linux/arch/mips/kvm/emulate.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS: Instruction/Exception emulation
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10 */
  11
  12#include <linux/errno.h>
  13#include <linux/err.h>
  14#include <linux/ktime.h>
  15#include <linux/kvm_host.h>
  16#include <linux/vmalloc.h>
  17#include <linux/fs.h>
  18#include <linux/memblock.h>
  19#include <linux/random.h>
  20#include <asm/page.h>
  21#include <asm/cacheflush.h>
  22#include <asm/cacheops.h>
  23#include <asm/cpu-info.h>
  24#include <asm/mmu_context.h>
  25#include <asm/tlbflush.h>
  26#include <asm/inst.h>
  27
  28#undef CONFIG_MIPS_MT
  29#include <asm/r4kcache.h>
  30#define CONFIG_MIPS_MT
  31
  32#include "interrupt.h"
  33
  34#include "trace.h"
  35
  36/*
  37 * Compute the return address and do emulate branch simulation, if required.
  38 * This function should be called only in branch delay slot active.
  39 */
  40static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc,
  41                                  unsigned long *out)
  42{
  43        unsigned int dspcontrol;
  44        union mips_instruction insn;
  45        struct kvm_vcpu_arch *arch = &vcpu->arch;
  46        long epc = instpc;
  47        long nextpc;
  48        int err;
  49
  50        if (epc & 3) {
  51                kvm_err("%s: unaligned epc\n", __func__);
  52                return -EINVAL;
  53        }
  54
  55        /* Read the instruction */
  56        err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word);
  57        if (err)
  58                return err;
  59
  60        switch (insn.i_format.opcode) {
  61                /* jr and jalr are in r_format format. */
  62        case spec_op:
  63                switch (insn.r_format.func) {
  64                case jalr_op:
  65                        arch->gprs[insn.r_format.rd] = epc + 8;
  66                        fallthrough;
  67                case jr_op:
  68                        nextpc = arch->gprs[insn.r_format.rs];
  69                        break;
  70                default:
  71                        return -EINVAL;
  72                }
  73                break;
  74
  75                /*
  76                 * This group contains:
  77                 * bltz_op, bgez_op, bltzl_op, bgezl_op,
  78                 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
  79                 */
  80        case bcond_op:
  81                switch (insn.i_format.rt) {
  82                case bltz_op:
  83                case bltzl_op:
  84                        if ((long)arch->gprs[insn.i_format.rs] < 0)
  85                                epc = epc + 4 + (insn.i_format.simmediate << 2);
  86                        else
  87                                epc += 8;
  88                        nextpc = epc;
  89                        break;
  90
  91                case bgez_op:
  92                case bgezl_op:
  93                        if ((long)arch->gprs[insn.i_format.rs] >= 0)
  94                                epc = epc + 4 + (insn.i_format.simmediate << 2);
  95                        else
  96                                epc += 8;
  97                        nextpc = epc;
  98                        break;
  99
 100                case bltzal_op:
 101                case bltzall_op:
 102                        arch->gprs[31] = epc + 8;
 103                        if ((long)arch->gprs[insn.i_format.rs] < 0)
 104                                epc = epc + 4 + (insn.i_format.simmediate << 2);
 105                        else
 106                                epc += 8;
 107                        nextpc = epc;
 108                        break;
 109
 110                case bgezal_op:
 111                case bgezall_op:
 112                        arch->gprs[31] = epc + 8;
 113                        if ((long)arch->gprs[insn.i_format.rs] >= 0)
 114                                epc = epc + 4 + (insn.i_format.simmediate << 2);
 115                        else
 116                                epc += 8;
 117                        nextpc = epc;
 118                        break;
 119                case bposge32_op:
 120                        if (!cpu_has_dsp) {
 121                                kvm_err("%s: DSP branch but not DSP ASE\n",
 122                                        __func__);
 123                                return -EINVAL;
 124                        }
 125
 126                        dspcontrol = rddsp(0x01);
 127
 128                        if (dspcontrol >= 32)
 129                                epc = epc + 4 + (insn.i_format.simmediate << 2);
 130                        else
 131                                epc += 8;
 132                        nextpc = epc;
 133                        break;
 134                default:
 135                        return -EINVAL;
 136                }
 137                break;
 138
 139                /* These are unconditional and in j_format. */
 140        case jal_op:
 141                arch->gprs[31] = instpc + 8;
 142                fallthrough;
 143        case j_op:
 144                epc += 4;
 145                epc >>= 28;
 146                epc <<= 28;
 147                epc |= (insn.j_format.target << 2);
 148                nextpc = epc;
 149                break;
 150
 151                /* These are conditional and in i_format. */
 152        case beq_op:
 153        case beql_op:
 154                if (arch->gprs[insn.i_format.rs] ==
 155                    arch->gprs[insn.i_format.rt])
 156                        epc = epc + 4 + (insn.i_format.simmediate << 2);
 157                else
 158                        epc += 8;
 159                nextpc = epc;
 160                break;
 161
 162        case bne_op:
 163        case bnel_op:
 164                if (arch->gprs[insn.i_format.rs] !=
 165                    arch->gprs[insn.i_format.rt])
 166                        epc = epc + 4 + (insn.i_format.simmediate << 2);
 167                else
 168                        epc += 8;
 169                nextpc = epc;
 170                break;
 171
 172        case blez_op:   /* POP06 */
 173#ifndef CONFIG_CPU_MIPSR6
 174        case blezl_op:  /* removed in R6 */
 175#endif
 176                if (insn.i_format.rt != 0)
 177                        goto compact_branch;
 178                if ((long)arch->gprs[insn.i_format.rs] <= 0)
 179                        epc = epc + 4 + (insn.i_format.simmediate << 2);
 180                else
 181                        epc += 8;
 182                nextpc = epc;
 183                break;
 184
 185        case bgtz_op:   /* POP07 */
 186#ifndef CONFIG_CPU_MIPSR6
 187        case bgtzl_op:  /* removed in R6 */
 188#endif
 189                if (insn.i_format.rt != 0)
 190                        goto compact_branch;
 191                if ((long)arch->gprs[insn.i_format.rs] > 0)
 192                        epc = epc + 4 + (insn.i_format.simmediate << 2);
 193                else
 194                        epc += 8;
 195                nextpc = epc;
 196                break;
 197
 198                /* And now the FPA/cp1 branch instructions. */
 199        case cop1_op:
 200                kvm_err("%s: unsupported cop1_op\n", __func__);
 201                return -EINVAL;
 202
 203#ifdef CONFIG_CPU_MIPSR6
 204        /* R6 added the following compact branches with forbidden slots */
 205        case blezl_op:  /* POP26 */
 206        case bgtzl_op:  /* POP27 */
 207                /* only rt == 0 isn't compact branch */
 208                if (insn.i_format.rt != 0)
 209                        goto compact_branch;
 210                return -EINVAL;
 211        case pop10_op:
 212        case pop30_op:
 213                /* only rs == rt == 0 is reserved, rest are compact branches */
 214                if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
 215                        goto compact_branch;
 216                return -EINVAL;
 217        case pop66_op:
 218        case pop76_op:
 219                /* only rs == 0 isn't compact branch */
 220                if (insn.i_format.rs != 0)
 221                        goto compact_branch;
 222                return -EINVAL;
 223compact_branch:
 224                /*
 225                 * If we've hit an exception on the forbidden slot, then
 226                 * the branch must not have been taken.
 227                 */
 228                epc += 8;
 229                nextpc = epc;
 230                break;
 231#else
 232compact_branch:
 233                /* Fall through - Compact branches not supported before R6 */
 234#endif
 235        default:
 236                return -EINVAL;
 237        }
 238
 239        *out = nextpc;
 240        return 0;
 241}
 242
 243enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
 244{
 245        int err;
 246
 247        if (cause & CAUSEF_BD) {
 248                err = kvm_compute_return_epc(vcpu, vcpu->arch.pc,
 249                                             &vcpu->arch.pc);
 250                if (err)
 251                        return EMULATE_FAIL;
 252        } else {
 253                vcpu->arch.pc += 4;
 254        }
 255
 256        kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
 257
 258        return EMULATE_DONE;
 259}
 260
 261/**
 262 * kvm_get_badinstr() - Get bad instruction encoding.
 263 * @opc:        Guest pointer to faulting instruction.
 264 * @vcpu:       KVM VCPU information.
 265 *
 266 * Gets the instruction encoding of the faulting instruction, using the saved
 267 * BadInstr register value if it exists, otherwise falling back to reading guest
 268 * memory at @opc.
 269 *
 270 * Returns:     The instruction encoding of the faulting instruction.
 271 */
 272int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
 273{
 274        if (cpu_has_badinstr) {
 275                *out = vcpu->arch.host_cp0_badinstr;
 276                return 0;
 277        } else {
 278                WARN_ONCE(1, "CPU doesn't have BadInstr register\n");
 279                return -EINVAL;
 280        }
 281}
 282
 283/**
 284 * kvm_get_badinstrp() - Get bad prior instruction encoding.
 285 * @opc:        Guest pointer to prior faulting instruction.
 286 * @vcpu:       KVM VCPU information.
 287 *
 288 * Gets the instruction encoding of the prior faulting instruction (the branch
 289 * containing the delay slot which faulted), using the saved BadInstrP register
 290 * value if it exists, otherwise falling back to reading guest memory at @opc.
 291 *
 292 * Returns:     The instruction encoding of the prior faulting instruction.
 293 */
 294int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
 295{
 296        if (cpu_has_badinstrp) {
 297                *out = vcpu->arch.host_cp0_badinstrp;
 298                return 0;
 299        } else {
 300                WARN_ONCE(1, "CPU doesn't have BadInstrp register\n");
 301                return -EINVAL;
 302        }
 303}
 304
 305/**
 306 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
 307 * @vcpu:       Virtual CPU.
 308 *
 309 * Returns:     1 if the CP0_Count timer is disabled by either the guest
 310 *              CP0_Cause.DC bit or the count_ctl.DC bit.
 311 *              0 otherwise (in which case CP0_Count timer is running).
 312 */
 313int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
 314{
 315        struct mips_coproc *cop0 = vcpu->arch.cop0;
 316
 317        return  (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
 318                (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
 319}
 320
 321/**
 322 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
 323 *
 324 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
 325 *
 326 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 327 */
 328static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
 329{
 330        s64 now_ns, periods;
 331        u64 delta;
 332
 333        now_ns = ktime_to_ns(now);
 334        delta = now_ns + vcpu->arch.count_dyn_bias;
 335
 336        if (delta >= vcpu->arch.count_period) {
 337                /* If delta is out of safe range the bias needs adjusting */
 338                periods = div64_s64(now_ns, vcpu->arch.count_period);
 339                vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
 340                /* Recalculate delta with new bias */
 341                delta = now_ns + vcpu->arch.count_dyn_bias;
 342        }
 343
 344        /*
 345         * We've ensured that:
 346         *   delta < count_period
 347         *
 348         * Therefore the intermediate delta*count_hz will never overflow since
 349         * at the boundary condition:
 350         *   delta = count_period
 351         *   delta = NSEC_PER_SEC * 2^32 / count_hz
 352         *   delta * count_hz = NSEC_PER_SEC * 2^32
 353         */
 354        return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
 355}
 356
 357/**
 358 * kvm_mips_count_time() - Get effective current time.
 359 * @vcpu:       Virtual CPU.
 360 *
 361 * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
 362 * except when the master disable bit is set in count_ctl, in which case it is
 363 * count_resume, i.e. the time that the count was disabled.
 364 *
 365 * Returns:     Effective monotonic ktime for CP0_Count.
 366 */
 367static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
 368{
 369        if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
 370                return vcpu->arch.count_resume;
 371
 372        return ktime_get();
 373}
 374
 375/**
 376 * kvm_mips_read_count_running() - Read the current count value as if running.
 377 * @vcpu:       Virtual CPU.
 378 * @now:        Kernel time to read CP0_Count at.
 379 *
 380 * Returns the current guest CP0_Count register at time @now and handles if the
 381 * timer interrupt is pending and hasn't been handled yet.
 382 *
 383 * Returns:     The current value of the guest CP0_Count register.
 384 */
 385static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
 386{
 387        struct mips_coproc *cop0 = vcpu->arch.cop0;
 388        ktime_t expires, threshold;
 389        u32 count, compare;
 390        int running;
 391
 392        /* Calculate the biased and scaled guest CP0_Count */
 393        count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
 394        compare = kvm_read_c0_guest_compare(cop0);
 395
 396        /*
 397         * Find whether CP0_Count has reached the closest timer interrupt. If
 398         * not, we shouldn't inject it.
 399         */
 400        if ((s32)(count - compare) < 0)
 401                return count;
 402
 403        /*
 404         * The CP0_Count we're going to return has already reached the closest
 405         * timer interrupt. Quickly check if it really is a new interrupt by
 406         * looking at whether the interval until the hrtimer expiry time is
 407         * less than 1/4 of the timer period.
 408         */
 409        expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
 410        threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
 411        if (ktime_before(expires, threshold)) {
 412                /*
 413                 * Cancel it while we handle it so there's no chance of
 414                 * interference with the timeout handler.
 415                 */
 416                running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
 417
 418                /* Nothing should be waiting on the timeout */
 419                kvm_mips_callbacks->queue_timer_int(vcpu);
 420
 421                /*
 422                 * Restart the timer if it was running based on the expiry time
 423                 * we read, so that we don't push it back 2 periods.
 424                 */
 425                if (running) {
 426                        expires = ktime_add_ns(expires,
 427                                               vcpu->arch.count_period);
 428                        hrtimer_start(&vcpu->arch.comparecount_timer, expires,
 429                                      HRTIMER_MODE_ABS);
 430                }
 431        }
 432
 433        return count;
 434}
 435
 436/**
 437 * kvm_mips_read_count() - Read the current count value.
 438 * @vcpu:       Virtual CPU.
 439 *
 440 * Read the current guest CP0_Count value, taking into account whether the timer
 441 * is stopped.
 442 *
 443 * Returns:     The current guest CP0_Count value.
 444 */
 445u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
 446{
 447        struct mips_coproc *cop0 = vcpu->arch.cop0;
 448
 449        /* If count disabled just read static copy of count */
 450        if (kvm_mips_count_disabled(vcpu))
 451                return kvm_read_c0_guest_count(cop0);
 452
 453        return kvm_mips_read_count_running(vcpu, ktime_get());
 454}
 455
 456/**
 457 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
 458 * @vcpu:       Virtual CPU.
 459 * @count:      Output pointer for CP0_Count value at point of freeze.
 460 *
 461 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
 462 * at the point it was frozen. It is guaranteed that any pending interrupts at
 463 * the point it was frozen are handled, and none after that point.
 464 *
 465 * This is useful where the time/CP0_Count is needed in the calculation of the
 466 * new parameters.
 467 *
 468 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 469 *
 470 * Returns:     The ktime at the point of freeze.
 471 */
 472ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
 473{
 474        ktime_t now;
 475
 476        /* stop hrtimer before finding time */
 477        hrtimer_cancel(&vcpu->arch.comparecount_timer);
 478        now = ktime_get();
 479
 480        /* find count at this point and handle pending hrtimer */
 481        *count = kvm_mips_read_count_running(vcpu, now);
 482
 483        return now;
 484}
 485
 486/**
 487 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
 488 * @vcpu:       Virtual CPU.
 489 * @now:        ktime at point of resume.
 490 * @count:      CP0_Count at point of resume.
 491 *
 492 * Resumes the timer and updates the timer expiry based on @now and @count.
 493 * This can be used in conjunction with kvm_mips_freeze_timer() when timer
 494 * parameters need to be changed.
 495 *
 496 * It is guaranteed that a timer interrupt immediately after resume will be
 497 * handled, but not if CP_Compare is exactly at @count. That case is already
 498 * handled by kvm_mips_freeze_timer().
 499 *
 500 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 501 */
 502static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
 503                                    ktime_t now, u32 count)
 504{
 505        struct mips_coproc *cop0 = vcpu->arch.cop0;
 506        u32 compare;
 507        u64 delta;
 508        ktime_t expire;
 509
 510        /* Calculate timeout (wrap 0 to 2^32) */
 511        compare = kvm_read_c0_guest_compare(cop0);
 512        delta = (u64)(u32)(compare - count - 1) + 1;
 513        delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
 514        expire = ktime_add_ns(now, delta);
 515
 516        /* Update hrtimer to use new timeout */
 517        hrtimer_cancel(&vcpu->arch.comparecount_timer);
 518        hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
 519}
 520
 521/**
 522 * kvm_mips_restore_hrtimer() - Restore hrtimer after a gap, updating expiry.
 523 * @vcpu:       Virtual CPU.
 524 * @before:     Time before Count was saved, lower bound of drift calculation.
 525 * @count:      CP0_Count at point of restore.
 526 * @min_drift:  Minimum amount of drift permitted before correction.
 527 *              Must be <= 0.
 528 *
 529 * Restores the timer from a particular @count, accounting for drift. This can
 530 * be used in conjunction with kvm_mips_freeze_timer() when a hardware timer is
 531 * to be used for a period of time, but the exact ktime corresponding to the
 532 * final Count that must be restored is not known.
 533 *
 534 * It is gauranteed that a timer interrupt immediately after restore will be
 535 * handled, but not if CP0_Compare is exactly at @count. That case should
 536 * already be handled when the hardware timer state is saved.
 537 *
 538 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is not
 539 * stopped).
 540 *
 541 * Returns:     Amount of correction to count_bias due to drift.
 542 */
 543int kvm_mips_restore_hrtimer(struct kvm_vcpu *vcpu, ktime_t before,
 544                             u32 count, int min_drift)
 545{
 546        ktime_t now, count_time;
 547        u32 now_count, before_count;
 548        u64 delta;
 549        int drift, ret = 0;
 550
 551        /* Calculate expected count at before */
 552        before_count = vcpu->arch.count_bias +
 553                        kvm_mips_ktime_to_count(vcpu, before);
 554
 555        /*
 556         * Detect significantly negative drift, where count is lower than
 557         * expected. Some negative drift is expected when hardware counter is
 558         * set after kvm_mips_freeze_timer(), and it is harmless to allow the
 559         * time to jump forwards a little, within reason. If the drift is too
 560         * significant, adjust the bias to avoid a big Guest.CP0_Count jump.
 561         */
 562        drift = count - before_count;
 563        if (drift < min_drift) {
 564                count_time = before;
 565                vcpu->arch.count_bias += drift;
 566                ret = drift;
 567                goto resume;
 568        }
 569
 570        /* Calculate expected count right now */
 571        now = ktime_get();
 572        now_count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
 573
 574        /*
 575         * Detect positive drift, where count is higher than expected, and
 576         * adjust the bias to avoid guest time going backwards.
 577         */
 578        drift = count - now_count;
 579        if (drift > 0) {
 580                count_time = now;
 581                vcpu->arch.count_bias += drift;
 582                ret = drift;
 583                goto resume;
 584        }
 585
 586        /* Subtract nanosecond delta to find ktime when count was read */
 587        delta = (u64)(u32)(now_count - count);
 588        delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
 589        count_time = ktime_sub_ns(now, delta);
 590
 591resume:
 592        /* Resume using the calculated ktime */
 593        kvm_mips_resume_hrtimer(vcpu, count_time, count);
 594        return ret;
 595}
 596
 597/**
 598 * kvm_mips_write_count() - Modify the count and update timer.
 599 * @vcpu:       Virtual CPU.
 600 * @count:      Guest CP0_Count value to set.
 601 *
 602 * Sets the CP0_Count value and updates the timer accordingly.
 603 */
 604void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
 605{
 606        struct mips_coproc *cop0 = vcpu->arch.cop0;
 607        ktime_t now;
 608
 609        /* Calculate bias */
 610        now = kvm_mips_count_time(vcpu);
 611        vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
 612
 613        if (kvm_mips_count_disabled(vcpu))
 614                /* The timer's disabled, adjust the static count */
 615                kvm_write_c0_guest_count(cop0, count);
 616        else
 617                /* Update timeout */
 618                kvm_mips_resume_hrtimer(vcpu, now, count);
 619}
 620
 621/**
 622 * kvm_mips_init_count() - Initialise timer.
 623 * @vcpu:       Virtual CPU.
 624 * @count_hz:   Frequency of timer.
 625 *
 626 * Initialise the timer to the specified frequency, zero it, and set it going if
 627 * it's enabled.
 628 */
 629void kvm_mips_init_count(struct kvm_vcpu *vcpu, unsigned long count_hz)
 630{
 631        vcpu->arch.count_hz = count_hz;
 632        vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
 633        vcpu->arch.count_dyn_bias = 0;
 634
 635        /* Starting at 0 */
 636        kvm_mips_write_count(vcpu, 0);
 637}
 638
 639/**
 640 * kvm_mips_set_count_hz() - Update the frequency of the timer.
 641 * @vcpu:       Virtual CPU.
 642 * @count_hz:   Frequency of CP0_Count timer in Hz.
 643 *
 644 * Change the frequency of the CP0_Count timer. This is done atomically so that
 645 * CP0_Count is continuous and no timer interrupt is lost.
 646 *
 647 * Returns:     -EINVAL if @count_hz is out of range.
 648 *              0 on success.
 649 */
 650int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
 651{
 652        struct mips_coproc *cop0 = vcpu->arch.cop0;
 653        int dc;
 654        ktime_t now;
 655        u32 count;
 656
 657        /* ensure the frequency is in a sensible range... */
 658        if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
 659                return -EINVAL;
 660        /* ... and has actually changed */
 661        if (vcpu->arch.count_hz == count_hz)
 662                return 0;
 663
 664        /* Safely freeze timer so we can keep it continuous */
 665        dc = kvm_mips_count_disabled(vcpu);
 666        if (dc) {
 667                now = kvm_mips_count_time(vcpu);
 668                count = kvm_read_c0_guest_count(cop0);
 669        } else {
 670                now = kvm_mips_freeze_hrtimer(vcpu, &count);
 671        }
 672
 673        /* Update the frequency */
 674        vcpu->arch.count_hz = count_hz;
 675        vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
 676        vcpu->arch.count_dyn_bias = 0;
 677
 678        /* Calculate adjusted bias so dynamic count is unchanged */
 679        vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
 680
 681        /* Update and resume hrtimer */
 682        if (!dc)
 683                kvm_mips_resume_hrtimer(vcpu, now, count);
 684        return 0;
 685}
 686
 687/**
 688 * kvm_mips_write_compare() - Modify compare and update timer.
 689 * @vcpu:       Virtual CPU.
 690 * @compare:    New CP0_Compare value.
 691 * @ack:        Whether to acknowledge timer interrupt.
 692 *
 693 * Update CP0_Compare to a new value and update the timeout.
 694 * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
 695 * any pending timer interrupt is preserved.
 696 */
 697void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
 698{
 699        struct mips_coproc *cop0 = vcpu->arch.cop0;
 700        int dc;
 701        u32 old_compare = kvm_read_c0_guest_compare(cop0);
 702        s32 delta = compare - old_compare;
 703        u32 cause;
 704        ktime_t now = ktime_set(0, 0); /* silence bogus GCC warning */
 705        u32 count;
 706
 707        /* if unchanged, must just be an ack */
 708        if (old_compare == compare) {
 709                if (!ack)
 710                        return;
 711                kvm_mips_callbacks->dequeue_timer_int(vcpu);
 712                kvm_write_c0_guest_compare(cop0, compare);
 713                return;
 714        }
 715
 716        /*
 717         * If guest CP0_Compare moves forward, CP0_GTOffset should be adjusted
 718         * too to prevent guest CP0_Count hitting guest CP0_Compare.
 719         *
 720         * The new GTOffset corresponds to the new value of CP0_Compare, and is
 721         * set prior to it being written into the guest context. We disable
 722         * preemption until the new value is written to prevent restore of a
 723         * GTOffset corresponding to the old CP0_Compare value.
 724         */
 725        if (delta > 0) {
 726                preempt_disable();
 727                write_c0_gtoffset(compare - read_c0_count());
 728                back_to_back_c0_hazard();
 729        }
 730
 731        /* freeze_hrtimer() takes care of timer interrupts <= count */
 732        dc = kvm_mips_count_disabled(vcpu);
 733        if (!dc)
 734                now = kvm_mips_freeze_hrtimer(vcpu, &count);
 735
 736        if (ack)
 737                kvm_mips_callbacks->dequeue_timer_int(vcpu);
 738        else
 739                /*
 740                 * With VZ, writing CP0_Compare acks (clears) CP0_Cause.TI, so
 741                 * preserve guest CP0_Cause.TI if we don't want to ack it.
 742                 */
 743                cause = kvm_read_c0_guest_cause(cop0);
 744
 745        kvm_write_c0_guest_compare(cop0, compare);
 746
 747        if (delta > 0)
 748                preempt_enable();
 749
 750        back_to_back_c0_hazard();
 751
 752        if (!ack && cause & CAUSEF_TI)
 753                kvm_write_c0_guest_cause(cop0, cause);
 754
 755        /* resume_hrtimer() takes care of timer interrupts > count */
 756        if (!dc)
 757                kvm_mips_resume_hrtimer(vcpu, now, count);
 758
 759        /*
 760         * If guest CP0_Compare is moving backward, we delay CP0_GTOffset change
 761         * until after the new CP0_Compare is written, otherwise new guest
 762         * CP0_Count could hit new guest CP0_Compare.
 763         */
 764        if (delta <= 0)
 765                write_c0_gtoffset(compare - read_c0_count());
 766}
 767
 768/**
 769 * kvm_mips_count_disable() - Disable count.
 770 * @vcpu:       Virtual CPU.
 771 *
 772 * Disable the CP0_Count timer. A timer interrupt on or before the final stop
 773 * time will be handled but not after.
 774 *
 775 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
 776 * count_ctl.DC has been set (count disabled).
 777 *
 778 * Returns:     The time that the timer was stopped.
 779 */
 780static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
 781{
 782        struct mips_coproc *cop0 = vcpu->arch.cop0;
 783        u32 count;
 784        ktime_t now;
 785
 786        /* Stop hrtimer */
 787        hrtimer_cancel(&vcpu->arch.comparecount_timer);
 788
 789        /* Set the static count from the dynamic count, handling pending TI */
 790        now = ktime_get();
 791        count = kvm_mips_read_count_running(vcpu, now);
 792        kvm_write_c0_guest_count(cop0, count);
 793
 794        return now;
 795}
 796
 797/**
 798 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
 799 * @vcpu:       Virtual CPU.
 800 *
 801 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
 802 * before the final stop time will be handled if the timer isn't disabled by
 803 * count_ctl.DC, but not after.
 804 *
 805 * Assumes CP0_Cause.DC is clear (count enabled).
 806 */
 807void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
 808{
 809        struct mips_coproc *cop0 = vcpu->arch.cop0;
 810
 811        kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
 812        if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
 813                kvm_mips_count_disable(vcpu);
 814}
 815
 816/**
 817 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
 818 * @vcpu:       Virtual CPU.
 819 *
 820 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
 821 * the start time will be handled if the timer isn't disabled by count_ctl.DC,
 822 * potentially before even returning, so the caller should be careful with
 823 * ordering of CP0_Cause modifications so as not to lose it.
 824 *
 825 * Assumes CP0_Cause.DC is set (count disabled).
 826 */
 827void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
 828{
 829        struct mips_coproc *cop0 = vcpu->arch.cop0;
 830        u32 count;
 831
 832        kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
 833
 834        /*
 835         * Set the dynamic count to match the static count.
 836         * This starts the hrtimer if count_ctl.DC allows it.
 837         * Otherwise it conveniently updates the biases.
 838         */
 839        count = kvm_read_c0_guest_count(cop0);
 840        kvm_mips_write_count(vcpu, count);
 841}
 842
 843/**
 844 * kvm_mips_set_count_ctl() - Update the count control KVM register.
 845 * @vcpu:       Virtual CPU.
 846 * @count_ctl:  Count control register new value.
 847 *
 848 * Set the count control KVM register. The timer is updated accordingly.
 849 *
 850 * Returns:     -EINVAL if reserved bits are set.
 851 *              0 on success.
 852 */
 853int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
 854{
 855        struct mips_coproc *cop0 = vcpu->arch.cop0;
 856        s64 changed = count_ctl ^ vcpu->arch.count_ctl;
 857        s64 delta;
 858        ktime_t expire, now;
 859        u32 count, compare;
 860
 861        /* Only allow defined bits to be changed */
 862        if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
 863                return -EINVAL;
 864
 865        /* Apply new value */
 866        vcpu->arch.count_ctl = count_ctl;
 867
 868        /* Master CP0_Count disable */
 869        if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
 870                /* Is CP0_Cause.DC already disabling CP0_Count? */
 871                if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
 872                        if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
 873                                /* Just record the current time */
 874                                vcpu->arch.count_resume = ktime_get();
 875                } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
 876                        /* disable timer and record current time */
 877                        vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
 878                } else {
 879                        /*
 880                         * Calculate timeout relative to static count at resume
 881                         * time (wrap 0 to 2^32).
 882                         */
 883                        count = kvm_read_c0_guest_count(cop0);
 884                        compare = kvm_read_c0_guest_compare(cop0);
 885                        delta = (u64)(u32)(compare - count - 1) + 1;
 886                        delta = div_u64(delta * NSEC_PER_SEC,
 887                                        vcpu->arch.count_hz);
 888                        expire = ktime_add_ns(vcpu->arch.count_resume, delta);
 889
 890                        /* Handle pending interrupt */
 891                        now = ktime_get();
 892                        if (ktime_compare(now, expire) >= 0)
 893                                /* Nothing should be waiting on the timeout */
 894                                kvm_mips_callbacks->queue_timer_int(vcpu);
 895
 896                        /* Resume hrtimer without changing bias */
 897                        count = kvm_mips_read_count_running(vcpu, now);
 898                        kvm_mips_resume_hrtimer(vcpu, now, count);
 899                }
 900        }
 901
 902        return 0;
 903}
 904
 905/**
 906 * kvm_mips_set_count_resume() - Update the count resume KVM register.
 907 * @vcpu:               Virtual CPU.
 908 * @count_resume:       Count resume register new value.
 909 *
 910 * Set the count resume KVM register.
 911 *
 912 * Returns:     -EINVAL if out of valid range (0..now).
 913 *              0 on success.
 914 */
 915int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
 916{
 917        /*
 918         * It doesn't make sense for the resume time to be in the future, as it
 919         * would be possible for the next interrupt to be more than a full
 920         * period in the future.
 921         */
 922        if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
 923                return -EINVAL;
 924
 925        vcpu->arch.count_resume = ns_to_ktime(count_resume);
 926        return 0;
 927}
 928
 929/**
 930 * kvm_mips_count_timeout() - Push timer forward on timeout.
 931 * @vcpu:       Virtual CPU.
 932 *
 933 * Handle an hrtimer event by push the hrtimer forward a period.
 934 *
 935 * Returns:     The hrtimer_restart value to return to the hrtimer subsystem.
 936 */
 937enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
 938{
 939        /* Add the Count period to the current expiry time */
 940        hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
 941                               vcpu->arch.count_period);
 942        return HRTIMER_RESTART;
 943}
 944
 945enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
 946{
 947        kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
 948                  vcpu->arch.pending_exceptions);
 949
 950        ++vcpu->stat.wait_exits;
 951        trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
 952        if (!vcpu->arch.pending_exceptions) {
 953                kvm_vz_lose_htimer(vcpu);
 954                vcpu->arch.wait = 1;
 955                kvm_vcpu_block(vcpu);
 956
 957                /*
 958                 * We we are runnable, then definitely go off to user space to
 959                 * check if any I/O interrupts are pending.
 960                 */
 961                if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
 962                        kvm_clear_request(KVM_REQ_UNHALT, vcpu);
 963                        vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
 964                }
 965        }
 966
 967        return EMULATE_DONE;
 968}
 969
 970enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
 971                                             u32 cause,
 972                                             struct kvm_vcpu *vcpu)
 973{
 974        int r;
 975        enum emulation_result er;
 976        u32 rt;
 977        struct kvm_run *run = vcpu->run;
 978        void *data = run->mmio.data;
 979        unsigned int imme;
 980        unsigned long curr_pc;
 981
 982        /*
 983         * Update PC and hold onto current PC in case there is
 984         * an error and we want to rollback the PC
 985         */
 986        curr_pc = vcpu->arch.pc;
 987        er = update_pc(vcpu, cause);
 988        if (er == EMULATE_FAIL)
 989                return er;
 990
 991        rt = inst.i_format.rt;
 992
 993        run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
 994                                                vcpu->arch.host_cp0_badvaddr);
 995        if (run->mmio.phys_addr == KVM_INVALID_ADDR)
 996                goto out_fail;
 997
 998        switch (inst.i_format.opcode) {
 999#if defined(CONFIG_64BIT)
1000        case sd_op:
1001                run->mmio.len = 8;
1002                *(u64 *)data = vcpu->arch.gprs[rt];
1003
1004                kvm_debug("[%#lx] OP_SD: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1005                          vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1006                          vcpu->arch.gprs[rt], *(u64 *)data);
1007                break;
1008#endif
1009
1010        case sw_op:
1011                run->mmio.len = 4;
1012                *(u32 *)data = vcpu->arch.gprs[rt];
1013
1014                kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1015                          vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1016                          vcpu->arch.gprs[rt], *(u32 *)data);
1017                break;
1018
1019        case sh_op:
1020                run->mmio.len = 2;
1021                *(u16 *)data = vcpu->arch.gprs[rt];
1022
1023                kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1024                          vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1025                          vcpu->arch.gprs[rt], *(u16 *)data);
1026                break;
1027
1028        case sb_op:
1029                run->mmio.len = 1;
1030                *(u8 *)data = vcpu->arch.gprs[rt];
1031
1032                kvm_debug("[%#lx] OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1033                          vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1034                          vcpu->arch.gprs[rt], *(u8 *)data);
1035                break;
1036
1037        case swl_op:
1038                run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1039                                        vcpu->arch.host_cp0_badvaddr) & (~0x3);
1040                run->mmio.len = 4;
1041                imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1042                switch (imme) {
1043                case 0:
1044                        *(u32 *)data = ((*(u32 *)data) & 0xffffff00) |
1045                                        (vcpu->arch.gprs[rt] >> 24);
1046                        break;
1047                case 1:
1048                        *(u32 *)data = ((*(u32 *)data) & 0xffff0000) |
1049                                        (vcpu->arch.gprs[rt] >> 16);
1050                        break;
1051                case 2:
1052                        *(u32 *)data = ((*(u32 *)data) & 0xff000000) |
1053                                        (vcpu->arch.gprs[rt] >> 8);
1054                        break;
1055                case 3:
1056                        *(u32 *)data = vcpu->arch.gprs[rt];
1057                        break;
1058                default:
1059                        break;
1060                }
1061
1062                kvm_debug("[%#lx] OP_SWL: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1063                          vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1064                          vcpu->arch.gprs[rt], *(u32 *)data);
1065                break;
1066
1067        case swr_op:
1068                run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1069                                        vcpu->arch.host_cp0_badvaddr) & (~0x3);
1070                run->mmio.len = 4;
1071                imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1072                switch (imme) {
1073                case 0:
1074                        *(u32 *)data = vcpu->arch.gprs[rt];
1075                        break;
1076                case 1:
1077                        *(u32 *)data = ((*(u32 *)data) & 0xff) |
1078                                        (vcpu->arch.gprs[rt] << 8);
1079                        break;
1080                case 2:
1081                        *(u32 *)data = ((*(u32 *)data) & 0xffff) |
1082                                        (vcpu->arch.gprs[rt] << 16);
1083                        break;
1084                case 3:
1085                        *(u32 *)data = ((*(u32 *)data) & 0xffffff) |
1086                                        (vcpu->arch.gprs[rt] << 24);
1087                        break;
1088                default:
1089                        break;
1090                }
1091
1092                kvm_debug("[%#lx] OP_SWR: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1093                          vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1094                          vcpu->arch.gprs[rt], *(u32 *)data);
1095                break;
1096
1097#if defined(CONFIG_64BIT)
1098        case sdl_op:
1099                run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1100                                        vcpu->arch.host_cp0_badvaddr) & (~0x7);
1101
1102                run->mmio.len = 8;
1103                imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1104                switch (imme) {
1105                case 0:
1106                        *(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff00) |
1107                                        ((vcpu->arch.gprs[rt] >> 56) & 0xff);
1108                        break;
1109                case 1:
1110                        *(u64 *)data = ((*(u64 *)data) & 0xffffffffffff0000) |
1111                                        ((vcpu->arch.gprs[rt] >> 48) & 0xffff);
1112                        break;
1113                case 2:
1114                        *(u64 *)data = ((*(u64 *)data) & 0xffffffffff000000) |
1115                                        ((vcpu->arch.gprs[rt] >> 40) & 0xffffff);
1116                        break;
1117                case 3:
1118                        *(u64 *)data = ((*(u64 *)data) & 0xffffffff00000000) |
1119                                        ((vcpu->arch.gprs[rt] >> 32) & 0xffffffff);
1120                        break;
1121                case 4:
1122                        *(u64 *)data = ((*(u64 *)data) & 0xffffff0000000000) |
1123                                        ((vcpu->arch.gprs[rt] >> 24) & 0xffffffffff);
1124                        break;
1125                case 5:
1126                        *(u64 *)data = ((*(u64 *)data) & 0xffff000000000000) |
1127                                        ((vcpu->arch.gprs[rt] >> 16) & 0xffffffffffff);
1128                        break;
1129                case 6:
1130                        *(u64 *)data = ((*(u64 *)data) & 0xff00000000000000) |
1131                                        ((vcpu->arch.gprs[rt] >> 8) & 0xffffffffffffff);
1132                        break;
1133                case 7:
1134                        *(u64 *)data = vcpu->arch.gprs[rt];
1135                        break;
1136                default:
1137                        break;
1138                }
1139
1140                kvm_debug("[%#lx] OP_SDL: eaddr: %#lx, gpr: %#lx, data: %llx\n",
1141                          vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1142                          vcpu->arch.gprs[rt], *(u64 *)data);
1143                break;
1144
1145        case sdr_op:
1146                run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1147                                        vcpu->arch.host_cp0_badvaddr) & (~0x7);
1148
1149                run->mmio.len = 8;
1150                imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1151                switch (imme) {
1152                case 0:
1153                        *(u64 *)data = vcpu->arch.gprs[rt];
1154                        break;
1155                case 1:
1156                        *(u64 *)data = ((*(u64 *)data) & 0xff) |
1157                                        (vcpu->arch.gprs[rt] << 8);
1158                        break;
1159                case 2:
1160                        *(u64 *)data = ((*(u64 *)data) & 0xffff) |
1161                                        (vcpu->arch.gprs[rt] << 16);
1162                        break;
1163                case 3:
1164                        *(u64 *)data = ((*(u64 *)data) & 0xffffff) |
1165                                        (vcpu->arch.gprs[rt] << 24);
1166                        break;
1167                case 4:
1168                        *(u64 *)data = ((*(u64 *)data) & 0xffffffff) |
1169                                        (vcpu->arch.gprs[rt] << 32);
1170                        break;
1171                case 5:
1172                        *(u64 *)data = ((*(u64 *)data) & 0xffffffffff) |
1173                                        (vcpu->arch.gprs[rt] << 40);
1174                        break;
1175                case 6:
1176                        *(u64 *)data = ((*(u64 *)data) & 0xffffffffffff) |
1177                                        (vcpu->arch.gprs[rt] << 48);
1178                        break;
1179                case 7:
1180                        *(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff) |
1181                                        (vcpu->arch.gprs[rt] << 56);
1182                        break;
1183                default:
1184                        break;
1185                }
1186
1187                kvm_debug("[%#lx] OP_SDR: eaddr: %#lx, gpr: %#lx, data: %llx\n",
1188                          vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1189                          vcpu->arch.gprs[rt], *(u64 *)data);
1190                break;
1191#endif
1192
1193#ifdef CONFIG_CPU_LOONGSON64
1194        case sdc2_op:
1195                rt = inst.loongson3_lsdc2_format.rt;
1196                switch (inst.loongson3_lsdc2_format.opcode1) {
1197                /*
1198                 * Loongson-3 overridden sdc2 instructions.
1199                 * opcode1              instruction
1200                 *   0x0          gssbx: store 1 bytes from GPR
1201                 *   0x1          gsshx: store 2 bytes from GPR
1202                 *   0x2          gsswx: store 4 bytes from GPR
1203                 *   0x3          gssdx: store 8 bytes from GPR
1204                 */
1205                case 0x0:
1206                        run->mmio.len = 1;
1207                        *(u8 *)data = vcpu->arch.gprs[rt];
1208
1209                        kvm_debug("[%#lx] OP_GSSBX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1210                                  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1211                                  vcpu->arch.gprs[rt], *(u8 *)data);
1212                        break;
1213                case 0x1:
1214                        run->mmio.len = 2;
1215                        *(u16 *)data = vcpu->arch.gprs[rt];
1216
1217                        kvm_debug("[%#lx] OP_GSSSHX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1218                                  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1219                                  vcpu->arch.gprs[rt], *(u16 *)data);
1220                        break;
1221                case 0x2:
1222                        run->mmio.len = 4;
1223                        *(u32 *)data = vcpu->arch.gprs[rt];
1224
1225                        kvm_debug("[%#lx] OP_GSSWX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1226                                  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1227                                  vcpu->arch.gprs[rt], *(u32 *)data);
1228                        break;
1229                case 0x3:
1230                        run->mmio.len = 8;
1231                        *(u64 *)data = vcpu->arch.gprs[rt];
1232
1233                        kvm_debug("[%#lx] OP_GSSDX: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1234                                  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1235                                  vcpu->arch.gprs[rt], *(u64 *)data);
1236                        break;
1237                default:
1238                        kvm_err("Godson Extended GS-Store not yet supported (inst=0x%08x)\n",
1239                                inst.word);
1240                        break;
1241                }
1242                break;
1243#endif
1244        default:
1245                kvm_err("Store not yet supported (inst=0x%08x)\n",
1246                        inst.word);
1247                goto out_fail;
1248        }
1249
1250        vcpu->mmio_needed = 1;
1251        run->mmio.is_write = 1;
1252        vcpu->mmio_is_write = 1;
1253
1254        r = kvm_io_bus_write(vcpu, KVM_MMIO_BUS,
1255                        run->mmio.phys_addr, run->mmio.len, data);
1256
1257        if (!r) {
1258                vcpu->mmio_needed = 0;
1259                return EMULATE_DONE;
1260        }
1261
1262        return EMULATE_DO_MMIO;
1263
1264out_fail:
1265        /* Rollback PC if emulation was unsuccessful */
1266        vcpu->arch.pc = curr_pc;
1267        return EMULATE_FAIL;
1268}
1269
1270enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
1271                                            u32 cause, struct kvm_vcpu *vcpu)
1272{
1273        struct kvm_run *run = vcpu->run;
1274        int r;
1275        enum emulation_result er;
1276        unsigned long curr_pc;
1277        u32 op, rt;
1278        unsigned int imme;
1279
1280        rt = inst.i_format.rt;
1281        op = inst.i_format.opcode;
1282
1283        /*
1284         * Find the resume PC now while we have safe and easy access to the
1285         * prior branch instruction, and save it for
1286         * kvm_mips_complete_mmio_load() to restore later.
1287         */
1288        curr_pc = vcpu->arch.pc;
1289        er = update_pc(vcpu, cause);
1290        if (er == EMULATE_FAIL)
1291                return er;
1292        vcpu->arch.io_pc = vcpu->arch.pc;
1293        vcpu->arch.pc = curr_pc;
1294
1295        vcpu->arch.io_gpr = rt;
1296
1297        run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1298                                                vcpu->arch.host_cp0_badvaddr);
1299        if (run->mmio.phys_addr == KVM_INVALID_ADDR)
1300                return EMULATE_FAIL;
1301
1302        vcpu->mmio_needed = 2;  /* signed */
1303        switch (op) {
1304#if defined(CONFIG_64BIT)
1305        case ld_op:
1306                run->mmio.len = 8;
1307                break;
1308
1309        case lwu_op:
1310                vcpu->mmio_needed = 1;  /* unsigned */
1311                fallthrough;
1312#endif
1313        case lw_op:
1314                run->mmio.len = 4;
1315                break;
1316
1317        case lhu_op:
1318                vcpu->mmio_needed = 1;  /* unsigned */
1319                fallthrough;
1320        case lh_op:
1321                run->mmio.len = 2;
1322                break;
1323
1324        case lbu_op:
1325                vcpu->mmio_needed = 1;  /* unsigned */
1326                fallthrough;
1327        case lb_op:
1328                run->mmio.len = 1;
1329                break;
1330
1331        case lwl_op:
1332                run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1333                                        vcpu->arch.host_cp0_badvaddr) & (~0x3);
1334
1335                run->mmio.len = 4;
1336                imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1337                switch (imme) {
1338                case 0:
1339                        vcpu->mmio_needed = 3;  /* 1 byte */
1340                        break;
1341                case 1:
1342                        vcpu->mmio_needed = 4;  /* 2 bytes */
1343                        break;
1344                case 2:
1345                        vcpu->mmio_needed = 5;  /* 3 bytes */
1346                        break;
1347                case 3:
1348                        vcpu->mmio_needed = 6;  /* 4 bytes */
1349                        break;
1350                default:
1351                        break;
1352                }
1353                break;
1354
1355        case lwr_op:
1356                run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1357                                        vcpu->arch.host_cp0_badvaddr) & (~0x3);
1358
1359                run->mmio.len = 4;
1360                imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1361                switch (imme) {
1362                case 0:
1363                        vcpu->mmio_needed = 7;  /* 4 bytes */
1364                        break;
1365                case 1:
1366                        vcpu->mmio_needed = 8;  /* 3 bytes */
1367                        break;
1368                case 2:
1369                        vcpu->mmio_needed = 9;  /* 2 bytes */
1370                        break;
1371                case 3:
1372                        vcpu->mmio_needed = 10; /* 1 byte */
1373                        break;
1374                default:
1375                        break;
1376                }
1377                break;
1378
1379#if defined(CONFIG_64BIT)
1380        case ldl_op:
1381                run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1382                                        vcpu->arch.host_cp0_badvaddr) & (~0x7);
1383
1384                run->mmio.len = 8;
1385                imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1386                switch (imme) {
1387                case 0:
1388                        vcpu->mmio_needed = 11; /* 1 byte */
1389                        break;
1390                case 1:
1391                        vcpu->mmio_needed = 12; /* 2 bytes */
1392                        break;
1393                case 2:
1394                        vcpu->mmio_needed = 13; /* 3 bytes */
1395                        break;
1396                case 3:
1397                        vcpu->mmio_needed = 14; /* 4 bytes */
1398                        break;
1399                case 4:
1400                        vcpu->mmio_needed = 15; /* 5 bytes */
1401                        break;
1402                case 5:
1403                        vcpu->mmio_needed = 16; /* 6 bytes */
1404                        break;
1405                case 6:
1406                        vcpu->mmio_needed = 17; /* 7 bytes */
1407                        break;
1408                case 7:
1409                        vcpu->mmio_needed = 18; /* 8 bytes */
1410                        break;
1411                default:
1412                        break;
1413                }
1414                break;
1415
1416        case ldr_op:
1417                run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1418                                        vcpu->arch.host_cp0_badvaddr) & (~0x7);
1419
1420                run->mmio.len = 8;
1421                imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1422                switch (imme) {
1423                case 0:
1424                        vcpu->mmio_needed = 19; /* 8 bytes */
1425                        break;
1426                case 1:
1427                        vcpu->mmio_needed = 20; /* 7 bytes */
1428                        break;
1429                case 2:
1430                        vcpu->mmio_needed = 21; /* 6 bytes */
1431                        break;
1432                case 3:
1433                        vcpu->mmio_needed = 22; /* 5 bytes */
1434                        break;
1435                case 4:
1436                        vcpu->mmio_needed = 23; /* 4 bytes */
1437                        break;
1438                case 5:
1439                        vcpu->mmio_needed = 24; /* 3 bytes */
1440                        break;
1441                case 6:
1442                        vcpu->mmio_needed = 25; /* 2 bytes */
1443                        break;
1444                case 7:
1445                        vcpu->mmio_needed = 26; /* 1 byte */
1446                        break;
1447                default:
1448                        break;
1449                }
1450                break;
1451#endif
1452
1453#ifdef CONFIG_CPU_LOONGSON64
1454        case ldc2_op:
1455                rt = inst.loongson3_lsdc2_format.rt;
1456                switch (inst.loongson3_lsdc2_format.opcode1) {
1457                /*
1458                 * Loongson-3 overridden ldc2 instructions.
1459                 * opcode1              instruction
1460                 *   0x0          gslbx: store 1 bytes from GPR
1461                 *   0x1          gslhx: store 2 bytes from GPR
1462                 *   0x2          gslwx: store 4 bytes from GPR
1463                 *   0x3          gsldx: store 8 bytes from GPR
1464                 */
1465                case 0x0:
1466                        run->mmio.len = 1;
1467                        vcpu->mmio_needed = 27; /* signed */
1468                        break;
1469                case 0x1:
1470                        run->mmio.len = 2;
1471                        vcpu->mmio_needed = 28; /* signed */
1472                        break;
1473                case 0x2:
1474                        run->mmio.len = 4;
1475                        vcpu->mmio_needed = 29; /* signed */
1476                        break;
1477                case 0x3:
1478                        run->mmio.len = 8;
1479                        vcpu->mmio_needed = 30; /* signed */
1480                        break;
1481                default:
1482                        kvm_err("Godson Extended GS-Load for float not yet supported (inst=0x%08x)\n",
1483                                inst.word);
1484                        break;
1485                }
1486                break;
1487#endif
1488
1489        default:
1490                kvm_err("Load not yet supported (inst=0x%08x)\n",
1491                        inst.word);
1492                vcpu->mmio_needed = 0;
1493                return EMULATE_FAIL;
1494        }
1495
1496        run->mmio.is_write = 0;
1497        vcpu->mmio_is_write = 0;
1498
1499        r = kvm_io_bus_read(vcpu, KVM_MMIO_BUS,
1500                        run->mmio.phys_addr, run->mmio.len, run->mmio.data);
1501
1502        if (!r) {
1503                kvm_mips_complete_mmio_load(vcpu);
1504                vcpu->mmio_needed = 0;
1505                return EMULATE_DONE;
1506        }
1507
1508        return EMULATE_DO_MMIO;
1509}
1510
1511enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu)
1512{
1513        struct kvm_run *run = vcpu->run;
1514        unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
1515        enum emulation_result er = EMULATE_DONE;
1516
1517        if (run->mmio.len > sizeof(*gpr)) {
1518                kvm_err("Bad MMIO length: %d", run->mmio.len);
1519                er = EMULATE_FAIL;
1520                goto done;
1521        }
1522
1523        /* Restore saved resume PC */
1524        vcpu->arch.pc = vcpu->arch.io_pc;
1525
1526        switch (run->mmio.len) {
1527        case 8:
1528                switch (vcpu->mmio_needed) {
1529                case 11:
1530                        *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff) |
1531                                (((*(s64 *)run->mmio.data) & 0xff) << 56);
1532                        break;
1533                case 12:
1534                        *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff) |
1535                                (((*(s64 *)run->mmio.data) & 0xffff) << 48);
1536                        break;
1537                case 13:
1538                        *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff) |
1539                                (((*(s64 *)run->mmio.data) & 0xffffff) << 40);
1540                        break;
1541                case 14:
1542                        *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff) |
1543                                (((*(s64 *)run->mmio.data) & 0xffffffff) << 32);
1544                        break;
1545                case 15:
1546                        *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
1547                                (((*(s64 *)run->mmio.data) & 0xffffffffff) << 24);
1548                        break;
1549                case 16:
1550                        *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
1551                                (((*(s64 *)run->mmio.data) & 0xffffffffffff) << 16);
1552                        break;
1553                case 17:
1554                        *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
1555                                (((*(s64 *)run->mmio.data) & 0xffffffffffffff) << 8);
1556                        break;
1557                case 18:
1558                case 19:
1559                        *gpr = *(s64 *)run->mmio.data;
1560                        break;
1561                case 20:
1562                        *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff00000000000000) |
1563                                ((((*(s64 *)run->mmio.data)) >> 8) & 0xffffffffffffff);
1564                        break;
1565                case 21:
1566                        *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff000000000000) |
1567                                ((((*(s64 *)run->mmio.data)) >> 16) & 0xffffffffffff);
1568                        break;
1569                case 22:
1570                        *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff0000000000) |
1571                                ((((*(s64 *)run->mmio.data)) >> 24) & 0xffffffffff);
1572                        break;
1573                case 23:
1574                        *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff00000000) |
1575                                ((((*(s64 *)run->mmio.data)) >> 32) & 0xffffffff);
1576                        break;
1577                case 24:
1578                        *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff000000) |
1579                                ((((*(s64 *)run->mmio.data)) >> 40) & 0xffffff);
1580                        break;
1581                case 25:
1582                        *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff0000) |
1583                                ((((*(s64 *)run->mmio.data)) >> 48) & 0xffff);
1584                        break;
1585                case 26:
1586                        *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff00) |
1587                                ((((*(s64 *)run->mmio.data)) >> 56) & 0xff);
1588                        break;
1589                default:
1590                        *gpr = *(s64 *)run->mmio.data;
1591                }
1592                break;
1593
1594        case 4:
1595                switch (vcpu->mmio_needed) {
1596                case 1:
1597                        *gpr = *(u32 *)run->mmio.data;
1598                        break;
1599                case 2:
1600                        *gpr = *(s32 *)run->mmio.data;
1601                        break;
1602                case 3:
1603                        *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
1604                                (((*(s32 *)run->mmio.data) & 0xff) << 24);
1605                        break;
1606                case 4:
1607                        *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
1608                                (((*(s32 *)run->mmio.data) & 0xffff) << 16);
1609                        break;
1610                case 5:
1611                        *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
1612                                (((*(s32 *)run->mmio.data) & 0xffffff) << 8);
1613                        break;
1614                case 6:
1615                case 7:
1616                        *gpr = *(s32 *)run->mmio.data;
1617                        break;
1618                case 8:
1619                        *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff000000) |
1620                                ((((*(s32 *)run->mmio.data)) >> 8) & 0xffffff);
1621                        break;
1622                case 9:
1623                        *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff0000) |
1624                                ((((*(s32 *)run->mmio.data)) >> 16) & 0xffff);
1625                        break;
1626                case 10:
1627                        *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff00) |
1628                                ((((*(s32 *)run->mmio.data)) >> 24) & 0xff);
1629                        break;
1630                default:
1631                        *gpr = *(s32 *)run->mmio.data;
1632                }
1633                break;
1634
1635        case 2:
1636                if (vcpu->mmio_needed == 1)
1637                        *gpr = *(u16 *)run->mmio.data;
1638                else
1639                        *gpr = *(s16 *)run->mmio.data;
1640
1641                break;
1642        case 1:
1643                if (vcpu->mmio_needed == 1)
1644                        *gpr = *(u8 *)run->mmio.data;
1645                else
1646                        *gpr = *(s8 *)run->mmio.data;
1647                break;
1648        }
1649
1650done:
1651        return er;
1652}
1653