linux/arch/x86/kernel/tsc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   3
   4#include <linux/kernel.h>
   5#include <linux/sched.h>
   6#include <linux/sched/clock.h>
   7#include <linux/init.h>
   8#include <linux/export.h>
   9#include <linux/timer.h>
  10#include <linux/acpi_pmtmr.h>
  11#include <linux/cpufreq.h>
  12#include <linux/delay.h>
  13#include <linux/clocksource.h>
  14#include <linux/percpu.h>
  15#include <linux/timex.h>
  16#include <linux/static_key.h>
  17#include <linux/static_call.h>
  18
  19#include <asm/hpet.h>
  20#include <asm/timer.h>
  21#include <asm/vgtod.h>
  22#include <asm/time.h>
  23#include <asm/delay.h>
  24#include <asm/hypervisor.h>
  25#include <asm/nmi.h>
  26#include <asm/x86_init.h>
  27#include <asm/geode.h>
  28#include <asm/apic.h>
  29#include <asm/intel-family.h>
  30#include <asm/i8259.h>
  31#include <asm/uv/uv.h>
  32
  33unsigned int __read_mostly cpu_khz;     /* TSC clocks / usec, not used here */
  34EXPORT_SYMBOL(cpu_khz);
  35
  36unsigned int __read_mostly tsc_khz;
  37EXPORT_SYMBOL(tsc_khz);
  38
  39#define KHZ     1000
  40
  41/*
  42 * TSC can be unstable due to cpufreq or due to unsynced TSCs
  43 */
  44static int __read_mostly tsc_unstable;
  45static unsigned int __initdata tsc_early_khz;
  46
  47static DEFINE_STATIC_KEY_FALSE(__use_tsc);
  48
  49int tsc_clocksource_reliable;
  50
  51static u32 art_to_tsc_numerator;
  52static u32 art_to_tsc_denominator;
  53static u64 art_to_tsc_offset;
  54struct clocksource *art_related_clocksource;
  55
  56struct cyc2ns {
  57        struct cyc2ns_data data[2];     /*  0 + 2*16 = 32 */
  58        seqcount_latch_t   seq;         /* 32 + 4    = 36 */
  59
  60}; /* fits one cacheline */
  61
  62static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  63
  64static int __init tsc_early_khz_setup(char *buf)
  65{
  66        return kstrtouint(buf, 0, &tsc_early_khz);
  67}
  68early_param("tsc_early_khz", tsc_early_khz_setup);
  69
  70__always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
  71{
  72        int seq, idx;
  73
  74        preempt_disable_notrace();
  75
  76        do {
  77                seq = this_cpu_read(cyc2ns.seq.seqcount.sequence);
  78                idx = seq & 1;
  79
  80                data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
  81                data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
  82                data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
  83
  84        } while (unlikely(seq != this_cpu_read(cyc2ns.seq.seqcount.sequence)));
  85}
  86
  87__always_inline void cyc2ns_read_end(void)
  88{
  89        preempt_enable_notrace();
  90}
  91
  92/*
  93 * Accelerators for sched_clock()
  94 * convert from cycles(64bits) => nanoseconds (64bits)
  95 *  basic equation:
  96 *              ns = cycles / (freq / ns_per_sec)
  97 *              ns = cycles * (ns_per_sec / freq)
  98 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
  99 *              ns = cycles * (10^6 / cpu_khz)
 100 *
 101 *      Then we use scaling math (suggested by george@mvista.com) to get:
 102 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 103 *              ns = cycles * cyc2ns_scale / SC
 104 *
 105 *      And since SC is a constant power of two, we can convert the div
 106 *  into a shift. The larger SC is, the more accurate the conversion, but
 107 *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
 108 *  (64-bit result) can be used.
 109 *
 110 *  We can use khz divisor instead of mhz to keep a better precision.
 111 *  (mathieu.desnoyers@polymtl.ca)
 112 *
 113 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 114 */
 115
 116static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
 117{
 118        struct cyc2ns_data data;
 119        unsigned long long ns;
 120
 121        cyc2ns_read_begin(&data);
 122
 123        ns = data.cyc2ns_offset;
 124        ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
 125
 126        cyc2ns_read_end();
 127
 128        return ns;
 129}
 130
 131static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
 132{
 133        unsigned long long ns_now;
 134        struct cyc2ns_data data;
 135        struct cyc2ns *c2n;
 136
 137        ns_now = cycles_2_ns(tsc_now);
 138
 139        /*
 140         * Compute a new multiplier as per the above comment and ensure our
 141         * time function is continuous; see the comment near struct
 142         * cyc2ns_data.
 143         */
 144        clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
 145                               NSEC_PER_MSEC, 0);
 146
 147        /*
 148         * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
 149         * not expected to be greater than 31 due to the original published
 150         * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
 151         * value) - refer perf_event_mmap_page documentation in perf_event.h.
 152         */
 153        if (data.cyc2ns_shift == 32) {
 154                data.cyc2ns_shift = 31;
 155                data.cyc2ns_mul >>= 1;
 156        }
 157
 158        data.cyc2ns_offset = ns_now -
 159                mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
 160
 161        c2n = per_cpu_ptr(&cyc2ns, cpu);
 162
 163        raw_write_seqcount_latch(&c2n->seq);
 164        c2n->data[0] = data;
 165        raw_write_seqcount_latch(&c2n->seq);
 166        c2n->data[1] = data;
 167}
 168
 169static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
 170{
 171        unsigned long flags;
 172
 173        local_irq_save(flags);
 174        sched_clock_idle_sleep_event();
 175
 176        if (khz)
 177                __set_cyc2ns_scale(khz, cpu, tsc_now);
 178
 179        sched_clock_idle_wakeup_event();
 180        local_irq_restore(flags);
 181}
 182
 183/*
 184 * Initialize cyc2ns for boot cpu
 185 */
 186static void __init cyc2ns_init_boot_cpu(void)
 187{
 188        struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
 189
 190        seqcount_latch_init(&c2n->seq);
 191        __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
 192}
 193
 194/*
 195 * Secondary CPUs do not run through tsc_init(), so set up
 196 * all the scale factors for all CPUs, assuming the same
 197 * speed as the bootup CPU.
 198 */
 199static void __init cyc2ns_init_secondary_cpus(void)
 200{
 201        unsigned int cpu, this_cpu = smp_processor_id();
 202        struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
 203        struct cyc2ns_data *data = c2n->data;
 204
 205        for_each_possible_cpu(cpu) {
 206                if (cpu != this_cpu) {
 207                        seqcount_latch_init(&c2n->seq);
 208                        c2n = per_cpu_ptr(&cyc2ns, cpu);
 209                        c2n->data[0] = data[0];
 210                        c2n->data[1] = data[1];
 211                }
 212        }
 213}
 214
 215/*
 216 * Scheduler clock - returns current time in nanosec units.
 217 */
 218u64 native_sched_clock(void)
 219{
 220        if (static_branch_likely(&__use_tsc)) {
 221                u64 tsc_now = rdtsc();
 222
 223                /* return the value in ns */
 224                return cycles_2_ns(tsc_now);
 225        }
 226
 227        /*
 228         * Fall back to jiffies if there's no TSC available:
 229         * ( But note that we still use it if the TSC is marked
 230         *   unstable. We do this because unlike Time Of Day,
 231         *   the scheduler clock tolerates small errors and it's
 232         *   very important for it to be as fast as the platform
 233         *   can achieve it. )
 234         */
 235
 236        /* No locking but a rare wrong value is not a big deal: */
 237        return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
 238}
 239
 240/*
 241 * Generate a sched_clock if you already have a TSC value.
 242 */
 243u64 native_sched_clock_from_tsc(u64 tsc)
 244{
 245        return cycles_2_ns(tsc);
 246}
 247
 248/* We need to define a real function for sched_clock, to override the
 249   weak default version */
 250#ifdef CONFIG_PARAVIRT
 251unsigned long long sched_clock(void)
 252{
 253        return paravirt_sched_clock();
 254}
 255
 256bool using_native_sched_clock(void)
 257{
 258        return static_call_query(pv_sched_clock) == native_sched_clock;
 259}
 260#else
 261unsigned long long
 262sched_clock(void) __attribute__((alias("native_sched_clock")));
 263
 264bool using_native_sched_clock(void) { return true; }
 265#endif
 266
 267int check_tsc_unstable(void)
 268{
 269        return tsc_unstable;
 270}
 271EXPORT_SYMBOL_GPL(check_tsc_unstable);
 272
 273#ifdef CONFIG_X86_TSC
 274int __init notsc_setup(char *str)
 275{
 276        mark_tsc_unstable("boot parameter notsc");
 277        return 1;
 278}
 279#else
 280/*
 281 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 282 * in cpu/common.c
 283 */
 284int __init notsc_setup(char *str)
 285{
 286        setup_clear_cpu_cap(X86_FEATURE_TSC);
 287        return 1;
 288}
 289#endif
 290
 291__setup("notsc", notsc_setup);
 292
 293static int no_sched_irq_time;
 294static int no_tsc_watchdog;
 295
 296static int __init tsc_setup(char *str)
 297{
 298        if (!strcmp(str, "reliable"))
 299                tsc_clocksource_reliable = 1;
 300        if (!strncmp(str, "noirqtime", 9))
 301                no_sched_irq_time = 1;
 302        if (!strcmp(str, "unstable"))
 303                mark_tsc_unstable("boot parameter");
 304        if (!strcmp(str, "nowatchdog"))
 305                no_tsc_watchdog = 1;
 306        return 1;
 307}
 308
 309__setup("tsc=", tsc_setup);
 310
 311#define MAX_RETRIES             5
 312#define TSC_DEFAULT_THRESHOLD   0x20000
 313
 314/*
 315 * Read TSC and the reference counters. Take care of any disturbances
 316 */
 317static u64 tsc_read_refs(u64 *p, int hpet)
 318{
 319        u64 t1, t2;
 320        u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
 321        int i;
 322
 323        for (i = 0; i < MAX_RETRIES; i++) {
 324                t1 = get_cycles();
 325                if (hpet)
 326                        *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
 327                else
 328                        *p = acpi_pm_read_early();
 329                t2 = get_cycles();
 330                if ((t2 - t1) < thresh)
 331                        return t2;
 332        }
 333        return ULLONG_MAX;
 334}
 335
 336/*
 337 * Calculate the TSC frequency from HPET reference
 338 */
 339static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
 340{
 341        u64 tmp;
 342
 343        if (hpet2 < hpet1)
 344                hpet2 += 0x100000000ULL;
 345        hpet2 -= hpet1;
 346        tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
 347        do_div(tmp, 1000000);
 348        deltatsc = div64_u64(deltatsc, tmp);
 349
 350        return (unsigned long) deltatsc;
 351}
 352
 353/*
 354 * Calculate the TSC frequency from PMTimer reference
 355 */
 356static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
 357{
 358        u64 tmp;
 359
 360        if (!pm1 && !pm2)
 361                return ULONG_MAX;
 362
 363        if (pm2 < pm1)
 364                pm2 += (u64)ACPI_PM_OVRRUN;
 365        pm2 -= pm1;
 366        tmp = pm2 * 1000000000LL;
 367        do_div(tmp, PMTMR_TICKS_PER_SEC);
 368        do_div(deltatsc, tmp);
 369
 370        return (unsigned long) deltatsc;
 371}
 372
 373#define CAL_MS          10
 374#define CAL_LATCH       (PIT_TICK_RATE / (1000 / CAL_MS))
 375#define CAL_PIT_LOOPS   1000
 376
 377#define CAL2_MS         50
 378#define CAL2_LATCH      (PIT_TICK_RATE / (1000 / CAL2_MS))
 379#define CAL2_PIT_LOOPS  5000
 380
 381
 382/*
 383 * Try to calibrate the TSC against the Programmable
 384 * Interrupt Timer and return the frequency of the TSC
 385 * in kHz.
 386 *
 387 * Return ULONG_MAX on failure to calibrate.
 388 */
 389static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
 390{
 391        u64 tsc, t1, t2, delta;
 392        unsigned long tscmin, tscmax;
 393        int pitcnt;
 394
 395        if (!has_legacy_pic()) {
 396                /*
 397                 * Relies on tsc_early_delay_calibrate() to have given us semi
 398                 * usable udelay(), wait for the same 50ms we would have with
 399                 * the PIT loop below.
 400                 */
 401                udelay(10 * USEC_PER_MSEC);
 402                udelay(10 * USEC_PER_MSEC);
 403                udelay(10 * USEC_PER_MSEC);
 404                udelay(10 * USEC_PER_MSEC);
 405                udelay(10 * USEC_PER_MSEC);
 406                return ULONG_MAX;
 407        }
 408
 409        /* Set the Gate high, disable speaker */
 410        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 411
 412        /*
 413         * Setup CTC channel 2* for mode 0, (interrupt on terminal
 414         * count mode), binary count. Set the latch register to 50ms
 415         * (LSB then MSB) to begin countdown.
 416         */
 417        outb(0xb0, 0x43);
 418        outb(latch & 0xff, 0x42);
 419        outb(latch >> 8, 0x42);
 420
 421        tsc = t1 = t2 = get_cycles();
 422
 423        pitcnt = 0;
 424        tscmax = 0;
 425        tscmin = ULONG_MAX;
 426        while ((inb(0x61) & 0x20) == 0) {
 427                t2 = get_cycles();
 428                delta = t2 - tsc;
 429                tsc = t2;
 430                if ((unsigned long) delta < tscmin)
 431                        tscmin = (unsigned int) delta;
 432                if ((unsigned long) delta > tscmax)
 433                        tscmax = (unsigned int) delta;
 434                pitcnt++;
 435        }
 436
 437        /*
 438         * Sanity checks:
 439         *
 440         * If we were not able to read the PIT more than loopmin
 441         * times, then we have been hit by a massive SMI
 442         *
 443         * If the maximum is 10 times larger than the minimum,
 444         * then we got hit by an SMI as well.
 445         */
 446        if (pitcnt < loopmin || tscmax > 10 * tscmin)
 447                return ULONG_MAX;
 448
 449        /* Calculate the PIT value */
 450        delta = t2 - t1;
 451        do_div(delta, ms);
 452        return delta;
 453}
 454
 455/*
 456 * This reads the current MSB of the PIT counter, and
 457 * checks if we are running on sufficiently fast and
 458 * non-virtualized hardware.
 459 *
 460 * Our expectations are:
 461 *
 462 *  - the PIT is running at roughly 1.19MHz
 463 *
 464 *  - each IO is going to take about 1us on real hardware,
 465 *    but we allow it to be much faster (by a factor of 10) or
 466 *    _slightly_ slower (ie we allow up to a 2us read+counter
 467 *    update - anything else implies a unacceptably slow CPU
 468 *    or PIT for the fast calibration to work.
 469 *
 470 *  - with 256 PIT ticks to read the value, we have 214us to
 471 *    see the same MSB (and overhead like doing a single TSC
 472 *    read per MSB value etc).
 473 *
 474 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 475 *    them each to take about a microsecond on real hardware.
 476 *    So we expect a count value of around 100. But we'll be
 477 *    generous, and accept anything over 50.
 478 *
 479 *  - if the PIT is stuck, and we see *many* more reads, we
 480 *    return early (and the next caller of pit_expect_msb()
 481 *    then consider it a failure when they don't see the
 482 *    next expected value).
 483 *
 484 * These expectations mean that we know that we have seen the
 485 * transition from one expected value to another with a fairly
 486 * high accuracy, and we didn't miss any events. We can thus
 487 * use the TSC value at the transitions to calculate a pretty
 488 * good value for the TSC frequency.
 489 */
 490static inline int pit_verify_msb(unsigned char val)
 491{
 492        /* Ignore LSB */
 493        inb(0x42);
 494        return inb(0x42) == val;
 495}
 496
 497static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
 498{
 499        int count;
 500        u64 tsc = 0, prev_tsc = 0;
 501
 502        for (count = 0; count < 50000; count++) {
 503                if (!pit_verify_msb(val))
 504                        break;
 505                prev_tsc = tsc;
 506                tsc = get_cycles();
 507        }
 508        *deltap = get_cycles() - prev_tsc;
 509        *tscp = tsc;
 510
 511        /*
 512         * We require _some_ success, but the quality control
 513         * will be based on the error terms on the TSC values.
 514         */
 515        return count > 5;
 516}
 517
 518/*
 519 * How many MSB values do we want to see? We aim for
 520 * a maximum error rate of 500ppm (in practice the
 521 * real error is much smaller), but refuse to spend
 522 * more than 50ms on it.
 523 */
 524#define MAX_QUICK_PIT_MS 50
 525#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 526
 527static unsigned long quick_pit_calibrate(void)
 528{
 529        int i;
 530        u64 tsc, delta;
 531        unsigned long d1, d2;
 532
 533        if (!has_legacy_pic())
 534                return 0;
 535
 536        /* Set the Gate high, disable speaker */
 537        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 538
 539        /*
 540         * Counter 2, mode 0 (one-shot), binary count
 541         *
 542         * NOTE! Mode 2 decrements by two (and then the
 543         * output is flipped each time, giving the same
 544         * final output frequency as a decrement-by-one),
 545         * so mode 0 is much better when looking at the
 546         * individual counts.
 547         */
 548        outb(0xb0, 0x43);
 549
 550        /* Start at 0xffff */
 551        outb(0xff, 0x42);
 552        outb(0xff, 0x42);
 553
 554        /*
 555         * The PIT starts counting at the next edge, so we
 556         * need to delay for a microsecond. The easiest way
 557         * to do that is to just read back the 16-bit counter
 558         * once from the PIT.
 559         */
 560        pit_verify_msb(0);
 561
 562        if (pit_expect_msb(0xff, &tsc, &d1)) {
 563                for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 564                        if (!pit_expect_msb(0xff-i, &delta, &d2))
 565                                break;
 566
 567                        delta -= tsc;
 568
 569                        /*
 570                         * Extrapolate the error and fail fast if the error will
 571                         * never be below 500 ppm.
 572                         */
 573                        if (i == 1 &&
 574                            d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
 575                                return 0;
 576
 577                        /*
 578                         * Iterate until the error is less than 500 ppm
 579                         */
 580                        if (d1+d2 >= delta >> 11)
 581                                continue;
 582
 583                        /*
 584                         * Check the PIT one more time to verify that
 585                         * all TSC reads were stable wrt the PIT.
 586                         *
 587                         * This also guarantees serialization of the
 588                         * last cycle read ('d2') in pit_expect_msb.
 589                         */
 590                        if (!pit_verify_msb(0xfe - i))
 591                                break;
 592                        goto success;
 593                }
 594        }
 595        pr_info("Fast TSC calibration failed\n");
 596        return 0;
 597
 598success:
 599        /*
 600         * Ok, if we get here, then we've seen the
 601         * MSB of the PIT decrement 'i' times, and the
 602         * error has shrunk to less than 500 ppm.
 603         *
 604         * As a result, we can depend on there not being
 605         * any odd delays anywhere, and the TSC reads are
 606         * reliable (within the error).
 607         *
 608         * kHz = ticks / time-in-seconds / 1000;
 609         * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 610         * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 611         */
 612        delta *= PIT_TICK_RATE;
 613        do_div(delta, i*256*1000);
 614        pr_info("Fast TSC calibration using PIT\n");
 615        return delta;
 616}
 617
 618/**
 619 * native_calibrate_tsc
 620 * Determine TSC frequency via CPUID, else return 0.
 621 */
 622unsigned long native_calibrate_tsc(void)
 623{
 624        unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
 625        unsigned int crystal_khz;
 626
 627        if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 628                return 0;
 629
 630        if (boot_cpu_data.cpuid_level < 0x15)
 631                return 0;
 632
 633        eax_denominator = ebx_numerator = ecx_hz = edx = 0;
 634
 635        /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
 636        cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
 637
 638        if (ebx_numerator == 0 || eax_denominator == 0)
 639                return 0;
 640
 641        crystal_khz = ecx_hz / 1000;
 642
 643        /*
 644         * Denverton SoCs don't report crystal clock, and also don't support
 645         * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal
 646         * clock.
 647         */
 648        if (crystal_khz == 0 &&
 649                        boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT_D)
 650                crystal_khz = 25000;
 651
 652        /*
 653         * TSC frequency reported directly by CPUID is a "hardware reported"
 654         * frequency and is the most accurate one so far we have. This
 655         * is considered a known frequency.
 656         */
 657        if (crystal_khz != 0)
 658                setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
 659
 660        /*
 661         * Some Intel SoCs like Skylake and Kabylake don't report the crystal
 662         * clock, but we can easily calculate it to a high degree of accuracy
 663         * by considering the crystal ratio and the CPU speed.
 664         */
 665        if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) {
 666                unsigned int eax_base_mhz, ebx, ecx, edx;
 667
 668                cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx);
 669                crystal_khz = eax_base_mhz * 1000 *
 670                        eax_denominator / ebx_numerator;
 671        }
 672
 673        if (crystal_khz == 0)
 674                return 0;
 675
 676        /*
 677         * For Atom SoCs TSC is the only reliable clocksource.
 678         * Mark TSC reliable so no watchdog on it.
 679         */
 680        if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
 681                setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
 682
 683#ifdef CONFIG_X86_LOCAL_APIC
 684        /*
 685         * The local APIC appears to be fed by the core crystal clock
 686         * (which sounds entirely sensible). We can set the global
 687         * lapic_timer_period here to avoid having to calibrate the APIC
 688         * timer later.
 689         */
 690        lapic_timer_period = crystal_khz * 1000 / HZ;
 691#endif
 692
 693        return crystal_khz * ebx_numerator / eax_denominator;
 694}
 695
 696static unsigned long cpu_khz_from_cpuid(void)
 697{
 698        unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
 699
 700        if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 701                return 0;
 702
 703        if (boot_cpu_data.cpuid_level < 0x16)
 704                return 0;
 705
 706        eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
 707
 708        cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
 709
 710        return eax_base_mhz * 1000;
 711}
 712
 713/*
 714 * calibrate cpu using pit, hpet, and ptimer methods. They are available
 715 * later in boot after acpi is initialized.
 716 */
 717static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
 718{
 719        u64 tsc1, tsc2, delta, ref1, ref2;
 720        unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
 721        unsigned long flags, latch, ms;
 722        int hpet = is_hpet_enabled(), i, loopmin;
 723
 724        /*
 725         * Run 5 calibration loops to get the lowest frequency value
 726         * (the best estimate). We use two different calibration modes
 727         * here:
 728         *
 729         * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
 730         * load a timeout of 50ms. We read the time right after we
 731         * started the timer and wait until the PIT count down reaches
 732         * zero. In each wait loop iteration we read the TSC and check
 733         * the delta to the previous read. We keep track of the min
 734         * and max values of that delta. The delta is mostly defined
 735         * by the IO time of the PIT access, so we can detect when
 736         * any disturbance happened between the two reads. If the
 737         * maximum time is significantly larger than the minimum time,
 738         * then we discard the result and have another try.
 739         *
 740         * 2) Reference counter. If available we use the HPET or the
 741         * PMTIMER as a reference to check the sanity of that value.
 742         * We use separate TSC readouts and check inside of the
 743         * reference read for any possible disturbance. We discard
 744         * disturbed values here as well. We do that around the PIT
 745         * calibration delay loop as we have to wait for a certain
 746         * amount of time anyway.
 747         */
 748
 749        /* Preset PIT loop values */
 750        latch = CAL_LATCH;
 751        ms = CAL_MS;
 752        loopmin = CAL_PIT_LOOPS;
 753
 754        for (i = 0; i < 3; i++) {
 755                unsigned long tsc_pit_khz;
 756
 757                /*
 758                 * Read the start value and the reference count of
 759                 * hpet/pmtimer when available. Then do the PIT
 760                 * calibration, which will take at least 50ms, and
 761                 * read the end value.
 762                 */
 763                local_irq_save(flags);
 764                tsc1 = tsc_read_refs(&ref1, hpet);
 765                tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
 766                tsc2 = tsc_read_refs(&ref2, hpet);
 767                local_irq_restore(flags);
 768
 769                /* Pick the lowest PIT TSC calibration so far */
 770                tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
 771
 772                /* hpet or pmtimer available ? */
 773                if (ref1 == ref2)
 774                        continue;
 775
 776                /* Check, whether the sampling was disturbed */
 777                if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
 778                        continue;
 779
 780                tsc2 = (tsc2 - tsc1) * 1000000LL;
 781                if (hpet)
 782                        tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
 783                else
 784                        tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
 785
 786                tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
 787
 788                /* Check the reference deviation */
 789                delta = ((u64) tsc_pit_min) * 100;
 790                do_div(delta, tsc_ref_min);
 791
 792                /*
 793                 * If both calibration results are inside a 10% window
 794                 * then we can be sure, that the calibration
 795                 * succeeded. We break out of the loop right away. We
 796                 * use the reference value, as it is more precise.
 797                 */
 798                if (delta >= 90 && delta <= 110) {
 799                        pr_info("PIT calibration matches %s. %d loops\n",
 800                                hpet ? "HPET" : "PMTIMER", i + 1);
 801                        return tsc_ref_min;
 802                }
 803
 804                /*
 805                 * Check whether PIT failed more than once. This
 806                 * happens in virtualized environments. We need to
 807                 * give the virtual PC a slightly longer timeframe for
 808                 * the HPET/PMTIMER to make the result precise.
 809                 */
 810                if (i == 1 && tsc_pit_min == ULONG_MAX) {
 811                        latch = CAL2_LATCH;
 812                        ms = CAL2_MS;
 813                        loopmin = CAL2_PIT_LOOPS;
 814                }
 815        }
 816
 817        /*
 818         * Now check the results.
 819         */
 820        if (tsc_pit_min == ULONG_MAX) {
 821                /* PIT gave no useful value */
 822                pr_warn("Unable to calibrate against PIT\n");
 823
 824                /* We don't have an alternative source, disable TSC */
 825                if (!hpet && !ref1 && !ref2) {
 826                        pr_notice("No reference (HPET/PMTIMER) available\n");
 827                        return 0;
 828                }
 829
 830                /* The alternative source failed as well, disable TSC */
 831                if (tsc_ref_min == ULONG_MAX) {
 832                        pr_warn("HPET/PMTIMER calibration failed\n");
 833                        return 0;
 834                }
 835
 836                /* Use the alternative source */
 837                pr_info("using %s reference calibration\n",
 838                        hpet ? "HPET" : "PMTIMER");
 839
 840                return tsc_ref_min;
 841        }
 842
 843        /* We don't have an alternative source, use the PIT calibration value */
 844        if (!hpet && !ref1 && !ref2) {
 845                pr_info("Using PIT calibration value\n");
 846                return tsc_pit_min;
 847        }
 848
 849        /* The alternative source failed, use the PIT calibration value */
 850        if (tsc_ref_min == ULONG_MAX) {
 851                pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
 852                return tsc_pit_min;
 853        }
 854
 855        /*
 856         * The calibration values differ too much. In doubt, we use
 857         * the PIT value as we know that there are PMTIMERs around
 858         * running at double speed. At least we let the user know:
 859         */
 860        pr_warn("PIT calibration deviates from %s: %lu %lu\n",
 861                hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
 862        pr_info("Using PIT calibration value\n");
 863        return tsc_pit_min;
 864}
 865
 866/**
 867 * native_calibrate_cpu_early - can calibrate the cpu early in boot
 868 */
 869unsigned long native_calibrate_cpu_early(void)
 870{
 871        unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
 872
 873        if (!fast_calibrate)
 874                fast_calibrate = cpu_khz_from_msr();
 875        if (!fast_calibrate) {
 876                local_irq_save(flags);
 877                fast_calibrate = quick_pit_calibrate();
 878                local_irq_restore(flags);
 879        }
 880        return fast_calibrate;
 881}
 882
 883
 884/**
 885 * native_calibrate_cpu - calibrate the cpu
 886 */
 887static unsigned long native_calibrate_cpu(void)
 888{
 889        unsigned long tsc_freq = native_calibrate_cpu_early();
 890
 891        if (!tsc_freq)
 892                tsc_freq = pit_hpet_ptimer_calibrate_cpu();
 893
 894        return tsc_freq;
 895}
 896
 897void recalibrate_cpu_khz(void)
 898{
 899#ifndef CONFIG_SMP
 900        unsigned long cpu_khz_old = cpu_khz;
 901
 902        if (!boot_cpu_has(X86_FEATURE_TSC))
 903                return;
 904
 905        cpu_khz = x86_platform.calibrate_cpu();
 906        tsc_khz = x86_platform.calibrate_tsc();
 907        if (tsc_khz == 0)
 908                tsc_khz = cpu_khz;
 909        else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
 910                cpu_khz = tsc_khz;
 911        cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
 912                                                    cpu_khz_old, cpu_khz);
 913#endif
 914}
 915
 916EXPORT_SYMBOL(recalibrate_cpu_khz);
 917
 918
 919static unsigned long long cyc2ns_suspend;
 920
 921void tsc_save_sched_clock_state(void)
 922{
 923        if (!sched_clock_stable())
 924                return;
 925
 926        cyc2ns_suspend = sched_clock();
 927}
 928
 929/*
 930 * Even on processors with invariant TSC, TSC gets reset in some the
 931 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 932 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 933 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 934 * that sched_clock() continues from the point where it was left off during
 935 * suspend.
 936 */
 937void tsc_restore_sched_clock_state(void)
 938{
 939        unsigned long long offset;
 940        unsigned long flags;
 941        int cpu;
 942
 943        if (!sched_clock_stable())
 944                return;
 945
 946        local_irq_save(flags);
 947
 948        /*
 949         * We're coming out of suspend, there's no concurrency yet; don't
 950         * bother being nice about the RCU stuff, just write to both
 951         * data fields.
 952         */
 953
 954        this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
 955        this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
 956
 957        offset = cyc2ns_suspend - sched_clock();
 958
 959        for_each_possible_cpu(cpu) {
 960                per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
 961                per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
 962        }
 963
 964        local_irq_restore(flags);
 965}
 966
 967#ifdef CONFIG_CPU_FREQ
 968/*
 969 * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
 970 * changes.
 971 *
 972 * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
 973 * as unstable and give up in those cases.
 974 *
 975 * Should fix up last_tsc too. Currently gettimeofday in the
 976 * first tick after the change will be slightly wrong.
 977 */
 978
 979static unsigned int  ref_freq;
 980static unsigned long loops_per_jiffy_ref;
 981static unsigned long tsc_khz_ref;
 982
 983static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
 984                                void *data)
 985{
 986        struct cpufreq_freqs *freq = data;
 987
 988        if (num_online_cpus() > 1) {
 989                mark_tsc_unstable("cpufreq changes on SMP");
 990                return 0;
 991        }
 992
 993        if (!ref_freq) {
 994                ref_freq = freq->old;
 995                loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
 996                tsc_khz_ref = tsc_khz;
 997        }
 998
 999        if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
1000            (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1001                boot_cpu_data.loops_per_jiffy =
1002                        cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1003
1004                tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1005                if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1006                        mark_tsc_unstable("cpufreq changes");
1007
1008                set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
1009        }
1010
1011        return 0;
1012}
1013
1014static struct notifier_block time_cpufreq_notifier_block = {
1015        .notifier_call  = time_cpufreq_notifier
1016};
1017
1018static int __init cpufreq_register_tsc_scaling(void)
1019{
1020        if (!boot_cpu_has(X86_FEATURE_TSC))
1021                return 0;
1022        if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1023                return 0;
1024        cpufreq_register_notifier(&time_cpufreq_notifier_block,
1025                                CPUFREQ_TRANSITION_NOTIFIER);
1026        return 0;
1027}
1028
1029core_initcall(cpufreq_register_tsc_scaling);
1030
1031#endif /* CONFIG_CPU_FREQ */
1032
1033#define ART_CPUID_LEAF (0x15)
1034#define ART_MIN_DENOMINATOR (1)
1035
1036
1037/*
1038 * If ART is present detect the numerator:denominator to convert to TSC
1039 */
1040static void __init detect_art(void)
1041{
1042        unsigned int unused[2];
1043
1044        if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1045                return;
1046
1047        /*
1048         * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1049         * and the TSC counter resets must not occur asynchronously.
1050         */
1051        if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1052            !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1053            !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1054            tsc_async_resets)
1055                return;
1056
1057        cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1058              &art_to_tsc_numerator, unused, unused+1);
1059
1060        if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1061                return;
1062
1063        rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1064
1065        /* Make this sticky over multiple CPU init calls */
1066        setup_force_cpu_cap(X86_FEATURE_ART);
1067}
1068
1069
1070/* clocksource code */
1071
1072static void tsc_resume(struct clocksource *cs)
1073{
1074        tsc_verify_tsc_adjust(true);
1075}
1076
1077/*
1078 * We used to compare the TSC to the cycle_last value in the clocksource
1079 * structure to avoid a nasty time-warp. This can be observed in a
1080 * very small window right after one CPU updated cycle_last under
1081 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1082 * is smaller than the cycle_last reference value due to a TSC which
1083 * is slightly behind. This delta is nowhere else observable, but in
1084 * that case it results in a forward time jump in the range of hours
1085 * due to the unsigned delta calculation of the time keeping core
1086 * code, which is necessary to support wrapping clocksources like pm
1087 * timer.
1088 *
1089 * This sanity check is now done in the core timekeeping code.
1090 * checking the result of read_tsc() - cycle_last for being negative.
1091 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1092 */
1093static u64 read_tsc(struct clocksource *cs)
1094{
1095        return (u64)rdtsc_ordered();
1096}
1097
1098static void tsc_cs_mark_unstable(struct clocksource *cs)
1099{
1100        if (tsc_unstable)
1101                return;
1102
1103        tsc_unstable = 1;
1104        if (using_native_sched_clock())
1105                clear_sched_clock_stable();
1106        disable_sched_clock_irqtime();
1107        pr_info("Marking TSC unstable due to clocksource watchdog\n");
1108}
1109
1110static void tsc_cs_tick_stable(struct clocksource *cs)
1111{
1112        if (tsc_unstable)
1113                return;
1114
1115        if (using_native_sched_clock())
1116                sched_clock_tick_stable();
1117}
1118
1119static int tsc_cs_enable(struct clocksource *cs)
1120{
1121        vclocks_set_used(VDSO_CLOCKMODE_TSC);
1122        return 0;
1123}
1124
1125/*
1126 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1127 */
1128static struct clocksource clocksource_tsc_early = {
1129        .name                   = "tsc-early",
1130        .rating                 = 299,
1131        .uncertainty_margin     = 32 * NSEC_PER_MSEC,
1132        .read                   = read_tsc,
1133        .mask                   = CLOCKSOURCE_MASK(64),
1134        .flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1135                                  CLOCK_SOURCE_MUST_VERIFY,
1136        .vdso_clock_mode        = VDSO_CLOCKMODE_TSC,
1137        .enable                 = tsc_cs_enable,
1138        .resume                 = tsc_resume,
1139        .mark_unstable          = tsc_cs_mark_unstable,
1140        .tick_stable            = tsc_cs_tick_stable,
1141        .list                   = LIST_HEAD_INIT(clocksource_tsc_early.list),
1142};
1143
1144/*
1145 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1146 * this one will immediately take over. We will only register if TSC has
1147 * been found good.
1148 */
1149static struct clocksource clocksource_tsc = {
1150        .name                   = "tsc",
1151        .rating                 = 300,
1152        .read                   = read_tsc,
1153        .mask                   = CLOCKSOURCE_MASK(64),
1154        .flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1155                                  CLOCK_SOURCE_VALID_FOR_HRES |
1156                                  CLOCK_SOURCE_MUST_VERIFY |
1157                                  CLOCK_SOURCE_VERIFY_PERCPU,
1158        .vdso_clock_mode        = VDSO_CLOCKMODE_TSC,
1159        .enable                 = tsc_cs_enable,
1160        .resume                 = tsc_resume,
1161        .mark_unstable          = tsc_cs_mark_unstable,
1162        .tick_stable            = tsc_cs_tick_stable,
1163        .list                   = LIST_HEAD_INIT(clocksource_tsc.list),
1164};
1165
1166void mark_tsc_unstable(char *reason)
1167{
1168        if (tsc_unstable)
1169                return;
1170
1171        tsc_unstable = 1;
1172        if (using_native_sched_clock())
1173                clear_sched_clock_stable();
1174        disable_sched_clock_irqtime();
1175        pr_info("Marking TSC unstable due to %s\n", reason);
1176
1177        clocksource_mark_unstable(&clocksource_tsc_early);
1178        clocksource_mark_unstable(&clocksource_tsc);
1179}
1180
1181EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1182
1183static void __init check_system_tsc_reliable(void)
1184{
1185#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1186        if (is_geode_lx()) {
1187                /* RTSC counts during suspend */
1188#define RTSC_SUSP 0x100
1189                unsigned long res_low, res_high;
1190
1191                rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1192                /* Geode_LX - the OLPC CPU has a very reliable TSC */
1193                if (res_low & RTSC_SUSP)
1194                        tsc_clocksource_reliable = 1;
1195        }
1196#endif
1197        if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1198                tsc_clocksource_reliable = 1;
1199}
1200
1201/*
1202 * Make an educated guess if the TSC is trustworthy and synchronized
1203 * over all CPUs.
1204 */
1205int unsynchronized_tsc(void)
1206{
1207        if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1208                return 1;
1209
1210#ifdef CONFIG_SMP
1211        if (apic_is_clustered_box())
1212                return 1;
1213#endif
1214
1215        if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1216                return 0;
1217
1218        if (tsc_clocksource_reliable)
1219                return 0;
1220        /*
1221         * Intel systems are normally all synchronized.
1222         * Exceptions must mark TSC as unstable:
1223         */
1224        if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1225                /* assume multi socket systems are not synchronized: */
1226                if (num_possible_cpus() > 1)
1227                        return 1;
1228        }
1229
1230        return 0;
1231}
1232
1233/*
1234 * Convert ART to TSC given numerator/denominator found in detect_art()
1235 */
1236struct system_counterval_t convert_art_to_tsc(u64 art)
1237{
1238        u64 tmp, res, rem;
1239
1240        rem = do_div(art, art_to_tsc_denominator);
1241
1242        res = art * art_to_tsc_numerator;
1243        tmp = rem * art_to_tsc_numerator;
1244
1245        do_div(tmp, art_to_tsc_denominator);
1246        res += tmp + art_to_tsc_offset;
1247
1248        return (struct system_counterval_t) {.cs = art_related_clocksource,
1249                        .cycles = res};
1250}
1251EXPORT_SYMBOL(convert_art_to_tsc);
1252
1253/**
1254 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1255 * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1256 *
1257 * PTM requires all timestamps to be in units of nanoseconds. When user
1258 * software requests a cross-timestamp, this function converts system timestamp
1259 * to TSC.
1260 *
1261 * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1262 * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1263 * that this flag is set before conversion to TSC is attempted.
1264 *
1265 * Return:
1266 * struct system_counterval_t - system counter value with the pointer to the
1267 *      corresponding clocksource
1268 *      @cycles:        System counter value
1269 *      @cs:            Clocksource corresponding to system counter value. Used
1270 *                      by timekeeping code to verify comparability of two cycle
1271 *                      values.
1272 */
1273
1274struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1275{
1276        u64 tmp, res, rem;
1277
1278        rem = do_div(art_ns, USEC_PER_SEC);
1279
1280        res = art_ns * tsc_khz;
1281        tmp = rem * tsc_khz;
1282
1283        do_div(tmp, USEC_PER_SEC);
1284        res += tmp;
1285
1286        return (struct system_counterval_t) { .cs = art_related_clocksource,
1287                                              .cycles = res};
1288}
1289EXPORT_SYMBOL(convert_art_ns_to_tsc);
1290
1291
1292static void tsc_refine_calibration_work(struct work_struct *work);
1293static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1294/**
1295 * tsc_refine_calibration_work - Further refine tsc freq calibration
1296 * @work - ignored.
1297 *
1298 * This functions uses delayed work over a period of a
1299 * second to further refine the TSC freq value. Since this is
1300 * timer based, instead of loop based, we don't block the boot
1301 * process while this longer calibration is done.
1302 *
1303 * If there are any calibration anomalies (too many SMIs, etc),
1304 * or the refined calibration is off by 1% of the fast early
1305 * calibration, we throw out the new calibration and use the
1306 * early calibration.
1307 */
1308static void tsc_refine_calibration_work(struct work_struct *work)
1309{
1310        static u64 tsc_start = ULLONG_MAX, ref_start;
1311        static int hpet;
1312        u64 tsc_stop, ref_stop, delta;
1313        unsigned long freq;
1314        int cpu;
1315
1316        /* Don't bother refining TSC on unstable systems */
1317        if (tsc_unstable)
1318                goto unreg;
1319
1320        /*
1321         * Since the work is started early in boot, we may be
1322         * delayed the first time we expire. So set the workqueue
1323         * again once we know timers are working.
1324         */
1325        if (tsc_start == ULLONG_MAX) {
1326restart:
1327                /*
1328                 * Only set hpet once, to avoid mixing hardware
1329                 * if the hpet becomes enabled later.
1330                 */
1331                hpet = is_hpet_enabled();
1332                tsc_start = tsc_read_refs(&ref_start, hpet);
1333                schedule_delayed_work(&tsc_irqwork, HZ);
1334                return;
1335        }
1336
1337        tsc_stop = tsc_read_refs(&ref_stop, hpet);
1338
1339        /* hpet or pmtimer available ? */
1340        if (ref_start == ref_stop)
1341                goto out;
1342
1343        /* Check, whether the sampling was disturbed */
1344        if (tsc_stop == ULLONG_MAX)
1345                goto restart;
1346
1347        delta = tsc_stop - tsc_start;
1348        delta *= 1000000LL;
1349        if (hpet)
1350                freq = calc_hpet_ref(delta, ref_start, ref_stop);
1351        else
1352                freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1353
1354        /* Make sure we're within 1% */
1355        if (abs(tsc_khz - freq) > tsc_khz/100)
1356                goto out;
1357
1358        tsc_khz = freq;
1359        pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1360                (unsigned long)tsc_khz / 1000,
1361                (unsigned long)tsc_khz % 1000);
1362
1363        /* Inform the TSC deadline clockevent devices about the recalibration */
1364        lapic_update_tsc_freq();
1365
1366        /* Update the sched_clock() rate to match the clocksource one */
1367        for_each_possible_cpu(cpu)
1368                set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1369
1370out:
1371        if (tsc_unstable)
1372                goto unreg;
1373
1374        if (boot_cpu_has(X86_FEATURE_ART))
1375                art_related_clocksource = &clocksource_tsc;
1376        clocksource_register_khz(&clocksource_tsc, tsc_khz);
1377unreg:
1378        clocksource_unregister(&clocksource_tsc_early);
1379}
1380
1381
1382static int __init init_tsc_clocksource(void)
1383{
1384        if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1385                return 0;
1386
1387        if (tsc_unstable)
1388                goto unreg;
1389
1390        if (tsc_clocksource_reliable || no_tsc_watchdog)
1391                clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1392
1393        if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1394                clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1395
1396        /*
1397         * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1398         * the refined calibration and directly register it as a clocksource.
1399         */
1400        if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1401                if (boot_cpu_has(X86_FEATURE_ART))
1402                        art_related_clocksource = &clocksource_tsc;
1403                clocksource_register_khz(&clocksource_tsc, tsc_khz);
1404unreg:
1405                clocksource_unregister(&clocksource_tsc_early);
1406                return 0;
1407        }
1408
1409        schedule_delayed_work(&tsc_irqwork, 0);
1410        return 0;
1411}
1412/*
1413 * We use device_initcall here, to ensure we run after the hpet
1414 * is fully initialized, which may occur at fs_initcall time.
1415 */
1416device_initcall(init_tsc_clocksource);
1417
1418static bool __init determine_cpu_tsc_frequencies(bool early)
1419{
1420        /* Make sure that cpu and tsc are not already calibrated */
1421        WARN_ON(cpu_khz || tsc_khz);
1422
1423        if (early) {
1424                cpu_khz = x86_platform.calibrate_cpu();
1425                if (tsc_early_khz)
1426                        tsc_khz = tsc_early_khz;
1427                else
1428                        tsc_khz = x86_platform.calibrate_tsc();
1429        } else {
1430                /* We should not be here with non-native cpu calibration */
1431                WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1432                cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1433        }
1434
1435        /*
1436         * Trust non-zero tsc_khz as authoritative,
1437         * and use it to sanity check cpu_khz,
1438         * which will be off if system timer is off.
1439         */
1440        if (tsc_khz == 0)
1441                tsc_khz = cpu_khz;
1442        else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1443                cpu_khz = tsc_khz;
1444
1445        if (tsc_khz == 0)
1446                return false;
1447
1448        pr_info("Detected %lu.%03lu MHz processor\n",
1449                (unsigned long)cpu_khz / KHZ,
1450                (unsigned long)cpu_khz % KHZ);
1451
1452        if (cpu_khz != tsc_khz) {
1453                pr_info("Detected %lu.%03lu MHz TSC",
1454                        (unsigned long)tsc_khz / KHZ,
1455                        (unsigned long)tsc_khz % KHZ);
1456        }
1457        return true;
1458}
1459
1460static unsigned long __init get_loops_per_jiffy(void)
1461{
1462        u64 lpj = (u64)tsc_khz * KHZ;
1463
1464        do_div(lpj, HZ);
1465        return lpj;
1466}
1467
1468static void __init tsc_enable_sched_clock(void)
1469{
1470        /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1471        tsc_store_and_check_tsc_adjust(true);
1472        cyc2ns_init_boot_cpu();
1473        static_branch_enable(&__use_tsc);
1474}
1475
1476void __init tsc_early_init(void)
1477{
1478        if (!boot_cpu_has(X86_FEATURE_TSC))
1479                return;
1480        /* Don't change UV TSC multi-chassis synchronization */
1481        if (is_early_uv_system())
1482                return;
1483        if (!determine_cpu_tsc_frequencies(true))
1484                return;
1485        loops_per_jiffy = get_loops_per_jiffy();
1486
1487        tsc_enable_sched_clock();
1488}
1489
1490void __init tsc_init(void)
1491{
1492        /*
1493         * native_calibrate_cpu_early can only calibrate using methods that are
1494         * available early in boot.
1495         */
1496        if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1497                x86_platform.calibrate_cpu = native_calibrate_cpu;
1498
1499        if (!boot_cpu_has(X86_FEATURE_TSC)) {
1500                setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1501                return;
1502        }
1503
1504        if (!tsc_khz) {
1505                /* We failed to determine frequencies earlier, try again */
1506                if (!determine_cpu_tsc_frequencies(false)) {
1507                        mark_tsc_unstable("could not calculate TSC khz");
1508                        setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1509                        return;
1510                }
1511                tsc_enable_sched_clock();
1512        }
1513
1514        cyc2ns_init_secondary_cpus();
1515
1516        if (!no_sched_irq_time)
1517                enable_sched_clock_irqtime();
1518
1519        lpj_fine = get_loops_per_jiffy();
1520        use_tsc_delay();
1521
1522        check_system_tsc_reliable();
1523
1524        if (unsynchronized_tsc()) {
1525                mark_tsc_unstable("TSCs unsynchronized");
1526                return;
1527        }
1528
1529        if (tsc_clocksource_reliable || no_tsc_watchdog)
1530                clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1531
1532        clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1533        detect_art();
1534}
1535
1536#ifdef CONFIG_SMP
1537/*
1538 * If we have a constant TSC and are using the TSC for the delay loop,
1539 * we can skip clock calibration if another cpu in the same socket has already
1540 * been calibrated. This assumes that CONSTANT_TSC applies to all
1541 * cpus in the socket - this should be a safe assumption.
1542 */
1543unsigned long calibrate_delay_is_known(void)
1544{
1545        int sibling, cpu = smp_processor_id();
1546        int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1547        const struct cpumask *mask = topology_core_cpumask(cpu);
1548
1549        if (!constant_tsc || !mask)
1550                return 0;
1551
1552        sibling = cpumask_any_but(mask, cpu);
1553        if (sibling < nr_cpu_ids)
1554                return cpu_data(sibling).loops_per_jiffy;
1555        return 0;
1556}
1557#endif
1558