linux/tools/perf/util/intel-pt.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * intel_pt.c: Intel Processor Trace support
   4 * Copyright (c) 2013-2015, Intel Corporation.
   5 */
   6
   7#include <inttypes.h>
   8#include <stdio.h>
   9#include <stdbool.h>
  10#include <errno.h>
  11#include <linux/kernel.h>
  12#include <linux/string.h>
  13#include <linux/types.h>
  14#include <linux/zalloc.h>
  15
  16#include "session.h"
  17#include "machine.h"
  18#include "memswap.h"
  19#include "sort.h"
  20#include "tool.h"
  21#include "event.h"
  22#include "evlist.h"
  23#include "evsel.h"
  24#include "map.h"
  25#include "color.h"
  26#include "thread.h"
  27#include "thread-stack.h"
  28#include "symbol.h"
  29#include "callchain.h"
  30#include "dso.h"
  31#include "debug.h"
  32#include "auxtrace.h"
  33#include "tsc.h"
  34#include "intel-pt.h"
  35#include "config.h"
  36#include "util/perf_api_probe.h"
  37#include "util/synthetic-events.h"
  38#include "time-utils.h"
  39
  40#include "../arch/x86/include/uapi/asm/perf_regs.h"
  41
  42#include "intel-pt-decoder/intel-pt-log.h"
  43#include "intel-pt-decoder/intel-pt-decoder.h"
  44#include "intel-pt-decoder/intel-pt-insn-decoder.h"
  45#include "intel-pt-decoder/intel-pt-pkt-decoder.h"
  46
  47#define MAX_TIMESTAMP (~0ULL)
  48
  49struct range {
  50        u64 start;
  51        u64 end;
  52};
  53
  54struct intel_pt {
  55        struct auxtrace auxtrace;
  56        struct auxtrace_queues queues;
  57        struct auxtrace_heap heap;
  58        u32 auxtrace_type;
  59        struct perf_session *session;
  60        struct machine *machine;
  61        struct evsel *switch_evsel;
  62        struct thread *unknown_thread;
  63        bool timeless_decoding;
  64        bool sampling_mode;
  65        bool snapshot_mode;
  66        bool per_cpu_mmaps;
  67        bool have_tsc;
  68        bool data_queued;
  69        bool est_tsc;
  70        bool sync_switch;
  71        bool mispred_all;
  72        bool use_thread_stack;
  73        bool callstack;
  74        unsigned int br_stack_sz;
  75        unsigned int br_stack_sz_plus;
  76        int have_sched_switch;
  77        u32 pmu_type;
  78        u64 kernel_start;
  79        u64 switch_ip;
  80        u64 ptss_ip;
  81        u64 first_timestamp;
  82
  83        struct perf_tsc_conversion tc;
  84        bool cap_user_time_zero;
  85
  86        struct itrace_synth_opts synth_opts;
  87
  88        bool sample_instructions;
  89        u64 instructions_sample_type;
  90        u64 instructions_id;
  91
  92        bool sample_branches;
  93        u32 branches_filter;
  94        u64 branches_sample_type;
  95        u64 branches_id;
  96
  97        bool sample_transactions;
  98        u64 transactions_sample_type;
  99        u64 transactions_id;
 100
 101        bool sample_ptwrites;
 102        u64 ptwrites_sample_type;
 103        u64 ptwrites_id;
 104
 105        bool sample_pwr_events;
 106        u64 pwr_events_sample_type;
 107        u64 mwait_id;
 108        u64 pwre_id;
 109        u64 exstop_id;
 110        u64 pwrx_id;
 111        u64 cbr_id;
 112        u64 psb_id;
 113
 114        bool sample_pebs;
 115        struct evsel *pebs_evsel;
 116
 117        u64 tsc_bit;
 118        u64 mtc_bit;
 119        u64 mtc_freq_bits;
 120        u32 tsc_ctc_ratio_n;
 121        u32 tsc_ctc_ratio_d;
 122        u64 cyc_bit;
 123        u64 noretcomp_bit;
 124        unsigned max_non_turbo_ratio;
 125        unsigned cbr2khz;
 126        int max_loops;
 127
 128        unsigned long num_events;
 129
 130        char *filter;
 131        struct addr_filters filts;
 132
 133        struct range *time_ranges;
 134        unsigned int range_cnt;
 135
 136        struct ip_callchain *chain;
 137        struct branch_stack *br_stack;
 138
 139        u64 dflt_tsc_offset;
 140        struct rb_root vmcs_info;
 141};
 142
 143enum switch_state {
 144        INTEL_PT_SS_NOT_TRACING,
 145        INTEL_PT_SS_UNKNOWN,
 146        INTEL_PT_SS_TRACING,
 147        INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
 148        INTEL_PT_SS_EXPECTING_SWITCH_IP,
 149};
 150
 151struct intel_pt_queue {
 152        struct intel_pt *pt;
 153        unsigned int queue_nr;
 154        struct auxtrace_buffer *buffer;
 155        struct auxtrace_buffer *old_buffer;
 156        void *decoder;
 157        const struct intel_pt_state *state;
 158        struct ip_callchain *chain;
 159        struct branch_stack *last_branch;
 160        union perf_event *event_buf;
 161        bool on_heap;
 162        bool stop;
 163        bool step_through_buffers;
 164        bool use_buffer_pid_tid;
 165        bool sync_switch;
 166        pid_t pid, tid;
 167        int cpu;
 168        int switch_state;
 169        pid_t next_tid;
 170        struct thread *thread;
 171        struct machine *guest_machine;
 172        struct thread *unknown_guest_thread;
 173        pid_t guest_machine_pid;
 174        bool exclude_kernel;
 175        bool have_sample;
 176        u64 time;
 177        u64 timestamp;
 178        u64 sel_timestamp;
 179        bool sel_start;
 180        unsigned int sel_idx;
 181        u32 flags;
 182        u16 insn_len;
 183        u64 last_insn_cnt;
 184        u64 ipc_insn_cnt;
 185        u64 ipc_cyc_cnt;
 186        u64 last_in_insn_cnt;
 187        u64 last_in_cyc_cnt;
 188        u64 last_br_insn_cnt;
 189        u64 last_br_cyc_cnt;
 190        unsigned int cbr_seen;
 191        char insn[INTEL_PT_INSN_BUF_SZ];
 192};
 193
 194static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
 195                          unsigned char *buf, size_t len)
 196{
 197        struct intel_pt_pkt packet;
 198        size_t pos = 0;
 199        int ret, pkt_len, i;
 200        char desc[INTEL_PT_PKT_DESC_MAX];
 201        const char *color = PERF_COLOR_BLUE;
 202        enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
 203
 204        color_fprintf(stdout, color,
 205                      ". ... Intel Processor Trace data: size %zu bytes\n",
 206                      len);
 207
 208        while (len) {
 209                ret = intel_pt_get_packet(buf, len, &packet, &ctx);
 210                if (ret > 0)
 211                        pkt_len = ret;
 212                else
 213                        pkt_len = 1;
 214                printf(".");
 215                color_fprintf(stdout, color, "  %08x: ", pos);
 216                for (i = 0; i < pkt_len; i++)
 217                        color_fprintf(stdout, color, " %02x", buf[i]);
 218                for (; i < 16; i++)
 219                        color_fprintf(stdout, color, "   ");
 220                if (ret > 0) {
 221                        ret = intel_pt_pkt_desc(&packet, desc,
 222                                                INTEL_PT_PKT_DESC_MAX);
 223                        if (ret > 0)
 224                                color_fprintf(stdout, color, " %s\n", desc);
 225                } else {
 226                        color_fprintf(stdout, color, " Bad packet!\n");
 227                }
 228                pos += pkt_len;
 229                buf += pkt_len;
 230                len -= pkt_len;
 231        }
 232}
 233
 234static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
 235                                size_t len)
 236{
 237        printf(".\n");
 238        intel_pt_dump(pt, buf, len);
 239}
 240
 241static void intel_pt_log_event(union perf_event *event)
 242{
 243        FILE *f = intel_pt_log_fp();
 244
 245        if (!intel_pt_enable_logging || !f)
 246                return;
 247
 248        perf_event__fprintf(event, NULL, f);
 249}
 250
 251static void intel_pt_dump_sample(struct perf_session *session,
 252                                 struct perf_sample *sample)
 253{
 254        struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
 255                                           auxtrace);
 256
 257        printf("\n");
 258        intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
 259}
 260
 261static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
 262{
 263        struct perf_time_interval *range = pt->synth_opts.ptime_range;
 264        int n = pt->synth_opts.range_num;
 265
 266        if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
 267                return true;
 268
 269        if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
 270                return false;
 271
 272        /* perf_time__ranges_skip_sample does not work if time is zero */
 273        if (!tm)
 274                tm = 1;
 275
 276        return !n || !perf_time__ranges_skip_sample(range, n, tm);
 277}
 278
 279static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
 280                                                        u64 vmcs,
 281                                                        u64 dflt_tsc_offset)
 282{
 283        struct rb_node **p = &rb_root->rb_node;
 284        struct rb_node *parent = NULL;
 285        struct intel_pt_vmcs_info *v;
 286
 287        while (*p) {
 288                parent = *p;
 289                v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
 290
 291                if (v->vmcs == vmcs)
 292                        return v;
 293
 294                if (vmcs < v->vmcs)
 295                        p = &(*p)->rb_left;
 296                else
 297                        p = &(*p)->rb_right;
 298        }
 299
 300        v = zalloc(sizeof(*v));
 301        if (v) {
 302                v->vmcs = vmcs;
 303                v->tsc_offset = dflt_tsc_offset;
 304                v->reliable = dflt_tsc_offset;
 305
 306                rb_link_node(&v->rb_node, parent, p);
 307                rb_insert_color(&v->rb_node, rb_root);
 308        }
 309
 310        return v;
 311}
 312
 313static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
 314{
 315        struct intel_pt_queue *ptq = data;
 316        struct intel_pt *pt = ptq->pt;
 317
 318        if (!vmcs && !pt->dflt_tsc_offset)
 319                return NULL;
 320
 321        return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
 322}
 323
 324static void intel_pt_free_vmcs_info(struct intel_pt *pt)
 325{
 326        struct intel_pt_vmcs_info *v;
 327        struct rb_node *n;
 328
 329        n = rb_first(&pt->vmcs_info);
 330        while (n) {
 331                v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
 332                n = rb_next(n);
 333                rb_erase(&v->rb_node, &pt->vmcs_info);
 334                free(v);
 335        }
 336}
 337
 338static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
 339                                   struct auxtrace_buffer *b)
 340{
 341        bool consecutive = false;
 342        void *start;
 343
 344        start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
 345                                      pt->have_tsc, &consecutive,
 346                                      pt->synth_opts.vm_time_correlation);
 347        if (!start)
 348                return -EINVAL;
 349        /*
 350         * In the case of vm_time_correlation, the overlap might contain TSC
 351         * packets that will not be fixed, and that will then no longer work for
 352         * overlap detection. Avoid that by zeroing out the overlap.
 353         */
 354        if (pt->synth_opts.vm_time_correlation)
 355                memset(b->data, 0, start - b->data);
 356        b->use_size = b->data + b->size - start;
 357        b->use_data = start;
 358        if (b->use_size && consecutive)
 359                b->consecutive = true;
 360        return 0;
 361}
 362
 363static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
 364                               struct auxtrace_buffer *buffer,
 365                               struct auxtrace_buffer *old_buffer,
 366                               struct intel_pt_buffer *b)
 367{
 368        bool might_overlap;
 369
 370        if (!buffer->data) {
 371                int fd = perf_data__fd(ptq->pt->session->data);
 372
 373                buffer->data = auxtrace_buffer__get_data(buffer, fd);
 374                if (!buffer->data)
 375                        return -ENOMEM;
 376        }
 377
 378        might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
 379        if (might_overlap && !buffer->consecutive && old_buffer &&
 380            intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
 381                return -ENOMEM;
 382
 383        if (buffer->use_data) {
 384                b->len = buffer->use_size;
 385                b->buf = buffer->use_data;
 386        } else {
 387                b->len = buffer->size;
 388                b->buf = buffer->data;
 389        }
 390        b->ref_timestamp = buffer->reference;
 391
 392        if (!old_buffer || (might_overlap && !buffer->consecutive)) {
 393                b->consecutive = false;
 394                b->trace_nr = buffer->buffer_nr + 1;
 395        } else {
 396                b->consecutive = true;
 397        }
 398
 399        return 0;
 400}
 401
 402/* Do not drop buffers with references - refer intel_pt_get_trace() */
 403static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
 404                                           struct auxtrace_buffer *buffer)
 405{
 406        if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
 407                return;
 408
 409        auxtrace_buffer__drop_data(buffer);
 410}
 411
 412/* Must be serialized with respect to intel_pt_get_trace() */
 413static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
 414                              void *cb_data)
 415{
 416        struct intel_pt_queue *ptq = data;
 417        struct auxtrace_buffer *buffer = ptq->buffer;
 418        struct auxtrace_buffer *old_buffer = ptq->old_buffer;
 419        struct auxtrace_queue *queue;
 420        int err = 0;
 421
 422        queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
 423
 424        while (1) {
 425                struct intel_pt_buffer b = { .len = 0 };
 426
 427                buffer = auxtrace_buffer__next(queue, buffer);
 428                if (!buffer)
 429                        break;
 430
 431                err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
 432                if (err)
 433                        break;
 434
 435                if (b.len) {
 436                        intel_pt_lookahead_drop_buffer(ptq, old_buffer);
 437                        old_buffer = buffer;
 438                } else {
 439                        intel_pt_lookahead_drop_buffer(ptq, buffer);
 440                        continue;
 441                }
 442
 443                err = cb(&b, cb_data);
 444                if (err)
 445                        break;
 446        }
 447
 448        if (buffer != old_buffer)
 449                intel_pt_lookahead_drop_buffer(ptq, buffer);
 450        intel_pt_lookahead_drop_buffer(ptq, old_buffer);
 451
 452        return err;
 453}
 454
 455/*
 456 * This function assumes data is processed sequentially only.
 457 * Must be serialized with respect to intel_pt_lookahead()
 458 */
 459static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
 460{
 461        struct intel_pt_queue *ptq = data;
 462        struct auxtrace_buffer *buffer = ptq->buffer;
 463        struct auxtrace_buffer *old_buffer = ptq->old_buffer;
 464        struct auxtrace_queue *queue;
 465        int err;
 466
 467        if (ptq->stop) {
 468                b->len = 0;
 469                return 0;
 470        }
 471
 472        queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
 473
 474        buffer = auxtrace_buffer__next(queue, buffer);
 475        if (!buffer) {
 476                if (old_buffer)
 477                        auxtrace_buffer__drop_data(old_buffer);
 478                b->len = 0;
 479                return 0;
 480        }
 481
 482        ptq->buffer = buffer;
 483
 484        err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
 485        if (err)
 486                return err;
 487
 488        if (ptq->step_through_buffers)
 489                ptq->stop = true;
 490
 491        if (b->len) {
 492                if (old_buffer)
 493                        auxtrace_buffer__drop_data(old_buffer);
 494                ptq->old_buffer = buffer;
 495        } else {
 496                auxtrace_buffer__drop_data(buffer);
 497                return intel_pt_get_trace(b, data);
 498        }
 499
 500        return 0;
 501}
 502
 503struct intel_pt_cache_entry {
 504        struct auxtrace_cache_entry     entry;
 505        u64                             insn_cnt;
 506        u64                             byte_cnt;
 507        enum intel_pt_insn_op           op;
 508        enum intel_pt_insn_branch       branch;
 509        int                             length;
 510        int32_t                         rel;
 511        char                            insn[INTEL_PT_INSN_BUF_SZ];
 512};
 513
 514static int intel_pt_config_div(const char *var, const char *value, void *data)
 515{
 516        int *d = data;
 517        long val;
 518
 519        if (!strcmp(var, "intel-pt.cache-divisor")) {
 520                val = strtol(value, NULL, 0);
 521                if (val > 0 && val <= INT_MAX)
 522                        *d = val;
 523        }
 524
 525        return 0;
 526}
 527
 528static int intel_pt_cache_divisor(void)
 529{
 530        static int d;
 531
 532        if (d)
 533                return d;
 534
 535        perf_config(intel_pt_config_div, &d);
 536
 537        if (!d)
 538                d = 64;
 539
 540        return d;
 541}
 542
 543static unsigned int intel_pt_cache_size(struct dso *dso,
 544                                        struct machine *machine)
 545{
 546        off_t size;
 547
 548        size = dso__data_size(dso, machine);
 549        size /= intel_pt_cache_divisor();
 550        if (size < 1000)
 551                return 10;
 552        if (size > (1 << 21))
 553                return 21;
 554        return 32 - __builtin_clz(size);
 555}
 556
 557static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
 558                                             struct machine *machine)
 559{
 560        struct auxtrace_cache *c;
 561        unsigned int bits;
 562
 563        if (dso->auxtrace_cache)
 564                return dso->auxtrace_cache;
 565
 566        bits = intel_pt_cache_size(dso, machine);
 567
 568        /* Ignoring cache creation failure */
 569        c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
 570
 571        dso->auxtrace_cache = c;
 572
 573        return c;
 574}
 575
 576static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
 577                              u64 offset, u64 insn_cnt, u64 byte_cnt,
 578                              struct intel_pt_insn *intel_pt_insn)
 579{
 580        struct auxtrace_cache *c = intel_pt_cache(dso, machine);
 581        struct intel_pt_cache_entry *e;
 582        int err;
 583
 584        if (!c)
 585                return -ENOMEM;
 586
 587        e = auxtrace_cache__alloc_entry(c);
 588        if (!e)
 589                return -ENOMEM;
 590
 591        e->insn_cnt = insn_cnt;
 592        e->byte_cnt = byte_cnt;
 593        e->op = intel_pt_insn->op;
 594        e->branch = intel_pt_insn->branch;
 595        e->length = intel_pt_insn->length;
 596        e->rel = intel_pt_insn->rel;
 597        memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
 598
 599        err = auxtrace_cache__add(c, offset, &e->entry);
 600        if (err)
 601                auxtrace_cache__free_entry(c, e);
 602
 603        return err;
 604}
 605
 606static struct intel_pt_cache_entry *
 607intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
 608{
 609        struct auxtrace_cache *c = intel_pt_cache(dso, machine);
 610
 611        if (!c)
 612                return NULL;
 613
 614        return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
 615}
 616
 617static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
 618                                      u64 offset)
 619{
 620        struct auxtrace_cache *c = intel_pt_cache(dso, machine);
 621
 622        if (!c)
 623                return;
 624
 625        auxtrace_cache__remove(dso->auxtrace_cache, offset);
 626}
 627
 628static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
 629{
 630        /* Assumes 64-bit kernel */
 631        return ip & (1ULL << 63);
 632}
 633
 634static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
 635{
 636        if (nr) {
 637                return intel_pt_guest_kernel_ip(ip) ?
 638                       PERF_RECORD_MISC_GUEST_KERNEL :
 639                       PERF_RECORD_MISC_GUEST_USER;
 640        }
 641
 642        return ip >= ptq->pt->kernel_start ?
 643               PERF_RECORD_MISC_KERNEL :
 644               PERF_RECORD_MISC_USER;
 645}
 646
 647static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
 648{
 649        /* No support for non-zero CS base */
 650        if (from_ip)
 651                return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
 652        return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
 653}
 654
 655static int intel_pt_get_guest(struct intel_pt_queue *ptq)
 656{
 657        struct machines *machines = &ptq->pt->session->machines;
 658        struct machine *machine;
 659        pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
 660
 661        if (ptq->guest_machine && pid == ptq->guest_machine_pid)
 662                return 0;
 663
 664        ptq->guest_machine = NULL;
 665        thread__zput(ptq->unknown_guest_thread);
 666
 667        machine = machines__find_guest(machines, pid);
 668        if (!machine)
 669                return -1;
 670
 671        ptq->unknown_guest_thread = machine__idle_thread(machine);
 672        if (!ptq->unknown_guest_thread)
 673                return -1;
 674
 675        ptq->guest_machine = machine;
 676        ptq->guest_machine_pid = pid;
 677
 678        return 0;
 679}
 680
 681static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
 682                                   uint64_t *insn_cnt_ptr, uint64_t *ip,
 683                                   uint64_t to_ip, uint64_t max_insn_cnt,
 684                                   void *data)
 685{
 686        struct intel_pt_queue *ptq = data;
 687        struct machine *machine = ptq->pt->machine;
 688        struct thread *thread;
 689        struct addr_location al;
 690        unsigned char buf[INTEL_PT_INSN_BUF_SZ];
 691        ssize_t len;
 692        int x86_64;
 693        u8 cpumode;
 694        u64 offset, start_offset, start_ip;
 695        u64 insn_cnt = 0;
 696        bool one_map = true;
 697        bool nr;
 698
 699        intel_pt_insn->length = 0;
 700
 701        if (to_ip && *ip == to_ip)
 702                goto out_no_cache;
 703
 704        nr = ptq->state->to_nr;
 705        cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
 706
 707        if (nr) {
 708                if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL ||
 709                    intel_pt_get_guest(ptq))
 710                        return -EINVAL;
 711                machine = ptq->guest_machine;
 712                thread = ptq->unknown_guest_thread;
 713        } else {
 714                thread = ptq->thread;
 715                if (!thread) {
 716                        if (cpumode != PERF_RECORD_MISC_KERNEL)
 717                                return -EINVAL;
 718                        thread = ptq->pt->unknown_thread;
 719                }
 720        }
 721
 722        while (1) {
 723                if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
 724                        return -EINVAL;
 725
 726                if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
 727                    dso__data_status_seen(al.map->dso,
 728                                          DSO_DATA_STATUS_SEEN_ITRACE))
 729                        return -ENOENT;
 730
 731                offset = al.map->map_ip(al.map, *ip);
 732
 733                if (!to_ip && one_map) {
 734                        struct intel_pt_cache_entry *e;
 735
 736                        e = intel_pt_cache_lookup(al.map->dso, machine, offset);
 737                        if (e &&
 738                            (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
 739                                *insn_cnt_ptr = e->insn_cnt;
 740                                *ip += e->byte_cnt;
 741                                intel_pt_insn->op = e->op;
 742                                intel_pt_insn->branch = e->branch;
 743                                intel_pt_insn->length = e->length;
 744                                intel_pt_insn->rel = e->rel;
 745                                memcpy(intel_pt_insn->buf, e->insn,
 746                                       INTEL_PT_INSN_BUF_SZ);
 747                                intel_pt_log_insn_no_data(intel_pt_insn, *ip);
 748                                return 0;
 749                        }
 750                }
 751
 752                start_offset = offset;
 753                start_ip = *ip;
 754
 755                /* Load maps to ensure dso->is_64_bit has been updated */
 756                map__load(al.map);
 757
 758                x86_64 = al.map->dso->is_64_bit;
 759
 760                while (1) {
 761                        len = dso__data_read_offset(al.map->dso, machine,
 762                                                    offset, buf,
 763                                                    INTEL_PT_INSN_BUF_SZ);
 764                        if (len <= 0)
 765                                return -EINVAL;
 766
 767                        if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
 768                                return -EINVAL;
 769
 770                        intel_pt_log_insn(intel_pt_insn, *ip);
 771
 772                        insn_cnt += 1;
 773
 774                        if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
 775                                goto out;
 776
 777                        if (max_insn_cnt && insn_cnt >= max_insn_cnt)
 778                                goto out_no_cache;
 779
 780                        *ip += intel_pt_insn->length;
 781
 782                        if (to_ip && *ip == to_ip) {
 783                                intel_pt_insn->length = 0;
 784                                goto out_no_cache;
 785                        }
 786
 787                        if (*ip >= al.map->end)
 788                                break;
 789
 790                        offset += intel_pt_insn->length;
 791                }
 792                one_map = false;
 793        }
 794out:
 795        *insn_cnt_ptr = insn_cnt;
 796
 797        if (!one_map)
 798                goto out_no_cache;
 799
 800        /*
 801         * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
 802         * entries.
 803         */
 804        if (to_ip) {
 805                struct intel_pt_cache_entry *e;
 806
 807                e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
 808                if (e)
 809                        return 0;
 810        }
 811
 812        /* Ignore cache errors */
 813        intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
 814                           *ip - start_ip, intel_pt_insn);
 815
 816        return 0;
 817
 818out_no_cache:
 819        *insn_cnt_ptr = insn_cnt;
 820        return 0;
 821}
 822
 823static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
 824                                  uint64_t offset, const char *filename)
 825{
 826        struct addr_filter *filt;
 827        bool have_filter   = false;
 828        bool hit_tracestop = false;
 829        bool hit_filter    = false;
 830
 831        list_for_each_entry(filt, &pt->filts.head, list) {
 832                if (filt->start)
 833                        have_filter = true;
 834
 835                if ((filename && !filt->filename) ||
 836                    (!filename && filt->filename) ||
 837                    (filename && strcmp(filename, filt->filename)))
 838                        continue;
 839
 840                if (!(offset >= filt->addr && offset < filt->addr + filt->size))
 841                        continue;
 842
 843                intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
 844                             ip, offset, filename ? filename : "[kernel]",
 845                             filt->start ? "filter" : "stop",
 846                             filt->addr, filt->size);
 847
 848                if (filt->start)
 849                        hit_filter = true;
 850                else
 851                        hit_tracestop = true;
 852        }
 853
 854        if (!hit_tracestop && !hit_filter)
 855                intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
 856                             ip, offset, filename ? filename : "[kernel]");
 857
 858        return hit_tracestop || (have_filter && !hit_filter);
 859}
 860
 861static int __intel_pt_pgd_ip(uint64_t ip, void *data)
 862{
 863        struct intel_pt_queue *ptq = data;
 864        struct thread *thread;
 865        struct addr_location al;
 866        u8 cpumode;
 867        u64 offset;
 868
 869        if (ptq->state->to_nr) {
 870                if (intel_pt_guest_kernel_ip(ip))
 871                        return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
 872                /* No support for decoding guest user space */
 873                return -EINVAL;
 874        } else if (ip >= ptq->pt->kernel_start) {
 875                return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
 876        }
 877
 878        cpumode = PERF_RECORD_MISC_USER;
 879
 880        thread = ptq->thread;
 881        if (!thread)
 882                return -EINVAL;
 883
 884        if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
 885                return -EINVAL;
 886
 887        offset = al.map->map_ip(al.map, ip);
 888
 889        return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
 890                                     al.map->dso->long_name);
 891}
 892
 893static bool intel_pt_pgd_ip(uint64_t ip, void *data)
 894{
 895        return __intel_pt_pgd_ip(ip, data) > 0;
 896}
 897
 898static bool intel_pt_get_config(struct intel_pt *pt,
 899                                struct perf_event_attr *attr, u64 *config)
 900{
 901        if (attr->type == pt->pmu_type) {
 902                if (config)
 903                        *config = attr->config;
 904                return true;
 905        }
 906
 907        return false;
 908}
 909
 910static bool intel_pt_exclude_kernel(struct intel_pt *pt)
 911{
 912        struct evsel *evsel;
 913
 914        evlist__for_each_entry(pt->session->evlist, evsel) {
 915                if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
 916                    !evsel->core.attr.exclude_kernel)
 917                        return false;
 918        }
 919        return true;
 920}
 921
 922static bool intel_pt_return_compression(struct intel_pt *pt)
 923{
 924        struct evsel *evsel;
 925        u64 config;
 926
 927        if (!pt->noretcomp_bit)
 928                return true;
 929
 930        evlist__for_each_entry(pt->session->evlist, evsel) {
 931                if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
 932                    (config & pt->noretcomp_bit))
 933                        return false;
 934        }
 935        return true;
 936}
 937
 938static bool intel_pt_branch_enable(struct intel_pt *pt)
 939{
 940        struct evsel *evsel;
 941        u64 config;
 942
 943        evlist__for_each_entry(pt->session->evlist, evsel) {
 944                if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
 945                    (config & 1) && !(config & 0x2000))
 946                        return false;
 947        }
 948        return true;
 949}
 950
 951static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
 952{
 953        struct evsel *evsel;
 954        unsigned int shift;
 955        u64 config;
 956
 957        if (!pt->mtc_freq_bits)
 958                return 0;
 959
 960        for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
 961                config >>= 1;
 962
 963        evlist__for_each_entry(pt->session->evlist, evsel) {
 964                if (intel_pt_get_config(pt, &evsel->core.attr, &config))
 965                        return (config & pt->mtc_freq_bits) >> shift;
 966        }
 967        return 0;
 968}
 969
 970static bool intel_pt_timeless_decoding(struct intel_pt *pt)
 971{
 972        struct evsel *evsel;
 973        bool timeless_decoding = true;
 974        u64 config;
 975
 976        if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
 977                return true;
 978
 979        evlist__for_each_entry(pt->session->evlist, evsel) {
 980                if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
 981                        return true;
 982                if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
 983                        if (config & pt->tsc_bit)
 984                                timeless_decoding = false;
 985                        else
 986                                return true;
 987                }
 988        }
 989        return timeless_decoding;
 990}
 991
 992static bool intel_pt_tracing_kernel(struct intel_pt *pt)
 993{
 994        struct evsel *evsel;
 995
 996        evlist__for_each_entry(pt->session->evlist, evsel) {
 997                if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
 998                    !evsel->core.attr.exclude_kernel)
 999                        return true;
1000        }
1001        return false;
1002}
1003
1004static bool intel_pt_have_tsc(struct intel_pt *pt)
1005{
1006        struct evsel *evsel;
1007        bool have_tsc = false;
1008        u64 config;
1009
1010        if (!pt->tsc_bit)
1011                return false;
1012
1013        evlist__for_each_entry(pt->session->evlist, evsel) {
1014                if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1015                        if (config & pt->tsc_bit)
1016                                have_tsc = true;
1017                        else
1018                                return false;
1019                }
1020        }
1021        return have_tsc;
1022}
1023
1024static bool intel_pt_have_mtc(struct intel_pt *pt)
1025{
1026        struct evsel *evsel;
1027        u64 config;
1028
1029        evlist__for_each_entry(pt->session->evlist, evsel) {
1030                if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1031                    (config & pt->mtc_bit))
1032                        return true;
1033        }
1034        return false;
1035}
1036
1037static bool intel_pt_sampling_mode(struct intel_pt *pt)
1038{
1039        struct evsel *evsel;
1040
1041        evlist__for_each_entry(pt->session->evlist, evsel) {
1042                if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1043                    evsel->core.attr.aux_sample_size)
1044                        return true;
1045        }
1046        return false;
1047}
1048
1049static u64 intel_pt_ctl(struct intel_pt *pt)
1050{
1051        struct evsel *evsel;
1052        u64 config;
1053
1054        evlist__for_each_entry(pt->session->evlist, evsel) {
1055                if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1056                        return config;
1057        }
1058        return 0;
1059}
1060
1061static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1062{
1063        u64 quot, rem;
1064
1065        quot = ns / pt->tc.time_mult;
1066        rem  = ns % pt->tc.time_mult;
1067        return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1068                pt->tc.time_mult;
1069}
1070
1071static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1072{
1073        size_t sz = sizeof(struct ip_callchain);
1074
1075        /* Add 1 to callchain_sz for callchain context */
1076        sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1077        return zalloc(sz);
1078}
1079
1080static int intel_pt_callchain_init(struct intel_pt *pt)
1081{
1082        struct evsel *evsel;
1083
1084        evlist__for_each_entry(pt->session->evlist, evsel) {
1085                if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1086                        evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1087        }
1088
1089        pt->chain = intel_pt_alloc_chain(pt);
1090        if (!pt->chain)
1091                return -ENOMEM;
1092
1093        return 0;
1094}
1095
1096static void intel_pt_add_callchain(struct intel_pt *pt,
1097                                   struct perf_sample *sample)
1098{
1099        struct thread *thread = machine__findnew_thread(pt->machine,
1100                                                        sample->pid,
1101                                                        sample->tid);
1102
1103        thread_stack__sample_late(thread, sample->cpu, pt->chain,
1104                                  pt->synth_opts.callchain_sz + 1, sample->ip,
1105                                  pt->kernel_start);
1106
1107        sample->callchain = pt->chain;
1108}
1109
1110static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1111{
1112        size_t sz = sizeof(struct branch_stack);
1113
1114        sz += entry_cnt * sizeof(struct branch_entry);
1115        return zalloc(sz);
1116}
1117
1118static int intel_pt_br_stack_init(struct intel_pt *pt)
1119{
1120        struct evsel *evsel;
1121
1122        evlist__for_each_entry(pt->session->evlist, evsel) {
1123                if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1124                        evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1125        }
1126
1127        pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1128        if (!pt->br_stack)
1129                return -ENOMEM;
1130
1131        return 0;
1132}
1133
1134static void intel_pt_add_br_stack(struct intel_pt *pt,
1135                                  struct perf_sample *sample)
1136{
1137        struct thread *thread = machine__findnew_thread(pt->machine,
1138                                                        sample->pid,
1139                                                        sample->tid);
1140
1141        thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1142                                     pt->br_stack_sz, sample->ip,
1143                                     pt->kernel_start);
1144
1145        sample->branch_stack = pt->br_stack;
1146}
1147
1148/* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1149#define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1150
1151static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1152                                                   unsigned int queue_nr)
1153{
1154        struct intel_pt_params params = { .get_trace = 0, };
1155        struct perf_env *env = pt->machine->env;
1156        struct intel_pt_queue *ptq;
1157
1158        ptq = zalloc(sizeof(struct intel_pt_queue));
1159        if (!ptq)
1160                return NULL;
1161
1162        if (pt->synth_opts.callchain) {
1163                ptq->chain = intel_pt_alloc_chain(pt);
1164                if (!ptq->chain)
1165                        goto out_free;
1166        }
1167
1168        if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1169                unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1170
1171                ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1172                if (!ptq->last_branch)
1173                        goto out_free;
1174        }
1175
1176        ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1177        if (!ptq->event_buf)
1178                goto out_free;
1179
1180        ptq->pt = pt;
1181        ptq->queue_nr = queue_nr;
1182        ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1183        ptq->pid = -1;
1184        ptq->tid = -1;
1185        ptq->cpu = -1;
1186        ptq->next_tid = -1;
1187
1188        params.get_trace = intel_pt_get_trace;
1189        params.walk_insn = intel_pt_walk_next_insn;
1190        params.lookahead = intel_pt_lookahead;
1191        params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1192        params.data = ptq;
1193        params.return_compression = intel_pt_return_compression(pt);
1194        params.branch_enable = intel_pt_branch_enable(pt);
1195        params.ctl = intel_pt_ctl(pt);
1196        params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1197        params.mtc_period = intel_pt_mtc_period(pt);
1198        params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1199        params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1200        params.quick = pt->synth_opts.quick;
1201        params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1202        params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1203        params.first_timestamp = pt->first_timestamp;
1204        params.max_loops = pt->max_loops;
1205
1206        if (pt->filts.cnt > 0)
1207                params.pgd_ip = intel_pt_pgd_ip;
1208
1209        if (pt->synth_opts.instructions) {
1210                if (pt->synth_opts.period) {
1211                        switch (pt->synth_opts.period_type) {
1212                        case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1213                                params.period_type =
1214                                                INTEL_PT_PERIOD_INSTRUCTIONS;
1215                                params.period = pt->synth_opts.period;
1216                                break;
1217                        case PERF_ITRACE_PERIOD_TICKS:
1218                                params.period_type = INTEL_PT_PERIOD_TICKS;
1219                                params.period = pt->synth_opts.period;
1220                                break;
1221                        case PERF_ITRACE_PERIOD_NANOSECS:
1222                                params.period_type = INTEL_PT_PERIOD_TICKS;
1223                                params.period = intel_pt_ns_to_ticks(pt,
1224                                                        pt->synth_opts.period);
1225                                break;
1226                        default:
1227                                break;
1228                        }
1229                }
1230
1231                if (!params.period) {
1232                        params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1233                        params.period = 1;
1234                }
1235        }
1236
1237        if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1238                params.flags |= INTEL_PT_FUP_WITH_NLIP;
1239
1240        ptq->decoder = intel_pt_decoder_new(&params);
1241        if (!ptq->decoder)
1242                goto out_free;
1243
1244        return ptq;
1245
1246out_free:
1247        zfree(&ptq->event_buf);
1248        zfree(&ptq->last_branch);
1249        zfree(&ptq->chain);
1250        free(ptq);
1251        return NULL;
1252}
1253
1254static void intel_pt_free_queue(void *priv)
1255{
1256        struct intel_pt_queue *ptq = priv;
1257
1258        if (!ptq)
1259                return;
1260        thread__zput(ptq->thread);
1261        thread__zput(ptq->unknown_guest_thread);
1262        intel_pt_decoder_free(ptq->decoder);
1263        zfree(&ptq->event_buf);
1264        zfree(&ptq->last_branch);
1265        zfree(&ptq->chain);
1266        free(ptq);
1267}
1268
1269static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1270{
1271        unsigned int i;
1272
1273        pt->first_timestamp = timestamp;
1274
1275        for (i = 0; i < pt->queues.nr_queues; i++) {
1276                struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1277                struct intel_pt_queue *ptq = queue->priv;
1278
1279                if (ptq && ptq->decoder)
1280                        intel_pt_set_first_timestamp(ptq->decoder, timestamp);
1281        }
1282}
1283
1284static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1285                                     struct auxtrace_queue *queue)
1286{
1287        struct intel_pt_queue *ptq = queue->priv;
1288
1289        if (queue->tid == -1 || pt->have_sched_switch) {
1290                ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1291                if (ptq->tid == -1)
1292                        ptq->pid = -1;
1293                thread__zput(ptq->thread);
1294        }
1295
1296        if (!ptq->thread && ptq->tid != -1)
1297                ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1298
1299        if (ptq->thread) {
1300                ptq->pid = ptq->thread->pid_;
1301                if (queue->cpu == -1)
1302                        ptq->cpu = ptq->thread->cpu;
1303        }
1304}
1305
1306static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1307{
1308        ptq->insn_len = 0;
1309        if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1310                ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1311        } else if (ptq->state->flags & INTEL_PT_ASYNC) {
1312                if (!ptq->state->to_ip)
1313                        ptq->flags = PERF_IP_FLAG_BRANCH |
1314                                     PERF_IP_FLAG_TRACE_END;
1315                else if (ptq->state->from_nr && !ptq->state->to_nr)
1316                        ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1317                                     PERF_IP_FLAG_VMEXIT;
1318                else
1319                        ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1320                                     PERF_IP_FLAG_ASYNC |
1321                                     PERF_IP_FLAG_INTERRUPT;
1322        } else {
1323                if (ptq->state->from_ip)
1324                        ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1325                else
1326                        ptq->flags = PERF_IP_FLAG_BRANCH |
1327                                     PERF_IP_FLAG_TRACE_BEGIN;
1328                if (ptq->state->flags & INTEL_PT_IN_TX)
1329                        ptq->flags |= PERF_IP_FLAG_IN_TX;
1330                ptq->insn_len = ptq->state->insn_len;
1331                memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1332        }
1333
1334        if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1335                ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1336        if (ptq->state->type & INTEL_PT_TRACE_END)
1337                ptq->flags |= PERF_IP_FLAG_TRACE_END;
1338}
1339
1340static void intel_pt_setup_time_range(struct intel_pt *pt,
1341                                      struct intel_pt_queue *ptq)
1342{
1343        if (!pt->range_cnt)
1344                return;
1345
1346        ptq->sel_timestamp = pt->time_ranges[0].start;
1347        ptq->sel_idx = 0;
1348
1349        if (ptq->sel_timestamp) {
1350                ptq->sel_start = true;
1351        } else {
1352                ptq->sel_timestamp = pt->time_ranges[0].end;
1353                ptq->sel_start = false;
1354        }
1355}
1356
1357static int intel_pt_setup_queue(struct intel_pt *pt,
1358                                struct auxtrace_queue *queue,
1359                                unsigned int queue_nr)
1360{
1361        struct intel_pt_queue *ptq = queue->priv;
1362
1363        if (list_empty(&queue->head))
1364                return 0;
1365
1366        if (!ptq) {
1367                ptq = intel_pt_alloc_queue(pt, queue_nr);
1368                if (!ptq)
1369                        return -ENOMEM;
1370                queue->priv = ptq;
1371
1372                if (queue->cpu != -1)
1373                        ptq->cpu = queue->cpu;
1374                ptq->tid = queue->tid;
1375
1376                ptq->cbr_seen = UINT_MAX;
1377
1378                if (pt->sampling_mode && !pt->snapshot_mode &&
1379                    pt->timeless_decoding)
1380                        ptq->step_through_buffers = true;
1381
1382                ptq->sync_switch = pt->sync_switch;
1383
1384                intel_pt_setup_time_range(pt, ptq);
1385        }
1386
1387        if (!ptq->on_heap &&
1388            (!ptq->sync_switch ||
1389             ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1390                const struct intel_pt_state *state;
1391                int ret;
1392
1393                if (pt->timeless_decoding)
1394                        return 0;
1395
1396                intel_pt_log("queue %u getting timestamp\n", queue_nr);
1397                intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1398                             queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1399
1400                if (ptq->sel_start && ptq->sel_timestamp) {
1401                        ret = intel_pt_fast_forward(ptq->decoder,
1402                                                    ptq->sel_timestamp);
1403                        if (ret)
1404                                return ret;
1405                }
1406
1407                while (1) {
1408                        state = intel_pt_decode(ptq->decoder);
1409                        if (state->err) {
1410                                if (state->err == INTEL_PT_ERR_NODATA) {
1411                                        intel_pt_log("queue %u has no timestamp\n",
1412                                                     queue_nr);
1413                                        return 0;
1414                                }
1415                                continue;
1416                        }
1417                        if (state->timestamp)
1418                                break;
1419                }
1420
1421                ptq->timestamp = state->timestamp;
1422                intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1423                             queue_nr, ptq->timestamp);
1424                ptq->state = state;
1425                ptq->have_sample = true;
1426                if (ptq->sel_start && ptq->sel_timestamp &&
1427                    ptq->timestamp < ptq->sel_timestamp)
1428                        ptq->have_sample = false;
1429                intel_pt_sample_flags(ptq);
1430                ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1431                if (ret)
1432                        return ret;
1433                ptq->on_heap = true;
1434        }
1435
1436        return 0;
1437}
1438
1439static int intel_pt_setup_queues(struct intel_pt *pt)
1440{
1441        unsigned int i;
1442        int ret;
1443
1444        for (i = 0; i < pt->queues.nr_queues; i++) {
1445                ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1446                if (ret)
1447                        return ret;
1448        }
1449        return 0;
1450}
1451
1452static inline bool intel_pt_skip_event(struct intel_pt *pt)
1453{
1454        return pt->synth_opts.initial_skip &&
1455               pt->num_events++ < pt->synth_opts.initial_skip;
1456}
1457
1458/*
1459 * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1460 * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1461 * from this decoder state.
1462 */
1463static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1464{
1465        return pt->synth_opts.initial_skip &&
1466               pt->num_events + 4 < pt->synth_opts.initial_skip;
1467}
1468
1469static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1470                                   union perf_event *event,
1471                                   struct perf_sample *sample)
1472{
1473        event->sample.header.type = PERF_RECORD_SAMPLE;
1474        event->sample.header.size = sizeof(struct perf_event_header);
1475
1476        sample->pid = ptq->pid;
1477        sample->tid = ptq->tid;
1478        sample->cpu = ptq->cpu;
1479        sample->insn_len = ptq->insn_len;
1480        memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1481}
1482
1483static void intel_pt_prep_b_sample(struct intel_pt *pt,
1484                                   struct intel_pt_queue *ptq,
1485                                   union perf_event *event,
1486                                   struct perf_sample *sample)
1487{
1488        intel_pt_prep_a_sample(ptq, event, sample);
1489
1490        if (!pt->timeless_decoding)
1491                sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1492
1493        sample->ip = ptq->state->from_ip;
1494        sample->addr = ptq->state->to_ip;
1495        sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1496        sample->period = 1;
1497        sample->flags = ptq->flags;
1498
1499        event->sample.header.misc = sample->cpumode;
1500}
1501
1502static int intel_pt_inject_event(union perf_event *event,
1503                                 struct perf_sample *sample, u64 type)
1504{
1505        event->header.size = perf_event__sample_event_size(sample, type, 0);
1506        return perf_event__synthesize_sample(event, type, 0, sample);
1507}
1508
1509static inline int intel_pt_opt_inject(struct intel_pt *pt,
1510                                      union perf_event *event,
1511                                      struct perf_sample *sample, u64 type)
1512{
1513        if (!pt->synth_opts.inject)
1514                return 0;
1515
1516        return intel_pt_inject_event(event, sample, type);
1517}
1518
1519static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1520                                        union perf_event *event,
1521                                        struct perf_sample *sample, u64 type)
1522{
1523        int ret;
1524
1525        ret = intel_pt_opt_inject(pt, event, sample, type);
1526        if (ret)
1527                return ret;
1528
1529        ret = perf_session__deliver_synth_event(pt->session, event, sample);
1530        if (ret)
1531                pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1532
1533        return ret;
1534}
1535
1536static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1537{
1538        struct intel_pt *pt = ptq->pt;
1539        union perf_event *event = ptq->event_buf;
1540        struct perf_sample sample = { .ip = 0, };
1541        struct dummy_branch_stack {
1542                u64                     nr;
1543                u64                     hw_idx;
1544                struct branch_entry     entries;
1545        } dummy_bs;
1546
1547        if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1548                return 0;
1549
1550        if (intel_pt_skip_event(pt))
1551                return 0;
1552
1553        intel_pt_prep_b_sample(pt, ptq, event, &sample);
1554
1555        sample.id = ptq->pt->branches_id;
1556        sample.stream_id = ptq->pt->branches_id;
1557
1558        /*
1559         * perf report cannot handle events without a branch stack when using
1560         * SORT_MODE__BRANCH so make a dummy one.
1561         */
1562        if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1563                dummy_bs = (struct dummy_branch_stack){
1564                        .nr = 1,
1565                        .hw_idx = -1ULL,
1566                        .entries = {
1567                                .from = sample.ip,
1568                                .to = sample.addr,
1569                        },
1570                };
1571                sample.branch_stack = (struct branch_stack *)&dummy_bs;
1572        }
1573
1574        if (ptq->state->flags & INTEL_PT_SAMPLE_IPC)
1575                sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1576        if (sample.cyc_cnt) {
1577                sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1578                ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1579                ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1580        }
1581
1582        return intel_pt_deliver_synth_event(pt, event, &sample,
1583                                            pt->branches_sample_type);
1584}
1585
1586static void intel_pt_prep_sample(struct intel_pt *pt,
1587                                 struct intel_pt_queue *ptq,
1588                                 union perf_event *event,
1589                                 struct perf_sample *sample)
1590{
1591        intel_pt_prep_b_sample(pt, ptq, event, sample);
1592
1593        if (pt->synth_opts.callchain) {
1594                thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1595                                     pt->synth_opts.callchain_sz + 1,
1596                                     sample->ip, pt->kernel_start);
1597                sample->callchain = ptq->chain;
1598        }
1599
1600        if (pt->synth_opts.last_branch) {
1601                thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1602                                        pt->br_stack_sz);
1603                sample->branch_stack = ptq->last_branch;
1604        }
1605}
1606
1607static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1608{
1609        struct intel_pt *pt = ptq->pt;
1610        union perf_event *event = ptq->event_buf;
1611        struct perf_sample sample = { .ip = 0, };
1612
1613        if (intel_pt_skip_event(pt))
1614                return 0;
1615
1616        intel_pt_prep_sample(pt, ptq, event, &sample);
1617
1618        sample.id = ptq->pt->instructions_id;
1619        sample.stream_id = ptq->pt->instructions_id;
1620        if (pt->synth_opts.quick)
1621                sample.period = 1;
1622        else
1623                sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1624
1625        if (ptq->state->flags & INTEL_PT_SAMPLE_IPC)
1626                sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1627        if (sample.cyc_cnt) {
1628                sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1629                ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1630                ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1631        }
1632
1633        ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1634
1635        return intel_pt_deliver_synth_event(pt, event, &sample,
1636                                            pt->instructions_sample_type);
1637}
1638
1639static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1640{
1641        struct intel_pt *pt = ptq->pt;
1642        union perf_event *event = ptq->event_buf;
1643        struct perf_sample sample = { .ip = 0, };
1644
1645        if (intel_pt_skip_event(pt))
1646                return 0;
1647
1648        intel_pt_prep_sample(pt, ptq, event, &sample);
1649
1650        sample.id = ptq->pt->transactions_id;
1651        sample.stream_id = ptq->pt->transactions_id;
1652
1653        return intel_pt_deliver_synth_event(pt, event, &sample,
1654                                            pt->transactions_sample_type);
1655}
1656
1657static void intel_pt_prep_p_sample(struct intel_pt *pt,
1658                                   struct intel_pt_queue *ptq,
1659                                   union perf_event *event,
1660                                   struct perf_sample *sample)
1661{
1662        intel_pt_prep_sample(pt, ptq, event, sample);
1663
1664        /*
1665         * Zero IP is used to mean "trace start" but that is not the case for
1666         * power or PTWRITE events with no IP, so clear the flags.
1667         */
1668        if (!sample->ip)
1669                sample->flags = 0;
1670}
1671
1672static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1673{
1674        struct intel_pt *pt = ptq->pt;
1675        union perf_event *event = ptq->event_buf;
1676        struct perf_sample sample = { .ip = 0, };
1677        struct perf_synth_intel_ptwrite raw;
1678
1679        if (intel_pt_skip_event(pt))
1680                return 0;
1681
1682        intel_pt_prep_p_sample(pt, ptq, event, &sample);
1683
1684        sample.id = ptq->pt->ptwrites_id;
1685        sample.stream_id = ptq->pt->ptwrites_id;
1686
1687        raw.flags = 0;
1688        raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1689        raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1690
1691        sample.raw_size = perf_synth__raw_size(raw);
1692        sample.raw_data = perf_synth__raw_data(&raw);
1693
1694        return intel_pt_deliver_synth_event(pt, event, &sample,
1695                                            pt->ptwrites_sample_type);
1696}
1697
1698static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1699{
1700        struct intel_pt *pt = ptq->pt;
1701        union perf_event *event = ptq->event_buf;
1702        struct perf_sample sample = { .ip = 0, };
1703        struct perf_synth_intel_cbr raw;
1704        u32 flags;
1705
1706        if (intel_pt_skip_cbr_event(pt))
1707                return 0;
1708
1709        ptq->cbr_seen = ptq->state->cbr;
1710
1711        intel_pt_prep_p_sample(pt, ptq, event, &sample);
1712
1713        sample.id = ptq->pt->cbr_id;
1714        sample.stream_id = ptq->pt->cbr_id;
1715
1716        flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1717        raw.flags = cpu_to_le32(flags);
1718        raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1719        raw.reserved3 = 0;
1720
1721        sample.raw_size = perf_synth__raw_size(raw);
1722        sample.raw_data = perf_synth__raw_data(&raw);
1723
1724        return intel_pt_deliver_synth_event(pt, event, &sample,
1725                                            pt->pwr_events_sample_type);
1726}
1727
1728static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1729{
1730        struct intel_pt *pt = ptq->pt;
1731        union perf_event *event = ptq->event_buf;
1732        struct perf_sample sample = { .ip = 0, };
1733        struct perf_synth_intel_psb raw;
1734
1735        if (intel_pt_skip_event(pt))
1736                return 0;
1737
1738        intel_pt_prep_p_sample(pt, ptq, event, &sample);
1739
1740        sample.id = ptq->pt->psb_id;
1741        sample.stream_id = ptq->pt->psb_id;
1742        sample.flags = 0;
1743
1744        raw.reserved = 0;
1745        raw.offset = ptq->state->psb_offset;
1746
1747        sample.raw_size = perf_synth__raw_size(raw);
1748        sample.raw_data = perf_synth__raw_data(&raw);
1749
1750        return intel_pt_deliver_synth_event(pt, event, &sample,
1751                                            pt->pwr_events_sample_type);
1752}
1753
1754static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1755{
1756        struct intel_pt *pt = ptq->pt;
1757        union perf_event *event = ptq->event_buf;
1758        struct perf_sample sample = { .ip = 0, };
1759        struct perf_synth_intel_mwait raw;
1760
1761        if (intel_pt_skip_event(pt))
1762                return 0;
1763
1764        intel_pt_prep_p_sample(pt, ptq, event, &sample);
1765
1766        sample.id = ptq->pt->mwait_id;
1767        sample.stream_id = ptq->pt->mwait_id;
1768
1769        raw.reserved = 0;
1770        raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1771
1772        sample.raw_size = perf_synth__raw_size(raw);
1773        sample.raw_data = perf_synth__raw_data(&raw);
1774
1775        return intel_pt_deliver_synth_event(pt, event, &sample,
1776                                            pt->pwr_events_sample_type);
1777}
1778
1779static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1780{
1781        struct intel_pt *pt = ptq->pt;
1782        union perf_event *event = ptq->event_buf;
1783        struct perf_sample sample = { .ip = 0, };
1784        struct perf_synth_intel_pwre raw;
1785
1786        if (intel_pt_skip_event(pt))
1787                return 0;
1788
1789        intel_pt_prep_p_sample(pt, ptq, event, &sample);
1790
1791        sample.id = ptq->pt->pwre_id;
1792        sample.stream_id = ptq->pt->pwre_id;
1793
1794        raw.reserved = 0;
1795        raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1796
1797        sample.raw_size = perf_synth__raw_size(raw);
1798        sample.raw_data = perf_synth__raw_data(&raw);
1799
1800        return intel_pt_deliver_synth_event(pt, event, &sample,
1801                                            pt->pwr_events_sample_type);
1802}
1803
1804static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1805{
1806        struct intel_pt *pt = ptq->pt;
1807        union perf_event *event = ptq->event_buf;
1808        struct perf_sample sample = { .ip = 0, };
1809        struct perf_synth_intel_exstop raw;
1810
1811        if (intel_pt_skip_event(pt))
1812                return 0;
1813
1814        intel_pt_prep_p_sample(pt, ptq, event, &sample);
1815
1816        sample.id = ptq->pt->exstop_id;
1817        sample.stream_id = ptq->pt->exstop_id;
1818
1819        raw.flags = 0;
1820        raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1821
1822        sample.raw_size = perf_synth__raw_size(raw);
1823        sample.raw_data = perf_synth__raw_data(&raw);
1824
1825        return intel_pt_deliver_synth_event(pt, event, &sample,
1826                                            pt->pwr_events_sample_type);
1827}
1828
1829static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1830{
1831        struct intel_pt *pt = ptq->pt;
1832        union perf_event *event = ptq->event_buf;
1833        struct perf_sample sample = { .ip = 0, };
1834        struct perf_synth_intel_pwrx raw;
1835
1836        if (intel_pt_skip_event(pt))
1837                return 0;
1838
1839        intel_pt_prep_p_sample(pt, ptq, event, &sample);
1840
1841        sample.id = ptq->pt->pwrx_id;
1842        sample.stream_id = ptq->pt->pwrx_id;
1843
1844        raw.reserved = 0;
1845        raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1846
1847        sample.raw_size = perf_synth__raw_size(raw);
1848        sample.raw_data = perf_synth__raw_data(&raw);
1849
1850        return intel_pt_deliver_synth_event(pt, event, &sample,
1851                                            pt->pwr_events_sample_type);
1852}
1853
1854/*
1855 * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1856 * intel_pt_add_gp_regs().
1857 */
1858static const int pebs_gp_regs[] = {
1859        [PERF_REG_X86_FLAGS]    = 1,
1860        [PERF_REG_X86_IP]       = 2,
1861        [PERF_REG_X86_AX]       = 3,
1862        [PERF_REG_X86_CX]       = 4,
1863        [PERF_REG_X86_DX]       = 5,
1864        [PERF_REG_X86_BX]       = 6,
1865        [PERF_REG_X86_SP]       = 7,
1866        [PERF_REG_X86_BP]       = 8,
1867        [PERF_REG_X86_SI]       = 9,
1868        [PERF_REG_X86_DI]       = 10,
1869        [PERF_REG_X86_R8]       = 11,
1870        [PERF_REG_X86_R9]       = 12,
1871        [PERF_REG_X86_R10]      = 13,
1872        [PERF_REG_X86_R11]      = 14,
1873        [PERF_REG_X86_R12]      = 15,
1874        [PERF_REG_X86_R13]      = 16,
1875        [PERF_REG_X86_R14]      = 17,
1876        [PERF_REG_X86_R15]      = 18,
1877};
1878
1879static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1880                                 const struct intel_pt_blk_items *items,
1881                                 u64 regs_mask)
1882{
1883        const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1884        u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1885        u32 bit;
1886        int i;
1887
1888        for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1889                /* Get the PEBS gp_regs array index */
1890                int n = pebs_gp_regs[i] - 1;
1891
1892                if (n < 0)
1893                        continue;
1894                /*
1895                 * Add only registers that were requested (i.e. 'regs_mask') and
1896                 * that were provided (i.e. 'mask'), and update the resulting
1897                 * mask (i.e. 'intr_regs->mask') accordingly.
1898                 */
1899                if (mask & 1 << n && regs_mask & bit) {
1900                        intr_regs->mask |= bit;
1901                        *pos++ = gp_regs[n];
1902                }
1903        }
1904
1905        return pos;
1906}
1907
1908#ifndef PERF_REG_X86_XMM0
1909#define PERF_REG_X86_XMM0 32
1910#endif
1911
1912static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1913                             const struct intel_pt_blk_items *items,
1914                             u64 regs_mask)
1915{
1916        u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1917        const u64 *xmm = items->xmm;
1918
1919        /*
1920         * If there are any XMM registers, then there should be all of them.
1921         * Nevertheless, follow the logic to add only registers that were
1922         * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1923         * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1924         */
1925        intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1926
1927        for (; mask; mask >>= 1, xmm++) {
1928                if (mask & 1)
1929                        *pos++ = *xmm;
1930        }
1931}
1932
1933#define LBR_INFO_MISPRED        (1ULL << 63)
1934#define LBR_INFO_IN_TX          (1ULL << 62)
1935#define LBR_INFO_ABORT          (1ULL << 61)
1936#define LBR_INFO_CYCLES         0xffff
1937
1938/* Refer kernel's intel_pmu_store_pebs_lbrs() */
1939static u64 intel_pt_lbr_flags(u64 info)
1940{
1941        union {
1942                struct branch_flags flags;
1943                u64 result;
1944        } u;
1945
1946        u.result          = 0;
1947        u.flags.mispred   = !!(info & LBR_INFO_MISPRED);
1948        u.flags.predicted = !(info & LBR_INFO_MISPRED);
1949        u.flags.in_tx     = !!(info & LBR_INFO_IN_TX);
1950        u.flags.abort     = !!(info & LBR_INFO_ABORT);
1951        u.flags.cycles    = info & LBR_INFO_CYCLES;
1952
1953        return u.result;
1954}
1955
1956static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1957                              const struct intel_pt_blk_items *items)
1958{
1959        u64 *to;
1960        int i;
1961
1962        br_stack->nr = 0;
1963
1964        to = &br_stack->entries[0].from;
1965
1966        for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1967                u32 mask = items->mask[i];
1968                const u64 *from = items->val[i];
1969
1970                for (; mask; mask >>= 3, from += 3) {
1971                        if ((mask & 7) == 7) {
1972                                *to++ = from[0];
1973                                *to++ = from[1];
1974                                *to++ = intel_pt_lbr_flags(from[2]);
1975                                br_stack->nr += 1;
1976                        }
1977                }
1978        }
1979}
1980
1981static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
1982{
1983        const struct intel_pt_blk_items *items = &ptq->state->items;
1984        struct perf_sample sample = { .ip = 0, };
1985        union perf_event *event = ptq->event_buf;
1986        struct intel_pt *pt = ptq->pt;
1987        struct evsel *evsel = pt->pebs_evsel;
1988        u64 sample_type = evsel->core.attr.sample_type;
1989        u64 id = evsel->core.id[0];
1990        u8 cpumode;
1991        u64 regs[8 * sizeof(sample.intr_regs.mask)];
1992
1993        if (intel_pt_skip_event(pt))
1994                return 0;
1995
1996        intel_pt_prep_a_sample(ptq, event, &sample);
1997
1998        sample.id = id;
1999        sample.stream_id = id;
2000
2001        if (!evsel->core.attr.freq)
2002                sample.period = evsel->core.attr.sample_period;
2003
2004        /* No support for non-zero CS base */
2005        if (items->has_ip)
2006                sample.ip = items->ip;
2007        else if (items->has_rip)
2008                sample.ip = items->rip;
2009        else
2010                sample.ip = ptq->state->from_ip;
2011
2012        cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
2013
2014        event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2015
2016        sample.cpumode = cpumode;
2017
2018        if (sample_type & PERF_SAMPLE_TIME) {
2019                u64 timestamp = 0;
2020
2021                if (items->has_timestamp)
2022                        timestamp = items->timestamp;
2023                else if (!pt->timeless_decoding)
2024                        timestamp = ptq->timestamp;
2025                if (timestamp)
2026                        sample.time = tsc_to_perf_time(timestamp, &pt->tc);
2027        }
2028
2029        if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2030            pt->synth_opts.callchain) {
2031                thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
2032                                     pt->synth_opts.callchain_sz, sample.ip,
2033                                     pt->kernel_start);
2034                sample.callchain = ptq->chain;
2035        }
2036
2037        if (sample_type & PERF_SAMPLE_REGS_INTR &&
2038            (items->mask[INTEL_PT_GP_REGS_POS] ||
2039             items->mask[INTEL_PT_XMM_POS])) {
2040                u64 regs_mask = evsel->core.attr.sample_regs_intr;
2041                u64 *pos;
2042
2043                sample.intr_regs.abi = items->is_32_bit ?
2044                                       PERF_SAMPLE_REGS_ABI_32 :
2045                                       PERF_SAMPLE_REGS_ABI_64;
2046                sample.intr_regs.regs = regs;
2047
2048                pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
2049
2050                intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
2051        }
2052
2053        if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
2054                if (items->mask[INTEL_PT_LBR_0_POS] ||
2055                    items->mask[INTEL_PT_LBR_1_POS] ||
2056                    items->mask[INTEL_PT_LBR_2_POS]) {
2057                        intel_pt_add_lbrs(ptq->last_branch, items);
2058                } else if (pt->synth_opts.last_branch) {
2059                        thread_stack__br_sample(ptq->thread, ptq->cpu,
2060                                                ptq->last_branch,
2061                                                pt->br_stack_sz);
2062                } else {
2063                        ptq->last_branch->nr = 0;
2064                }
2065                sample.branch_stack = ptq->last_branch;
2066        }
2067
2068        if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2069                sample.addr = items->mem_access_address;
2070
2071        if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2072                /*
2073                 * Refer kernel's setup_pebs_adaptive_sample_data() and
2074                 * intel_hsw_weight().
2075                 */
2076                if (items->has_mem_access_latency) {
2077                        u64 weight = items->mem_access_latency >> 32;
2078
2079                        /*
2080                         * Starts from SPR, the mem access latency field
2081                         * contains both cache latency [47:32] and instruction
2082                         * latency [15:0]. The cache latency is the same as the
2083                         * mem access latency on previous platforms.
2084                         *
2085                         * In practice, no memory access could last than 4G
2086                         * cycles. Use latency >> 32 to distinguish the
2087                         * different format of the mem access latency field.
2088                         */
2089                        if (weight > 0) {
2090                                sample.weight = weight & 0xffff;
2091                                sample.ins_lat = items->mem_access_latency & 0xffff;
2092                        } else
2093                                sample.weight = items->mem_access_latency;
2094                }
2095                if (!sample.weight && items->has_tsx_aux_info) {
2096                        /* Cycles last block */
2097                        sample.weight = (u32)items->tsx_aux_info;
2098                }
2099        }
2100
2101        if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2102                u64 ax = items->has_rax ? items->rax : 0;
2103                /* Refer kernel's intel_hsw_transaction() */
2104                u64 txn = (u8)(items->tsx_aux_info >> 32);
2105
2106                /* For RTM XABORTs also log the abort code from AX */
2107                if (txn & PERF_TXN_TRANSACTION && ax & 1)
2108                        txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2109                sample.transaction = txn;
2110        }
2111
2112        return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2113}
2114
2115static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2116                                pid_t pid, pid_t tid, u64 ip, u64 timestamp)
2117{
2118        union perf_event event;
2119        char msg[MAX_AUXTRACE_ERROR_MSG];
2120        int err;
2121
2122        if (pt->synth_opts.error_minus_flags) {
2123                if (code == INTEL_PT_ERR_OVR &&
2124                    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2125                        return 0;
2126                if (code == INTEL_PT_ERR_LOST &&
2127                    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2128                        return 0;
2129        }
2130
2131        intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2132
2133        auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2134                             code, cpu, pid, tid, ip, msg, timestamp);
2135
2136        err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2137        if (err)
2138                pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2139                       err);
2140
2141        return err;
2142}
2143
2144static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2145                                 const struct intel_pt_state *state)
2146{
2147        struct intel_pt *pt = ptq->pt;
2148        u64 tm = ptq->timestamp;
2149
2150        tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2151
2152        return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
2153                                    ptq->tid, state->from_ip, tm);
2154}
2155
2156static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2157{
2158        struct auxtrace_queue *queue;
2159        pid_t tid = ptq->next_tid;
2160        int err;
2161
2162        if (tid == -1)
2163                return 0;
2164
2165        intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2166
2167        err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2168
2169        queue = &pt->queues.queue_array[ptq->queue_nr];
2170        intel_pt_set_pid_tid_cpu(pt, queue);
2171
2172        ptq->next_tid = -1;
2173
2174        return err;
2175}
2176
2177static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2178{
2179        struct intel_pt *pt = ptq->pt;
2180
2181        return ip == pt->switch_ip &&
2182               (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2183               !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2184                               PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2185}
2186
2187#define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2188                          INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2189
2190static int intel_pt_sample(struct intel_pt_queue *ptq)
2191{
2192        const struct intel_pt_state *state = ptq->state;
2193        struct intel_pt *pt = ptq->pt;
2194        int err;
2195
2196        if (!ptq->have_sample)
2197                return 0;
2198
2199        ptq->have_sample = false;
2200
2201        ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2202        ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2203
2204        /*
2205         * Do PEBS first to allow for the possibility that the PEBS timestamp
2206         * precedes the current timestamp.
2207         */
2208        if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2209                err = intel_pt_synth_pebs_sample(ptq);
2210                if (err)
2211                        return err;
2212        }
2213
2214        if (pt->sample_pwr_events) {
2215                if (state->type & INTEL_PT_PSB_EVT) {
2216                        err = intel_pt_synth_psb_sample(ptq);
2217                        if (err)
2218                                return err;
2219                }
2220                if (ptq->state->cbr != ptq->cbr_seen) {
2221                        err = intel_pt_synth_cbr_sample(ptq);
2222                        if (err)
2223                                return err;
2224                }
2225                if (state->type & INTEL_PT_PWR_EVT) {
2226                        if (state->type & INTEL_PT_MWAIT_OP) {
2227                                err = intel_pt_synth_mwait_sample(ptq);
2228                                if (err)
2229                                        return err;
2230                        }
2231                        if (state->type & INTEL_PT_PWR_ENTRY) {
2232                                err = intel_pt_synth_pwre_sample(ptq);
2233                                if (err)
2234                                        return err;
2235                        }
2236                        if (state->type & INTEL_PT_EX_STOP) {
2237                                err = intel_pt_synth_exstop_sample(ptq);
2238                                if (err)
2239                                        return err;
2240                        }
2241                        if (state->type & INTEL_PT_PWR_EXIT) {
2242                                err = intel_pt_synth_pwrx_sample(ptq);
2243                                if (err)
2244                                        return err;
2245                        }
2246                }
2247        }
2248
2249        if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
2250                err = intel_pt_synth_instruction_sample(ptq);
2251                if (err)
2252                        return err;
2253        }
2254
2255        if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2256                err = intel_pt_synth_transaction_sample(ptq);
2257                if (err)
2258                        return err;
2259        }
2260
2261        if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2262                err = intel_pt_synth_ptwrite_sample(ptq);
2263                if (err)
2264                        return err;
2265        }
2266
2267        if (!(state->type & INTEL_PT_BRANCH))
2268                return 0;
2269
2270        if (pt->use_thread_stack) {
2271                thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2272                                    state->from_ip, state->to_ip, ptq->insn_len,
2273                                    state->trace_nr, pt->callstack,
2274                                    pt->br_stack_sz_plus,
2275                                    pt->mispred_all);
2276        } else {
2277                thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2278        }
2279
2280        if (pt->sample_branches) {
2281                if (state->from_nr != state->to_nr &&
2282                    state->from_ip && state->to_ip) {
2283                        struct intel_pt_state *st = (struct intel_pt_state *)state;
2284                        u64 to_ip = st->to_ip;
2285                        u64 from_ip = st->from_ip;
2286
2287                        /*
2288                         * perf cannot handle having different machines for ip
2289                         * and addr, so create 2 branches.
2290                         */
2291                        st->to_ip = 0;
2292                        err = intel_pt_synth_branch_sample(ptq);
2293                        if (err)
2294                                return err;
2295                        st->from_ip = 0;
2296                        st->to_ip = to_ip;
2297                        err = intel_pt_synth_branch_sample(ptq);
2298                        st->from_ip = from_ip;
2299                } else {
2300                        err = intel_pt_synth_branch_sample(ptq);
2301                }
2302                if (err)
2303                        return err;
2304        }
2305
2306        if (!ptq->sync_switch)
2307                return 0;
2308
2309        if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2310                switch (ptq->switch_state) {
2311                case INTEL_PT_SS_NOT_TRACING:
2312                case INTEL_PT_SS_UNKNOWN:
2313                case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2314                        err = intel_pt_next_tid(pt, ptq);
2315                        if (err)
2316                                return err;
2317                        ptq->switch_state = INTEL_PT_SS_TRACING;
2318                        break;
2319                default:
2320                        ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2321                        return 1;
2322                }
2323        } else if (!state->to_ip) {
2324                ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2325        } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2326                ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2327        } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2328                   state->to_ip == pt->ptss_ip &&
2329                   (ptq->flags & PERF_IP_FLAG_CALL)) {
2330                ptq->switch_state = INTEL_PT_SS_TRACING;
2331        }
2332
2333        return 0;
2334}
2335
2336static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2337{
2338        struct machine *machine = pt->machine;
2339        struct map *map;
2340        struct symbol *sym, *start;
2341        u64 ip, switch_ip = 0;
2342        const char *ptss;
2343
2344        if (ptss_ip)
2345                *ptss_ip = 0;
2346
2347        map = machine__kernel_map(machine);
2348        if (!map)
2349                return 0;
2350
2351        if (map__load(map))
2352                return 0;
2353
2354        start = dso__first_symbol(map->dso);
2355
2356        for (sym = start; sym; sym = dso__next_symbol(sym)) {
2357                if (sym->binding == STB_GLOBAL &&
2358                    !strcmp(sym->name, "__switch_to")) {
2359                        ip = map->unmap_ip(map, sym->start);
2360                        if (ip >= map->start && ip < map->end) {
2361                                switch_ip = ip;
2362                                break;
2363                        }
2364                }
2365        }
2366
2367        if (!switch_ip || !ptss_ip)
2368                return 0;
2369
2370        if (pt->have_sched_switch == 1)
2371                ptss = "perf_trace_sched_switch";
2372        else
2373                ptss = "__perf_event_task_sched_out";
2374
2375        for (sym = start; sym; sym = dso__next_symbol(sym)) {
2376                if (!strcmp(sym->name, ptss)) {
2377                        ip = map->unmap_ip(map, sym->start);
2378                        if (ip >= map->start && ip < map->end) {
2379                                *ptss_ip = ip;
2380                                break;
2381                        }
2382                }
2383        }
2384
2385        return switch_ip;
2386}
2387
2388static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2389{
2390        unsigned int i;
2391
2392        pt->sync_switch = true;
2393
2394        for (i = 0; i < pt->queues.nr_queues; i++) {
2395                struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2396                struct intel_pt_queue *ptq = queue->priv;
2397
2398                if (ptq)
2399                        ptq->sync_switch = true;
2400        }
2401}
2402
2403/*
2404 * To filter against time ranges, it is only necessary to look at the next start
2405 * or end time.
2406 */
2407static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2408{
2409        struct intel_pt *pt = ptq->pt;
2410
2411        if (ptq->sel_start) {
2412                /* Next time is an end time */
2413                ptq->sel_start = false;
2414                ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2415                return true;
2416        } else if (ptq->sel_idx + 1 < pt->range_cnt) {
2417                /* Next time is a start time */
2418                ptq->sel_start = true;
2419                ptq->sel_idx += 1;
2420                ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2421                return true;
2422        }
2423
2424        /* No next time */
2425        return false;
2426}
2427
2428static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2429{
2430        int err;
2431
2432        while (1) {
2433                if (ptq->sel_start) {
2434                        if (ptq->timestamp >= ptq->sel_timestamp) {
2435                                /* After start time, so consider next time */
2436                                intel_pt_next_time(ptq);
2437                                if (!ptq->sel_timestamp) {
2438                                        /* No end time */
2439                                        return 0;
2440                                }
2441                                /* Check against end time */
2442                                continue;
2443                        }
2444                        /* Before start time, so fast forward */
2445                        ptq->have_sample = false;
2446                        if (ptq->sel_timestamp > *ff_timestamp) {
2447                                if (ptq->sync_switch) {
2448                                        intel_pt_next_tid(ptq->pt, ptq);
2449                                        ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2450                                }
2451                                *ff_timestamp = ptq->sel_timestamp;
2452                                err = intel_pt_fast_forward(ptq->decoder,
2453                                                            ptq->sel_timestamp);
2454                                if (err)
2455                                        return err;
2456                        }
2457                        return 0;
2458                } else if (ptq->timestamp > ptq->sel_timestamp) {
2459                        /* After end time, so consider next time */
2460                        if (!intel_pt_next_time(ptq)) {
2461                                /* No next time range, so stop decoding */
2462                                ptq->have_sample = false;
2463                                ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2464                                return 1;
2465                        }
2466                        /* Check against next start time */
2467                        continue;
2468                } else {
2469                        /* Before end time */
2470                        return 0;
2471                }
2472        }
2473}
2474
2475static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2476{
2477        const struct intel_pt_state *state = ptq->state;
2478        struct intel_pt *pt = ptq->pt;
2479        u64 ff_timestamp = 0;
2480        int err;
2481
2482        if (!pt->kernel_start) {
2483                pt->kernel_start = machine__kernel_start(pt->machine);
2484                if (pt->per_cpu_mmaps &&
2485                    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2486                    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2487                    !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
2488                        pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2489                        if (pt->switch_ip) {
2490                                intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2491                                             pt->switch_ip, pt->ptss_ip);
2492                                intel_pt_enable_sync_switch(pt);
2493                        }
2494                }
2495        }
2496
2497        intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2498                     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2499        while (1) {
2500                err = intel_pt_sample(ptq);
2501                if (err)
2502                        return err;
2503
2504                state = intel_pt_decode(ptq->decoder);
2505                if (state->err) {
2506                        if (state->err == INTEL_PT_ERR_NODATA)
2507                                return 1;
2508                        if (ptq->sync_switch &&
2509                            state->from_ip >= pt->kernel_start) {
2510                                ptq->sync_switch = false;
2511                                intel_pt_next_tid(pt, ptq);
2512                        }
2513                        if (pt->synth_opts.errors) {
2514                                err = intel_ptq_synth_error(ptq, state);
2515                                if (err)
2516                                        return err;
2517                        }
2518                        continue;
2519                }
2520
2521                ptq->state = state;
2522                ptq->have_sample = true;
2523                intel_pt_sample_flags(ptq);
2524
2525                /* Use estimated TSC upon return to user space */
2526                if (pt->est_tsc &&
2527                    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2528                    state->to_ip && state->to_ip < pt->kernel_start) {
2529                        intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2530                                     state->timestamp, state->est_timestamp);
2531                        ptq->timestamp = state->est_timestamp;
2532                /* Use estimated TSC in unknown switch state */
2533                } else if (ptq->sync_switch &&
2534                           ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2535                           intel_pt_is_switch_ip(ptq, state->to_ip) &&
2536                           ptq->next_tid == -1) {
2537                        intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2538                                     state->timestamp, state->est_timestamp);
2539                        ptq->timestamp = state->est_timestamp;
2540                } else if (state->timestamp > ptq->timestamp) {
2541                        ptq->timestamp = state->timestamp;
2542                }
2543
2544                if (ptq->sel_timestamp) {
2545                        err = intel_pt_time_filter(ptq, &ff_timestamp);
2546                        if (err)
2547                                return err;
2548                }
2549
2550                if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2551                        *timestamp = ptq->timestamp;
2552                        return 0;
2553                }
2554        }
2555        return 0;
2556}
2557
2558static inline int intel_pt_update_queues(struct intel_pt *pt)
2559{
2560        if (pt->queues.new_data) {
2561                pt->queues.new_data = false;
2562                return intel_pt_setup_queues(pt);
2563        }
2564        return 0;
2565}
2566
2567static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2568{
2569        unsigned int queue_nr;
2570        u64 ts;
2571        int ret;
2572
2573        while (1) {
2574                struct auxtrace_queue *queue;
2575                struct intel_pt_queue *ptq;
2576
2577                if (!pt->heap.heap_cnt)
2578                        return 0;
2579
2580                if (pt->heap.heap_array[0].ordinal >= timestamp)
2581                        return 0;
2582
2583                queue_nr = pt->heap.heap_array[0].queue_nr;
2584                queue = &pt->queues.queue_array[queue_nr];
2585                ptq = queue->priv;
2586
2587                intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2588                             queue_nr, pt->heap.heap_array[0].ordinal,
2589                             timestamp);
2590
2591                auxtrace_heap__pop(&pt->heap);
2592
2593                if (pt->heap.heap_cnt) {
2594                        ts = pt->heap.heap_array[0].ordinal + 1;
2595                        if (ts > timestamp)
2596                                ts = timestamp;
2597                } else {
2598                        ts = timestamp;
2599                }
2600
2601                intel_pt_set_pid_tid_cpu(pt, queue);
2602
2603                ret = intel_pt_run_decoder(ptq, &ts);
2604
2605                if (ret < 0) {
2606                        auxtrace_heap__add(&pt->heap, queue_nr, ts);
2607                        return ret;
2608                }
2609
2610                if (!ret) {
2611                        ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2612                        if (ret < 0)
2613                                return ret;
2614                } else {
2615                        ptq->on_heap = false;
2616                }
2617        }
2618
2619        return 0;
2620}
2621
2622static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2623                                            u64 time_)
2624{
2625        struct auxtrace_queues *queues = &pt->queues;
2626        unsigned int i;
2627        u64 ts = 0;
2628
2629        for (i = 0; i < queues->nr_queues; i++) {
2630                struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2631                struct intel_pt_queue *ptq = queue->priv;
2632
2633                if (ptq && (tid == -1 || ptq->tid == tid)) {
2634                        ptq->time = time_;
2635                        intel_pt_set_pid_tid_cpu(pt, queue);
2636                        intel_pt_run_decoder(ptq, &ts);
2637                }
2638        }
2639        return 0;
2640}
2641
2642static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
2643                                            struct auxtrace_queue *queue,
2644                                            struct perf_sample *sample)
2645{
2646        struct machine *m = ptq->pt->machine;
2647
2648        ptq->pid = sample->pid;
2649        ptq->tid = sample->tid;
2650        ptq->cpu = queue->cpu;
2651
2652        intel_pt_log("queue %u cpu %d pid %d tid %d\n",
2653                     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2654
2655        thread__zput(ptq->thread);
2656
2657        if (ptq->tid == -1)
2658                return;
2659
2660        if (ptq->pid == -1) {
2661                ptq->thread = machine__find_thread(m, -1, ptq->tid);
2662                if (ptq->thread)
2663                        ptq->pid = ptq->thread->pid_;
2664                return;
2665        }
2666
2667        ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
2668}
2669
2670static int intel_pt_process_timeless_sample(struct intel_pt *pt,
2671                                            struct perf_sample *sample)
2672{
2673        struct auxtrace_queue *queue;
2674        struct intel_pt_queue *ptq;
2675        u64 ts = 0;
2676
2677        queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2678        if (!queue)
2679                return -EINVAL;
2680
2681        ptq = queue->priv;
2682        if (!ptq)
2683                return 0;
2684
2685        ptq->stop = false;
2686        ptq->time = sample->time;
2687        intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
2688        intel_pt_run_decoder(ptq, &ts);
2689        return 0;
2690}
2691
2692static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2693{
2694        return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2695                                    sample->pid, sample->tid, 0, sample->time);
2696}
2697
2698static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2699{
2700        unsigned i, j;
2701
2702        if (cpu < 0 || !pt->queues.nr_queues)
2703                return NULL;
2704
2705        if ((unsigned)cpu >= pt->queues.nr_queues)
2706                i = pt->queues.nr_queues - 1;
2707        else
2708                i = cpu;
2709
2710        if (pt->queues.queue_array[i].cpu == cpu)
2711                return pt->queues.queue_array[i].priv;
2712
2713        for (j = 0; i > 0; j++) {
2714                if (pt->queues.queue_array[--i].cpu == cpu)
2715                        return pt->queues.queue_array[i].priv;
2716        }
2717
2718        for (; j < pt->queues.nr_queues; j++) {
2719                if (pt->queues.queue_array[j].cpu == cpu)
2720                        return pt->queues.queue_array[j].priv;
2721        }
2722
2723        return NULL;
2724}
2725
2726static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2727                                u64 timestamp)
2728{
2729        struct intel_pt_queue *ptq;
2730        int err;
2731
2732        if (!pt->sync_switch)
2733                return 1;
2734
2735        ptq = intel_pt_cpu_to_ptq(pt, cpu);
2736        if (!ptq || !ptq->sync_switch)
2737                return 1;
2738
2739        switch (ptq->switch_state) {
2740        case INTEL_PT_SS_NOT_TRACING:
2741                break;
2742        case INTEL_PT_SS_UNKNOWN:
2743        case INTEL_PT_SS_TRACING:
2744                ptq->next_tid = tid;
2745                ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2746                return 0;
2747        case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2748                if (!ptq->on_heap) {
2749                        ptq->timestamp = perf_time_to_tsc(timestamp,
2750                                                          &pt->tc);
2751                        err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2752                                                 ptq->timestamp);
2753                        if (err)
2754                                return err;
2755                        ptq->on_heap = true;
2756                }
2757                ptq->switch_state = INTEL_PT_SS_TRACING;
2758                break;
2759        case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2760                intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2761                break;
2762        default:
2763                break;
2764        }
2765
2766        ptq->next_tid = -1;
2767
2768        return 1;
2769}
2770
2771static int intel_pt_process_switch(struct intel_pt *pt,
2772                                   struct perf_sample *sample)
2773{
2774        pid_t tid;
2775        int cpu, ret;
2776        struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
2777
2778        if (evsel != pt->switch_evsel)
2779                return 0;
2780
2781        tid = evsel__intval(evsel, sample, "next_pid");
2782        cpu = sample->cpu;
2783
2784        intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2785                     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2786                     &pt->tc));
2787
2788        ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2789        if (ret <= 0)
2790                return ret;
2791
2792        return machine__set_current_tid(pt->machine, cpu, -1, tid);
2793}
2794
2795static int intel_pt_context_switch_in(struct intel_pt *pt,
2796                                      struct perf_sample *sample)
2797{
2798        pid_t pid = sample->pid;
2799        pid_t tid = sample->tid;
2800        int cpu = sample->cpu;
2801
2802        if (pt->sync_switch) {
2803                struct intel_pt_queue *ptq;
2804
2805                ptq = intel_pt_cpu_to_ptq(pt, cpu);
2806                if (ptq && ptq->sync_switch) {
2807                        ptq->next_tid = -1;
2808                        switch (ptq->switch_state) {
2809                        case INTEL_PT_SS_NOT_TRACING:
2810                        case INTEL_PT_SS_UNKNOWN:
2811                        case INTEL_PT_SS_TRACING:
2812                                break;
2813                        case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2814                        case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2815                                ptq->switch_state = INTEL_PT_SS_TRACING;
2816                                break;
2817                        default:
2818                                break;
2819                        }
2820                }
2821        }
2822
2823        /*
2824         * If the current tid has not been updated yet, ensure it is now that
2825         * a "switch in" event has occurred.
2826         */
2827        if (machine__get_current_tid(pt->machine, cpu) == tid)
2828                return 0;
2829
2830        return machine__set_current_tid(pt->machine, cpu, pid, tid);
2831}
2832
2833static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2834                                   struct perf_sample *sample)
2835{
2836        bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2837        pid_t pid, tid;
2838        int cpu, ret;
2839
2840        cpu = sample->cpu;
2841
2842        if (pt->have_sched_switch == 3) {
2843                if (!out)
2844                        return intel_pt_context_switch_in(pt, sample);
2845                if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2846                        pr_err("Expecting CPU-wide context switch event\n");
2847                        return -EINVAL;
2848                }
2849                pid = event->context_switch.next_prev_pid;
2850                tid = event->context_switch.next_prev_tid;
2851        } else {
2852                if (out)
2853                        return 0;
2854                pid = sample->pid;
2855                tid = sample->tid;
2856        }
2857
2858        if (tid == -1)
2859                intel_pt_log("context_switch event has no tid\n");
2860
2861        ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2862        if (ret <= 0)
2863                return ret;
2864
2865        return machine__set_current_tid(pt->machine, cpu, pid, tid);
2866}
2867
2868static int intel_pt_process_itrace_start(struct intel_pt *pt,
2869                                         union perf_event *event,
2870                                         struct perf_sample *sample)
2871{
2872        if (!pt->per_cpu_mmaps)
2873                return 0;
2874
2875        intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2876                     sample->cpu, event->itrace_start.pid,
2877                     event->itrace_start.tid, sample->time,
2878                     perf_time_to_tsc(sample->time, &pt->tc));
2879
2880        return machine__set_current_tid(pt->machine, sample->cpu,
2881                                        event->itrace_start.pid,
2882                                        event->itrace_start.tid);
2883}
2884
2885static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
2886                             struct addr_location *al)
2887{
2888        if (!al->map || addr < al->map->start || addr >= al->map->end) {
2889                if (!thread__find_map(thread, cpumode, addr, al))
2890                        return -1;
2891        }
2892
2893        return 0;
2894}
2895
2896/* Invalidate all instruction cache entries that overlap the text poke */
2897static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
2898{
2899        u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2900        u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
2901        /* Assume text poke begins in a basic block no more than 4096 bytes */
2902        int cnt = 4096 + event->text_poke.new_len;
2903        struct thread *thread = pt->unknown_thread;
2904        struct addr_location al = { .map = NULL };
2905        struct machine *machine = pt->machine;
2906        struct intel_pt_cache_entry *e;
2907        u64 offset;
2908
2909        if (!event->text_poke.new_len)
2910                return 0;
2911
2912        for (; cnt; cnt--, addr--) {
2913                if (intel_pt_find_map(thread, cpumode, addr, &al)) {
2914                        if (addr < event->text_poke.addr)
2915                                return 0;
2916                        continue;
2917                }
2918
2919                if (!al.map->dso || !al.map->dso->auxtrace_cache)
2920                        continue;
2921
2922                offset = al.map->map_ip(al.map, addr);
2923
2924                e = intel_pt_cache_lookup(al.map->dso, machine, offset);
2925                if (!e)
2926                        continue;
2927
2928                if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
2929                        /*
2930                         * No overlap. Working backwards there cannot be another
2931                         * basic block that overlaps the text poke if there is a
2932                         * branch instruction before the text poke address.
2933                         */
2934                        if (e->branch != INTEL_PT_BR_NO_BRANCH)
2935                                return 0;
2936                } else {
2937                        intel_pt_cache_invalidate(al.map->dso, machine, offset);
2938                        intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
2939                                     al.map->dso->long_name, addr);
2940                }
2941        }
2942
2943        return 0;
2944}
2945
2946static int intel_pt_process_event(struct perf_session *session,
2947                                  union perf_event *event,
2948                                  struct perf_sample *sample,
2949                                  struct perf_tool *tool)
2950{
2951        struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2952                                           auxtrace);
2953        u64 timestamp;
2954        int err = 0;
2955
2956        if (dump_trace)
2957                return 0;
2958
2959        if (!tool->ordered_events) {
2960                pr_err("Intel Processor Trace requires ordered events\n");
2961                return -EINVAL;
2962        }
2963
2964        if (sample->time && sample->time != (u64)-1)
2965                timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2966        else
2967                timestamp = 0;
2968
2969        if (timestamp || pt->timeless_decoding) {
2970                err = intel_pt_update_queues(pt);
2971                if (err)
2972                        return err;
2973        }
2974
2975        if (pt->timeless_decoding) {
2976                if (pt->sampling_mode) {
2977                        if (sample->aux_sample.size)
2978                                err = intel_pt_process_timeless_sample(pt,
2979                                                                       sample);
2980                } else if (event->header.type == PERF_RECORD_EXIT) {
2981                        err = intel_pt_process_timeless_queues(pt,
2982                                                               event->fork.tid,
2983                                                               sample->time);
2984                }
2985        } else if (timestamp) {
2986                if (!pt->first_timestamp)
2987                        intel_pt_first_timestamp(pt, timestamp);
2988                err = intel_pt_process_queues(pt, timestamp);
2989        }
2990        if (err)
2991                return err;
2992
2993        if (event->header.type == PERF_RECORD_SAMPLE) {
2994                if (pt->synth_opts.add_callchain && !sample->callchain)
2995                        intel_pt_add_callchain(pt, sample);
2996                if (pt->synth_opts.add_last_branch && !sample->branch_stack)
2997                        intel_pt_add_br_stack(pt, sample);
2998        }
2999
3000        if (event->header.type == PERF_RECORD_AUX &&
3001            (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3002            pt->synth_opts.errors) {
3003                err = intel_pt_lost(pt, sample);
3004                if (err)
3005                        return err;
3006        }
3007
3008        if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3009                err = intel_pt_process_switch(pt, sample);
3010        else if (event->header.type == PERF_RECORD_ITRACE_START)
3011                err = intel_pt_process_itrace_start(pt, event, sample);
3012        else if (event->header.type == PERF_RECORD_SWITCH ||
3013                 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3014                err = intel_pt_context_switch(pt, event, sample);
3015
3016        if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3017                err = intel_pt_text_poke(pt, event);
3018
3019        if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
3020                intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3021                             event->header.type, sample->cpu, sample->time, timestamp);
3022                intel_pt_log_event(event);
3023        }
3024
3025        return err;
3026}
3027
3028static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
3029{
3030        struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3031                                           auxtrace);
3032        int ret;
3033
3034        if (dump_trace)
3035                return 0;
3036
3037        if (!tool->ordered_events)
3038                return -EINVAL;
3039
3040        ret = intel_pt_update_queues(pt);
3041        if (ret < 0)
3042                return ret;
3043
3044        if (pt->timeless_decoding)
3045                return intel_pt_process_timeless_queues(pt, -1,
3046                                                        MAX_TIMESTAMP - 1);
3047
3048        return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3049}
3050
3051static void intel_pt_free_events(struct perf_session *session)
3052{
3053        struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3054                                           auxtrace);
3055        struct auxtrace_queues *queues = &pt->queues;
3056        unsigned int i;
3057
3058        for (i = 0; i < queues->nr_queues; i++) {
3059                intel_pt_free_queue(queues->queue_array[i].priv);
3060                queues->queue_array[i].priv = NULL;
3061        }
3062        intel_pt_log_disable();
3063        auxtrace_queues__free(queues);
3064}
3065
3066static void intel_pt_free(struct perf_session *session)
3067{
3068        struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3069                                           auxtrace);
3070
3071        auxtrace_heap__free(&pt->heap);
3072        intel_pt_free_events(session);
3073        session->auxtrace = NULL;
3074        intel_pt_free_vmcs_info(pt);
3075        thread__put(pt->unknown_thread);
3076        addr_filters__exit(&pt->filts);
3077        zfree(&pt->chain);
3078        zfree(&pt->filter);
3079        zfree(&pt->time_ranges);
3080        free(pt);
3081}
3082
3083static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3084                                       struct evsel *evsel)
3085{
3086        struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3087                                           auxtrace);
3088
3089        return evsel->core.attr.type == pt->pmu_type;
3090}
3091
3092static int intel_pt_process_auxtrace_event(struct perf_session *session,
3093                                           union perf_event *event,
3094                                           struct perf_tool *tool __maybe_unused)
3095{
3096        struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3097                                           auxtrace);
3098
3099        if (!pt->data_queued) {
3100                struct auxtrace_buffer *buffer;
3101                off_t data_offset;
3102                int fd = perf_data__fd(session->data);
3103                int err;
3104
3105                if (perf_data__is_pipe(session->data)) {
3106                        data_offset = 0;
3107                } else {
3108                        data_offset = lseek(fd, 0, SEEK_CUR);
3109                        if (data_offset == -1)
3110                                return -errno;
3111                }
3112
3113                err = auxtrace_queues__add_event(&pt->queues, session, event,
3114                                                 data_offset, &buffer);
3115                if (err)
3116                        return err;
3117
3118                /* Dump here now we have copied a piped trace out of the pipe */
3119                if (dump_trace) {
3120                        if (auxtrace_buffer__get_data(buffer, fd)) {
3121                                intel_pt_dump_event(pt, buffer->data,
3122                                                    buffer->size);
3123                                auxtrace_buffer__put_data(buffer);
3124                        }
3125                }
3126        }
3127
3128        return 0;
3129}
3130
3131static int intel_pt_queue_data(struct perf_session *session,
3132                               struct perf_sample *sample,
3133                               union perf_event *event, u64 data_offset)
3134{
3135        struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3136                                           auxtrace);
3137        u64 timestamp;
3138
3139        if (event) {
3140                return auxtrace_queues__add_event(&pt->queues, session, event,
3141                                                  data_offset, NULL);
3142        }
3143
3144        if (sample->time && sample->time != (u64)-1)
3145                timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3146        else
3147                timestamp = 0;
3148
3149        return auxtrace_queues__add_sample(&pt->queues, session, sample,
3150                                           data_offset, timestamp);
3151}
3152
3153struct intel_pt_synth {
3154        struct perf_tool dummy_tool;
3155        struct perf_session *session;
3156};
3157
3158static int intel_pt_event_synth(struct perf_tool *tool,
3159                                union perf_event *event,
3160                                struct perf_sample *sample __maybe_unused,
3161                                struct machine *machine __maybe_unused)
3162{
3163        struct intel_pt_synth *intel_pt_synth =
3164                        container_of(tool, struct intel_pt_synth, dummy_tool);
3165
3166        return perf_session__deliver_synth_event(intel_pt_synth->session, event,
3167                                                 NULL);
3168}
3169
3170static int intel_pt_synth_event(struct perf_session *session, const char *name,
3171                                struct perf_event_attr *attr, u64 id)
3172{
3173        struct intel_pt_synth intel_pt_synth;
3174        int err;
3175
3176        pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3177                 name, id, (u64)attr->sample_type);
3178
3179        memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
3180        intel_pt_synth.session = session;
3181
3182        err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
3183                                          &id, intel_pt_event_synth);
3184        if (err)
3185                pr_err("%s: failed to synthesize '%s' event type\n",
3186                       __func__, name);
3187
3188        return err;
3189}
3190
3191static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3192                                    const char *name)
3193{
3194        struct evsel *evsel;
3195
3196        evlist__for_each_entry(evlist, evsel) {
3197                if (evsel->core.id && evsel->core.id[0] == id) {
3198                        if (evsel->name)
3199                                zfree(&evsel->name);
3200                        evsel->name = strdup(name);
3201                        break;
3202                }
3203        }
3204}
3205
3206static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3207                                         struct evlist *evlist)
3208{
3209        struct evsel *evsel;
3210
3211        evlist__for_each_entry(evlist, evsel) {
3212                if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3213                        return evsel;
3214        }
3215
3216        return NULL;
3217}
3218
3219static int intel_pt_synth_events(struct intel_pt *pt,
3220                                 struct perf_session *session)
3221{
3222        struct evlist *evlist = session->evlist;
3223        struct evsel *evsel = intel_pt_evsel(pt, evlist);
3224        struct perf_event_attr attr;
3225        u64 id;
3226        int err;
3227
3228        if (!evsel) {
3229                pr_debug("There are no selected events with Intel Processor Trace data\n");
3230                return 0;
3231        }
3232
3233        memset(&attr, 0, sizeof(struct perf_event_attr));
3234        attr.size = sizeof(struct perf_event_attr);
3235        attr.type = PERF_TYPE_HARDWARE;
3236        attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3237        attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3238                            PERF_SAMPLE_PERIOD;
3239        if (pt->timeless_decoding)
3240                attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3241        else
3242                attr.sample_type |= PERF_SAMPLE_TIME;
3243        if (!pt->per_cpu_mmaps)
3244                attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3245        attr.exclude_user = evsel->core.attr.exclude_user;
3246        attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3247        attr.exclude_hv = evsel->core.attr.exclude_hv;
3248        attr.exclude_host = evsel->core.attr.exclude_host;
3249        attr.exclude_guest = evsel->core.attr.exclude_guest;
3250        attr.sample_id_all = evsel->core.attr.sample_id_all;
3251        attr.read_format = evsel->core.attr.read_format;
3252
3253        id = evsel->core.id[0] + 1000000000;
3254        if (!id)
3255                id = 1;
3256
3257        if (pt->synth_opts.branches) {
3258                attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3259                attr.sample_period = 1;
3260                attr.sample_type |= PERF_SAMPLE_ADDR;
3261                err = intel_pt_synth_event(session, "branches", &attr, id);
3262                if (err)
3263                        return err;
3264                pt->sample_branches = true;
3265                pt->branches_sample_type = attr.sample_type;
3266                pt->branches_id = id;
3267                id += 1;
3268                attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3269        }
3270
3271        if (pt->synth_opts.callchain)
3272                attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3273        if (pt->synth_opts.last_branch) {
3274                attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3275                /*
3276                 * We don't use the hardware index, but the sample generation
3277                 * code uses the new format branch_stack with this field,
3278                 * so the event attributes must indicate that it's present.
3279                 */
3280                attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3281        }
3282
3283        if (pt->synth_opts.instructions) {
3284                attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3285                if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3286                        attr.sample_period =
3287                                intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3288                else
3289                        attr.sample_period = pt->synth_opts.period;
3290                err = intel_pt_synth_event(session, "instructions", &attr, id);
3291                if (err)
3292                        return err;
3293                pt->sample_instructions = true;
3294                pt->instructions_sample_type = attr.sample_type;
3295                pt->instructions_id = id;
3296                id += 1;
3297        }
3298
3299        attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3300        attr.sample_period = 1;
3301
3302        if (pt->synth_opts.transactions) {
3303                attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3304                err = intel_pt_synth_event(session, "transactions", &attr, id);
3305                if (err)
3306                        return err;
3307                pt->sample_transactions = true;
3308                pt->transactions_sample_type = attr.sample_type;
3309                pt->transactions_id = id;
3310                intel_pt_set_event_name(evlist, id, "transactions");
3311                id += 1;
3312        }
3313
3314        attr.type = PERF_TYPE_SYNTH;
3315        attr.sample_type |= PERF_SAMPLE_RAW;
3316
3317        if (pt->synth_opts.ptwrites) {
3318                attr.config = PERF_SYNTH_INTEL_PTWRITE;
3319                err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3320                if (err)
3321                        return err;
3322                pt->sample_ptwrites = true;
3323                pt->ptwrites_sample_type = attr.sample_type;
3324                pt->ptwrites_id = id;
3325                intel_pt_set_event_name(evlist, id, "ptwrite");
3326                id += 1;
3327        }
3328
3329        if (pt->synth_opts.pwr_events) {
3330                pt->sample_pwr_events = true;
3331                pt->pwr_events_sample_type = attr.sample_type;
3332
3333                attr.config = PERF_SYNTH_INTEL_CBR;
3334                err = intel_pt_synth_event(session, "cbr", &attr, id);
3335                if (err)
3336                        return err;
3337                pt->cbr_id = id;
3338                intel_pt_set_event_name(evlist, id, "cbr");
3339                id += 1;
3340
3341                attr.config = PERF_SYNTH_INTEL_PSB;
3342                err = intel_pt_synth_event(session, "psb", &attr, id);
3343                if (err)
3344                        return err;
3345                pt->psb_id = id;
3346                intel_pt_set_event_name(evlist, id, "psb");
3347                id += 1;
3348        }
3349
3350        if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
3351                attr.config = PERF_SYNTH_INTEL_MWAIT;
3352                err = intel_pt_synth_event(session, "mwait", &attr, id);
3353                if (err)
3354                        return err;
3355                pt->mwait_id = id;
3356                intel_pt_set_event_name(evlist, id, "mwait");
3357                id += 1;
3358
3359                attr.config = PERF_SYNTH_INTEL_PWRE;
3360                err = intel_pt_synth_event(session, "pwre", &attr, id);
3361                if (err)
3362                        return err;
3363                pt->pwre_id = id;
3364                intel_pt_set_event_name(evlist, id, "pwre");
3365                id += 1;
3366
3367                attr.config = PERF_SYNTH_INTEL_EXSTOP;
3368                err = intel_pt_synth_event(session, "exstop", &attr, id);
3369                if (err)
3370                        return err;
3371                pt->exstop_id = id;
3372                intel_pt_set_event_name(evlist, id, "exstop");
3373                id += 1;
3374
3375                attr.config = PERF_SYNTH_INTEL_PWRX;
3376                err = intel_pt_synth_event(session, "pwrx", &attr, id);
3377                if (err)
3378                        return err;
3379                pt->pwrx_id = id;
3380                intel_pt_set_event_name(evlist, id, "pwrx");
3381                id += 1;
3382        }
3383
3384        return 0;
3385}
3386
3387static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3388{
3389        struct evsel *evsel;
3390
3391        if (!pt->synth_opts.other_events)
3392                return;
3393
3394        evlist__for_each_entry(pt->session->evlist, evsel) {
3395                if (evsel->core.attr.aux_output && evsel->core.id) {
3396                        pt->sample_pebs = true;
3397                        pt->pebs_evsel = evsel;
3398                        return;
3399                }
3400        }
3401}
3402
3403static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3404{
3405        struct evsel *evsel;
3406
3407        evlist__for_each_entry_reverse(evlist, evsel) {
3408                const char *name = evsel__name(evsel);
3409
3410                if (!strcmp(name, "sched:sched_switch"))
3411                        return evsel;
3412        }
3413
3414        return NULL;
3415}
3416
3417static bool intel_pt_find_switch(struct evlist *evlist)
3418{
3419        struct evsel *evsel;
3420
3421        evlist__for_each_entry(evlist, evsel) {
3422                if (evsel->core.attr.context_switch)
3423                        return true;
3424        }
3425
3426        return false;
3427}
3428
3429static int intel_pt_perf_config(const char *var, const char *value, void *data)
3430{
3431        struct intel_pt *pt = data;
3432
3433        if (!strcmp(var, "intel-pt.mispred-all"))
3434                pt->mispred_all = perf_config_bool(var, value);
3435
3436        if (!strcmp(var, "intel-pt.max-loops"))
3437                perf_config_int(&pt->max_loops, var, value);
3438
3439        return 0;
3440}
3441
3442/* Find least TSC which converts to ns or later */
3443static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3444{
3445        u64 tsc, tm;
3446
3447        tsc = perf_time_to_tsc(ns, &pt->tc);
3448
3449        while (1) {
3450                tm = tsc_to_perf_time(tsc, &pt->tc);
3451                if (tm < ns)
3452                        break;
3453                tsc -= 1;
3454        }
3455
3456        while (tm < ns)
3457                tm = tsc_to_perf_time(++tsc, &pt->tc);
3458
3459        return tsc;
3460}
3461
3462/* Find greatest TSC which converts to ns or earlier */
3463static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3464{
3465        u64 tsc, tm;
3466
3467        tsc = perf_time_to_tsc(ns, &pt->tc);
3468
3469        while (1) {
3470                tm = tsc_to_perf_time(tsc, &pt->tc);
3471                if (tm > ns)
3472                        break;
3473                tsc += 1;
3474        }
3475
3476        while (tm > ns)
3477                tm = tsc_to_perf_time(--tsc, &pt->tc);
3478
3479        return tsc;
3480}
3481
3482static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3483                                      struct itrace_synth_opts *opts)
3484{
3485        struct perf_time_interval *p = opts->ptime_range;
3486        int n = opts->range_num;
3487        int i;
3488
3489        if (!n || !p || pt->timeless_decoding)
3490                return 0;
3491
3492        pt->time_ranges = calloc(n, sizeof(struct range));
3493        if (!pt->time_ranges)
3494                return -ENOMEM;
3495
3496        pt->range_cnt = n;
3497
3498        intel_pt_log("%s: %u range(s)\n", __func__, n);
3499
3500        for (i = 0; i < n; i++) {
3501                struct range *r = &pt->time_ranges[i];
3502                u64 ts = p[i].start;
3503                u64 te = p[i].end;
3504
3505                /*
3506                 * Take care to ensure the TSC range matches the perf-time range
3507                 * when converted back to perf-time.
3508                 */
3509                r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3510                r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3511
3512                intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3513                             i, ts, te);
3514                intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3515                             i, r->start, r->end);
3516        }
3517
3518        return 0;
3519}
3520
3521static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
3522{
3523        struct intel_pt_vmcs_info *vmcs_info;
3524        u64 tsc_offset, vmcs;
3525        char *p = *args;
3526
3527        errno = 0;
3528
3529        p = skip_spaces(p);
3530        if (!*p)
3531                return 1;
3532
3533        tsc_offset = strtoull(p, &p, 0);
3534        if (errno)
3535                return -errno;
3536        p = skip_spaces(p);
3537        if (*p != ':') {
3538                pt->dflt_tsc_offset = tsc_offset;
3539                *args = p;
3540                return 0;
3541        }
3542        while (1) {
3543                vmcs = strtoull(p, &p, 0);
3544                if (errno)
3545                        return -errno;
3546                if (!vmcs)
3547                        return -EINVAL;
3548                vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset);
3549                if (!vmcs_info)
3550                        return -ENOMEM;
3551                p = skip_spaces(p);
3552                if (*p != ',')
3553                        break;
3554                p += 1;
3555        }
3556        *args = p;
3557        return 0;
3558}
3559
3560static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
3561{
3562        char *args = pt->synth_opts.vm_tm_corr_args;
3563        int ret;
3564
3565        if (!args)
3566                return 0;
3567
3568        do {
3569                ret = intel_pt_parse_vm_tm_corr_arg(pt, &args);
3570        } while (!ret);
3571
3572        if (ret < 0) {
3573                pr_err("Failed to parse VM Time Correlation options\n");
3574                return ret;
3575        }
3576
3577        return 0;
3578}
3579
3580static const char * const intel_pt_info_fmts[] = {
3581        [INTEL_PT_PMU_TYPE]             = "  PMU Type            %"PRId64"\n",
3582        [INTEL_PT_TIME_SHIFT]           = "  Time Shift          %"PRIu64"\n",
3583        [INTEL_PT_TIME_MULT]            = "  Time Muliplier      %"PRIu64"\n",
3584        [INTEL_PT_TIME_ZERO]            = "  Time Zero           %"PRIu64"\n",
3585        [INTEL_PT_CAP_USER_TIME_ZERO]   = "  Cap Time Zero       %"PRId64"\n",
3586        [INTEL_PT_TSC_BIT]              = "  TSC bit             %#"PRIx64"\n",
3587        [INTEL_PT_NORETCOMP_BIT]        = "  NoRETComp bit       %#"PRIx64"\n",
3588        [INTEL_PT_HAVE_SCHED_SWITCH]    = "  Have sched_switch   %"PRId64"\n",
3589        [INTEL_PT_SNAPSHOT_MODE]        = "  Snapshot mode       %"PRId64"\n",
3590        [INTEL_PT_PER_CPU_MMAPS]        = "  Per-cpu maps        %"PRId64"\n",
3591        [INTEL_PT_MTC_BIT]              = "  MTC bit             %#"PRIx64"\n",
3592        [INTEL_PT_TSC_CTC_N]            = "  TSC:CTC numerator   %"PRIu64"\n",
3593        [INTEL_PT_TSC_CTC_D]            = "  TSC:CTC denominator %"PRIu64"\n",
3594        [INTEL_PT_CYC_BIT]              = "  CYC bit             %#"PRIx64"\n",
3595        [INTEL_PT_MAX_NONTURBO_RATIO]   = "  Max non-turbo ratio %"PRIu64"\n",
3596        [INTEL_PT_FILTER_STR_LEN]       = "  Filter string len.  %"PRIu64"\n",
3597};
3598
3599static void intel_pt_print_info(__u64 *arr, int start, int finish)
3600{
3601        int i;
3602
3603        if (!dump_trace)
3604                return;
3605
3606        for (i = start; i <= finish; i++)
3607                fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3608}
3609
3610static void intel_pt_print_info_str(const char *name, const char *str)
3611{
3612        if (!dump_trace)
3613                return;
3614
3615        fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
3616}
3617
3618static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3619{
3620        return auxtrace_info->header.size >=
3621                sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3622}
3623
3624int intel_pt_process_auxtrace_info(union perf_event *event,
3625                                   struct perf_session *session)
3626{
3627        struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3628        size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3629        struct intel_pt *pt;
3630        void *info_end;
3631        __u64 *info;
3632        int err;
3633
3634        if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3635                                        min_sz)
3636                return -EINVAL;
3637
3638        pt = zalloc(sizeof(struct intel_pt));
3639        if (!pt)
3640                return -ENOMEM;
3641
3642        pt->vmcs_info = RB_ROOT;
3643
3644        addr_filters__init(&pt->filts);
3645
3646        err = perf_config(intel_pt_perf_config, pt);
3647        if (err)
3648                goto err_free;
3649
3650        err = auxtrace_queues__init(&pt->queues);
3651        if (err)
3652                goto err_free;
3653
3654        intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3655
3656        if (session->itrace_synth_opts->set) {
3657                pt->synth_opts = *session->itrace_synth_opts;
3658        } else {
3659                struct itrace_synth_opts *opts = session->itrace_synth_opts;
3660
3661                itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
3662                if (!opts->default_no_sample && !opts->inject) {
3663                        pt->synth_opts.branches = false;
3664                        pt->synth_opts.callchain = true;
3665                        pt->synth_opts.add_callchain = true;
3666                }
3667                pt->synth_opts.thread_stack = opts->thread_stack;
3668        }
3669
3670        pt->session = session;
3671        pt->machine = &session->machines.host; /* No kvm support */
3672        pt->auxtrace_type = auxtrace_info->type;
3673        pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3674        pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3675        pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3676        pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3677        pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3678        pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3679        pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3680        pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3681        pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3682        pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3683        intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3684                            INTEL_PT_PER_CPU_MMAPS);
3685
3686        if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3687                pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3688                pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3689                pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3690                pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3691                pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3692                intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3693                                    INTEL_PT_CYC_BIT);
3694        }
3695
3696        if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3697                pt->max_non_turbo_ratio =
3698                        auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3699                intel_pt_print_info(&auxtrace_info->priv[0],
3700                                    INTEL_PT_MAX_NONTURBO_RATIO,
3701                                    INTEL_PT_MAX_NONTURBO_RATIO);
3702        }
3703
3704        info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3705        info_end = (void *)info + auxtrace_info->header.size;
3706
3707        if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3708                size_t len;
3709
3710                len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3711                intel_pt_print_info(&auxtrace_info->priv[0],
3712                                    INTEL_PT_FILTER_STR_LEN,
3713                                    INTEL_PT_FILTER_STR_LEN);
3714                if (len) {
3715                        const char *filter = (const char *)info;
3716
3717                        len = roundup(len + 1, 8);
3718                        info += len >> 3;
3719                        if ((void *)info > info_end) {
3720                                pr_err("%s: bad filter string length\n", __func__);
3721                                err = -EINVAL;
3722                                goto err_free_queues;
3723                        }
3724                        pt->filter = memdup(filter, len);
3725                        if (!pt->filter) {
3726                                err = -ENOMEM;
3727                                goto err_free_queues;
3728                        }
3729                        if (session->header.needs_swap)
3730                                mem_bswap_64(pt->filter, len);
3731                        if (pt->filter[len - 1]) {
3732                                pr_err("%s: filter string not null terminated\n", __func__);
3733                                err = -EINVAL;
3734                                goto err_free_queues;
3735                        }
3736                        err = addr_filters__parse_bare_filter(&pt->filts,
3737                                                              filter);
3738                        if (err)
3739                                goto err_free_queues;
3740                }
3741                intel_pt_print_info_str("Filter string", pt->filter);
3742        }
3743
3744        pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3745        if (pt->timeless_decoding && !pt->tc.time_mult)
3746                pt->tc.time_mult = 1;
3747        pt->have_tsc = intel_pt_have_tsc(pt);
3748        pt->sampling_mode = intel_pt_sampling_mode(pt);
3749        pt->est_tsc = !pt->timeless_decoding;
3750
3751        if (pt->synth_opts.vm_time_correlation) {
3752                if (pt->timeless_decoding) {
3753                        pr_err("Intel PT has no time information for VM Time Correlation\n");
3754                        err = -EINVAL;
3755                        goto err_free_queues;
3756                }
3757                if (session->itrace_synth_opts->ptime_range) {
3758                        pr_err("Time ranges cannot be specified with VM Time Correlation\n");
3759                        err = -EINVAL;
3760                        goto err_free_queues;
3761                }
3762                /* Currently TSC Offset is calculated using MTC packets */
3763                if (!intel_pt_have_mtc(pt)) {
3764                        pr_err("MTC packets must have been enabled for VM Time Correlation\n");
3765                        err = -EINVAL;
3766                        goto err_free_queues;
3767                }
3768                err = intel_pt_parse_vm_tm_corr_args(pt);
3769                if (err)
3770                        goto err_free_queues;
3771        }
3772
3773        pt->unknown_thread = thread__new(999999999, 999999999);
3774        if (!pt->unknown_thread) {
3775                err = -ENOMEM;
3776                goto err_free_queues;
3777        }
3778
3779        /*
3780         * Since this thread will not be kept in any rbtree not in a
3781         * list, initialize its list node so that at thread__put() the
3782         * current thread lifetime assumption is kept and we don't segfault
3783         * at list_del_init().
3784         */
3785        INIT_LIST_HEAD(&pt->unknown_thread->node);
3786
3787        err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3788        if (err)
3789                goto err_delete_thread;
3790        if (thread__init_maps(pt->unknown_thread, pt->machine)) {
3791                err = -ENOMEM;
3792                goto err_delete_thread;
3793        }
3794
3795        pt->auxtrace.process_event = intel_pt_process_event;
3796        pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
3797        pt->auxtrace.queue_data = intel_pt_queue_data;
3798        pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
3799        pt->auxtrace.flush_events = intel_pt_flush;
3800        pt->auxtrace.free_events = intel_pt_free_events;
3801        pt->auxtrace.free = intel_pt_free;
3802        pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
3803        session->auxtrace = &pt->auxtrace;
3804
3805        if (dump_trace)
3806                return 0;
3807
3808        if (pt->have_sched_switch == 1) {
3809                pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3810                if (!pt->switch_evsel) {
3811                        pr_err("%s: missing sched_switch event\n", __func__);
3812                        err = -EINVAL;
3813                        goto err_delete_thread;
3814                }
3815        } else if (pt->have_sched_switch == 2 &&
3816                   !intel_pt_find_switch(session->evlist)) {
3817                pr_err("%s: missing context_switch attribute flag\n", __func__);
3818                err = -EINVAL;
3819                goto err_delete_thread;
3820        }
3821
3822        if (pt->synth_opts.log)
3823                intel_pt_log_enable();
3824
3825        /* Maximum non-turbo ratio is TSC freq / 100 MHz */
3826        if (pt->tc.time_mult) {
3827                u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3828
3829                if (!pt->max_non_turbo_ratio)
3830                        pt->max_non_turbo_ratio =
3831                                        (tsc_freq + 50000000) / 100000000;
3832                intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3833                intel_pt_log("Maximum non-turbo ratio %u\n",
3834                             pt->max_non_turbo_ratio);
3835                pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3836        }
3837
3838        err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3839        if (err)
3840                goto err_delete_thread;
3841
3842        if (pt->synth_opts.calls)
3843                pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3844                                       PERF_IP_FLAG_TRACE_END;
3845        if (pt->synth_opts.returns)
3846                pt->branches_filter |= PERF_IP_FLAG_RETURN |
3847                                       PERF_IP_FLAG_TRACE_BEGIN;
3848
3849        if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
3850            !symbol_conf.use_callchain) {
3851                symbol_conf.use_callchain = true;
3852                if (callchain_register_param(&callchain_param) < 0) {
3853                        symbol_conf.use_callchain = false;
3854                        pt->synth_opts.callchain = false;
3855                        pt->synth_opts.add_callchain = false;
3856                }
3857        }
3858
3859        if (pt->synth_opts.add_callchain) {
3860                err = intel_pt_callchain_init(pt);
3861                if (err)
3862                        goto err_delete_thread;
3863        }
3864
3865        if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
3866                pt->br_stack_sz = pt->synth_opts.last_branch_sz;
3867                pt->br_stack_sz_plus = pt->br_stack_sz;
3868        }
3869
3870        if (pt->synth_opts.add_last_branch) {
3871                err = intel_pt_br_stack_init(pt);
3872                if (err)
3873                        goto err_delete_thread;
3874                /*
3875                 * Additional branch stack size to cater for tracing from the
3876                 * actual sample ip to where the sample time is recorded.
3877                 * Measured at about 200 branches, but generously set to 1024.
3878                 * If kernel space is not being traced, then add just 1 for the
3879                 * branch to kernel space.
3880                 */
3881                if (intel_pt_tracing_kernel(pt))
3882                        pt->br_stack_sz_plus += 1024;
3883                else
3884                        pt->br_stack_sz_plus += 1;
3885        }
3886
3887        pt->use_thread_stack = pt->synth_opts.callchain ||
3888                               pt->synth_opts.add_callchain ||
3889                               pt->synth_opts.thread_stack ||
3890                               pt->synth_opts.last_branch ||
3891                               pt->synth_opts.add_last_branch;
3892
3893        pt->callstack = pt->synth_opts.callchain ||
3894                        pt->synth_opts.add_callchain ||
3895                        pt->synth_opts.thread_stack;
3896
3897        err = intel_pt_synth_events(pt, session);
3898        if (err)
3899                goto err_delete_thread;
3900
3901        intel_pt_setup_pebs_events(pt);
3902
3903        if (pt->sampling_mode || list_empty(&session->auxtrace_index))
3904                err = auxtrace_queue_data(session, true, true);
3905        else
3906                err = auxtrace_queues__process_index(&pt->queues, session);
3907        if (err)
3908                goto err_delete_thread;
3909
3910        if (pt->queues.populated)
3911                pt->data_queued = true;
3912
3913        if (pt->timeless_decoding)
3914                pr_debug2("Intel PT decoding without timestamps\n");
3915
3916        return 0;
3917
3918err_delete_thread:
3919        zfree(&pt->chain);
3920        thread__zput(pt->unknown_thread);
3921err_free_queues:
3922        intel_pt_log_disable();
3923        auxtrace_queues__free(&pt->queues);
3924        session->auxtrace = NULL;
3925err_free:
3926        addr_filters__exit(&pt->filts);
3927        zfree(&pt->filter);
3928        zfree(&pt->time_ranges);
3929        free(pt);
3930        return err;
3931}
3932