linux/arch/sparc/mm/init_64.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  arch/sparc64/mm/init.c
   4 *
   5 *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
   6 *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   7 */
   8 
   9#include <linux/extable.h>
  10#include <linux/kernel.h>
  11#include <linux/sched.h>
  12#include <linux/string.h>
  13#include <linux/init.h>
  14#include <linux/memblock.h>
  15#include <linux/mm.h>
  16#include <linux/hugetlb.h>
  17#include <linux/initrd.h>
  18#include <linux/swap.h>
  19#include <linux/pagemap.h>
  20#include <linux/poison.h>
  21#include <linux/fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/kprobes.h>
  24#include <linux/cache.h>
  25#include <linux/sort.h>
  26#include <linux/ioport.h>
  27#include <linux/percpu.h>
  28#include <linux/mmzone.h>
  29#include <linux/gfp.h>
  30#include <linux/bootmem_info.h>
  31
  32#include <asm/head.h>
  33#include <asm/page.h>
  34#include <asm/pgalloc.h>
  35#include <asm/oplib.h>
  36#include <asm/iommu.h>
  37#include <asm/io.h>
  38#include <linux/uaccess.h>
  39#include <asm/mmu_context.h>
  40#include <asm/tlbflush.h>
  41#include <asm/dma.h>
  42#include <asm/starfire.h>
  43#include <asm/tlb.h>
  44#include <asm/spitfire.h>
  45#include <asm/sections.h>
  46#include <asm/tsb.h>
  47#include <asm/hypervisor.h>
  48#include <asm/prom.h>
  49#include <asm/mdesc.h>
  50#include <asm/cpudata.h>
  51#include <asm/setup.h>
  52#include <asm/irq.h>
  53
  54#include "init_64.h"
  55
  56unsigned long kern_linear_pte_xor[4] __read_mostly;
  57static unsigned long page_cache4v_flag;
  58
  59/* A bitmap, two bits for every 256MB of physical memory.  These two
  60 * bits determine what page size we use for kernel linear
  61 * translations.  They form an index into kern_linear_pte_xor[].  The
  62 * value in the indexed slot is XOR'd with the TLB miss virtual
  63 * address to form the resulting TTE.  The mapping is:
  64 *
  65 *      0       ==>     4MB
  66 *      1       ==>     256MB
  67 *      2       ==>     2GB
  68 *      3       ==>     16GB
  69 *
  70 * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
  71 * support 2GB pages, and hopefully future cpus will support the 16GB
  72 * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
  73 * if these larger page sizes are not supported by the cpu.
  74 *
  75 * It would be nice to determine this from the machine description
  76 * 'cpu' properties, but we need to have this table setup before the
  77 * MDESC is initialized.
  78 */
  79
  80#ifndef CONFIG_DEBUG_PAGEALLOC
  81/* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
  82 * Space is allocated for this right after the trap table in
  83 * arch/sparc64/kernel/head.S
  84 */
  85extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  86#endif
  87extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  88
  89static unsigned long cpu_pgsz_mask;
  90
  91#define MAX_BANKS       1024
  92
  93static struct linux_prom64_registers pavail[MAX_BANKS];
  94static int pavail_ents;
  95
  96u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
  97
  98static int cmp_p64(const void *a, const void *b)
  99{
 100        const struct linux_prom64_registers *x = a, *y = b;
 101
 102        if (x->phys_addr > y->phys_addr)
 103                return 1;
 104        if (x->phys_addr < y->phys_addr)
 105                return -1;
 106        return 0;
 107}
 108
 109static void __init read_obp_memory(const char *property,
 110                                   struct linux_prom64_registers *regs,
 111                                   int *num_ents)
 112{
 113        phandle node = prom_finddevice("/memory");
 114        int prop_size = prom_getproplen(node, property);
 115        int ents, ret, i;
 116
 117        ents = prop_size / sizeof(struct linux_prom64_registers);
 118        if (ents > MAX_BANKS) {
 119                prom_printf("The machine has more %s property entries than "
 120                            "this kernel can support (%d).\n",
 121                            property, MAX_BANKS);
 122                prom_halt();
 123        }
 124
 125        ret = prom_getproperty(node, property, (char *) regs, prop_size);
 126        if (ret == -1) {
 127                prom_printf("Couldn't get %s property from /memory.\n",
 128                                property);
 129                prom_halt();
 130        }
 131
 132        /* Sanitize what we got from the firmware, by page aligning
 133         * everything.
 134         */
 135        for (i = 0; i < ents; i++) {
 136                unsigned long base, size;
 137
 138                base = regs[i].phys_addr;
 139                size = regs[i].reg_size;
 140
 141                size &= PAGE_MASK;
 142                if (base & ~PAGE_MASK) {
 143                        unsigned long new_base = PAGE_ALIGN(base);
 144
 145                        size -= new_base - base;
 146                        if ((long) size < 0L)
 147                                size = 0UL;
 148                        base = new_base;
 149                }
 150                if (size == 0UL) {
 151                        /* If it is empty, simply get rid of it.
 152                         * This simplifies the logic of the other
 153                         * functions that process these arrays.
 154                         */
 155                        memmove(&regs[i], &regs[i + 1],
 156                                (ents - i - 1) * sizeof(regs[0]));
 157                        i--;
 158                        ents--;
 159                        continue;
 160                }
 161                regs[i].phys_addr = base;
 162                regs[i].reg_size = size;
 163        }
 164
 165        *num_ents = ents;
 166
 167        sort(regs, ents, sizeof(struct linux_prom64_registers),
 168             cmp_p64, NULL);
 169}
 170
 171/* Kernel physical address base and size in bytes.  */
 172unsigned long kern_base __read_mostly;
 173unsigned long kern_size __read_mostly;
 174
 175/* Initial ramdisk setup */
 176extern unsigned long sparc_ramdisk_image64;
 177extern unsigned int sparc_ramdisk_image;
 178extern unsigned int sparc_ramdisk_size;
 179
 180struct page *mem_map_zero __read_mostly;
 181EXPORT_SYMBOL(mem_map_zero);
 182
 183unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
 184
 185unsigned long sparc64_kern_pri_context __read_mostly;
 186unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
 187unsigned long sparc64_kern_sec_context __read_mostly;
 188
 189int num_kernel_image_mappings;
 190
 191#ifdef CONFIG_DEBUG_DCFLUSH
 192atomic_t dcpage_flushes = ATOMIC_INIT(0);
 193#ifdef CONFIG_SMP
 194atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
 195#endif
 196#endif
 197
 198inline void flush_dcache_page_impl(struct page *page)
 199{
 200        BUG_ON(tlb_type == hypervisor);
 201#ifdef CONFIG_DEBUG_DCFLUSH
 202        atomic_inc(&dcpage_flushes);
 203#endif
 204
 205#ifdef DCACHE_ALIASING_POSSIBLE
 206        __flush_dcache_page(page_address(page),
 207                            ((tlb_type == spitfire) &&
 208                             page_mapping_file(page) != NULL));
 209#else
 210        if (page_mapping_file(page) != NULL &&
 211            tlb_type == spitfire)
 212                __flush_icache_page(__pa(page_address(page)));
 213#endif
 214}
 215
 216#define PG_dcache_dirty         PG_arch_1
 217#define PG_dcache_cpu_shift     32UL
 218#define PG_dcache_cpu_mask      \
 219        ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
 220
 221#define dcache_dirty_cpu(page) \
 222        (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
 223
 224static inline void set_dcache_dirty(struct page *page, int this_cpu)
 225{
 226        unsigned long mask = this_cpu;
 227        unsigned long non_cpu_bits;
 228
 229        non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
 230        mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
 231
 232        __asm__ __volatile__("1:\n\t"
 233                             "ldx       [%2], %%g7\n\t"
 234                             "and       %%g7, %1, %%g1\n\t"
 235                             "or        %%g1, %0, %%g1\n\t"
 236                             "casx      [%2], %%g7, %%g1\n\t"
 237                             "cmp       %%g7, %%g1\n\t"
 238                             "bne,pn    %%xcc, 1b\n\t"
 239                             " nop"
 240                             : /* no outputs */
 241                             : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
 242                             : "g1", "g7");
 243}
 244
 245static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
 246{
 247        unsigned long mask = (1UL << PG_dcache_dirty);
 248
 249        __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
 250                             "1:\n\t"
 251                             "ldx       [%2], %%g7\n\t"
 252                             "srlx      %%g7, %4, %%g1\n\t"
 253                             "and       %%g1, %3, %%g1\n\t"
 254                             "cmp       %%g1, %0\n\t"
 255                             "bne,pn    %%icc, 2f\n\t"
 256                             " andn     %%g7, %1, %%g1\n\t"
 257                             "casx      [%2], %%g7, %%g1\n\t"
 258                             "cmp       %%g7, %%g1\n\t"
 259                             "bne,pn    %%xcc, 1b\n\t"
 260                             " nop\n"
 261                             "2:"
 262                             : /* no outputs */
 263                             : "r" (cpu), "r" (mask), "r" (&page->flags),
 264                               "i" (PG_dcache_cpu_mask),
 265                               "i" (PG_dcache_cpu_shift)
 266                             : "g1", "g7");
 267}
 268
 269static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
 270{
 271        unsigned long tsb_addr = (unsigned long) ent;
 272
 273        if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 274                tsb_addr = __pa(tsb_addr);
 275
 276        __tsb_insert(tsb_addr, tag, pte);
 277}
 278
 279unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
 280
 281static void flush_dcache(unsigned long pfn)
 282{
 283        struct page *page;
 284
 285        page = pfn_to_page(pfn);
 286        if (page) {
 287                unsigned long pg_flags;
 288
 289                pg_flags = page->flags;
 290                if (pg_flags & (1UL << PG_dcache_dirty)) {
 291                        int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
 292                                   PG_dcache_cpu_mask);
 293                        int this_cpu = get_cpu();
 294
 295                        /* This is just to optimize away some function calls
 296                         * in the SMP case.
 297                         */
 298                        if (cpu == this_cpu)
 299                                flush_dcache_page_impl(page);
 300                        else
 301                                smp_flush_dcache_page_impl(page, cpu);
 302
 303                        clear_dcache_dirty_cpu(page, cpu);
 304
 305                        put_cpu();
 306                }
 307        }
 308}
 309
 310/* mm->context.lock must be held */
 311static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
 312                                    unsigned long tsb_hash_shift, unsigned long address,
 313                                    unsigned long tte)
 314{
 315        struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
 316        unsigned long tag;
 317
 318        if (unlikely(!tsb))
 319                return;
 320
 321        tsb += ((address >> tsb_hash_shift) &
 322                (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
 323        tag = (address >> 22UL);
 324        tsb_insert(tsb, tag, tte);
 325}
 326
 327#ifdef CONFIG_HUGETLB_PAGE
 328static int __init hugetlbpage_init(void)
 329{
 330        hugetlb_add_hstate(HPAGE_64K_SHIFT - PAGE_SHIFT);
 331        hugetlb_add_hstate(HPAGE_SHIFT - PAGE_SHIFT);
 332        hugetlb_add_hstate(HPAGE_256MB_SHIFT - PAGE_SHIFT);
 333        hugetlb_add_hstate(HPAGE_2GB_SHIFT - PAGE_SHIFT);
 334
 335        return 0;
 336}
 337
 338arch_initcall(hugetlbpage_init);
 339
 340static void __init pud_huge_patch(void)
 341{
 342        struct pud_huge_patch_entry *p;
 343        unsigned long addr;
 344
 345        p = &__pud_huge_patch;
 346        addr = p->addr;
 347        *(unsigned int *)addr = p->insn;
 348
 349        __asm__ __volatile__("flush %0" : : "r" (addr));
 350}
 351
 352bool __init arch_hugetlb_valid_size(unsigned long size)
 353{
 354        unsigned int hugepage_shift = ilog2(size);
 355        unsigned short hv_pgsz_idx;
 356        unsigned int hv_pgsz_mask;
 357
 358        switch (hugepage_shift) {
 359        case HPAGE_16GB_SHIFT:
 360                hv_pgsz_mask = HV_PGSZ_MASK_16GB;
 361                hv_pgsz_idx = HV_PGSZ_IDX_16GB;
 362                pud_huge_patch();
 363                break;
 364        case HPAGE_2GB_SHIFT:
 365                hv_pgsz_mask = HV_PGSZ_MASK_2GB;
 366                hv_pgsz_idx = HV_PGSZ_IDX_2GB;
 367                break;
 368        case HPAGE_256MB_SHIFT:
 369                hv_pgsz_mask = HV_PGSZ_MASK_256MB;
 370                hv_pgsz_idx = HV_PGSZ_IDX_256MB;
 371                break;
 372        case HPAGE_SHIFT:
 373                hv_pgsz_mask = HV_PGSZ_MASK_4MB;
 374                hv_pgsz_idx = HV_PGSZ_IDX_4MB;
 375                break;
 376        case HPAGE_64K_SHIFT:
 377                hv_pgsz_mask = HV_PGSZ_MASK_64K;
 378                hv_pgsz_idx = HV_PGSZ_IDX_64K;
 379                break;
 380        default:
 381                hv_pgsz_mask = 0;
 382        }
 383
 384        if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U)
 385                return false;
 386
 387        return true;
 388}
 389#endif  /* CONFIG_HUGETLB_PAGE */
 390
 391void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
 392{
 393        struct mm_struct *mm;
 394        unsigned long flags;
 395        bool is_huge_tsb;
 396        pte_t pte = *ptep;
 397
 398        if (tlb_type != hypervisor) {
 399                unsigned long pfn = pte_pfn(pte);
 400
 401                if (pfn_valid(pfn))
 402                        flush_dcache(pfn);
 403        }
 404
 405        mm = vma->vm_mm;
 406
 407        /* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
 408        if (!pte_accessible(mm, pte))
 409                return;
 410
 411        spin_lock_irqsave(&mm->context.lock, flags);
 412
 413        is_huge_tsb = false;
 414#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 415        if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
 416                unsigned long hugepage_size = PAGE_SIZE;
 417
 418                if (is_vm_hugetlb_page(vma))
 419                        hugepage_size = huge_page_size(hstate_vma(vma));
 420
 421                if (hugepage_size >= PUD_SIZE) {
 422                        unsigned long mask = 0x1ffc00000UL;
 423
 424                        /* Transfer bits [32:22] from address to resolve
 425                         * at 4M granularity.
 426                         */
 427                        pte_val(pte) &= ~mask;
 428                        pte_val(pte) |= (address & mask);
 429                } else if (hugepage_size >= PMD_SIZE) {
 430                        /* We are fabricating 8MB pages using 4MB
 431                         * real hw pages.
 432                         */
 433                        pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
 434                }
 435
 436                if (hugepage_size >= PMD_SIZE) {
 437                        __update_mmu_tsb_insert(mm, MM_TSB_HUGE,
 438                                REAL_HPAGE_SHIFT, address, pte_val(pte));
 439                        is_huge_tsb = true;
 440                }
 441        }
 442#endif
 443        if (!is_huge_tsb)
 444                __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
 445                                        address, pte_val(pte));
 446
 447        spin_unlock_irqrestore(&mm->context.lock, flags);
 448}
 449
 450void flush_dcache_page(struct page *page)
 451{
 452        struct address_space *mapping;
 453        int this_cpu;
 454
 455        if (tlb_type == hypervisor)
 456                return;
 457
 458        /* Do not bother with the expensive D-cache flush if it
 459         * is merely the zero page.  The 'bigcore' testcase in GDB
 460         * causes this case to run millions of times.
 461         */
 462        if (page == ZERO_PAGE(0))
 463                return;
 464
 465        this_cpu = get_cpu();
 466
 467        mapping = page_mapping_file(page);
 468        if (mapping && !mapping_mapped(mapping)) {
 469                int dirty = test_bit(PG_dcache_dirty, &page->flags);
 470                if (dirty) {
 471                        int dirty_cpu = dcache_dirty_cpu(page);
 472
 473                        if (dirty_cpu == this_cpu)
 474                                goto out;
 475                        smp_flush_dcache_page_impl(page, dirty_cpu);
 476                }
 477                set_dcache_dirty(page, this_cpu);
 478        } else {
 479                /* We could delay the flush for the !page_mapping
 480                 * case too.  But that case is for exec env/arg
 481                 * pages and those are %99 certainly going to get
 482                 * faulted into the tlb (and thus flushed) anyways.
 483                 */
 484                flush_dcache_page_impl(page);
 485        }
 486
 487out:
 488        put_cpu();
 489}
 490EXPORT_SYMBOL(flush_dcache_page);
 491
 492void __kprobes flush_icache_range(unsigned long start, unsigned long end)
 493{
 494        /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
 495        if (tlb_type == spitfire) {
 496                unsigned long kaddr;
 497
 498                /* This code only runs on Spitfire cpus so this is
 499                 * why we can assume _PAGE_PADDR_4U.
 500                 */
 501                for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
 502                        unsigned long paddr, mask = _PAGE_PADDR_4U;
 503
 504                        if (kaddr >= PAGE_OFFSET)
 505                                paddr = kaddr & mask;
 506                        else {
 507                                pte_t *ptep = virt_to_kpte(kaddr);
 508
 509                                paddr = pte_val(*ptep) & mask;
 510                        }
 511                        __flush_icache_page(paddr);
 512                }
 513        }
 514}
 515EXPORT_SYMBOL(flush_icache_range);
 516
 517void mmu_info(struct seq_file *m)
 518{
 519        static const char *pgsz_strings[] = {
 520                "8K", "64K", "512K", "4MB", "32MB",
 521                "256MB", "2GB", "16GB",
 522        };
 523        int i, printed;
 524
 525        if (tlb_type == cheetah)
 526                seq_printf(m, "MMU Type\t: Cheetah\n");
 527        else if (tlb_type == cheetah_plus)
 528                seq_printf(m, "MMU Type\t: Cheetah+\n");
 529        else if (tlb_type == spitfire)
 530                seq_printf(m, "MMU Type\t: Spitfire\n");
 531        else if (tlb_type == hypervisor)
 532                seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
 533        else
 534                seq_printf(m, "MMU Type\t: ???\n");
 535
 536        seq_printf(m, "MMU PGSZs\t: ");
 537        printed = 0;
 538        for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
 539                if (cpu_pgsz_mask & (1UL << i)) {
 540                        seq_printf(m, "%s%s",
 541                                   printed ? "," : "", pgsz_strings[i]);
 542                        printed++;
 543                }
 544        }
 545        seq_putc(m, '\n');
 546
 547#ifdef CONFIG_DEBUG_DCFLUSH
 548        seq_printf(m, "DCPageFlushes\t: %d\n",
 549                   atomic_read(&dcpage_flushes));
 550#ifdef CONFIG_SMP
 551        seq_printf(m, "DCPageFlushesXC\t: %d\n",
 552                   atomic_read(&dcpage_flushes_xcall));
 553#endif /* CONFIG_SMP */
 554#endif /* CONFIG_DEBUG_DCFLUSH */
 555}
 556
 557struct linux_prom_translation prom_trans[512] __read_mostly;
 558unsigned int prom_trans_ents __read_mostly;
 559
 560unsigned long kern_locked_tte_data;
 561
 562/* The obp translations are saved based on 8k pagesize, since obp can
 563 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
 564 * HI_OBP_ADDRESS range are handled in ktlb.S.
 565 */
 566static inline int in_obp_range(unsigned long vaddr)
 567{
 568        return (vaddr >= LOW_OBP_ADDRESS &&
 569                vaddr < HI_OBP_ADDRESS);
 570}
 571
 572static int cmp_ptrans(const void *a, const void *b)
 573{
 574        const struct linux_prom_translation *x = a, *y = b;
 575
 576        if (x->virt > y->virt)
 577                return 1;
 578        if (x->virt < y->virt)
 579                return -1;
 580        return 0;
 581}
 582
 583/* Read OBP translations property into 'prom_trans[]'.  */
 584static void __init read_obp_translations(void)
 585{
 586        int n, node, ents, first, last, i;
 587
 588        node = prom_finddevice("/virtual-memory");
 589        n = prom_getproplen(node, "translations");
 590        if (unlikely(n == 0 || n == -1)) {
 591                prom_printf("prom_mappings: Couldn't get size.\n");
 592                prom_halt();
 593        }
 594        if (unlikely(n > sizeof(prom_trans))) {
 595                prom_printf("prom_mappings: Size %d is too big.\n", n);
 596                prom_halt();
 597        }
 598
 599        if ((n = prom_getproperty(node, "translations",
 600                                  (char *)&prom_trans[0],
 601                                  sizeof(prom_trans))) == -1) {
 602                prom_printf("prom_mappings: Couldn't get property.\n");
 603                prom_halt();
 604        }
 605
 606        n = n / sizeof(struct linux_prom_translation);
 607
 608        ents = n;
 609
 610        sort(prom_trans, ents, sizeof(struct linux_prom_translation),
 611             cmp_ptrans, NULL);
 612
 613        /* Now kick out all the non-OBP entries.  */
 614        for (i = 0; i < ents; i++) {
 615                if (in_obp_range(prom_trans[i].virt))
 616                        break;
 617        }
 618        first = i;
 619        for (; i < ents; i++) {
 620                if (!in_obp_range(prom_trans[i].virt))
 621                        break;
 622        }
 623        last = i;
 624
 625        for (i = 0; i < (last - first); i++) {
 626                struct linux_prom_translation *src = &prom_trans[i + first];
 627                struct linux_prom_translation *dest = &prom_trans[i];
 628
 629                *dest = *src;
 630        }
 631        for (; i < ents; i++) {
 632                struct linux_prom_translation *dest = &prom_trans[i];
 633                dest->virt = dest->size = dest->data = 0x0UL;
 634        }
 635
 636        prom_trans_ents = last - first;
 637
 638        if (tlb_type == spitfire) {
 639                /* Clear diag TTE bits. */
 640                for (i = 0; i < prom_trans_ents; i++)
 641                        prom_trans[i].data &= ~0x0003fe0000000000UL;
 642        }
 643
 644        /* Force execute bit on.  */
 645        for (i = 0; i < prom_trans_ents; i++)
 646                prom_trans[i].data |= (tlb_type == hypervisor ?
 647                                       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
 648}
 649
 650static void __init hypervisor_tlb_lock(unsigned long vaddr,
 651                                       unsigned long pte,
 652                                       unsigned long mmu)
 653{
 654        unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
 655
 656        if (ret != 0) {
 657                prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
 658                            "errors with %lx\n", vaddr, 0, pte, mmu, ret);
 659                prom_halt();
 660        }
 661}
 662
 663static unsigned long kern_large_tte(unsigned long paddr);
 664
 665static void __init remap_kernel(void)
 666{
 667        unsigned long phys_page, tte_vaddr, tte_data;
 668        int i, tlb_ent = sparc64_highest_locked_tlbent();
 669
 670        tte_vaddr = (unsigned long) KERNBASE;
 671        phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
 672        tte_data = kern_large_tte(phys_page);
 673
 674        kern_locked_tte_data = tte_data;
 675
 676        /* Now lock us into the TLBs via Hypervisor or OBP. */
 677        if (tlb_type == hypervisor) {
 678                for (i = 0; i < num_kernel_image_mappings; i++) {
 679                        hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
 680                        hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
 681                        tte_vaddr += 0x400000;
 682                        tte_data += 0x400000;
 683                }
 684        } else {
 685                for (i = 0; i < num_kernel_image_mappings; i++) {
 686                        prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
 687                        prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
 688                        tte_vaddr += 0x400000;
 689                        tte_data += 0x400000;
 690                }
 691                sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
 692        }
 693        if (tlb_type == cheetah_plus) {
 694                sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
 695                                            CTX_CHEETAH_PLUS_NUC);
 696                sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
 697                sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
 698        }
 699}
 700
 701
 702static void __init inherit_prom_mappings(void)
 703{
 704        /* Now fixup OBP's idea about where we really are mapped. */
 705        printk("Remapping the kernel... ");
 706        remap_kernel();
 707        printk("done.\n");
 708}
 709
 710void prom_world(int enter)
 711{
 712        if (!enter)
 713                set_fs(get_fs());
 714
 715        __asm__ __volatile__("flushw");
 716}
 717
 718void __flush_dcache_range(unsigned long start, unsigned long end)
 719{
 720        unsigned long va;
 721
 722        if (tlb_type == spitfire) {
 723                int n = 0;
 724
 725                for (va = start; va < end; va += 32) {
 726                        spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
 727                        if (++n >= 512)
 728                                break;
 729                }
 730        } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 731                start = __pa(start);
 732                end = __pa(end);
 733                for (va = start; va < end; va += 32)
 734                        __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 735                                             "membar #Sync"
 736                                             : /* no outputs */
 737                                             : "r" (va),
 738                                               "i" (ASI_DCACHE_INVALIDATE));
 739        }
 740}
 741EXPORT_SYMBOL(__flush_dcache_range);
 742
 743/* get_new_mmu_context() uses "cache + 1".  */
 744DEFINE_SPINLOCK(ctx_alloc_lock);
 745unsigned long tlb_context_cache = CTX_FIRST_VERSION;
 746#define MAX_CTX_NR      (1UL << CTX_NR_BITS)
 747#define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
 748DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
 749DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
 750
 751static void mmu_context_wrap(void)
 752{
 753        unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
 754        unsigned long new_ver, new_ctx, old_ctx;
 755        struct mm_struct *mm;
 756        int cpu;
 757
 758        bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
 759
 760        /* Reserve kernel context */
 761        set_bit(0, mmu_context_bmap);
 762
 763        new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
 764        if (unlikely(new_ver == 0))
 765                new_ver = CTX_FIRST_VERSION;
 766        tlb_context_cache = new_ver;
 767
 768        /*
 769         * Make sure that any new mm that are added into per_cpu_secondary_mm,
 770         * are going to go through get_new_mmu_context() path.
 771         */
 772        mb();
 773
 774        /*
 775         * Updated versions to current on those CPUs that had valid secondary
 776         * contexts
 777         */
 778        for_each_online_cpu(cpu) {
 779                /*
 780                 * If a new mm is stored after we took this mm from the array,
 781                 * it will go into get_new_mmu_context() path, because we
 782                 * already bumped the version in tlb_context_cache.
 783                 */
 784                mm = per_cpu(per_cpu_secondary_mm, cpu);
 785
 786                if (unlikely(!mm || mm == &init_mm))
 787                        continue;
 788
 789                old_ctx = mm->context.sparc64_ctx_val;
 790                if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
 791                        new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
 792                        set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
 793                        mm->context.sparc64_ctx_val = new_ctx;
 794                }
 795        }
 796}
 797
 798/* Caller does TLB context flushing on local CPU if necessary.
 799 * The caller also ensures that CTX_VALID(mm->context) is false.
 800 *
 801 * We must be careful about boundary cases so that we never
 802 * let the user have CTX 0 (nucleus) or we ever use a CTX
 803 * version of zero (and thus NO_CONTEXT would not be caught
 804 * by version mis-match tests in mmu_context.h).
 805 *
 806 * Always invoked with interrupts disabled.
 807 */
 808void get_new_mmu_context(struct mm_struct *mm)
 809{
 810        unsigned long ctx, new_ctx;
 811        unsigned long orig_pgsz_bits;
 812
 813        spin_lock(&ctx_alloc_lock);
 814retry:
 815        /* wrap might have happened, test again if our context became valid */
 816        if (unlikely(CTX_VALID(mm->context)))
 817                goto out;
 818        orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
 819        ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
 820        new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
 821        if (new_ctx >= (1 << CTX_NR_BITS)) {
 822                new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
 823                if (new_ctx >= ctx) {
 824                        mmu_context_wrap();
 825                        goto retry;
 826                }
 827        }
 828        if (mm->context.sparc64_ctx_val)
 829                cpumask_clear(mm_cpumask(mm));
 830        mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
 831        new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
 832        tlb_context_cache = new_ctx;
 833        mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
 834out:
 835        spin_unlock(&ctx_alloc_lock);
 836}
 837
 838static int numa_enabled = 1;
 839static int numa_debug;
 840
 841static int __init early_numa(char *p)
 842{
 843        if (!p)
 844                return 0;
 845
 846        if (strstr(p, "off"))
 847                numa_enabled = 0;
 848
 849        if (strstr(p, "debug"))
 850                numa_debug = 1;
 851
 852        return 0;
 853}
 854early_param("numa", early_numa);
 855
 856#define numadbg(f, a...) \
 857do {    if (numa_debug) \
 858                printk(KERN_INFO f, ## a); \
 859} while (0)
 860
 861static void __init find_ramdisk(unsigned long phys_base)
 862{
 863#ifdef CONFIG_BLK_DEV_INITRD
 864        if (sparc_ramdisk_image || sparc_ramdisk_image64) {
 865                unsigned long ramdisk_image;
 866
 867                /* Older versions of the bootloader only supported a
 868                 * 32-bit physical address for the ramdisk image
 869                 * location, stored at sparc_ramdisk_image.  Newer
 870                 * SILO versions set sparc_ramdisk_image to zero and
 871                 * provide a full 64-bit physical address at
 872                 * sparc_ramdisk_image64.
 873                 */
 874                ramdisk_image = sparc_ramdisk_image;
 875                if (!ramdisk_image)
 876                        ramdisk_image = sparc_ramdisk_image64;
 877
 878                /* Another bootloader quirk.  The bootloader normalizes
 879                 * the physical address to KERNBASE, so we have to
 880                 * factor that back out and add in the lowest valid
 881                 * physical page address to get the true physical address.
 882                 */
 883                ramdisk_image -= KERNBASE;
 884                ramdisk_image += phys_base;
 885
 886                numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
 887                        ramdisk_image, sparc_ramdisk_size);
 888
 889                initrd_start = ramdisk_image;
 890                initrd_end = ramdisk_image + sparc_ramdisk_size;
 891
 892                memblock_reserve(initrd_start, sparc_ramdisk_size);
 893
 894                initrd_start += PAGE_OFFSET;
 895                initrd_end += PAGE_OFFSET;
 896        }
 897#endif
 898}
 899
 900struct node_mem_mask {
 901        unsigned long mask;
 902        unsigned long match;
 903};
 904static struct node_mem_mask node_masks[MAX_NUMNODES];
 905static int num_node_masks;
 906
 907#ifdef CONFIG_NUMA
 908
 909struct mdesc_mlgroup {
 910        u64     node;
 911        u64     latency;
 912        u64     match;
 913        u64     mask;
 914};
 915
 916static struct mdesc_mlgroup *mlgroups;
 917static int num_mlgroups;
 918
 919int numa_cpu_lookup_table[NR_CPUS];
 920cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
 921
 922struct mdesc_mblock {
 923        u64     base;
 924        u64     size;
 925        u64     offset; /* RA-to-PA */
 926};
 927static struct mdesc_mblock *mblocks;
 928static int num_mblocks;
 929
 930static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
 931{
 932        struct mdesc_mblock *m = NULL;
 933        int i;
 934
 935        for (i = 0; i < num_mblocks; i++) {
 936                m = &mblocks[i];
 937
 938                if (addr >= m->base &&
 939                    addr < (m->base + m->size)) {
 940                        break;
 941                }
 942        }
 943
 944        return m;
 945}
 946
 947static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
 948{
 949        int prev_nid, new_nid;
 950
 951        prev_nid = NUMA_NO_NODE;
 952        for ( ; start < end; start += PAGE_SIZE) {
 953                for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
 954                        struct node_mem_mask *p = &node_masks[new_nid];
 955
 956                        if ((start & p->mask) == p->match) {
 957                                if (prev_nid == NUMA_NO_NODE)
 958                                        prev_nid = new_nid;
 959                                break;
 960                        }
 961                }
 962
 963                if (new_nid == num_node_masks) {
 964                        prev_nid = 0;
 965                        WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
 966                                  start);
 967                        break;
 968                }
 969
 970                if (prev_nid != new_nid)
 971                        break;
 972        }
 973        *nid = prev_nid;
 974
 975        return start > end ? end : start;
 976}
 977
 978static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
 979{
 980        u64 ret_end, pa_start, m_mask, m_match, m_end;
 981        struct mdesc_mblock *mblock;
 982        int _nid, i;
 983
 984        if (tlb_type != hypervisor)
 985                return memblock_nid_range_sun4u(start, end, nid);
 986
 987        mblock = addr_to_mblock(start);
 988        if (!mblock) {
 989                WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
 990                          start);
 991
 992                _nid = 0;
 993                ret_end = end;
 994                goto done;
 995        }
 996
 997        pa_start = start + mblock->offset;
 998        m_match = 0;
 999        m_mask = 0;
1000
1001        for (_nid = 0; _nid < num_node_masks; _nid++) {
1002                struct node_mem_mask *const m = &node_masks[_nid];
1003
1004                if ((pa_start & m->mask) == m->match) {
1005                        m_match = m->match;
1006                        m_mask = m->mask;
1007                        break;
1008                }
1009        }
1010
1011        if (num_node_masks == _nid) {
1012                /* We could not find NUMA group, so default to 0, but lets
1013                 * search for latency group, so we could calculate the correct
1014                 * end address that we return
1015                 */
1016                _nid = 0;
1017
1018                for (i = 0; i < num_mlgroups; i++) {
1019                        struct mdesc_mlgroup *const m = &mlgroups[i];
1020
1021                        if ((pa_start & m->mask) == m->match) {
1022                                m_match = m->match;
1023                                m_mask = m->mask;
1024                                break;
1025                        }
1026                }
1027
1028                if (i == num_mlgroups) {
1029                        WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1030                                  start);
1031
1032                        ret_end = end;
1033                        goto done;
1034                }
1035        }
1036
1037        /*
1038         * Each latency group has match and mask, and each memory block has an
1039         * offset.  An address belongs to a latency group if its address matches
1040         * the following formula: ((addr + offset) & mask) == match
1041         * It is, however, slow to check every single page if it matches a
1042         * particular latency group. As optimization we calculate end value by
1043         * using bit arithmetics.
1044         */
1045        m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1046        m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1047        ret_end = m_end > end ? end : m_end;
1048
1049done:
1050        *nid = _nid;
1051        return ret_end;
1052}
1053#endif
1054
1055/* This must be invoked after performing all of the necessary
1056 * memblock_set_node() calls for 'nid'.  We need to be able to get
1057 * correct data from get_pfn_range_for_nid().
1058 */
1059static void __init allocate_node_data(int nid)
1060{
1061        struct pglist_data *p;
1062        unsigned long start_pfn, end_pfn;
1063#ifdef CONFIG_NUMA
1064
1065        NODE_DATA(nid) = memblock_alloc_node(sizeof(struct pglist_data),
1066                                             SMP_CACHE_BYTES, nid);
1067        if (!NODE_DATA(nid)) {
1068                prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1069                prom_halt();
1070        }
1071
1072        NODE_DATA(nid)->node_id = nid;
1073#endif
1074
1075        p = NODE_DATA(nid);
1076
1077        get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1078        p->node_start_pfn = start_pfn;
1079        p->node_spanned_pages = end_pfn - start_pfn;
1080}
1081
1082static void init_node_masks_nonnuma(void)
1083{
1084#ifdef CONFIG_NUMA
1085        int i;
1086#endif
1087
1088        numadbg("Initializing tables for non-numa.\n");
1089
1090        node_masks[0].mask = 0;
1091        node_masks[0].match = 0;
1092        num_node_masks = 1;
1093
1094#ifdef CONFIG_NUMA
1095        for (i = 0; i < NR_CPUS; i++)
1096                numa_cpu_lookup_table[i] = 0;
1097
1098        cpumask_setall(&numa_cpumask_lookup_table[0]);
1099#endif
1100}
1101
1102#ifdef CONFIG_NUMA
1103struct pglist_data *node_data[MAX_NUMNODES];
1104
1105EXPORT_SYMBOL(numa_cpu_lookup_table);
1106EXPORT_SYMBOL(numa_cpumask_lookup_table);
1107EXPORT_SYMBOL(node_data);
1108
1109static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1110                                   u32 cfg_handle)
1111{
1112        u64 arc;
1113
1114        mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1115                u64 target = mdesc_arc_target(md, arc);
1116                const u64 *val;
1117
1118                val = mdesc_get_property(md, target,
1119                                         "cfg-handle", NULL);
1120                if (val && *val == cfg_handle)
1121                        return 0;
1122        }
1123        return -ENODEV;
1124}
1125
1126static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1127                                    u32 cfg_handle)
1128{
1129        u64 arc, candidate, best_latency = ~(u64)0;
1130
1131        candidate = MDESC_NODE_NULL;
1132        mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1133                u64 target = mdesc_arc_target(md, arc);
1134                const char *name = mdesc_node_name(md, target);
1135                const u64 *val;
1136
1137                if (strcmp(name, "pio-latency-group"))
1138                        continue;
1139
1140                val = mdesc_get_property(md, target, "latency", NULL);
1141                if (!val)
1142                        continue;
1143
1144                if (*val < best_latency) {
1145                        candidate = target;
1146                        best_latency = *val;
1147                }
1148        }
1149
1150        if (candidate == MDESC_NODE_NULL)
1151                return -ENODEV;
1152
1153        return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1154}
1155
1156int of_node_to_nid(struct device_node *dp)
1157{
1158        const struct linux_prom64_registers *regs;
1159        struct mdesc_handle *md;
1160        u32 cfg_handle;
1161        int count, nid;
1162        u64 grp;
1163
1164        /* This is the right thing to do on currently supported
1165         * SUN4U NUMA platforms as well, as the PCI controller does
1166         * not sit behind any particular memory controller.
1167         */
1168        if (!mlgroups)
1169                return -1;
1170
1171        regs = of_get_property(dp, "reg", NULL);
1172        if (!regs)
1173                return -1;
1174
1175        cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1176
1177        md = mdesc_grab();
1178
1179        count = 0;
1180        nid = NUMA_NO_NODE;
1181        mdesc_for_each_node_by_name(md, grp, "group") {
1182                if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1183                        nid = count;
1184                        break;
1185                }
1186                count++;
1187        }
1188
1189        mdesc_release(md);
1190
1191        return nid;
1192}
1193
1194static void __init add_node_ranges(void)
1195{
1196        phys_addr_t start, end;
1197        unsigned long prev_max;
1198        u64 i;
1199
1200memblock_resized:
1201        prev_max = memblock.memory.max;
1202
1203        for_each_mem_range(i, &start, &end) {
1204                while (start < end) {
1205                        unsigned long this_end;
1206                        int nid;
1207
1208                        this_end = memblock_nid_range(start, end, &nid);
1209
1210                        numadbg("Setting memblock NUMA node nid[%d] "
1211                                "start[%llx] end[%lx]\n",
1212                                nid, start, this_end);
1213
1214                        memblock_set_node(start, this_end - start,
1215                                          &memblock.memory, nid);
1216                        if (memblock.memory.max != prev_max)
1217                                goto memblock_resized;
1218                        start = this_end;
1219                }
1220        }
1221}
1222
1223static int __init grab_mlgroups(struct mdesc_handle *md)
1224{
1225        unsigned long paddr;
1226        int count = 0;
1227        u64 node;
1228
1229        mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1230                count++;
1231        if (!count)
1232                return -ENOENT;
1233
1234        paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup),
1235                                    SMP_CACHE_BYTES);
1236        if (!paddr)
1237                return -ENOMEM;
1238
1239        mlgroups = __va(paddr);
1240        num_mlgroups = count;
1241
1242        count = 0;
1243        mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1244                struct mdesc_mlgroup *m = &mlgroups[count++];
1245                const u64 *val;
1246
1247                m->node = node;
1248
1249                val = mdesc_get_property(md, node, "latency", NULL);
1250                m->latency = *val;
1251                val = mdesc_get_property(md, node, "address-match", NULL);
1252                m->match = *val;
1253                val = mdesc_get_property(md, node, "address-mask", NULL);
1254                m->mask = *val;
1255
1256                numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1257                        "match[%llx] mask[%llx]\n",
1258                        count - 1, m->node, m->latency, m->match, m->mask);
1259        }
1260
1261        return 0;
1262}
1263
1264static int __init grab_mblocks(struct mdesc_handle *md)
1265{
1266        unsigned long paddr;
1267        int count = 0;
1268        u64 node;
1269
1270        mdesc_for_each_node_by_name(md, node, "mblock")
1271                count++;
1272        if (!count)
1273                return -ENOENT;
1274
1275        paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock),
1276                                    SMP_CACHE_BYTES);
1277        if (!paddr)
1278                return -ENOMEM;
1279
1280        mblocks = __va(paddr);
1281        num_mblocks = count;
1282
1283        count = 0;
1284        mdesc_for_each_node_by_name(md, node, "mblock") {
1285                struct mdesc_mblock *m = &mblocks[count++];
1286                const u64 *val;
1287
1288                val = mdesc_get_property(md, node, "base", NULL);
1289                m->base = *val;
1290                val = mdesc_get_property(md, node, "size", NULL);
1291                m->size = *val;
1292                val = mdesc_get_property(md, node,
1293                                         "address-congruence-offset", NULL);
1294
1295                /* The address-congruence-offset property is optional.
1296                 * Explicity zero it be identifty this.
1297                 */
1298                if (val)
1299                        m->offset = *val;
1300                else
1301                        m->offset = 0UL;
1302
1303                numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1304                        count - 1, m->base, m->size, m->offset);
1305        }
1306
1307        return 0;
1308}
1309
1310static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1311                                               u64 grp, cpumask_t *mask)
1312{
1313        u64 arc;
1314
1315        cpumask_clear(mask);
1316
1317        mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1318                u64 target = mdesc_arc_target(md, arc);
1319                const char *name = mdesc_node_name(md, target);
1320                const u64 *id;
1321
1322                if (strcmp(name, "cpu"))
1323                        continue;
1324                id = mdesc_get_property(md, target, "id", NULL);
1325                if (*id < nr_cpu_ids)
1326                        cpumask_set_cpu(*id, mask);
1327        }
1328}
1329
1330static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1331{
1332        int i;
1333
1334        for (i = 0; i < num_mlgroups; i++) {
1335                struct mdesc_mlgroup *m = &mlgroups[i];
1336                if (m->node == node)
1337                        return m;
1338        }
1339        return NULL;
1340}
1341
1342int __node_distance(int from, int to)
1343{
1344        if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1345                pr_warn("Returning default NUMA distance value for %d->%d\n",
1346                        from, to);
1347                return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1348        }
1349        return numa_latency[from][to];
1350}
1351EXPORT_SYMBOL(__node_distance);
1352
1353static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1354{
1355        int i;
1356
1357        for (i = 0; i < MAX_NUMNODES; i++) {
1358                struct node_mem_mask *n = &node_masks[i];
1359
1360                if ((grp->mask == n->mask) && (grp->match == n->match))
1361                        break;
1362        }
1363        return i;
1364}
1365
1366static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1367                                                 u64 grp, int index)
1368{
1369        u64 arc;
1370
1371        mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1372                int tnode;
1373                u64 target = mdesc_arc_target(md, arc);
1374                struct mdesc_mlgroup *m = find_mlgroup(target);
1375
1376                if (!m)
1377                        continue;
1378                tnode = find_best_numa_node_for_mlgroup(m);
1379                if (tnode == MAX_NUMNODES)
1380                        continue;
1381                numa_latency[index][tnode] = m->latency;
1382        }
1383}
1384
1385static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1386                                      int index)
1387{
1388        struct mdesc_mlgroup *candidate = NULL;
1389        u64 arc, best_latency = ~(u64)0;
1390        struct node_mem_mask *n;
1391
1392        mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1393                u64 target = mdesc_arc_target(md, arc);
1394                struct mdesc_mlgroup *m = find_mlgroup(target);
1395                if (!m)
1396                        continue;
1397                if (m->latency < best_latency) {
1398                        candidate = m;
1399                        best_latency = m->latency;
1400                }
1401        }
1402        if (!candidate)
1403                return -ENOENT;
1404
1405        if (num_node_masks != index) {
1406                printk(KERN_ERR "Inconsistent NUMA state, "
1407                       "index[%d] != num_node_masks[%d]\n",
1408                       index, num_node_masks);
1409                return -EINVAL;
1410        }
1411
1412        n = &node_masks[num_node_masks++];
1413
1414        n->mask = candidate->mask;
1415        n->match = candidate->match;
1416
1417        numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1418                index, n->mask, n->match, candidate->latency);
1419
1420        return 0;
1421}
1422
1423static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1424                                         int index)
1425{
1426        cpumask_t mask;
1427        int cpu;
1428
1429        numa_parse_mdesc_group_cpus(md, grp, &mask);
1430
1431        for_each_cpu(cpu, &mask)
1432                numa_cpu_lookup_table[cpu] = index;
1433        cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1434
1435        if (numa_debug) {
1436                printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1437                for_each_cpu(cpu, &mask)
1438                        printk("%d ", cpu);
1439                printk("]\n");
1440        }
1441
1442        return numa_attach_mlgroup(md, grp, index);
1443}
1444
1445static int __init numa_parse_mdesc(void)
1446{
1447        struct mdesc_handle *md = mdesc_grab();
1448        int i, j, err, count;
1449        u64 node;
1450
1451        node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1452        if (node == MDESC_NODE_NULL) {
1453                mdesc_release(md);
1454                return -ENOENT;
1455        }
1456
1457        err = grab_mblocks(md);
1458        if (err < 0)
1459                goto out;
1460
1461        err = grab_mlgroups(md);
1462        if (err < 0)
1463                goto out;
1464
1465        count = 0;
1466        mdesc_for_each_node_by_name(md, node, "group") {
1467                err = numa_parse_mdesc_group(md, node, count);
1468                if (err < 0)
1469                        break;
1470                count++;
1471        }
1472
1473        count = 0;
1474        mdesc_for_each_node_by_name(md, node, "group") {
1475                find_numa_latencies_for_group(md, node, count);
1476                count++;
1477        }
1478
1479        /* Normalize numa latency matrix according to ACPI SLIT spec. */
1480        for (i = 0; i < MAX_NUMNODES; i++) {
1481                u64 self_latency = numa_latency[i][i];
1482
1483                for (j = 0; j < MAX_NUMNODES; j++) {
1484                        numa_latency[i][j] =
1485                                (numa_latency[i][j] * LOCAL_DISTANCE) /
1486                                self_latency;
1487                }
1488        }
1489
1490        add_node_ranges();
1491
1492        for (i = 0; i < num_node_masks; i++) {
1493                allocate_node_data(i);
1494                node_set_online(i);
1495        }
1496
1497        err = 0;
1498out:
1499        mdesc_release(md);
1500        return err;
1501}
1502
1503static int __init numa_parse_jbus(void)
1504{
1505        unsigned long cpu, index;
1506
1507        /* NUMA node id is encoded in bits 36 and higher, and there is
1508         * a 1-to-1 mapping from CPU ID to NUMA node ID.
1509         */
1510        index = 0;
1511        for_each_present_cpu(cpu) {
1512                numa_cpu_lookup_table[cpu] = index;
1513                cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1514                node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1515                node_masks[index].match = cpu << 36UL;
1516
1517                index++;
1518        }
1519        num_node_masks = index;
1520
1521        add_node_ranges();
1522
1523        for (index = 0; index < num_node_masks; index++) {
1524                allocate_node_data(index);
1525                node_set_online(index);
1526        }
1527
1528        return 0;
1529}
1530
1531static int __init numa_parse_sun4u(void)
1532{
1533        if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1534                unsigned long ver;
1535
1536                __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1537                if ((ver >> 32UL) == __JALAPENO_ID ||
1538                    (ver >> 32UL) == __SERRANO_ID)
1539                        return numa_parse_jbus();
1540        }
1541        return -1;
1542}
1543
1544static int __init bootmem_init_numa(void)
1545{
1546        int i, j;
1547        int err = -1;
1548
1549        numadbg("bootmem_init_numa()\n");
1550
1551        /* Some sane defaults for numa latency values */
1552        for (i = 0; i < MAX_NUMNODES; i++) {
1553                for (j = 0; j < MAX_NUMNODES; j++)
1554                        numa_latency[i][j] = (i == j) ?
1555                                LOCAL_DISTANCE : REMOTE_DISTANCE;
1556        }
1557
1558        if (numa_enabled) {
1559                if (tlb_type == hypervisor)
1560                        err = numa_parse_mdesc();
1561                else
1562                        err = numa_parse_sun4u();
1563        }
1564        return err;
1565}
1566
1567#else
1568
1569static int bootmem_init_numa(void)
1570{
1571        return -1;
1572}
1573
1574#endif
1575
1576static void __init bootmem_init_nonnuma(void)
1577{
1578        unsigned long top_of_ram = memblock_end_of_DRAM();
1579        unsigned long total_ram = memblock_phys_mem_size();
1580
1581        numadbg("bootmem_init_nonnuma()\n");
1582
1583        printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1584               top_of_ram, total_ram);
1585        printk(KERN_INFO "Memory hole size: %ldMB\n",
1586               (top_of_ram - total_ram) >> 20);
1587
1588        init_node_masks_nonnuma();
1589        memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
1590        allocate_node_data(0);
1591        node_set_online(0);
1592}
1593
1594static unsigned long __init bootmem_init(unsigned long phys_base)
1595{
1596        unsigned long end_pfn;
1597
1598        end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1599        max_pfn = max_low_pfn = end_pfn;
1600        min_low_pfn = (phys_base >> PAGE_SHIFT);
1601
1602        if (bootmem_init_numa() < 0)
1603                bootmem_init_nonnuma();
1604
1605        /* Dump memblock with node info. */
1606        memblock_dump_all();
1607
1608        /* XXX cpu notifier XXX */
1609
1610        sparse_init();
1611
1612        return end_pfn;
1613}
1614
1615static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1616static int pall_ents __initdata;
1617
1618static unsigned long max_phys_bits = 40;
1619
1620bool kern_addr_valid(unsigned long addr)
1621{
1622        pgd_t *pgd;
1623        p4d_t *p4d;
1624        pud_t *pud;
1625        pmd_t *pmd;
1626        pte_t *pte;
1627
1628        if ((long)addr < 0L) {
1629                unsigned long pa = __pa(addr);
1630
1631                if ((pa >> max_phys_bits) != 0UL)
1632                        return false;
1633
1634                return pfn_valid(pa >> PAGE_SHIFT);
1635        }
1636
1637        if (addr >= (unsigned long) KERNBASE &&
1638            addr < (unsigned long)&_end)
1639                return true;
1640
1641        pgd = pgd_offset_k(addr);
1642        if (pgd_none(*pgd))
1643                return false;
1644
1645        p4d = p4d_offset(pgd, addr);
1646        if (p4d_none(*p4d))
1647                return false;
1648
1649        pud = pud_offset(p4d, addr);
1650        if (pud_none(*pud))
1651                return false;
1652
1653        if (pud_large(*pud))
1654                return pfn_valid(pud_pfn(*pud));
1655
1656        pmd = pmd_offset(pud, addr);
1657        if (pmd_none(*pmd))
1658                return false;
1659
1660        if (pmd_large(*pmd))
1661                return pfn_valid(pmd_pfn(*pmd));
1662
1663        pte = pte_offset_kernel(pmd, addr);
1664        if (pte_none(*pte))
1665                return false;
1666
1667        return pfn_valid(pte_pfn(*pte));
1668}
1669EXPORT_SYMBOL(kern_addr_valid);
1670
1671static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1672                                              unsigned long vend,
1673                                              pud_t *pud)
1674{
1675        const unsigned long mask16gb = (1UL << 34) - 1UL;
1676        u64 pte_val = vstart;
1677
1678        /* Each PUD is 8GB */
1679        if ((vstart & mask16gb) ||
1680            (vend - vstart <= mask16gb)) {
1681                pte_val ^= kern_linear_pte_xor[2];
1682                pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1683
1684                return vstart + PUD_SIZE;
1685        }
1686
1687        pte_val ^= kern_linear_pte_xor[3];
1688        pte_val |= _PAGE_PUD_HUGE;
1689
1690        vend = vstart + mask16gb + 1UL;
1691        while (vstart < vend) {
1692                pud_val(*pud) = pte_val;
1693
1694                pte_val += PUD_SIZE;
1695                vstart += PUD_SIZE;
1696                pud++;
1697        }
1698        return vstart;
1699}
1700
1701static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1702                                   bool guard)
1703{
1704        if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1705                return true;
1706
1707        return false;
1708}
1709
1710static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1711                                              unsigned long vend,
1712                                              pmd_t *pmd)
1713{
1714        const unsigned long mask256mb = (1UL << 28) - 1UL;
1715        const unsigned long mask2gb = (1UL << 31) - 1UL;
1716        u64 pte_val = vstart;
1717
1718        /* Each PMD is 8MB */
1719        if ((vstart & mask256mb) ||
1720            (vend - vstart <= mask256mb)) {
1721                pte_val ^= kern_linear_pte_xor[0];
1722                pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1723
1724                return vstart + PMD_SIZE;
1725        }
1726
1727        if ((vstart & mask2gb) ||
1728            (vend - vstart <= mask2gb)) {
1729                pte_val ^= kern_linear_pte_xor[1];
1730                pte_val |= _PAGE_PMD_HUGE;
1731                vend = vstart + mask256mb + 1UL;
1732        } else {
1733                pte_val ^= kern_linear_pte_xor[2];
1734                pte_val |= _PAGE_PMD_HUGE;
1735                vend = vstart + mask2gb + 1UL;
1736        }
1737
1738        while (vstart < vend) {
1739                pmd_val(*pmd) = pte_val;
1740
1741                pte_val += PMD_SIZE;
1742                vstart += PMD_SIZE;
1743                pmd++;
1744        }
1745
1746        return vstart;
1747}
1748
1749static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1750                                   bool guard)
1751{
1752        if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1753                return true;
1754
1755        return false;
1756}
1757
1758static unsigned long __ref kernel_map_range(unsigned long pstart,
1759                                            unsigned long pend, pgprot_t prot,
1760                                            bool use_huge)
1761{
1762        unsigned long vstart = PAGE_OFFSET + pstart;
1763        unsigned long vend = PAGE_OFFSET + pend;
1764        unsigned long alloc_bytes = 0UL;
1765
1766        if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1767                prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1768                            vstart, vend);
1769                prom_halt();
1770        }
1771
1772        while (vstart < vend) {
1773                unsigned long this_end, paddr = __pa(vstart);
1774                pgd_t *pgd = pgd_offset_k(vstart);
1775                p4d_t *p4d;
1776                pud_t *pud;
1777                pmd_t *pmd;
1778                pte_t *pte;
1779
1780                if (pgd_none(*pgd)) {
1781                        pud_t *new;
1782
1783                        new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1784                                                  PAGE_SIZE);
1785                        if (!new)
1786                                goto err_alloc;
1787                        alloc_bytes += PAGE_SIZE;
1788                        pgd_populate(&init_mm, pgd, new);
1789                }
1790
1791                p4d = p4d_offset(pgd, vstart);
1792                if (p4d_none(*p4d)) {
1793                        pud_t *new;
1794
1795                        new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1796                                                  PAGE_SIZE);
1797                        if (!new)
1798                                goto err_alloc;
1799                        alloc_bytes += PAGE_SIZE;
1800                        p4d_populate(&init_mm, p4d, new);
1801                }
1802
1803                pud = pud_offset(p4d, vstart);
1804                if (pud_none(*pud)) {
1805                        pmd_t *new;
1806
1807                        if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1808                                vstart = kernel_map_hugepud(vstart, vend, pud);
1809                                continue;
1810                        }
1811                        new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1812                                                  PAGE_SIZE);
1813                        if (!new)
1814                                goto err_alloc;
1815                        alloc_bytes += PAGE_SIZE;
1816                        pud_populate(&init_mm, pud, new);
1817                }
1818
1819                pmd = pmd_offset(pud, vstart);
1820                if (pmd_none(*pmd)) {
1821                        pte_t *new;
1822
1823                        if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1824                                vstart = kernel_map_hugepmd(vstart, vend, pmd);
1825                                continue;
1826                        }
1827                        new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1828                                                  PAGE_SIZE);
1829                        if (!new)
1830                                goto err_alloc;
1831                        alloc_bytes += PAGE_SIZE;
1832                        pmd_populate_kernel(&init_mm, pmd, new);
1833                }
1834
1835                pte = pte_offset_kernel(pmd, vstart);
1836                this_end = (vstart + PMD_SIZE) & PMD_MASK;
1837                if (this_end > vend)
1838                        this_end = vend;
1839
1840                while (vstart < this_end) {
1841                        pte_val(*pte) = (paddr | pgprot_val(prot));
1842
1843                        vstart += PAGE_SIZE;
1844                        paddr += PAGE_SIZE;
1845                        pte++;
1846                }
1847        }
1848
1849        return alloc_bytes;
1850
1851err_alloc:
1852        panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1853              __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1854        return -ENOMEM;
1855}
1856
1857static void __init flush_all_kernel_tsbs(void)
1858{
1859        int i;
1860
1861        for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1862                struct tsb *ent = &swapper_tsb[i];
1863
1864                ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1865        }
1866#ifndef CONFIG_DEBUG_PAGEALLOC
1867        for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1868                struct tsb *ent = &swapper_4m_tsb[i];
1869
1870                ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1871        }
1872#endif
1873}
1874
1875extern unsigned int kvmap_linear_patch[1];
1876
1877static void __init kernel_physical_mapping_init(void)
1878{
1879        unsigned long i, mem_alloced = 0UL;
1880        bool use_huge = true;
1881
1882#ifdef CONFIG_DEBUG_PAGEALLOC
1883        use_huge = false;
1884#endif
1885        for (i = 0; i < pall_ents; i++) {
1886                unsigned long phys_start, phys_end;
1887
1888                phys_start = pall[i].phys_addr;
1889                phys_end = phys_start + pall[i].reg_size;
1890
1891                mem_alloced += kernel_map_range(phys_start, phys_end,
1892                                                PAGE_KERNEL, use_huge);
1893        }
1894
1895        printk("Allocated %ld bytes for kernel page tables.\n",
1896               mem_alloced);
1897
1898        kvmap_linear_patch[0] = 0x01000000; /* nop */
1899        flushi(&kvmap_linear_patch[0]);
1900
1901        flush_all_kernel_tsbs();
1902
1903        __flush_tlb_all();
1904}
1905
1906#ifdef CONFIG_DEBUG_PAGEALLOC
1907void __kernel_map_pages(struct page *page, int numpages, int enable)
1908{
1909        unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1910        unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1911
1912        kernel_map_range(phys_start, phys_end,
1913                         (enable ? PAGE_KERNEL : __pgprot(0)), false);
1914
1915        flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1916                               PAGE_OFFSET + phys_end);
1917
1918        /* we should perform an IPI and flush all tlbs,
1919         * but that can deadlock->flush only current cpu.
1920         */
1921        __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1922                                 PAGE_OFFSET + phys_end);
1923}
1924#endif
1925
1926unsigned long __init find_ecache_flush_span(unsigned long size)
1927{
1928        int i;
1929
1930        for (i = 0; i < pavail_ents; i++) {
1931                if (pavail[i].reg_size >= size)
1932                        return pavail[i].phys_addr;
1933        }
1934
1935        return ~0UL;
1936}
1937
1938unsigned long PAGE_OFFSET;
1939EXPORT_SYMBOL(PAGE_OFFSET);
1940
1941unsigned long VMALLOC_END   = 0x0000010000000000UL;
1942EXPORT_SYMBOL(VMALLOC_END);
1943
1944unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1945unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1946
1947static void __init setup_page_offset(void)
1948{
1949        if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1950                /* Cheetah/Panther support a full 64-bit virtual
1951                 * address, so we can use all that our page tables
1952                 * support.
1953                 */
1954                sparc64_va_hole_top =    0xfff0000000000000UL;
1955                sparc64_va_hole_bottom = 0x0010000000000000UL;
1956
1957                max_phys_bits = 42;
1958        } else if (tlb_type == hypervisor) {
1959                switch (sun4v_chip_type) {
1960                case SUN4V_CHIP_NIAGARA1:
1961                case SUN4V_CHIP_NIAGARA2:
1962                        /* T1 and T2 support 48-bit virtual addresses.  */
1963                        sparc64_va_hole_top =    0xffff800000000000UL;
1964                        sparc64_va_hole_bottom = 0x0000800000000000UL;
1965
1966                        max_phys_bits = 39;
1967                        break;
1968                case SUN4V_CHIP_NIAGARA3:
1969                        /* T3 supports 48-bit virtual addresses.  */
1970                        sparc64_va_hole_top =    0xffff800000000000UL;
1971                        sparc64_va_hole_bottom = 0x0000800000000000UL;
1972
1973                        max_phys_bits = 43;
1974                        break;
1975                case SUN4V_CHIP_NIAGARA4:
1976                case SUN4V_CHIP_NIAGARA5:
1977                case SUN4V_CHIP_SPARC64X:
1978                case SUN4V_CHIP_SPARC_M6:
1979                        /* T4 and later support 52-bit virtual addresses.  */
1980                        sparc64_va_hole_top =    0xfff8000000000000UL;
1981                        sparc64_va_hole_bottom = 0x0008000000000000UL;
1982                        max_phys_bits = 47;
1983                        break;
1984                case SUN4V_CHIP_SPARC_M7:
1985                case SUN4V_CHIP_SPARC_SN:
1986                        /* M7 and later support 52-bit virtual addresses.  */
1987                        sparc64_va_hole_top =    0xfff8000000000000UL;
1988                        sparc64_va_hole_bottom = 0x0008000000000000UL;
1989                        max_phys_bits = 49;
1990                        break;
1991                case SUN4V_CHIP_SPARC_M8:
1992                default:
1993                        /* M8 and later support 54-bit virtual addresses.
1994                         * However, restricting M8 and above VA bits to 53
1995                         * as 4-level page table cannot support more than
1996                         * 53 VA bits.
1997                         */
1998                        sparc64_va_hole_top =    0xfff0000000000000UL;
1999                        sparc64_va_hole_bottom = 0x0010000000000000UL;
2000                        max_phys_bits = 51;
2001                        break;
2002                }
2003        }
2004
2005        if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
2006                prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2007                            max_phys_bits);
2008                prom_halt();
2009        }
2010
2011        PAGE_OFFSET = sparc64_va_hole_top;
2012        VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
2013                       (sparc64_va_hole_bottom >> 2));
2014
2015        pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2016                PAGE_OFFSET, max_phys_bits);
2017        pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2018                VMALLOC_START, VMALLOC_END);
2019        pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2020                VMEMMAP_BASE, VMEMMAP_BASE << 1);
2021}
2022
2023static void __init tsb_phys_patch(void)
2024{
2025        struct tsb_ldquad_phys_patch_entry *pquad;
2026        struct tsb_phys_patch_entry *p;
2027
2028        pquad = &__tsb_ldquad_phys_patch;
2029        while (pquad < &__tsb_ldquad_phys_patch_end) {
2030                unsigned long addr = pquad->addr;
2031
2032                if (tlb_type == hypervisor)
2033                        *(unsigned int *) addr = pquad->sun4v_insn;
2034                else
2035                        *(unsigned int *) addr = pquad->sun4u_insn;
2036                wmb();
2037                __asm__ __volatile__("flush     %0"
2038                                     : /* no outputs */
2039                                     : "r" (addr));
2040
2041                pquad++;
2042        }
2043
2044        p = &__tsb_phys_patch;
2045        while (p < &__tsb_phys_patch_end) {
2046                unsigned long addr = p->addr;
2047
2048                *(unsigned int *) addr = p->insn;
2049                wmb();
2050                __asm__ __volatile__("flush     %0"
2051                                     : /* no outputs */
2052                                     : "r" (addr));
2053
2054                p++;
2055        }
2056}
2057
2058/* Don't mark as init, we give this to the Hypervisor.  */
2059#ifndef CONFIG_DEBUG_PAGEALLOC
2060#define NUM_KTSB_DESCR  2
2061#else
2062#define NUM_KTSB_DESCR  1
2063#endif
2064static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2065
2066/* The swapper TSBs are loaded with a base sequence of:
2067 *
2068 *      sethi   %uhi(SYMBOL), REG1
2069 *      sethi   %hi(SYMBOL), REG2
2070 *      or      REG1, %ulo(SYMBOL), REG1
2071 *      or      REG2, %lo(SYMBOL), REG2
2072 *      sllx    REG1, 32, REG1
2073 *      or      REG1, REG2, REG1
2074 *
2075 * When we use physical addressing for the TSB accesses, we patch the
2076 * first four instructions in the above sequence.
2077 */
2078
2079static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2080{
2081        unsigned long high_bits, low_bits;
2082
2083        high_bits = (pa >> 32) & 0xffffffff;
2084        low_bits = (pa >> 0) & 0xffffffff;
2085
2086        while (start < end) {
2087                unsigned int *ia = (unsigned int *)(unsigned long)*start;
2088
2089                ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2090                __asm__ __volatile__("flush     %0" : : "r" (ia));
2091
2092                ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2093                __asm__ __volatile__("flush     %0" : : "r" (ia + 1));
2094
2095                ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2096                __asm__ __volatile__("flush     %0" : : "r" (ia + 2));
2097
2098                ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2099                __asm__ __volatile__("flush     %0" : : "r" (ia + 3));
2100
2101                start++;
2102        }
2103}
2104
2105static void ktsb_phys_patch(void)
2106{
2107        extern unsigned int __swapper_tsb_phys_patch;
2108        extern unsigned int __swapper_tsb_phys_patch_end;
2109        unsigned long ktsb_pa;
2110
2111        ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2112        patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2113                            &__swapper_tsb_phys_patch_end, ktsb_pa);
2114#ifndef CONFIG_DEBUG_PAGEALLOC
2115        {
2116        extern unsigned int __swapper_4m_tsb_phys_patch;
2117        extern unsigned int __swapper_4m_tsb_phys_patch_end;
2118        ktsb_pa = (kern_base +
2119                   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2120        patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2121                            &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2122        }
2123#endif
2124}
2125
2126static void __init sun4v_ktsb_init(void)
2127{
2128        unsigned long ktsb_pa;
2129
2130        /* First KTSB for PAGE_SIZE mappings.  */
2131        ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2132
2133        switch (PAGE_SIZE) {
2134        case 8 * 1024:
2135        default:
2136                ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2137                ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2138                break;
2139
2140        case 64 * 1024:
2141                ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2142                ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2143                break;
2144
2145        case 512 * 1024:
2146                ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2147                ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2148                break;
2149
2150        case 4 * 1024 * 1024:
2151                ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2152                ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2153                break;
2154        }
2155
2156        ktsb_descr[0].assoc = 1;
2157        ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2158        ktsb_descr[0].ctx_idx = 0;
2159        ktsb_descr[0].tsb_base = ktsb_pa;
2160        ktsb_descr[0].resv = 0;
2161
2162#ifndef CONFIG_DEBUG_PAGEALLOC
2163        /* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2164        ktsb_pa = (kern_base +
2165                   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2166
2167        ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2168        ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2169                                    HV_PGSZ_MASK_256MB |
2170                                    HV_PGSZ_MASK_2GB |
2171                                    HV_PGSZ_MASK_16GB) &
2172                                   cpu_pgsz_mask);
2173        ktsb_descr[1].assoc = 1;
2174        ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2175        ktsb_descr[1].ctx_idx = 0;
2176        ktsb_descr[1].tsb_base = ktsb_pa;
2177        ktsb_descr[1].resv = 0;
2178#endif
2179}
2180
2181void sun4v_ktsb_register(void)
2182{
2183        unsigned long pa, ret;
2184
2185        pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2186
2187        ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2188        if (ret != 0) {
2189                prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2190                            "errors with %lx\n", pa, ret);
2191                prom_halt();
2192        }
2193}
2194
2195static void __init sun4u_linear_pte_xor_finalize(void)
2196{
2197#ifndef CONFIG_DEBUG_PAGEALLOC
2198        /* This is where we would add Panther support for
2199         * 32MB and 256MB pages.
2200         */
2201#endif
2202}
2203
2204static void __init sun4v_linear_pte_xor_finalize(void)
2205{
2206        unsigned long pagecv_flag;
2207
2208        /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2209         * enables MCD error. Do not set bit 9 on M7 processor.
2210         */
2211        switch (sun4v_chip_type) {
2212        case SUN4V_CHIP_SPARC_M7:
2213        case SUN4V_CHIP_SPARC_M8:
2214        case SUN4V_CHIP_SPARC_SN:
2215                pagecv_flag = 0x00;
2216                break;
2217        default:
2218                pagecv_flag = _PAGE_CV_4V;
2219                break;
2220        }
2221#ifndef CONFIG_DEBUG_PAGEALLOC
2222        if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2223                kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2224                        PAGE_OFFSET;
2225                kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2226                                           _PAGE_P_4V | _PAGE_W_4V);
2227        } else {
2228                kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2229        }
2230
2231        if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2232                kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2233                        PAGE_OFFSET;
2234                kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2235                                           _PAGE_P_4V | _PAGE_W_4V);
2236        } else {
2237                kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2238        }
2239
2240        if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2241                kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2242                        PAGE_OFFSET;
2243                kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2244                                           _PAGE_P_4V | _PAGE_W_4V);
2245        } else {
2246                kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2247        }
2248#endif
2249}
2250
2251/* paging_init() sets up the page tables */
2252
2253static unsigned long last_valid_pfn;
2254
2255static void sun4u_pgprot_init(void);
2256static void sun4v_pgprot_init(void);
2257
2258#define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
2259#define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
2260#define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2261#define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2262#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2263#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2264
2265/* We need to exclude reserved regions. This exclusion will include
2266 * vmlinux and initrd. To be more precise the initrd size could be used to
2267 * compute a new lower limit because it is freed later during initialization.
2268 */
2269static void __init reduce_memory(phys_addr_t limit_ram)
2270{
2271        limit_ram += memblock_reserved_size();
2272        memblock_enforce_memory_limit(limit_ram);
2273}
2274
2275void __init paging_init(void)
2276{
2277        unsigned long end_pfn, shift, phys_base;
2278        unsigned long real_end, i;
2279
2280        setup_page_offset();
2281
2282        /* These build time checkes make sure that the dcache_dirty_cpu()
2283         * page->flags usage will work.
2284         *
2285         * When a page gets marked as dcache-dirty, we store the
2286         * cpu number starting at bit 32 in the page->flags.  Also,
2287         * functions like clear_dcache_dirty_cpu use the cpu mask
2288         * in 13-bit signed-immediate instruction fields.
2289         */
2290
2291        /*
2292         * Page flags must not reach into upper 32 bits that are used
2293         * for the cpu number
2294         */
2295        BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2296
2297        /*
2298         * The bit fields placed in the high range must not reach below
2299         * the 32 bit boundary. Otherwise we cannot place the cpu field
2300         * at the 32 bit boundary.
2301         */
2302        BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2303                ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2304
2305        BUILD_BUG_ON(NR_CPUS > 4096);
2306
2307        kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2308        kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2309
2310        /* Invalidate both kernel TSBs.  */
2311        memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2312#ifndef CONFIG_DEBUG_PAGEALLOC
2313        memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2314#endif
2315
2316        /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2317         * bit on M7 processor. This is a conflicting usage of the same
2318         * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2319         * Detection error on all pages and this will lead to problems
2320         * later. Kernel does not run with MCD enabled and hence rest
2321         * of the required steps to fully configure memory corruption
2322         * detection are not taken. We need to ensure TTE.mcde is not
2323         * set on M7 processor. Compute the value of cacheability
2324         * flag for use later taking this into consideration.
2325         */
2326        switch (sun4v_chip_type) {
2327        case SUN4V_CHIP_SPARC_M7:
2328        case SUN4V_CHIP_SPARC_M8:
2329        case SUN4V_CHIP_SPARC_SN:
2330                page_cache4v_flag = _PAGE_CP_4V;
2331                break;
2332        default:
2333                page_cache4v_flag = _PAGE_CACHE_4V;
2334                break;
2335        }
2336
2337        if (tlb_type == hypervisor)
2338                sun4v_pgprot_init();
2339        else
2340                sun4u_pgprot_init();
2341
2342        if (tlb_type == cheetah_plus ||
2343            tlb_type == hypervisor) {
2344                tsb_phys_patch();
2345                ktsb_phys_patch();
2346        }
2347
2348        if (tlb_type == hypervisor)
2349                sun4v_patch_tlb_handlers();
2350
2351        /* Find available physical memory...
2352         *
2353         * Read it twice in order to work around a bug in openfirmware.
2354         * The call to grab this table itself can cause openfirmware to
2355         * allocate memory, which in turn can take away some space from
2356         * the list of available memory.  Reading it twice makes sure
2357         * we really do get the final value.
2358         */
2359        read_obp_translations();
2360        read_obp_memory("reg", &pall[0], &pall_ents);
2361        read_obp_memory("available", &pavail[0], &pavail_ents);
2362        read_obp_memory("available", &pavail[0], &pavail_ents);
2363
2364        phys_base = 0xffffffffffffffffUL;
2365        for (i = 0; i < pavail_ents; i++) {
2366                phys_base = min(phys_base, pavail[i].phys_addr);
2367                memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2368        }
2369
2370        memblock_reserve(kern_base, kern_size);
2371
2372        find_ramdisk(phys_base);
2373
2374        if (cmdline_memory_size)
2375                reduce_memory(cmdline_memory_size);
2376
2377        memblock_allow_resize();
2378        memblock_dump_all();
2379
2380        set_bit(0, mmu_context_bmap);
2381
2382        shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2383
2384        real_end = (unsigned long)_end;
2385        num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2386        printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2387               num_kernel_image_mappings);
2388
2389        /* Set kernel pgd to upper alias so physical page computations
2390         * work.
2391         */
2392        init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2393        
2394        memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2395
2396        inherit_prom_mappings();
2397        
2398        /* Ok, we can use our TLB miss and window trap handlers safely.  */
2399        setup_tba();
2400
2401        __flush_tlb_all();
2402
2403        prom_build_devicetree();
2404        of_populate_present_mask();
2405#ifndef CONFIG_SMP
2406        of_fill_in_cpu_data();
2407#endif
2408
2409        if (tlb_type == hypervisor) {
2410                sun4v_mdesc_init();
2411                mdesc_populate_present_mask(cpu_all_mask);
2412#ifndef CONFIG_SMP
2413                mdesc_fill_in_cpu_data(cpu_all_mask);
2414#endif
2415                mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2416
2417                sun4v_linear_pte_xor_finalize();
2418
2419                sun4v_ktsb_init();
2420                sun4v_ktsb_register();
2421        } else {
2422                unsigned long impl, ver;
2423
2424                cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2425                                 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2426
2427                __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2428                impl = ((ver >> 32) & 0xffff);
2429                if (impl == PANTHER_IMPL)
2430                        cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2431                                          HV_PGSZ_MASK_256MB);
2432
2433                sun4u_linear_pte_xor_finalize();
2434        }
2435
2436        /* Flush the TLBs and the 4M TSB so that the updated linear
2437         * pte XOR settings are realized for all mappings.
2438         */
2439        __flush_tlb_all();
2440#ifndef CONFIG_DEBUG_PAGEALLOC
2441        memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2442#endif
2443        __flush_tlb_all();
2444
2445        /* Setup bootmem... */
2446        last_valid_pfn = end_pfn = bootmem_init(phys_base);
2447
2448        kernel_physical_mapping_init();
2449
2450        {
2451                unsigned long max_zone_pfns[MAX_NR_ZONES];
2452
2453                memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2454
2455                max_zone_pfns[ZONE_NORMAL] = end_pfn;
2456
2457                free_area_init(max_zone_pfns);
2458        }
2459
2460        printk("Booting Linux...\n");
2461}
2462
2463int page_in_phys_avail(unsigned long paddr)
2464{
2465        int i;
2466
2467        paddr &= PAGE_MASK;
2468
2469        for (i = 0; i < pavail_ents; i++) {
2470                unsigned long start, end;
2471
2472                start = pavail[i].phys_addr;
2473                end = start + pavail[i].reg_size;
2474
2475                if (paddr >= start && paddr < end)
2476                        return 1;
2477        }
2478        if (paddr >= kern_base && paddr < (kern_base + kern_size))
2479                return 1;
2480#ifdef CONFIG_BLK_DEV_INITRD
2481        if (paddr >= __pa(initrd_start) &&
2482            paddr < __pa(PAGE_ALIGN(initrd_end)))
2483                return 1;
2484#endif
2485
2486        return 0;
2487}
2488
2489static void __init register_page_bootmem_info(void)
2490{
2491#ifdef CONFIG_NUMA
2492        int i;
2493
2494        for_each_online_node(i)
2495                if (NODE_DATA(i)->node_spanned_pages)
2496                        register_page_bootmem_info_node(NODE_DATA(i));
2497#endif
2498}
2499void __init mem_init(void)
2500{
2501        high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2502
2503        memblock_free_all();
2504
2505        /*
2506         * Must be done after boot memory is put on freelist, because here we
2507         * might set fields in deferred struct pages that have not yet been
2508         * initialized, and memblock_free_all() initializes all the reserved
2509         * deferred pages for us.
2510         */
2511        register_page_bootmem_info();
2512
2513        /*
2514         * Set up the zero page, mark it reserved, so that page count
2515         * is not manipulated when freeing the page from user ptes.
2516         */
2517        mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2518        if (mem_map_zero == NULL) {
2519                prom_printf("paging_init: Cannot alloc zero page.\n");
2520                prom_halt();
2521        }
2522        mark_page_reserved(mem_map_zero);
2523
2524
2525        if (tlb_type == cheetah || tlb_type == cheetah_plus)
2526                cheetah_ecache_flush_init();
2527}
2528
2529void free_initmem(void)
2530{
2531        unsigned long addr, initend;
2532        int do_free = 1;
2533
2534        /* If the physical memory maps were trimmed by kernel command
2535         * line options, don't even try freeing this initmem stuff up.
2536         * The kernel image could have been in the trimmed out region
2537         * and if so the freeing below will free invalid page structs.
2538         */
2539        if (cmdline_memory_size)
2540                do_free = 0;
2541
2542        /*
2543         * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2544         */
2545        addr = PAGE_ALIGN((unsigned long)(__init_begin));
2546        initend = (unsigned long)(__init_end) & PAGE_MASK;
2547        for (; addr < initend; addr += PAGE_SIZE) {
2548                unsigned long page;
2549
2550                page = (addr +
2551                        ((unsigned long) __va(kern_base)) -
2552                        ((unsigned long) KERNBASE));
2553                memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2554
2555                if (do_free)
2556                        free_reserved_page(virt_to_page(page));
2557        }
2558}
2559
2560pgprot_t PAGE_KERNEL __read_mostly;
2561EXPORT_SYMBOL(PAGE_KERNEL);
2562
2563pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2564pgprot_t PAGE_COPY __read_mostly;
2565
2566pgprot_t PAGE_SHARED __read_mostly;
2567EXPORT_SYMBOL(PAGE_SHARED);
2568
2569unsigned long pg_iobits __read_mostly;
2570
2571unsigned long _PAGE_IE __read_mostly;
2572EXPORT_SYMBOL(_PAGE_IE);
2573
2574unsigned long _PAGE_E __read_mostly;
2575EXPORT_SYMBOL(_PAGE_E);
2576
2577unsigned long _PAGE_CACHE __read_mostly;
2578EXPORT_SYMBOL(_PAGE_CACHE);
2579
2580#ifdef CONFIG_SPARSEMEM_VMEMMAP
2581int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2582                               int node, struct vmem_altmap *altmap)
2583{
2584        unsigned long pte_base;
2585
2586        pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2587                    _PAGE_CP_4U | _PAGE_CV_4U |
2588                    _PAGE_P_4U | _PAGE_W_4U);
2589        if (tlb_type == hypervisor)
2590                pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2591                            page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2592
2593        pte_base |= _PAGE_PMD_HUGE;
2594
2595        vstart = vstart & PMD_MASK;
2596        vend = ALIGN(vend, PMD_SIZE);
2597        for (; vstart < vend; vstart += PMD_SIZE) {
2598                pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
2599                unsigned long pte;
2600                p4d_t *p4d;
2601                pud_t *pud;
2602                pmd_t *pmd;
2603
2604                if (!pgd)
2605                        return -ENOMEM;
2606
2607                p4d = vmemmap_p4d_populate(pgd, vstart, node);
2608                if (!p4d)
2609                        return -ENOMEM;
2610
2611                pud = vmemmap_pud_populate(p4d, vstart, node);
2612                if (!pud)
2613                        return -ENOMEM;
2614
2615                pmd = pmd_offset(pud, vstart);
2616                pte = pmd_val(*pmd);
2617                if (!(pte & _PAGE_VALID)) {
2618                        void *block = vmemmap_alloc_block(PMD_SIZE, node);
2619
2620                        if (!block)
2621                                return -ENOMEM;
2622
2623                        pmd_val(*pmd) = pte_base | __pa(block);
2624                }
2625        }
2626
2627        return 0;
2628}
2629
2630void vmemmap_free(unsigned long start, unsigned long end,
2631                struct vmem_altmap *altmap)
2632{
2633}
2634#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2635
2636static void prot_init_common(unsigned long page_none,
2637                             unsigned long page_shared,
2638                             unsigned long page_copy,
2639                             unsigned long page_readonly,
2640                             unsigned long page_exec_bit)
2641{
2642        PAGE_COPY = __pgprot(page_copy);
2643        PAGE_SHARED = __pgprot(page_shared);
2644
2645        protection_map[0x0] = __pgprot(page_none);
2646        protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2647        protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2648        protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2649        protection_map[0x4] = __pgprot(page_readonly);
2650        protection_map[0x5] = __pgprot(page_readonly);
2651        protection_map[0x6] = __pgprot(page_copy);
2652        protection_map[0x7] = __pgprot(page_copy);
2653        protection_map[0x8] = __pgprot(page_none);
2654        protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2655        protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2656        protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2657        protection_map[0xc] = __pgprot(page_readonly);
2658        protection_map[0xd] = __pgprot(page_readonly);
2659        protection_map[0xe] = __pgprot(page_shared);
2660        protection_map[0xf] = __pgprot(page_shared);
2661}
2662
2663static void __init sun4u_pgprot_init(void)
2664{
2665        unsigned long page_none, page_shared, page_copy, page_readonly;
2666        unsigned long page_exec_bit;
2667        int i;
2668
2669        PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2670                                _PAGE_CACHE_4U | _PAGE_P_4U |
2671                                __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2672                                _PAGE_EXEC_4U);
2673        PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2674                                       _PAGE_CACHE_4U | _PAGE_P_4U |
2675                                       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2676                                       _PAGE_EXEC_4U | _PAGE_L_4U);
2677
2678        _PAGE_IE = _PAGE_IE_4U;
2679        _PAGE_E = _PAGE_E_4U;
2680        _PAGE_CACHE = _PAGE_CACHE_4U;
2681
2682        pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2683                     __ACCESS_BITS_4U | _PAGE_E_4U);
2684
2685#ifdef CONFIG_DEBUG_PAGEALLOC
2686        kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2687#else
2688        kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2689                PAGE_OFFSET;
2690#endif
2691        kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2692                                   _PAGE_P_4U | _PAGE_W_4U);
2693
2694        for (i = 1; i < 4; i++)
2695                kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2696
2697        _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2698                              _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2699                              _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2700
2701
2702        page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2703        page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2704                       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2705        page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2706                       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2707        page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2708                           __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2709
2710        page_exec_bit = _PAGE_EXEC_4U;
2711
2712        prot_init_common(page_none, page_shared, page_copy, page_readonly,
2713                         page_exec_bit);
2714}
2715
2716static void __init sun4v_pgprot_init(void)
2717{
2718        unsigned long page_none, page_shared, page_copy, page_readonly;
2719        unsigned long page_exec_bit;
2720        int i;
2721
2722        PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2723                                page_cache4v_flag | _PAGE_P_4V |
2724                                __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2725                                _PAGE_EXEC_4V);
2726        PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2727
2728        _PAGE_IE = _PAGE_IE_4V;
2729        _PAGE_E = _PAGE_E_4V;
2730        _PAGE_CACHE = page_cache4v_flag;
2731
2732#ifdef CONFIG_DEBUG_PAGEALLOC
2733        kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2734#else
2735        kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2736                PAGE_OFFSET;
2737#endif
2738        kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2739                                   _PAGE_W_4V);
2740
2741        for (i = 1; i < 4; i++)
2742                kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2743
2744        pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2745                     __ACCESS_BITS_4V | _PAGE_E_4V);
2746
2747        _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2748                             _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2749                             _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2750                             _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2751
2752        page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2753        page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2754                       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2755        page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2756                       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2757        page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2758                         __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2759
2760        page_exec_bit = _PAGE_EXEC_4V;
2761
2762        prot_init_common(page_none, page_shared, page_copy, page_readonly,
2763                         page_exec_bit);
2764}
2765
2766unsigned long pte_sz_bits(unsigned long sz)
2767{
2768        if (tlb_type == hypervisor) {
2769                switch (sz) {
2770                case 8 * 1024:
2771                default:
2772                        return _PAGE_SZ8K_4V;
2773                case 64 * 1024:
2774                        return _PAGE_SZ64K_4V;
2775                case 512 * 1024:
2776                        return _PAGE_SZ512K_4V;
2777                case 4 * 1024 * 1024:
2778                        return _PAGE_SZ4MB_4V;
2779                }
2780        } else {
2781                switch (sz) {
2782                case 8 * 1024:
2783                default:
2784                        return _PAGE_SZ8K_4U;
2785                case 64 * 1024:
2786                        return _PAGE_SZ64K_4U;
2787                case 512 * 1024:
2788                        return _PAGE_SZ512K_4U;
2789                case 4 * 1024 * 1024:
2790                        return _PAGE_SZ4MB_4U;
2791                }
2792        }
2793}
2794
2795pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2796{
2797        pte_t pte;
2798
2799        pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2800        pte_val(pte) |= (((unsigned long)space) << 32);
2801        pte_val(pte) |= pte_sz_bits(page_size);
2802
2803        return pte;
2804}
2805
2806static unsigned long kern_large_tte(unsigned long paddr)
2807{
2808        unsigned long val;
2809
2810        val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2811               _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2812               _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2813        if (tlb_type == hypervisor)
2814                val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2815                       page_cache4v_flag | _PAGE_P_4V |
2816                       _PAGE_EXEC_4V | _PAGE_W_4V);
2817
2818        return val | paddr;
2819}
2820
2821/* If not locked, zap it. */
2822void __flush_tlb_all(void)
2823{
2824        unsigned long pstate;
2825        int i;
2826
2827        __asm__ __volatile__("flushw\n\t"
2828                             "rdpr      %%pstate, %0\n\t"
2829                             "wrpr      %0, %1, %%pstate"
2830                             : "=r" (pstate)
2831                             : "i" (PSTATE_IE));
2832        if (tlb_type == hypervisor) {
2833                sun4v_mmu_demap_all();
2834        } else if (tlb_type == spitfire) {
2835                for (i = 0; i < 64; i++) {
2836                        /* Spitfire Errata #32 workaround */
2837                        /* NOTE: Always runs on spitfire, so no
2838                         *       cheetah+ page size encodings.
2839                         */
2840                        __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2841                                             "flush     %%g6"
2842                                             : /* No outputs */
2843                                             : "r" (0),
2844                                             "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2845
2846                        if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2847                                __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2848                                                     "membar #Sync"
2849                                                     : /* no outputs */
2850                                                     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2851                                spitfire_put_dtlb_data(i, 0x0UL);
2852                        }
2853
2854                        /* Spitfire Errata #32 workaround */
2855                        /* NOTE: Always runs on spitfire, so no
2856                         *       cheetah+ page size encodings.
2857                         */
2858                        __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2859                                             "flush     %%g6"
2860                                             : /* No outputs */
2861                                             : "r" (0),
2862                                             "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2863
2864                        if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2865                                __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2866                                                     "membar #Sync"
2867                                                     : /* no outputs */
2868                                                     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2869                                spitfire_put_itlb_data(i, 0x0UL);
2870                        }
2871                }
2872        } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2873                cheetah_flush_dtlb_all();
2874                cheetah_flush_itlb_all();
2875        }
2876        __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2877                             : : "r" (pstate));
2878}
2879
2880pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
2881{
2882        struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2883        pte_t *pte = NULL;
2884
2885        if (page)
2886                pte = (pte_t *) page_address(page);
2887
2888        return pte;
2889}
2890
2891pgtable_t pte_alloc_one(struct mm_struct *mm)
2892{
2893        struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2894        if (!page)
2895                return NULL;
2896        if (!pgtable_pte_page_ctor(page)) {
2897                __free_page(page);
2898                return NULL;
2899        }
2900        return (pte_t *) page_address(page);
2901}
2902
2903void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2904{
2905        free_page((unsigned long)pte);
2906}
2907
2908static void __pte_free(pgtable_t pte)
2909{
2910        struct page *page = virt_to_page(pte);
2911
2912        pgtable_pte_page_dtor(page);
2913        __free_page(page);
2914}
2915
2916void pte_free(struct mm_struct *mm, pgtable_t pte)
2917{
2918        __pte_free(pte);
2919}
2920
2921void pgtable_free(void *table, bool is_page)
2922{
2923        if (is_page)
2924                __pte_free(table);
2925        else
2926                kmem_cache_free(pgtable_cache, table);
2927}
2928
2929#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2930void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2931                          pmd_t *pmd)
2932{
2933        unsigned long pte, flags;
2934        struct mm_struct *mm;
2935        pmd_t entry = *pmd;
2936
2937        if (!pmd_large(entry) || !pmd_young(entry))
2938                return;
2939
2940        pte = pmd_val(entry);
2941
2942        /* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2943        if (!(pte & _PAGE_VALID))
2944                return;
2945
2946        /* We are fabricating 8MB pages using 4MB real hw pages.  */
2947        pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2948
2949        mm = vma->vm_mm;
2950
2951        spin_lock_irqsave(&mm->context.lock, flags);
2952
2953        if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2954                __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2955                                        addr, pte);
2956
2957        spin_unlock_irqrestore(&mm->context.lock, flags);
2958}
2959#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2960
2961#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2962static void context_reload(void *__data)
2963{
2964        struct mm_struct *mm = __data;
2965
2966        if (mm == current->mm)
2967                load_secondary_context(mm);
2968}
2969
2970void hugetlb_setup(struct pt_regs *regs)
2971{
2972        struct mm_struct *mm = current->mm;
2973        struct tsb_config *tp;
2974
2975        if (faulthandler_disabled() || !mm) {
2976                const struct exception_table_entry *entry;
2977
2978                entry = search_exception_tables(regs->tpc);
2979                if (entry) {
2980                        regs->tpc = entry->fixup;
2981                        regs->tnpc = regs->tpc + 4;
2982                        return;
2983                }
2984                pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2985                die_if_kernel("HugeTSB in atomic", regs);
2986        }
2987
2988        tp = &mm->context.tsb_block[MM_TSB_HUGE];
2989        if (likely(tp->tsb == NULL))
2990                tsb_grow(mm, MM_TSB_HUGE, 0);
2991
2992        tsb_context_switch(mm);
2993        smp_tsb_sync(mm);
2994
2995        /* On UltraSPARC-III+ and later, configure the second half of
2996         * the Data-TLB for huge pages.
2997         */
2998        if (tlb_type == cheetah_plus) {
2999                bool need_context_reload = false;
3000                unsigned long ctx;
3001
3002                spin_lock_irq(&ctx_alloc_lock);
3003                ctx = mm->context.sparc64_ctx_val;
3004                ctx &= ~CTX_PGSZ_MASK;
3005                ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3006                ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3007
3008                if (ctx != mm->context.sparc64_ctx_val) {
3009                        /* When changing the page size fields, we
3010                         * must perform a context flush so that no
3011                         * stale entries match.  This flush must
3012                         * occur with the original context register
3013                         * settings.
3014                         */
3015                        do_flush_tlb_mm(mm);
3016
3017                        /* Reload the context register of all processors
3018                         * also executing in this address space.
3019                         */
3020                        mm->context.sparc64_ctx_val = ctx;
3021                        need_context_reload = true;
3022                }
3023                spin_unlock_irq(&ctx_alloc_lock);
3024
3025                if (need_context_reload)
3026                        on_each_cpu(context_reload, mm, 0);
3027        }
3028}
3029#endif
3030
3031static struct resource code_resource = {
3032        .name   = "Kernel code",
3033        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3034};
3035
3036static struct resource data_resource = {
3037        .name   = "Kernel data",
3038        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3039};
3040
3041static struct resource bss_resource = {
3042        .name   = "Kernel bss",
3043        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3044};
3045
3046static inline resource_size_t compute_kern_paddr(void *addr)
3047{
3048        return (resource_size_t) (addr - KERNBASE + kern_base);
3049}
3050
3051static void __init kernel_lds_init(void)
3052{
3053        code_resource.start = compute_kern_paddr(_text);
3054        code_resource.end   = compute_kern_paddr(_etext - 1);
3055        data_resource.start = compute_kern_paddr(_etext);
3056        data_resource.end   = compute_kern_paddr(_edata - 1);
3057        bss_resource.start  = compute_kern_paddr(__bss_start);
3058        bss_resource.end    = compute_kern_paddr(_end - 1);
3059}
3060
3061static int __init report_memory(void)
3062{
3063        int i;
3064        struct resource *res;
3065
3066        kernel_lds_init();
3067
3068        for (i = 0; i < pavail_ents; i++) {
3069                res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3070
3071                if (!res) {
3072                        pr_warn("Failed to allocate source.\n");
3073                        break;
3074                }
3075
3076                res->name = "System RAM";
3077                res->start = pavail[i].phys_addr;
3078                res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3079                res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3080
3081                if (insert_resource(&iomem_resource, res) < 0) {
3082                        pr_warn("Resource insertion failed.\n");
3083                        break;
3084                }
3085
3086                insert_resource(res, &code_resource);
3087                insert_resource(res, &data_resource);
3088                insert_resource(res, &bss_resource);
3089        }
3090
3091        return 0;
3092}
3093arch_initcall(report_memory);
3094
3095#ifdef CONFIG_SMP
3096#define do_flush_tlb_kernel_range       smp_flush_tlb_kernel_range
3097#else
3098#define do_flush_tlb_kernel_range       __flush_tlb_kernel_range
3099#endif
3100
3101void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3102{
3103        if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3104                if (start < LOW_OBP_ADDRESS) {
3105                        flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3106                        do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3107                }
3108                if (end > HI_OBP_ADDRESS) {
3109                        flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3110                        do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3111                }
3112        } else {
3113                flush_tsb_kernel_range(start, end);
3114                do_flush_tlb_kernel_range(start, end);
3115        }
3116}
3117
3118void copy_user_highpage(struct page *to, struct page *from,
3119        unsigned long vaddr, struct vm_area_struct *vma)
3120{
3121        char *vfrom, *vto;
3122
3123        vfrom = kmap_atomic(from);
3124        vto = kmap_atomic(to);
3125        copy_user_page(vto, vfrom, vaddr, to);
3126        kunmap_atomic(vto);
3127        kunmap_atomic(vfrom);
3128
3129        /* If this page has ADI enabled, copy over any ADI tags
3130         * as well
3131         */
3132        if (vma->vm_flags & VM_SPARC_ADI) {
3133                unsigned long pfrom, pto, i, adi_tag;
3134
3135                pfrom = page_to_phys(from);
3136                pto = page_to_phys(to);
3137
3138                for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3139                        asm volatile("ldxa [%1] %2, %0\n\t"
3140                                        : "=r" (adi_tag)
3141                                        :  "r" (i), "i" (ASI_MCD_REAL));
3142                        asm volatile("stxa %0, [%1] %2\n\t"
3143                                        :
3144                                        : "r" (adi_tag), "r" (pto),
3145                                          "i" (ASI_MCD_REAL));
3146                        pto += adi_blksize();
3147                }
3148                asm volatile("membar #Sync\n\t");
3149        }
3150}
3151EXPORT_SYMBOL(copy_user_highpage);
3152
3153void copy_highpage(struct page *to, struct page *from)
3154{
3155        char *vfrom, *vto;
3156
3157        vfrom = kmap_atomic(from);
3158        vto = kmap_atomic(to);
3159        copy_page(vto, vfrom);
3160        kunmap_atomic(vto);
3161        kunmap_atomic(vfrom);
3162
3163        /* If this platform is ADI enabled, copy any ADI tags
3164         * as well
3165         */
3166        if (adi_capable()) {
3167                unsigned long pfrom, pto, i, adi_tag;
3168
3169                pfrom = page_to_phys(from);
3170                pto = page_to_phys(to);
3171
3172                for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3173                        asm volatile("ldxa [%1] %2, %0\n\t"
3174                                        : "=r" (adi_tag)
3175                                        :  "r" (i), "i" (ASI_MCD_REAL));
3176                        asm volatile("stxa %0, [%1] %2\n\t"
3177                                        :
3178                                        : "r" (adi_tag), "r" (pto),
3179                                          "i" (ASI_MCD_REAL));
3180                        pto += adi_blksize();
3181                }
3182                asm volatile("membar #Sync\n\t");
3183        }
3184}
3185EXPORT_SYMBOL(copy_highpage);
3186