linux/tools/perf/util/machine.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <dirent.h>
   3#include <errno.h>
   4#include <inttypes.h>
   5#include <regex.h>
   6#include <stdlib.h>
   7#include "callchain.h"
   8#include "debug.h"
   9#include "dso.h"
  10#include "env.h"
  11#include "event.h"
  12#include "evsel.h"
  13#include "hist.h"
  14#include "machine.h"
  15#include "map.h"
  16#include "map_symbol.h"
  17#include "branch.h"
  18#include "mem-events.h"
  19#include "srcline.h"
  20#include "symbol.h"
  21#include "sort.h"
  22#include "strlist.h"
  23#include "target.h"
  24#include "thread.h"
  25#include "util.h"
  26#include "vdso.h"
  27#include <stdbool.h>
  28#include <sys/types.h>
  29#include <sys/stat.h>
  30#include <unistd.h>
  31#include "unwind.h"
  32#include "linux/hash.h"
  33#include "asm/bug.h"
  34#include "bpf-event.h"
  35#include <internal/lib.h> // page_size
  36#include "cgroup.h"
  37
  38#include <linux/ctype.h>
  39#include <symbol/kallsyms.h>
  40#include <linux/mman.h>
  41#include <linux/string.h>
  42#include <linux/zalloc.h>
  43
  44static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
  45
  46static struct dso *machine__kernel_dso(struct machine *machine)
  47{
  48        return machine->vmlinux_map->dso;
  49}
  50
  51static void dsos__init(struct dsos *dsos)
  52{
  53        INIT_LIST_HEAD(&dsos->head);
  54        dsos->root = RB_ROOT;
  55        init_rwsem(&dsos->lock);
  56}
  57
  58static void machine__threads_init(struct machine *machine)
  59{
  60        int i;
  61
  62        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
  63                struct threads *threads = &machine->threads[i];
  64                threads->entries = RB_ROOT_CACHED;
  65                init_rwsem(&threads->lock);
  66                threads->nr = 0;
  67                INIT_LIST_HEAD(&threads->dead);
  68                threads->last_match = NULL;
  69        }
  70}
  71
  72static int machine__set_mmap_name(struct machine *machine)
  73{
  74        if (machine__is_host(machine))
  75                machine->mmap_name = strdup("[kernel.kallsyms]");
  76        else if (machine__is_default_guest(machine))
  77                machine->mmap_name = strdup("[guest.kernel.kallsyms]");
  78        else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
  79                          machine->pid) < 0)
  80                machine->mmap_name = NULL;
  81
  82        return machine->mmap_name ? 0 : -ENOMEM;
  83}
  84
  85int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  86{
  87        int err = -ENOMEM;
  88
  89        memset(machine, 0, sizeof(*machine));
  90        maps__init(&machine->kmaps, machine);
  91        RB_CLEAR_NODE(&machine->rb_node);
  92        dsos__init(&machine->dsos);
  93
  94        machine__threads_init(machine);
  95
  96        machine->vdso_info = NULL;
  97        machine->env = NULL;
  98
  99        machine->pid = pid;
 100
 101        machine->id_hdr_size = 0;
 102        machine->kptr_restrict_warned = false;
 103        machine->comm_exec = false;
 104        machine->kernel_start = 0;
 105        machine->vmlinux_map = NULL;
 106
 107        machine->root_dir = strdup(root_dir);
 108        if (machine->root_dir == NULL)
 109                return -ENOMEM;
 110
 111        if (machine__set_mmap_name(machine))
 112                goto out;
 113
 114        if (pid != HOST_KERNEL_ID) {
 115                struct thread *thread = machine__findnew_thread(machine, -1,
 116                                                                pid);
 117                char comm[64];
 118
 119                if (thread == NULL)
 120                        goto out;
 121
 122                snprintf(comm, sizeof(comm), "[guest/%d]", pid);
 123                thread__set_comm(thread, comm, 0);
 124                thread__put(thread);
 125        }
 126
 127        machine->current_tid = NULL;
 128        err = 0;
 129
 130out:
 131        if (err) {
 132                zfree(&machine->root_dir);
 133                zfree(&machine->mmap_name);
 134        }
 135        return 0;
 136}
 137
 138struct machine *machine__new_host(void)
 139{
 140        struct machine *machine = malloc(sizeof(*machine));
 141
 142        if (machine != NULL) {
 143                machine__init(machine, "", HOST_KERNEL_ID);
 144
 145                if (machine__create_kernel_maps(machine) < 0)
 146                        goto out_delete;
 147        }
 148
 149        return machine;
 150out_delete:
 151        free(machine);
 152        return NULL;
 153}
 154
 155struct machine *machine__new_kallsyms(void)
 156{
 157        struct machine *machine = machine__new_host();
 158        /*
 159         * FIXME:
 160         * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
 161         *    ask for not using the kcore parsing code, once this one is fixed
 162         *    to create a map per module.
 163         */
 164        if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
 165                machine__delete(machine);
 166                machine = NULL;
 167        }
 168
 169        return machine;
 170}
 171
 172static void dsos__purge(struct dsos *dsos)
 173{
 174        struct dso *pos, *n;
 175
 176        down_write(&dsos->lock);
 177
 178        list_for_each_entry_safe(pos, n, &dsos->head, node) {
 179                RB_CLEAR_NODE(&pos->rb_node);
 180                pos->root = NULL;
 181                list_del_init(&pos->node);
 182                dso__put(pos);
 183        }
 184
 185        up_write(&dsos->lock);
 186}
 187
 188static void dsos__exit(struct dsos *dsos)
 189{
 190        dsos__purge(dsos);
 191        exit_rwsem(&dsos->lock);
 192}
 193
 194void machine__delete_threads(struct machine *machine)
 195{
 196        struct rb_node *nd;
 197        int i;
 198
 199        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 200                struct threads *threads = &machine->threads[i];
 201                down_write(&threads->lock);
 202                nd = rb_first_cached(&threads->entries);
 203                while (nd) {
 204                        struct thread *t = rb_entry(nd, struct thread, rb_node);
 205
 206                        nd = rb_next(nd);
 207                        __machine__remove_thread(machine, t, false);
 208                }
 209                up_write(&threads->lock);
 210        }
 211}
 212
 213void machine__exit(struct machine *machine)
 214{
 215        int i;
 216
 217        if (machine == NULL)
 218                return;
 219
 220        machine__destroy_kernel_maps(machine);
 221        maps__exit(&machine->kmaps);
 222        dsos__exit(&machine->dsos);
 223        machine__exit_vdso(machine);
 224        zfree(&machine->root_dir);
 225        zfree(&machine->mmap_name);
 226        zfree(&machine->current_tid);
 227
 228        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 229                struct threads *threads = &machine->threads[i];
 230                struct thread *thread, *n;
 231                /*
 232                 * Forget about the dead, at this point whatever threads were
 233                 * left in the dead lists better have a reference count taken
 234                 * by who is using them, and then, when they drop those references
 235                 * and it finally hits zero, thread__put() will check and see that
 236                 * its not in the dead threads list and will not try to remove it
 237                 * from there, just calling thread__delete() straight away.
 238                 */
 239                list_for_each_entry_safe(thread, n, &threads->dead, node)
 240                        list_del_init(&thread->node);
 241
 242                exit_rwsem(&threads->lock);
 243        }
 244}
 245
 246void machine__delete(struct machine *machine)
 247{
 248        if (machine) {
 249                machine__exit(machine);
 250                free(machine);
 251        }
 252}
 253
 254void machines__init(struct machines *machines)
 255{
 256        machine__init(&machines->host, "", HOST_KERNEL_ID);
 257        machines->guests = RB_ROOT_CACHED;
 258}
 259
 260void machines__exit(struct machines *machines)
 261{
 262        machine__exit(&machines->host);
 263        /* XXX exit guest */
 264}
 265
 266struct machine *machines__add(struct machines *machines, pid_t pid,
 267                              const char *root_dir)
 268{
 269        struct rb_node **p = &machines->guests.rb_root.rb_node;
 270        struct rb_node *parent = NULL;
 271        struct machine *pos, *machine = malloc(sizeof(*machine));
 272        bool leftmost = true;
 273
 274        if (machine == NULL)
 275                return NULL;
 276
 277        if (machine__init(machine, root_dir, pid) != 0) {
 278                free(machine);
 279                return NULL;
 280        }
 281
 282        while (*p != NULL) {
 283                parent = *p;
 284                pos = rb_entry(parent, struct machine, rb_node);
 285                if (pid < pos->pid)
 286                        p = &(*p)->rb_left;
 287                else {
 288                        p = &(*p)->rb_right;
 289                        leftmost = false;
 290                }
 291        }
 292
 293        rb_link_node(&machine->rb_node, parent, p);
 294        rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
 295
 296        return machine;
 297}
 298
 299void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 300{
 301        struct rb_node *nd;
 302
 303        machines->host.comm_exec = comm_exec;
 304
 305        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 306                struct machine *machine = rb_entry(nd, struct machine, rb_node);
 307
 308                machine->comm_exec = comm_exec;
 309        }
 310}
 311
 312struct machine *machines__find(struct machines *machines, pid_t pid)
 313{
 314        struct rb_node **p = &machines->guests.rb_root.rb_node;
 315        struct rb_node *parent = NULL;
 316        struct machine *machine;
 317        struct machine *default_machine = NULL;
 318
 319        if (pid == HOST_KERNEL_ID)
 320                return &machines->host;
 321
 322        while (*p != NULL) {
 323                parent = *p;
 324                machine = rb_entry(parent, struct machine, rb_node);
 325                if (pid < machine->pid)
 326                        p = &(*p)->rb_left;
 327                else if (pid > machine->pid)
 328                        p = &(*p)->rb_right;
 329                else
 330                        return machine;
 331                if (!machine->pid)
 332                        default_machine = machine;
 333        }
 334
 335        return default_machine;
 336}
 337
 338struct machine *machines__findnew(struct machines *machines, pid_t pid)
 339{
 340        char path[PATH_MAX];
 341        const char *root_dir = "";
 342        struct machine *machine = machines__find(machines, pid);
 343
 344        if (machine && (machine->pid == pid))
 345                goto out;
 346
 347        if ((pid != HOST_KERNEL_ID) &&
 348            (pid != DEFAULT_GUEST_KERNEL_ID) &&
 349            (symbol_conf.guestmount)) {
 350                sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 351                if (access(path, R_OK)) {
 352                        static struct strlist *seen;
 353
 354                        if (!seen)
 355                                seen = strlist__new(NULL, NULL);
 356
 357                        if (!strlist__has_entry(seen, path)) {
 358                                pr_err("Can't access file %s\n", path);
 359                                strlist__add(seen, path);
 360                        }
 361                        machine = NULL;
 362                        goto out;
 363                }
 364                root_dir = path;
 365        }
 366
 367        machine = machines__add(machines, pid, root_dir);
 368out:
 369        return machine;
 370}
 371
 372struct machine *machines__find_guest(struct machines *machines, pid_t pid)
 373{
 374        struct machine *machine = machines__find(machines, pid);
 375
 376        if (!machine)
 377                machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
 378        return machine;
 379}
 380
 381void machines__process_guests(struct machines *machines,
 382                              machine__process_t process, void *data)
 383{
 384        struct rb_node *nd;
 385
 386        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 387                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 388                process(pos, data);
 389        }
 390}
 391
 392void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 393{
 394        struct rb_node *node;
 395        struct machine *machine;
 396
 397        machines->host.id_hdr_size = id_hdr_size;
 398
 399        for (node = rb_first_cached(&machines->guests); node;
 400             node = rb_next(node)) {
 401                machine = rb_entry(node, struct machine, rb_node);
 402                machine->id_hdr_size = id_hdr_size;
 403        }
 404
 405        return;
 406}
 407
 408static void machine__update_thread_pid(struct machine *machine,
 409                                       struct thread *th, pid_t pid)
 410{
 411        struct thread *leader;
 412
 413        if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
 414                return;
 415
 416        th->pid_ = pid;
 417
 418        if (th->pid_ == th->tid)
 419                return;
 420
 421        leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
 422        if (!leader)
 423                goto out_err;
 424
 425        if (!leader->maps)
 426                leader->maps = maps__new(machine);
 427
 428        if (!leader->maps)
 429                goto out_err;
 430
 431        if (th->maps == leader->maps)
 432                return;
 433
 434        if (th->maps) {
 435                /*
 436                 * Maps are created from MMAP events which provide the pid and
 437                 * tid.  Consequently there never should be any maps on a thread
 438                 * with an unknown pid.  Just print an error if there are.
 439                 */
 440                if (!maps__empty(th->maps))
 441                        pr_err("Discarding thread maps for %d:%d\n",
 442                               th->pid_, th->tid);
 443                maps__put(th->maps);
 444        }
 445
 446        th->maps = maps__get(leader->maps);
 447out_put:
 448        thread__put(leader);
 449        return;
 450out_err:
 451        pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
 452        goto out_put;
 453}
 454
 455/*
 456 * Front-end cache - TID lookups come in blocks,
 457 * so most of the time we dont have to look up
 458 * the full rbtree:
 459 */
 460static struct thread*
 461__threads__get_last_match(struct threads *threads, struct machine *machine,
 462                          int pid, int tid)
 463{
 464        struct thread *th;
 465
 466        th = threads->last_match;
 467        if (th != NULL) {
 468                if (th->tid == tid) {
 469                        machine__update_thread_pid(machine, th, pid);
 470                        return thread__get(th);
 471                }
 472
 473                threads->last_match = NULL;
 474        }
 475
 476        return NULL;
 477}
 478
 479static struct thread*
 480threads__get_last_match(struct threads *threads, struct machine *machine,
 481                        int pid, int tid)
 482{
 483        struct thread *th = NULL;
 484
 485        if (perf_singlethreaded)
 486                th = __threads__get_last_match(threads, machine, pid, tid);
 487
 488        return th;
 489}
 490
 491static void
 492__threads__set_last_match(struct threads *threads, struct thread *th)
 493{
 494        threads->last_match = th;
 495}
 496
 497static void
 498threads__set_last_match(struct threads *threads, struct thread *th)
 499{
 500        if (perf_singlethreaded)
 501                __threads__set_last_match(threads, th);
 502}
 503
 504/*
 505 * Caller must eventually drop thread->refcnt returned with a successful
 506 * lookup/new thread inserted.
 507 */
 508static struct thread *____machine__findnew_thread(struct machine *machine,
 509                                                  struct threads *threads,
 510                                                  pid_t pid, pid_t tid,
 511                                                  bool create)
 512{
 513        struct rb_node **p = &threads->entries.rb_root.rb_node;
 514        struct rb_node *parent = NULL;
 515        struct thread *th;
 516        bool leftmost = true;
 517
 518        th = threads__get_last_match(threads, machine, pid, tid);
 519        if (th)
 520                return th;
 521
 522        while (*p != NULL) {
 523                parent = *p;
 524                th = rb_entry(parent, struct thread, rb_node);
 525
 526                if (th->tid == tid) {
 527                        threads__set_last_match(threads, th);
 528                        machine__update_thread_pid(machine, th, pid);
 529                        return thread__get(th);
 530                }
 531
 532                if (tid < th->tid)
 533                        p = &(*p)->rb_left;
 534                else {
 535                        p = &(*p)->rb_right;
 536                        leftmost = false;
 537                }
 538        }
 539
 540        if (!create)
 541                return NULL;
 542
 543        th = thread__new(pid, tid);
 544        if (th != NULL) {
 545                rb_link_node(&th->rb_node, parent, p);
 546                rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
 547
 548                /*
 549                 * We have to initialize maps separately after rb tree is updated.
 550                 *
 551                 * The reason is that we call machine__findnew_thread
 552                 * within thread__init_maps to find the thread
 553                 * leader and that would screwed the rb tree.
 554                 */
 555                if (thread__init_maps(th, machine)) {
 556                        rb_erase_cached(&th->rb_node, &threads->entries);
 557                        RB_CLEAR_NODE(&th->rb_node);
 558                        thread__put(th);
 559                        return NULL;
 560                }
 561                /*
 562                 * It is now in the rbtree, get a ref
 563                 */
 564                thread__get(th);
 565                threads__set_last_match(threads, th);
 566                ++threads->nr;
 567        }
 568
 569        return th;
 570}
 571
 572struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 573{
 574        return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
 575}
 576
 577struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
 578                                       pid_t tid)
 579{
 580        struct threads *threads = machine__threads(machine, tid);
 581        struct thread *th;
 582
 583        down_write(&threads->lock);
 584        th = __machine__findnew_thread(machine, pid, tid);
 585        up_write(&threads->lock);
 586        return th;
 587}
 588
 589struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 590                                    pid_t tid)
 591{
 592        struct threads *threads = machine__threads(machine, tid);
 593        struct thread *th;
 594
 595        down_read(&threads->lock);
 596        th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
 597        up_read(&threads->lock);
 598        return th;
 599}
 600
 601/*
 602 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
 603 * So here a single thread is created for that, but actually there is a separate
 604 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
 605 * is only 1. That causes problems for some tools, requiring workarounds. For
 606 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
 607 */
 608struct thread *machine__idle_thread(struct machine *machine)
 609{
 610        struct thread *thread = machine__findnew_thread(machine, 0, 0);
 611
 612        if (!thread || thread__set_comm(thread, "swapper", 0) ||
 613            thread__set_namespaces(thread, 0, NULL))
 614                pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
 615
 616        return thread;
 617}
 618
 619struct comm *machine__thread_exec_comm(struct machine *machine,
 620                                       struct thread *thread)
 621{
 622        if (machine->comm_exec)
 623                return thread__exec_comm(thread);
 624        else
 625                return thread__comm(thread);
 626}
 627
 628int machine__process_comm_event(struct machine *machine, union perf_event *event,
 629                                struct perf_sample *sample)
 630{
 631        struct thread *thread = machine__findnew_thread(machine,
 632                                                        event->comm.pid,
 633                                                        event->comm.tid);
 634        bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 635        int err = 0;
 636
 637        if (exec)
 638                machine->comm_exec = true;
 639
 640        if (dump_trace)
 641                perf_event__fprintf_comm(event, stdout);
 642
 643        if (thread == NULL ||
 644            __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 645                dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 646                err = -1;
 647        }
 648
 649        thread__put(thread);
 650
 651        return err;
 652}
 653
 654int machine__process_namespaces_event(struct machine *machine __maybe_unused,
 655                                      union perf_event *event,
 656                                      struct perf_sample *sample __maybe_unused)
 657{
 658        struct thread *thread = machine__findnew_thread(machine,
 659                                                        event->namespaces.pid,
 660                                                        event->namespaces.tid);
 661        int err = 0;
 662
 663        WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
 664                  "\nWARNING: kernel seems to support more namespaces than perf"
 665                  " tool.\nTry updating the perf tool..\n\n");
 666
 667        WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
 668                  "\nWARNING: perf tool seems to support more namespaces than"
 669                  " the kernel.\nTry updating the kernel..\n\n");
 670
 671        if (dump_trace)
 672                perf_event__fprintf_namespaces(event, stdout);
 673
 674        if (thread == NULL ||
 675            thread__set_namespaces(thread, sample->time, &event->namespaces)) {
 676                dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
 677                err = -1;
 678        }
 679
 680        thread__put(thread);
 681
 682        return err;
 683}
 684
 685int machine__process_cgroup_event(struct machine *machine,
 686                                  union perf_event *event,
 687                                  struct perf_sample *sample __maybe_unused)
 688{
 689        struct cgroup *cgrp;
 690
 691        if (dump_trace)
 692                perf_event__fprintf_cgroup(event, stdout);
 693
 694        cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
 695        if (cgrp == NULL)
 696                return -ENOMEM;
 697
 698        return 0;
 699}
 700
 701int machine__process_lost_event(struct machine *machine __maybe_unused,
 702                                union perf_event *event, struct perf_sample *sample __maybe_unused)
 703{
 704        dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
 705                    event->lost.id, event->lost.lost);
 706        return 0;
 707}
 708
 709int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 710                                        union perf_event *event, struct perf_sample *sample)
 711{
 712        dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
 713                    sample->id, event->lost_samples.lost);
 714        return 0;
 715}
 716
 717static struct dso *machine__findnew_module_dso(struct machine *machine,
 718                                               struct kmod_path *m,
 719                                               const char *filename)
 720{
 721        struct dso *dso;
 722
 723        down_write(&machine->dsos.lock);
 724
 725        dso = __dsos__find(&machine->dsos, m->name, true);
 726        if (!dso) {
 727                dso = __dsos__addnew(&machine->dsos, m->name);
 728                if (dso == NULL)
 729                        goto out_unlock;
 730
 731                dso__set_module_info(dso, m, machine);
 732                dso__set_long_name(dso, strdup(filename), true);
 733                dso->kernel = DSO_SPACE__KERNEL;
 734        }
 735
 736        dso__get(dso);
 737out_unlock:
 738        up_write(&machine->dsos.lock);
 739        return dso;
 740}
 741
 742int machine__process_aux_event(struct machine *machine __maybe_unused,
 743                               union perf_event *event)
 744{
 745        if (dump_trace)
 746                perf_event__fprintf_aux(event, stdout);
 747        return 0;
 748}
 749
 750int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 751                                        union perf_event *event)
 752{
 753        if (dump_trace)
 754                perf_event__fprintf_itrace_start(event, stdout);
 755        return 0;
 756}
 757
 758int machine__process_switch_event(struct machine *machine __maybe_unused,
 759                                  union perf_event *event)
 760{
 761        if (dump_trace)
 762                perf_event__fprintf_switch(event, stdout);
 763        return 0;
 764}
 765
 766static int machine__process_ksymbol_register(struct machine *machine,
 767                                             union perf_event *event,
 768                                             struct perf_sample *sample __maybe_unused)
 769{
 770        struct symbol *sym;
 771        struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
 772
 773        if (!map) {
 774                struct dso *dso = dso__new(event->ksymbol.name);
 775
 776                if (dso) {
 777                        dso->kernel = DSO_SPACE__KERNEL;
 778                        map = map__new2(0, dso);
 779                        dso__put(dso);
 780                }
 781
 782                if (!dso || !map) {
 783                        return -ENOMEM;
 784                }
 785
 786                if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
 787                        map->dso->binary_type = DSO_BINARY_TYPE__OOL;
 788                        map->dso->data.file_size = event->ksymbol.len;
 789                        dso__set_loaded(map->dso);
 790                }
 791
 792                map->start = event->ksymbol.addr;
 793                map->end = map->start + event->ksymbol.len;
 794                maps__insert(&machine->kmaps, map);
 795                map__put(map);
 796                dso__set_loaded(dso);
 797
 798                if (is_bpf_image(event->ksymbol.name)) {
 799                        dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
 800                        dso__set_long_name(dso, "", false);
 801                }
 802        }
 803
 804        sym = symbol__new(map->map_ip(map, map->start),
 805                          event->ksymbol.len,
 806                          0, 0, event->ksymbol.name);
 807        if (!sym)
 808                return -ENOMEM;
 809        dso__insert_symbol(map->dso, sym);
 810        return 0;
 811}
 812
 813static int machine__process_ksymbol_unregister(struct machine *machine,
 814                                               union perf_event *event,
 815                                               struct perf_sample *sample __maybe_unused)
 816{
 817        struct symbol *sym;
 818        struct map *map;
 819
 820        map = maps__find(&machine->kmaps, event->ksymbol.addr);
 821        if (!map)
 822                return 0;
 823
 824        if (map != machine->vmlinux_map)
 825                maps__remove(&machine->kmaps, map);
 826        else {
 827                sym = dso__find_symbol(map->dso, map->map_ip(map, map->start));
 828                if (sym)
 829                        dso__delete_symbol(map->dso, sym);
 830        }
 831
 832        return 0;
 833}
 834
 835int machine__process_ksymbol(struct machine *machine __maybe_unused,
 836                             union perf_event *event,
 837                             struct perf_sample *sample)
 838{
 839        if (dump_trace)
 840                perf_event__fprintf_ksymbol(event, stdout);
 841
 842        if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
 843                return machine__process_ksymbol_unregister(machine, event,
 844                                                           sample);
 845        return machine__process_ksymbol_register(machine, event, sample);
 846}
 847
 848int machine__process_text_poke(struct machine *machine, union perf_event *event,
 849                               struct perf_sample *sample __maybe_unused)
 850{
 851        struct map *map = maps__find(&machine->kmaps, event->text_poke.addr);
 852        u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
 853
 854        if (dump_trace)
 855                perf_event__fprintf_text_poke(event, machine, stdout);
 856
 857        if (!event->text_poke.new_len)
 858                return 0;
 859
 860        if (cpumode != PERF_RECORD_MISC_KERNEL) {
 861                pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
 862                return 0;
 863        }
 864
 865        if (map && map->dso) {
 866                u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
 867                int ret;
 868
 869                /*
 870                 * Kernel maps might be changed when loading symbols so loading
 871                 * must be done prior to using kernel maps.
 872                 */
 873                map__load(map);
 874                ret = dso__data_write_cache_addr(map->dso, map, machine,
 875                                                 event->text_poke.addr,
 876                                                 new_bytes,
 877                                                 event->text_poke.new_len);
 878                if (ret != event->text_poke.new_len)
 879                        pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
 880                                 event->text_poke.addr);
 881        } else {
 882                pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
 883                         event->text_poke.addr);
 884        }
 885
 886        return 0;
 887}
 888
 889static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
 890                                              const char *filename)
 891{
 892        struct map *map = NULL;
 893        struct kmod_path m;
 894        struct dso *dso;
 895
 896        if (kmod_path__parse_name(&m, filename))
 897                return NULL;
 898
 899        dso = machine__findnew_module_dso(machine, &m, filename);
 900        if (dso == NULL)
 901                goto out;
 902
 903        map = map__new2(start, dso);
 904        if (map == NULL)
 905                goto out;
 906
 907        maps__insert(&machine->kmaps, map);
 908
 909        /* Put the map here because maps__insert already got it */
 910        map__put(map);
 911out:
 912        /* put the dso here, corresponding to  machine__findnew_module_dso */
 913        dso__put(dso);
 914        zfree(&m.name);
 915        return map;
 916}
 917
 918size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
 919{
 920        struct rb_node *nd;
 921        size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
 922
 923        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 924                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 925                ret += __dsos__fprintf(&pos->dsos.head, fp);
 926        }
 927
 928        return ret;
 929}
 930
 931size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
 932                                     bool (skip)(struct dso *dso, int parm), int parm)
 933{
 934        return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
 935}
 936
 937size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
 938                                     bool (skip)(struct dso *dso, int parm), int parm)
 939{
 940        struct rb_node *nd;
 941        size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
 942
 943        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 944                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 945                ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
 946        }
 947        return ret;
 948}
 949
 950size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
 951{
 952        int i;
 953        size_t printed = 0;
 954        struct dso *kdso = machine__kernel_dso(machine);
 955
 956        if (kdso->has_build_id) {
 957                char filename[PATH_MAX];
 958                if (dso__build_id_filename(kdso, filename, sizeof(filename),
 959                                           false))
 960                        printed += fprintf(fp, "[0] %s\n", filename);
 961        }
 962
 963        for (i = 0; i < vmlinux_path__nr_entries; ++i)
 964                printed += fprintf(fp, "[%d] %s\n",
 965                                   i + kdso->has_build_id, vmlinux_path[i]);
 966
 967        return printed;
 968}
 969
 970size_t machine__fprintf(struct machine *machine, FILE *fp)
 971{
 972        struct rb_node *nd;
 973        size_t ret;
 974        int i;
 975
 976        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 977                struct threads *threads = &machine->threads[i];
 978
 979                down_read(&threads->lock);
 980
 981                ret = fprintf(fp, "Threads: %u\n", threads->nr);
 982
 983                for (nd = rb_first_cached(&threads->entries); nd;
 984                     nd = rb_next(nd)) {
 985                        struct thread *pos = rb_entry(nd, struct thread, rb_node);
 986
 987                        ret += thread__fprintf(pos, fp);
 988                }
 989
 990                up_read(&threads->lock);
 991        }
 992        return ret;
 993}
 994
 995static struct dso *machine__get_kernel(struct machine *machine)
 996{
 997        const char *vmlinux_name = machine->mmap_name;
 998        struct dso *kernel;
 999
1000        if (machine__is_host(machine)) {
1001                if (symbol_conf.vmlinux_name)
1002                        vmlinux_name = symbol_conf.vmlinux_name;
1003
1004                kernel = machine__findnew_kernel(machine, vmlinux_name,
1005                                                 "[kernel]", DSO_SPACE__KERNEL);
1006        } else {
1007                if (symbol_conf.default_guest_vmlinux_name)
1008                        vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1009
1010                kernel = machine__findnew_kernel(machine, vmlinux_name,
1011                                                 "[guest.kernel]",
1012                                                 DSO_SPACE__KERNEL_GUEST);
1013        }
1014
1015        if (kernel != NULL && (!kernel->has_build_id))
1016                dso__read_running_kernel_build_id(kernel, machine);
1017
1018        return kernel;
1019}
1020
1021struct process_args {
1022        u64 start;
1023};
1024
1025void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1026                                    size_t bufsz)
1027{
1028        if (machine__is_default_guest(machine))
1029                scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1030        else
1031                scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1032}
1033
1034const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1035
1036/* Figure out the start address of kernel map from /proc/kallsyms.
1037 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1038 * symbol_name if it's not that important.
1039 */
1040static int machine__get_running_kernel_start(struct machine *machine,
1041                                             const char **symbol_name,
1042                                             u64 *start, u64 *end)
1043{
1044        char filename[PATH_MAX];
1045        int i, err = -1;
1046        const char *name;
1047        u64 addr = 0;
1048
1049        machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1050
1051        if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1052                return 0;
1053
1054        for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1055                err = kallsyms__get_function_start(filename, name, &addr);
1056                if (!err)
1057                        break;
1058        }
1059
1060        if (err)
1061                return -1;
1062
1063        if (symbol_name)
1064                *symbol_name = name;
1065
1066        *start = addr;
1067
1068        err = kallsyms__get_function_start(filename, "_etext", &addr);
1069        if (!err)
1070                *end = addr;
1071
1072        return 0;
1073}
1074
1075int machine__create_extra_kernel_map(struct machine *machine,
1076                                     struct dso *kernel,
1077                                     struct extra_kernel_map *xm)
1078{
1079        struct kmap *kmap;
1080        struct map *map;
1081
1082        map = map__new2(xm->start, kernel);
1083        if (!map)
1084                return -1;
1085
1086        map->end   = xm->end;
1087        map->pgoff = xm->pgoff;
1088
1089        kmap = map__kmap(map);
1090
1091        strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1092
1093        maps__insert(&machine->kmaps, map);
1094
1095        pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1096                  kmap->name, map->start, map->end);
1097
1098        map__put(map);
1099
1100        return 0;
1101}
1102
1103static u64 find_entry_trampoline(struct dso *dso)
1104{
1105        /* Duplicates are removed so lookup all aliases */
1106        const char *syms[] = {
1107                "_entry_trampoline",
1108                "__entry_trampoline_start",
1109                "entry_SYSCALL_64_trampoline",
1110        };
1111        struct symbol *sym = dso__first_symbol(dso);
1112        unsigned int i;
1113
1114        for (; sym; sym = dso__next_symbol(sym)) {
1115                if (sym->binding != STB_GLOBAL)
1116                        continue;
1117                for (i = 0; i < ARRAY_SIZE(syms); i++) {
1118                        if (!strcmp(sym->name, syms[i]))
1119                                return sym->start;
1120                }
1121        }
1122
1123        return 0;
1124}
1125
1126/*
1127 * These values can be used for kernels that do not have symbols for the entry
1128 * trampolines in kallsyms.
1129 */
1130#define X86_64_CPU_ENTRY_AREA_PER_CPU   0xfffffe0000000000ULL
1131#define X86_64_CPU_ENTRY_AREA_SIZE      0x2c000
1132#define X86_64_ENTRY_TRAMPOLINE         0x6000
1133
1134/* Map x86_64 PTI entry trampolines */
1135int machine__map_x86_64_entry_trampolines(struct machine *machine,
1136                                          struct dso *kernel)
1137{
1138        struct maps *kmaps = &machine->kmaps;
1139        int nr_cpus_avail, cpu;
1140        bool found = false;
1141        struct map *map;
1142        u64 pgoff;
1143
1144        /*
1145         * In the vmlinux case, pgoff is a virtual address which must now be
1146         * mapped to a vmlinux offset.
1147         */
1148        maps__for_each_entry(kmaps, map) {
1149                struct kmap *kmap = __map__kmap(map);
1150                struct map *dest_map;
1151
1152                if (!kmap || !is_entry_trampoline(kmap->name))
1153                        continue;
1154
1155                dest_map = maps__find(kmaps, map->pgoff);
1156                if (dest_map != map)
1157                        map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1158                found = true;
1159        }
1160        if (found || machine->trampolines_mapped)
1161                return 0;
1162
1163        pgoff = find_entry_trampoline(kernel);
1164        if (!pgoff)
1165                return 0;
1166
1167        nr_cpus_avail = machine__nr_cpus_avail(machine);
1168
1169        /* Add a 1 page map for each CPU's entry trampoline */
1170        for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1171                u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1172                         cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1173                         X86_64_ENTRY_TRAMPOLINE;
1174                struct extra_kernel_map xm = {
1175                        .start = va,
1176                        .end   = va + page_size,
1177                        .pgoff = pgoff,
1178                };
1179
1180                strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1181
1182                if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1183                        return -1;
1184        }
1185
1186        machine->trampolines_mapped = nr_cpus_avail;
1187
1188        return 0;
1189}
1190
1191int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1192                                             struct dso *kernel __maybe_unused)
1193{
1194        return 0;
1195}
1196
1197static int
1198__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1199{
1200        /* In case of renewal the kernel map, destroy previous one */
1201        machine__destroy_kernel_maps(machine);
1202
1203        machine->vmlinux_map = map__new2(0, kernel);
1204        if (machine->vmlinux_map == NULL)
1205                return -1;
1206
1207        machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1208        maps__insert(&machine->kmaps, machine->vmlinux_map);
1209        return 0;
1210}
1211
1212void machine__destroy_kernel_maps(struct machine *machine)
1213{
1214        struct kmap *kmap;
1215        struct map *map = machine__kernel_map(machine);
1216
1217        if (map == NULL)
1218                return;
1219
1220        kmap = map__kmap(map);
1221        maps__remove(&machine->kmaps, map);
1222        if (kmap && kmap->ref_reloc_sym) {
1223                zfree((char **)&kmap->ref_reloc_sym->name);
1224                zfree(&kmap->ref_reloc_sym);
1225        }
1226
1227        map__zput(machine->vmlinux_map);
1228}
1229
1230int machines__create_guest_kernel_maps(struct machines *machines)
1231{
1232        int ret = 0;
1233        struct dirent **namelist = NULL;
1234        int i, items = 0;
1235        char path[PATH_MAX];
1236        pid_t pid;
1237        char *endp;
1238
1239        if (symbol_conf.default_guest_vmlinux_name ||
1240            symbol_conf.default_guest_modules ||
1241            symbol_conf.default_guest_kallsyms) {
1242                machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1243        }
1244
1245        if (symbol_conf.guestmount) {
1246                items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1247                if (items <= 0)
1248                        return -ENOENT;
1249                for (i = 0; i < items; i++) {
1250                        if (!isdigit(namelist[i]->d_name[0])) {
1251                                /* Filter out . and .. */
1252                                continue;
1253                        }
1254                        pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1255                        if ((*endp != '\0') ||
1256                            (endp == namelist[i]->d_name) ||
1257                            (errno == ERANGE)) {
1258                                pr_debug("invalid directory (%s). Skipping.\n",
1259                                         namelist[i]->d_name);
1260                                continue;
1261                        }
1262                        sprintf(path, "%s/%s/proc/kallsyms",
1263                                symbol_conf.guestmount,
1264                                namelist[i]->d_name);
1265                        ret = access(path, R_OK);
1266                        if (ret) {
1267                                pr_debug("Can't access file %s\n", path);
1268                                goto failure;
1269                        }
1270                        machines__create_kernel_maps(machines, pid);
1271                }
1272failure:
1273                free(namelist);
1274        }
1275
1276        return ret;
1277}
1278
1279void machines__destroy_kernel_maps(struct machines *machines)
1280{
1281        struct rb_node *next = rb_first_cached(&machines->guests);
1282
1283        machine__destroy_kernel_maps(&machines->host);
1284
1285        while (next) {
1286                struct machine *pos = rb_entry(next, struct machine, rb_node);
1287
1288                next = rb_next(&pos->rb_node);
1289                rb_erase_cached(&pos->rb_node, &machines->guests);
1290                machine__delete(pos);
1291        }
1292}
1293
1294int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1295{
1296        struct machine *machine = machines__findnew(machines, pid);
1297
1298        if (machine == NULL)
1299                return -1;
1300
1301        return machine__create_kernel_maps(machine);
1302}
1303
1304int machine__load_kallsyms(struct machine *machine, const char *filename)
1305{
1306        struct map *map = machine__kernel_map(machine);
1307        int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1308
1309        if (ret > 0) {
1310                dso__set_loaded(map->dso);
1311                /*
1312                 * Since /proc/kallsyms will have multiple sessions for the
1313                 * kernel, with modules between them, fixup the end of all
1314                 * sections.
1315                 */
1316                maps__fixup_end(&machine->kmaps);
1317        }
1318
1319        return ret;
1320}
1321
1322int machine__load_vmlinux_path(struct machine *machine)
1323{
1324        struct map *map = machine__kernel_map(machine);
1325        int ret = dso__load_vmlinux_path(map->dso, map);
1326
1327        if (ret > 0)
1328                dso__set_loaded(map->dso);
1329
1330        return ret;
1331}
1332
1333static char *get_kernel_version(const char *root_dir)
1334{
1335        char version[PATH_MAX];
1336        FILE *file;
1337        char *name, *tmp;
1338        const char *prefix = "Linux version ";
1339
1340        sprintf(version, "%s/proc/version", root_dir);
1341        file = fopen(version, "r");
1342        if (!file)
1343                return NULL;
1344
1345        tmp = fgets(version, sizeof(version), file);
1346        fclose(file);
1347        if (!tmp)
1348                return NULL;
1349
1350        name = strstr(version, prefix);
1351        if (!name)
1352                return NULL;
1353        name += strlen(prefix);
1354        tmp = strchr(name, ' ');
1355        if (tmp)
1356                *tmp = '\0';
1357
1358        return strdup(name);
1359}
1360
1361static bool is_kmod_dso(struct dso *dso)
1362{
1363        return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1364               dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1365}
1366
1367static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1368{
1369        char *long_name;
1370        struct map *map = maps__find_by_name(maps, m->name);
1371
1372        if (map == NULL)
1373                return 0;
1374
1375        long_name = strdup(path);
1376        if (long_name == NULL)
1377                return -ENOMEM;
1378
1379        dso__set_long_name(map->dso, long_name, true);
1380        dso__kernel_module_get_build_id(map->dso, "");
1381
1382        /*
1383         * Full name could reveal us kmod compression, so
1384         * we need to update the symtab_type if needed.
1385         */
1386        if (m->comp && is_kmod_dso(map->dso)) {
1387                map->dso->symtab_type++;
1388                map->dso->comp = m->comp;
1389        }
1390
1391        return 0;
1392}
1393
1394static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1395{
1396        struct dirent *dent;
1397        DIR *dir = opendir(dir_name);
1398        int ret = 0;
1399
1400        if (!dir) {
1401                pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1402                return -1;
1403        }
1404
1405        while ((dent = readdir(dir)) != NULL) {
1406                char path[PATH_MAX];
1407                struct stat st;
1408
1409                /*sshfs might return bad dent->d_type, so we have to stat*/
1410                snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1411                if (stat(path, &st))
1412                        continue;
1413
1414                if (S_ISDIR(st.st_mode)) {
1415                        if (!strcmp(dent->d_name, ".") ||
1416                            !strcmp(dent->d_name, ".."))
1417                                continue;
1418
1419                        /* Do not follow top-level source and build symlinks */
1420                        if (depth == 0) {
1421                                if (!strcmp(dent->d_name, "source") ||
1422                                    !strcmp(dent->d_name, "build"))
1423                                        continue;
1424                        }
1425
1426                        ret = maps__set_modules_path_dir(maps, path, depth + 1);
1427                        if (ret < 0)
1428                                goto out;
1429                } else {
1430                        struct kmod_path m;
1431
1432                        ret = kmod_path__parse_name(&m, dent->d_name);
1433                        if (ret)
1434                                goto out;
1435
1436                        if (m.kmod)
1437                                ret = maps__set_module_path(maps, path, &m);
1438
1439                        zfree(&m.name);
1440
1441                        if (ret)
1442                                goto out;
1443                }
1444        }
1445
1446out:
1447        closedir(dir);
1448        return ret;
1449}
1450
1451static int machine__set_modules_path(struct machine *machine)
1452{
1453        char *version;
1454        char modules_path[PATH_MAX];
1455
1456        version = get_kernel_version(machine->root_dir);
1457        if (!version)
1458                return -1;
1459
1460        snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1461                 machine->root_dir, version);
1462        free(version);
1463
1464        return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1465}
1466int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1467                                u64 *size __maybe_unused,
1468                                const char *name __maybe_unused)
1469{
1470        return 0;
1471}
1472
1473static int machine__create_module(void *arg, const char *name, u64 start,
1474                                  u64 size)
1475{
1476        struct machine *machine = arg;
1477        struct map *map;
1478
1479        if (arch__fix_module_text_start(&start, &size, name) < 0)
1480                return -1;
1481
1482        map = machine__addnew_module_map(machine, start, name);
1483        if (map == NULL)
1484                return -1;
1485        map->end = start + size;
1486
1487        dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1488
1489        return 0;
1490}
1491
1492static int machine__create_modules(struct machine *machine)
1493{
1494        const char *modules;
1495        char path[PATH_MAX];
1496
1497        if (machine__is_default_guest(machine)) {
1498                modules = symbol_conf.default_guest_modules;
1499        } else {
1500                snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1501                modules = path;
1502        }
1503
1504        if (symbol__restricted_filename(modules, "/proc/modules"))
1505                return -1;
1506
1507        if (modules__parse(modules, machine, machine__create_module))
1508                return -1;
1509
1510        if (!machine__set_modules_path(machine))
1511                return 0;
1512
1513        pr_debug("Problems setting modules path maps, continuing anyway...\n");
1514
1515        return 0;
1516}
1517
1518static void machine__set_kernel_mmap(struct machine *machine,
1519                                     u64 start, u64 end)
1520{
1521        machine->vmlinux_map->start = start;
1522        machine->vmlinux_map->end   = end;
1523        /*
1524         * Be a bit paranoid here, some perf.data file came with
1525         * a zero sized synthesized MMAP event for the kernel.
1526         */
1527        if (start == 0 && end == 0)
1528                machine->vmlinux_map->end = ~0ULL;
1529}
1530
1531static void machine__update_kernel_mmap(struct machine *machine,
1532                                     u64 start, u64 end)
1533{
1534        struct map *map = machine__kernel_map(machine);
1535
1536        map__get(map);
1537        maps__remove(&machine->kmaps, map);
1538
1539        machine__set_kernel_mmap(machine, start, end);
1540
1541        maps__insert(&machine->kmaps, map);
1542        map__put(map);
1543}
1544
1545int machine__create_kernel_maps(struct machine *machine)
1546{
1547        struct dso *kernel = machine__get_kernel(machine);
1548        const char *name = NULL;
1549        struct map *map;
1550        u64 start = 0, end = ~0ULL;
1551        int ret;
1552
1553        if (kernel == NULL)
1554                return -1;
1555
1556        ret = __machine__create_kernel_maps(machine, kernel);
1557        if (ret < 0)
1558                goto out_put;
1559
1560        if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1561                if (machine__is_host(machine))
1562                        pr_debug("Problems creating module maps, "
1563                                 "continuing anyway...\n");
1564                else
1565                        pr_debug("Problems creating module maps for guest %d, "
1566                                 "continuing anyway...\n", machine->pid);
1567        }
1568
1569        if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1570                if (name &&
1571                    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1572                        machine__destroy_kernel_maps(machine);
1573                        ret = -1;
1574                        goto out_put;
1575                }
1576
1577                /*
1578                 * we have a real start address now, so re-order the kmaps
1579                 * assume it's the last in the kmaps
1580                 */
1581                machine__update_kernel_mmap(machine, start, end);
1582        }
1583
1584        if (machine__create_extra_kernel_maps(machine, kernel))
1585                pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1586
1587        if (end == ~0ULL) {
1588                /* update end address of the kernel map using adjacent module address */
1589                map = map__next(machine__kernel_map(machine));
1590                if (map)
1591                        machine__set_kernel_mmap(machine, start, map->start);
1592        }
1593
1594out_put:
1595        dso__put(kernel);
1596        return ret;
1597}
1598
1599static bool machine__uses_kcore(struct machine *machine)
1600{
1601        struct dso *dso;
1602
1603        list_for_each_entry(dso, &machine->dsos.head, node) {
1604                if (dso__is_kcore(dso))
1605                        return true;
1606        }
1607
1608        return false;
1609}
1610
1611static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1612                                             struct extra_kernel_map *xm)
1613{
1614        return machine__is(machine, "x86_64") &&
1615               is_entry_trampoline(xm->name);
1616}
1617
1618static int machine__process_extra_kernel_map(struct machine *machine,
1619                                             struct extra_kernel_map *xm)
1620{
1621        struct dso *kernel = machine__kernel_dso(machine);
1622
1623        if (kernel == NULL)
1624                return -1;
1625
1626        return machine__create_extra_kernel_map(machine, kernel, xm);
1627}
1628
1629static int machine__process_kernel_mmap_event(struct machine *machine,
1630                                              struct extra_kernel_map *xm,
1631                                              struct build_id *bid)
1632{
1633        struct map *map;
1634        enum dso_space_type dso_space;
1635        bool is_kernel_mmap;
1636
1637        /* If we have maps from kcore then we do not need or want any others */
1638        if (machine__uses_kcore(machine))
1639                return 0;
1640
1641        if (machine__is_host(machine))
1642                dso_space = DSO_SPACE__KERNEL;
1643        else
1644                dso_space = DSO_SPACE__KERNEL_GUEST;
1645
1646        is_kernel_mmap = memcmp(xm->name, machine->mmap_name,
1647                                strlen(machine->mmap_name) - 1) == 0;
1648        if (xm->name[0] == '/' ||
1649            (!is_kernel_mmap && xm->name[0] == '[')) {
1650                map = machine__addnew_module_map(machine, xm->start,
1651                                                 xm->name);
1652                if (map == NULL)
1653                        goto out_problem;
1654
1655                map->end = map->start + xm->end - xm->start;
1656
1657                if (build_id__is_defined(bid))
1658                        dso__set_build_id(map->dso, bid);
1659
1660        } else if (is_kernel_mmap) {
1661                const char *symbol_name = (xm->name + strlen(machine->mmap_name));
1662                /*
1663                 * Should be there already, from the build-id table in
1664                 * the header.
1665                 */
1666                struct dso *kernel = NULL;
1667                struct dso *dso;
1668
1669                down_read(&machine->dsos.lock);
1670
1671                list_for_each_entry(dso, &machine->dsos.head, node) {
1672
1673                        /*
1674                         * The cpumode passed to is_kernel_module is not the
1675                         * cpumode of *this* event. If we insist on passing
1676                         * correct cpumode to is_kernel_module, we should
1677                         * record the cpumode when we adding this dso to the
1678                         * linked list.
1679                         *
1680                         * However we don't really need passing correct
1681                         * cpumode.  We know the correct cpumode must be kernel
1682                         * mode (if not, we should not link it onto kernel_dsos
1683                         * list).
1684                         *
1685                         * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1686                         * is_kernel_module() treats it as a kernel cpumode.
1687                         */
1688
1689                        if (!dso->kernel ||
1690                            is_kernel_module(dso->long_name,
1691                                             PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1692                                continue;
1693
1694
1695                        kernel = dso;
1696                        break;
1697                }
1698
1699                up_read(&machine->dsos.lock);
1700
1701                if (kernel == NULL)
1702                        kernel = machine__findnew_dso(machine, machine->mmap_name);
1703                if (kernel == NULL)
1704                        goto out_problem;
1705
1706                kernel->kernel = dso_space;
1707                if (__machine__create_kernel_maps(machine, kernel) < 0) {
1708                        dso__put(kernel);
1709                        goto out_problem;
1710                }
1711
1712                if (strstr(kernel->long_name, "vmlinux"))
1713                        dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1714
1715                machine__update_kernel_mmap(machine, xm->start, xm->end);
1716
1717                if (build_id__is_defined(bid))
1718                        dso__set_build_id(kernel, bid);
1719
1720                /*
1721                 * Avoid using a zero address (kptr_restrict) for the ref reloc
1722                 * symbol. Effectively having zero here means that at record
1723                 * time /proc/sys/kernel/kptr_restrict was non zero.
1724                 */
1725                if (xm->pgoff != 0) {
1726                        map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1727                                                        symbol_name,
1728                                                        xm->pgoff);
1729                }
1730
1731                if (machine__is_default_guest(machine)) {
1732                        /*
1733                         * preload dso of guest kernel and modules
1734                         */
1735                        dso__load(kernel, machine__kernel_map(machine));
1736                }
1737        } else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1738                return machine__process_extra_kernel_map(machine, xm);
1739        }
1740        return 0;
1741out_problem:
1742        return -1;
1743}
1744
1745int machine__process_mmap2_event(struct machine *machine,
1746                                 union perf_event *event,
1747                                 struct perf_sample *sample)
1748{
1749        struct thread *thread;
1750        struct map *map;
1751        struct dso_id dso_id = {
1752                .maj = event->mmap2.maj,
1753                .min = event->mmap2.min,
1754                .ino = event->mmap2.ino,
1755                .ino_generation = event->mmap2.ino_generation,
1756        };
1757        struct build_id __bid, *bid = NULL;
1758        int ret = 0;
1759
1760        if (dump_trace)
1761                perf_event__fprintf_mmap2(event, stdout);
1762
1763        if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1764                bid = &__bid;
1765                build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1766        }
1767
1768        if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1769            sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1770                struct extra_kernel_map xm = {
1771                        .start = event->mmap2.start,
1772                        .end   = event->mmap2.start + event->mmap2.len,
1773                        .pgoff = event->mmap2.pgoff,
1774                };
1775
1776                strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1777                ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1778                if (ret < 0)
1779                        goto out_problem;
1780                return 0;
1781        }
1782
1783        thread = machine__findnew_thread(machine, event->mmap2.pid,
1784                                        event->mmap2.tid);
1785        if (thread == NULL)
1786                goto out_problem;
1787
1788        map = map__new(machine, event->mmap2.start,
1789                        event->mmap2.len, event->mmap2.pgoff,
1790                        &dso_id, event->mmap2.prot,
1791                        event->mmap2.flags, bid,
1792                        event->mmap2.filename, thread);
1793
1794        if (map == NULL)
1795                goto out_problem_map;
1796
1797        ret = thread__insert_map(thread, map);
1798        if (ret)
1799                goto out_problem_insert;
1800
1801        thread__put(thread);
1802        map__put(map);
1803        return 0;
1804
1805out_problem_insert:
1806        map__put(map);
1807out_problem_map:
1808        thread__put(thread);
1809out_problem:
1810        dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1811        return 0;
1812}
1813
1814int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1815                                struct perf_sample *sample)
1816{
1817        struct thread *thread;
1818        struct map *map;
1819        u32 prot = 0;
1820        int ret = 0;
1821
1822        if (dump_trace)
1823                perf_event__fprintf_mmap(event, stdout);
1824
1825        if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1826            sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1827                struct extra_kernel_map xm = {
1828                        .start = event->mmap.start,
1829                        .end   = event->mmap.start + event->mmap.len,
1830                        .pgoff = event->mmap.pgoff,
1831                };
1832
1833                strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1834                ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1835                if (ret < 0)
1836                        goto out_problem;
1837                return 0;
1838        }
1839
1840        thread = machine__findnew_thread(machine, event->mmap.pid,
1841                                         event->mmap.tid);
1842        if (thread == NULL)
1843                goto out_problem;
1844
1845        if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1846                prot = PROT_EXEC;
1847
1848        map = map__new(machine, event->mmap.start,
1849                        event->mmap.len, event->mmap.pgoff,
1850                        NULL, prot, 0, NULL, event->mmap.filename, thread);
1851
1852        if (map == NULL)
1853                goto out_problem_map;
1854
1855        ret = thread__insert_map(thread, map);
1856        if (ret)
1857                goto out_problem_insert;
1858
1859        thread__put(thread);
1860        map__put(map);
1861        return 0;
1862
1863out_problem_insert:
1864        map__put(map);
1865out_problem_map:
1866        thread__put(thread);
1867out_problem:
1868        dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1869        return 0;
1870}
1871
1872static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1873{
1874        struct threads *threads = machine__threads(machine, th->tid);
1875
1876        if (threads->last_match == th)
1877                threads__set_last_match(threads, NULL);
1878
1879        if (lock)
1880                down_write(&threads->lock);
1881
1882        BUG_ON(refcount_read(&th->refcnt) == 0);
1883
1884        rb_erase_cached(&th->rb_node, &threads->entries);
1885        RB_CLEAR_NODE(&th->rb_node);
1886        --threads->nr;
1887        /*
1888         * Move it first to the dead_threads list, then drop the reference,
1889         * if this is the last reference, then the thread__delete destructor
1890         * will be called and we will remove it from the dead_threads list.
1891         */
1892        list_add_tail(&th->node, &threads->dead);
1893
1894        /*
1895         * We need to do the put here because if this is the last refcount,
1896         * then we will be touching the threads->dead head when removing the
1897         * thread.
1898         */
1899        thread__put(th);
1900
1901        if (lock)
1902                up_write(&threads->lock);
1903}
1904
1905void machine__remove_thread(struct machine *machine, struct thread *th)
1906{
1907        return __machine__remove_thread(machine, th, true);
1908}
1909
1910int machine__process_fork_event(struct machine *machine, union perf_event *event,
1911                                struct perf_sample *sample)
1912{
1913        struct thread *thread = machine__find_thread(machine,
1914                                                     event->fork.pid,
1915                                                     event->fork.tid);
1916        struct thread *parent = machine__findnew_thread(machine,
1917                                                        event->fork.ppid,
1918                                                        event->fork.ptid);
1919        bool do_maps_clone = true;
1920        int err = 0;
1921
1922        if (dump_trace)
1923                perf_event__fprintf_task(event, stdout);
1924
1925        /*
1926         * There may be an existing thread that is not actually the parent,
1927         * either because we are processing events out of order, or because the
1928         * (fork) event that would have removed the thread was lost. Assume the
1929         * latter case and continue on as best we can.
1930         */
1931        if (parent->pid_ != (pid_t)event->fork.ppid) {
1932                dump_printf("removing erroneous parent thread %d/%d\n",
1933                            parent->pid_, parent->tid);
1934                machine__remove_thread(machine, parent);
1935                thread__put(parent);
1936                parent = machine__findnew_thread(machine, event->fork.ppid,
1937                                                 event->fork.ptid);
1938        }
1939
1940        /* if a thread currently exists for the thread id remove it */
1941        if (thread != NULL) {
1942                machine__remove_thread(machine, thread);
1943                thread__put(thread);
1944        }
1945
1946        thread = machine__findnew_thread(machine, event->fork.pid,
1947                                         event->fork.tid);
1948        /*
1949         * When synthesizing FORK events, we are trying to create thread
1950         * objects for the already running tasks on the machine.
1951         *
1952         * Normally, for a kernel FORK event, we want to clone the parent's
1953         * maps because that is what the kernel just did.
1954         *
1955         * But when synthesizing, this should not be done.  If we do, we end up
1956         * with overlapping maps as we process the synthesized MMAP2 events that
1957         * get delivered shortly thereafter.
1958         *
1959         * Use the FORK event misc flags in an internal way to signal this
1960         * situation, so we can elide the map clone when appropriate.
1961         */
1962        if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1963                do_maps_clone = false;
1964
1965        if (thread == NULL || parent == NULL ||
1966            thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1967                dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1968                err = -1;
1969        }
1970        thread__put(thread);
1971        thread__put(parent);
1972
1973        return err;
1974}
1975
1976int machine__process_exit_event(struct machine *machine, union perf_event *event,
1977                                struct perf_sample *sample __maybe_unused)
1978{
1979        struct thread *thread = machine__find_thread(machine,
1980                                                     event->fork.pid,
1981                                                     event->fork.tid);
1982
1983        if (dump_trace)
1984                perf_event__fprintf_task(event, stdout);
1985
1986        if (thread != NULL) {
1987                thread__exited(thread);
1988                thread__put(thread);
1989        }
1990
1991        return 0;
1992}
1993
1994int machine__process_event(struct machine *machine, union perf_event *event,
1995                           struct perf_sample *sample)
1996{
1997        int ret;
1998
1999        switch (event->header.type) {
2000        case PERF_RECORD_COMM:
2001                ret = machine__process_comm_event(machine, event, sample); break;
2002        case PERF_RECORD_MMAP:
2003                ret = machine__process_mmap_event(machine, event, sample); break;
2004        case PERF_RECORD_NAMESPACES:
2005                ret = machine__process_namespaces_event(machine, event, sample); break;
2006        case PERF_RECORD_CGROUP:
2007                ret = machine__process_cgroup_event(machine, event, sample); break;
2008        case PERF_RECORD_MMAP2:
2009                ret = machine__process_mmap2_event(machine, event, sample); break;
2010        case PERF_RECORD_FORK:
2011                ret = machine__process_fork_event(machine, event, sample); break;
2012        case PERF_RECORD_EXIT:
2013                ret = machine__process_exit_event(machine, event, sample); break;
2014        case PERF_RECORD_LOST:
2015                ret = machine__process_lost_event(machine, event, sample); break;
2016        case PERF_RECORD_AUX:
2017                ret = machine__process_aux_event(machine, event); break;
2018        case PERF_RECORD_ITRACE_START:
2019                ret = machine__process_itrace_start_event(machine, event); break;
2020        case PERF_RECORD_LOST_SAMPLES:
2021                ret = machine__process_lost_samples_event(machine, event, sample); break;
2022        case PERF_RECORD_SWITCH:
2023        case PERF_RECORD_SWITCH_CPU_WIDE:
2024                ret = machine__process_switch_event(machine, event); break;
2025        case PERF_RECORD_KSYMBOL:
2026                ret = machine__process_ksymbol(machine, event, sample); break;
2027        case PERF_RECORD_BPF_EVENT:
2028                ret = machine__process_bpf(machine, event, sample); break;
2029        case PERF_RECORD_TEXT_POKE:
2030                ret = machine__process_text_poke(machine, event, sample); break;
2031        default:
2032                ret = -1;
2033                break;
2034        }
2035
2036        return ret;
2037}
2038
2039static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2040{
2041        if (!regexec(regex, sym->name, 0, NULL, 0))
2042                return true;
2043        return false;
2044}
2045
2046static void ip__resolve_ams(struct thread *thread,
2047                            struct addr_map_symbol *ams,
2048                            u64 ip)
2049{
2050        struct addr_location al;
2051
2052        memset(&al, 0, sizeof(al));
2053        /*
2054         * We cannot use the header.misc hint to determine whether a
2055         * branch stack address is user, kernel, guest, hypervisor.
2056         * Branches may straddle the kernel/user/hypervisor boundaries.
2057         * Thus, we have to try consecutively until we find a match
2058         * or else, the symbol is unknown
2059         */
2060        thread__find_cpumode_addr_location(thread, ip, &al);
2061
2062        ams->addr = ip;
2063        ams->al_addr = al.addr;
2064        ams->ms.maps = al.maps;
2065        ams->ms.sym = al.sym;
2066        ams->ms.map = al.map;
2067        ams->phys_addr = 0;
2068        ams->data_page_size = 0;
2069}
2070
2071static void ip__resolve_data(struct thread *thread,
2072                             u8 m, struct addr_map_symbol *ams,
2073                             u64 addr, u64 phys_addr, u64 daddr_page_size)
2074{
2075        struct addr_location al;
2076
2077        memset(&al, 0, sizeof(al));
2078
2079        thread__find_symbol(thread, m, addr, &al);
2080
2081        ams->addr = addr;
2082        ams->al_addr = al.addr;
2083        ams->ms.maps = al.maps;
2084        ams->ms.sym = al.sym;
2085        ams->ms.map = al.map;
2086        ams->phys_addr = phys_addr;
2087        ams->data_page_size = daddr_page_size;
2088}
2089
2090struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2091                                     struct addr_location *al)
2092{
2093        struct mem_info *mi = mem_info__new();
2094
2095        if (!mi)
2096                return NULL;
2097
2098        ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2099        ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2100                         sample->addr, sample->phys_addr,
2101                         sample->data_page_size);
2102        mi->data_src.val = sample->data_src;
2103
2104        return mi;
2105}
2106
2107static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2108{
2109        struct map *map = ms->map;
2110        char *srcline = NULL;
2111
2112        if (!map || callchain_param.key == CCKEY_FUNCTION)
2113                return srcline;
2114
2115        srcline = srcline__tree_find(&map->dso->srclines, ip);
2116        if (!srcline) {
2117                bool show_sym = false;
2118                bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2119
2120                srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2121                                      ms->sym, show_sym, show_addr, ip);
2122                srcline__tree_insert(&map->dso->srclines, ip, srcline);
2123        }
2124
2125        return srcline;
2126}
2127
2128struct iterations {
2129        int nr_loop_iter;
2130        u64 cycles;
2131};
2132
2133static int add_callchain_ip(struct thread *thread,
2134                            struct callchain_cursor *cursor,
2135                            struct symbol **parent,
2136                            struct addr_location *root_al,
2137                            u8 *cpumode,
2138                            u64 ip,
2139                            bool branch,
2140                            struct branch_flags *flags,
2141                            struct iterations *iter,
2142                            u64 branch_from)
2143{
2144        struct map_symbol ms;
2145        struct addr_location al;
2146        int nr_loop_iter = 0;
2147        u64 iter_cycles = 0;
2148        const char *srcline = NULL;
2149
2150        al.filtered = 0;
2151        al.sym = NULL;
2152        if (!cpumode) {
2153                thread__find_cpumode_addr_location(thread, ip, &al);
2154        } else {
2155                if (ip >= PERF_CONTEXT_MAX) {
2156                        switch (ip) {
2157                        case PERF_CONTEXT_HV:
2158                                *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2159                                break;
2160                        case PERF_CONTEXT_KERNEL:
2161                                *cpumode = PERF_RECORD_MISC_KERNEL;
2162                                break;
2163                        case PERF_CONTEXT_USER:
2164                                *cpumode = PERF_RECORD_MISC_USER;
2165                                break;
2166                        default:
2167                                pr_debug("invalid callchain context: "
2168                                         "%"PRId64"\n", (s64) ip);
2169                                /*
2170                                 * It seems the callchain is corrupted.
2171                                 * Discard all.
2172                                 */
2173                                callchain_cursor_reset(cursor);
2174                                return 1;
2175                        }
2176                        return 0;
2177                }
2178                thread__find_symbol(thread, *cpumode, ip, &al);
2179        }
2180
2181        if (al.sym != NULL) {
2182                if (perf_hpp_list.parent && !*parent &&
2183                    symbol__match_regex(al.sym, &parent_regex))
2184                        *parent = al.sym;
2185                else if (have_ignore_callees && root_al &&
2186                  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2187                        /* Treat this symbol as the root,
2188                           forgetting its callees. */
2189                        *root_al = al;
2190                        callchain_cursor_reset(cursor);
2191                }
2192        }
2193
2194        if (symbol_conf.hide_unresolved && al.sym == NULL)
2195                return 0;
2196
2197        if (iter) {
2198                nr_loop_iter = iter->nr_loop_iter;
2199                iter_cycles = iter->cycles;
2200        }
2201
2202        ms.maps = al.maps;
2203        ms.map = al.map;
2204        ms.sym = al.sym;
2205        srcline = callchain_srcline(&ms, al.addr);
2206        return callchain_cursor_append(cursor, ip, &ms,
2207                                       branch, flags, nr_loop_iter,
2208                                       iter_cycles, branch_from, srcline);
2209}
2210
2211struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2212                                           struct addr_location *al)
2213{
2214        unsigned int i;
2215        const struct branch_stack *bs = sample->branch_stack;
2216        struct branch_entry *entries = perf_sample__branch_entries(sample);
2217        struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2218
2219        if (!bi)
2220                return NULL;
2221
2222        for (i = 0; i < bs->nr; i++) {
2223                ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2224                ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2225                bi[i].flags = entries[i].flags;
2226        }
2227        return bi;
2228}
2229
2230static void save_iterations(struct iterations *iter,
2231                            struct branch_entry *be, int nr)
2232{
2233        int i;
2234
2235        iter->nr_loop_iter++;
2236        iter->cycles = 0;
2237
2238        for (i = 0; i < nr; i++)
2239                iter->cycles += be[i].flags.cycles;
2240}
2241
2242#define CHASHSZ 127
2243#define CHASHBITS 7
2244#define NO_ENTRY 0xff
2245
2246#define PERF_MAX_BRANCH_DEPTH 127
2247
2248/* Remove loops. */
2249static int remove_loops(struct branch_entry *l, int nr,
2250                        struct iterations *iter)
2251{
2252        int i, j, off;
2253        unsigned char chash[CHASHSZ];
2254
2255        memset(chash, NO_ENTRY, sizeof(chash));
2256
2257        BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2258
2259        for (i = 0; i < nr; i++) {
2260                int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2261
2262                /* no collision handling for now */
2263                if (chash[h] == NO_ENTRY) {
2264                        chash[h] = i;
2265                } else if (l[chash[h]].from == l[i].from) {
2266                        bool is_loop = true;
2267                        /* check if it is a real loop */
2268                        off = 0;
2269                        for (j = chash[h]; j < i && i + off < nr; j++, off++)
2270                                if (l[j].from != l[i + off].from) {
2271                                        is_loop = false;
2272                                        break;
2273                                }
2274                        if (is_loop) {
2275                                j = nr - (i + off);
2276                                if (j > 0) {
2277                                        save_iterations(iter + i + off,
2278                                                l + i, off);
2279
2280                                        memmove(iter + i, iter + i + off,
2281                                                j * sizeof(*iter));
2282
2283                                        memmove(l + i, l + i + off,
2284                                                j * sizeof(*l));
2285                                }
2286
2287                                nr -= off;
2288                        }
2289                }
2290        }
2291        return nr;
2292}
2293
2294static int lbr_callchain_add_kernel_ip(struct thread *thread,
2295                                       struct callchain_cursor *cursor,
2296                                       struct perf_sample *sample,
2297                                       struct symbol **parent,
2298                                       struct addr_location *root_al,
2299                                       u64 branch_from,
2300                                       bool callee, int end)
2301{
2302        struct ip_callchain *chain = sample->callchain;
2303        u8 cpumode = PERF_RECORD_MISC_USER;
2304        int err, i;
2305
2306        if (callee) {
2307                for (i = 0; i < end + 1; i++) {
2308                        err = add_callchain_ip(thread, cursor, parent,
2309                                               root_al, &cpumode, chain->ips[i],
2310                                               false, NULL, NULL, branch_from);
2311                        if (err)
2312                                return err;
2313                }
2314                return 0;
2315        }
2316
2317        for (i = end; i >= 0; i--) {
2318                err = add_callchain_ip(thread, cursor, parent,
2319                                       root_al, &cpumode, chain->ips[i],
2320                                       false, NULL, NULL, branch_from);
2321                if (err)
2322                        return err;
2323        }
2324
2325        return 0;
2326}
2327
2328static void save_lbr_cursor_node(struct thread *thread,
2329                                 struct callchain_cursor *cursor,
2330                                 int idx)
2331{
2332        struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2333
2334        if (!lbr_stitch)
2335                return;
2336
2337        if (cursor->pos == cursor->nr) {
2338                lbr_stitch->prev_lbr_cursor[idx].valid = false;
2339                return;
2340        }
2341
2342        if (!cursor->curr)
2343                cursor->curr = cursor->first;
2344        else
2345                cursor->curr = cursor->curr->next;
2346        memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2347               sizeof(struct callchain_cursor_node));
2348
2349        lbr_stitch->prev_lbr_cursor[idx].valid = true;
2350        cursor->pos++;
2351}
2352
2353static int lbr_callchain_add_lbr_ip(struct thread *thread,
2354                                    struct callchain_cursor *cursor,
2355                                    struct perf_sample *sample,
2356                                    struct symbol **parent,
2357                                    struct addr_location *root_al,
2358                                    u64 *branch_from,
2359                                    bool callee)
2360{
2361        struct branch_stack *lbr_stack = sample->branch_stack;
2362        struct branch_entry *entries = perf_sample__branch_entries(sample);
2363        u8 cpumode = PERF_RECORD_MISC_USER;
2364        int lbr_nr = lbr_stack->nr;
2365        struct branch_flags *flags;
2366        int err, i;
2367        u64 ip;
2368
2369        /*
2370         * The curr and pos are not used in writing session. They are cleared
2371         * in callchain_cursor_commit() when the writing session is closed.
2372         * Using curr and pos to track the current cursor node.
2373         */
2374        if (thread->lbr_stitch) {
2375                cursor->curr = NULL;
2376                cursor->pos = cursor->nr;
2377                if (cursor->nr) {
2378                        cursor->curr = cursor->first;
2379                        for (i = 0; i < (int)(cursor->nr - 1); i++)
2380                                cursor->curr = cursor->curr->next;
2381                }
2382        }
2383
2384        if (callee) {
2385                /* Add LBR ip from first entries.to */
2386                ip = entries[0].to;
2387                flags = &entries[0].flags;
2388                *branch_from = entries[0].from;
2389                err = add_callchain_ip(thread, cursor, parent,
2390                                       root_al, &cpumode, ip,
2391                                       true, flags, NULL,
2392                                       *branch_from);
2393                if (err)
2394                        return err;
2395
2396                /*
2397                 * The number of cursor node increases.
2398                 * Move the current cursor node.
2399                 * But does not need to save current cursor node for entry 0.
2400                 * It's impossible to stitch the whole LBRs of previous sample.
2401                 */
2402                if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2403                        if (!cursor->curr)
2404                                cursor->curr = cursor->first;
2405                        else
2406                                cursor->curr = cursor->curr->next;
2407                        cursor->pos++;
2408                }
2409
2410                /* Add LBR ip from entries.from one by one. */
2411                for (i = 0; i < lbr_nr; i++) {
2412                        ip = entries[i].from;
2413                        flags = &entries[i].flags;
2414                        err = add_callchain_ip(thread, cursor, parent,
2415                                               root_al, &cpumode, ip,
2416                                               true, flags, NULL,
2417                                               *branch_from);
2418                        if (err)
2419                                return err;
2420                        save_lbr_cursor_node(thread, cursor, i);
2421                }
2422                return 0;
2423        }
2424
2425        /* Add LBR ip from entries.from one by one. */
2426        for (i = lbr_nr - 1; i >= 0; i--) {
2427                ip = entries[i].from;
2428                flags = &entries[i].flags;
2429                err = add_callchain_ip(thread, cursor, parent,
2430                                       root_al, &cpumode, ip,
2431                                       true, flags, NULL,
2432                                       *branch_from);
2433                if (err)
2434                        return err;
2435                save_lbr_cursor_node(thread, cursor, i);
2436        }
2437
2438        /* Add LBR ip from first entries.to */
2439        ip = entries[0].to;
2440        flags = &entries[0].flags;
2441        *branch_from = entries[0].from;
2442        err = add_callchain_ip(thread, cursor, parent,
2443                               root_al, &cpumode, ip,
2444                               true, flags, NULL,
2445                               *branch_from);
2446        if (err)
2447                return err;
2448
2449        return 0;
2450}
2451
2452static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2453                                             struct callchain_cursor *cursor)
2454{
2455        struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2456        struct callchain_cursor_node *cnode;
2457        struct stitch_list *stitch_node;
2458        int err;
2459
2460        list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2461                cnode = &stitch_node->cursor;
2462
2463                err = callchain_cursor_append(cursor, cnode->ip,
2464                                              &cnode->ms,
2465                                              cnode->branch,
2466                                              &cnode->branch_flags,
2467                                              cnode->nr_loop_iter,
2468                                              cnode->iter_cycles,
2469                                              cnode->branch_from,
2470                                              cnode->srcline);
2471                if (err)
2472                        return err;
2473        }
2474        return 0;
2475}
2476
2477static struct stitch_list *get_stitch_node(struct thread *thread)
2478{
2479        struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2480        struct stitch_list *stitch_node;
2481
2482        if (!list_empty(&lbr_stitch->free_lists)) {
2483                stitch_node = list_first_entry(&lbr_stitch->free_lists,
2484                                               struct stitch_list, node);
2485                list_del(&stitch_node->node);
2486
2487                return stitch_node;
2488        }
2489
2490        return malloc(sizeof(struct stitch_list));
2491}
2492
2493static bool has_stitched_lbr(struct thread *thread,
2494                             struct perf_sample *cur,
2495                             struct perf_sample *prev,
2496                             unsigned int max_lbr,
2497                             bool callee)
2498{
2499        struct branch_stack *cur_stack = cur->branch_stack;
2500        struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2501        struct branch_stack *prev_stack = prev->branch_stack;
2502        struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2503        struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2504        int i, j, nr_identical_branches = 0;
2505        struct stitch_list *stitch_node;
2506        u64 cur_base, distance;
2507
2508        if (!cur_stack || !prev_stack)
2509                return false;
2510
2511        /* Find the physical index of the base-of-stack for current sample. */
2512        cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2513
2514        distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2515                                                     (max_lbr + prev_stack->hw_idx - cur_base);
2516        /* Previous sample has shorter stack. Nothing can be stitched. */
2517        if (distance + 1 > prev_stack->nr)
2518                return false;
2519
2520        /*
2521         * Check if there are identical LBRs between two samples.
2522         * Identical LBRs must have same from, to and flags values. Also,
2523         * they have to be saved in the same LBR registers (same physical
2524         * index).
2525         *
2526         * Starts from the base-of-stack of current sample.
2527         */
2528        for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2529                if ((prev_entries[i].from != cur_entries[j].from) ||
2530                    (prev_entries[i].to != cur_entries[j].to) ||
2531                    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2532                        break;
2533                nr_identical_branches++;
2534        }
2535
2536        if (!nr_identical_branches)
2537                return false;
2538
2539        /*
2540         * Save the LBRs between the base-of-stack of previous sample
2541         * and the base-of-stack of current sample into lbr_stitch->lists.
2542         * These LBRs will be stitched later.
2543         */
2544        for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2545
2546                if (!lbr_stitch->prev_lbr_cursor[i].valid)
2547                        continue;
2548
2549                stitch_node = get_stitch_node(thread);
2550                if (!stitch_node)
2551                        return false;
2552
2553                memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2554                       sizeof(struct callchain_cursor_node));
2555
2556                if (callee)
2557                        list_add(&stitch_node->node, &lbr_stitch->lists);
2558                else
2559                        list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2560        }
2561
2562        return true;
2563}
2564
2565static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2566{
2567        if (thread->lbr_stitch)
2568                return true;
2569
2570        thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2571        if (!thread->lbr_stitch)
2572                goto err;
2573
2574        thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2575        if (!thread->lbr_stitch->prev_lbr_cursor)
2576                goto free_lbr_stitch;
2577
2578        INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2579        INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2580
2581        return true;
2582
2583free_lbr_stitch:
2584        zfree(&thread->lbr_stitch);
2585err:
2586        pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2587        thread->lbr_stitch_enable = false;
2588        return false;
2589}
2590
2591/*
2592 * Resolve LBR callstack chain sample
2593 * Return:
2594 * 1 on success get LBR callchain information
2595 * 0 no available LBR callchain information, should try fp
2596 * negative error code on other errors.
2597 */
2598static int resolve_lbr_callchain_sample(struct thread *thread,
2599                                        struct callchain_cursor *cursor,
2600                                        struct perf_sample *sample,
2601                                        struct symbol **parent,
2602                                        struct addr_location *root_al,
2603                                        int max_stack,
2604                                        unsigned int max_lbr)
2605{
2606        bool callee = (callchain_param.order == ORDER_CALLEE);
2607        struct ip_callchain *chain = sample->callchain;
2608        int chain_nr = min(max_stack, (int)chain->nr), i;
2609        struct lbr_stitch *lbr_stitch;
2610        bool stitched_lbr = false;
2611        u64 branch_from = 0;
2612        int err;
2613
2614        for (i = 0; i < chain_nr; i++) {
2615                if (chain->ips[i] == PERF_CONTEXT_USER)
2616                        break;
2617        }
2618
2619        /* LBR only affects the user callchain */
2620        if (i == chain_nr)
2621                return 0;
2622
2623        if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2624            (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2625                lbr_stitch = thread->lbr_stitch;
2626
2627                stitched_lbr = has_stitched_lbr(thread, sample,
2628                                                &lbr_stitch->prev_sample,
2629                                                max_lbr, callee);
2630
2631                if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2632                        list_replace_init(&lbr_stitch->lists,
2633                                          &lbr_stitch->free_lists);
2634                }
2635                memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2636        }
2637
2638        if (callee) {
2639                /* Add kernel ip */
2640                err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2641                                                  parent, root_al, branch_from,
2642                                                  true, i);
2643                if (err)
2644                        goto error;
2645
2646                err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2647                                               root_al, &branch_from, true);
2648                if (err)
2649                        goto error;
2650
2651                if (stitched_lbr) {
2652                        err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2653                        if (err)
2654                                goto error;
2655                }
2656
2657        } else {
2658                if (stitched_lbr) {
2659                        err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2660                        if (err)
2661                                goto error;
2662                }
2663                err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2664                                               root_al, &branch_from, false);
2665                if (err)
2666                        goto error;
2667
2668                /* Add kernel ip */
2669                err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2670                                                  parent, root_al, branch_from,
2671                                                  false, i);
2672                if (err)
2673                        goto error;
2674        }
2675        return 1;
2676
2677error:
2678        return (err < 0) ? err : 0;
2679}
2680
2681static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2682                             struct callchain_cursor *cursor,
2683                             struct symbol **parent,
2684                             struct addr_location *root_al,
2685                             u8 *cpumode, int ent)
2686{
2687        int err = 0;
2688
2689        while (--ent >= 0) {
2690                u64 ip = chain->ips[ent];
2691
2692                if (ip >= PERF_CONTEXT_MAX) {
2693                        err = add_callchain_ip(thread, cursor, parent,
2694                                               root_al, cpumode, ip,
2695                                               false, NULL, NULL, 0);
2696                        break;
2697                }
2698        }
2699        return err;
2700}
2701
2702static int thread__resolve_callchain_sample(struct thread *thread,
2703                                            struct callchain_cursor *cursor,
2704                                            struct evsel *evsel,
2705                                            struct perf_sample *sample,
2706                                            struct symbol **parent,
2707                                            struct addr_location *root_al,
2708                                            int max_stack)
2709{
2710        struct branch_stack *branch = sample->branch_stack;
2711        struct branch_entry *entries = perf_sample__branch_entries(sample);
2712        struct ip_callchain *chain = sample->callchain;
2713        int chain_nr = 0;
2714        u8 cpumode = PERF_RECORD_MISC_USER;
2715        int i, j, err, nr_entries;
2716        int skip_idx = -1;
2717        int first_call = 0;
2718
2719        if (chain)
2720                chain_nr = chain->nr;
2721
2722        if (evsel__has_branch_callstack(evsel)) {
2723                struct perf_env *env = evsel__env(evsel);
2724
2725                err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2726                                                   root_al, max_stack,
2727                                                   !env ? 0 : env->max_branches);
2728                if (err)
2729                        return (err < 0) ? err : 0;
2730        }
2731
2732        /*
2733         * Based on DWARF debug information, some architectures skip
2734         * a callchain entry saved by the kernel.
2735         */
2736        skip_idx = arch_skip_callchain_idx(thread, chain);
2737
2738        /*
2739         * Add branches to call stack for easier browsing. This gives
2740         * more context for a sample than just the callers.
2741         *
2742         * This uses individual histograms of paths compared to the
2743         * aggregated histograms the normal LBR mode uses.
2744         *
2745         * Limitations for now:
2746         * - No extra filters
2747         * - No annotations (should annotate somehow)
2748         */
2749
2750        if (branch && callchain_param.branch_callstack) {
2751                int nr = min(max_stack, (int)branch->nr);
2752                struct branch_entry be[nr];
2753                struct iterations iter[nr];
2754
2755                if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2756                        pr_warning("corrupted branch chain. skipping...\n");
2757                        goto check_calls;
2758                }
2759
2760                for (i = 0; i < nr; i++) {
2761                        if (callchain_param.order == ORDER_CALLEE) {
2762                                be[i] = entries[i];
2763
2764                                if (chain == NULL)
2765                                        continue;
2766
2767                                /*
2768                                 * Check for overlap into the callchain.
2769                                 * The return address is one off compared to
2770                                 * the branch entry. To adjust for this
2771                                 * assume the calling instruction is not longer
2772                                 * than 8 bytes.
2773                                 */
2774                                if (i == skip_idx ||
2775                                    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2776                                        first_call++;
2777                                else if (be[i].from < chain->ips[first_call] &&
2778                                    be[i].from >= chain->ips[first_call] - 8)
2779                                        first_call++;
2780                        } else
2781                                be[i] = entries[branch->nr - i - 1];
2782                }
2783
2784                memset(iter, 0, sizeof(struct iterations) * nr);
2785                nr = remove_loops(be, nr, iter);
2786
2787                for (i = 0; i < nr; i++) {
2788                        err = add_callchain_ip(thread, cursor, parent,
2789                                               root_al,
2790                                               NULL, be[i].to,
2791                                               true, &be[i].flags,
2792                                               NULL, be[i].from);
2793
2794                        if (!err)
2795                                err = add_callchain_ip(thread, cursor, parent, root_al,
2796                                                       NULL, be[i].from,
2797                                                       true, &be[i].flags,
2798                                                       &iter[i], 0);
2799                        if (err == -EINVAL)
2800                                break;
2801                        if (err)
2802                                return err;
2803                }
2804
2805                if (chain_nr == 0)
2806                        return 0;
2807
2808                chain_nr -= nr;
2809        }
2810
2811check_calls:
2812        if (chain && callchain_param.order != ORDER_CALLEE) {
2813                err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2814                                        &cpumode, chain->nr - first_call);
2815                if (err)
2816                        return (err < 0) ? err : 0;
2817        }
2818        for (i = first_call, nr_entries = 0;
2819             i < chain_nr && nr_entries < max_stack; i++) {
2820                u64 ip;
2821
2822                if (callchain_param.order == ORDER_CALLEE)
2823                        j = i;
2824                else
2825                        j = chain->nr - i - 1;
2826
2827#ifdef HAVE_SKIP_CALLCHAIN_IDX
2828                if (j == skip_idx)
2829                        continue;
2830#endif
2831                ip = chain->ips[j];
2832                if (ip < PERF_CONTEXT_MAX)
2833                       ++nr_entries;
2834                else if (callchain_param.order != ORDER_CALLEE) {
2835                        err = find_prev_cpumode(chain, thread, cursor, parent,
2836                                                root_al, &cpumode, j);
2837                        if (err)
2838                                return (err < 0) ? err : 0;
2839                        continue;
2840                }
2841
2842                err = add_callchain_ip(thread, cursor, parent,
2843                                       root_al, &cpumode, ip,
2844                                       false, NULL, NULL, 0);
2845
2846                if (err)
2847                        return (err < 0) ? err : 0;
2848        }
2849
2850        return 0;
2851}
2852
2853static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2854{
2855        struct symbol *sym = ms->sym;
2856        struct map *map = ms->map;
2857        struct inline_node *inline_node;
2858        struct inline_list *ilist;
2859        u64 addr;
2860        int ret = 1;
2861
2862        if (!symbol_conf.inline_name || !map || !sym)
2863                return ret;
2864
2865        addr = map__map_ip(map, ip);
2866        addr = map__rip_2objdump(map, addr);
2867
2868        inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2869        if (!inline_node) {
2870                inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2871                if (!inline_node)
2872                        return ret;
2873                inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2874        }
2875
2876        list_for_each_entry(ilist, &inline_node->val, list) {
2877                struct map_symbol ilist_ms = {
2878                        .maps = ms->maps,
2879                        .map = map,
2880                        .sym = ilist->symbol,
2881                };
2882                ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2883                                              NULL, 0, 0, 0, ilist->srcline);
2884
2885                if (ret != 0)
2886                        return ret;
2887        }
2888
2889        return ret;
2890}
2891
2892static int unwind_entry(struct unwind_entry *entry, void *arg)
2893{
2894        struct callchain_cursor *cursor = arg;
2895        const char *srcline = NULL;
2896        u64 addr = entry->ip;
2897
2898        if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2899                return 0;
2900
2901        if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2902                return 0;
2903
2904        /*
2905         * Convert entry->ip from a virtual address to an offset in
2906         * its corresponding binary.
2907         */
2908        if (entry->ms.map)
2909                addr = map__map_ip(entry->ms.map, entry->ip);
2910
2911        srcline = callchain_srcline(&entry->ms, addr);
2912        return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2913                                       false, NULL, 0, 0, 0, srcline);
2914}
2915
2916static int thread__resolve_callchain_unwind(struct thread *thread,
2917                                            struct callchain_cursor *cursor,
2918                                            struct evsel *evsel,
2919                                            struct perf_sample *sample,
2920                                            int max_stack)
2921{
2922        /* Can we do dwarf post unwind? */
2923        if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2924              (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2925                return 0;
2926
2927        /* Bail out if nothing was captured. */
2928        if ((!sample->user_regs.regs) ||
2929            (!sample->user_stack.size))
2930                return 0;
2931
2932        return unwind__get_entries(unwind_entry, cursor,
2933                                   thread, sample, max_stack);
2934}
2935
2936int thread__resolve_callchain(struct thread *thread,
2937                              struct callchain_cursor *cursor,
2938                              struct evsel *evsel,
2939                              struct perf_sample *sample,
2940                              struct symbol **parent,
2941                              struct addr_location *root_al,
2942                              int max_stack)
2943{
2944        int ret = 0;
2945
2946        callchain_cursor_reset(cursor);
2947
2948        if (callchain_param.order == ORDER_CALLEE) {
2949                ret = thread__resolve_callchain_sample(thread, cursor,
2950                                                       evsel, sample,
2951                                                       parent, root_al,
2952                                                       max_stack);
2953                if (ret)
2954                        return ret;
2955                ret = thread__resolve_callchain_unwind(thread, cursor,
2956                                                       evsel, sample,
2957                                                       max_stack);
2958        } else {
2959                ret = thread__resolve_callchain_unwind(thread, cursor,
2960                                                       evsel, sample,
2961                                                       max_stack);
2962                if (ret)
2963                        return ret;
2964                ret = thread__resolve_callchain_sample(thread, cursor,
2965                                                       evsel, sample,
2966                                                       parent, root_al,
2967                                                       max_stack);
2968        }
2969
2970        return ret;
2971}
2972
2973int machine__for_each_thread(struct machine *machine,
2974                             int (*fn)(struct thread *thread, void *p),
2975                             void *priv)
2976{
2977        struct threads *threads;
2978        struct rb_node *nd;
2979        struct thread *thread;
2980        int rc = 0;
2981        int i;
2982
2983        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2984                threads = &machine->threads[i];
2985                for (nd = rb_first_cached(&threads->entries); nd;
2986                     nd = rb_next(nd)) {
2987                        thread = rb_entry(nd, struct thread, rb_node);
2988                        rc = fn(thread, priv);
2989                        if (rc != 0)
2990                                return rc;
2991                }
2992
2993                list_for_each_entry(thread, &threads->dead, node) {
2994                        rc = fn(thread, priv);
2995                        if (rc != 0)
2996                                return rc;
2997                }
2998        }
2999        return rc;
3000}
3001
3002int machines__for_each_thread(struct machines *machines,
3003                              int (*fn)(struct thread *thread, void *p),
3004                              void *priv)
3005{
3006        struct rb_node *nd;
3007        int rc = 0;
3008
3009        rc = machine__for_each_thread(&machines->host, fn, priv);
3010        if (rc != 0)
3011                return rc;
3012
3013        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3014                struct machine *machine = rb_entry(nd, struct machine, rb_node);
3015
3016                rc = machine__for_each_thread(machine, fn, priv);
3017                if (rc != 0)
3018                        return rc;
3019        }
3020        return rc;
3021}
3022
3023pid_t machine__get_current_tid(struct machine *machine, int cpu)
3024{
3025        int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
3026
3027        if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
3028                return -1;
3029
3030        return machine->current_tid[cpu];
3031}
3032
3033int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3034                             pid_t tid)
3035{
3036        struct thread *thread;
3037        int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
3038
3039        if (cpu < 0)
3040                return -EINVAL;
3041
3042        if (!machine->current_tid) {
3043                int i;
3044
3045                machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
3046                if (!machine->current_tid)
3047                        return -ENOMEM;
3048                for (i = 0; i < nr_cpus; i++)
3049                        machine->current_tid[i] = -1;
3050        }
3051
3052        if (cpu >= nr_cpus) {
3053                pr_err("Requested CPU %d too large. ", cpu);
3054                pr_err("Consider raising MAX_NR_CPUS\n");
3055                return -EINVAL;
3056        }
3057
3058        machine->current_tid[cpu] = tid;
3059
3060        thread = machine__findnew_thread(machine, pid, tid);
3061        if (!thread)
3062                return -ENOMEM;
3063
3064        thread->cpu = cpu;
3065        thread__put(thread);
3066
3067        return 0;
3068}
3069
3070/*
3071 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
3072 * normalized arch is needed.
3073 */
3074bool machine__is(struct machine *machine, const char *arch)
3075{
3076        return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3077}
3078
3079int machine__nr_cpus_avail(struct machine *machine)
3080{
3081        return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3082}
3083
3084int machine__get_kernel_start(struct machine *machine)
3085{
3086        struct map *map = machine__kernel_map(machine);
3087        int err = 0;
3088
3089        /*
3090         * The only addresses above 2^63 are kernel addresses of a 64-bit
3091         * kernel.  Note that addresses are unsigned so that on a 32-bit system
3092         * all addresses including kernel addresses are less than 2^32.  In
3093         * that case (32-bit system), if the kernel mapping is unknown, all
3094         * addresses will be assumed to be in user space - see
3095         * machine__kernel_ip().
3096         */
3097        machine->kernel_start = 1ULL << 63;
3098        if (map) {
3099                err = map__load(map);
3100                /*
3101                 * On x86_64, PTI entry trampolines are less than the
3102                 * start of kernel text, but still above 2^63. So leave
3103                 * kernel_start = 1ULL << 63 for x86_64.
3104                 */
3105                if (!err && !machine__is(machine, "x86_64"))
3106                        machine->kernel_start = map->start;
3107        }
3108        return err;
3109}
3110
3111u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3112{
3113        u8 addr_cpumode = cpumode;
3114        bool kernel_ip;
3115
3116        if (!machine->single_address_space)
3117                goto out;
3118
3119        kernel_ip = machine__kernel_ip(machine, addr);
3120        switch (cpumode) {
3121        case PERF_RECORD_MISC_KERNEL:
3122        case PERF_RECORD_MISC_USER:
3123                addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3124                                           PERF_RECORD_MISC_USER;
3125                break;
3126        case PERF_RECORD_MISC_GUEST_KERNEL:
3127        case PERF_RECORD_MISC_GUEST_USER:
3128                addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3129                                           PERF_RECORD_MISC_GUEST_USER;
3130                break;
3131        default:
3132                break;
3133        }
3134out:
3135        return addr_cpumode;
3136}
3137
3138struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3139{
3140        return dsos__findnew_id(&machine->dsos, filename, id);
3141}
3142
3143struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3144{
3145        return machine__findnew_dso_id(machine, filename, NULL);
3146}
3147
3148char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3149{
3150        struct machine *machine = vmachine;
3151        struct map *map;
3152        struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3153
3154        if (sym == NULL)
3155                return NULL;
3156
3157        *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3158        *addrp = map->unmap_ip(map, sym->start);
3159        return sym->name;
3160}
3161
3162int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3163{
3164        struct dso *pos;
3165        int err = 0;
3166
3167        list_for_each_entry(pos, &machine->dsos.head, node) {
3168                if (fn(pos, machine, priv))
3169                        err = -1;
3170        }
3171        return err;
3172}
3173