_btf_path);
8059        err = err ? : bpf_object__load_progs(obj, attr->log_level);
8060
8061        if (obj->gen_loader) {
8062                /* reset FDs */
8063                btf__set_fd(obj->btf, -1);
8064                for (i = 0; i < obj->nr_maps; i++)
8065                        obj->maps[i].fd = -1;
8066                if (!err)
8067                        err = bpf_gen__finish(obj->gen_loader);
8068        }
8069
8070        /* clean up module BTFs */
8071        for (i = 0; i < obj->btf_module_cnt; i++) {
8072                close(obj->btf_modules[i].fd);
8073                btf__free(obj->btf_modules[i].btf);
8074                free(obj->btf_modules[i].name);
8075        }
8076        free(obj->btf_modules);
8077
8078        /* clean up vmlinux BTF */
8079        btf__free(obj->btf_vmlinux);
8080        obj->btf_vmlinux = NULL;
8081
8082        obj->loaded = true; /* doesn't matter if successfully or not */
8083
8084        if (err)
8085                goto out;
8086
8087        return 0;
8088out:
8089        /* unpin any maps that were auto-pinned during load */
8090        for (i = 0; i < obj->nr_maps; i++)
8091                if (obj->maps[i].pinned && !obj->maps[i].reused)
8092                        bpf_map__unpin(&obj->maps[i], NULL);
8093
8094        bpf_object__unload(obj);
8095        pr_warn("failed to load object '%s'\n", obj->path);
8096        return libbpf_err(err);
8097}
8098
8099int bpf_object__load(struct bpf_object *obj)
8100{
8101        struct bpf_object_load_attr attr = {
8102                .obj = obj,
8103        };
8104
8105        return bpf_object__load_xattr(&attr);
8106}
8107
8108static int make_parent_dir(const char *path)
8109{
8110        char *cp, errmsg[STRERR_BUFSIZE];
8111        char *dname, *dir;
8112        int err = 0;
8113
8114        dname = strdup(path);
8115        if (dname == NULL)
8116                return -ENOMEM;
8117
8118        dir = dirname(dname);
8119        if (mkdir(dir, 0700) && errno != EEXIST)
8120                err = -errno;
8121
8122        free(dname);
8123        if (err) {
8124                cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8125                pr_warn("failed to mkdir %s: %s\n", path, cp);
8126        }
8127        return err;
8128}
8129
8130static int check_path(const char *path)
8131{
8132        char *cp, errmsg[STRERR_BUFSIZE];
8133        struct statfs st_fs;
8134        char *dname, *dir;
8135        int err = 0;
8136
8137        if (path == NULL)
8138                return -EINVAL;
8139
8140        dname = strdup(path);
8141        if (dname == NULL)
8142                return -ENOMEM;
8143
8144        dir = dirname(dname);
8145        if (statfs(dir, &st_fs)) {
8146                cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
8147                pr_warn("failed to statfs %s: %s\n", dir, cp);
8148                err = -errno;
8149        }
8150        free(dname);
8151
8152        if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8153                pr_warn("specified path %s is not on BPF FS\n", path);
8154                err = -EINVAL;
8155        }
8156
8157        return err;
8158}
8159
8160int bpf_program__pin_instance(struct bpf_program *prog, const char *path,
8161                              int instance)
8162{
8163        char *cp, errmsg[STRERR_BUFSIZE];
8164        int err;
8165
8166        err = make_parent_dir(path);
8167        if (err)
8168                return libbpf_err(err);
8169
8170        err = check_path(path);
8171        if (err)
8172                return libbpf_err(err);
8173
8174        if (prog == NULL) {
8175                pr_warn("invalid program pointer\n");
8176                return libbpf_err(-EINVAL);
8177        }
8178
8179        if (instance < 0 || instance >= prog->instances.nr) {
8180                pr_warn("invalid prog instance %d of prog %s (max %d)\n",
8181                        instance, prog->name, prog->instances.nr);
8182                return libbpf_err(-EINVAL);
8183        }
8184
8185        if (bpf_obj_pin(prog->instances.fds[instance], path)) {
8186                err = -errno;
8187                cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
8188                pr_warn("failed to pin program: %s\n", cp);
8189                return libbpf_err(err);
8190        }
8191        pr_debug("pinned program '%s'\n", path);
8192
8193        return 0;
8194}
8195
8196int bpf_program__unpin_instance(struct bpf_program *prog, const char *path,
8197                                int instance)
8198{
8199        int err;
8200
8201        err = check_path(path);
8202        if (err)
8203                return libbpf_err(err);
8204
8205        if (prog == NULL) {
8206                pr_warn("invalid program pointer\n");
8207                return libbpf_err(-EINVAL);
8208        }
8209
8210        if (instance < 0 || instance >= prog->instances.nr) {
8211                pr_warn("invalid prog instance %d of prog %s (max %d)\n",
8212                        instance, prog->name, prog->instances.nr);
8213                return libbpf_err(-EINVAL);
8214        }
8215
8216        err = unlink(path);
8217        if (err != 0)
8218                return libbpf_err(-errno);
8219
8220        pr_debug("unpinned program '%s'\n", path);
8221
8222        return 0;
8223}
8224
8225int bpf_program__pin(struct bpf_program *prog, const char *path)
8226{
8227        int i, err;
8228
8229        err = make_parent_dir(path);
8230        if (err)
8231                return libbpf_err(err);
8232
8233        err = check_path(path);
8234        if (err)
8235                return libbpf_err(err);
8236
8237        if (prog == NULL) {
8238                pr_warn("invalid program pointer\n");
8239                return libbpf_err(-EINVAL);
8240        }
8241
8242        if (prog->instances.nr <= 0) {
8243                pr_warn("no instances of prog %s to pin\n", prog->name);
8244                return libbpf_err(-EINVAL);
8245        }
8246
8247        if (prog->instances.nr == 1) {
8248                /* don't create subdirs when pinning single instance */
8249                return bpf_program__pin_instance(prog, path, 0);
8250        }
8251
8252        for (i = 0; i < prog->instances.nr; i++) {
8253                char buf[PATH_MAX];
8254                int len;
8255
8256                len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
8257                if (len < 0) {
8258                        err = -EINVAL;
8259                        goto err_unpin;
8260                } else if (len >= PATH_MAX) {
8261                        err = -ENAMETOOLONG;
8262                        goto err_unpin;
8263                }
8264
8265                err = bpf_program__pin_instance(prog, buf, i);
8266                if (err)
8267                        goto err_unpin;
8268        }
8269
8270        return 0;
8271
8272err_unpin:
8273        for (i = i - 1; i >= 0; i--) {
8274                char buf[PATH_MAX];
8275                int len;
8276
8277                len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
8278                if (len < 0)
8279                        continue;
8280                else if (len >= PATH_MAX)
8281                        continue;
8282
8283                bpf_program__unpin_instance(prog, buf, i);
8284        }
8285
8286        rmdir(path);
8287
8288        return libbpf_err(err);
8289}
8290
8291int bpf_program__unpin(struct bpf_program *prog, const char *path)
8292{
8293        int i, err;
8294
8295        err = check_path(path);
8296        if (err)
8297                return libbpf_err(err);
8298
8299        if (prog == NULL) {
8300                pr_warn("invalid program pointer\n");
8301                return libbpf_err(-EINVAL);
8302        }
8303
8304        if (prog->instances.nr <= 0) {
8305                pr_warn("no instances of prog %s to pin\n", prog->name);
8306                return libbpf_err(-EINVAL);
8307        }
8308
8309        if (prog->instances.nr == 1) {
8310                /* don't create subdirs when pinning single instance */
8311                return bpf_program__unpin_instance(prog, path, 0);
8312        }
8313
8314        for (i = 0; i < prog->instances.nr; i++) {
8315                char buf[PATH_MAX];
8316                int len;
8317
8318                len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
8319                if (len < 0)
8320                        return libbpf_err(-EINVAL);
8321                else if (len >= PATH_MAX)
8322                        return libbpf_err(-ENAMETOOLONG);
8323
8324                err = bpf_program__unpin_instance(prog, buf, i);
8325                if (err)
8326                        return err;
8327        }
8328
8329        err = rmdir(path);
8330        if (err)
8331                return libbpf_err(-errno);
8332
8333        return 0;
8334}
8335
8336int bpf_map__pin(struct bpf_map *map, const char *path)
8337{
8338        char *cp, errmsg[STRERR_BUFSIZE];
8339        int err;
8340
8341        if (map == NULL) {
8342                pr_warn("invalid map pointer\n");
8343                return libbpf_err(-EINVAL);
8344        }
8345
8346        if (map->pin_path) {
8347                if (path && strcmp(path, map->pin_path)) {
8348                        pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8349                                bpf_map__name(map), map->pin_path, path);
8350                        return libbpf_err(-EINVAL);
8351                } else if (map->pinned) {
8352                        pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8353                                 bpf_map__name(map), map->pin_path);
8354                        return 0;
8355                }
8356        } else {
8357                if (!path) {
8358                        pr_warn("missing a path to pin map '%s' at\n",
8359                                bpf_map__name(map));
8360                        return libbpf_err(-EINVAL);
8361                } else if (map->pinned) {
8362                        pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8363                        return libbpf_err(-EEXIST);
8364                }
8365
8366                map->pin_path = strdup(path);
8367                if (!map->pin_path) {
8368                        err = -errno;
8369                        goto out_err;
8370                }
8371        }
8372
8373        err = make_parent_dir(map->pin_path);
8374        if (err)
8375                return libbpf_err(err);
8376
8377        err = check_path(map->pin_path);
8378        if (err)
8379                return libbpf_err(err);
8380
8381        if (bpf_obj_pin(map->fd, map->pin_path)) {
8382                err = -errno;
8383                goto out_err;
8384        }
8385
8386        map->pinned = true;
8387        pr_debug("pinned map '%s'\n", map->pin_path);
8388
8389        return 0;
8390
8391out_err:
8392        cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8393        pr_warn("failed to pin map: %s\n", cp);
8394        return libbpf_err(err);
8395}
8396
8397int bpf_map__unpin(struct bpf_map *map, const char *path)
8398{
8399        int err;
8400
8401        if (map == NULL) {
8402                pr_warn("invalid map pointer\n");
8403                return libbpf_err(-EINVAL);
8404        }
8405
8406        if (map->pin_path) {
8407                if (path && strcmp(path, map->pin_path)) {
8408                        pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8409                                bpf_map__name(map), map->pin_path, path);
8410                        return libbpf_err(-EINVAL);
8411                }
8412                path = map->pin_path;
8413        } else if (!path) {
8414                pr_warn("no path to unpin map '%s' from\n",
8415                        bpf_map__name(map));
8416                return libbpf_err(-EINVAL);
8417        }
8418
8419        err = check_path(path);
8420        if (err)
8421                return libbpf_err(err);
8422
8423        err = unlink(path);
8424        if (err != 0)
8425                return libbpf_err(-errno);
8426
8427        map->pinned = false;
8428        pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8429
8430        return 0;
8431}
8432
8433int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8434{
8435        char *new = NULL;
8436
8437        if (path) {
8438                new = strdup(path);
8439                if (!new)
8440                        return libbpf_err(-errno);
8441        }
8442
8443        free(map->pin_path);
8444        map->pin_path = new;
8445        return 0;
8446}
8447
8448const char *bpf_map__get_pin_path(const struct bpf_map *map)
8449{
8450        return map->pin_path;
8451}
8452
8453bool bpf_map__is_pinned(const struct bpf_map *map)
8454{
8455        return map->pinned;
8456}
8457
8458static void sanitize_pin_path(char *s)
8459{
8460        /* bpffs disallows periods in path names */
8461        while (*s) {
8462                if (*s == '.')
8463                        *s = '_';
8464                s++;
8465        }
8466}
8467
8468int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8469{
8470        struct bpf_map *map;
8471        int err;
8472
8473        if (!obj)
8474                return libbpf_err(-ENOENT);
8475
8476        if (!obj->loaded) {
8477                pr_warn("object not yet loaded; load it first\n");
8478                return libbpf_err(-ENOENT);
8479        }
8480
8481        bpf_object__for_each_map(map, obj) {
8482                char *pin_path = NULL;
8483                char buf[PATH_MAX];
8484
8485                if (path) {
8486                        int len;
8487
8488                        len = snprintf(buf, PATH_MAX, "%s/%s", path,
8489                                       bpf_map__name(map));
8490                        if (len < 0) {
8491                                err = -EINVAL;
8492                                goto err_unpin_maps;
8493                        } else if (len >= PATH_MAX) {
8494                                err = -ENAMETOOLONG;
8495                                goto err_unpin_maps;
8496                        }
8497                        sanitize_pin_path(buf);
8498                        pin_path = buf;
8499                } else if (!map->pin_path) {
8500                        continue;
8501                }
8502
8503                err = bpf_map__pin(map, pin_path);
8504                if (err)
8505                        goto err_unpin_maps;
8506        }
8507
8508        return 0;
8509
8510err_unpin_maps:
8511        while ((map = bpf_map__prev(map, obj))) {
8512                if (!map->pin_path)
8513                        continue;
8514
8515                bpf_map__unpin(map, NULL);
8516        }
8517
8518        return libbpf_err(err);
8519}
8520
8521int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8522{
8523        struct bpf_map *map;
8524        int err;
8525
8526        if (!obj)
8527                return libbpf_err(-ENOENT);
8528
8529        bpf_object__for_each_map(map, obj) {
8530                char *pin_path = NULL;
8531                char buf[PATH_MAX];
8532
8533                if (path) {
8534                        int len;
8535
8536                        len = snprintf(buf, PATH_MAX, "%s/%s", path,
8537                                       bpf_map__name(map));
8538                        if (len < 0)
8539                                return libbpf_err(-EINVAL);
8540                        else if (len >= PATH_MAX)
8541                                return libbpf_err(-ENAMETOOLONG);
8542                        sanitize_pin_path(buf);
8543                        pin_path = buf;
8544                } else if (!map->pin_path) {
8545                        continue;
8546                }
8547
8548                err = bpf_map__unpin(map, pin_path);
8549                if (err)
8550                        return libbpf_err(err);
8551        }
8552
8553        return 0;
8554}
8555
8556int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8557{
8558        struct bpf_program *prog;
8559        int err;
8560
8561        if (!obj)
8562                return libbpf_err(-ENOENT);
8563
8564        if (!obj->loaded) {
8565                pr_warn("object not yet loaded; load it first\n");
8566                return libbpf_err(-ENOENT);
8567        }
8568
8569        bpf_object__for_each_program(prog, obj) {
8570                char buf[PATH_MAX];
8571                int len;
8572
8573                len = snprintf(buf, PATH_MAX, "%s/%s", path,
8574                               prog->pin_name);
8575                if (len < 0) {
8576                        err = -EINVAL;
8577                        goto err_unpin_programs;
8578                } else if (len >= PATH_MAX) {
8579                        err = -ENAMETOOLONG;
8580                        goto err_unpin_programs;
8581                }
8582
8583                err = bpf_program__pin(prog, buf);
8584                if (err)
8585                        goto err_unpin_programs;
8586        }
8587
8588        return 0;
8589
8590err_unpin_programs:
8591        while ((prog = bpf_program__prev(prog, obj))) {
8592                char buf[PATH_MAX];
8593                int len;
8594
8595                len = snprintf(buf, PATH_MAX, "%s/%s", path,
8596                               prog->pin_name);
8597                if (len < 0)
8598                        continue;
8599                else if (len >= PATH_MAX)
8600                        continue;
8601
8602                bpf_program__unpin(prog, buf);
8603        }
8604
8605        return libbpf_err(err);
8606}
8607
8608int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8609{
8610        struct bpf_program *prog;
8611        int err;
8612
8613        if (!obj)
8614                return libbpf_err(-ENOENT);
8615
8616        bpf_object__for_each_program(prog, obj) {
8617                char buf[PATH_MAX];
8618                int len;
8619
8620                len = snprintf(buf, PATH_MAX, "%s/%s", path,
8621                               prog->pin_name);
8622                if (len < 0)
8623                        return libbpf_err(-EINVAL);
8624                else if (len >= PATH_MAX)
8625                        return libbpf_err(-ENAMETOOLONG);
8626
8627                err = bpf_program__unpin(prog, buf);
8628                if (err)
8629                        return libbpf_err(err);
8630        }
8631
8632        return 0;
8633}
8634
8635int bpf_object__pin(struct bpf_object *obj, const char *path)
8636{
8637        int err;
8638
8639        err = bpf_object__pin_maps(obj, path);
8640        if (err)
8641                return libbpf_err(err);
8642
8643        err = bpf_object__pin_programs(obj, path);
8644        if (err) {
8645                bpf_object__unpin_maps(obj, path);
8646                return libbpf_err(err);
8647        }
8648
8649        return 0;
8650}
8651
8652static void bpf_map__destroy(struct bpf_map *map)
8653{
8654        if (map->clear_priv)
8655                map->clear_priv(map, map->priv);
8656        map->priv = NULL;
8657        map->clear_priv = NULL;
8658
8659        if (map->inner_map) {
8660                bpf_map__destroy(map->inner_map);
8661                zfree(&map->inner_map);
8662        }
8663
8664        zfree(&map->init_slots);
8665        map->init_slots_sz = 0;
8666
8667        if (map->mmaped) {
8668                munmap(map->mmaped, bpf_map_mmap_sz(map));
8669                map->mmaped = NULL;
8670        }
8671
8672        if (map->st_ops) {
8673                zfree(&map->st_ops->data);
8674                zfree(&map->st_ops->progs);
8675                zfree(&map->st_ops->kern_func_off);
8676                zfree(&map->st_ops);
8677        }
8678
8679        zfree(&map->name);
8680        zfree(&map->pin_path);
8681
8682        if (map->fd >= 0)
8683                zclose(map->fd);
8684}
8685
8686void bpf_object__close(struct bpf_object *obj)
8687{
8688        size_t i;
8689
8690        if (IS_ERR_OR_NULL(obj))
8691                return;
8692
8693        if (obj->clear_priv)
8694                obj->clear_priv(obj, obj->priv);
8695
8696        bpf_gen__free(obj->gen_loader);
8697        bpf_object__elf_finish(obj);
8698        bpf_object__unload(obj);
8699        btf__free(obj->btf);
8700        btf_ext__free(obj->btf_ext);
8701
8702        for (i = 0; i < obj->nr_maps; i++)
8703                bpf_map__destroy(&obj->maps[i]);
8704
8705        zfree(&obj->kconfig);
8706        zfree(&obj->externs);
8707        obj->nr_extern = 0;
8708
8709        zfree(&obj->maps);
8710        obj->nr_maps = 0;
8711
8712        if (obj->programs && obj->nr_programs) {
8713                for (i = 0; i < obj->nr_programs; i++)
8714                        bpf_program__exit(&obj->programs[i]);
8715        }
8716        zfree(&obj->programs);
8717
8718        list_del(&obj->list);
8719        free(obj);
8720}
8721
8722struct bpf_object *
8723bpf_object__next(struct bpf_object *prev)
8724{
8725        struct bpf_object *next;
8726
8727        if (!prev)
8728                next = list_first_entry(&bpf_objects_list,
8729                                        struct bpf_object,
8730                                        list);
8731        else
8732                next = list_next_entry(prev, list);
8733
8734        /* Empty list is noticed here so don't need checking on entry. */
8735        if (&next->list == &bpf_objects_list)
8736                return NULL;
8737
8738        return next;
8739}
8740
8741const char *bpf_object__name(const struct bpf_object *obj)
8742{
8743        return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8744}
8745
8746unsigned int bpf_object__kversion(const struct bpf_object *obj)
8747{
8748        return obj ? obj->kern_version : 0;
8749}
8750
8751struct btf *bpf_object__btf(const struct bpf_object *obj)
8752{
8753        return obj ? obj->btf : NULL;
8754}
8755
8756int bpf_object__btf_fd(const struct bpf_object *obj)
8757{
8758        return obj->btf ? btf__fd(obj->btf) : -1;
8759}
8760
8761int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8762{
8763        if (obj->loaded)
8764                return libbpf_err(-EINVAL);
8765
8766        obj->kern_version = kern_version;
8767
8768        return 0;
8769}
8770
8771int bpf_object__set_priv(struct bpf_object *obj, void *priv,
8772                         bpf_object_clear_priv_t clear_priv)
8773{
8774        if (obj->priv && obj->clear_priv)
8775                obj->clear_priv(obj, obj->priv);
8776
8777        obj->priv = priv;
8778        obj->clear_priv = clear_priv;
8779        return 0;
8780}
8781
8782void *bpf_object__priv(const struct bpf_object *obj)
8783{
8784        return obj ? obj->priv : libbpf_err_ptr(-EINVAL);
8785}
8786
8787int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8788{
8789        struct bpf_gen *gen;
8790
8791        if (!opts)
8792                return -EFAULT;
8793        if (!OPTS_VALID(opts, gen_loader_opts))
8794                return -EINVAL;
8795        gen = calloc(sizeof(*gen), 1);
8796        if (!gen)
8797                return -ENOMEM;
8798        gen->opts = opts;
8799        obj->gen_loader = gen;
8800        return 0;
8801}
8802
8803static struct bpf_program *
8804__bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8805                    bool forward)
8806{
8807        size_t nr_programs = obj->nr_programs;
8808        ssize_t idx;
8809
8810        if (!nr_programs)
8811                return NULL;
8812
8813        if (!p)
8814                /* Iter from the beginning */
8815                return forward ? &obj->programs[0] :
8816                        &obj->programs[nr_programs - 1];
8817
8818        if (p->obj != obj) {
8819                pr_warn("error: program handler doesn't match object\n");
8820                return errno = EINVAL, NULL;
8821        }
8822
8823        idx = (p - obj->programs) + (forward ? 1 : -1);
8824        if (idx >= obj->nr_programs || idx < 0)
8825                return NULL;
8826        return &obj->programs[idx];
8827}
8828
8829struct bpf_program *
8830bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj)
8831{
8832        struct bpf_program *prog = prev;
8833
8834        do {
8835                prog = __bpf_program__iter(prog, obj, true);
8836        } while (prog && prog_is_subprog(obj, prog));
8837
8838        return prog;
8839}
8840
8841struct bpf_program *
8842bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj)
8843{
8844        struct bpf_program *prog = next;
8845
8846        do {
8847                prog = __bpf_program__iter(prog, obj, false);
8848        } while (prog && prog_is_subprog(obj, prog));
8849
8850        return prog;
8851}
8852
8853int bpf_program__set_priv(struct bpf_program *prog, void *priv,
8854                          bpf_program_clear_priv_t clear_priv)
8855{
8856        if (prog->priv && prog->clear_priv)
8857                prog->clear_priv(prog, prog->priv);
8858
8859        prog->priv = priv;
8860        prog->clear_priv = clear_priv;
8861        return 0;
8862}
8863
8864void *bpf_program__priv(const struct bpf_program *prog)
8865{
8866        return prog ? prog->priv : libbpf_err_ptr(-EINVAL);
8867}
8868
8869void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8870{
8871        prog->prog_ifindex = ifindex;
8872}
8873
8874const char *bpf_program__name(const struct bpf_program *prog)
8875{
8876        return prog->name;
8877}
8878
8879const char *bpf_program__section_name(const struct bpf_program *prog)
8880{
8881        return prog->sec_name;
8882}
8883
8884const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy)
8885{
8886        const char *title;
8887
8888        title = prog->sec_name;
8889        if (needs_copy) {
8890                title = strdup(title);
8891                if (!title) {
8892                        pr_warn("failed to strdup program title\n");
8893                        return libbpf_err_ptr(-ENOMEM);
8894                }
8895        }
8896
8897        return title;
8898}
8899
8900bool bpf_program__autoload(const struct bpf_program *prog)
8901{
8902        return prog->load;
8903}
8904
8905int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8906{
8907        if (prog->obj->loaded)
8908                return libbpf_err(-EINVAL);
8909
8910        prog->load = autoload;
8911        return 0;
8912}
8913
8914int bpf_program__fd(const struct bpf_program *prog)
8915{
8916        return bpf_program__nth_fd(prog, 0);
8917}
8918
8919size_t bpf_program__size(const struct bpf_program *prog)
8920{
8921        return prog->insns_cnt * BPF_INSN_SZ;
8922}
8923
8924int bpf_program__set_prep(struct bpf_program *prog, int nr_instances,
8925                          bpf_program_prep_t prep)
8926{
8927        int *instances_fds;
8928
8929        if (nr_instances <= 0 || !prep)
8930                return libbpf_err(-EINVAL);
8931
8932        if (prog->instances.nr > 0 || prog->instances.fds) {
8933                pr_warn("Can't set pre-processor after loading\n");
8934                return libbpf_err(-EINVAL);
8935        }
8936
8937        instances_fds = malloc(sizeof(int) * nr_instances);
8938        if (!instances_fds) {
8939                pr_warn("alloc memory failed for fds\n");
8940                return libbpf_err(-ENOMEM);
8941        }
8942
8943        /* fill all fd with -1 */
8944        memset(instances_fds, -1, sizeof(int) * nr_instances);
8945
8946        prog->instances.nr = nr_instances;
8947        prog->instances.fds = instances_fds;
8948        prog->preprocessor = prep;
8949        return 0;
8950}
8951
8952int bpf_program__nth_fd(const struct bpf_program *prog, int n)
8953{
8954        int fd;
8955
8956        if (!prog)
8957                return libbpf_err(-EINVAL);
8958
8959        if (n >= prog->instances.nr || n < 0) {
8960                pr_warn("Can't get the %dth fd from program %s: only %d instances\n",
8961                        n, prog->name, prog->instances.nr);
8962                return libbpf_err(-EINVAL);
8963        }
8964
8965        fd = prog->instances.fds[n];
8966        if (fd < 0) {
8967                pr_warn("%dth instance of program '%s' is invalid\n",
8968                        n, prog->name);
8969                return libbpf_err(-ENOENT);
8970        }
8971
8972        return fd;
8973}
8974
8975enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog)
8976{
8977        return prog->type;
8978}
8979
8980void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8981{
8982        prog->type = type;
8983}
8984
8985static bool bpf_program__is_type(const struct bpf_program *prog,
8986                                 enum bpf_prog_type type)
8987{
8988        return prog ? (prog->type == type) : false;
8989}
8990
8991#define BPF_PROG_TYPE_FNS(NAME, TYPE)                           \
8992int bpf_program__set_##NAME(struct bpf_program *prog)           \
8993{                                                               \
8994        if (!prog)                                              \
8995                return libbpf_err(-EINVAL);                     \
8996        bpf_program__set_type(prog, TYPE);                      \
8997        return 0;                                               \
8998}                                                               \
8999                                                                \
9000bool bpf_program__is_##NAME(const struct bpf_program *prog)     \
9001{                                                               \
9002        return bpf_program__is_type(prog, TYPE);                \
9003}                                                               \
9004
9005BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER);
9006BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM);
9007BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE);
9008BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS);
9009BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT);
9010BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT);
9011BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT);
9012BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP);
9013BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT);
9014BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING);
9015BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS);
9016BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT);
9017BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP);
9018
9019enum bpf_attach_type
9020bpf_program__get_expected_attach_type(const struct bpf_program *prog)
9021{
9022        return prog->expected_attach_type;
9023}
9024
9025void bpf_program__set_expected_attach_type(struct bpf_program *prog,
9026                                           enum bpf_attach_type type)
9027{
9028        prog->expected_attach_type = type;
9029}
9030
9031#define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional,           \
9032                          attachable, attach_btf)                           \
9033        {                                                                   \
9034                .sec = string,                                              \
9035                .len = sizeof(string) - 1,                                  \
9036                .prog_type = ptype,                                         \
9037                .expected_attach_type = eatype,                             \
9038                .is_exp_attach_type_optional = eatype_optional,             \
9039                .is_attachable = attachable,                                \
9040                .is_attach_btf = attach_btf,                                \
9041        }
9042
9043/* Programs that can NOT be attached. */
9044#define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0)
9045
9046/* Programs that can be attached. */
9047#define BPF_APROG_SEC(string, ptype, atype) \
9048        BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0)
9049
9050/* Programs that must specify expected attach type at load time. */
9051#define BPF_EAPROG_SEC(string, ptype, eatype) \
9052        BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0)
9053
9054/* Programs that use BTF to identify attach point */
9055#define BPF_PROG_BTF(string, ptype, eatype) \
9056        BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1)
9057
9058/* Programs that can be attached but attach type can't be identified by section
9059 * name. Kept for backward compatibility.
9060 */
9061#define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype)
9062
9063#define SEC_DEF(sec_pfx, ptype, ...) {                                      \
9064        .sec = sec_pfx,                                                     \
9065        .len = sizeof(sec_pfx) - 1,                                         \
9066        .prog_type = BPF_PROG_TYPE_##ptype,                                 \
9067        __VA_ARGS__                                                         \
9068}
9069
9070static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec,
9071                                      struct bpf_program *prog);
9072static struct bpf_link *attach_tp(const struct bpf_sec_def *sec,
9073                                  struct bpf_program *prog);
9074static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec,
9075                                      struct bpf_program *prog);
9076static struct bpf_link *attach_trace(const struct bpf_sec_def *sec,
9077                                     struct bpf_program *prog);
9078static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec,
9079                                   struct bpf_program *prog);
9080static struct bpf_link *attach_iter(const struct bpf_sec_def *sec,
9081                                    struct bpf_program *prog);
9082
9083static const struct bpf_sec_def section_defs[] = {
9084        BPF_PROG_SEC("socket",                  BPF_PROG_TYPE_SOCKET_FILTER),
9085        BPF_EAPROG_SEC("sk_reuseport/migrate",  BPF_PROG_TYPE_SK_REUSEPORT,
9086                                                BPF_SK_REUSEPORT_SELECT_OR_MIGRATE),
9087        BPF_EAPROG_SEC("sk_reuseport",          BPF_PROG_TYPE_SK_REUSEPORT,
9088                                                BPF_SK_REUSEPORT_SELECT),
9089        SEC_DEF("kprobe/", KPROBE,
9090                .attach_fn = attach_kprobe),
9091        BPF_PROG_SEC("uprobe/",                 BPF_PROG_TYPE_KPROBE),
9092        SEC_DEF("kretprobe/", KPROBE,
9093                .attach_fn = attach_kprobe),
9094        BPF_PROG_SEC("uretprobe/",              BPF_PROG_TYPE_KPROBE),
9095        BPF_PROG_SEC("classifier",              BPF_PROG_TYPE_SCHED_CLS),
9096        BPF_PROG_SEC("action",                  BPF_PROG_TYPE_SCHED_ACT),
9097        SEC_DEF("tracepoint/", TRACEPOINT,
9098                .attach_fn = attach_tp),
9099        SEC_DEF("tp/", TRACEPOINT,
9100                .attach_fn = attach_tp),
9101        SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT,
9102                .attach_fn = attach_raw_tp),
9103        SEC_DEF("raw_tp/", RAW_TRACEPOINT,
9104                .attach_fn = attach_raw_tp),
9105        SEC_DEF("tp_btf/", TRACING,
9106                .expected_attach_type = BPF_TRACE_RAW_TP,
9107                .is_attach_btf = true,
9108                .attach_fn = attach_trace),
9109        SEC_DEF("fentry/", TRACING,
9110                .expected_attach_type = BPF_TRACE_FENTRY,
9111                .is_attach_btf = true,
9112                .attach_fn = attach_trace),
9113        SEC_DEF("fmod_ret/", TRACING,
9114                .expected_attach_type = BPF_MODIFY_RETURN,
9115                .is_attach_btf = true,
9116                .attach_fn = attach_trace),
9117        SEC_DEF("fexit/", TRACING,
9118                .expected_attach_type = BPF_TRACE_FEXIT,
9119                .is_attach_btf = true,
9120                .attach_fn = attach_trace),
9121        SEC_DEF("fentry.s/", TRACING,
9122                .expected_attach_type = BPF_TRACE_FENTRY,
9123                .is_attach_btf = true,
9124                .is_sleepable = true,
9125                .attach_fn = attach_trace),
9126        SEC_DEF("fmod_ret.s/", TRACING,
9127                .expected_attach_type = BPF_MODIFY_RETURN,
9128                .is_attach_btf = true,
9129                .is_sleepable = true,
9130                .attach_fn = attach_trace),
9131        SEC_DEF("fexit.s/", TRACING,
9132                .expected_attach_type = BPF_TRACE_FEXIT,
9133                .is_attach_btf = true,
9134                .is_sleepable = true,
9135                .attach_fn = attach_trace),
9136        SEC_DEF("freplace/", EXT,
9137                .is_attach_btf = true,
9138                .attach_fn = attach_trace),
9139        SEC_DEF("lsm/", LSM,
9140                .is_attach_btf = true,
9141                .expected_attach_type = BPF_LSM_MAC,
9142                .attach_fn = attach_lsm),
9143        SEC_DEF("lsm.s/", LSM,
9144                .is_attach_btf = true,
9145                .is_sleepable = true,
9146                .expected_attach_type = BPF_LSM_MAC,
9147                .attach_fn = attach_lsm),
9148        SEC_DEF("iter/", TRACING,
9149                .expected_attach_type = BPF_TRACE_ITER,
9150                .is_attach_btf = true,
9151                .attach_fn = attach_iter),
9152        SEC_DEF("syscall", SYSCALL,
9153                .is_sleepable = true),
9154        BPF_EAPROG_SEC("xdp_devmap/",           BPF_PROG_TYPE_XDP,
9155                                                BPF_XDP_DEVMAP),
9156        BPF_EAPROG_SEC("xdp_cpumap/",           BPF_PROG_TYPE_XDP,
9157                                                BPF_XDP_CPUMAP),
9158        BPF_APROG_SEC("xdp",                    BPF_PROG_TYPE_XDP,
9159                                                BPF_XDP),
9160        BPF_PROG_SEC("perf_event",              BPF_PROG_TYPE_PERF_EVENT),
9161        BPF_PROG_SEC("lwt_in",                  BPF_PROG_TYPE_LWT_IN),
9162        BPF_PROG_SEC("lwt_out",                 BPF_PROG_TYPE_LWT_OUT),
9163        BPF_PROG_SEC("lwt_xmit",                BPF_PROG_TYPE_LWT_XMIT),
9164        BPF_PROG_SEC("lwt_seg6local",           BPF_PROG_TYPE_LWT_SEG6LOCAL),
9165        BPF_APROG_SEC("cgroup_skb/ingress",     BPF_PROG_TYPE_CGROUP_SKB,
9166                                                BPF_CGROUP_INET_INGRESS),
9167        BPF_APROG_SEC("cgroup_skb/egress",      BPF_PROG_TYPE_CGROUP_SKB,
9168                                                BPF_CGROUP_INET_EGRESS),
9169        BPF_APROG_COMPAT("cgroup/skb",          BPF_PROG_TYPE_CGROUP_SKB),
9170        BPF_EAPROG_SEC("cgroup/sock_create",    BPF_PROG_TYPE_CGROUP_SOCK,
9171                                                BPF_CGROUP_INET_SOCK_CREATE),
9172        BPF_EAPROG_SEC("cgroup/sock_release",   BPF_PROG_TYPE_CGROUP_SOCK,
9173                                                BPF_CGROUP_INET_SOCK_RELEASE),
9174        BPF_APROG_SEC("cgroup/sock",            BPF_PROG_TYPE_CGROUP_SOCK,
9175                                                BPF_CGROUP_INET_SOCK_CREATE),
9176        BPF_EAPROG_SEC("cgroup/post_bind4",     BPF_PROG_TYPE_CGROUP_SOCK,
9177                                                BPF_CGROUP_INET4_POST_BIND),
9178        BPF_EAPROG_SEC("cgroup/post_bind6",     BPF_PROG_TYPE_CGROUP_SOCK,
9179                                                BPF_CGROUP_INET6_POST_BIND),
9180        BPF_APROG_SEC("cgroup/dev",             BPF_PROG_TYPE_CGROUP_DEVICE,
9181                                                BPF_CGROUP_DEVICE),
9182        BPF_APROG_SEC("sockops",                BPF_PROG_TYPE_SOCK_OPS,
9183                                                BPF_CGROUP_SOCK_OPS),
9184        BPF_APROG_SEC("sk_skb/stream_parser",   BPF_PROG_TYPE_SK_SKB,
9185                                                BPF_SK_SKB_STREAM_PARSER),
9186        BPF_APROG_SEC("sk_skb/stream_verdict",  BPF_PROG_TYPE_SK_SKB,
9187                                                BPF_SK_SKB_STREAM_VERDICT),
9188        BPF_APROG_COMPAT("sk_skb",              BPF_PROG_TYPE_SK_SKB),
9189        BPF_APROG_SEC("sk_msg",                 BPF_PROG_TYPE_SK_MSG,
9190                                                BPF_SK_MSG_VERDICT),
9191        BPF_APROG_SEC("lirc_mode2",             BPF_PROG_TYPE_LIRC_MODE2,
9192                                                BPF_LIRC_MODE2),
9193        BPF_APROG_SEC("flow_dissector",         BPF_PROG_TYPE_FLOW_DISSECTOR,
9194                                                BPF_FLOW_DISSECTOR),
9195        BPF_EAPROG_SEC("cgroup/bind4",          BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
9196                                                BPF_CGROUP_INET4_BIND),
9197        BPF_EAPROG_SEC("cgroup/bind6",          BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
9198                                                BPF_CGROUP_INET6_BIND),
9199        BPF_EAPROG_SEC("cgroup/connect4",       BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
9200                                                BPF_CGROUP_INET4_CONNECT),
9201        BPF_EAPROG_SEC("cgroup/connect6",       BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
9202                                                BPF_CGROUP_INET6_CONNECT),
9203        BPF_EAPROG_SEC("cgroup/sendmsg4",       BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
9204                                                BPF_CGROUP_UDP4_SENDMSG),
9205        BPF_EAPROG_SEC("cgroup/sendmsg6",       BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
9206                                                BPF_CGROUP_UDP6_SENDMSG),
9207        BPF_EAPROG_SEC("cgroup/recvmsg4",       BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
9208                                                BPF_CGROUP_UDP4_RECVMSG),
9209        BPF_EAPROG_SEC("cgroup/recvmsg6",       BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
9210                                                BPF_CGROUP_UDP6_RECVMSG),
9211        BPF_EAPROG_SEC("cgroup/getpeername4",   BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
9212                                                BPF_CGROUP_INET4_GETPEERNAME),
9213        BPF_EAPROG_SEC("cgroup/getpeername6",   BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
9214                                                BPF_CGROUP_INET6_GETPEERNAME),
9215        BPF_EAPROG_SEC("cgroup/getsockname4",   BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
9216                                                BPF_CGROUP_INET4_GETSOCKNAME),
9217        BPF_EAPROG_SEC("cgroup/getsockname6",   BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
9218                                                BPF_CGROUP_INET6_GETSOCKNAME),
9219        BPF_EAPROG_SEC("cgroup/sysctl",         BPF_PROG_TYPE_CGROUP_SYSCTL,
9220                                                BPF_CGROUP_SYSCTL),
9221        BPF_EAPROG_SEC("cgroup/getsockopt",     BPF_PROG_TYPE_CGROUP_SOCKOPT,
9222                                                BPF_CGROUP_GETSOCKOPT),
9223        BPF_EAPROG_SEC("cgroup/setsockopt",     BPF_PROG_TYPE_CGROUP_SOCKOPT,
9224                                                BPF_CGROUP_SETSOCKOPT),
9225        BPF_PROG_SEC("struct_ops",              BPF_PROG_TYPE_STRUCT_OPS),
9226        BPF_EAPROG_SEC("sk_lookup/",            BPF_PROG_TYPE_SK_LOOKUP,
9227                                                BPF_SK_LOOKUP),
9228};
9229
9230#undef BPF_PROG_SEC_IMPL
9231#undef BPF_PROG_SEC
9232#undef BPF_APROG_SEC
9233#undef BPF_EAPROG_SEC
9234#undef BPF_APROG_COMPAT
9235#undef SEC_DEF
9236
9237#define MAX_TYPE_NAME_SIZE 32
9238
9239static const struct bpf_sec_def *find_sec_def(const char *sec_name)
9240{
9241        int i, n = ARRAY_SIZE(section_defs);
9242
9243        for (i = 0; i < n; i++) {
9244                if (strncmp(sec_name,
9245                            section_defs[i].sec, section_defs[i].len))
9246                        continue;
9247                return &section_defs[i];
9248        }
9249        return NULL;
9250}
9251
9252static char *libbpf_get_type_names(bool attach_type)
9253{
9254        int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9255        char *buf;
9256
9257        buf = malloc(len);
9258        if (!buf)
9259                return NULL;
9260
9261        buf[0] = '\0';
9262        /* Forge string buf with all available names */
9263        for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9264                if (attach_type && !section_defs[i].is_attachable)
9265                        continue;
9266
9267                if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9268                        free(buf);
9269                        return NULL;
9270                }
9271                strcat(buf, " ");
9272                strcat(buf, section_defs[i].sec);
9273        }
9274
9275        return buf;
9276}
9277
9278int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9279                             enum bpf_attach_type *expected_attach_type)
9280{
9281        const struct bpf_sec_def *sec_def;
9282        char *type_names;
9283
9284        if (!name)
9285                return libbpf_err(-EINVAL);
9286
9287        sec_def = find_sec_def(name);
9288        if (sec_def) {
9289                *prog_type = sec_def->prog_type;
9290                *expected_attach_type = sec_def->expected_attach_type;
9291                return 0;
9292        }
9293
9294        pr_debug("failed to guess program type from ELF section '%s'\n", name);
9295        type_names = libbpf_get_type_names(false);
9296        if (type_names != NULL) {
9297                pr_debug("supported section(type) names are:%s\n", type_names);
9298                free(type_names);
9299        }
9300
9301        return libbpf_err(-ESRCH);
9302}
9303
9304static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9305                                                     size_t offset)
9306{
9307        struct bpf_map *map;
9308        size_t i;
9309
9310        for (i = 0; i < obj->nr_maps; i++) {
9311                map = &obj->maps[i];
9312                if (!bpf_map__is_struct_ops(map))
9313                        continue;
9314                if (map->sec_offset <= offset &&
9315                    offset - map->sec_offset < map->def.value_size)
9316                        return map;
9317        }
9318
9319        return NULL;
9320}
9321
9322/* Collect the reloc from ELF and populate the st_ops->progs[] */
9323static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9324                                            GElf_Shdr *shdr, Elf_Data *data)
9325{
9326        const struct btf_member *member;
9327        struct bpf_struct_ops *st_ops;
9328        struct bpf_program *prog;
9329        unsigned int shdr_idx;
9330        const struct btf *btf;
9331        struct bpf_map *map;
9332        Elf_Data *symbols;
9333        unsigned int moff, insn_idx;
9334        const char *name;
9335        __u32 member_idx;
9336        GElf_Sym sym;
9337        GElf_Rel rel;
9338        int i, nrels;
9339
9340        symbols = obj->efile.symbols;
9341        btf = obj->btf;
9342        nrels = shdr->sh_size / shdr->sh_entsize;
9343        for (i = 0; i < nrels; i++) {
9344                if (!gelf_getrel(data, i, &rel)) {
9345                        pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9346                        return -LIBBPF_ERRNO__FORMAT;
9347                }
9348
9349                if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
9350                        pr_warn("struct_ops reloc: symbol %zx not found\n",
9351                                (size_t)GELF_R_SYM(rel.r_info));
9352                        return -LIBBPF_ERRNO__FORMAT;
9353                }
9354
9355                name = elf_sym_str(obj, sym.st_name) ?: "<?>";
9356                map = find_struct_ops_map_by_offset(obj, rel.r_offset);
9357                if (!map) {
9358                        pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n",
9359                                (size_t)rel.r_offset);
9360                        return -EINVAL;
9361                }
9362
9363                moff = rel.r_offset - map->sec_offset;
9364                shdr_idx = sym.st_shndx;
9365                st_ops = map->st_ops;
9366                pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9367                         map->name,
9368                         (long long)(rel.r_info >> 32),
9369                         (long long)sym.st_value,
9370                         shdr_idx, (size_t)rel.r_offset,
9371                         map->sec_offset, sym.st_name, name);
9372
9373                if (shdr_idx >= SHN_LORESERVE) {
9374                        pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n",
9375                                map->name, (size_t)rel.r_offset, shdr_idx);
9376                        return -LIBBPF_ERRNO__RELOC;
9377                }
9378                if (sym.st_value % BPF_INSN_SZ) {
9379                        pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9380                                map->name, (unsigned long long)sym.st_value);
9381                        return -LIBBPF_ERRNO__FORMAT;
9382                }
9383                insn_idx = sym.st_value / BPF_INSN_SZ;
9384
9385                member = find_member_by_offset(st_ops->type, moff * 8);
9386                if (!member) {
9387                        pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9388                                map->name, moff);
9389                        return -EINVAL;
9390                }
9391                member_idx = member - btf_members(st_ops->type);
9392                name = btf__name_by_offset(btf, member->name_off);
9393
9394                if (!resolve_func_ptr(btf, member->type, NULL)) {
9395                        pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9396                                map->name, name);
9397                        return -EINVAL;
9398                }
9399
9400                prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9401                if (!prog) {
9402                        pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9403                                map->name, shdr_idx, name);
9404                        return -EINVAL;
9405                }
9406
9407                if (prog->type == BPF_PROG_TYPE_UNSPEC) {
9408                        const struct bpf_sec_def *sec_def;
9409
9410                        sec_def = find_sec_def(prog->sec_name);
9411                        if (sec_def &&
9412                            sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) {
9413                                /* for pr_warn */
9414                                prog->type = sec_def->prog_type;
9415                                goto invalid_prog;
9416                        }
9417
9418                        prog->type = BPF_PROG_TYPE_STRUCT_OPS;
9419                        prog->attach_btf_id = st_ops->type_id;
9420                        prog->expected_attach_type = member_idx;
9421                } else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS ||
9422                           prog->attach_btf_id != st_ops->type_id ||
9423                           prog->expected_attach_type != member_idx) {
9424                        goto invalid_prog;
9425                }
9426                st_ops->progs[member_idx] = prog;
9427        }
9428
9429        return 0;
9430
9431invalid_prog:
9432        pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
9433                map->name, prog->name, prog->sec_name, prog->type,
9434                prog->attach_btf_id, prog->expected_attach_type, name);
9435        return -EINVAL;
9436}
9437
9438#define BTF_TRACE_PREFIX "btf_trace_"
9439#define BTF_LSM_PREFIX "bpf_lsm_"
9440#define BTF_ITER_PREFIX "bpf_iter_"
9441#define BTF_MAX_NAME_SIZE 128
9442
9443void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9444                                const char **prefix, int *kind)
9445{
9446        switch (attach_type) {
9447        case BPF_TRACE_RAW_TP:
9448                *prefix = BTF_TRACE_PREFIX;
9449                *kind = BTF_KIND_TYPEDEF;
9450                break;
9451        case BPF_LSM_MAC:
9452                *prefix = BTF_LSM_PREFIX;
9453                *kind = BTF_KIND_FUNC;
9454                break;
9455        case BPF_TRACE_ITER:
9456                *prefix = BTF_ITER_PREFIX;
9457                *kind = BTF_KIND_FUNC;
9458                break;
9459        default:
9460                *prefix = "";
9461                *kind = BTF_KIND_FUNC;
9462        }
9463}
9464
9465static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9466                                   const char *name, __u32 kind)
9467{
9468        char btf_type_name[BTF_MAX_NAME_SIZE];
9469        int ret;
9470
9471        ret = snprintf(btf_type_name, sizeof(btf_type_name),
9472                       "%s%s", prefix, name);
9473        /* snprintf returns the number of characters written excluding the
9474         * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9475         * indicates truncation.
9476         */
9477        if (ret < 0 || ret >= sizeof(btf_type_name))
9478                return -ENAMETOOLONG;
9479        return btf__find_by_name_kind(btf, btf_type_name, kind);
9480}
9481
9482static inline int find_attach_btf_id(struct btf *btf, const char *name,
9483                                     enum bpf_attach_type attach_type)
9484{
9485        const char *prefix;
9486        int kind;
9487
9488        btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9489        return find_btf_by_prefix_kind(btf, prefix, name, kind);
9490}
9491
9492int libbpf_find_vmlinux_btf_id(const char *name,
9493                               enum bpf_attach_type attach_type)
9494{
9495        struct btf *btf;
9496        int err;
9497
9498        btf = libbpf_find_kernel_btf();
9499        err = libbpf_get_error(btf);
9500        if (err) {
9501                pr_warn("vmlinux BTF is not found\n");
9502                return libbpf_err(err);
9503        }
9504
9505        err = find_attach_btf_id(btf, name, attach_type);
9506        if (err <= 0)
9507                pr_warn("%s is not found in vmlinux BTF\n", name);
9508
9509        btf__free(btf);
9510        return libbpf_err(err);
9511}
9512
9513static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9514{
9515        struct bpf_prog_info_linear *info_linear;
9516        struct bpf_prog_info *info;
9517        struct btf *btf = NULL;
9518        int err = -EINVAL;
9519
9520        info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0);
9521        err = libbpf_get_error(info_linear);
9522        if (err) {
9523                pr_warn("failed get_prog_info_linear for FD %d\n",
9524                        attach_prog_fd);
9525                return err;
9526        }
9527        info = &info_linear->info;
9528        if (!info->btf_id) {
9529                pr_warn("The target program doesn't have BTF\n");
9530                goto out;
9531        }
9532        if (btf__get_from_id(info->btf_id, &btf)) {
9533                pr_warn("Failed to get BTF of the program\n");
9534                goto out;
9535        }
9536        err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9537        btf__free(btf);
9538        if (err <= 0) {
9539                pr_warn("%s is not found in prog's BTF\n", name);
9540                goto out;
9541        }
9542out:
9543        free(info_linear);
9544        return err;
9545}
9546
9547static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9548                              enum bpf_attach_type attach_type,
9549                              int *btf_obj_fd, int *btf_type_id)
9550{
9551        int ret, i;
9552
9553        ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9554        if (ret > 0) {
9555                *btf_obj_fd = 0; /* vmlinux BTF */
9556                *btf_type_id = ret;
9557                return 0;
9558        }
9559        if (ret != -ENOENT)
9560                return ret;
9561
9562        ret = load_module_btfs(obj);
9563        if (ret)
9564                return ret;
9565
9566        for (i = 0; i < obj->btf_module_cnt; i++) {
9567                const struct module_btf *mod = &obj->btf_modules[i];
9568
9569                ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9570                if (ret > 0) {
9571                        *btf_obj_fd = mod->fd;
9572                        *btf_type_id = ret;
9573                        return 0;
9574                }
9575                if (ret == -ENOENT)
9576                        continue;
9577
9578                return ret;
9579        }
9580
9581        return -ESRCH;
9582}
9583
9584static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id)
9585{
9586        enum bpf_attach_type attach_type = prog->expected_attach_type;
9587        __u32 attach_prog_fd = prog->attach_prog_fd;
9588        const char *name = prog->sec_name, *attach_name;
9589        const struct bpf_sec_def *sec = NULL;
9590        int i, err = 0;
9591
9592        if (!name)
9593                return -EINVAL;
9594
9595        for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9596                if (!section_defs[i].is_attach_btf)
9597                        continue;
9598                if (strncmp(name, section_defs[i].sec, section_defs[i].len))
9599                        continue;
9600
9601                sec = &section_defs[i];
9602                break;
9603        }
9604
9605        if (!sec) {
9606                pr_warn("failed to identify BTF ID based on ELF section name '%s'\n", name);
9607                return -ESRCH;
9608        }
9609        attach_name = name + sec->len;
9610
9611        /* BPF program's BTF ID */
9612        if (attach_prog_fd) {
9613                err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9614                if (err < 0) {
9615                        pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9616                                 attach_prog_fd, attach_name, err);
9617                        return err;
9618                }
9619                *btf_obj_fd = 0;
9620                *btf_type_id = err;
9621                return 0;
9622        }
9623
9624        /* kernel/module BTF ID */
9625        if (prog->obj->gen_loader) {
9626                bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9627                *btf_obj_fd = 0;
9628                *btf_type_id = 1;
9629        } else {
9630                err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9631        }
9632        if (err) {
9633                pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err);
9634                return err;
9635        }
9636        return 0;
9637}
9638
9639int libbpf_attach_type_by_name(const char *name,
9640                               enum bpf_attach_type *attach_type)
9641{
9642        char *type_names;
9643        int i;
9644
9645        if (!name)
9646                return libbpf_err(-EINVAL);
9647
9648        for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9649                if (strncmp(name, section_defs[i].sec, section_defs[i].len))
9650                        continue;
9651                if (!section_defs[i].is_attachable)
9652                        return libbpf_err(-EINVAL);
9653                *attach_type = section_defs[i].expected_attach_type;
9654                return 0;
9655        }
9656        pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9657        type_names = libbpf_get_type_names(true);
9658        if (type_names != NULL) {
9659                pr_debug("attachable section(type) names are:%s\n", type_names);
9660                free(type_names);
9661        }
9662
9663        return libbpf_err(-EINVAL);
9664}
9665
9666int bpf_map__fd(const struct bpf_map *map)
9667{
9668        return map ? map->fd : libbpf_err(-EINVAL);
9669}
9670
9671const struct bpf_map_def *bpf_map__def(const struct bpf_map *map)
9672{
9673        return map ? &map->def : libbpf_err_ptr(-EINVAL);
9674}
9675
9676const char *bpf_map__name(const struct bpf_map *map)
9677{
9678        return map ? map->name : NULL;
9679}
9680
9681enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9682{
9683        return map->def.type;
9684}
9685
9686int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9687{
9688        if (map->fd >= 0)
9689                return libbpf_err(-EBUSY);
9690        map->def.type = type;
9691        return 0;
9692}
9693
9694__u32 bpf_map__map_flags(const struct bpf_map *map)
9695{
9696        return map->def.map_flags;
9697}
9698
9699int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9700{
9701        if (map->fd >= 0)
9702                return libbpf_err(-EBUSY);
9703        map->def.map_flags = flags;
9704        return 0;
9705}
9706
9707__u32 bpf_map__numa_node(const struct bpf_map *map)
9708{
9709        return map->numa_node;
9710}
9711
9712int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9713{
9714        if (map->fd >= 0)
9715                return libbpf_err(-EBUSY);
9716        map->numa_node = numa_node;
9717        return 0;
9718}
9719
9720__u32 bpf_map__key_size(const struct bpf_map *map)
9721{
9722        return map->def.key_size;
9723}
9724
9725int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9726{
9727        if (map->fd >= 0)
9728                return libbpf_err(-EBUSY);
9729        map->def.key_size = size;
9730        return 0;
9731}
9732
9733__u32 bpf_map__value_size(const struct bpf_map *map)
9734{
9735        return map->def.value_size;
9736}
9737
9738int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9739{
9740        if (map->fd >= 0)
9741                return libbpf_err(-EBUSY);
9742        map->def.value_size = size;
9743        return 0;
9744}
9745
9746__u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9747{
9748        return map ? map->btf_key_type_id : 0;
9749}
9750
9751__u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9752{
9753        return map ? map->btf_value_type_id : 0;
9754}
9755
9756int bpf_map__set_priv(struct bpf_map *map, void *priv,
9757                     bpf_map_clear_priv_t clear_priv)
9758{
9759        if (!map)
9760                return libbpf_err(-EINVAL);
9761
9762        if (map->priv) {
9763                if (map->clear_priv)
9764                        map->clear_priv(map, map->priv);
9765        }
9766
9767        map->priv = priv;
9768        map->clear_priv = clear_priv;
9769        return 0;
9770}
9771
9772void *bpf_map__priv(const struct bpf_map *map)
9773{
9774        return map ? map->priv : libbpf_err_ptr(-EINVAL);
9775}
9776
9777int bpf_map__set_initial_value(struct bpf_map *map,
9778                               const void *data, size_t size)
9779{
9780        if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9781            size != map->def.value_size || map->fd >= 0)
9782                return libbpf_err(-EINVAL);
9783
9784        memcpy(map->mmaped, data, size);
9785        return 0;
9786}
9787
9788const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9789{
9790        if (!map->mmaped)
9791                return NULL;
9792        *psize = map->def.value_size;
9793        return map->mmaped;
9794}
9795
9796bool bpf_map__is_offload_neutral(const struct bpf_map *map)
9797{
9798        return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
9799}
9800
9801bool bpf_map__is_internal(const struct bpf_map *map)
9802{
9803        return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9804}
9805
9806__u32 bpf_map__ifindex(const struct bpf_map *map)
9807{
9808        return map->map_ifindex;
9809}
9810
9811int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9812{
9813        if (map->fd >= 0)
9814                return libbpf_err(-EBUSY);
9815        map->map_ifindex = ifindex;
9816        return 0;
9817}
9818
9819int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9820{
9821        if (!bpf_map_type__is_map_in_map(map->def.type)) {
9822                pr_warn("error: unsupported map type\n");
9823                return libbpf_err(-EINVAL);
9824        }
9825        if (map->inner_map_fd != -1) {
9826                pr_warn("error: inner_map_fd already specified\n");
9827                return libbpf_err(-EINVAL);
9828        }
9829        zfree(&map->inner_map);
9830        map->inner_map_fd = fd;
9831        return 0;
9832}
9833
9834static struct bpf_map *
9835__bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9836{
9837        ssize_t idx;
9838        struct bpf_map *s, *e;
9839
9840        if (!obj || !obj->maps)
9841                return errno = EINVAL, NULL;
9842
9843        s = obj->maps;
9844        e = obj->maps + obj->nr_maps;
9845
9846        if ((m < s) || (m >= e)) {
9847                pr_warn("error in %s: map handler doesn't belong to object\n",
9848                         __func__);
9849                return errno = EINVAL, NULL;
9850        }
9851
9852        idx = (m - obj->maps) + i;
9853        if (idx >= obj->nr_maps || idx < 0)
9854                return NULL;
9855        return &obj->maps[idx];
9856}
9857
9858struct bpf_map *
9859bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj)
9860{
9861        if (prev == NULL)
9862                return obj->maps;
9863
9864        return __bpf_map__iter(prev, obj, 1);
9865}
9866
9867struct bpf_map *
9868bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj)
9869{
9870        if (next == NULL) {
9871                if (!obj->nr_maps)
9872                        return NULL;
9873                return obj->maps + obj->nr_maps - 1;
9874        }
9875
9876        return __bpf_map__iter(next, obj, -1);
9877}
9878
9879struct bpf_map *
9880bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9881{
9882        struct bpf_map *pos;
9883
9884        bpf_object__for_each_map(pos, obj) {
9885                if (pos->name && !strcmp(pos->name, name))
9886                        return pos;
9887        }
9888        return errno = ENOENT, NULL;
9889}
9890
9891int
9892bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9893{
9894        return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9895}
9896
9897struct bpf_map *
9898bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset)
9899{
9900        return libbpf_err_ptr(-ENOTSUP);
9901}
9902
9903long libbpf_get_error(const void *ptr)
9904{
9905        if (!IS_ERR_OR_NULL(ptr))
9906                return 0;
9907
9908        if (IS_ERR(ptr))
9909                errno = -PTR_ERR(ptr);
9910
9911        /* If ptr == NULL, then errno should be already set by the failing
9912         * API, because libbpf never returns NULL on success and it now always
9913         * sets errno on error. So no extra errno handling for ptr == NULL
9914         * case.
9915         */
9916        return -errno;
9917}
9918
9919int bpf_prog_load(const char *file, enum bpf_prog_type type,
9920                  struct bpf_object **pobj, int *prog_fd)
9921{
9922        struct bpf_prog_load_attr attr;
9923
9924        memset(&attr, 0, sizeof(struct bpf_prog_load_attr));
9925        attr.file = file;
9926        attr.prog_type = type;
9927        attr.expected_attach_type = 0;
9928
9929        return bpf_prog_load_xattr(&attr, pobj, prog_fd);
9930}
9931
9932int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr,
9933                        struct bpf_object **pobj, int *prog_fd)
9934{
9935        struct bpf_object_open_attr open_attr = {};
9936        struct bpf_program *prog, *first_prog = NULL;
9937        struct bpf_object *obj;
9938        struct bpf_map *map;
9939        int err;
9940
9941        if (!attr)
9942                return libbpf_err(-EINVAL);
9943        if (!attr->file)
9944                return libbpf_err(-EINVAL);
9945
9946        open_attr.file = attr->file;
9947        open_attr.prog_type = attr->prog_type;
9948
9949        obj = bpf_object__open_xattr(&open_attr);
9950        err = libbpf_get_error(obj);
9951        if (err)
9952                return libbpf_err(-ENOENT);
9953
9954        bpf_object__for_each_program(prog, obj) {
9955                enum bpf_attach_type attach_type = attr->expected_attach_type;
9956                /*
9957                 * to preserve backwards compatibility, bpf_prog_load treats
9958                 * attr->prog_type, if specified, as an override to whatever
9959                 * bpf_object__open guessed
9960                 */
9961                if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) {
9962                        bpf_program__set_type(prog, attr->prog_type);
9963                        bpf_program__set_expected_attach_type(prog,
9964                                                              attach_type);
9965                }
9966                if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) {
9967                        /*
9968                         * we haven't guessed from section name and user
9969                         * didn't provide a fallback type, too bad...
9970                         */
9971                        bpf_object__close(obj);
9972                        return libbpf_err(-EINVAL);
9973                }
9974
9975                prog->prog_ifindex = attr->ifindex;
9976                prog->log_level = attr->log_level;
9977                prog->prog_flags |= attr->prog_flags;
9978                if (!first_prog)
9979                        first_prog = prog;
9980        }
9981
9982        bpf_object__for_each_map(map, obj) {
9983                if (!bpf_map__is_offload_neutral(map))
9984                        map->map_ifindex = attr->ifindex;
9985        }
9986
9987        if (!first_prog) {
9988                pr_warn("object file doesn't contain bpf program\n");
9989                bpf_object__close(obj);
9990                return libbpf_err(-ENOENT);
9991        }
9992
9993        err = bpf_object__load(obj);
9994        if (err) {
9995                bpf_object__close(obj);
9996                return libbpf_err(err);
9997        }
9998
9999        *pobj = obj;
10000        *prog_fd = bpf_program__fd(first_prog);
10001        return 0;
10002}
10003
10004struct bpf_link {
10005        int (*detach)(struct bpf_link *link);
10006        int (*destroy)(struct bpf_link *link);
10007        char *pin_path;         /* NULL, if not pinned */
10008        int fd;                 /* hook FD, -1 if not applicable */
10009        bool disconnected;
10010};
10011
10012/* Replace link's underlying BPF program with the new one */
10013int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
10014{
10015        int ret;
10016        
10017        ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
10018        return libbpf_err_errno(ret);
10019}
10020
10021/* Release "ownership" of underlying BPF resource (typically, BPF program
10022 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
10023 * link, when destructed through bpf_link__destroy() call won't attempt to
10024 * detach/unregisted that BPF resource. This is useful in situations where,
10025 * say, attached BPF program has to outlive userspace program that attached it
10026 * in the system. Depending on type of BPF program, though, there might be
10027 * additional steps (like pinning BPF program in BPF FS) necessary to ensure
10028 * exit of userspace program doesn't trigger automatic detachment and clean up
10029 * inside the kernel.
10030 */
10031void bpf_link__disconnect(struct bpf_link *link)
10032{
10033        link->disconnected = true;
10034}
10035
10036int bpf_link__destroy(struct bpf_link *link)
10037{
10038        int err = 0;
10039
10040        if (IS_ERR_OR_NULL(link))
10041                return 0;
10042
10043        if (!link->disconnected && link->detach)
10044                err = link->detach(link);
10045        if (link->destroy)
10046                link->destroy(link);
10047        if (link->pin_path)
10048                free(link->pin_path);
10049        free(link);
10050
10051        return libbpf_err(err);
10052}
10053
10054int bpf_link__fd(const struct bpf_link *link)
10055{
10056        return link->fd;
10057}
10058
10059const char *bpf_link__pin_path(const struct bpf_link *link)
10060{
10061        return link->pin_path;
10062}
10063
10064static int bpf_link__detach_fd(struct bpf_link *link)
10065{
10066        return libbpf_err_errno(close(link->fd));
10067}
10068
10069struct bpf_link *bpf_link__open(const char *path)
10070{
10071        struct bpf_link *link;
10072        int fd;
10073
10074        fd = bpf_obj_get(path);
10075        if (fd < 0) {
10076                fd = -errno;
10077                pr_warn("failed to open link at %s: %d\n", path, fd);
10078                return libbpf_err_ptr(fd);
10079        }
10080
10081        link = calloc(1, sizeof(*link));
10082        if (!link) {
10083                close(fd);
10084                return libbpf_err_ptr(-ENOMEM);
10085        }
10086        link->detach = &bpf_link__detach_fd;
10087        link->fd = fd;
10088
10089        link->pin_path = strdup(path);
10090        if (!link->pin_path) {
10091                bpf_link__destroy(link);
10092                return libbpf_err_ptr(-ENOMEM);
10093        }
10094
10095        return link;
10096}
10097
10098int bpf_link__detach(struct bpf_link *link)
10099{
10100        return bpf_link_detach(link->fd) ? -errno : 0;
10101}
10102
10103int bpf_link__pin(struct bpf_link *link, const char *path)
10104{
10105        int err;
10106
10107        if (link->pin_path)
10108                return libbpf_err(-EBUSY);
10109        err = make_parent_dir(path);
10110        if (err)
10111                return libbpf_err(err);
10112        err = check_path(path);
10113        if (err)
10114                return libbpf_err(err);
10115
10116        link->pin_path = strdup(path);
10117        if (!link->pin_path)
10118                return libbpf_err(-ENOMEM);
10119
10120        if (bpf_obj_pin(link->fd, link->pin_path)) {
10121                err = -errno;
10122                zfree(&link->pin_path);
10123                return libbpf_err(err);
10124        }
10125
10126        pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10127        return 0;
10128}
10129
10130int bpf_link__unpin(struct bpf_link *link)
10131{
10132        int err;
10133
10134        if (!link->pin_path)
10135                return libbpf_err(-EINVAL);
10136
10137        err = unlink(link->pin_path);
10138        if (err != 0)
10139                return -errno;
10140
10141        pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10142        zfree(&link->pin_path);
10143        return 0;
10144}
10145
10146static int bpf_link__detach_perf_event(struct bpf_link *link)
10147{
10148        int err;
10149
10150        err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0);
10151        if (err)
10152                err = -errno;
10153
10154        close(link->fd);
10155        return libbpf_err(err);
10156}
10157
10158struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog, int pfd)
10159{
10160        char errmsg[STRERR_BUFSIZE];
10161        struct bpf_link *link;
10162        int prog_fd, err;
10163
10164        if (pfd < 0) {
10165                pr_warn("prog '%s': invalid perf event FD %d\n",
10166                        prog->name, pfd);
10167                return libbpf_err_ptr(-EINVAL);
10168        }
10169        prog_fd = bpf_program__fd(prog);
10170        if (prog_fd < 0) {
10171                pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10172                        prog->name);
10173                return libbpf_err_ptr(-EINVAL);
10174        }
10175
10176        link = calloc(1, sizeof(*link));
10177        if (!link)
10178                return libbpf_err_ptr(-ENOMEM);
10179        link->detach = &bpf_link__detach_perf_event;
10180        link->fd = pfd;
10181
10182        if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10183                err = -errno;
10184                free(link);
10185                pr_warn("prog '%s': failed to attach to pfd %d: %s\n",
10186                        prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10187                if (err == -EPROTO)
10188                        pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10189                                prog->name, pfd);
10190                return libbpf_err_ptr(err);
10191        }
10192        if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10193                err = -errno;
10194                free(link);
10195                pr_warn("prog '%s': failed to enable pfd %d: %s\n",
10196                        prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10197                return libbpf_err_ptr(err);
10198        }
10199        return link;
10200}
10201
10202/*
10203 * this function is expected to parse integer in the range of [0, 2^31-1] from
10204 * given file using scanf format string fmt. If actual parsed value is
10205 * negative, the result might be indistinguishable from error
10206 */
10207static int parse_uint_from_file(const char *file, const char *fmt)
10208{
10209        char buf[STRERR_BUFSIZE];
10210        int err, ret;
10211        FILE *f;
10212
10213        f = fopen(file, "r");
10214        if (!f) {
10215                err = -errno;
10216                pr_debug("failed to open '%s': %s\n", file,
10217                         libbpf_strerror_r(err, buf, sizeof(buf)));
10218                return err;
10219        }
10220        err = fscanf(f, fmt, &ret);
10221        if (err != 1) {
10222                err = err == EOF ? -EIO : -errno;
10223                pr_debug("failed to parse '%s': %s\n", file,
10224                        libbpf_strerror_r(err, buf, sizeof(buf)));
10225                fclose(f);
10226                return err;
10227        }
10228        fclose(f);
10229        return ret;
10230}
10231
10232static int determine_kprobe_perf_type(void)
10233{
10234        const char *file = "/sys/bus/event_source/devices/kprobe/type";
10235
10236        return parse_uint_from_file(file, "%d\n");
10237}
10238
10239static int determine_uprobe_perf_type(void)
10240{
10241        const char *file = "/sys/bus/event_source/devices/uprobe/type";
10242
10243        return parse_uint_from_file(file, "%d\n");
10244}
10245
10246static int determine_kprobe_retprobe_bit(void)
10247{
10248        const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10249
10250        return parse_uint_from_file(file, "config:%d\n");
10251}
10252
10253static int determine_uprobe_retprobe_bit(void)
10254{
10255        const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10256
10257        return parse_uint_from_file(file, "config:%d\n");
10258}
10259
10260static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10261                                 uint64_t offset, int pid)
10262{
10263        struct perf_event_attr attr = {};
10264        char errmsg[STRERR_BUFSIZE];
10265        int type, pfd, err;
10266
10267        type = uprobe ? determine_uprobe_perf_type()
10268                      : determine_kprobe_perf_type();
10269        if (type < 0) {
10270                pr_warn("failed to determine %s perf type: %s\n",
10271                        uprobe ? "uprobe" : "kprobe",
10272                        libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10273                return type;
10274        }
10275        if (retprobe) {
10276                int bit = uprobe ? determine_uprobe_retprobe_bit()
10277                                 : determine_kprobe_retprobe_bit();
10278
10279                if (bit < 0) {
10280                        pr_warn("failed to determine %s retprobe bit: %s\n",
10281                                uprobe ? "uprobe" : "kprobe",
10282                                libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10283                        return bit;
10284                }
10285                attr.config |= 1 << bit;
10286        }
10287        attr.size = sizeof(attr);
10288        attr.type = type;
10289        attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10290        attr.config2 = offset;           /* kprobe_addr or probe_offset */
10291
10292        /* pid filter is meaningful only for uprobes */
10293        pfd = syscall(__NR_perf_event_open, &attr,
10294                      pid < 0 ? -1 : pid /* pid */,
10295                      pid == -1 ? 0 : -1 /* cpu */,
10296                      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10297        if (pfd < 0) {
10298                err = -errno;
10299                pr_warn("%s perf_event_open() failed: %s\n",
10300                        uprobe ? "uprobe" : "kprobe",
10301                        libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10302                return err;
10303        }
10304        return pfd;
10305}
10306
10307struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog,
10308                                            bool retprobe,
10309                                            const char *func_name)
10310{
10311        char errmsg[STRERR_BUFSIZE];
10312        struct bpf_link *link;
10313        int pfd, err;
10314
10315        pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name,
10316                                    0 /* offset */, -1 /* pid */);
10317        if (pfd < 0) {
10318                pr_warn("prog '%s': failed to create %s '%s' perf event: %s\n",
10319                        prog->name, retprobe ? "kretprobe" : "kprobe", func_name,
10320                        libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10321                return libbpf_err_ptr(pfd);
10322        }
10323        link = bpf_program__attach_perf_event(prog, pfd);
10324        err = libbpf_get_error(link);
10325        if (err) {
10326                close(pfd);
10327                pr_warn("prog '%s': failed to attach to %s '%s': %s\n",
10328                        prog->name, retprobe ? "kretprobe" : "kprobe", func_name,
10329                        libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10330                return libbpf_err_ptr(err);
10331        }
10332        return link;
10333}
10334
10335static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec,
10336                                      struct bpf_program *prog)
10337{
10338        const char *func_name;
10339        bool retprobe;
10340
10341        func_name = prog->sec_name + sec->len;
10342        retprobe = strcmp(sec->sec, "kretprobe/") == 0;
10343
10344        return bpf_program__attach_kprobe(prog, retprobe, func_name);
10345}
10346
10347struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog,
10348                                            bool retprobe, pid_t pid,
10349                                            const char *binary_path,
10350                                            size_t func_offset)
10351{
10352        char errmsg[STRERR_BUFSIZE];
10353        struct bpf_link *link;
10354        int pfd, err;
10355
10356        pfd = perf_event_open_probe(true /* uprobe */, retprobe,
10357                                    binary_path, func_offset, pid);
10358        if (pfd < 0) {
10359                pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
10360                        prog->name, retprobe ? "uretprobe" : "uprobe",
10361                        binary_path, func_offset,
10362                        libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10363                return libbpf_err_ptr(pfd);
10364        }
10365        link = bpf_program__attach_perf_event(prog, pfd);
10366        err = libbpf_get_error(link);
10367        if (err) {
10368                close(pfd);
10369                pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
10370                        prog->name, retprobe ? "uretprobe" : "uprobe",
10371                        binary_path, func_offset,
10372                        libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10373                return libbpf_err_ptr(err);
10374        }
10375        return link;
10376}
10377
10378static int determine_tracepoint_id(const char *tp_category,
10379                                   const char *tp_name)
10380{
10381        char file[PATH_MAX];
10382        int ret;
10383
10384        ret = snprintf(file, sizeof(file),
10385                       "/sys/kernel/debug/tracing/events/%s/%s/id",
10386                       tp_category, tp_name);
10387        if (ret < 0)
10388                return -errno;
10389        if (ret >= sizeof(file)) {
10390                pr_debug("tracepoint %s/%s path is too long\n",
10391                         tp_category, tp_name);
10392                return -E2BIG;
10393        }
10394        return parse_uint_from_file(file, "%d\n");
10395}
10396
10397static int perf_event_open_tracepoint(const char *tp_category,
10398                                      const char *tp_name)
10399{
10400        struct perf_event_attr attr = {};
10401        char errmsg[STRERR_BUFSIZE];
10402        int tp_id, pfd, err;
10403
10404        tp_id = determine_tracepoint_id(tp_category, tp_name);
10405        if (tp_id < 0) {
10406                pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
10407                        tp_category, tp_name,
10408                        libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
10409                return tp_id;
10410        }
10411
10412        attr.type = PERF_TYPE_TRACEPOINT;
10413        attr.size = sizeof(attr);
10414        attr.config = tp_id;
10415
10416        pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
10417                      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10418        if (pfd < 0) {
10419                err = -errno;
10420                pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
10421                        tp_category, tp_name,
10422                        libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10423                return err;
10424        }
10425        return pfd;
10426}
10427
10428struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog,
10429                                                const char *tp_category,
10430                                                const char *tp_name)
10431{
10432        char errmsg[STRERR_BUFSIZE];
10433        struct bpf_link *link;
10434        int pfd, err;
10435
10436        pfd = perf_event_open_tracepoint(tp_category, tp_name);
10437        if (pfd < 0) {
10438                pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
10439                        prog->name, tp_category, tp_name,
10440                        libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10441                return libbpf_err_ptr(pfd);
10442        }
10443        link = bpf_program__attach_perf_event(prog, pfd);
10444        err = libbpf_get_error(link);
10445        if (err) {
10446                close(pfd);
10447                pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
10448                        prog->name, tp_category, tp_name,
10449                        libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10450                return libbpf_err_ptr(err);
10451        }
10452        return link;
10453}
10454
10455static struct bpf_link *attach_tp(const struct bpf_sec_def *sec,
10456                                  struct bpf_program *prog)
10457{
10458        char *sec_name, *tp_cat, *tp_name;
10459        struct bpf_link *link;
10460
10461        sec_name = strdup(prog->sec_name);
10462        if (!sec_name)
10463                return libbpf_err_ptr(-ENOMEM);
10464
10465        /* extract "tp/<category>/<name>" */
10466        tp_cat = sec_name + sec->len;
10467        tp_name = strchr(tp_cat, '/');
10468        if (!tp_name) {
10469                free(sec_name);
10470                return libbpf_err_ptr(-EINVAL);
10471        }
10472        *tp_name = '\0';
10473        tp_name++;
10474
10475        link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
10476        free(sec_name);
10477        return link;
10478}
10479
10480struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog,
10481                                                    const char *tp_name)
10482{
10483        char errmsg[STRERR_BUFSIZE];
10484        struct bpf_link *link;
10485        int prog_fd, pfd;
10486
10487        prog_fd = bpf_program__fd(prog);
10488        if (prog_fd < 0) {
10489                pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10490                return libbpf_err_ptr(-EINVAL);
10491        }
10492
10493        link = calloc(1, sizeof(*link));
10494        if (!link)
10495                return libbpf_err_ptr(-ENOMEM);
10496        link->detach = &bpf_link__detach_fd;
10497
10498        pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
10499        if (pfd < 0) {
10500                pfd = -errno;
10501                free(link);
10502                pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
10503                        prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10504                return libbpf_err_ptr(pfd);
10505        }
10506        link->fd = pfd;
10507        return link;
10508}
10509
10510static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec,
10511                                      struct bpf_program *prog)
10512{
10513        const char *tp_name = prog->sec_name + sec->len;
10514
10515        return bpf_program__attach_raw_tracepoint(prog, tp_name);
10516}
10517
10518/* Common logic for all BPF program types that attach to a btf_id */
10519static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog)
10520{
10521        char errmsg[STRERR_BUFSIZE];
10522        struct bpf_link *link;
10523        int prog_fd, pfd;
10524
10525        prog_fd = bpf_program__fd(prog);
10526        if (prog_fd < 0) {
10527                pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10528                return libbpf_err_ptr(-EINVAL);
10529        }
10530
10531        link = calloc(1, sizeof(*link));
10532        if (!link)
10533                return libbpf_err_ptr(-ENOMEM);
10534        link->detach = &bpf_link__detach_fd;
10535
10536        pfd = bpf_raw_tracepoint_open(NULL, prog_fd);
10537        if (pfd < 0) {
10538                pfd = -errno;
10539                free(link);
10540                pr_warn("prog '%s': failed to attach: %s\n",
10541                        prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10542                return libbpf_err_ptr(pfd);
10543        }
10544        link->fd = pfd;
10545        return (struct bpf_link *)link;
10546}
10547
10548struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog)
10549{
10550        return bpf_program__attach_btf_id(prog);
10551}
10552
10553struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog)
10554{
10555        return bpf_program__attach_btf_id(prog);
10556}
10557
10558static struct bpf_link *attach_trace(const struct bpf_sec_def *sec,
10559                                     struct bpf_program *prog)
10560{
10561        return bpf_program__attach_trace(prog);
10562}
10563
10564static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec,
10565                                   struct bpf_program *prog)
10566{
10567        return bpf_program__attach_lsm(prog);
10568}
10569
10570static struct bpf_link *
10571bpf_program__attach_fd(struct bpf_program *prog, int target_fd, int btf_id,
10572                       const char *target_name)
10573{
10574        DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
10575                            .target_btf_id = btf_id);
10576        enum bpf_attach_type attach_type;
10577        char errmsg[STRERR_BUFSIZE];
10578        struct bpf_link *link;
10579        int prog_fd, link_fd;
10580
10581        prog_fd = bpf_program__fd(prog);
10582        if (prog_fd < 0) {
10583                pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10584                return libbpf_err_ptr(-EINVAL);
10585        }
10586
10587        link = calloc(1, sizeof(*link));
10588        if (!link)
10589                return libbpf_err_ptr(-ENOMEM);
10590        link->detach = &bpf_link__detach_fd;
10591
10592        attach_type = bpf_program__get_expected_attach_type(prog);
10593        link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
10594        if (link_fd < 0) {
10595                link_fd = -errno;
10596                free(link);
10597                pr_warn("prog '%s': failed to attach to %s: %s\n",
10598                        prog->name, target_name,
10599                        libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
10600                return libbpf_err_ptr(link_fd);
10601        }
10602        link->fd = link_fd;
10603        return link;
10604}
10605
10606struct bpf_link *
10607bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd)
10608{
10609        return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
10610}
10611
10612struct bpf_link *
10613bpf_program__attach_netns(struct bpf_program *prog, int netns_fd)
10614{
10615        return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
10616}
10617
10618struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex)
10619{
10620        /* target_fd/target_ifindex use the same field in LINK_CREATE */
10621        return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
10622}
10623
10624struct bpf_link *bpf_program__attach_freplace(struct bpf_program *prog,
10625                                              int target_fd,
10626                                              const char *attach_func_name)
10627{
10628        int btf_id;
10629
10630        if (!!target_fd != !!attach_func_name) {
10631                pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
10632                        prog->name);
10633                return libbpf_err_ptr(-EINVAL);
10634        }
10635
10636        if (prog->type != BPF_PROG_TYPE_EXT) {
10637                pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
10638                        prog->name);
10639                return libbpf_err_ptr(-EINVAL);
10640        }
10641
10642        if (target_fd) {
10643                btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
10644                if (btf_id < 0)
10645                        return libbpf_err_ptr(btf_id);
10646
10647                return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
10648        } else {
10649                /* no target, so use raw_tracepoint_open for compatibility
10650                 * with old kernels
10651                 */
10652                return bpf_program__attach_trace(prog);
10653        }
10654}
10655
10656struct bpf_link *
10657bpf_program__attach_iter(struct bpf_program *prog,
10658                         const struct bpf_iter_attach_opts *opts)
10659{
10660        DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
10661        char errmsg[STRERR_BUFSIZE];
10662        struct bpf_link *link;
10663        int prog_fd, link_fd;
10664        __u32 target_fd = 0;
10665
10666        if (!OPTS_VALID(opts, bpf_iter_attach_opts))
10667                return libbpf_err_ptr(-EINVAL);
10668
10669        link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
10670        link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
10671
10672        prog_fd = bpf_program__fd(prog);
10673        if (prog_fd < 0) {
10674                pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10675                return libbpf_err_ptr(-EINVAL);
10676        }
10677
10678        link = calloc(1, sizeof(*link));
10679        if (!link)
10680                return libbpf_err_ptr(-ENOMEM);
10681        link->detach = &bpf_link__detach_fd;
10682
10683        link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
10684                                  &link_create_opts);
10685        if (link_fd < 0) {
10686                link_fd = -errno;
10687                free(link);
10688                pr_warn("prog '%s': failed to attach to iterator: %s\n",
10689                        prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
10690                return libbpf_err_ptr(link_fd);
10691        }
10692        link->fd = link_fd;
10693        return link;
10694}
10695
10696static struct bpf_link *attach_iter(const struct bpf_sec_def *sec,
10697                                    struct bpf_program *prog)
10698{
10699        return bpf_program__attach_iter(prog, NULL);
10700}
10701
10702struct bpf_link *bpf_program__attach(struct bpf_program *prog)
10703{
10704        const struct bpf_sec_def *sec_def;
10705
10706        sec_def = find_sec_def(prog->sec_name);
10707        if (!sec_def || !sec_def->attach_fn)
10708                return libbpf_err_ptr(-ESRCH);
10709
10710        return sec_def->attach_fn(sec_def, prog);
10711}
10712
10713static int bpf_link__detach_struct_ops(struct bpf_link *link)
10714{
10715        __u32 zero = 0;
10716
10717        if (bpf_map_delete_elem(link->fd, &zero))
10718                return -errno;
10719
10720        return 0;
10721}
10722
10723struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map)
10724{
10725        struct bpf_struct_ops *st_ops;
10726        struct bpf_link *link;
10727        __u32 i, zero = 0;
10728        int err;
10729
10730        if (!bpf_map__is_struct_ops(map) || map->fd == -1)
10731                return libbpf_err_ptr(-EINVAL);
10732
10733        link = calloc(1, sizeof(*link));
10734        if (!link)
10735                return libbpf_err_ptr(-EINVAL);
10736
10737        st_ops = map->st_ops;
10738        for (i = 0; i < btf_vlen(st_ops->type); i++) {
10739                struct bpf_program *prog = st_ops->progs[i];
10740                void *kern_data;
10741                int prog_fd;
10742
10743                if (!prog)
10744                        continue;
10745
10746                prog_fd = bpf_program__fd(prog);
10747                kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
10748                *(unsigned long *)kern_data = prog_fd;
10749        }
10750
10751        err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
10752        if (err) {
10753                err = -errno;
10754                free(link);
10755                return libbpf_err_ptr(err);
10756        }
10757
10758        link->detach = bpf_link__detach_struct_ops;
10759        link->fd = map->fd;
10760
10761        return link;
10762}
10763
10764enum bpf_perf_event_ret
10765bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
10766                           void **copy_mem, size_t *copy_size,
10767                           bpf_perf_event_print_t fn, void *private_data)
10768{
10769        struct perf_event_mmap_page *header = mmap_mem;
10770        __u64 data_head = ring_buffer_read_head(header);
10771        __u64 data_tail = header->data_tail;
10772        void *base = ((__u8 *)header) + page_size;
10773        int ret = LIBBPF_PERF_EVENT_CONT;
10774        struct perf_event_header *ehdr;
10775        size_t ehdr_size;
10776
10777        while (data_head != data_tail) {
10778                ehdr = base + (data_tail & (mmap_size - 1));
10779                ehdr_size = ehdr->size;
10780
10781                if (((void *)ehdr) + ehdr_size > base + mmap_size) {
10782                        void *copy_start = ehdr;
10783                        size_t len_first = base + mmap_size - copy_start;
10784                        size_t len_secnd = ehdr_size - len_first;
10785
10786                        if (*copy_size < ehdr_size) {
10787                                free(*copy_mem);
10788                                *copy_mem = malloc(ehdr_size);
10789                                if (!*copy_mem) {
10790                                        *copy_size = 0;
10791                                        ret = LIBBPF_PERF_EVENT_ERROR;
10792                                        break;
10793                                }
10794                                *copy_size = ehdr_size;
10795                        }
10796
10797                        memcpy(*copy_mem, copy_start, len_first);
10798                        memcpy(*copy_mem + len_first, base, len_secnd);
10799                        ehdr = *copy_mem;
10800                }
10801
10802                ret = fn(ehdr, private_data);
10803                data_tail += ehdr_size;
10804                if (ret != LIBBPF_PERF_EVENT_CONT)
10805                        break;
10806        }
10807
10808        ring_buffer_write_tail(header, data_tail);
10809        return libbpf_err(ret);
10810}
10811
10812struct perf_buffer;
10813
10814struct perf_buffer_params {
10815        struct perf_event_attr *attr;
10816        /* if event_cb is specified, it takes precendence */
10817        perf_buffer_event_fn event_cb;
10818        /* sample_cb and lost_cb are higher-level common-case callbacks */
10819        perf_buffer_sample_fn sample_cb;
10820        perf_buffer_lost_fn lost_cb;
10821        void *ctx;
10822        int cpu_cnt;
10823        int *cpus;
10824        int *map_keys;
10825};
10826
10827struct perf_cpu_buf {
10828        struct perf_buffer *pb;
10829        void *base; /* mmap()'ed memory */
10830        void *buf; /* for reconstructing segmented data */
10831        size_t buf_size;
10832        int fd;
10833        int cpu;
10834        int map_key;
10835};
10836
10837struct perf_buffer {
10838        perf_buffer_event_fn event_cb;
10839        perf_buffer_sample_fn sample_cb;
10840        perf_buffer_lost_fn lost_cb;
10841        void *ctx; /* passed into callbacks */
10842
10843        size_t page_size;
10844        size_t mmap_size;
10845        struct perf_cpu_buf **cpu_bufs;
10846        struct epoll_event *events;
10847        int cpu_cnt; /* number of allocated CPU buffers */
10848        int epoll_fd; /* perf event FD */
10849        int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
10850};
10851
10852static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
10853                                      struct perf_cpu_buf *cpu_buf)
10854{
10855        if (!cpu_buf)
10856                return;
10857        if (cpu_buf->base &&
10858            munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
10859                pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
10860        if (cpu_buf->fd >= 0) {
10861                ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
10862                close(cpu_buf->fd);
10863        }
10864        free(cpu_buf->buf);
10865        free(cpu_buf);
10866}
10867
10868void perf_buffer__free(struct perf_buffer *pb)
10869{
10870        int i;
10871
10872        if (IS_ERR_OR_NULL(pb))
10873                return;
10874        if (pb->cpu_bufs) {
10875                for (i = 0; i < pb->cpu_cnt; i++) {
10876                        struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
10877
10878                        if (!cpu_buf)
10879                                continue;
10880
10881                        bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
10882                        perf_buffer__free_cpu_buf(pb, cpu_buf);
10883                }
10884                free(pb->cpu_bufs);
10885        }
10886        if (pb->epoll_fd >= 0)
10887                close(pb->epoll_fd);
10888        free(pb->events);
10889        free(pb);
10890}
10891
10892static struct perf_cpu_buf *
10893perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
10894                          int cpu, int map_key)
10895{
10896        struct perf_cpu_buf *cpu_buf;
10897        char msg[STRERR_BUFSIZE];
10898        int err;
10899
10900        cpu_buf = calloc(1, sizeof(*cpu_buf));
10901        if (!cpu_buf)
10902                return ERR_PTR(-ENOMEM);
10903
10904        cpu_buf->pb = pb;
10905        cpu_buf->cpu = cpu;
10906        cpu_buf->map_key = map_key;
10907
10908        cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
10909                              -1, PERF_FLAG_FD_CLOEXEC);
10910        if (cpu_buf->fd < 0) {
10911                err = -errno;
10912                pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
10913                        cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10914                goto error;
10915        }
10916
10917        cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
10918                             PROT_READ | PROT_WRITE, MAP_SHARED,
10919                             cpu_buf->fd, 0);
10920        if (cpu_buf->base == MAP_FAILED) {
10921                cpu_buf->base = NULL;
10922                err = -errno;
10923                pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
10924                        cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10925                goto error;
10926        }
10927
10928        if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10929                err = -errno;
10930                pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
10931                        cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10932                goto error;
10933        }
10934
10935        return cpu_buf;
10936
10937error:
10938        perf_buffer__free_cpu_buf(pb, cpu_buf);
10939        return (struct perf_cpu_buf *)ERR_PTR(err);
10940}
10941
10942static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
10943                                              struct perf_buffer_params *p);
10944
10945struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
10946                                     const struct perf_buffer_opts *opts)
10947{
10948        struct perf_buffer_params p = {};
10949        struct perf_event_attr attr = { 0, };
10950
10951        attr.config = PERF_COUNT_SW_BPF_OUTPUT;
10952        attr.type = PERF_TYPE_SOFTWARE;
10953        attr.sample_type = PERF_SAMPLE_RAW;
10954        attr.sample_period = 1;
10955        attr.wakeup_events = 1;
10956
10957        p.attr = &attr;
10958        p.sample_cb = opts ? opts->sample_cb : NULL;
10959        p.lost_cb = opts ? opts->lost_cb : NULL;
10960        p.ctx = opts ? opts->ctx : NULL;
10961
10962        return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
10963}
10964
10965struct perf_buffer *
10966perf_buffer__new_raw(int map_fd, size_t page_cnt,
10967                     const struct perf_buffer_raw_opts *opts)
10968{
10969        struct perf_buffer_params p = {};
10970
10971        p.attr = opts->attr;
10972        p.event_cb = opts->event_cb;
10973        p.ctx = opts->ctx;
10974        p.cpu_cnt = opts->cpu_cnt;
10975        p.cpus = opts->cpus;
10976        p.map_keys = opts->map_keys;
10977
10978        return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
10979}
10980
10981static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
10982                                              struct perf_buffer_params *p)
10983{
10984        const char *online_cpus_file = "/sys/devices/system/cpu/online";
10985        struct bpf_map_info map;
10986        char msg[STRERR_BUFSIZE];
10987        struct perf_buffer *pb;
10988        bool *online = NULL;
10989        __u32 map_info_len;
10990        int err, i, j, n;
10991
10992        if (page_cnt & (page_cnt - 1)) {
10993                pr_warn("page count should be power of two, but is %zu\n",
10994                        page_cnt);
10995                return ERR_PTR(-EINVAL);
10996        }
10997
10998        /* best-effort sanity checks */
10999        memset(&map, 0, sizeof(map));
11000        map_info_len = sizeof(map);
11001        err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
11002        if (err) {
11003                err = -errno;
11004                /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
11005                 * -EBADFD, -EFAULT, or -E2BIG on real error
11006                 */
11007                if (err != -EINVAL) {
11008                        pr_warn("failed to get map info for map FD %d: %s\n",
11009                                map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
11010                        return ERR_PTR(err);
11011                }
11012                pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
11013                         map_fd);
11014        } else {
11015                if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
11016                        pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
11017                                map.name);
11018                        return ERR_PTR(-EINVAL);
11019                }
11020        }
11021
11022        pb = calloc(1, sizeof(*pb));
11023        if (!pb)
11024                return ERR_PTR(-ENOMEM);
11025
11026        pb->event_cb = p->event_cb;
11027        pb->sample_cb = p->sample_cb;
11028        pb->lost_cb = p->lost_cb;
11029        pb->ctx = p->ctx;
11030
11031        pb->page_size = getpagesize();
11032        pb->mmap_size = pb->page_size * page_cnt;
11033        pb->map_fd = map_fd;
11034
11035        pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
11036        if (pb->epoll_fd < 0) {
11037                err = -errno;
11038                pr_warn("failed to create epoll instance: %s\n",
11039                        libbpf_strerror_r(err, msg, sizeof(msg)));
11040                goto error;
11041        }
11042
11043        if (p->cpu_cnt > 0) {
11044                pb->cpu_cnt = p->cpu_cnt;
11045        } else {
11046                pb->cpu_cnt = libbpf_num_possible_cpus();
11047                if (pb->cpu_cnt < 0) {
11048                        err = pb->cpu_cnt;
11049                        goto error;
11050                }
11051                if (map.max_entries && map.max_entries < pb->cpu_cnt)
11052                        pb->cpu_cnt = map.max_entries;
11053        }
11054
11055        pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
11056        if (!pb->events) {
11057                err = -ENOMEM;
11058                pr_warn("failed to allocate events: out of memory\n");
11059                goto error;
11060        }
11061        pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
11062        if (!pb->cpu_bufs) {
11063                err = -ENOMEM;
11064                pr_warn("failed to allocate buffers: out of memory\n");
11065                goto error;
11066        }
11067
11068        err = parse_cpu_mask_file(online_cpus_file, &online, &n);
11069        if (err) {
11070                pr_warn("failed to get online CPU mask: %d\n", err);
11071                goto error;
11072        }
11073
11074        for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
11075                struct perf_cpu_buf *cpu_buf;
11076                int cpu, map_key;
11077
11078                cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
11079                map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
11080
11081                /* in case user didn't explicitly requested particular CPUs to
11082                 * be attached to, skip offline/not present CPUs
11083                 */
11084                if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
11085                        continue;
11086
11087                cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
11088                if (IS_ERR(cpu_buf)) {
11089                        err = PTR_ERR(cpu_buf);
11090                        goto error;
11091                }
11092
11093                pb->cpu_bufs[j] = cpu_buf;
11094
11095                err = bpf_map_update_elem(pb->map_fd, &map_key,
11096                                          &cpu_buf->fd, 0);
11097                if (err) {
11098                        err = -errno;
11099                        pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
11100                                cpu, map_key, cpu_buf->fd,
11101                                libbpf_strerror_r(err, msg, sizeof(msg)));
11102                        goto error;
11103                }
11104
11105                pb->events[j].events = EPOLLIN;
11106                pb->events[j].data.ptr = cpu_buf;
11107                if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
11108                              &pb->events[j]) < 0) {
11109                        err = -errno;
11110                        pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
11111                                cpu, cpu_buf->fd,
11112                                libbpf_strerror_r(err, msg, sizeof(msg)));
11113                        goto error;
11114                }
11115                j++;
11116        }
11117        pb->cpu_cnt = j;
11118        free(online);
11119
11120        return pb;
11121
11122error:
11123        free(online);
11124        if (pb)
11125                perf_buffer__free(pb);
11126        return ERR_PTR(err);
11127}
11128
11129struct perf_sample_raw {
11130        struct perf_event_header header;
11131        uint32_t size;
11132        char data[];
11133};
11134
11135struct perf_sample_lost {
11136        struct perf_event_header header;
11137        uint64_t id;
11138        uint64_t lost;
11139        uint64_t sample_id;
11140};
11141
11142static enum bpf_perf_event_ret
11143perf_buffer__process_record(struct perf_event_header *e, void *ctx)
11144{
11145        struct perf_cpu_buf *cpu_buf = ctx;
11146        struct perf_buffer *pb = cpu_buf->pb;
11147        void *data = e;
11148
11149        /* user wants full control over parsing perf event */
11150        if (pb->event_cb)
11151                return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
11152
11153        switch (e->type) {
11154        case PERF_RECORD_SAMPLE: {
11155                struct perf_sample_raw *s = data;
11156
11157                if (pb->sample_cb)
11158                        pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
11159                break;
11160        }
11161        case PERF_RECORD_LOST: {
11162                struct perf_sample_lost *s = data;
11163
11164                if (pb->lost_cb)
11165                        pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
11166                break;
11167        }
11168        default:
11169                pr_warn("unknown perf sample type %d\n", e->type);
11170                return LIBBPF_PERF_EVENT_ERROR;
11171        }
11172        return LIBBPF_PERF_EVENT_CONT;
11173}
11174
11175static int perf_buffer__process_records(struct perf_buffer *pb,
11176                                        struct perf_cpu_buf *cpu_buf)
11177{
11178        enum bpf_perf_event_ret ret;
11179
11180        ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size,
11181                                         pb->page_size, &cpu_buf->buf,
11182                                         &cpu_buf->buf_size,
11183                                         perf_buffer__process_record, cpu_buf);
11184        if (ret != LIBBPF_PERF_EVENT_CONT)
11185                return ret;
11186        return 0;
11187}
11188
11189int perf_buffer__epoll_fd(const struct perf_buffer *pb)
11190{
11191        return pb->epoll_fd;
11192}
11193
11194int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
11195{
11196        int i, cnt, err;
11197
11198        cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
11199        if (cnt < 0)
11200                return -errno;
11201
11202        for (i = 0; i < cnt; i++) {
11203                struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
11204
11205                err = perf_buffer__process_records(pb, cpu_buf);
11206                if (err) {
11207                        pr_warn("error while processing records: %d\n", err);
11208                        return libbpf_err(err);
11209                }
11210        }
11211        return cnt;
11212}
11213
11214/* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
11215 * manager.
11216 */
11217size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
11218{
11219        return pb->cpu_cnt;
11220}
11221
11222/*
11223 * Return perf_event FD of a ring buffer in *buf_idx* slot of
11224 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
11225 * select()/poll()/epoll() Linux syscalls.
11226 */
11227int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
11228{
11229        struct perf_cpu_buf *cpu_buf;
11230
11231        if (buf_idx >= pb->cpu_cnt)
11232                return libbpf_err(-EINVAL);
11233
11234        cpu_buf = pb->cpu_bufs[buf_idx];
11235        if (!cpu_buf)
11236                return libbpf_err(-ENOENT);
11237
11238        return cpu_buf->fd;
11239}
11240
11241/*
11242 * Consume data from perf ring buffer corresponding to slot *buf_idx* in
11243 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
11244 * consume, do nothing and return success.
11245 * Returns:
11246 *   - 0 on success;
11247 *   - <0 on failure.
11248 */
11249int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
11250{
11251        struct perf_cpu_buf *cpu_buf;
11252
11253        if (buf_idx >= pb->cpu_cnt)
11254                return libbpf_err(-EINVAL);
11255
11256        cpu_buf = pb->cpu_bufs[buf_idx];
11257        if (!cpu_buf)
11258                return libbpf_err(-ENOENT);
11259
11260        return perf_buffer__process_records(pb, cpu_buf);
11261}
11262
11263int perf_buffer__consume(struct perf_buffer *pb)
11264{
11265        int i, err;
11266
11267        for (i = 0; i < pb->cpu_cnt; i++) {
11268                struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
11269
11270                if (!cpu_buf)
11271                        continue;
11272
11273                err = perf_buffer__process_records(pb, cpu_buf);
11274                if (err) {
11275                        pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
11276                        return libbpf_err(err);
11277                }
11278        }
11279        return 0;
11280}
11281
11282struct bpf_prog_info_array_desc {
11283        int     array_offset;   /* e.g. offset of jited_prog_insns */
11284        int     count_offset;   /* e.g. offset of jited_prog_len */
11285        int     size_offset;    /* > 0: offset of rec size,
11286                                 * < 0: fix size of -size_offset
11287                                 */
11288};
11289
11290static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = {
11291        [BPF_PROG_INFO_JITED_INSNS] = {
11292                offsetof(struct bpf_prog_info, jited_prog_insns),
11293                offsetof(struct bpf_prog_info, jited_prog_len),
11294                -1,
11295        },
11296        [BPF_PROG_INFO_XLATED_INSNS] = {
11297                offsetof(struct bpf_prog_info, xlated_prog_insns),
11298                offsetof(struct bpf_prog_info, xlated_prog_len),
11299                -1,
11300        },
11301        [BPF_PROG_INFO_MAP_IDS] = {
11302                offsetof(struct bpf_prog_info, map_ids),
11303                offsetof(struct bpf_prog_info, nr_map_ids),
11304                -(int)sizeof(__u32),
11305        },
11306        [BPF_PROG_INFO_JITED_KSYMS] = {
11307                offsetof(struct bpf_prog_info, jited_ksyms),
11308                offsetof(struct bpf_prog_info, nr_jited_ksyms),
11309                -(int)sizeof(__u64),
11310        },
11311        [BPF_PROG_INFO_JITED_FUNC_LENS] = {
11312                offsetof(struct bpf_prog_info, jited_func_lens),
11313                offsetof(struct bpf_prog_info, nr_jited_func_lens),
11314                -(int)sizeof(__u32),
11315        },
11316        [BPF_PROG_INFO_FUNC_INFO] = {
11317                offsetof(struct bpf_prog_info, func_info),
11318                offsetof(struct bpf_prog_info, nr_func_info),
11319                offsetof(struct bpf_prog_info, func_info_rec_size),
11320        },
11321        [BPF_PROG_INFO_LINE_INFO] = {
11322                offsetof(struct bpf_prog_info, line_info),
11323                offsetof(struct bpf_prog_info, nr_line_info),
11324                offsetof(struct bpf_prog_info, line_info_rec_size),
11325        },
11326        [BPF_PROG_INFO_JITED_LINE_INFO] = {
11327                offsetof(struct bpf_prog_info, jited_line_info),
11328                offsetof(struct bpf_prog_info, nr_jited_line_info),
11329                offsetof(struct bpf_prog_info, jited_line_info_rec_size),
11330        },
11331        [BPF_PROG_INFO_PROG_TAGS] = {
11332                offsetof(struct bpf_prog_info, prog_tags),
11333                offsetof(struct bpf_prog_info, nr_prog_tags),
11334                -(int)sizeof(__u8) * BPF_TAG_SIZE,
11335        },
11336
11337};
11338
11339static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info,
11340                                           int offset)
11341{
11342        __u32 *array = (__u32 *)info;
11343
11344        if (offset >= 0)
11345                return array[offset / sizeof(__u32)];
11346        return -(int)offset;
11347}
11348
11349static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info,
11350                                           int offset)
11351{
11352        __u64 *array = (__u64 *)info;
11353
11354        if (offset >= 0)
11355                return array[offset / sizeof(__u64)];
11356        return -(int)offset;
11357}
11358
11359static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset,
11360                                         __u32 val)
11361{
11362        __u32 *array = (__u32 *)info;
11363
11364        if (offset >= 0)
11365                array[offset / sizeof(__u32)] = val;
11366}
11367
11368static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset,
11369                                         __u64 val)
11370{
11371        __u64 *array = (__u64 *)info;
11372
11373        if (offset >= 0)
11374                array[offset / sizeof(__u64)] = val;
11375}
11376
11377struct bpf_prog_info_linear *
11378bpf_program__get_prog_info_linear(int fd, __u64 arrays)
11379{
11380        struct bpf_prog_info_linear *info_linear;
11381        struct bpf_prog_info info = {};
11382        __u32 info_len = sizeof(info);
11383        __u32 data_len = 0;
11384        int i, err;
11385        void *ptr;
11386
11387        if (arrays >> BPF_PROG_INFO_LAST_ARRAY)
11388                return libbpf_err_ptr(-EINVAL);
11389
11390        /* step 1: get array dimensions */
11391        err = bpf_obj_get_info_by_fd(fd, &info, &info_len);
11392        if (err) {
11393                pr_debug("can't get prog info: %s", strerror(errno));
11394                return libbpf_err_ptr(-EFAULT);
11395        }
11396
11397        /* step 2: calculate total size of all arrays */
11398        for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11399                bool include_array = (arrays & (1UL << i)) > 0;
11400                struct bpf_prog_info_array_desc *desc;
11401                __u32 count, size;
11402
11403                desc = bpf_prog_info_array_desc + i;
11404
11405                /* kernel is too old to support this field */
11406                if (info_len < desc->array_offset + sizeof(__u32) ||
11407                    info_len < desc->count_offset + sizeof(__u32) ||
11408                    (desc->size_offset > 0 && info_len < desc->size_offset))
11409                        include_array = false;
11410
11411                if (!include_array) {
11412                        arrays &= ~(1UL << i);  /* clear the bit */
11413                        continue;
11414                }
11415
11416                count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
11417                size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
11418
11419                data_len += count * size;
11420        }
11421
11422        /* step 3: allocate continuous memory */
11423        data_len = roundup(data_len, sizeof(__u64));
11424        info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len);
11425        if (!info_linear)
11426                return libbpf_err_ptr(-ENOMEM);
11427
11428        /* step 4: fill data to info_linear->info */
11429        info_linear->arrays = arrays;
11430        memset(&info_linear->info, 0, sizeof(info));
11431        ptr = info_linear->data;
11432
11433        for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11434                struct bpf_prog_info_array_desc *desc;
11435                __u32 count, size;
11436
11437                if ((arrays & (1UL << i)) == 0)
11438                        continue;
11439
11440                desc  = bpf_prog_info_array_desc + i;
11441                count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
11442                size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
11443                bpf_prog_info_set_offset_u32(&info_linear->info,
11444                                             desc->count_offset, count);
11445                bpf_prog_info_set_offset_u32(&info_linear->info,
11446                                             desc->size_offset, size);
11447                bpf_prog_info_set_offset_u64(&info_linear->info,
11448                                             desc->array_offset,
11449                                             ptr_to_u64(ptr));
11450                ptr += count * size;
11451        }
11452
11453        /* step 5: call syscall again to get required arrays */
11454        err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len);
11455        if (err) {
11456                pr_debug("can't get prog info: %s", strerror(errno));
11457                free(info_linear);
11458                return libbpf_err_ptr(-EFAULT);
11459        }
11460
11461        /* step 6: verify the data */
11462        for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11463                struct bpf_prog_info_array_desc *desc;
11464                __u32 v1, v2;
11465
11466                if ((arrays & (1UL << i)) == 0)
11467                        continue;
11468
11469                desc = bpf_prog_info_array_desc + i;
11470                v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
11471                v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
11472                                                   desc->count_offset);
11473                if (v1 != v2)
11474                        pr_warn("%s: mismatch in element count\n", __func__);
11475
11476                v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
11477                v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
11478                                                   desc->size_offset);
11479                if (v1 != v2)
11480                        pr_warn("%s: mismatch in rec size\n", __func__);
11481        }
11482
11483        /* step 7: update info_len and data_len */
11484        info_linear->info_len = sizeof(struct bpf_prog_info);
11485        info_linear->data_len = data_len;
11486
11487        return info_linear;
11488}
11489
11490void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear)
11491{
11492        int i;
11493
11494        for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11495                struct bpf_prog_info_array_desc *desc;
11496                __u64 addr, offs;
11497
11498                if ((info_linear->arrays & (1UL << i)) == 0)
11499                        continue;
11500
11501                desc = bpf_prog_info_array_desc + i;
11502                addr = bpf_prog_info_read_offset_u64(&info_linear->info,
11503                                                     desc->array_offset);
11504                offs = addr - ptr_to_u64(info_linear->data);
11505                bpf_prog_info_set_offset_u64(&info_linear->info,
11506                                             desc->array_offset, offs);
11507        }
11508}
11509
11510void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear)
11511{
11512        int i;
11513
11514        for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11515                struct bpf_prog_info_array_desc *desc;
11516                __u64 addr, offs;
11517
11518                if ((info_linear->arrays & (1UL << i)) == 0)
11519                        continue;
11520
11521                desc = bpf_prog_info_array_desc + i;
11522                offs = bpf_prog_info_read_offset_u64(&info_linear->info,
11523                                                     desc->array_offset);
11524                addr = offs + ptr_to_u64(info_linear->data);
11525                bpf_prog_info_set_offset_u64(&info_linear->info,
11526                                             desc->array_offset, addr);
11527        }
11528}
11529
11530int bpf_program__set_attach_target(struct bpf_program *prog,
11531                                   int attach_prog_fd,
11532                                   const char *attach_func_name)
11533{
11534        int btf_obj_fd = 0, btf_id = 0, err;
11535
11536        if (!prog || attach_prog_fd < 0 || !attach_func_name)
11537                return libbpf_err(-EINVAL);
11538
11539        if (prog->obj->loaded)
11540                return libbpf_err(-EINVAL);
11541
11542        if (attach_prog_fd) {
11543                btf_id = libbpf_find_prog_btf_id(attach_func_name,
11544                                                 attach_prog_fd);
11545                if (btf_id < 0)
11546                        return libbpf_err(btf_id);
11547        } else {
11548                /* load btf_vmlinux, if not yet */
11549                err = bpf_object__load_vmlinux_btf(prog->obj, true);
11550                if (err)
11551                        return libbpf_err(err);
11552                err = find_kernel_btf_id(prog->obj, attach_func_name,
11553                                         prog->expected_attach_type,
11554                                         &btf_obj_fd, &btf_id);
11555                if (err)
11556                        return libbpf_err(err);
11557        }
11558
11559        prog->attach_btf_id = btf_id;
11560        prog->attach_btf_obj_fd = btf_obj_fd;
11561        prog->attach_prog_fd = attach_prog_fd;
11562        return 0;
11563}
11564
11565int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
11566{
11567        int err = 0, n, len, start, end = -1;
11568        bool *tmp;
11569
11570        *mask = NULL;
11571        *mask_sz = 0;
11572
11573        /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
11574        while (*s) {
11575                if (*s == ',' || *s == '\n') {
11576                        s++;
11577                        continue;
11578                }
11579                n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
11580                if (n <= 0 || n > 2) {
11581                        pr_warn("Failed to get CPU range %s: %d\n", s, n);
11582                        err = -EINVAL;
11583                        goto cleanup;
11584                } else if (n == 1) {
11585                        end = start;
11586                }
11587                if (start < 0 || start > end) {
11588                        pr_warn("Invalid CPU range [%d,%d] in %s\n",
11589                                start, end, s);
11590                        err = -EINVAL;
11591                        goto cleanup;
11592                }
11593                tmp = realloc(*mask, end + 1);
11594                if (!tmp) {
11595                        err = -ENOMEM;
11596                        goto cleanup;
11597                }
11598                *mask = tmp;
11599                memset(tmp + *mask_sz, 0, start - *mask_sz);
11600                memset(tmp + start, 1, end - start + 1);
11601                *mask_sz = end + 1;
11602                s += len;
11603        }
11604        if (!*mask_sz) {
11605                pr_warn("Empty CPU range\n");
11606                return -EINVAL;
11607        }
11608        return 0;
11609cleanup:
11610        free(*mask);
11611        *mask = NULL;
11612        return err;
11613}
11614
11615int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
11616{
11617        int fd, err = 0, len;
11618        char buf[128];
11619
11620        fd = open(fcpu, O_RDONLY);
11621        if (fd < 0) {
11622                err = -errno;
11623                pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
11624                return err;
11625        }
11626        len = read(fd, buf, sizeof(buf));
11627        close(fd);
11628        if (len <= 0) {
11629                err = len ? -errno : -EINVAL;
11630                pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
11631                return err;
11632        }
11633        if (len >= sizeof(buf)) {
11634                pr_warn("CPU mask is too big in file %s\n", fcpu);
11635                return -E2BIG;
11636        }
11637        buf[len] = '\0';
11638
11639        return parse_cpu_mask_str(buf, mask, mask_sz);
11640}
11641
11642int libbpf_num_possible_cpus(void)
11643{
11644        static const char *fcpu = "/sys/devices/system/cpu/possible";
11645        static int cpus;
11646        int err, n, i, tmp_cpus;
11647        bool *mask;
11648
11649        tmp_cpus = READ_ONCE(cpus);
11650        if (tmp_cpus > 0)
11651                return tmp_cpus;
11652
11653        err = parse_cpu_mask_file(fcpu, &mask, &n);
11654        if (err)
11655                return libbpf_err(err);
11656
11657        tmp_cpus = 0;
11658        for (i = 0; i < n; i++) {
11659                if (mask[i])
11660                        tmp_cpus++;
11661        }
11662        free(mask);
11663
11664        WRITE_ONCE(cpus, tmp_cpus);
11665        return tmp_cpus;
11666}
11667
11668int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
11669                              const struct bpf_object_open_opts *opts)
11670{
11671        DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
11672                .object_name = s->name,
11673        );
11674        struct bpf_object *obj;
11675        int i, err;
11676
11677        /* Attempt to preserve opts->object_name, unless overriden by user
11678         * explicitly. Overwriting object name for skeletons is discouraged,
11679         * as it breaks global data maps, because they contain object name
11680         * prefix as their own map name prefix. When skeleton is generated,
11681         * bpftool is making an assumption that this name will stay the same.
11682         */
11683        if (opts) {
11684                memcpy(&skel_opts, opts, sizeof(*opts));
11685                if (!opts->object_name)
11686                        skel_opts.object_name = s->name;
11687        }
11688
11689        obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
11690        err = libbpf_get_error(obj);
11691        if (err) {
11692                pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
11693                        s->name, err);
11694                return libbpf_err(err);
11695        }
11696
11697        *s->obj = obj;
11698
11699        for (i = 0; i < s->map_cnt; i++) {
11700                struct bpf_map **map = s->maps[i].map;
11701                const char *name = s->maps[i].name;
11702                void **mmaped = s->maps[i].mmaped;
11703
11704                *map = bpf_object__find_map_by_name(obj, name);
11705                if (!*map) {
11706                        pr_warn("failed to find skeleton map '%s'\n", name);
11707                        return libbpf_err(-ESRCH);
11708                }
11709
11710                /* externs shouldn't be pre-setup from user code */
11711                if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
11712                        *mmaped = (*map)->mmaped;
11713        }
11714
11715        for (i = 0; i < s->prog_cnt; i++) {
11716                struct bpf_program **prog = s->progs[i].prog;
11717                const char *name = s->progs[i].name;
11718
11719                *prog = bpf_object__find_program_by_name(obj, name);
11720                if (!*prog) {
11721                        pr_warn("failed to find skeleton program '%s'\n", name);
11722                        return libbpf_err(-ESRCH);
11723                }
11724        }
11725
11726        return 0;
11727}
11728
11729int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
11730{
11731        int i, err;
11732
11733        err = bpf_object__load(*s->obj);
11734        if (err) {
11735                pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
11736                return libbpf_err(err);
11737        }
11738
11739        for (i = 0; i < s->map_cnt; i++) {
11740                struct bpf_map *map = *s->maps[i].map;
11741                size_t mmap_sz = bpf_map_mmap_sz(map);
11742                int prot, map_fd = bpf_map__fd(map);
11743                void **mmaped = s->maps[i].mmaped;
11744
11745                if (!mmaped)
11746                        continue;
11747
11748                if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
11749                        *mmaped = NULL;
11750                        continue;
11751                }
11752
11753                if (map->def.map_flags & BPF_F_RDONLY_PROG)
11754                        prot = PROT_READ;
11755                else
11756                        prot = PROT_READ | PROT_WRITE;
11757
11758                /* Remap anonymous mmap()-ed "map initialization image" as
11759                 * a BPF map-backed mmap()-ed memory, but preserving the same
11760                 * memory address. This will cause kernel to change process'
11761                 * page table to point to a different piece of kernel memory,
11762                 * but from userspace point of view memory address (and its
11763                 * contents, being identical at this point) will stay the
11764                 * same. This mapping will be released by bpf_object__close()
11765                 * as per normal clean up procedure, so we don't need to worry
11766                 * about it from skeleton's clean up perspective.
11767                 */
11768                *mmaped = mmap(map->mmaped, mmap_sz, prot,
11769                                MAP_SHARED | MAP_FIXED, map_fd, 0);
11770                if (*mmaped == MAP_FAILED) {
11771                        err = -errno;
11772                        *mmaped = NULL;
11773                        pr_warn("failed to re-mmap() map '%s': %d\n",
11774                                 bpf_map__name(map), err);
11775                        return libbpf_err(err);
11776                }
11777        }
11778
11779        return 0;
11780}
11781
11782int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
11783{
11784        int i, err;
11785
11786        for (i = 0; i < s->prog_cnt; i++) {
11787                struct bpf_program *prog = *s->progs[i].prog;
11788                struct bpf_link **link = s->progs[i].link;
11789                const struct bpf_sec_def *sec_def;
11790
11791                if (!prog->load)
11792                        continue;
11793
11794                sec_def = find_sec_def(prog->sec_name);
11795                if (!sec_def || !sec_def->attach_fn)
11796                        continue;
11797
11798                *link = sec_def->attach_fn(sec_def, prog);
11799                err = libbpf_get_error(*link);
11800                if (err) {
11801                        pr_warn("failed to auto-attach program '%s': %d\n",
11802                                bpf_program__name(prog), err);
11803                        return libbpf_err(err);
11804                }
11805        }
11806
11807        return 0;
11808}
11809
11810void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
11811{
11812        int i;
11813
11814        for (i = 0; i < s->prog_cnt; i++) {
11815                struct bpf_link **link = s->progs[i].link;
11816
11817                bpf_link__destroy(*link);
11818                *link = NULL;
11819        }
11820}
11821
11822void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
11823{
11824        if (s->progs)
11825                bpf_object__detach_skeleton(s);
11826        if (s->obj)
11827                bpf_object__close(*s->obj);
11828        free(s->maps);
11829        free(s->progs);
11830        free(s);
11831}
11832