linux/virt/kvm/kvm_main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * This module enables machines with Intel VT-x extensions to run virtual
   6 * machines without emulation or binary translation.
   7 *
   8 * Copyright (C) 2006 Qumranet, Inc.
   9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10 *
  11 * Authors:
  12 *   Avi Kivity   <avi@qumranet.com>
  13 *   Yaniv Kamay  <yaniv@qumranet.com>
  14 */
  15
  16#include <kvm/iodev.h>
  17
  18#include <linux/kvm_host.h>
  19#include <linux/kvm.h>
  20#include <linux/module.h>
  21#include <linux/errno.h>
  22#include <linux/percpu.h>
  23#include <linux/mm.h>
  24#include <linux/miscdevice.h>
  25#include <linux/vmalloc.h>
  26#include <linux/reboot.h>
  27#include <linux/debugfs.h>
  28#include <linux/highmem.h>
  29#include <linux/file.h>
  30#include <linux/syscore_ops.h>
  31#include <linux/cpu.h>
  32#include <linux/sched/signal.h>
  33#include <linux/sched/mm.h>
  34#include <linux/sched/stat.h>
  35#include <linux/cpumask.h>
  36#include <linux/smp.h>
  37#include <linux/anon_inodes.h>
  38#include <linux/profile.h>
  39#include <linux/kvm_para.h>
  40#include <linux/pagemap.h>
  41#include <linux/mman.h>
  42#include <linux/swap.h>
  43#include <linux/bitops.h>
  44#include <linux/spinlock.h>
  45#include <linux/compat.h>
  46#include <linux/srcu.h>
  47#include <linux/hugetlb.h>
  48#include <linux/slab.h>
  49#include <linux/sort.h>
  50#include <linux/bsearch.h>
  51#include <linux/io.h>
  52#include <linux/lockdep.h>
  53#include <linux/kthread.h>
  54#include <linux/suspend.h>
  55
  56#include <asm/processor.h>
  57#include <asm/ioctl.h>
  58#include <linux/uaccess.h>
  59
  60#include "coalesced_mmio.h"
  61#include "async_pf.h"
  62#include "mmu_lock.h"
  63#include "vfio.h"
  64
  65#define CREATE_TRACE_POINTS
  66#include <trace/events/kvm.h>
  67
  68#include <linux/kvm_dirty_ring.h>
  69
  70/* Worst case buffer size needed for holding an integer. */
  71#define ITOA_MAX_LEN 12
  72
  73MODULE_AUTHOR("Qumranet");
  74MODULE_LICENSE("GPL");
  75
  76/* Architectures should define their poll value according to the halt latency */
  77unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
  78module_param(halt_poll_ns, uint, 0644);
  79EXPORT_SYMBOL_GPL(halt_poll_ns);
  80
  81/* Default doubles per-vcpu halt_poll_ns. */
  82unsigned int halt_poll_ns_grow = 2;
  83module_param(halt_poll_ns_grow, uint, 0644);
  84EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
  85
  86/* The start value to grow halt_poll_ns from */
  87unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
  88module_param(halt_poll_ns_grow_start, uint, 0644);
  89EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
  90
  91/* Default resets per-vcpu halt_poll_ns . */
  92unsigned int halt_poll_ns_shrink;
  93module_param(halt_poll_ns_shrink, uint, 0644);
  94EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
  95
  96/*
  97 * Ordering of locks:
  98 *
  99 *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
 100 */
 101
 102DEFINE_MUTEX(kvm_lock);
 103static DEFINE_RAW_SPINLOCK(kvm_count_lock);
 104LIST_HEAD(vm_list);
 105
 106static cpumask_var_t cpus_hardware_enabled;
 107static int kvm_usage_count;
 108static atomic_t hardware_enable_failed;
 109
 110static struct kmem_cache *kvm_vcpu_cache;
 111
 112static __read_mostly struct preempt_ops kvm_preempt_ops;
 113static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
 114
 115struct dentry *kvm_debugfs_dir;
 116EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
 117
 118static const struct file_operations stat_fops_per_vm;
 119
 120static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
 121                           unsigned long arg);
 122#ifdef CONFIG_KVM_COMPAT
 123static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
 124                                  unsigned long arg);
 125#define KVM_COMPAT(c)   .compat_ioctl   = (c)
 126#else
 127/*
 128 * For architectures that don't implement a compat infrastructure,
 129 * adopt a double line of defense:
 130 * - Prevent a compat task from opening /dev/kvm
 131 * - If the open has been done by a 64bit task, and the KVM fd
 132 *   passed to a compat task, let the ioctls fail.
 133 */
 134static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
 135                                unsigned long arg) { return -EINVAL; }
 136
 137static int kvm_no_compat_open(struct inode *inode, struct file *file)
 138{
 139        return is_compat_task() ? -ENODEV : 0;
 140}
 141#define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
 142                        .open           = kvm_no_compat_open
 143#endif
 144static int hardware_enable_all(void);
 145static void hardware_disable_all(void);
 146
 147static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
 148
 149__visible bool kvm_rebooting;
 150EXPORT_SYMBOL_GPL(kvm_rebooting);
 151
 152#define KVM_EVENT_CREATE_VM 0
 153#define KVM_EVENT_DESTROY_VM 1
 154static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
 155static unsigned long long kvm_createvm_count;
 156static unsigned long long kvm_active_vms;
 157
 158__weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
 159                                                   unsigned long start, unsigned long end)
 160{
 161}
 162
 163bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
 164{
 165        /*
 166         * The metadata used by is_zone_device_page() to determine whether or
 167         * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
 168         * the device has been pinned, e.g. by get_user_pages().  WARN if the
 169         * page_count() is zero to help detect bad usage of this helper.
 170         */
 171        if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
 172                return false;
 173
 174        return is_zone_device_page(pfn_to_page(pfn));
 175}
 176
 177bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
 178{
 179        /*
 180         * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
 181         * perspective they are "normal" pages, albeit with slightly different
 182         * usage rules.
 183         */
 184        if (pfn_valid(pfn))
 185                return PageReserved(pfn_to_page(pfn)) &&
 186                       !is_zero_pfn(pfn) &&
 187                       !kvm_is_zone_device_pfn(pfn);
 188
 189        return true;
 190}
 191
 192bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
 193{
 194        struct page *page = pfn_to_page(pfn);
 195
 196        if (!PageTransCompoundMap(page))
 197                return false;
 198
 199        return is_transparent_hugepage(compound_head(page));
 200}
 201
 202/*
 203 * Switches to specified vcpu, until a matching vcpu_put()
 204 */
 205void vcpu_load(struct kvm_vcpu *vcpu)
 206{
 207        int cpu = get_cpu();
 208
 209        __this_cpu_write(kvm_running_vcpu, vcpu);
 210        preempt_notifier_register(&vcpu->preempt_notifier);
 211        kvm_arch_vcpu_load(vcpu, cpu);
 212        put_cpu();
 213}
 214EXPORT_SYMBOL_GPL(vcpu_load);
 215
 216void vcpu_put(struct kvm_vcpu *vcpu)
 217{
 218        preempt_disable();
 219        kvm_arch_vcpu_put(vcpu);
 220        preempt_notifier_unregister(&vcpu->preempt_notifier);
 221        __this_cpu_write(kvm_running_vcpu, NULL);
 222        preempt_enable();
 223}
 224EXPORT_SYMBOL_GPL(vcpu_put);
 225
 226/* TODO: merge with kvm_arch_vcpu_should_kick */
 227static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
 228{
 229        int mode = kvm_vcpu_exiting_guest_mode(vcpu);
 230
 231        /*
 232         * We need to wait for the VCPU to reenable interrupts and get out of
 233         * READING_SHADOW_PAGE_TABLES mode.
 234         */
 235        if (req & KVM_REQUEST_WAIT)
 236                return mode != OUTSIDE_GUEST_MODE;
 237
 238        /*
 239         * Need to kick a running VCPU, but otherwise there is nothing to do.
 240         */
 241        return mode == IN_GUEST_MODE;
 242}
 243
 244static void ack_flush(void *_completed)
 245{
 246}
 247
 248static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
 249{
 250        if (unlikely(!cpus))
 251                cpus = cpu_online_mask;
 252
 253        if (cpumask_empty(cpus))
 254                return false;
 255
 256        smp_call_function_many(cpus, ack_flush, NULL, wait);
 257        return true;
 258}
 259
 260bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
 261                                 struct kvm_vcpu *except,
 262                                 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
 263{
 264        int i, cpu, me;
 265        struct kvm_vcpu *vcpu;
 266        bool called;
 267
 268        me = get_cpu();
 269
 270        kvm_for_each_vcpu(i, vcpu, kvm) {
 271                if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
 272                    vcpu == except)
 273                        continue;
 274
 275                kvm_make_request(req, vcpu);
 276                cpu = vcpu->cpu;
 277
 278                if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
 279                        continue;
 280
 281                if (tmp != NULL && cpu != -1 && cpu != me &&
 282                    kvm_request_needs_ipi(vcpu, req))
 283                        __cpumask_set_cpu(cpu, tmp);
 284        }
 285
 286        called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
 287        put_cpu();
 288
 289        return called;
 290}
 291
 292bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
 293                                      struct kvm_vcpu *except)
 294{
 295        cpumask_var_t cpus;
 296        bool called;
 297
 298        zalloc_cpumask_var(&cpus, GFP_ATOMIC);
 299
 300        called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
 301
 302        free_cpumask_var(cpus);
 303        return called;
 304}
 305
 306bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
 307{
 308        return kvm_make_all_cpus_request_except(kvm, req, NULL);
 309}
 310EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
 311
 312#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
 313void kvm_flush_remote_tlbs(struct kvm *kvm)
 314{
 315        /*
 316         * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
 317         * kvm_make_all_cpus_request.
 318         */
 319        long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
 320
 321        /*
 322         * We want to publish modifications to the page tables before reading
 323         * mode. Pairs with a memory barrier in arch-specific code.
 324         * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
 325         * and smp_mb in walk_shadow_page_lockless_begin/end.
 326         * - powerpc: smp_mb in kvmppc_prepare_to_enter.
 327         *
 328         * There is already an smp_mb__after_atomic() before
 329         * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
 330         * barrier here.
 331         */
 332        if (!kvm_arch_flush_remote_tlb(kvm)
 333            || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 334                ++kvm->stat.generic.remote_tlb_flush;
 335        cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
 336}
 337EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
 338#endif
 339
 340void kvm_reload_remote_mmus(struct kvm *kvm)
 341{
 342        kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
 343}
 344
 345#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
 346static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
 347                                               gfp_t gfp_flags)
 348{
 349        gfp_flags |= mc->gfp_zero;
 350
 351        if (mc->kmem_cache)
 352                return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
 353        else
 354                return (void *)__get_free_page(gfp_flags);
 355}
 356
 357int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
 358{
 359        void *obj;
 360
 361        if (mc->nobjs >= min)
 362                return 0;
 363        while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
 364                obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
 365                if (!obj)
 366                        return mc->nobjs >= min ? 0 : -ENOMEM;
 367                mc->objects[mc->nobjs++] = obj;
 368        }
 369        return 0;
 370}
 371
 372int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
 373{
 374        return mc->nobjs;
 375}
 376
 377void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
 378{
 379        while (mc->nobjs) {
 380                if (mc->kmem_cache)
 381                        kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
 382                else
 383                        free_page((unsigned long)mc->objects[--mc->nobjs]);
 384        }
 385}
 386
 387void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
 388{
 389        void *p;
 390
 391        if (WARN_ON(!mc->nobjs))
 392                p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
 393        else
 394                p = mc->objects[--mc->nobjs];
 395        BUG_ON(!p);
 396        return p;
 397}
 398#endif
 399
 400static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 401{
 402        mutex_init(&vcpu->mutex);
 403        vcpu->cpu = -1;
 404        vcpu->kvm = kvm;
 405        vcpu->vcpu_id = id;
 406        vcpu->pid = NULL;
 407        rcuwait_init(&vcpu->wait);
 408        kvm_async_pf_vcpu_init(vcpu);
 409
 410        vcpu->pre_pcpu = -1;
 411        INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
 412
 413        kvm_vcpu_set_in_spin_loop(vcpu, false);
 414        kvm_vcpu_set_dy_eligible(vcpu, false);
 415        vcpu->preempted = false;
 416        vcpu->ready = false;
 417        preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
 418}
 419
 420void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
 421{
 422        kvm_dirty_ring_free(&vcpu->dirty_ring);
 423        kvm_arch_vcpu_destroy(vcpu);
 424
 425        /*
 426         * No need for rcu_read_lock as VCPU_RUN is the only place that changes
 427         * the vcpu->pid pointer, and at destruction time all file descriptors
 428         * are already gone.
 429         */
 430        put_pid(rcu_dereference_protected(vcpu->pid, 1));
 431
 432        free_page((unsigned long)vcpu->run);
 433        kmem_cache_free(kvm_vcpu_cache, vcpu);
 434}
 435EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
 436
 437#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 438static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 439{
 440        return container_of(mn, struct kvm, mmu_notifier);
 441}
 442
 443static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
 444                                              struct mm_struct *mm,
 445                                              unsigned long start, unsigned long end)
 446{
 447        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 448        int idx;
 449
 450        idx = srcu_read_lock(&kvm->srcu);
 451        kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
 452        srcu_read_unlock(&kvm->srcu, idx);
 453}
 454
 455typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
 456
 457typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
 458                             unsigned long end);
 459
 460struct kvm_hva_range {
 461        unsigned long start;
 462        unsigned long end;
 463        pte_t pte;
 464        hva_handler_t handler;
 465        on_lock_fn_t on_lock;
 466        bool flush_on_ret;
 467        bool may_block;
 468};
 469
 470/*
 471 * Use a dedicated stub instead of NULL to indicate that there is no callback
 472 * function/handler.  The compiler technically can't guarantee that a real
 473 * function will have a non-zero address, and so it will generate code to
 474 * check for !NULL, whereas comparing against a stub will be elided at compile
 475 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
 476 */
 477static void kvm_null_fn(void)
 478{
 479
 480}
 481#define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
 482
 483static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
 484                                                  const struct kvm_hva_range *range)
 485{
 486        bool ret = false, locked = false;
 487        struct kvm_gfn_range gfn_range;
 488        struct kvm_memory_slot *slot;
 489        struct kvm_memslots *slots;
 490        int i, idx;
 491
 492        /* A null handler is allowed if and only if on_lock() is provided. */
 493        if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
 494                         IS_KVM_NULL_FN(range->handler)))
 495                return 0;
 496
 497        idx = srcu_read_lock(&kvm->srcu);
 498
 499        /* The on_lock() path does not yet support lock elision. */
 500        if (!IS_KVM_NULL_FN(range->on_lock)) {
 501                locked = true;
 502                KVM_MMU_LOCK(kvm);
 503
 504                range->on_lock(kvm, range->start, range->end);
 505
 506                if (IS_KVM_NULL_FN(range->handler))
 507                        goto out_unlock;
 508        }
 509
 510        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
 511                slots = __kvm_memslots(kvm, i);
 512                kvm_for_each_memslot(slot, slots) {
 513                        unsigned long hva_start, hva_end;
 514
 515                        hva_start = max(range->start, slot->userspace_addr);
 516                        hva_end = min(range->end, slot->userspace_addr +
 517                                                  (slot->npages << PAGE_SHIFT));
 518                        if (hva_start >= hva_end)
 519                                continue;
 520
 521                        /*
 522                         * To optimize for the likely case where the address
 523                         * range is covered by zero or one memslots, don't
 524                         * bother making these conditional (to avoid writes on
 525                         * the second or later invocation of the handler).
 526                         */
 527                        gfn_range.pte = range->pte;
 528                        gfn_range.may_block = range->may_block;
 529
 530                        /*
 531                         * {gfn(page) | page intersects with [hva_start, hva_end)} =
 532                         * {gfn_start, gfn_start+1, ..., gfn_end-1}.
 533                         */
 534                        gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
 535                        gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
 536                        gfn_range.slot = slot;
 537
 538                        if (!locked) {
 539                                locked = true;
 540                                KVM_MMU_LOCK(kvm);
 541                        }
 542                        ret |= range->handler(kvm, &gfn_range);
 543                }
 544        }
 545
 546        if (range->flush_on_ret && (ret || kvm->tlbs_dirty))
 547                kvm_flush_remote_tlbs(kvm);
 548
 549out_unlock:
 550        if (locked)
 551                KVM_MMU_UNLOCK(kvm);
 552
 553        srcu_read_unlock(&kvm->srcu, idx);
 554
 555        /* The notifiers are averse to booleans. :-( */
 556        return (int)ret;
 557}
 558
 559static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
 560                                                unsigned long start,
 561                                                unsigned long end,
 562                                                pte_t pte,
 563                                                hva_handler_t handler)
 564{
 565        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 566        const struct kvm_hva_range range = {
 567                .start          = start,
 568                .end            = end,
 569                .pte            = pte,
 570                .handler        = handler,
 571                .on_lock        = (void *)kvm_null_fn,
 572                .flush_on_ret   = true,
 573                .may_block      = false,
 574        };
 575
 576        return __kvm_handle_hva_range(kvm, &range);
 577}
 578
 579static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
 580                                                         unsigned long start,
 581                                                         unsigned long end,
 582                                                         hva_handler_t handler)
 583{
 584        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 585        const struct kvm_hva_range range = {
 586                .start          = start,
 587                .end            = end,
 588                .pte            = __pte(0),
 589                .handler        = handler,
 590                .on_lock        = (void *)kvm_null_fn,
 591                .flush_on_ret   = false,
 592                .may_block      = false,
 593        };
 594
 595        return __kvm_handle_hva_range(kvm, &range);
 596}
 597static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
 598                                        struct mm_struct *mm,
 599                                        unsigned long address,
 600                                        pte_t pte)
 601{
 602        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 603
 604        trace_kvm_set_spte_hva(address);
 605
 606        /*
 607         * .change_pte() must be surrounded by .invalidate_range_{start,end}(),
 608         * and so always runs with an elevated notifier count.  This obviates
 609         * the need to bump the sequence count.
 610         */
 611        WARN_ON_ONCE(!kvm->mmu_notifier_count);
 612
 613        kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
 614}
 615
 616static void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
 617                                   unsigned long end)
 618{
 619        /*
 620         * The count increase must become visible at unlock time as no
 621         * spte can be established without taking the mmu_lock and
 622         * count is also read inside the mmu_lock critical section.
 623         */
 624        kvm->mmu_notifier_count++;
 625        if (likely(kvm->mmu_notifier_count == 1)) {
 626                kvm->mmu_notifier_range_start = start;
 627                kvm->mmu_notifier_range_end = end;
 628        } else {
 629                /*
 630                 * Fully tracking multiple concurrent ranges has dimishing
 631                 * returns. Keep things simple and just find the minimal range
 632                 * which includes the current and new ranges. As there won't be
 633                 * enough information to subtract a range after its invalidate
 634                 * completes, any ranges invalidated concurrently will
 635                 * accumulate and persist until all outstanding invalidates
 636                 * complete.
 637                 */
 638                kvm->mmu_notifier_range_start =
 639                        min(kvm->mmu_notifier_range_start, start);
 640                kvm->mmu_notifier_range_end =
 641                        max(kvm->mmu_notifier_range_end, end);
 642        }
 643}
 644
 645static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 646                                        const struct mmu_notifier_range *range)
 647{
 648        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 649        const struct kvm_hva_range hva_range = {
 650                .start          = range->start,
 651                .end            = range->end,
 652                .pte            = __pte(0),
 653                .handler        = kvm_unmap_gfn_range,
 654                .on_lock        = kvm_inc_notifier_count,
 655                .flush_on_ret   = true,
 656                .may_block      = mmu_notifier_range_blockable(range),
 657        };
 658
 659        trace_kvm_unmap_hva_range(range->start, range->end);
 660
 661        __kvm_handle_hva_range(kvm, &hva_range);
 662
 663        return 0;
 664}
 665
 666static void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
 667                                   unsigned long end)
 668{
 669        /*
 670         * This sequence increase will notify the kvm page fault that
 671         * the page that is going to be mapped in the spte could have
 672         * been freed.
 673         */
 674        kvm->mmu_notifier_seq++;
 675        smp_wmb();
 676        /*
 677         * The above sequence increase must be visible before the
 678         * below count decrease, which is ensured by the smp_wmb above
 679         * in conjunction with the smp_rmb in mmu_notifier_retry().
 680         */
 681        kvm->mmu_notifier_count--;
 682}
 683
 684static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 685                                        const struct mmu_notifier_range *range)
 686{
 687        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 688        const struct kvm_hva_range hva_range = {
 689                .start          = range->start,
 690                .end            = range->end,
 691                .pte            = __pte(0),
 692                .handler        = (void *)kvm_null_fn,
 693                .on_lock        = kvm_dec_notifier_count,
 694                .flush_on_ret   = false,
 695                .may_block      = mmu_notifier_range_blockable(range),
 696        };
 697
 698        __kvm_handle_hva_range(kvm, &hva_range);
 699
 700        BUG_ON(kvm->mmu_notifier_count < 0);
 701}
 702
 703static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 704                                              struct mm_struct *mm,
 705                                              unsigned long start,
 706                                              unsigned long end)
 707{
 708        trace_kvm_age_hva(start, end);
 709
 710        return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
 711}
 712
 713static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
 714                                        struct mm_struct *mm,
 715                                        unsigned long start,
 716                                        unsigned long end)
 717{
 718        trace_kvm_age_hva(start, end);
 719
 720        /*
 721         * Even though we do not flush TLB, this will still adversely
 722         * affect performance on pre-Haswell Intel EPT, where there is
 723         * no EPT Access Bit to clear so that we have to tear down EPT
 724         * tables instead. If we find this unacceptable, we can always
 725         * add a parameter to kvm_age_hva so that it effectively doesn't
 726         * do anything on clear_young.
 727         *
 728         * Also note that currently we never issue secondary TLB flushes
 729         * from clear_young, leaving this job up to the regular system
 730         * cadence. If we find this inaccurate, we might come up with a
 731         * more sophisticated heuristic later.
 732         */
 733        return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
 734}
 735
 736static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 737                                       struct mm_struct *mm,
 738                                       unsigned long address)
 739{
 740        trace_kvm_test_age_hva(address);
 741
 742        return kvm_handle_hva_range_no_flush(mn, address, address + 1,
 743                                             kvm_test_age_gfn);
 744}
 745
 746static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 747                                     struct mm_struct *mm)
 748{
 749        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 750        int idx;
 751
 752        idx = srcu_read_lock(&kvm->srcu);
 753        kvm_arch_flush_shadow_all(kvm);
 754        srcu_read_unlock(&kvm->srcu, idx);
 755}
 756
 757static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 758        .invalidate_range       = kvm_mmu_notifier_invalidate_range,
 759        .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
 760        .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
 761        .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
 762        .clear_young            = kvm_mmu_notifier_clear_young,
 763        .test_young             = kvm_mmu_notifier_test_young,
 764        .change_pte             = kvm_mmu_notifier_change_pte,
 765        .release                = kvm_mmu_notifier_release,
 766};
 767
 768static int kvm_init_mmu_notifier(struct kvm *kvm)
 769{
 770        kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 771        return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 772}
 773
 774#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
 775
 776static int kvm_init_mmu_notifier(struct kvm *kvm)
 777{
 778        return 0;
 779}
 780
 781#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
 782
 783#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
 784static int kvm_pm_notifier_call(struct notifier_block *bl,
 785                                unsigned long state,
 786                                void *unused)
 787{
 788        struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
 789
 790        return kvm_arch_pm_notifier(kvm, state);
 791}
 792
 793static void kvm_init_pm_notifier(struct kvm *kvm)
 794{
 795        kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
 796        /* Suspend KVM before we suspend ftrace, RCU, etc. */
 797        kvm->pm_notifier.priority = INT_MAX;
 798        register_pm_notifier(&kvm->pm_notifier);
 799}
 800
 801static void kvm_destroy_pm_notifier(struct kvm *kvm)
 802{
 803        unregister_pm_notifier(&kvm->pm_notifier);
 804}
 805#else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
 806static void kvm_init_pm_notifier(struct kvm *kvm)
 807{
 808}
 809
 810static void kvm_destroy_pm_notifier(struct kvm *kvm)
 811{
 812}
 813#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
 814
 815static struct kvm_memslots *kvm_alloc_memslots(void)
 816{
 817        int i;
 818        struct kvm_memslots *slots;
 819
 820        slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
 821        if (!slots)
 822                return NULL;
 823
 824        for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 825                slots->id_to_index[i] = -1;
 826
 827        return slots;
 828}
 829
 830static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 831{
 832        if (!memslot->dirty_bitmap)
 833                return;
 834
 835        kvfree(memslot->dirty_bitmap);
 836        memslot->dirty_bitmap = NULL;
 837}
 838
 839static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
 840{
 841        kvm_destroy_dirty_bitmap(slot);
 842
 843        kvm_arch_free_memslot(kvm, slot);
 844
 845        slot->flags = 0;
 846        slot->npages = 0;
 847}
 848
 849static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
 850{
 851        struct kvm_memory_slot *memslot;
 852
 853        if (!slots)
 854                return;
 855
 856        kvm_for_each_memslot(memslot, slots)
 857                kvm_free_memslot(kvm, memslot);
 858
 859        kvfree(slots);
 860}
 861
 862static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
 863{
 864        switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
 865        case KVM_STATS_TYPE_INSTANT:
 866                return 0444;
 867        case KVM_STATS_TYPE_CUMULATIVE:
 868        case KVM_STATS_TYPE_PEAK:
 869        default:
 870                return 0644;
 871        }
 872}
 873
 874
 875static void kvm_destroy_vm_debugfs(struct kvm *kvm)
 876{
 877        int i;
 878        int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
 879                                      kvm_vcpu_stats_header.num_desc;
 880
 881        if (!kvm->debugfs_dentry)
 882                return;
 883
 884        debugfs_remove_recursive(kvm->debugfs_dentry);
 885
 886        if (kvm->debugfs_stat_data) {
 887                for (i = 0; i < kvm_debugfs_num_entries; i++)
 888                        kfree(kvm->debugfs_stat_data[i]);
 889                kfree(kvm->debugfs_stat_data);
 890        }
 891}
 892
 893static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
 894{
 895        static DEFINE_MUTEX(kvm_debugfs_lock);
 896        struct dentry *dent;
 897        char dir_name[ITOA_MAX_LEN * 2];
 898        struct kvm_stat_data *stat_data;
 899        const struct _kvm_stats_desc *pdesc;
 900        int i;
 901        int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
 902                                      kvm_vcpu_stats_header.num_desc;
 903
 904        if (!debugfs_initialized())
 905                return 0;
 906
 907        snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
 908        mutex_lock(&kvm_debugfs_lock);
 909        dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
 910        if (dent) {
 911                pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
 912                dput(dent);
 913                mutex_unlock(&kvm_debugfs_lock);
 914                return 0;
 915        }
 916        dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
 917        mutex_unlock(&kvm_debugfs_lock);
 918        if (IS_ERR(dent))
 919                return 0;
 920
 921        kvm->debugfs_dentry = dent;
 922        kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
 923                                         sizeof(*kvm->debugfs_stat_data),
 924                                         GFP_KERNEL_ACCOUNT);
 925        if (!kvm->debugfs_stat_data)
 926                return -ENOMEM;
 927
 928        for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
 929                pdesc = &kvm_vm_stats_desc[i];
 930                stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
 931                if (!stat_data)
 932                        return -ENOMEM;
 933
 934                stat_data->kvm = kvm;
 935                stat_data->desc = pdesc;
 936                stat_data->kind = KVM_STAT_VM;
 937                kvm->debugfs_stat_data[i] = stat_data;
 938                debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
 939                                    kvm->debugfs_dentry, stat_data,
 940                                    &stat_fops_per_vm);
 941        }
 942
 943        for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
 944                pdesc = &kvm_vcpu_stats_desc[i];
 945                stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
 946                if (!stat_data)
 947                        return -ENOMEM;
 948
 949                stat_data->kvm = kvm;
 950                stat_data->desc = pdesc;
 951                stat_data->kind = KVM_STAT_VCPU;
 952                kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
 953                debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
 954                                    kvm->debugfs_dentry, stat_data,
 955                                    &stat_fops_per_vm);
 956        }
 957        return 0;
 958}
 959
 960/*
 961 * Called after the VM is otherwise initialized, but just before adding it to
 962 * the vm_list.
 963 */
 964int __weak kvm_arch_post_init_vm(struct kvm *kvm)
 965{
 966        return 0;
 967}
 968
 969/*
 970 * Called just after removing the VM from the vm_list, but before doing any
 971 * other destruction.
 972 */
 973void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
 974{
 975}
 976
 977static struct kvm *kvm_create_vm(unsigned long type)
 978{
 979        struct kvm *kvm = kvm_arch_alloc_vm();
 980        int r = -ENOMEM;
 981        int i;
 982
 983        if (!kvm)
 984                return ERR_PTR(-ENOMEM);
 985
 986        KVM_MMU_LOCK_INIT(kvm);
 987        mmgrab(current->mm);
 988        kvm->mm = current->mm;
 989        kvm_eventfd_init(kvm);
 990        mutex_init(&kvm->lock);
 991        mutex_init(&kvm->irq_lock);
 992        mutex_init(&kvm->slots_lock);
 993        mutex_init(&kvm->slots_arch_lock);
 994        INIT_LIST_HEAD(&kvm->devices);
 995
 996        BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
 997
 998        if (init_srcu_struct(&kvm->srcu))
 999                goto out_err_no_srcu;
1000        if (init_srcu_struct(&kvm->irq_srcu))
1001                goto out_err_no_irq_srcu;
1002
1003        refcount_set(&kvm->users_count, 1);
1004        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1005                struct kvm_memslots *slots = kvm_alloc_memslots();
1006
1007                if (!slots)
1008                        goto out_err_no_arch_destroy_vm;
1009                /* Generations must be different for each address space. */
1010                slots->generation = i;
1011                rcu_assign_pointer(kvm->memslots[i], slots);
1012        }
1013
1014        for (i = 0; i < KVM_NR_BUSES; i++) {
1015                rcu_assign_pointer(kvm->buses[i],
1016                        kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1017                if (!kvm->buses[i])
1018                        goto out_err_no_arch_destroy_vm;
1019        }
1020
1021        kvm->max_halt_poll_ns = halt_poll_ns;
1022
1023        r = kvm_arch_init_vm(kvm, type);
1024        if (r)
1025                goto out_err_no_arch_destroy_vm;
1026
1027        r = hardware_enable_all();
1028        if (r)
1029                goto out_err_no_disable;
1030
1031#ifdef CONFIG_HAVE_KVM_IRQFD
1032        INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1033#endif
1034
1035        r = kvm_init_mmu_notifier(kvm);
1036        if (r)
1037                goto out_err_no_mmu_notifier;
1038
1039        r = kvm_arch_post_init_vm(kvm);
1040        if (r)
1041                goto out_err;
1042
1043        mutex_lock(&kvm_lock);
1044        list_add(&kvm->vm_list, &vm_list);
1045        mutex_unlock(&kvm_lock);
1046
1047        preempt_notifier_inc();
1048        kvm_init_pm_notifier(kvm);
1049
1050        return kvm;
1051
1052out_err:
1053#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1054        if (kvm->mmu_notifier.ops)
1055                mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1056#endif
1057out_err_no_mmu_notifier:
1058        hardware_disable_all();
1059out_err_no_disable:
1060        kvm_arch_destroy_vm(kvm);
1061out_err_no_arch_destroy_vm:
1062        WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1063        for (i = 0; i < KVM_NR_BUSES; i++)
1064                kfree(kvm_get_bus(kvm, i));
1065        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1066                kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1067        cleanup_srcu_struct(&kvm->irq_srcu);
1068out_err_no_irq_srcu:
1069        cleanup_srcu_struct(&kvm->srcu);
1070out_err_no_srcu:
1071        kvm_arch_free_vm(kvm);
1072        mmdrop(current->mm);
1073        return ERR_PTR(r);
1074}
1075
1076static void kvm_destroy_devices(struct kvm *kvm)
1077{
1078        struct kvm_device *dev, *tmp;
1079
1080        /*
1081         * We do not need to take the kvm->lock here, because nobody else
1082         * has a reference to the struct kvm at this point and therefore
1083         * cannot access the devices list anyhow.
1084         */
1085        list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1086                list_del(&dev->vm_node);
1087                dev->ops->destroy(dev);
1088        }
1089}
1090
1091static void kvm_destroy_vm(struct kvm *kvm)
1092{
1093        int i;
1094        struct mm_struct *mm = kvm->mm;
1095
1096        kvm_destroy_pm_notifier(kvm);
1097        kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1098        kvm_destroy_vm_debugfs(kvm);
1099        kvm_arch_sync_events(kvm);
1100        mutex_lock(&kvm_lock);
1101        list_del(&kvm->vm_list);
1102        mutex_unlock(&kvm_lock);
1103        kvm_arch_pre_destroy_vm(kvm);
1104
1105        kvm_free_irq_routing(kvm);
1106        for (i = 0; i < KVM_NR_BUSES; i++) {
1107                struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1108
1109                if (bus)
1110                        kvm_io_bus_destroy(bus);
1111                kvm->buses[i] = NULL;
1112        }
1113        kvm_coalesced_mmio_free(kvm);
1114#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1115        mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1116#else
1117        kvm_arch_flush_shadow_all(kvm);
1118#endif
1119        kvm_arch_destroy_vm(kvm);
1120        kvm_destroy_devices(kvm);
1121        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1122                kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1123        cleanup_srcu_struct(&kvm->irq_srcu);
1124        cleanup_srcu_struct(&kvm->srcu);
1125        kvm_arch_free_vm(kvm);
1126        preempt_notifier_dec();
1127        hardware_disable_all();
1128        mmdrop(mm);
1129}
1130
1131void kvm_get_kvm(struct kvm *kvm)
1132{
1133        refcount_inc(&kvm->users_count);
1134}
1135EXPORT_SYMBOL_GPL(kvm_get_kvm);
1136
1137void kvm_put_kvm(struct kvm *kvm)
1138{
1139        if (refcount_dec_and_test(&kvm->users_count))
1140                kvm_destroy_vm(kvm);
1141}
1142EXPORT_SYMBOL_GPL(kvm_put_kvm);
1143
1144/*
1145 * Used to put a reference that was taken on behalf of an object associated
1146 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1147 * of the new file descriptor fails and the reference cannot be transferred to
1148 * its final owner.  In such cases, the caller is still actively using @kvm and
1149 * will fail miserably if the refcount unexpectedly hits zero.
1150 */
1151void kvm_put_kvm_no_destroy(struct kvm *kvm)
1152{
1153        WARN_ON(refcount_dec_and_test(&kvm->users_count));
1154}
1155EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1156
1157static int kvm_vm_release(struct inode *inode, struct file *filp)
1158{
1159        struct kvm *kvm = filp->private_data;
1160
1161        kvm_irqfd_release(kvm);
1162
1163        kvm_put_kvm(kvm);
1164        return 0;
1165}
1166
1167/*
1168 * Allocation size is twice as large as the actual dirty bitmap size.
1169 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1170 */
1171static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1172{
1173        unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1174
1175        memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1176        if (!memslot->dirty_bitmap)
1177                return -ENOMEM;
1178
1179        return 0;
1180}
1181
1182/*
1183 * Delete a memslot by decrementing the number of used slots and shifting all
1184 * other entries in the array forward one spot.
1185 */
1186static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1187                                      struct kvm_memory_slot *memslot)
1188{
1189        struct kvm_memory_slot *mslots = slots->memslots;
1190        int i;
1191
1192        if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1193                return;
1194
1195        slots->used_slots--;
1196
1197        if (atomic_read(&slots->lru_slot) >= slots->used_slots)
1198                atomic_set(&slots->lru_slot, 0);
1199
1200        for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1201                mslots[i] = mslots[i + 1];
1202                slots->id_to_index[mslots[i].id] = i;
1203        }
1204        mslots[i] = *memslot;
1205        slots->id_to_index[memslot->id] = -1;
1206}
1207
1208/*
1209 * "Insert" a new memslot by incrementing the number of used slots.  Returns
1210 * the new slot's initial index into the memslots array.
1211 */
1212static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1213{
1214        return slots->used_slots++;
1215}
1216
1217/*
1218 * Move a changed memslot backwards in the array by shifting existing slots
1219 * with a higher GFN toward the front of the array.  Note, the changed memslot
1220 * itself is not preserved in the array, i.e. not swapped at this time, only
1221 * its new index into the array is tracked.  Returns the changed memslot's
1222 * current index into the memslots array.
1223 */
1224static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1225                                            struct kvm_memory_slot *memslot)
1226{
1227        struct kvm_memory_slot *mslots = slots->memslots;
1228        int i;
1229
1230        if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1231            WARN_ON_ONCE(!slots->used_slots))
1232                return -1;
1233
1234        /*
1235         * Move the target memslot backward in the array by shifting existing
1236         * memslots with a higher GFN (than the target memslot) towards the
1237         * front of the array.
1238         */
1239        for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1240                if (memslot->base_gfn > mslots[i + 1].base_gfn)
1241                        break;
1242
1243                WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1244
1245                /* Shift the next memslot forward one and update its index. */
1246                mslots[i] = mslots[i + 1];
1247                slots->id_to_index[mslots[i].id] = i;
1248        }
1249        return i;
1250}
1251
1252/*
1253 * Move a changed memslot forwards in the array by shifting existing slots with
1254 * a lower GFN toward the back of the array.  Note, the changed memslot itself
1255 * is not preserved in the array, i.e. not swapped at this time, only its new
1256 * index into the array is tracked.  Returns the changed memslot's final index
1257 * into the memslots array.
1258 */
1259static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1260                                           struct kvm_memory_slot *memslot,
1261                                           int start)
1262{
1263        struct kvm_memory_slot *mslots = slots->memslots;
1264        int i;
1265
1266        for (i = start; i > 0; i--) {
1267                if (memslot->base_gfn < mslots[i - 1].base_gfn)
1268                        break;
1269
1270                WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1271
1272                /* Shift the next memslot back one and update its index. */
1273                mslots[i] = mslots[i - 1];
1274                slots->id_to_index[mslots[i].id] = i;
1275        }
1276        return i;
1277}
1278
1279/*
1280 * Re-sort memslots based on their GFN to account for an added, deleted, or
1281 * moved memslot.  Sorting memslots by GFN allows using a binary search during
1282 * memslot lookup.
1283 *
1284 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1285 * at memslots[0] has the highest GFN.
1286 *
1287 * The sorting algorithm takes advantage of having initially sorted memslots
1288 * and knowing the position of the changed memslot.  Sorting is also optimized
1289 * by not swapping the updated memslot and instead only shifting other memslots
1290 * and tracking the new index for the update memslot.  Only once its final
1291 * index is known is the updated memslot copied into its position in the array.
1292 *
1293 *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1294 *    the end of the array.
1295 *
1296 *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1297 *    end of the array and then it forward to its correct location.
1298 *
1299 *  - When moving a memslot, the algorithm first moves the updated memslot
1300 *    backward to handle the scenario where the memslot's GFN was changed to a
1301 *    lower value.  update_memslots() then falls through and runs the same flow
1302 *    as creating a memslot to move the memslot forward to handle the scenario
1303 *    where its GFN was changed to a higher value.
1304 *
1305 * Note, slots are sorted from highest->lowest instead of lowest->highest for
1306 * historical reasons.  Originally, invalid memslots where denoted by having
1307 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1308 * to the end of the array.  The current algorithm uses dedicated logic to
1309 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1310 *
1311 * The other historical motiviation for highest->lowest was to improve the
1312 * performance of memslot lookup.  KVM originally used a linear search starting
1313 * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1314 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1315 * single memslot above the 4gb boundary.  As the largest memslot is also the
1316 * most likely to be referenced, sorting it to the front of the array was
1317 * advantageous.  The current binary search starts from the middle of the array
1318 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1319 */
1320static void update_memslots(struct kvm_memslots *slots,
1321                            struct kvm_memory_slot *memslot,
1322                            enum kvm_mr_change change)
1323{
1324        int i;
1325
1326        if (change == KVM_MR_DELETE) {
1327                kvm_memslot_delete(slots, memslot);
1328        } else {
1329                if (change == KVM_MR_CREATE)
1330                        i = kvm_memslot_insert_back(slots);
1331                else
1332                        i = kvm_memslot_move_backward(slots, memslot);
1333                i = kvm_memslot_move_forward(slots, memslot, i);
1334
1335                /*
1336                 * Copy the memslot to its new position in memslots and update
1337                 * its index accordingly.
1338                 */
1339                slots->memslots[i] = *memslot;
1340                slots->id_to_index[memslot->id] = i;
1341        }
1342}
1343
1344static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1345{
1346        u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1347
1348#ifdef __KVM_HAVE_READONLY_MEM
1349        valid_flags |= KVM_MEM_READONLY;
1350#endif
1351
1352        if (mem->flags & ~valid_flags)
1353                return -EINVAL;
1354
1355        return 0;
1356}
1357
1358static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1359                int as_id, struct kvm_memslots *slots)
1360{
1361        struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1362        u64 gen = old_memslots->generation;
1363
1364        WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1365        slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1366
1367        rcu_assign_pointer(kvm->memslots[as_id], slots);
1368
1369        /*
1370         * Acquired in kvm_set_memslot. Must be released before synchronize
1371         * SRCU below in order to avoid deadlock with another thread
1372         * acquiring the slots_arch_lock in an srcu critical section.
1373         */
1374        mutex_unlock(&kvm->slots_arch_lock);
1375
1376        synchronize_srcu_expedited(&kvm->srcu);
1377
1378        /*
1379         * Increment the new memslot generation a second time, dropping the
1380         * update in-progress flag and incrementing the generation based on
1381         * the number of address spaces.  This provides a unique and easily
1382         * identifiable generation number while the memslots are in flux.
1383         */
1384        gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1385
1386        /*
1387         * Generations must be unique even across address spaces.  We do not need
1388         * a global counter for that, instead the generation space is evenly split
1389         * across address spaces.  For example, with two address spaces, address
1390         * space 0 will use generations 0, 2, 4, ... while address space 1 will
1391         * use generations 1, 3, 5, ...
1392         */
1393        gen += KVM_ADDRESS_SPACE_NUM;
1394
1395        kvm_arch_memslots_updated(kvm, gen);
1396
1397        slots->generation = gen;
1398
1399        return old_memslots;
1400}
1401
1402static size_t kvm_memslots_size(int slots)
1403{
1404        return sizeof(struct kvm_memslots) +
1405               (sizeof(struct kvm_memory_slot) * slots);
1406}
1407
1408static void kvm_copy_memslots(struct kvm_memslots *to,
1409                              struct kvm_memslots *from)
1410{
1411        memcpy(to, from, kvm_memslots_size(from->used_slots));
1412}
1413
1414/*
1415 * Note, at a minimum, the current number of used slots must be allocated, even
1416 * when deleting a memslot, as we need a complete duplicate of the memslots for
1417 * use when invalidating a memslot prior to deleting/moving the memslot.
1418 */
1419static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1420                                             enum kvm_mr_change change)
1421{
1422        struct kvm_memslots *slots;
1423        size_t new_size;
1424
1425        if (change == KVM_MR_CREATE)
1426                new_size = kvm_memslots_size(old->used_slots + 1);
1427        else
1428                new_size = kvm_memslots_size(old->used_slots);
1429
1430        slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1431        if (likely(slots))
1432                kvm_copy_memslots(slots, old);
1433
1434        return slots;
1435}
1436
1437static int kvm_set_memslot(struct kvm *kvm,
1438                           const struct kvm_userspace_memory_region *mem,
1439                           struct kvm_memory_slot *old,
1440                           struct kvm_memory_slot *new, int as_id,
1441                           enum kvm_mr_change change)
1442{
1443        struct kvm_memory_slot *slot;
1444        struct kvm_memslots *slots;
1445        int r;
1446
1447        /*
1448         * Released in install_new_memslots.
1449         *
1450         * Must be held from before the current memslots are copied until
1451         * after the new memslots are installed with rcu_assign_pointer,
1452         * then released before the synchronize srcu in install_new_memslots.
1453         *
1454         * When modifying memslots outside of the slots_lock, must be held
1455         * before reading the pointer to the current memslots until after all
1456         * changes to those memslots are complete.
1457         *
1458         * These rules ensure that installing new memslots does not lose
1459         * changes made to the previous memslots.
1460         */
1461        mutex_lock(&kvm->slots_arch_lock);
1462
1463        slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1464        if (!slots) {
1465                mutex_unlock(&kvm->slots_arch_lock);
1466                return -ENOMEM;
1467        }
1468
1469        if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1470                /*
1471                 * Note, the INVALID flag needs to be in the appropriate entry
1472                 * in the freshly allocated memslots, not in @old or @new.
1473                 */
1474                slot = id_to_memslot(slots, old->id);
1475                slot->flags |= KVM_MEMSLOT_INVALID;
1476
1477                /*
1478                 * We can re-use the memory from the old memslots.
1479                 * It will be overwritten with a copy of the new memslots
1480                 * after reacquiring the slots_arch_lock below.
1481                 */
1482                slots = install_new_memslots(kvm, as_id, slots);
1483
1484                /* From this point no new shadow pages pointing to a deleted,
1485                 * or moved, memslot will be created.
1486                 *
1487                 * validation of sp->gfn happens in:
1488                 *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1489                 *      - kvm_is_visible_gfn (mmu_check_root)
1490                 */
1491                kvm_arch_flush_shadow_memslot(kvm, slot);
1492
1493                /* Released in install_new_memslots. */
1494                mutex_lock(&kvm->slots_arch_lock);
1495
1496                /*
1497                 * The arch-specific fields of the memslots could have changed
1498                 * between releasing the slots_arch_lock in
1499                 * install_new_memslots and here, so get a fresh copy of the
1500                 * slots.
1501                 */
1502                kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id));
1503        }
1504
1505        r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1506        if (r)
1507                goto out_slots;
1508
1509        update_memslots(slots, new, change);
1510        slots = install_new_memslots(kvm, as_id, slots);
1511
1512        kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1513
1514        kvfree(slots);
1515        return 0;
1516
1517out_slots:
1518        if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1519                slot = id_to_memslot(slots, old->id);
1520                slot->flags &= ~KVM_MEMSLOT_INVALID;
1521                slots = install_new_memslots(kvm, as_id, slots);
1522        } else {
1523                mutex_unlock(&kvm->slots_arch_lock);
1524        }
1525        kvfree(slots);
1526        return r;
1527}
1528
1529static int kvm_delete_memslot(struct kvm *kvm,
1530                              const struct kvm_userspace_memory_region *mem,
1531                              struct kvm_memory_slot *old, int as_id)
1532{
1533        struct kvm_memory_slot new;
1534        int r;
1535
1536        if (!old->npages)
1537                return -EINVAL;
1538
1539        memset(&new, 0, sizeof(new));
1540        new.id = old->id;
1541        /*
1542         * This is only for debugging purpose; it should never be referenced
1543         * for a removed memslot.
1544         */
1545        new.as_id = as_id;
1546
1547        r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1548        if (r)
1549                return r;
1550
1551        kvm_free_memslot(kvm, old);
1552        return 0;
1553}
1554
1555/*
1556 * Allocate some memory and give it an address in the guest physical address
1557 * space.
1558 *
1559 * Discontiguous memory is allowed, mostly for framebuffers.
1560 *
1561 * Must be called holding kvm->slots_lock for write.
1562 */
1563int __kvm_set_memory_region(struct kvm *kvm,
1564                            const struct kvm_userspace_memory_region *mem)
1565{
1566        struct kvm_memory_slot old, new;
1567        struct kvm_memory_slot *tmp;
1568        enum kvm_mr_change change;
1569        int as_id, id;
1570        int r;
1571
1572        r = check_memory_region_flags(mem);
1573        if (r)
1574                return r;
1575
1576        as_id = mem->slot >> 16;
1577        id = (u16)mem->slot;
1578
1579        /* General sanity checks */
1580        if (mem->memory_size & (PAGE_SIZE - 1))
1581                return -EINVAL;
1582        if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1583                return -EINVAL;
1584        /* We can read the guest memory with __xxx_user() later on. */
1585        if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1586            (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1587             !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1588                        mem->memory_size))
1589                return -EINVAL;
1590        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1591                return -EINVAL;
1592        if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1593                return -EINVAL;
1594
1595        /*
1596         * Make a full copy of the old memslot, the pointer will become stale
1597         * when the memslots are re-sorted by update_memslots(), and the old
1598         * memslot needs to be referenced after calling update_memslots(), e.g.
1599         * to free its resources and for arch specific behavior.
1600         */
1601        tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1602        if (tmp) {
1603                old = *tmp;
1604                tmp = NULL;
1605        } else {
1606                memset(&old, 0, sizeof(old));
1607                old.id = id;
1608        }
1609
1610        if (!mem->memory_size)
1611                return kvm_delete_memslot(kvm, mem, &old, as_id);
1612
1613        new.as_id = as_id;
1614        new.id = id;
1615        new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1616        new.npages = mem->memory_size >> PAGE_SHIFT;
1617        new.flags = mem->flags;
1618        new.userspace_addr = mem->userspace_addr;
1619
1620        if (new.npages > KVM_MEM_MAX_NR_PAGES)
1621                return -EINVAL;
1622
1623        if (!old.npages) {
1624                change = KVM_MR_CREATE;
1625                new.dirty_bitmap = NULL;
1626                memset(&new.arch, 0, sizeof(new.arch));
1627        } else { /* Modify an existing slot. */
1628                if ((new.userspace_addr != old.userspace_addr) ||
1629                    (new.npages != old.npages) ||
1630                    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1631                        return -EINVAL;
1632
1633                if (new.base_gfn != old.base_gfn)
1634                        change = KVM_MR_MOVE;
1635                else if (new.flags != old.flags)
1636                        change = KVM_MR_FLAGS_ONLY;
1637                else /* Nothing to change. */
1638                        return 0;
1639
1640                /* Copy dirty_bitmap and arch from the current memslot. */
1641                new.dirty_bitmap = old.dirty_bitmap;
1642                memcpy(&new.arch, &old.arch, sizeof(new.arch));
1643        }
1644
1645        if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1646                /* Check for overlaps */
1647                kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1648                        if (tmp->id == id)
1649                                continue;
1650                        if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1651                              (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1652                                return -EEXIST;
1653                }
1654        }
1655
1656        /* Allocate/free page dirty bitmap as needed */
1657        if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1658                new.dirty_bitmap = NULL;
1659        else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1660                r = kvm_alloc_dirty_bitmap(&new);
1661                if (r)
1662                        return r;
1663
1664                if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1665                        bitmap_set(new.dirty_bitmap, 0, new.npages);
1666        }
1667
1668        r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1669        if (r)
1670                goto out_bitmap;
1671
1672        if (old.dirty_bitmap && !new.dirty_bitmap)
1673                kvm_destroy_dirty_bitmap(&old);
1674        return 0;
1675
1676out_bitmap:
1677        if (new.dirty_bitmap && !old.dirty_bitmap)
1678                kvm_destroy_dirty_bitmap(&new);
1679        return r;
1680}
1681EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1682
1683int kvm_set_memory_region(struct kvm *kvm,
1684                          const struct kvm_userspace_memory_region *mem)
1685{
1686        int r;
1687
1688        mutex_lock(&kvm->slots_lock);
1689        r = __kvm_set_memory_region(kvm, mem);
1690        mutex_unlock(&kvm->slots_lock);
1691        return r;
1692}
1693EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1694
1695static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1696                                          struct kvm_userspace_memory_region *mem)
1697{
1698        if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1699                return -EINVAL;
1700
1701        return kvm_set_memory_region(kvm, mem);
1702}
1703
1704#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1705/**
1706 * kvm_get_dirty_log - get a snapshot of dirty pages
1707 * @kvm:        pointer to kvm instance
1708 * @log:        slot id and address to which we copy the log
1709 * @is_dirty:   set to '1' if any dirty pages were found
1710 * @memslot:    set to the associated memslot, always valid on success
1711 */
1712int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1713                      int *is_dirty, struct kvm_memory_slot **memslot)
1714{
1715        struct kvm_memslots *slots;
1716        int i, as_id, id;
1717        unsigned long n;
1718        unsigned long any = 0;
1719
1720        /* Dirty ring tracking is exclusive to dirty log tracking */
1721        if (kvm->dirty_ring_size)
1722                return -ENXIO;
1723
1724        *memslot = NULL;
1725        *is_dirty = 0;
1726
1727        as_id = log->slot >> 16;
1728        id = (u16)log->slot;
1729        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1730                return -EINVAL;
1731
1732        slots = __kvm_memslots(kvm, as_id);
1733        *memslot = id_to_memslot(slots, id);
1734        if (!(*memslot) || !(*memslot)->dirty_bitmap)
1735                return -ENOENT;
1736
1737        kvm_arch_sync_dirty_log(kvm, *memslot);
1738
1739        n = kvm_dirty_bitmap_bytes(*memslot);
1740
1741        for (i = 0; !any && i < n/sizeof(long); ++i)
1742                any = (*memslot)->dirty_bitmap[i];
1743
1744        if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1745                return -EFAULT;
1746
1747        if (any)
1748                *is_dirty = 1;
1749        return 0;
1750}
1751EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1752
1753#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1754/**
1755 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1756 *      and reenable dirty page tracking for the corresponding pages.
1757 * @kvm:        pointer to kvm instance
1758 * @log:        slot id and address to which we copy the log
1759 *
1760 * We need to keep it in mind that VCPU threads can write to the bitmap
1761 * concurrently. So, to avoid losing track of dirty pages we keep the
1762 * following order:
1763 *
1764 *    1. Take a snapshot of the bit and clear it if needed.
1765 *    2. Write protect the corresponding page.
1766 *    3. Copy the snapshot to the userspace.
1767 *    4. Upon return caller flushes TLB's if needed.
1768 *
1769 * Between 2 and 4, the guest may write to the page using the remaining TLB
1770 * entry.  This is not a problem because the page is reported dirty using
1771 * the snapshot taken before and step 4 ensures that writes done after
1772 * exiting to userspace will be logged for the next call.
1773 *
1774 */
1775static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1776{
1777        struct kvm_memslots *slots;
1778        struct kvm_memory_slot *memslot;
1779        int i, as_id, id;
1780        unsigned long n;
1781        unsigned long *dirty_bitmap;
1782        unsigned long *dirty_bitmap_buffer;
1783        bool flush;
1784
1785        /* Dirty ring tracking is exclusive to dirty log tracking */
1786        if (kvm->dirty_ring_size)
1787                return -ENXIO;
1788
1789        as_id = log->slot >> 16;
1790        id = (u16)log->slot;
1791        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1792                return -EINVAL;
1793
1794        slots = __kvm_memslots(kvm, as_id);
1795        memslot = id_to_memslot(slots, id);
1796        if (!memslot || !memslot->dirty_bitmap)
1797                return -ENOENT;
1798
1799        dirty_bitmap = memslot->dirty_bitmap;
1800
1801        kvm_arch_sync_dirty_log(kvm, memslot);
1802
1803        n = kvm_dirty_bitmap_bytes(memslot);
1804        flush = false;
1805        if (kvm->manual_dirty_log_protect) {
1806                /*
1807                 * Unlike kvm_get_dirty_log, we always return false in *flush,
1808                 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1809                 * is some code duplication between this function and
1810                 * kvm_get_dirty_log, but hopefully all architecture
1811                 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1812                 * can be eliminated.
1813                 */
1814                dirty_bitmap_buffer = dirty_bitmap;
1815        } else {
1816                dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1817                memset(dirty_bitmap_buffer, 0, n);
1818
1819                KVM_MMU_LOCK(kvm);
1820                for (i = 0; i < n / sizeof(long); i++) {
1821                        unsigned long mask;
1822                        gfn_t offset;
1823
1824                        if (!dirty_bitmap[i])
1825                                continue;
1826
1827                        flush = true;
1828                        mask = xchg(&dirty_bitmap[i], 0);
1829                        dirty_bitmap_buffer[i] = mask;
1830
1831                        offset = i * BITS_PER_LONG;
1832                        kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1833                                                                offset, mask);
1834                }
1835                KVM_MMU_UNLOCK(kvm);
1836        }
1837
1838        if (flush)
1839                kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1840
1841        if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1842                return -EFAULT;
1843        return 0;
1844}
1845
1846
1847/**
1848 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1849 * @kvm: kvm instance
1850 * @log: slot id and address to which we copy the log
1851 *
1852 * Steps 1-4 below provide general overview of dirty page logging. See
1853 * kvm_get_dirty_log_protect() function description for additional details.
1854 *
1855 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1856 * always flush the TLB (step 4) even if previous step failed  and the dirty
1857 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1858 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1859 * writes will be marked dirty for next log read.
1860 *
1861 *   1. Take a snapshot of the bit and clear it if needed.
1862 *   2. Write protect the corresponding page.
1863 *   3. Copy the snapshot to the userspace.
1864 *   4. Flush TLB's if needed.
1865 */
1866static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1867                                      struct kvm_dirty_log *log)
1868{
1869        int r;
1870
1871        mutex_lock(&kvm->slots_lock);
1872
1873        r = kvm_get_dirty_log_protect(kvm, log);
1874
1875        mutex_unlock(&kvm->slots_lock);
1876        return r;
1877}
1878
1879/**
1880 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1881 *      and reenable dirty page tracking for the corresponding pages.
1882 * @kvm:        pointer to kvm instance
1883 * @log:        slot id and address from which to fetch the bitmap of dirty pages
1884 */
1885static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1886                                       struct kvm_clear_dirty_log *log)
1887{
1888        struct kvm_memslots *slots;
1889        struct kvm_memory_slot *memslot;
1890        int as_id, id;
1891        gfn_t offset;
1892        unsigned long i, n;
1893        unsigned long *dirty_bitmap;
1894        unsigned long *dirty_bitmap_buffer;
1895        bool flush;
1896
1897        /* Dirty ring tracking is exclusive to dirty log tracking */
1898        if (kvm->dirty_ring_size)
1899                return -ENXIO;
1900
1901        as_id = log->slot >> 16;
1902        id = (u16)log->slot;
1903        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1904                return -EINVAL;
1905
1906        if (log->first_page & 63)
1907                return -EINVAL;
1908
1909        slots = __kvm_memslots(kvm, as_id);
1910        memslot = id_to_memslot(slots, id);
1911        if (!memslot || !memslot->dirty_bitmap)
1912                return -ENOENT;
1913
1914        dirty_bitmap = memslot->dirty_bitmap;
1915
1916        n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1917
1918        if (log->first_page > memslot->npages ||
1919            log->num_pages > memslot->npages - log->first_page ||
1920            (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1921            return -EINVAL;
1922
1923        kvm_arch_sync_dirty_log(kvm, memslot);
1924
1925        flush = false;
1926        dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1927        if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1928                return -EFAULT;
1929
1930        KVM_MMU_LOCK(kvm);
1931        for (offset = log->first_page, i = offset / BITS_PER_LONG,
1932                 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1933             i++, offset += BITS_PER_LONG) {
1934                unsigned long mask = *dirty_bitmap_buffer++;
1935                atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1936                if (!mask)
1937                        continue;
1938
1939                mask &= atomic_long_fetch_andnot(mask, p);
1940
1941                /*
1942                 * mask contains the bits that really have been cleared.  This
1943                 * never includes any bits beyond the length of the memslot (if
1944                 * the length is not aligned to 64 pages), therefore it is not
1945                 * a problem if userspace sets them in log->dirty_bitmap.
1946                */
1947                if (mask) {
1948                        flush = true;
1949                        kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1950                                                                offset, mask);
1951                }
1952        }
1953        KVM_MMU_UNLOCK(kvm);
1954
1955        if (flush)
1956                kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1957
1958        return 0;
1959}
1960
1961static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1962                                        struct kvm_clear_dirty_log *log)
1963{
1964        int r;
1965
1966        mutex_lock(&kvm->slots_lock);
1967
1968        r = kvm_clear_dirty_log_protect(kvm, log);
1969
1970        mutex_unlock(&kvm->slots_lock);
1971        return r;
1972}
1973#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1974
1975struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1976{
1977        return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1978}
1979EXPORT_SYMBOL_GPL(gfn_to_memslot);
1980
1981struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1982{
1983        return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1984}
1985EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1986
1987bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1988{
1989        struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1990
1991        return kvm_is_visible_memslot(memslot);
1992}
1993EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1994
1995bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1996{
1997        struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1998
1999        return kvm_is_visible_memslot(memslot);
2000}
2001EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2002
2003unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2004{
2005        struct vm_area_struct *vma;
2006        unsigned long addr, size;
2007
2008        size = PAGE_SIZE;
2009
2010        addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2011        if (kvm_is_error_hva(addr))
2012                return PAGE_SIZE;
2013
2014        mmap_read_lock(current->mm);
2015        vma = find_vma(current->mm, addr);
2016        if (!vma)
2017                goto out;
2018
2019        size = vma_kernel_pagesize(vma);
2020
2021out:
2022        mmap_read_unlock(current->mm);
2023
2024        return size;
2025}
2026
2027static bool memslot_is_readonly(struct kvm_memory_slot *slot)
2028{
2029        return slot->flags & KVM_MEM_READONLY;
2030}
2031
2032static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2033                                       gfn_t *nr_pages, bool write)
2034{
2035        if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2036                return KVM_HVA_ERR_BAD;
2037
2038        if (memslot_is_readonly(slot) && write)
2039                return KVM_HVA_ERR_RO_BAD;
2040
2041        if (nr_pages)
2042                *nr_pages = slot->npages - (gfn - slot->base_gfn);
2043
2044        return __gfn_to_hva_memslot(slot, gfn);
2045}
2046
2047static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2048                                     gfn_t *nr_pages)
2049{
2050        return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2051}
2052
2053unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2054                                        gfn_t gfn)
2055{
2056        return gfn_to_hva_many(slot, gfn, NULL);
2057}
2058EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2059
2060unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2061{
2062        return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2063}
2064EXPORT_SYMBOL_GPL(gfn_to_hva);
2065
2066unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2067{
2068        return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2069}
2070EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2071
2072/*
2073 * Return the hva of a @gfn and the R/W attribute if possible.
2074 *
2075 * @slot: the kvm_memory_slot which contains @gfn
2076 * @gfn: the gfn to be translated
2077 * @writable: used to return the read/write attribute of the @slot if the hva
2078 * is valid and @writable is not NULL
2079 */
2080unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2081                                      gfn_t gfn, bool *writable)
2082{
2083        unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2084
2085        if (!kvm_is_error_hva(hva) && writable)
2086                *writable = !memslot_is_readonly(slot);
2087
2088        return hva;
2089}
2090
2091unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2092{
2093        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2094
2095        return gfn_to_hva_memslot_prot(slot, gfn, writable);
2096}
2097
2098unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2099{
2100        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2101
2102        return gfn_to_hva_memslot_prot(slot, gfn, writable);
2103}
2104
2105static inline int check_user_page_hwpoison(unsigned long addr)
2106{
2107        int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2108
2109        rc = get_user_pages(addr, 1, flags, NULL, NULL);
2110        return rc == -EHWPOISON;
2111}
2112
2113/*
2114 * The fast path to get the writable pfn which will be stored in @pfn,
2115 * true indicates success, otherwise false is returned.  It's also the
2116 * only part that runs if we can in atomic context.
2117 */
2118static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2119                            bool *writable, kvm_pfn_t *pfn)
2120{
2121        struct page *page[1];
2122
2123        /*
2124         * Fast pin a writable pfn only if it is a write fault request
2125         * or the caller allows to map a writable pfn for a read fault
2126         * request.
2127         */
2128        if (!(write_fault || writable))
2129                return false;
2130
2131        if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2132                *pfn = page_to_pfn(page[0]);
2133
2134                if (writable)
2135                        *writable = true;
2136                return true;
2137        }
2138
2139        return false;
2140}
2141
2142/*
2143 * The slow path to get the pfn of the specified host virtual address,
2144 * 1 indicates success, -errno is returned if error is detected.
2145 */
2146static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2147                           bool *writable, kvm_pfn_t *pfn)
2148{
2149        unsigned int flags = FOLL_HWPOISON;
2150        struct page *page;
2151        int npages = 0;
2152
2153        might_sleep();
2154
2155        if (writable)
2156                *writable = write_fault;
2157
2158        if (write_fault)
2159                flags |= FOLL_WRITE;
2160        if (async)
2161                flags |= FOLL_NOWAIT;
2162
2163        npages = get_user_pages_unlocked(addr, 1, &page, flags);
2164        if (npages != 1)
2165                return npages;
2166
2167        /* map read fault as writable if possible */
2168        if (unlikely(!write_fault) && writable) {
2169                struct page *wpage;
2170
2171                if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2172                        *writable = true;
2173                        put_page(page);
2174                        page = wpage;
2175                }
2176        }
2177        *pfn = page_to_pfn(page);
2178        return npages;
2179}
2180
2181static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2182{
2183        if (unlikely(!(vma->vm_flags & VM_READ)))
2184                return false;
2185
2186        if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2187                return false;
2188
2189        return true;
2190}
2191
2192static int kvm_try_get_pfn(kvm_pfn_t pfn)
2193{
2194        if (kvm_is_reserved_pfn(pfn))
2195                return 1;
2196        return get_page_unless_zero(pfn_to_page(pfn));
2197}
2198
2199static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2200                               unsigned long addr, bool *async,
2201                               bool write_fault, bool *writable,
2202                               kvm_pfn_t *p_pfn)
2203{
2204        kvm_pfn_t pfn;
2205        pte_t *ptep;
2206        spinlock_t *ptl;
2207        int r;
2208
2209        r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2210        if (r) {
2211                /*
2212                 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2213                 * not call the fault handler, so do it here.
2214                 */
2215                bool unlocked = false;
2216                r = fixup_user_fault(current->mm, addr,
2217                                     (write_fault ? FAULT_FLAG_WRITE : 0),
2218                                     &unlocked);
2219                if (unlocked)
2220                        return -EAGAIN;
2221                if (r)
2222                        return r;
2223
2224                r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2225                if (r)
2226                        return r;
2227        }
2228
2229        if (write_fault && !pte_write(*ptep)) {
2230                pfn = KVM_PFN_ERR_RO_FAULT;
2231                goto out;
2232        }
2233
2234        if (writable)
2235                *writable = pte_write(*ptep);
2236        pfn = pte_pfn(*ptep);
2237
2238        /*
2239         * Get a reference here because callers of *hva_to_pfn* and
2240         * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2241         * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2242         * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
2243         * simply do nothing for reserved pfns.
2244         *
2245         * Whoever called remap_pfn_range is also going to call e.g.
2246         * unmap_mapping_range before the underlying pages are freed,
2247         * causing a call to our MMU notifier.
2248         *
2249         * Certain IO or PFNMAP mappings can be backed with valid
2250         * struct pages, but be allocated without refcounting e.g.,
2251         * tail pages of non-compound higher order allocations, which
2252         * would then underflow the refcount when the caller does the
2253         * required put_page. Don't allow those pages here.
2254         */ 
2255        if (!kvm_try_get_pfn(pfn))
2256                r = -EFAULT;
2257
2258out:
2259        pte_unmap_unlock(ptep, ptl);
2260        *p_pfn = pfn;
2261
2262        return r;
2263}
2264
2265/*
2266 * Pin guest page in memory and return its pfn.
2267 * @addr: host virtual address which maps memory to the guest
2268 * @atomic: whether this function can sleep
2269 * @async: whether this function need to wait IO complete if the
2270 *         host page is not in the memory
2271 * @write_fault: whether we should get a writable host page
2272 * @writable: whether it allows to map a writable host page for !@write_fault
2273 *
2274 * The function will map a writable host page for these two cases:
2275 * 1): @write_fault = true
2276 * 2): @write_fault = false && @writable, @writable will tell the caller
2277 *     whether the mapping is writable.
2278 */
2279static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2280                        bool write_fault, bool *writable)
2281{
2282        struct vm_area_struct *vma;
2283        kvm_pfn_t pfn = 0;
2284        int npages, r;
2285
2286        /* we can do it either atomically or asynchronously, not both */
2287        BUG_ON(atomic && async);
2288
2289        if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2290                return pfn;
2291
2292        if (atomic)
2293                return KVM_PFN_ERR_FAULT;
2294
2295        npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2296        if (npages == 1)
2297                return pfn;
2298
2299        mmap_read_lock(current->mm);
2300        if (npages == -EHWPOISON ||
2301              (!async && check_user_page_hwpoison(addr))) {
2302                pfn = KVM_PFN_ERR_HWPOISON;
2303                goto exit;
2304        }
2305
2306retry:
2307        vma = vma_lookup(current->mm, addr);
2308
2309        if (vma == NULL)
2310                pfn = KVM_PFN_ERR_FAULT;
2311        else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2312                r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2313                if (r == -EAGAIN)
2314                        goto retry;
2315                if (r < 0)
2316                        pfn = KVM_PFN_ERR_FAULT;
2317        } else {
2318                if (async && vma_is_valid(vma, write_fault))
2319                        *async = true;
2320                pfn = KVM_PFN_ERR_FAULT;
2321        }
2322exit:
2323        mmap_read_unlock(current->mm);
2324        return pfn;
2325}
2326
2327kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2328                               bool atomic, bool *async, bool write_fault,
2329                               bool *writable, hva_t *hva)
2330{
2331        unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2332
2333        if (hva)
2334                *hva = addr;
2335
2336        if (addr == KVM_HVA_ERR_RO_BAD) {
2337                if (writable)
2338                        *writable = false;
2339                return KVM_PFN_ERR_RO_FAULT;
2340        }
2341
2342        if (kvm_is_error_hva(addr)) {
2343                if (writable)
2344                        *writable = false;
2345                return KVM_PFN_NOSLOT;
2346        }
2347
2348        /* Do not map writable pfn in the readonly memslot. */
2349        if (writable && memslot_is_readonly(slot)) {
2350                *writable = false;
2351                writable = NULL;
2352        }
2353
2354        return hva_to_pfn(addr, atomic, async, write_fault,
2355                          writable);
2356}
2357EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2358
2359kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2360                      bool *writable)
2361{
2362        return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2363                                    write_fault, writable, NULL);
2364}
2365EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2366
2367kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2368{
2369        return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2370}
2371EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2372
2373kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2374{
2375        return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2376}
2377EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2378
2379kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2380{
2381        return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2382}
2383EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2384
2385kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2386{
2387        return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2388}
2389EXPORT_SYMBOL_GPL(gfn_to_pfn);
2390
2391kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2392{
2393        return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2394}
2395EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2396
2397int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2398                            struct page **pages, int nr_pages)
2399{
2400        unsigned long addr;
2401        gfn_t entry = 0;
2402
2403        addr = gfn_to_hva_many(slot, gfn, &entry);
2404        if (kvm_is_error_hva(addr))
2405                return -1;
2406
2407        if (entry < nr_pages)
2408                return 0;
2409
2410        return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2411}
2412EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2413
2414static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2415{
2416        if (is_error_noslot_pfn(pfn))
2417                return KVM_ERR_PTR_BAD_PAGE;
2418
2419        if (kvm_is_reserved_pfn(pfn)) {
2420                WARN_ON(1);
2421                return KVM_ERR_PTR_BAD_PAGE;
2422        }
2423
2424        return pfn_to_page(pfn);
2425}
2426
2427struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2428{
2429        kvm_pfn_t pfn;
2430
2431        pfn = gfn_to_pfn(kvm, gfn);
2432
2433        return kvm_pfn_to_page(pfn);
2434}
2435EXPORT_SYMBOL_GPL(gfn_to_page);
2436
2437void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2438{
2439        if (pfn == 0)
2440                return;
2441
2442        if (cache)
2443                cache->pfn = cache->gfn = 0;
2444
2445        if (dirty)
2446                kvm_release_pfn_dirty(pfn);
2447        else
2448                kvm_release_pfn_clean(pfn);
2449}
2450
2451static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2452                                 struct gfn_to_pfn_cache *cache, u64 gen)
2453{
2454        kvm_release_pfn(cache->pfn, cache->dirty, cache);
2455
2456        cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2457        cache->gfn = gfn;
2458        cache->dirty = false;
2459        cache->generation = gen;
2460}
2461
2462static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2463                         struct kvm_host_map *map,
2464                         struct gfn_to_pfn_cache *cache,
2465                         bool atomic)
2466{
2467        kvm_pfn_t pfn;
2468        void *hva = NULL;
2469        struct page *page = KVM_UNMAPPED_PAGE;
2470        struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2471        u64 gen = slots->generation;
2472
2473        if (!map)
2474                return -EINVAL;
2475
2476        if (cache) {
2477                if (!cache->pfn || cache->gfn != gfn ||
2478                        cache->generation != gen) {
2479                        if (atomic)
2480                                return -EAGAIN;
2481                        kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2482                }
2483                pfn = cache->pfn;
2484        } else {
2485                if (atomic)
2486                        return -EAGAIN;
2487                pfn = gfn_to_pfn_memslot(slot, gfn);
2488        }
2489        if (is_error_noslot_pfn(pfn))
2490                return -EINVAL;
2491
2492        if (pfn_valid(pfn)) {
2493                page = pfn_to_page(pfn);
2494                if (atomic)
2495                        hva = kmap_atomic(page);
2496                else
2497                        hva = kmap(page);
2498#ifdef CONFIG_HAS_IOMEM
2499        } else if (!atomic) {
2500                hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2501        } else {
2502                return -EINVAL;
2503#endif
2504        }
2505
2506        if (!hva)
2507                return -EFAULT;
2508
2509        map->page = page;
2510        map->hva = hva;
2511        map->pfn = pfn;
2512        map->gfn = gfn;
2513
2514        return 0;
2515}
2516
2517int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2518                struct gfn_to_pfn_cache *cache, bool atomic)
2519{
2520        return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2521                        cache, atomic);
2522}
2523EXPORT_SYMBOL_GPL(kvm_map_gfn);
2524
2525int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2526{
2527        return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2528                NULL, false);
2529}
2530EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2531
2532static void __kvm_unmap_gfn(struct kvm *kvm,
2533                        struct kvm_memory_slot *memslot,
2534                        struct kvm_host_map *map,
2535                        struct gfn_to_pfn_cache *cache,
2536                        bool dirty, bool atomic)
2537{
2538        if (!map)
2539                return;
2540
2541        if (!map->hva)
2542                return;
2543
2544        if (map->page != KVM_UNMAPPED_PAGE) {
2545                if (atomic)
2546                        kunmap_atomic(map->hva);
2547                else
2548                        kunmap(map->page);
2549        }
2550#ifdef CONFIG_HAS_IOMEM
2551        else if (!atomic)
2552                memunmap(map->hva);
2553        else
2554                WARN_ONCE(1, "Unexpected unmapping in atomic context");
2555#endif
2556
2557        if (dirty)
2558                mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2559
2560        if (cache)
2561                cache->dirty |= dirty;
2562        else
2563                kvm_release_pfn(map->pfn, dirty, NULL);
2564
2565        map->hva = NULL;
2566        map->page = NULL;
2567}
2568
2569int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2570                  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2571{
2572        __kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2573                        cache, dirty, atomic);
2574        return 0;
2575}
2576EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2577
2578void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2579{
2580        __kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2581                        map, NULL, dirty, false);
2582}
2583EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2584
2585struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2586{
2587        kvm_pfn_t pfn;
2588
2589        pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2590
2591        return kvm_pfn_to_page(pfn);
2592}
2593EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2594
2595void kvm_release_page_clean(struct page *page)
2596{
2597        WARN_ON(is_error_page(page));
2598
2599        kvm_release_pfn_clean(page_to_pfn(page));
2600}
2601EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2602
2603void kvm_release_pfn_clean(kvm_pfn_t pfn)
2604{
2605        if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2606                put_page(pfn_to_page(pfn));
2607}
2608EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2609
2610void kvm_release_page_dirty(struct page *page)
2611{
2612        WARN_ON(is_error_page(page));
2613
2614        kvm_release_pfn_dirty(page_to_pfn(page));
2615}
2616EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2617
2618void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2619{
2620        kvm_set_pfn_dirty(pfn);
2621        kvm_release_pfn_clean(pfn);
2622}
2623EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2624
2625void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2626{
2627        if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2628                SetPageDirty(pfn_to_page(pfn));
2629}
2630EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2631
2632void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2633{
2634        if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2635                mark_page_accessed(pfn_to_page(pfn));
2636}
2637EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2638
2639void kvm_get_pfn(kvm_pfn_t pfn)
2640{
2641        if (!kvm_is_reserved_pfn(pfn))
2642                get_page(pfn_to_page(pfn));
2643}
2644EXPORT_SYMBOL_GPL(kvm_get_pfn);
2645
2646static int next_segment(unsigned long len, int offset)
2647{
2648        if (len > PAGE_SIZE - offset)
2649                return PAGE_SIZE - offset;
2650        else
2651                return len;
2652}
2653
2654static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2655                                 void *data, int offset, int len)
2656{
2657        int r;
2658        unsigned long addr;
2659
2660        addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2661        if (kvm_is_error_hva(addr))
2662                return -EFAULT;
2663        r = __copy_from_user(data, (void __user *)addr + offset, len);
2664        if (r)
2665                return -EFAULT;
2666        return 0;
2667}
2668
2669int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2670                        int len)
2671{
2672        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2673
2674        return __kvm_read_guest_page(slot, gfn, data, offset, len);
2675}
2676EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2677
2678int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2679                             int offset, int len)
2680{
2681        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2682
2683        return __kvm_read_guest_page(slot, gfn, data, offset, len);
2684}
2685EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2686
2687int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2688{
2689        gfn_t gfn = gpa >> PAGE_SHIFT;
2690        int seg;
2691        int offset = offset_in_page(gpa);
2692        int ret;
2693
2694        while ((seg = next_segment(len, offset)) != 0) {
2695                ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2696                if (ret < 0)
2697                        return ret;
2698                offset = 0;
2699                len -= seg;
2700                data += seg;
2701                ++gfn;
2702        }
2703        return 0;
2704}
2705EXPORT_SYMBOL_GPL(kvm_read_guest);
2706
2707int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2708{
2709        gfn_t gfn = gpa >> PAGE_SHIFT;
2710        int seg;
2711        int offset = offset_in_page(gpa);
2712        int ret;
2713
2714        while ((seg = next_segment(len, offset)) != 0) {
2715                ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2716                if (ret < 0)
2717                        return ret;
2718                offset = 0;
2719                len -= seg;
2720                data += seg;
2721                ++gfn;
2722        }
2723        return 0;
2724}
2725EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2726
2727static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2728                                   void *data, int offset, unsigned long len)
2729{
2730        int r;
2731        unsigned long addr;
2732
2733        addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2734        if (kvm_is_error_hva(addr))
2735                return -EFAULT;
2736        pagefault_disable();
2737        r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2738        pagefault_enable();
2739        if (r)
2740                return -EFAULT;
2741        return 0;
2742}
2743
2744int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2745                               void *data, unsigned long len)
2746{
2747        gfn_t gfn = gpa >> PAGE_SHIFT;
2748        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2749        int offset = offset_in_page(gpa);
2750
2751        return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2752}
2753EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2754
2755static int __kvm_write_guest_page(struct kvm *kvm,
2756                                  struct kvm_memory_slot *memslot, gfn_t gfn,
2757                                  const void *data, int offset, int len)
2758{
2759        int r;
2760        unsigned long addr;
2761
2762        addr = gfn_to_hva_memslot(memslot, gfn);
2763        if (kvm_is_error_hva(addr))
2764                return -EFAULT;
2765        r = __copy_to_user((void __user *)addr + offset, data, len);
2766        if (r)
2767                return -EFAULT;
2768        mark_page_dirty_in_slot(kvm, memslot, gfn);
2769        return 0;
2770}
2771
2772int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2773                         const void *data, int offset, int len)
2774{
2775        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2776
2777        return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2778}
2779EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2780
2781int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2782                              const void *data, int offset, int len)
2783{
2784        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2785
2786        return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2787}
2788EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2789
2790int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2791                    unsigned long len)
2792{
2793        gfn_t gfn = gpa >> PAGE_SHIFT;
2794        int seg;
2795        int offset = offset_in_page(gpa);
2796        int ret;
2797
2798        while ((seg = next_segment(len, offset)) != 0) {
2799                ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2800                if (ret < 0)
2801                        return ret;
2802                offset = 0;
2803                len -= seg;
2804                data += seg;
2805                ++gfn;
2806        }
2807        return 0;
2808}
2809EXPORT_SYMBOL_GPL(kvm_write_guest);
2810
2811int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2812                         unsigned long len)
2813{
2814        gfn_t gfn = gpa >> PAGE_SHIFT;
2815        int seg;
2816        int offset = offset_in_page(gpa);
2817        int ret;
2818
2819        while ((seg = next_segment(len, offset)) != 0) {
2820                ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2821                if (ret < 0)
2822                        return ret;
2823                offset = 0;
2824                len -= seg;
2825                data += seg;
2826                ++gfn;
2827        }
2828        return 0;
2829}
2830EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2831
2832static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2833                                       struct gfn_to_hva_cache *ghc,
2834                                       gpa_t gpa, unsigned long len)
2835{
2836        int offset = offset_in_page(gpa);
2837        gfn_t start_gfn = gpa >> PAGE_SHIFT;
2838        gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2839        gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2840        gfn_t nr_pages_avail;
2841
2842        /* Update ghc->generation before performing any error checks. */
2843        ghc->generation = slots->generation;
2844
2845        if (start_gfn > end_gfn) {
2846                ghc->hva = KVM_HVA_ERR_BAD;
2847                return -EINVAL;
2848        }
2849
2850        /*
2851         * If the requested region crosses two memslots, we still
2852         * verify that the entire region is valid here.
2853         */
2854        for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2855                ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2856                ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2857                                           &nr_pages_avail);
2858                if (kvm_is_error_hva(ghc->hva))
2859                        return -EFAULT;
2860        }
2861
2862        /* Use the slow path for cross page reads and writes. */
2863        if (nr_pages_needed == 1)
2864                ghc->hva += offset;
2865        else
2866                ghc->memslot = NULL;
2867
2868        ghc->gpa = gpa;
2869        ghc->len = len;
2870        return 0;
2871}
2872
2873int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2874                              gpa_t gpa, unsigned long len)
2875{
2876        struct kvm_memslots *slots = kvm_memslots(kvm);
2877        return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2878}
2879EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2880
2881int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2882                                  void *data, unsigned int offset,
2883                                  unsigned long len)
2884{
2885        struct kvm_memslots *slots = kvm_memslots(kvm);
2886        int r;
2887        gpa_t gpa = ghc->gpa + offset;
2888
2889        BUG_ON(len + offset > ghc->len);
2890
2891        if (slots->generation != ghc->generation) {
2892                if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2893                        return -EFAULT;
2894        }
2895
2896        if (kvm_is_error_hva(ghc->hva))
2897                return -EFAULT;
2898
2899        if (unlikely(!ghc->memslot))
2900                return kvm_write_guest(kvm, gpa, data, len);
2901
2902        r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2903        if (r)
2904                return -EFAULT;
2905        mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
2906
2907        return 0;
2908}
2909EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2910
2911int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2912                           void *data, unsigned long len)
2913{
2914        return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2915}
2916EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2917
2918int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2919                                 void *data, unsigned int offset,
2920                                 unsigned long len)
2921{
2922        struct kvm_memslots *slots = kvm_memslots(kvm);
2923        int r;
2924        gpa_t gpa = ghc->gpa + offset;
2925
2926        BUG_ON(len + offset > ghc->len);
2927
2928        if (slots->generation != ghc->generation) {
2929                if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2930                        return -EFAULT;
2931        }
2932
2933        if (kvm_is_error_hva(ghc->hva))
2934                return -EFAULT;
2935
2936        if (unlikely(!ghc->memslot))
2937                return kvm_read_guest(kvm, gpa, data, len);
2938
2939        r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2940        if (r)
2941                return -EFAULT;
2942
2943        return 0;
2944}
2945EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2946
2947int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2948                          void *data, unsigned long len)
2949{
2950        return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2951}
2952EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2953
2954int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2955{
2956        const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2957        gfn_t gfn = gpa >> PAGE_SHIFT;
2958        int seg;
2959        int offset = offset_in_page(gpa);
2960        int ret;
2961
2962        while ((seg = next_segment(len, offset)) != 0) {
2963                ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2964                if (ret < 0)
2965                        return ret;
2966                offset = 0;
2967                len -= seg;
2968                ++gfn;
2969        }
2970        return 0;
2971}
2972EXPORT_SYMBOL_GPL(kvm_clear_guest);
2973
2974void mark_page_dirty_in_slot(struct kvm *kvm,
2975                             struct kvm_memory_slot *memslot,
2976                             gfn_t gfn)
2977{
2978        if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
2979                unsigned long rel_gfn = gfn - memslot->base_gfn;
2980                u32 slot = (memslot->as_id << 16) | memslot->id;
2981
2982                if (kvm->dirty_ring_size)
2983                        kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
2984                                            slot, rel_gfn);
2985                else
2986                        set_bit_le(rel_gfn, memslot->dirty_bitmap);
2987        }
2988}
2989EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
2990
2991void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2992{
2993        struct kvm_memory_slot *memslot;
2994
2995        memslot = gfn_to_memslot(kvm, gfn);
2996        mark_page_dirty_in_slot(kvm, memslot, gfn);
2997}
2998EXPORT_SYMBOL_GPL(mark_page_dirty);
2999
3000void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3001{
3002        struct kvm_memory_slot *memslot;
3003
3004        memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3005        mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3006}
3007EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3008
3009void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3010{
3011        if (!vcpu->sigset_active)
3012                return;
3013
3014        /*
3015         * This does a lockless modification of ->real_blocked, which is fine
3016         * because, only current can change ->real_blocked and all readers of
3017         * ->real_blocked don't care as long ->real_blocked is always a subset
3018         * of ->blocked.
3019         */
3020        sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3021}
3022
3023void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3024{
3025        if (!vcpu->sigset_active)
3026                return;
3027
3028        sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3029        sigemptyset(&current->real_blocked);
3030}
3031
3032static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3033{
3034        unsigned int old, val, grow, grow_start;
3035
3036        old = val = vcpu->halt_poll_ns;
3037        grow_start = READ_ONCE(halt_poll_ns_grow_start);
3038        grow = READ_ONCE(halt_poll_ns_grow);
3039        if (!grow)
3040                goto out;
3041
3042        val *= grow;
3043        if (val < grow_start)
3044                val = grow_start;
3045
3046        if (val > vcpu->kvm->max_halt_poll_ns)
3047                val = vcpu->kvm->max_halt_poll_ns;
3048
3049        vcpu->halt_poll_ns = val;
3050out:
3051        trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3052}
3053
3054static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3055{
3056        unsigned int old, val, shrink;
3057
3058        old = val = vcpu->halt_poll_ns;
3059        shrink = READ_ONCE(halt_poll_ns_shrink);
3060        if (shrink == 0)
3061                val = 0;
3062        else
3063                val /= shrink;
3064
3065        vcpu->halt_poll_ns = val;
3066        trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3067}
3068
3069static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3070{
3071        int ret = -EINTR;
3072        int idx = srcu_read_lock(&vcpu->kvm->srcu);
3073
3074        if (kvm_arch_vcpu_runnable(vcpu)) {
3075                kvm_make_request(KVM_REQ_UNHALT, vcpu);
3076                goto out;
3077        }
3078        if (kvm_cpu_has_pending_timer(vcpu))
3079                goto out;
3080        if (signal_pending(current))
3081                goto out;
3082        if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3083                goto out;
3084
3085        ret = 0;
3086out:
3087        srcu_read_unlock(&vcpu->kvm->srcu, idx);
3088        return ret;
3089}
3090
3091static inline void
3092update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
3093{
3094        if (waited)
3095                vcpu->stat.generic.halt_poll_fail_ns += poll_ns;
3096        else
3097                vcpu->stat.generic.halt_poll_success_ns += poll_ns;
3098}
3099
3100/*
3101 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
3102 */
3103void kvm_vcpu_block(struct kvm_vcpu *vcpu)
3104{
3105        ktime_t start, cur, poll_end;
3106        bool waited = false;
3107        u64 block_ns;
3108
3109        kvm_arch_vcpu_blocking(vcpu);
3110
3111        start = cur = poll_end = ktime_get();
3112        if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
3113                ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
3114
3115                ++vcpu->stat.generic.halt_attempted_poll;
3116                do {
3117                        /*
3118                         * This sets KVM_REQ_UNHALT if an interrupt
3119                         * arrives.
3120                         */
3121                        if (kvm_vcpu_check_block(vcpu) < 0) {
3122                                ++vcpu->stat.generic.halt_successful_poll;
3123                                if (!vcpu_valid_wakeup(vcpu))
3124                                        ++vcpu->stat.generic.halt_poll_invalid;
3125                                goto out;
3126                        }
3127                        cpu_relax();
3128                        poll_end = cur = ktime_get();
3129                } while (kvm_vcpu_can_poll(cur, stop));
3130        }
3131
3132        prepare_to_rcuwait(&vcpu->wait);
3133        for (;;) {
3134                set_current_state(TASK_INTERRUPTIBLE);
3135
3136                if (kvm_vcpu_check_block(vcpu) < 0)
3137                        break;
3138
3139                waited = true;
3140                schedule();
3141        }
3142        finish_rcuwait(&vcpu->wait);
3143        cur = ktime_get();
3144out:
3145        kvm_arch_vcpu_unblocking(vcpu);
3146        block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3147
3148        update_halt_poll_stats(
3149                vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
3150
3151        if (!kvm_arch_no_poll(vcpu)) {
3152                if (!vcpu_valid_wakeup(vcpu)) {
3153                        shrink_halt_poll_ns(vcpu);
3154                } else if (vcpu->kvm->max_halt_poll_ns) {
3155                        if (block_ns <= vcpu->halt_poll_ns)
3156                                ;
3157                        /* we had a long block, shrink polling */
3158                        else if (vcpu->halt_poll_ns &&
3159                                        block_ns > vcpu->kvm->max_halt_poll_ns)
3160                                shrink_halt_poll_ns(vcpu);
3161                        /* we had a short halt and our poll time is too small */
3162                        else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3163                                        block_ns < vcpu->kvm->max_halt_poll_ns)
3164                                grow_halt_poll_ns(vcpu);
3165                } else {
3166                        vcpu->halt_poll_ns = 0;
3167                }
3168        }
3169
3170        trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3171        kvm_arch_vcpu_block_finish(vcpu);
3172}
3173EXPORT_SYMBOL_GPL(kvm_vcpu_block);
3174
3175bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3176{
3177        struct rcuwait *waitp;
3178
3179        waitp = kvm_arch_vcpu_get_wait(vcpu);
3180        if (rcuwait_wake_up(waitp)) {
3181                WRITE_ONCE(vcpu->ready, true);
3182                ++vcpu->stat.generic.halt_wakeup;
3183                return true;
3184        }
3185
3186        return false;
3187}
3188EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3189
3190#ifndef CONFIG_S390
3191/*
3192 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3193 */
3194void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3195{
3196        int me;
3197        int cpu = vcpu->cpu;
3198
3199        if (kvm_vcpu_wake_up(vcpu))
3200                return;
3201
3202        me = get_cpu();
3203        if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3204                if (kvm_arch_vcpu_should_kick(vcpu))
3205                        smp_send_reschedule(cpu);
3206        put_cpu();
3207}
3208EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3209#endif /* !CONFIG_S390 */
3210
3211int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3212{
3213        struct pid *pid;
3214        struct task_struct *task = NULL;
3215        int ret = 0;
3216
3217        rcu_read_lock();
3218        pid = rcu_dereference(target->pid);
3219        if (pid)
3220                task = get_pid_task(pid, PIDTYPE_PID);
3221        rcu_read_unlock();
3222        if (!task)
3223                return ret;
3224        ret = yield_to(task, 1);
3225        put_task_struct(task);
3226
3227        return ret;
3228}
3229EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3230
3231/*
3232 * Helper that checks whether a VCPU is eligible for directed yield.
3233 * Most eligible candidate to yield is decided by following heuristics:
3234 *
3235 *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3236 *  (preempted lock holder), indicated by @in_spin_loop.
3237 *  Set at the beginning and cleared at the end of interception/PLE handler.
3238 *
3239 *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3240 *  chance last time (mostly it has become eligible now since we have probably
3241 *  yielded to lockholder in last iteration. This is done by toggling
3242 *  @dy_eligible each time a VCPU checked for eligibility.)
3243 *
3244 *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3245 *  to preempted lock-holder could result in wrong VCPU selection and CPU
3246 *  burning. Giving priority for a potential lock-holder increases lock
3247 *  progress.
3248 *
3249 *  Since algorithm is based on heuristics, accessing another VCPU data without
3250 *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3251 *  and continue with next VCPU and so on.
3252 */
3253static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3254{
3255#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3256        bool eligible;
3257
3258        eligible = !vcpu->spin_loop.in_spin_loop ||
3259                    vcpu->spin_loop.dy_eligible;
3260
3261        if (vcpu->spin_loop.in_spin_loop)
3262                kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3263
3264        return eligible;
3265#else
3266        return true;
3267#endif
3268}
3269
3270/*
3271 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3272 * a vcpu_load/vcpu_put pair.  However, for most architectures
3273 * kvm_arch_vcpu_runnable does not require vcpu_load.
3274 */
3275bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3276{
3277        return kvm_arch_vcpu_runnable(vcpu);
3278}
3279
3280static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3281{
3282        if (kvm_arch_dy_runnable(vcpu))
3283                return true;
3284
3285#ifdef CONFIG_KVM_ASYNC_PF
3286        if (!list_empty_careful(&vcpu->async_pf.done))
3287                return true;
3288#endif
3289
3290        return false;
3291}
3292
3293bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3294{
3295        return false;
3296}
3297
3298void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3299{
3300        struct kvm *kvm = me->kvm;
3301        struct kvm_vcpu *vcpu;
3302        int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3303        int yielded = 0;
3304        int try = 3;
3305        int pass;
3306        int i;
3307
3308        kvm_vcpu_set_in_spin_loop(me, true);
3309        /*
3310         * We boost the priority of a VCPU that is runnable but not
3311         * currently running, because it got preempted by something
3312         * else and called schedule in __vcpu_run.  Hopefully that
3313         * VCPU is holding the lock that we need and will release it.
3314         * We approximate round-robin by starting at the last boosted VCPU.
3315         */
3316        for (pass = 0; pass < 2 && !yielded && try; pass++) {
3317                kvm_for_each_vcpu(i, vcpu, kvm) {
3318                        if (!pass && i <= last_boosted_vcpu) {
3319                                i = last_boosted_vcpu;
3320                                continue;
3321                        } else if (pass && i > last_boosted_vcpu)
3322                                break;
3323                        if (!READ_ONCE(vcpu->ready))
3324                                continue;
3325                        if (vcpu == me)
3326                                continue;
3327                        if (rcuwait_active(&vcpu->wait) &&
3328                            !vcpu_dy_runnable(vcpu))
3329                                continue;
3330                        if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3331                            !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3332                            !kvm_arch_vcpu_in_kernel(vcpu))
3333                                continue;
3334                        if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3335                                continue;
3336
3337                        yielded = kvm_vcpu_yield_to(vcpu);
3338                        if (yielded > 0) {
3339                                kvm->last_boosted_vcpu = i;
3340                                break;
3341                        } else if (yielded < 0) {
3342                                try--;
3343                                if (!try)
3344                                        break;
3345                        }
3346                }
3347        }
3348        kvm_vcpu_set_in_spin_loop(me, false);
3349
3350        /* Ensure vcpu is not eligible during next spinloop */
3351        kvm_vcpu_set_dy_eligible(me, false);
3352}
3353EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3354
3355static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3356{
3357#if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3358        return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3359            (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3360             kvm->dirty_ring_size / PAGE_SIZE);
3361#else
3362        return false;
3363#endif
3364}
3365
3366static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3367{
3368        struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3369        struct page *page;
3370
3371        if (vmf->pgoff == 0)
3372                page = virt_to_page(vcpu->run);
3373#ifdef CONFIG_X86
3374        else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3375                page = virt_to_page(vcpu->arch.pio_data);
3376#endif
3377#ifdef CONFIG_KVM_MMIO
3378        else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3379                page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3380#endif
3381        else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3382                page = kvm_dirty_ring_get_page(
3383                    &vcpu->dirty_ring,
3384                    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3385        else
3386                return kvm_arch_vcpu_fault(vcpu, vmf);
3387        get_page(page);
3388        vmf->page = page;
3389        return 0;
3390}
3391
3392static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3393        .fault = kvm_vcpu_fault,
3394};
3395
3396static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3397{
3398        struct kvm_vcpu *vcpu = file->private_data;
3399        unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3400
3401        if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3402             kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3403            ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3404                return -EINVAL;
3405
3406        vma->vm_ops = &kvm_vcpu_vm_ops;
3407        return 0;
3408}
3409
3410static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3411{
3412        struct kvm_vcpu *vcpu = filp->private_data;
3413
3414        kvm_put_kvm(vcpu->kvm);
3415        return 0;
3416}
3417
3418static struct file_operations kvm_vcpu_fops = {
3419        .release        = kvm_vcpu_release,
3420        .unlocked_ioctl = kvm_vcpu_ioctl,
3421        .mmap           = kvm_vcpu_mmap,
3422        .llseek         = noop_llseek,
3423        KVM_COMPAT(kvm_vcpu_compat_ioctl),
3424};
3425
3426/*
3427 * Allocates an inode for the vcpu.
3428 */
3429static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3430{
3431        char name[8 + 1 + ITOA_MAX_LEN + 1];
3432
3433        snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3434        return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3435}
3436
3437static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3438{
3439#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3440        struct dentry *debugfs_dentry;
3441        char dir_name[ITOA_MAX_LEN * 2];
3442
3443        if (!debugfs_initialized())
3444                return;
3445
3446        snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3447        debugfs_dentry = debugfs_create_dir(dir_name,
3448                                            vcpu->kvm->debugfs_dentry);
3449
3450        kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3451#endif
3452}
3453
3454/*
3455 * Creates some virtual cpus.  Good luck creating more than one.
3456 */
3457static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3458{
3459        int r;
3460        struct kvm_vcpu *vcpu;
3461        struct page *page;
3462
3463        if (id >= KVM_MAX_VCPU_ID)
3464                return -EINVAL;
3465
3466        mutex_lock(&kvm->lock);
3467        if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3468                mutex_unlock(&kvm->lock);
3469                return -EINVAL;
3470        }
3471
3472        kvm->created_vcpus++;
3473        mutex_unlock(&kvm->lock);
3474
3475        r = kvm_arch_vcpu_precreate(kvm, id);
3476        if (r)
3477                goto vcpu_decrement;
3478
3479        vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3480        if (!vcpu) {
3481                r = -ENOMEM;
3482                goto vcpu_decrement;
3483        }
3484
3485        BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3486        page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3487        if (!page) {
3488                r = -ENOMEM;
3489                goto vcpu_free;
3490        }
3491        vcpu->run = page_address(page);
3492
3493        kvm_vcpu_init(vcpu, kvm, id);
3494
3495        r = kvm_arch_vcpu_create(vcpu);
3496        if (r)
3497                goto vcpu_free_run_page;
3498
3499        if (kvm->dirty_ring_size) {
3500                r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3501                                         id, kvm->dirty_ring_size);
3502                if (r)
3503                        goto arch_vcpu_destroy;
3504        }
3505
3506        mutex_lock(&kvm->lock);
3507        if (kvm_get_vcpu_by_id(kvm, id)) {
3508                r = -EEXIST;
3509                goto unlock_vcpu_destroy;
3510        }
3511
3512        vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3513        BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3514
3515        /* Fill the stats id string for the vcpu */
3516        snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3517                 task_pid_nr(current), id);
3518
3519        /* Now it's all set up, let userspace reach it */
3520        kvm_get_kvm(kvm);
3521        r = create_vcpu_fd(vcpu);
3522        if (r < 0) {
3523                kvm_put_kvm_no_destroy(kvm);
3524                goto unlock_vcpu_destroy;
3525        }
3526
3527        kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3528
3529        /*
3530         * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3531         * before kvm->online_vcpu's incremented value.
3532         */
3533        smp_wmb();
3534        atomic_inc(&kvm->online_vcpus);
3535
3536        mutex_unlock(&kvm->lock);
3537        kvm_arch_vcpu_postcreate(vcpu);
3538        kvm_create_vcpu_debugfs(vcpu);
3539        return r;
3540
3541unlock_vcpu_destroy:
3542        mutex_unlock(&kvm->lock);
3543        kvm_dirty_ring_free(&vcpu->dirty_ring);
3544arch_vcpu_destroy:
3545        kvm_arch_vcpu_destroy(vcpu);
3546vcpu_free_run_page:
3547        free_page((unsigned long)vcpu->run);
3548vcpu_free:
3549        kmem_cache_free(kvm_vcpu_cache, vcpu);
3550vcpu_decrement:
3551        mutex_lock(&kvm->lock);
3552        kvm->created_vcpus--;
3553        mutex_unlock(&kvm->lock);
3554        return r;
3555}
3556
3557static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3558{
3559        if (sigset) {
3560                sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3561                vcpu->sigset_active = 1;
3562                vcpu->sigset = *sigset;
3563        } else
3564                vcpu->sigset_active = 0;
3565        return 0;
3566}
3567
3568static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3569                              size_t size, loff_t *offset)
3570{
3571        struct kvm_vcpu *vcpu = file->private_data;
3572
3573        return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3574                        &kvm_vcpu_stats_desc[0], &vcpu->stat,
3575                        sizeof(vcpu->stat), user_buffer, size, offset);
3576}
3577
3578static const struct file_operations kvm_vcpu_stats_fops = {
3579        .read = kvm_vcpu_stats_read,
3580        .llseek = noop_llseek,
3581};
3582
3583static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3584{
3585        int fd;
3586        struct file *file;
3587        char name[15 + ITOA_MAX_LEN + 1];
3588
3589        snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3590
3591        fd = get_unused_fd_flags(O_CLOEXEC);
3592        if (fd < 0)
3593                return fd;
3594
3595        file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3596        if (IS_ERR(file)) {
3597                put_unused_fd(fd);
3598                return PTR_ERR(file);
3599        }
3600        file->f_mode |= FMODE_PREAD;
3601        fd_install(fd, file);
3602
3603        return fd;
3604}
3605
3606static long kvm_vcpu_ioctl(struct file *filp,
3607                           unsigned int ioctl, unsigned long arg)
3608{
3609        struct kvm_vcpu *vcpu = filp->private_data;
3610        void __user *argp = (void __user *)arg;
3611        int r;
3612        struct kvm_fpu *fpu = NULL;
3613        struct kvm_sregs *kvm_sregs = NULL;
3614
3615        if (vcpu->kvm->mm != current->mm)
3616                return -EIO;
3617
3618        if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3619                return -EINVAL;
3620
3621        /*
3622         * Some architectures have vcpu ioctls that are asynchronous to vcpu
3623         * execution; mutex_lock() would break them.
3624         */
3625        r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3626        if (r != -ENOIOCTLCMD)
3627                return r;
3628
3629        if (mutex_lock_killable(&vcpu->mutex))
3630                return -EINTR;
3631        switch (ioctl) {
3632        case KVM_RUN: {
3633                struct pid *oldpid;
3634                r = -EINVAL;
3635                if (arg)
3636                        goto out;
3637                oldpid = rcu_access_pointer(vcpu->pid);
3638                if (unlikely(oldpid != task_pid(current))) {
3639                        /* The thread running this VCPU changed. */
3640                        struct pid *newpid;
3641
3642                        r = kvm_arch_vcpu_run_pid_change(vcpu);
3643                        if (r)
3644                                break;
3645
3646                        newpid = get_task_pid(current, PIDTYPE_PID);
3647                        rcu_assign_pointer(vcpu->pid, newpid);
3648                        if (oldpid)
3649                                synchronize_rcu();
3650                        put_pid(oldpid);
3651                }
3652                r = kvm_arch_vcpu_ioctl_run(vcpu);
3653                trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3654                break;
3655        }
3656        case KVM_GET_REGS: {
3657                struct kvm_regs *kvm_regs;
3658
3659                r = -ENOMEM;
3660                kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3661                if (!kvm_regs)
3662                        goto out;
3663                r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3664                if (r)
3665                        goto out_free1;
3666                r = -EFAULT;
3667                if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3668                        goto out_free1;
3669                r = 0;
3670out_free1:
3671                kfree(kvm_regs);
3672                break;
3673        }
3674        case KVM_SET_REGS: {
3675                struct kvm_regs *kvm_regs;
3676
3677                kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3678                if (IS_ERR(kvm_regs)) {
3679                        r = PTR_ERR(kvm_regs);
3680                        goto out;
3681                }
3682                r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3683                kfree(kvm_regs);
3684                break;
3685        }
3686        case KVM_GET_SREGS: {
3687                kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3688                                    GFP_KERNEL_ACCOUNT);
3689                r = -ENOMEM;
3690                if (!kvm_sregs)
3691                        goto out;
3692                r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3693                if (r)
3694                        goto out;
3695                r = -EFAULT;
3696                if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3697                        goto out;
3698                r = 0;
3699                break;
3700        }
3701        case KVM_SET_SREGS: {
3702                kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3703                if (IS_ERR(kvm_sregs)) {
3704                        r = PTR_ERR(kvm_sregs);
3705                        kvm_sregs = NULL;
3706                        goto out;
3707                }
3708                r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3709                break;
3710        }
3711        case KVM_GET_MP_STATE: {
3712                struct kvm_mp_state mp_state;
3713
3714                r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3715                if (r)
3716                        goto out;
3717                r = -EFAULT;
3718                if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3719                        goto out;
3720                r = 0;
3721                break;
3722        }
3723        case KVM_SET_MP_STATE: {
3724                struct kvm_mp_state mp_state;
3725
3726                r = -EFAULT;
3727                if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3728                        goto out;
3729                r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3730                break;
3731        }
3732        case KVM_TRANSLATE: {
3733                struct kvm_translation tr;
3734
3735                r = -EFAULT;
3736                if (copy_from_user(&tr, argp, sizeof(tr)))
3737                        goto out;
3738                r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3739                if (r)
3740                        goto out;
3741                r = -EFAULT;
3742                if (copy_to_user(argp, &tr, sizeof(tr)))
3743                        goto out;
3744                r = 0;
3745                break;
3746        }
3747        case KVM_SET_GUEST_DEBUG: {
3748                struct kvm_guest_debug dbg;
3749
3750                r = -EFAULT;
3751                if (copy_from_user(&dbg, argp, sizeof(dbg)))
3752                        goto out;
3753                r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3754                break;
3755        }
3756        case KVM_SET_SIGNAL_MASK: {
3757                struct kvm_signal_mask __user *sigmask_arg = argp;
3758                struct kvm_signal_mask kvm_sigmask;
3759                sigset_t sigset, *p;
3760
3761                p = NULL;
3762                if (argp) {
3763                        r = -EFAULT;
3764                        if (copy_from_user(&kvm_sigmask, argp,
3765                                           sizeof(kvm_sigmask)))
3766                                goto out;
3767                        r = -EINVAL;
3768                        if (kvm_sigmask.len != sizeof(sigset))
3769                                goto out;
3770                        r = -EFAULT;
3771                        if (copy_from_user(&sigset, sigmask_arg->sigset,
3772                                           sizeof(sigset)))
3773                                goto out;
3774                        p = &sigset;
3775                }
3776                r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3777                break;
3778        }
3779        case KVM_GET_FPU: {
3780                fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3781                r = -ENOMEM;
3782                if (!fpu)
3783                        goto out;
3784                r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3785                if (r)
3786                        goto out;
3787                r = -EFAULT;
3788                if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3789                        goto out;
3790                r = 0;
3791                break;
3792        }
3793        case KVM_SET_FPU: {
3794                fpu = memdup_user(argp, sizeof(*fpu));
3795                if (IS_ERR(fpu)) {
3796                        r = PTR_ERR(fpu);
3797                        fpu = NULL;
3798                        goto out;
3799                }
3800                r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3801                break;
3802        }
3803        case KVM_GET_STATS_FD: {
3804                r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
3805                break;
3806        }
3807        default:
3808                r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3809        }
3810out:
3811        mutex_unlock(&vcpu->mutex);
3812        kfree(fpu);
3813        kfree(kvm_sregs);
3814        return r;
3815}
3816
3817#ifdef CONFIG_KVM_COMPAT
3818static long kvm_vcpu_compat_ioctl(struct file *filp,
3819                                  unsigned int ioctl, unsigned long arg)
3820{
3821        struct kvm_vcpu *vcpu = filp->private_data;
3822        void __user *argp = compat_ptr(arg);
3823        int r;
3824
3825        if (vcpu->kvm->mm != current->mm)
3826                return -EIO;
3827
3828        switch (ioctl) {
3829        case KVM_SET_SIGNAL_MASK: {
3830                struct kvm_signal_mask __user *sigmask_arg = argp;
3831                struct kvm_signal_mask kvm_sigmask;
3832                sigset_t sigset;
3833
3834                if (argp) {
3835                        r = -EFAULT;
3836                        if (copy_from_user(&kvm_sigmask, argp,
3837                                           sizeof(kvm_sigmask)))
3838                                goto out;
3839                        r = -EINVAL;
3840                        if (kvm_sigmask.len != sizeof(compat_sigset_t))
3841                                goto out;
3842                        r = -EFAULT;
3843                        if (get_compat_sigset(&sigset,
3844                                              (compat_sigset_t __user *)sigmask_arg->sigset))
3845                                goto out;
3846                        r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3847                } else
3848                        r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3849                break;
3850        }
3851        default:
3852                r = kvm_vcpu_ioctl(filp, ioctl, arg);
3853        }
3854
3855out:
3856        return r;
3857}
3858#endif
3859
3860static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3861{
3862        struct kvm_device *dev = filp->private_data;
3863
3864        if (dev->ops->mmap)
3865                return dev->ops->mmap(dev, vma);
3866
3867        return -ENODEV;
3868}
3869
3870static int kvm_device_ioctl_attr(struct kvm_device *dev,
3871                                 int (*accessor)(struct kvm_device *dev,
3872                                                 struct kvm_device_attr *attr),
3873                                 unsigned long arg)
3874{
3875        struct kvm_device_attr attr;
3876
3877        if (!accessor)
3878                return -EPERM;
3879
3880        if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3881                return -EFAULT;
3882
3883        return accessor(dev, &attr);
3884}
3885
3886static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3887                             unsigned long arg)
3888{
3889        struct kvm_device *dev = filp->private_data;
3890
3891        if (dev->kvm->mm != current->mm)
3892                return -EIO;
3893
3894        switch (ioctl) {
3895        case KVM_SET_DEVICE_ATTR:
3896                return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3897        case KVM_GET_DEVICE_ATTR:
3898                return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3899        case KVM_HAS_DEVICE_ATTR:
3900                return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3901        default:
3902                if (dev->ops->ioctl)
3903                        return dev->ops->ioctl(dev, ioctl, arg);
3904
3905                return -ENOTTY;
3906        }
3907}
3908
3909static int kvm_device_release(struct inode *inode, struct file *filp)
3910{
3911        struct kvm_device *dev = filp->private_data;
3912        struct kvm *kvm = dev->kvm;
3913
3914        if (dev->ops->release) {
3915                mutex_lock(&kvm->lock);
3916                list_del(&dev->vm_node);
3917                dev->ops->release(dev);
3918                mutex_unlock(&kvm->lock);
3919        }
3920
3921        kvm_put_kvm(kvm);
3922        return 0;
3923}
3924
3925static const struct file_operations kvm_device_fops = {
3926        .unlocked_ioctl = kvm_device_ioctl,
3927        .release = kvm_device_release,
3928        KVM_COMPAT(kvm_device_ioctl),
3929        .mmap = kvm_device_mmap,
3930};
3931
3932struct kvm_device *kvm_device_from_filp(struct file *filp)
3933{
3934        if (filp->f_op != &kvm_device_fops)
3935                return NULL;
3936
3937        return filp->private_data;
3938}
3939
3940static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3941#ifdef CONFIG_KVM_MPIC
3942        [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3943        [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3944#endif
3945};
3946
3947int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3948{
3949        if (type >= ARRAY_SIZE(kvm_device_ops_table))
3950                return -ENOSPC;
3951
3952        if (kvm_device_ops_table[type] != NULL)
3953                return -EEXIST;
3954
3955        kvm_device_ops_table[type] = ops;
3956        return 0;
3957}
3958
3959void kvm_unregister_device_ops(u32 type)
3960{
3961        if (kvm_device_ops_table[type] != NULL)
3962                kvm_device_ops_table[type] = NULL;
3963}
3964
3965static int kvm_ioctl_create_device(struct kvm *kvm,
3966                                   struct kvm_create_device *cd)
3967{
3968        const struct kvm_device_ops *ops = NULL;
3969        struct kvm_device *dev;
3970        bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3971        int type;
3972        int ret;
3973
3974        if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3975                return -ENODEV;
3976
3977        type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3978        ops = kvm_device_ops_table[type];
3979        if (ops == NULL)
3980                return -ENODEV;
3981
3982        if (test)
3983                return 0;
3984
3985        dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3986        if (!dev)
3987                return -ENOMEM;
3988
3989        dev->ops = ops;
3990        dev->kvm = kvm;
3991
3992        mutex_lock(&kvm->lock);
3993        ret = ops->create(dev, type);
3994        if (ret < 0) {
3995                mutex_unlock(&kvm->lock);
3996                kfree(dev);
3997                return ret;
3998        }
3999        list_add(&dev->vm_node, &kvm->devices);
4000        mutex_unlock(&kvm->lock);
4001
4002        if (ops->init)
4003                ops->init(dev);
4004
4005        kvm_get_kvm(kvm);
4006        ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4007        if (ret < 0) {
4008                kvm_put_kvm_no_destroy(kvm);
4009                mutex_lock(&kvm->lock);
4010                list_del(&dev->vm_node);
4011                mutex_unlock(&kvm->lock);
4012                ops->destroy(dev);
4013                return ret;
4014        }
4015
4016        cd->fd = ret;
4017        return 0;
4018}
4019
4020static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4021{
4022        switch (arg) {
4023        case KVM_CAP_USER_MEMORY:
4024        case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4025        case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4026        case KVM_CAP_INTERNAL_ERROR_DATA:
4027#ifdef CONFIG_HAVE_KVM_MSI
4028        case KVM_CAP_SIGNAL_MSI:
4029#endif
4030#ifdef CONFIG_HAVE_KVM_IRQFD
4031        case KVM_CAP_IRQFD:
4032        case KVM_CAP_IRQFD_RESAMPLE:
4033#endif
4034        case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4035        case KVM_CAP_CHECK_EXTENSION_VM:
4036        case KVM_CAP_ENABLE_CAP_VM:
4037        case KVM_CAP_HALT_POLL:
4038                return 1;
4039#ifdef CONFIG_KVM_MMIO
4040        case KVM_CAP_COALESCED_MMIO:
4041                return KVM_COALESCED_MMIO_PAGE_OFFSET;
4042        case KVM_CAP_COALESCED_PIO:
4043                return 1;
4044#endif
4045#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4046        case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4047                return KVM_DIRTY_LOG_MANUAL_CAPS;
4048#endif
4049#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4050        case KVM_CAP_IRQ_ROUTING:
4051                return KVM_MAX_IRQ_ROUTES;
4052#endif
4053#if KVM_ADDRESS_SPACE_NUM > 1
4054        case KVM_CAP_MULTI_ADDRESS_SPACE:
4055                return KVM_ADDRESS_SPACE_NUM;
4056#endif
4057        case KVM_CAP_NR_MEMSLOTS:
4058                return KVM_USER_MEM_SLOTS;
4059        case KVM_CAP_DIRTY_LOG_RING:
4060#if KVM_DIRTY_LOG_PAGE_OFFSET > 0
4061                return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4062#else
4063                return 0;
4064#endif
4065        case KVM_CAP_BINARY_STATS_FD:
4066                return 1;
4067        default:
4068                break;
4069        }
4070        return kvm_vm_ioctl_check_extension(kvm, arg);
4071}
4072
4073static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4074{
4075        int r;
4076
4077        if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4078                return -EINVAL;
4079
4080        /* the size should be power of 2 */
4081        if (!size || (size & (size - 1)))
4082                return -EINVAL;
4083
4084        /* Should be bigger to keep the reserved entries, or a page */
4085        if (size < kvm_dirty_ring_get_rsvd_entries() *
4086            sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4087                return -EINVAL;
4088
4089        if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4090            sizeof(struct kvm_dirty_gfn))
4091                return -E2BIG;
4092
4093        /* We only allow it to set once */
4094        if (kvm->dirty_ring_size)
4095                return -EINVAL;
4096
4097        mutex_lock(&kvm->lock);
4098
4099        if (kvm->created_vcpus) {
4100                /* We don't allow to change this value after vcpu created */
4101                r = -EINVAL;
4102        } else {
4103                kvm->dirty_ring_size = size;
4104                r = 0;
4105        }
4106
4107        mutex_unlock(&kvm->lock);
4108        return r;
4109}
4110
4111static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4112{
4113        int i;
4114        struct kvm_vcpu *vcpu;
4115        int cleared = 0;
4116
4117        if (!kvm->dirty_ring_size)
4118                return -EINVAL;
4119
4120        mutex_lock(&kvm->slots_lock);
4121
4122        kvm_for_each_vcpu(i, vcpu, kvm)
4123                cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4124
4125        mutex_unlock(&kvm->slots_lock);
4126
4127        if (cleared)
4128                kvm_flush_remote_tlbs(kvm);
4129
4130        return cleared;
4131}
4132
4133int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4134                                                  struct kvm_enable_cap *cap)
4135{
4136        return -EINVAL;
4137}
4138
4139static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4140                                           struct kvm_enable_cap *cap)
4141{
4142        switch (cap->cap) {
4143#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4144        case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4145                u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4146
4147                if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4148                        allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4149
4150                if (cap->flags || (cap->args[0] & ~allowed_options))
4151                        return -EINVAL;
4152                kvm->manual_dirty_log_protect = cap->args[0];
4153                return 0;
4154        }
4155#endif
4156        case KVM_CAP_HALT_POLL: {
4157                if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4158                        return -EINVAL;
4159
4160                kvm->max_halt_poll_ns = cap->args[0];
4161                return 0;
4162        }
4163        case KVM_CAP_DIRTY_LOG_RING:
4164                return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4165        default:
4166                return kvm_vm_ioctl_enable_cap(kvm, cap);
4167        }
4168}
4169
4170static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4171                              size_t size, loff_t *offset)
4172{
4173        struct kvm *kvm = file->private_data;
4174
4175        return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4176                                &kvm_vm_stats_desc[0], &kvm->stat,
4177                                sizeof(kvm->stat), user_buffer, size, offset);
4178}
4179
4180static const struct file_operations kvm_vm_stats_fops = {
4181        .read = kvm_vm_stats_read,
4182        .llseek = noop_llseek,
4183};
4184
4185static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4186{
4187        int fd;
4188        struct file *file;
4189
4190        fd = get_unused_fd_flags(O_CLOEXEC);
4191        if (fd < 0)
4192                return fd;
4193
4194        file = anon_inode_getfile("kvm-vm-stats",
4195                        &kvm_vm_stats_fops, kvm, O_RDONLY);
4196        if (IS_ERR(file)) {
4197                put_unused_fd(fd);
4198                return PTR_ERR(file);
4199        }
4200        file->f_mode |= FMODE_PREAD;
4201        fd_install(fd, file);
4202
4203        return fd;
4204}
4205
4206static long kvm_vm_ioctl(struct file *filp,
4207                           unsigned int ioctl, unsigned long arg)
4208{
4209        struct kvm *kvm = filp->private_data;
4210        void __user *argp = (void __user *)arg;
4211        int r;
4212
4213        if (kvm->mm != current->mm)
4214                return -EIO;
4215        switch (ioctl) {
4216        case KVM_CREATE_VCPU:
4217                r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4218                break;
4219        case KVM_ENABLE_CAP: {
4220                struct kvm_enable_cap cap;
4221
4222                r = -EFAULT;
4223                if (copy_from_user(&cap, argp, sizeof(cap)))
4224                        goto out;
4225                r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4226                break;
4227        }
4228        case KVM_SET_USER_MEMORY_REGION: {
4229                struct kvm_userspace_memory_region kvm_userspace_mem;
4230
4231                r = -EFAULT;
4232                if (copy_from_user(&kvm_userspace_mem, argp,
4233                                                sizeof(kvm_userspace_mem)))
4234                        goto out;
4235
4236                r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4237                break;
4238        }
4239        case KVM_GET_DIRTY_LOG: {
4240                struct kvm_dirty_log log;
4241
4242                r = -EFAULT;
4243                if (copy_from_user(&log, argp, sizeof(log)))
4244                        goto out;
4245                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4246                break;
4247        }
4248#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4249        case KVM_CLEAR_DIRTY_LOG: {
4250                struct kvm_clear_dirty_log log;
4251
4252                r = -EFAULT;
4253                if (copy_from_user(&log, argp, sizeof(log)))
4254                        goto out;
4255                r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4256                break;
4257        }
4258#endif
4259#ifdef CONFIG_KVM_MMIO
4260        case KVM_REGISTER_COALESCED_MMIO: {
4261                struct kvm_coalesced_mmio_zone zone;
4262
4263                r = -EFAULT;
4264                if (copy_from_user(&zone, argp, sizeof(zone)))
4265                        goto out;
4266                r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4267                break;
4268        }
4269        case KVM_UNREGISTER_COALESCED_MMIO: {
4270                struct kvm_coalesced_mmio_zone zone;
4271
4272                r = -EFAULT;
4273                if (copy_from_user(&zone, argp, sizeof(zone)))
4274                        goto out;
4275                r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4276                break;
4277        }
4278#endif
4279        case KVM_IRQFD: {
4280                struct kvm_irqfd data;
4281
4282                r = -EFAULT;
4283                if (copy_from_user(&data, argp, sizeof(data)))
4284                        goto out;
4285                r = kvm_irqfd(kvm, &data);
4286                break;
4287        }
4288        case KVM_IOEVENTFD: {
4289                struct kvm_ioeventfd data;
4290
4291                r = -EFAULT;
4292                if (copy_from_user(&data, argp, sizeof(data)))
4293                        goto out;
4294                r = kvm_ioeventfd(kvm, &data);
4295                break;
4296        }
4297#ifdef CONFIG_HAVE_KVM_MSI
4298        case KVM_SIGNAL_MSI: {
4299                struct kvm_msi msi;
4300
4301                r = -EFAULT;
4302                if (copy_from_user(&msi, argp, sizeof(msi)))
4303                        goto out;
4304                r = kvm_send_userspace_msi(kvm, &msi);
4305                break;
4306        }
4307#endif
4308#ifdef __KVM_HAVE_IRQ_LINE
4309        case KVM_IRQ_LINE_STATUS:
4310        case KVM_IRQ_LINE: {
4311                struct kvm_irq_level irq_event;
4312
4313                r = -EFAULT;
4314                if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4315                        goto out;
4316
4317                r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4318                                        ioctl == KVM_IRQ_LINE_STATUS);
4319                if (r)
4320                        goto out;
4321
4322                r = -EFAULT;
4323                if (ioctl == KVM_IRQ_LINE_STATUS) {
4324                        if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4325                                goto out;
4326                }
4327
4328                r = 0;
4329                break;
4330        }
4331#endif
4332#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4333        case KVM_SET_GSI_ROUTING: {
4334                struct kvm_irq_routing routing;
4335                struct kvm_irq_routing __user *urouting;
4336                struct kvm_irq_routing_entry *entries = NULL;
4337
4338                r = -EFAULT;
4339                if (copy_from_user(&routing, argp, sizeof(routing)))
4340                        goto out;
4341                r = -EINVAL;
4342                if (!kvm_arch_can_set_irq_routing(kvm))
4343                        goto out;
4344                if (routing.nr > KVM_MAX_IRQ_ROUTES)
4345                        goto out;
4346                if (routing.flags)
4347                        goto out;
4348                if (routing.nr) {
4349                        urouting = argp;
4350                        entries = vmemdup_user(urouting->entries,
4351                                               array_size(sizeof(*entries),
4352                                                          routing.nr));
4353                        if (IS_ERR(entries)) {
4354                                r = PTR_ERR(entries);
4355                                goto out;
4356                        }
4357                }
4358                r = kvm_set_irq_routing(kvm, entries, routing.nr,
4359                                        routing.flags);
4360                kvfree(entries);
4361                break;
4362        }
4363#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4364        case KVM_CREATE_DEVICE: {
4365                struct kvm_create_device cd;
4366
4367                r = -EFAULT;
4368                if (copy_from_user(&cd, argp, sizeof(cd)))
4369                        goto out;
4370
4371                r = kvm_ioctl_create_device(kvm, &cd);
4372                if (r)
4373                        goto out;
4374
4375                r = -EFAULT;
4376                if (copy_to_user(argp, &cd, sizeof(cd)))
4377                        goto out;
4378
4379                r = 0;
4380                break;
4381        }
4382        case KVM_CHECK_EXTENSION:
4383                r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4384                break;
4385        case KVM_RESET_DIRTY_RINGS:
4386                r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4387                break;
4388        case KVM_GET_STATS_FD:
4389                r = kvm_vm_ioctl_get_stats_fd(kvm);
4390                break;
4391        default:
4392                r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4393        }
4394out:
4395        return r;
4396}
4397
4398#ifdef CONFIG_KVM_COMPAT
4399struct compat_kvm_dirty_log {
4400        __u32 slot;
4401        __u32 padding1;
4402        union {
4403                compat_uptr_t dirty_bitmap; /* one bit per page */
4404                __u64 padding2;
4405        };
4406};
4407
4408struct compat_kvm_clear_dirty_log {
4409        __u32 slot;
4410        __u32 num_pages;
4411        __u64 first_page;
4412        union {
4413                compat_uptr_t dirty_bitmap; /* one bit per page */
4414                __u64 padding2;
4415        };
4416};
4417
4418static long kvm_vm_compat_ioctl(struct file *filp,
4419                           unsigned int ioctl, unsigned long arg)
4420{
4421        struct kvm *kvm = filp->private_data;
4422        int r;
4423
4424        if (kvm->mm != current->mm)
4425                return -EIO;
4426        switch (ioctl) {
4427#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4428        case KVM_CLEAR_DIRTY_LOG: {
4429                struct compat_kvm_clear_dirty_log compat_log;
4430                struct kvm_clear_dirty_log log;
4431
4432                if (copy_from_user(&compat_log, (void __user *)arg,
4433                                   sizeof(compat_log)))
4434                        return -EFAULT;
4435                log.slot         = compat_log.slot;
4436                log.num_pages    = compat_log.num_pages;
4437                log.first_page   = compat_log.first_page;
4438                log.padding2     = compat_log.padding2;
4439                log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4440
4441                r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4442                break;
4443        }
4444#endif
4445        case KVM_GET_DIRTY_LOG: {
4446                struct compat_kvm_dirty_log compat_log;
4447                struct kvm_dirty_log log;
4448
4449                if (copy_from_user(&compat_log, (void __user *)arg,
4450                                   sizeof(compat_log)))
4451                        return -EFAULT;
4452                log.slot         = compat_log.slot;
4453                log.padding1     = compat_log.padding1;
4454                log.padding2     = compat_log.padding2;
4455                log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4456
4457                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4458                break;
4459        }
4460        default:
4461                r = kvm_vm_ioctl(filp, ioctl, arg);
4462        }
4463        return r;
4464}
4465#endif
4466
4467static struct file_operations kvm_vm_fops = {
4468        .release        = kvm_vm_release,
4469        .unlocked_ioctl = kvm_vm_ioctl,
4470        .llseek         = noop_llseek,
4471        KVM_COMPAT(kvm_vm_compat_ioctl),
4472};
4473
4474bool file_is_kvm(struct file *file)
4475{
4476        return file && file->f_op == &kvm_vm_fops;
4477}
4478EXPORT_SYMBOL_GPL(file_is_kvm);
4479
4480static int kvm_dev_ioctl_create_vm(unsigned long type)
4481{
4482        int r;
4483        struct kvm *kvm;
4484        struct file *file;
4485
4486        kvm = kvm_create_vm(type);
4487        if (IS_ERR(kvm))
4488                return PTR_ERR(kvm);
4489#ifdef CONFIG_KVM_MMIO
4490        r = kvm_coalesced_mmio_init(kvm);
4491        if (r < 0)
4492                goto put_kvm;
4493#endif
4494        r = get_unused_fd_flags(O_CLOEXEC);
4495        if (r < 0)
4496                goto put_kvm;
4497
4498        snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4499                        "kvm-%d", task_pid_nr(current));
4500
4501        file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4502        if (IS_ERR(file)) {
4503                put_unused_fd(r);
4504                r = PTR_ERR(file);
4505                goto put_kvm;
4506        }
4507
4508        /*
4509         * Don't call kvm_put_kvm anymore at this point; file->f_op is
4510         * already set, with ->release() being kvm_vm_release().  In error
4511         * cases it will be called by the final fput(file) and will take
4512         * care of doing kvm_put_kvm(kvm).
4513         */
4514        if (kvm_create_vm_debugfs(kvm, r) < 0) {
4515                put_unused_fd(r);
4516                fput(file);
4517                return -ENOMEM;
4518        }
4519        kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4520
4521        fd_install(r, file);
4522        return r;
4523
4524put_kvm:
4525        kvm_put_kvm(kvm);
4526        return r;
4527}
4528
4529static long kvm_dev_ioctl(struct file *filp,
4530                          unsigned int ioctl, unsigned long arg)
4531{
4532        long r = -EINVAL;
4533
4534        switch (ioctl) {
4535        case KVM_GET_API_VERSION:
4536                if (arg)
4537                        goto out;
4538                r = KVM_API_VERSION;
4539                break;
4540        case KVM_CREATE_VM:
4541                r = kvm_dev_ioctl_create_vm(arg);
4542                break;
4543        case KVM_CHECK_EXTENSION:
4544                r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4545                break;
4546        case KVM_GET_VCPU_MMAP_SIZE:
4547                if (arg)
4548                        goto out;
4549                r = PAGE_SIZE;     /* struct kvm_run */
4550#ifdef CONFIG_X86
4551                r += PAGE_SIZE;    /* pio data page */
4552#endif
4553#ifdef CONFIG_KVM_MMIO
4554                r += PAGE_SIZE;    /* coalesced mmio ring page */
4555#endif
4556                break;
4557        case KVM_TRACE_ENABLE:
4558        case KVM_TRACE_PAUSE:
4559        case KVM_TRACE_DISABLE:
4560                r = -EOPNOTSUPP;
4561                break;
4562        default:
4563                return kvm_arch_dev_ioctl(filp, ioctl, arg);
4564        }
4565out:
4566        return r;
4567}
4568
4569static struct file_operations kvm_chardev_ops = {
4570        .unlocked_ioctl = kvm_dev_ioctl,
4571        .llseek         = noop_llseek,
4572        KVM_COMPAT(kvm_dev_ioctl),
4573};
4574
4575static struct miscdevice kvm_dev = {
4576        KVM_MINOR,
4577        "kvm",
4578        &kvm_chardev_ops,
4579};
4580
4581static void hardware_enable_nolock(void *junk)
4582{
4583        int cpu = raw_smp_processor_id();
4584        int r;
4585
4586        if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4587                return;
4588
4589        cpumask_set_cpu(cpu, cpus_hardware_enabled);
4590
4591        r = kvm_arch_hardware_enable();
4592
4593        if (r) {
4594                cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4595                atomic_inc(&hardware_enable_failed);
4596                pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4597        }
4598}
4599
4600static int kvm_starting_cpu(unsigned int cpu)
4601{
4602        raw_spin_lock(&kvm_count_lock);
4603        if (kvm_usage_count)
4604                hardware_enable_nolock(NULL);
4605        raw_spin_unlock(&kvm_count_lock);
4606        return 0;
4607}
4608
4609static void hardware_disable_nolock(void *junk)
4610{
4611        int cpu = raw_smp_processor_id();
4612
4613        if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4614                return;
4615        cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4616        kvm_arch_hardware_disable();
4617}
4618
4619static int kvm_dying_cpu(unsigned int cpu)
4620{
4621        raw_spin_lock(&kvm_count_lock);
4622        if (kvm_usage_count)
4623                hardware_disable_nolock(NULL);
4624        raw_spin_unlock(&kvm_count_lock);
4625        return 0;
4626}
4627
4628static void hardware_disable_all_nolock(void)
4629{
4630        BUG_ON(!kvm_usage_count);
4631
4632        kvm_usage_count--;
4633        if (!kvm_usage_count)
4634                on_each_cpu(hardware_disable_nolock, NULL, 1);
4635}
4636
4637static void hardware_disable_all(void)
4638{
4639        raw_spin_lock(&kvm_count_lock);
4640        hardware_disable_all_nolock();
4641        raw_spin_unlock(&kvm_count_lock);
4642}
4643
4644static int hardware_enable_all(void)
4645{
4646        int r = 0;
4647
4648        raw_spin_lock(&kvm_count_lock);
4649
4650        kvm_usage_count++;
4651        if (kvm_usage_count == 1) {
4652                atomic_set(&hardware_enable_failed, 0);
4653                on_each_cpu(hardware_enable_nolock, NULL, 1);
4654
4655                if (atomic_read(&hardware_enable_failed)) {
4656                        hardware_disable_all_nolock();
4657                        r = -EBUSY;
4658                }
4659        }
4660
4661        raw_spin_unlock(&kvm_count_lock);
4662
4663        return r;
4664}
4665
4666static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4667                      void *v)
4668{
4669        /*
4670         * Some (well, at least mine) BIOSes hang on reboot if
4671         * in vmx root mode.
4672         *
4673         * And Intel TXT required VMX off for all cpu when system shutdown.
4674         */
4675        pr_info("kvm: exiting hardware virtualization\n");
4676        kvm_rebooting = true;
4677        on_each_cpu(hardware_disable_nolock, NULL, 1);
4678        return NOTIFY_OK;
4679}
4680
4681static struct notifier_block kvm_reboot_notifier = {
4682        .notifier_call = kvm_reboot,
4683        .priority = 0,
4684};
4685
4686static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4687{
4688        int i;
4689
4690        for (i = 0; i < bus->dev_count; i++) {
4691                struct kvm_io_device *pos = bus->range[i].dev;
4692
4693                kvm_iodevice_destructor(pos);
4694        }
4695        kfree(bus);
4696}
4697
4698static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4699                                 const struct kvm_io_range *r2)
4700{
4701        gpa_t addr1 = r1->addr;
4702        gpa_t addr2 = r2->addr;
4703
4704        if (addr1 < addr2)
4705                return -1;
4706
4707        /* If r2->len == 0, match the exact address.  If r2->len != 0,
4708         * accept any overlapping write.  Any order is acceptable for
4709         * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4710         * we process all of them.
4711         */
4712        if (r2->len) {
4713                addr1 += r1->len;
4714                addr2 += r2->len;
4715        }
4716
4717        if (addr1 > addr2)
4718                return 1;
4719
4720        return 0;
4721}
4722
4723static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4724{
4725        return kvm_io_bus_cmp(p1, p2);
4726}
4727
4728static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4729                             gpa_t addr, int len)
4730{
4731        struct kvm_io_range *range, key;
4732        int off;
4733
4734        key = (struct kvm_io_range) {
4735                .addr = addr,
4736                .len = len,
4737        };
4738
4739        range = bsearch(&key, bus->range, bus->dev_count,
4740                        sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4741        if (range == NULL)
4742                return -ENOENT;
4743
4744        off = range - bus->range;
4745
4746        while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4747                off--;
4748
4749        return off;
4750}
4751
4752static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4753                              struct kvm_io_range *range, const void *val)
4754{
4755        int idx;
4756
4757        idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4758        if (idx < 0)
4759                return -EOPNOTSUPP;
4760
4761        while (idx < bus->dev_count &&
4762                kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4763                if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4764                                        range->len, val))
4765                        return idx;
4766                idx++;
4767        }
4768
4769        return -EOPNOTSUPP;
4770}
4771
4772/* kvm_io_bus_write - called under kvm->slots_lock */
4773int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4774                     int len, const void *val)
4775{
4776        struct kvm_io_bus *bus;
4777        struct kvm_io_range range;
4778        int r;
4779
4780        range = (struct kvm_io_range) {
4781                .addr = addr,
4782                .len = len,
4783        };
4784
4785        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4786        if (!bus)
4787                return -ENOMEM;
4788        r = __kvm_io_bus_write(vcpu, bus, &range, val);
4789        return r < 0 ? r : 0;
4790}
4791EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4792
4793/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4794int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4795                            gpa_t addr, int len, const void *val, long cookie)
4796{
4797        struct kvm_io_bus *bus;
4798        struct kvm_io_range range;
4799
4800        range = (struct kvm_io_range) {
4801                .addr = addr,
4802                .len = len,
4803        };
4804
4805        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4806        if (!bus)
4807                return -ENOMEM;
4808
4809        /* First try the device referenced by cookie. */
4810        if ((cookie >= 0) && (cookie < bus->dev_count) &&
4811            (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4812                if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4813                                        val))
4814                        return cookie;
4815
4816        /*
4817         * cookie contained garbage; fall back to search and return the
4818         * correct cookie value.
4819         */
4820        return __kvm_io_bus_write(vcpu, bus, &range, val);
4821}
4822
4823static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4824                             struct kvm_io_range *range, void *val)
4825{
4826        int idx;
4827
4828        idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4829        if (idx < 0)
4830                return -EOPNOTSUPP;
4831
4832        while (idx < bus->dev_count &&
4833                kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4834                if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4835                                       range->len, val))
4836                        return idx;
4837                idx++;
4838        }
4839
4840        return -EOPNOTSUPP;
4841}
4842
4843/* kvm_io_bus_read - called under kvm->slots_lock */
4844int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4845                    int len, void *val)
4846{
4847        struct kvm_io_bus *bus;
4848        struct kvm_io_range range;
4849        int r;
4850
4851        range = (struct kvm_io_range) {
4852                .addr = addr,
4853                .len = len,
4854        };
4855
4856        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4857        if (!bus)
4858                return -ENOMEM;
4859        r = __kvm_io_bus_read(vcpu, bus, &range, val);
4860        return r < 0 ? r : 0;
4861}
4862
4863/* Caller must hold slots_lock. */
4864int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4865                            int len, struct kvm_io_device *dev)
4866{
4867        int i;
4868        struct kvm_io_bus *new_bus, *bus;
4869        struct kvm_io_range range;
4870
4871        bus = kvm_get_bus(kvm, bus_idx);
4872        if (!bus)
4873                return -ENOMEM;
4874
4875        /* exclude ioeventfd which is limited by maximum fd */
4876        if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4877                return -ENOSPC;
4878
4879        new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4880                          GFP_KERNEL_ACCOUNT);
4881        if (!new_bus)
4882                return -ENOMEM;
4883
4884        range = (struct kvm_io_range) {
4885                .addr = addr,
4886                .len = len,
4887                .dev = dev,
4888        };
4889
4890        for (i = 0; i < bus->dev_count; i++)
4891                if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4892                        break;
4893
4894        memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4895        new_bus->dev_count++;
4896        new_bus->range[i] = range;
4897        memcpy(new_bus->range + i + 1, bus->range + i,
4898                (bus->dev_count - i) * sizeof(struct kvm_io_range));
4899        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4900        synchronize_srcu_expedited(&kvm->srcu);
4901        kfree(bus);
4902
4903        return 0;
4904}
4905
4906int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4907                              struct kvm_io_device *dev)
4908{
4909        int i, j;
4910        struct kvm_io_bus *new_bus, *bus;
4911
4912        lockdep_assert_held(&kvm->slots_lock);
4913
4914        bus = kvm_get_bus(kvm, bus_idx);
4915        if (!bus)
4916                return 0;
4917
4918        for (i = 0; i < bus->dev_count; i++) {
4919                if (bus->range[i].dev == dev) {
4920                        break;
4921                }
4922        }
4923
4924        if (i == bus->dev_count)
4925                return 0;
4926
4927        new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4928                          GFP_KERNEL_ACCOUNT);
4929        if (new_bus) {
4930                memcpy(new_bus, bus, struct_size(bus, range, i));
4931                new_bus->dev_count--;
4932                memcpy(new_bus->range + i, bus->range + i + 1,
4933                                flex_array_size(new_bus, range, new_bus->dev_count - i));
4934        }
4935
4936        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4937        synchronize_srcu_expedited(&kvm->srcu);
4938
4939        /* Destroy the old bus _after_ installing the (null) bus. */
4940        if (!new_bus) {
4941                pr_err("kvm: failed to shrink bus, removing it completely\n");
4942                for (j = 0; j < bus->dev_count; j++) {
4943                        if (j == i)
4944                                continue;
4945                        kvm_iodevice_destructor(bus->range[j].dev);
4946                }
4947        }
4948
4949        kfree(bus);
4950        return new_bus ? 0 : -ENOMEM;
4951}
4952
4953struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4954                                         gpa_t addr)
4955{
4956        struct kvm_io_bus *bus;
4957        int dev_idx, srcu_idx;
4958        struct kvm_io_device *iodev = NULL;
4959
4960        srcu_idx = srcu_read_lock(&kvm->srcu);
4961
4962        bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4963        if (!bus)
4964                goto out_unlock;
4965
4966        dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4967        if (dev_idx < 0)
4968                goto out_unlock;
4969
4970        iodev = bus->range[dev_idx].dev;
4971
4972out_unlock:
4973        srcu_read_unlock(&kvm->srcu, srcu_idx);
4974
4975        return iodev;
4976}
4977EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4978
4979static int kvm_debugfs_open(struct inode *inode, struct file *file,
4980                           int (*get)(void *, u64 *), int (*set)(void *, u64),
4981                           const char *fmt)
4982{
4983        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4984                                          inode->i_private;
4985
4986        /* The debugfs files are a reference to the kvm struct which
4987         * is still valid when kvm_destroy_vm is called.
4988         * To avoid the race between open and the removal of the debugfs
4989         * directory we test against the users count.
4990         */
4991        if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4992                return -ENOENT;
4993
4994        if (simple_attr_open(inode, file, get,
4995                    kvm_stats_debugfs_mode(stat_data->desc) & 0222
4996                    ? set : NULL,
4997                    fmt)) {
4998                kvm_put_kvm(stat_data->kvm);
4999                return -ENOMEM;
5000        }
5001
5002        return 0;
5003}
5004
5005static int kvm_debugfs_release(struct inode *inode, struct file *file)
5006{
5007        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5008                                          inode->i_private;
5009
5010        simple_attr_release(inode, file);
5011        kvm_put_kvm(stat_data->kvm);
5012
5013        return 0;
5014}
5015
5016static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5017{
5018        *val = *(u64 *)((void *)(&kvm->stat) + offset);
5019
5020        return 0;
5021}
5022
5023static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5024{
5025        *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5026
5027        return 0;
5028}
5029
5030static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5031{
5032        int i;
5033        struct kvm_vcpu *vcpu;
5034
5035        *val = 0;
5036
5037        kvm_for_each_vcpu(i, vcpu, kvm)
5038                *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5039
5040        return 0;
5041}
5042
5043static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5044{
5045        int i;
5046        struct kvm_vcpu *vcpu;
5047
5048        kvm_for_each_vcpu(i, vcpu, kvm)
5049                *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5050
5051        return 0;
5052}
5053
5054static int kvm_stat_data_get(void *data, u64 *val)
5055{
5056        int r = -EFAULT;
5057        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5058
5059        switch (stat_data->kind) {
5060        case KVM_STAT_VM:
5061                r = kvm_get_stat_per_vm(stat_data->kvm,
5062                                        stat_data->desc->desc.offset, val);
5063                break;
5064        case KVM_STAT_VCPU:
5065                r = kvm_get_stat_per_vcpu(stat_data->kvm,
5066                                          stat_data->desc->desc.offset, val);
5067                break;
5068        }
5069
5070        return r;
5071}
5072
5073static int kvm_stat_data_clear(void *data, u64 val)
5074{
5075        int r = -EFAULT;
5076        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5077
5078        if (val)
5079                return -EINVAL;
5080
5081        switch (stat_data->kind) {
5082        case KVM_STAT_VM:
5083                r = kvm_clear_stat_per_vm(stat_data->kvm,
5084                                          stat_data->desc->desc.offset);
5085                break;
5086        case KVM_STAT_VCPU:
5087                r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5088                                            stat_data->desc->desc.offset);
5089                break;
5090        }
5091
5092        return r;
5093}
5094
5095static int kvm_stat_data_open(struct inode *inode, struct file *file)
5096{
5097        __simple_attr_check_format("%llu\n", 0ull);
5098        return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5099                                kvm_stat_data_clear, "%llu\n");
5100}
5101
5102static const struct file_operations stat_fops_per_vm = {
5103        .owner = THIS_MODULE,
5104        .open = kvm_stat_data_open,
5105        .release = kvm_debugfs_release,
5106        .read = simple_attr_read,
5107        .write = simple_attr_write,
5108        .llseek = no_llseek,
5109};
5110
5111static int vm_stat_get(void *_offset, u64 *val)
5112{
5113        unsigned offset = (long)_offset;
5114        struct kvm *kvm;
5115        u64 tmp_val;
5116
5117        *val = 0;
5118        mutex_lock(&kvm_lock);
5119        list_for_each_entry(kvm, &vm_list, vm_list) {
5120                kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5121                *val += tmp_val;
5122        }
5123        mutex_unlock(&kvm_lock);
5124        return 0;
5125}
5126
5127static int vm_stat_clear(void *_offset, u64 val)
5128{
5129        unsigned offset = (long)_offset;
5130        struct kvm *kvm;
5131
5132        if (val)
5133                return -EINVAL;
5134
5135        mutex_lock(&kvm_lock);
5136        list_for_each_entry(kvm, &vm_list, vm_list) {
5137                kvm_clear_stat_per_vm(kvm, offset);
5138        }
5139        mutex_unlock(&kvm_lock);
5140
5141        return 0;
5142}
5143
5144DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5145DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5146
5147static int vcpu_stat_get(void *_offset, u64 *val)
5148{
5149        unsigned offset = (long)_offset;
5150        struct kvm *kvm;
5151        u64 tmp_val;
5152
5153        *val = 0;
5154        mutex_lock(&kvm_lock);
5155        list_for_each_entry(kvm, &vm_list, vm_list) {
5156                kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5157                *val += tmp_val;
5158        }
5159        mutex_unlock(&kvm_lock);
5160        return 0;
5161}
5162
5163static int vcpu_stat_clear(void *_offset, u64 val)
5164{
5165        unsigned offset = (long)_offset;
5166        struct kvm *kvm;
5167
5168        if (val)
5169                return -EINVAL;
5170
5171        mutex_lock(&kvm_lock);
5172        list_for_each_entry(kvm, &vm_list, vm_list) {
5173                kvm_clear_stat_per_vcpu(kvm, offset);
5174        }
5175        mutex_unlock(&kvm_lock);
5176
5177        return 0;
5178}
5179
5180DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5181                        "%llu\n");
5182DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5183
5184static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5185{
5186        struct kobj_uevent_env *env;
5187        unsigned long long created, active;
5188
5189        if (!kvm_dev.this_device || !kvm)
5190                return;
5191
5192        mutex_lock(&kvm_lock);
5193        if (type == KVM_EVENT_CREATE_VM) {
5194                kvm_createvm_count++;
5195                kvm_active_vms++;
5196        } else if (type == KVM_EVENT_DESTROY_VM) {
5197                kvm_active_vms--;
5198        }
5199        created = kvm_createvm_count;
5200        active = kvm_active_vms;
5201        mutex_unlock(&kvm_lock);
5202
5203        env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5204        if (!env)
5205                return;
5206
5207        add_uevent_var(env, "CREATED=%llu", created);
5208        add_uevent_var(env, "COUNT=%llu", active);
5209
5210        if (type == KVM_EVENT_CREATE_VM) {
5211                add_uevent_var(env, "EVENT=create");
5212                kvm->userspace_pid = task_pid_nr(current);
5213        } else if (type == KVM_EVENT_DESTROY_VM) {
5214                add_uevent_var(env, "EVENT=destroy");
5215        }
5216        add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5217
5218        if (kvm->debugfs_dentry) {
5219                char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5220
5221                if (p) {
5222                        tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5223                        if (!IS_ERR(tmp))
5224                                add_uevent_var(env, "STATS_PATH=%s", tmp);
5225                        kfree(p);
5226                }
5227        }
5228        /* no need for checks, since we are adding at most only 5 keys */
5229        env->envp[env->envp_idx++] = NULL;
5230        kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5231        kfree(env);
5232}
5233
5234static void kvm_init_debug(void)
5235{
5236        const struct file_operations *fops;
5237        const struct _kvm_stats_desc *pdesc;
5238        int i;
5239
5240        kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5241
5242        for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5243                pdesc = &kvm_vm_stats_desc[i];
5244                if (kvm_stats_debugfs_mode(pdesc) & 0222)
5245                        fops = &vm_stat_fops;
5246                else
5247                        fops = &vm_stat_readonly_fops;
5248                debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5249                                kvm_debugfs_dir,
5250                                (void *)(long)pdesc->desc.offset, fops);
5251        }
5252
5253        for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5254                pdesc = &kvm_vcpu_stats_desc[i];
5255                if (kvm_stats_debugfs_mode(pdesc) & 0222)
5256                        fops = &vcpu_stat_fops;
5257                else
5258                        fops = &vcpu_stat_readonly_fops;
5259                debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5260                                kvm_debugfs_dir,
5261                                (void *)(long)pdesc->desc.offset, fops);
5262        }
5263}
5264
5265static int kvm_suspend(void)
5266{
5267        if (kvm_usage_count)
5268                hardware_disable_nolock(NULL);
5269        return 0;
5270}
5271
5272static void kvm_resume(void)
5273{
5274        if (kvm_usage_count) {
5275#ifdef CONFIG_LOCKDEP
5276                WARN_ON(lockdep_is_held(&kvm_count_lock));
5277#endif
5278                hardware_enable_nolock(NULL);
5279        }
5280}
5281
5282static struct syscore_ops kvm_syscore_ops = {
5283        .suspend = kvm_suspend,
5284        .resume = kvm_resume,
5285};
5286
5287static inline
5288struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5289{
5290        return container_of(pn, struct kvm_vcpu, preempt_notifier);
5291}
5292
5293static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5294{
5295        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5296
5297        WRITE_ONCE(vcpu->preempted, false);
5298        WRITE_ONCE(vcpu->ready, false);
5299
5300        __this_cpu_write(kvm_running_vcpu, vcpu);
5301        kvm_arch_sched_in(vcpu, cpu);
5302        kvm_arch_vcpu_load(vcpu, cpu);
5303}
5304
5305static void kvm_sched_out(struct preempt_notifier *pn,
5306                          struct task_struct *next)
5307{
5308        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5309
5310        if (current->on_rq) {
5311                WRITE_ONCE(vcpu->preempted, true);
5312                WRITE_ONCE(vcpu->ready, true);
5313        }
5314        kvm_arch_vcpu_put(vcpu);
5315        __this_cpu_write(kvm_running_vcpu, NULL);
5316}
5317
5318/**
5319 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5320 *
5321 * We can disable preemption locally around accessing the per-CPU variable,
5322 * and use the resolved vcpu pointer after enabling preemption again,
5323 * because even if the current thread is migrated to another CPU, reading
5324 * the per-CPU value later will give us the same value as we update the
5325 * per-CPU variable in the preempt notifier handlers.
5326 */
5327struct kvm_vcpu *kvm_get_running_vcpu(void)
5328{
5329        struct kvm_vcpu *vcpu;
5330
5331        preempt_disable();
5332        vcpu = __this_cpu_read(kvm_running_vcpu);
5333        preempt_enable();
5334
5335        return vcpu;
5336}
5337EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5338
5339/**
5340 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5341 */
5342struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5343{
5344        return &kvm_running_vcpu;
5345}
5346
5347struct kvm_cpu_compat_check {
5348        void *opaque;
5349        int *ret;
5350};
5351
5352static void check_processor_compat(void *data)
5353{
5354        struct kvm_cpu_compat_check *c = data;
5355
5356        *c->ret = kvm_arch_check_processor_compat(c->opaque);
5357}
5358
5359int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5360                  struct module *module)
5361{
5362        struct kvm_cpu_compat_check c;
5363        int r;
5364        int cpu;
5365
5366        r = kvm_arch_init(opaque);
5367        if (r)
5368                goto out_fail;
5369
5370        /*
5371         * kvm_arch_init makes sure there's at most one caller
5372         * for architectures that support multiple implementations,
5373         * like intel and amd on x86.
5374         * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5375         * conflicts in case kvm is already setup for another implementation.
5376         */
5377        r = kvm_irqfd_init();
5378        if (r)
5379                goto out_irqfd;
5380
5381        if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5382                r = -ENOMEM;
5383                goto out_free_0;
5384        }
5385
5386        r = kvm_arch_hardware_setup(opaque);
5387        if (r < 0)
5388                goto out_free_1;
5389
5390        c.ret = &r;
5391        c.opaque = opaque;
5392        for_each_online_cpu(cpu) {
5393                smp_call_function_single(cpu, check_processor_compat, &c, 1);
5394                if (r < 0)
5395                        goto out_free_2;
5396        }
5397
5398        r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5399                                      kvm_starting_cpu, kvm_dying_cpu);
5400        if (r)
5401                goto out_free_2;
5402        register_reboot_notifier(&kvm_reboot_notifier);
5403
5404        /* A kmem cache lets us meet the alignment requirements of fx_save. */
5405        if (!vcpu_align)
5406                vcpu_align = __alignof__(struct kvm_vcpu);
5407        kvm_vcpu_cache =
5408                kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5409                                           SLAB_ACCOUNT,
5410                                           offsetof(struct kvm_vcpu, arch),
5411                                           offsetofend(struct kvm_vcpu, stats_id)
5412                                           - offsetof(struct kvm_vcpu, arch),
5413                                           NULL);
5414        if (!kvm_vcpu_cache) {
5415                r = -ENOMEM;
5416                goto out_free_3;
5417        }
5418
5419        r = kvm_async_pf_init();
5420        if (r)
5421                goto out_free;
5422
5423        kvm_chardev_ops.owner = module;
5424        kvm_vm_fops.owner = module;
5425        kvm_vcpu_fops.owner = module;
5426
5427        r = misc_register(&kvm_dev);
5428        if (r) {
5429                pr_err("kvm: misc device register failed\n");
5430                goto out_unreg;
5431        }
5432
5433        register_syscore_ops(&kvm_syscore_ops);
5434
5435        kvm_preempt_ops.sched_in = kvm_sched_in;
5436        kvm_preempt_ops.sched_out = kvm_sched_out;
5437
5438        kvm_init_debug();
5439
5440        r = kvm_vfio_ops_init();
5441        WARN_ON(r);
5442
5443        return 0;
5444
5445out_unreg:
5446        kvm_async_pf_deinit();
5447out_free:
5448        kmem_cache_destroy(kvm_vcpu_cache);
5449out_free_3:
5450        unregister_reboot_notifier(&kvm_reboot_notifier);
5451        cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5452out_free_2:
5453        kvm_arch_hardware_unsetup();
5454out_free_1:
5455        free_cpumask_var(cpus_hardware_enabled);
5456out_free_0:
5457        kvm_irqfd_exit();
5458out_irqfd:
5459        kvm_arch_exit();
5460out_fail:
5461        return r;
5462}
5463EXPORT_SYMBOL_GPL(kvm_init);
5464
5465void kvm_exit(void)
5466{
5467        debugfs_remove_recursive(kvm_debugfs_dir);
5468        misc_deregister(&kvm_dev);
5469        kmem_cache_destroy(kvm_vcpu_cache);
5470        kvm_async_pf_deinit();
5471        unregister_syscore_ops(&kvm_syscore_ops);
5472        unregister_reboot_notifier(&kvm_reboot_notifier);
5473        cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5474        on_each_cpu(hardware_disable_nolock, NULL, 1);
5475        kvm_arch_hardware_unsetup();
5476        kvm_arch_exit();
5477        kvm_irqfd_exit();
5478        free_cpumask_var(cpus_hardware_enabled);
5479        kvm_vfio_ops_exit();
5480}
5481EXPORT_SYMBOL_GPL(kvm_exit);
5482
5483struct kvm_vm_worker_thread_context {
5484        struct kvm *kvm;
5485        struct task_struct *parent;
5486        struct completion init_done;
5487        kvm_vm_thread_fn_t thread_fn;
5488        uintptr_t data;
5489        int err;
5490};
5491
5492static int kvm_vm_worker_thread(void *context)
5493{
5494        /*
5495         * The init_context is allocated on the stack of the parent thread, so
5496         * we have to locally copy anything that is needed beyond initialization
5497         */
5498        struct kvm_vm_worker_thread_context *init_context = context;
5499        struct kvm *kvm = init_context->kvm;
5500        kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5501        uintptr_t data = init_context->data;
5502        int err;
5503
5504        err = kthread_park(current);
5505        /* kthread_park(current) is never supposed to return an error */
5506        WARN_ON(err != 0);
5507        if (err)
5508                goto init_complete;
5509
5510        err = cgroup_attach_task_all(init_context->parent, current);
5511        if (err) {
5512                kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5513                        __func__, err);
5514                goto init_complete;
5515        }
5516
5517        set_user_nice(current, task_nice(init_context->parent));
5518
5519init_complete:
5520        init_context->err = err;
5521        complete(&init_context->init_done);
5522        init_context = NULL;
5523
5524        if (err)
5525                return err;
5526
5527        /* Wait to be woken up by the spawner before proceeding. */
5528        kthread_parkme();
5529
5530        if (!kthread_should_stop())
5531                err = thread_fn(kvm, data);
5532
5533        return err;
5534}
5535
5536int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5537                                uintptr_t data, const char *name,
5538                                struct task_struct **thread_ptr)
5539{
5540        struct kvm_vm_worker_thread_context init_context = {};
5541        struct task_struct *thread;
5542
5543        *thread_ptr = NULL;
5544        init_context.kvm = kvm;
5545        init_context.parent = current;
5546        init_context.thread_fn = thread_fn;
5547        init_context.data = data;
5548        init_completion(&init_context.init_done);
5549
5550        thread = kthread_run(kvm_vm_worker_thread, &init_context,
5551                             "%s-%d", name, task_pid_nr(current));
5552        if (IS_ERR(thread))
5553                return PTR_ERR(thread);
5554
5555        /* kthread_run is never supposed to return NULL */
5556        WARN_ON(thread == NULL);
5557
5558        wait_for_completion(&init_context.init_done);
5559
5560        if (!init_context.err)
5561                *thread_ptr = thread;
5562
5563        return init_context.err;
5564}
5565