linux/drivers/misc/habanalabs/common/habanalabs.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0
   2 *
   3 * Copyright 2016-2019 HabanaLabs, Ltd.
   4 * All Rights Reserved.
   5 *
   6 */
   7
   8#ifndef HABANALABSP_H_
   9#define HABANALABSP_H_
  10
  11#include "../include/common/cpucp_if.h"
  12#include "../include/common/qman_if.h"
  13#include "../include/hw_ip/mmu/mmu_general.h"
  14#include <uapi/misc/habanalabs.h>
  15
  16#include <linux/cdev.h>
  17#include <linux/iopoll.h>
  18#include <linux/irqreturn.h>
  19#include <linux/dma-direction.h>
  20#include <linux/scatterlist.h>
  21#include <linux/hashtable.h>
  22#include <linux/debugfs.h>
  23#include <linux/rwsem.h>
  24#include <linux/bitfield.h>
  25#include <linux/genalloc.h>
  26#include <linux/sched/signal.h>
  27#include <linux/io-64-nonatomic-lo-hi.h>
  28#include <linux/coresight.h>
  29
  30#define HL_NAME                         "habanalabs"
  31
  32/* Use upper bits of mmap offset to store habana driver specific information.
  33 * bits[63:61] - Encode mmap type
  34 * bits[45:0]  - mmap offset value
  35 *
  36 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
  37 *  defines are w.r.t to PAGE_SIZE
  38 */
  39#define HL_MMAP_TYPE_SHIFT              (61 - PAGE_SHIFT)
  40#define HL_MMAP_TYPE_MASK               (0x7ull << HL_MMAP_TYPE_SHIFT)
  41#define HL_MMAP_TYPE_BLOCK              (0x4ull << HL_MMAP_TYPE_SHIFT)
  42#define HL_MMAP_TYPE_CB                 (0x2ull << HL_MMAP_TYPE_SHIFT)
  43
  44#define HL_MMAP_OFFSET_VALUE_MASK       (0x1FFFFFFFFFFFull >> PAGE_SHIFT)
  45#define HL_MMAP_OFFSET_VALUE_GET(off)   (off & HL_MMAP_OFFSET_VALUE_MASK)
  46
  47#define HL_PENDING_RESET_PER_SEC        10
  48#define HL_PENDING_RESET_MAX_TRIALS     60 /* 10 minutes */
  49#define HL_PENDING_RESET_LONG_SEC       60
  50
  51#define HL_HARD_RESET_MAX_TIMEOUT       120
  52#define HL_PLDM_HARD_RESET_MAX_TIMEOUT  (HL_HARD_RESET_MAX_TIMEOUT * 3)
  53
  54#define HL_DEVICE_TIMEOUT_USEC          1000000 /* 1 s */
  55
  56#define HL_HEARTBEAT_PER_USEC           5000000 /* 5 s */
  57
  58#define HL_PLL_LOW_JOB_FREQ_USEC        5000000 /* 5 s */
  59
  60#define HL_CPUCP_INFO_TIMEOUT_USEC      10000000 /* 10s */
  61#define HL_CPUCP_EEPROM_TIMEOUT_USEC    10000000 /* 10s */
  62
  63#define HL_PCI_ELBI_TIMEOUT_MSEC        10 /* 10ms */
  64
  65#define HL_SIM_MAX_TIMEOUT_US           10000000 /* 10s */
  66
  67#define HL_COMMON_USER_INTERRUPT_ID     0xFFF
  68
  69#define HL_STATE_DUMP_HIST_LEN          5
  70
  71#define OBJ_NAMES_HASH_TABLE_BITS       7 /* 1 << 7 buckets */
  72#define SYNC_TO_ENGINE_HASH_TABLE_BITS  7 /* 1 << 7 buckets */
  73
  74/* Memory */
  75#define MEM_HASH_TABLE_BITS             7 /* 1 << 7 buckets */
  76
  77/* MMU */
  78#define MMU_HASH_TABLE_BITS             7 /* 1 << 7 buckets */
  79
  80/**
  81 * enum hl_mmu_page_table_locaion - mmu page table location
  82 * @MMU_DR_PGT: page-table is located on device DRAM.
  83 * @MMU_HR_PGT: page-table is located on host memory.
  84 * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported.
  85 */
  86enum hl_mmu_page_table_location {
  87        MMU_DR_PGT = 0,         /* device-dram-resident MMU PGT */
  88        MMU_HR_PGT,             /* host resident MMU PGT */
  89        MMU_NUM_PGT_LOCATIONS   /* num of PGT locations */
  90};
  91
  92/*
  93 * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream
  94 * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream
  95 */
  96#define HL_RSVD_SOBS                    2
  97#define HL_RSVD_MONS                    1
  98
  99/*
 100 * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream
 101 */
 102#define HL_COLLECTIVE_RSVD_MSTR_MONS    2
 103
 104#define HL_MAX_SOB_VAL                  (1 << 15)
 105
 106#define IS_POWER_OF_2(n)                (n != 0 && ((n & (n - 1)) == 0))
 107#define IS_MAX_PENDING_CS_VALID(n)      (IS_POWER_OF_2(n) && (n > 1))
 108
 109#define HL_PCI_NUM_BARS                 6
 110
 111#define HL_MAX_DCORES                   4
 112
 113/*
 114 * Reset Flags
 115 *
 116 * - HL_RESET_HARD
 117 *       If set do hard reset to all engines. If not set reset just
 118 *       compute/DMA engines.
 119 *
 120 * - HL_RESET_FROM_RESET_THREAD
 121 *       Set if the caller is the hard-reset thread
 122 *
 123 * - HL_RESET_HEARTBEAT
 124 *       Set if reset is due to heartbeat
 125 *
 126 * - HL_RESET_TDR
 127 *       Set if reset is due to TDR
 128 *
 129 * - HL_RESET_DEVICE_RELEASE
 130 *       Set if reset is due to device release
 131 *
 132 * - HL_RESET_FW
 133 *       F/W will perform the reset. No need to ask it to reset the device. This is relevant
 134 *       only when running with secured f/w
 135 */
 136#define HL_RESET_HARD                   (1 << 0)
 137#define HL_RESET_FROM_RESET_THREAD      (1 << 1)
 138#define HL_RESET_HEARTBEAT              (1 << 2)
 139#define HL_RESET_TDR                    (1 << 3)
 140#define HL_RESET_DEVICE_RELEASE         (1 << 4)
 141#define HL_RESET_FW                     (1 << 5)
 142
 143#define HL_MAX_SOBS_PER_MONITOR 8
 144
 145/**
 146 * struct hl_gen_wait_properties - properties for generating a wait CB
 147 * @data: command buffer
 148 * @q_idx: queue id is used to extract fence register address
 149 * @size: offset in command buffer
 150 * @sob_base: SOB base to use in this wait CB
 151 * @sob_val: SOB value to wait for
 152 * @mon_id: monitor to use in this wait CB
 153 * @sob_mask: each bit represents a SOB offset from sob_base to be used
 154 */
 155struct hl_gen_wait_properties {
 156        void    *data;
 157        u32     q_idx;
 158        u32     size;
 159        u16     sob_base;
 160        u16     sob_val;
 161        u16     mon_id;
 162        u8      sob_mask;
 163};
 164
 165/**
 166 * struct pgt_info - MMU hop page info.
 167 * @node: hash linked-list node for the pgts shadow hash of pgts.
 168 * @phys_addr: physical address of the pgt.
 169 * @shadow_addr: shadow hop in the host.
 170 * @ctx: pointer to the owner ctx.
 171 * @num_of_ptes: indicates how many ptes are used in the pgt.
 172 *
 173 * The MMU page tables hierarchy is placed on the DRAM. When a new level (hop)
 174 * is needed during mapping, a new page is allocated and this structure holds
 175 * its essential information. During unmapping, if no valid PTEs remained in the
 176 * page, it is freed with its pgt_info structure.
 177 */
 178struct pgt_info {
 179        struct hlist_node       node;
 180        u64                     phys_addr;
 181        u64                     shadow_addr;
 182        struct hl_ctx           *ctx;
 183        int                     num_of_ptes;
 184};
 185
 186struct hl_device;
 187struct hl_fpriv;
 188
 189/**
 190 * enum hl_pci_match_mode - pci match mode per region
 191 * @PCI_ADDRESS_MATCH_MODE: address match mode
 192 * @PCI_BAR_MATCH_MODE: bar match mode
 193 */
 194enum hl_pci_match_mode {
 195        PCI_ADDRESS_MATCH_MODE,
 196        PCI_BAR_MATCH_MODE
 197};
 198
 199/**
 200 * enum hl_fw_component - F/W components to read version through registers.
 201 * @FW_COMP_BOOT_FIT: boot fit.
 202 * @FW_COMP_PREBOOT: preboot.
 203 * @FW_COMP_LINUX: linux.
 204 */
 205enum hl_fw_component {
 206        FW_COMP_BOOT_FIT,
 207        FW_COMP_PREBOOT,
 208        FW_COMP_LINUX,
 209};
 210
 211/**
 212 * enum hl_fw_types - F/W types present in the system
 213 * @FW_TYPE_LINUX: Linux image for device CPU
 214 * @FW_TYPE_BOOT_CPU: Boot image for device CPU
 215 * @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system
 216 *                       (preboot, ppboot etc...)
 217 * @FW_TYPE_ALL_TYPES: Mask for all types
 218 */
 219enum hl_fw_types {
 220        FW_TYPE_LINUX = 0x1,
 221        FW_TYPE_BOOT_CPU = 0x2,
 222        FW_TYPE_PREBOOT_CPU = 0x4,
 223        FW_TYPE_ALL_TYPES =
 224                (FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU)
 225};
 226
 227/**
 228 * enum hl_queue_type - Supported QUEUE types.
 229 * @QUEUE_TYPE_NA: queue is not available.
 230 * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
 231 *                  host.
 232 * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
 233 *                      memories and/or operates the compute engines.
 234 * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
 235 * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion
 236 *                 notifications are sent by H/W.
 237 */
 238enum hl_queue_type {
 239        QUEUE_TYPE_NA,
 240        QUEUE_TYPE_EXT,
 241        QUEUE_TYPE_INT,
 242        QUEUE_TYPE_CPU,
 243        QUEUE_TYPE_HW
 244};
 245
 246enum hl_cs_type {
 247        CS_TYPE_DEFAULT,
 248        CS_TYPE_SIGNAL,
 249        CS_TYPE_WAIT,
 250        CS_TYPE_COLLECTIVE_WAIT,
 251        CS_RESERVE_SIGNALS,
 252        CS_UNRESERVE_SIGNALS
 253};
 254
 255/*
 256 * struct hl_inbound_pci_region - inbound region descriptor
 257 * @mode: pci match mode for this region
 258 * @addr: region target address
 259 * @size: region size in bytes
 260 * @offset_in_bar: offset within bar (address match mode)
 261 * @bar: bar id
 262 */
 263struct hl_inbound_pci_region {
 264        enum hl_pci_match_mode  mode;
 265        u64                     addr;
 266        u64                     size;
 267        u64                     offset_in_bar;
 268        u8                      bar;
 269};
 270
 271/*
 272 * struct hl_outbound_pci_region - outbound region descriptor
 273 * @addr: region target address
 274 * @size: region size in bytes
 275 */
 276struct hl_outbound_pci_region {
 277        u64     addr;
 278        u64     size;
 279};
 280
 281/*
 282 * enum queue_cb_alloc_flags - Indicates queue support for CBs that
 283 * allocated by Kernel or by User
 284 * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel
 285 * @CB_ALLOC_USER: support only CBs that allocated by User
 286 */
 287enum queue_cb_alloc_flags {
 288        CB_ALLOC_KERNEL = 0x1,
 289        CB_ALLOC_USER   = 0x2
 290};
 291
 292/*
 293 * struct hl_hw_sob - H/W SOB info.
 294 * @hdev: habanalabs device structure.
 295 * @kref: refcount of this SOB. The SOB will reset once the refcount is zero.
 296 * @sob_id: id of this SOB.
 297 * @sob_addr: the sob offset from the base address.
 298 * @q_idx: the H/W queue that uses this SOB.
 299 * @need_reset: reset indication set when switching to the other sob.
 300 */
 301struct hl_hw_sob {
 302        struct hl_device        *hdev;
 303        struct kref             kref;
 304        u32                     sob_id;
 305        u32                     sob_addr;
 306        u32                     q_idx;
 307        bool                    need_reset;
 308};
 309
 310enum hl_collective_mode {
 311        HL_COLLECTIVE_NOT_SUPPORTED = 0x0,
 312        HL_COLLECTIVE_MASTER = 0x1,
 313        HL_COLLECTIVE_SLAVE = 0x2
 314};
 315
 316/**
 317 * struct hw_queue_properties - queue information.
 318 * @type: queue type.
 319 * @queue_cb_alloc_flags: bitmap which indicates if the hw queue supports CB
 320 *                        that allocated by the Kernel driver and therefore,
 321 *                        a CB handle can be provided for jobs on this queue.
 322 *                        Otherwise, a CB address must be provided.
 323 * @collective_mode: collective mode of current queue
 324 * @driver_only: true if only the driver is allowed to send a job to this queue,
 325 *               false otherwise.
 326 * @supports_sync_stream: True if queue supports sync stream
 327 */
 328struct hw_queue_properties {
 329        enum hl_queue_type      type;
 330        enum queue_cb_alloc_flags cb_alloc_flags;
 331        enum hl_collective_mode collective_mode;
 332        u8                      driver_only;
 333        u8                      supports_sync_stream;
 334};
 335
 336/**
 337 * enum vm_type - virtual memory mapping request information.
 338 * @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
 339 * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
 340 */
 341enum vm_type {
 342        VM_TYPE_USERPTR = 0x1,
 343        VM_TYPE_PHYS_PACK = 0x2
 344};
 345
 346/**
 347 * enum hl_device_hw_state - H/W device state. use this to understand whether
 348 *                           to do reset before hw_init or not
 349 * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
 350 * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
 351 *                            hw_init
 352 */
 353enum hl_device_hw_state {
 354        HL_DEVICE_HW_STATE_CLEAN = 0,
 355        HL_DEVICE_HW_STATE_DIRTY
 356};
 357
 358#define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0
 359
 360/**
 361 * struct hl_mmu_properties - ASIC specific MMU address translation properties.
 362 * @start_addr: virtual start address of the memory region.
 363 * @end_addr: virtual end address of the memory region.
 364 * @hop0_shift: shift of hop 0 mask.
 365 * @hop1_shift: shift of hop 1 mask.
 366 * @hop2_shift: shift of hop 2 mask.
 367 * @hop3_shift: shift of hop 3 mask.
 368 * @hop4_shift: shift of hop 4 mask.
 369 * @hop5_shift: shift of hop 5 mask.
 370 * @hop0_mask: mask to get the PTE address in hop 0.
 371 * @hop1_mask: mask to get the PTE address in hop 1.
 372 * @hop2_mask: mask to get the PTE address in hop 2.
 373 * @hop3_mask: mask to get the PTE address in hop 3.
 374 * @hop4_mask: mask to get the PTE address in hop 4.
 375 * @hop5_mask: mask to get the PTE address in hop 5.
 376 * @page_size: default page size used to allocate memory.
 377 * @num_hops: The amount of hops supported by the translation table.
 378 * @host_resident: Should the MMU page table reside in host memory or in the
 379 *                 device DRAM.
 380 */
 381struct hl_mmu_properties {
 382        u64     start_addr;
 383        u64     end_addr;
 384        u64     hop0_shift;
 385        u64     hop1_shift;
 386        u64     hop2_shift;
 387        u64     hop3_shift;
 388        u64     hop4_shift;
 389        u64     hop5_shift;
 390        u64     hop0_mask;
 391        u64     hop1_mask;
 392        u64     hop2_mask;
 393        u64     hop3_mask;
 394        u64     hop4_mask;
 395        u64     hop5_mask;
 396        u32     page_size;
 397        u32     num_hops;
 398        u8      host_resident;
 399};
 400
 401/**
 402 * struct hl_hints_range - hint addresses reserved va range.
 403 * @start_addr: start address of the va range.
 404 * @end_addr: end address of the va range.
 405 */
 406struct hl_hints_range {
 407        u64 start_addr;
 408        u64 end_addr;
 409};
 410
 411/**
 412 * struct asic_fixed_properties - ASIC specific immutable properties.
 413 * @hw_queues_props: H/W queues properties.
 414 * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g.
 415 *              available sensors.
 416 * @uboot_ver: F/W U-boot version.
 417 * @preboot_ver: F/W Preboot version.
 418 * @dmmu: DRAM MMU address translation properties.
 419 * @pmmu: PCI (host) MMU address translation properties.
 420 * @pmmu_huge: PCI (host) MMU address translation properties for memory
 421 *              allocated with huge pages.
 422 * @hints_dram_reserved_va_range: dram hint addresses reserved range.
 423 * @hints_host_reserved_va_range: host hint addresses reserved range.
 424 * @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved
 425 *                                      range.
 426 * @sram_base_address: SRAM physical start address.
 427 * @sram_end_address: SRAM physical end address.
 428 * @sram_user_base_address - SRAM physical start address for user access.
 429 * @dram_base_address: DRAM physical start address.
 430 * @dram_end_address: DRAM physical end address.
 431 * @dram_user_base_address: DRAM physical start address for user access.
 432 * @dram_size: DRAM total size.
 433 * @dram_pci_bar_size: size of PCI bar towards DRAM.
 434 * @max_power_default: max power of the device after reset
 435 * @dc_power_default: power consumed by the device in mode idle.
 436 * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
 437 *                                      fault.
 438 * @pcie_dbi_base_address: Base address of the PCIE_DBI block.
 439 * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
 440 * @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
 441 * @mmu_dram_default_page_addr: DRAM default page physical address.
 442 * @cb_va_start_addr: virtual start address of command buffers which are mapped
 443 *                    to the device's MMU.
 444 * @cb_va_end_addr: virtual end address of command buffers which are mapped to
 445 *                  the device's MMU.
 446 * @dram_hints_align_mask: dram va hint addresses alignment mask which is used
 447 *                  for hints validity check.
 448 * device_dma_offset_for_host_access: the offset to add to host DMA addresses
 449 *                                    to enable the device to access them.
 450 * @mmu_pgt_size: MMU page tables total size.
 451 * @mmu_pte_size: PTE size in MMU page tables.
 452 * @mmu_hop_table_size: MMU hop table size.
 453 * @mmu_hop0_tables_total_size: total size of MMU hop0 tables.
 454 * @dram_page_size: page size for MMU DRAM allocation.
 455 * @cfg_size: configuration space size on SRAM.
 456 * @sram_size: total size of SRAM.
 457 * @max_asid: maximum number of open contexts (ASIDs).
 458 * @num_of_events: number of possible internal H/W IRQs.
 459 * @psoc_pci_pll_nr: PCI PLL NR value.
 460 * @psoc_pci_pll_nf: PCI PLL NF value.
 461 * @psoc_pci_pll_od: PCI PLL OD value.
 462 * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
 463 * @psoc_timestamp_frequency: frequency of the psoc timestamp clock.
 464 * @high_pll: high PLL frequency used by the device.
 465 * @cb_pool_cb_cnt: number of CBs in the CB pool.
 466 * @cb_pool_cb_size: size of each CB in the CB pool.
 467 * @max_pending_cs: maximum of concurrent pending command submissions
 468 * @max_queues: maximum amount of queues in the system
 469 * @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu
 470 *                                capabilities reported by FW, bit description
 471 *                                can be found in CPU_BOOT_DEV_STS0
 472 * @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu
 473 *                                capabilities reported by FW, bit description
 474 *                                can be found in CPU_BOOT_DEV_STS1
 475 * @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security
 476 *                                status reported by FW, bit description can be
 477 *                                found in CPU_BOOT_DEV_STS0
 478 * @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security
 479 *                                status reported by FW, bit description can be
 480 *                                found in CPU_BOOT_DEV_STS1
 481 * @fw_app_cpu_boot_dev_sts0: bitmap representation of application security
 482 *                            status reported by FW, bit description can be
 483 *                            found in CPU_BOOT_DEV_STS0
 484 * @fw_app_cpu_boot_dev_sts1: bitmap representation of application security
 485 *                            status reported by FW, bit description can be
 486 *                            found in CPU_BOOT_DEV_STS1
 487 * @collective_first_sob: first sync object available for collective use
 488 * @collective_first_mon: first monitor available for collective use
 489 * @sync_stream_first_sob: first sync object available for sync stream use
 490 * @sync_stream_first_mon: first monitor available for sync stream use
 491 * @first_available_user_sob: first sob available for the user
 492 * @first_available_user_mon: first monitor available for the user
 493 * @first_available_user_msix_interrupt: first available msix interrupt
 494 *                                       reserved for the user
 495 * @first_available_cq: first available CQ for the user.
 496 * @user_interrupt_count: number of user interrupts.
 497 * @server_type: Server type that the ASIC is currently installed in.
 498 *               The value is according to enum hl_server_type in uapi file.
 499 * @tpc_enabled_mask: which TPCs are enabled.
 500 * @completion_queues_count: number of completion queues.
 501 * @fw_security_enabled: true if security measures are enabled in firmware,
 502 *                       false otherwise
 503 * @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from
 504 *                              BOOT_DEV_STS0
 505 * @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from
 506 *                              BOOT_DEV_STS1
 507 * @dram_supports_virtual_memory: is there an MMU towards the DRAM
 508 * @hard_reset_done_by_fw: true if firmware is handling hard reset flow
 509 * @num_functional_hbms: number of functional HBMs in each DCORE.
 510 * @hints_range_reservation: device support hint addresses range reservation.
 511 * @iatu_done_by_fw: true if iATU configuration is being done by FW.
 512 * @dynamic_fw_load: is dynamic FW load is supported.
 513 * @gic_interrupts_enable: true if FW is not blocking GIC controller,
 514 *                         false otherwise.
 515 */
 516struct asic_fixed_properties {
 517        struct hw_queue_properties      *hw_queues_props;
 518        struct cpucp_info               cpucp_info;
 519        char                            uboot_ver[VERSION_MAX_LEN];
 520        char                            preboot_ver[VERSION_MAX_LEN];
 521        struct hl_mmu_properties        dmmu;
 522        struct hl_mmu_properties        pmmu;
 523        struct hl_mmu_properties        pmmu_huge;
 524        struct hl_hints_range           hints_dram_reserved_va_range;
 525        struct hl_hints_range           hints_host_reserved_va_range;
 526        struct hl_hints_range           hints_host_hpage_reserved_va_range;
 527        u64                             sram_base_address;
 528        u64                             sram_end_address;
 529        u64                             sram_user_base_address;
 530        u64                             dram_base_address;
 531        u64                             dram_end_address;
 532        u64                             dram_user_base_address;
 533        u64                             dram_size;
 534        u64                             dram_pci_bar_size;
 535        u64                             max_power_default;
 536        u64                             dc_power_default;
 537        u64                             dram_size_for_default_page_mapping;
 538        u64                             pcie_dbi_base_address;
 539        u64                             pcie_aux_dbi_reg_addr;
 540        u64                             mmu_pgt_addr;
 541        u64                             mmu_dram_default_page_addr;
 542        u64                             cb_va_start_addr;
 543        u64                             cb_va_end_addr;
 544        u64                             dram_hints_align_mask;
 545        u64                             device_dma_offset_for_host_access;
 546        u32                             mmu_pgt_size;
 547        u32                             mmu_pte_size;
 548        u32                             mmu_hop_table_size;
 549        u32                             mmu_hop0_tables_total_size;
 550        u32                             dram_page_size;
 551        u32                             cfg_size;
 552        u32                             sram_size;
 553        u32                             max_asid;
 554        u32                             num_of_events;
 555        u32                             psoc_pci_pll_nr;
 556        u32                             psoc_pci_pll_nf;
 557        u32                             psoc_pci_pll_od;
 558        u32                             psoc_pci_pll_div_factor;
 559        u32                             psoc_timestamp_frequency;
 560        u32                             high_pll;
 561        u32                             cb_pool_cb_cnt;
 562        u32                             cb_pool_cb_size;
 563        u32                             max_pending_cs;
 564        u32                             max_queues;
 565        u32                             fw_preboot_cpu_boot_dev_sts0;
 566        u32                             fw_preboot_cpu_boot_dev_sts1;
 567        u32                             fw_bootfit_cpu_boot_dev_sts0;
 568        u32                             fw_bootfit_cpu_boot_dev_sts1;
 569        u32                             fw_app_cpu_boot_dev_sts0;
 570        u32                             fw_app_cpu_boot_dev_sts1;
 571        u16                             collective_first_sob;
 572        u16                             collective_first_mon;
 573        u16                             sync_stream_first_sob;
 574        u16                             sync_stream_first_mon;
 575        u16                             first_available_user_sob[HL_MAX_DCORES];
 576        u16                             first_available_user_mon[HL_MAX_DCORES];
 577        u16                             first_available_user_msix_interrupt;
 578        u16                             first_available_cq[HL_MAX_DCORES];
 579        u16                             user_interrupt_count;
 580        u16                             server_type;
 581        u8                              tpc_enabled_mask;
 582        u8                              completion_queues_count;
 583        u8                              fw_security_enabled;
 584        u8                              fw_cpu_boot_dev_sts0_valid;
 585        u8                              fw_cpu_boot_dev_sts1_valid;
 586        u8                              dram_supports_virtual_memory;
 587        u8                              hard_reset_done_by_fw;
 588        u8                              num_functional_hbms;
 589        u8                              hints_range_reservation;
 590        u8                              iatu_done_by_fw;
 591        u8                              dynamic_fw_load;
 592        u8                              gic_interrupts_enable;
 593};
 594
 595/**
 596 * struct hl_fence - software synchronization primitive
 597 * @completion: fence is implemented using completion
 598 * @refcount: refcount for this fence
 599 * @cs_sequence: sequence of the corresponding command submission
 600 * @stream_master_qid_map: streams masters QID bitmap to represent all streams
 601 *                         masters QIDs that multi cs is waiting on
 602 * @error: mark this fence with error
 603 * @timestamp: timestamp upon completion
 604 */
 605struct hl_fence {
 606        struct completion       completion;
 607        struct kref             refcount;
 608        u64                     cs_sequence;
 609        u32                     stream_master_qid_map;
 610        int                     error;
 611        ktime_t                 timestamp;
 612};
 613
 614/**
 615 * struct hl_cs_compl - command submission completion object.
 616 * @base_fence: hl fence object.
 617 * @lock: spinlock to protect fence.
 618 * @hdev: habanalabs device structure.
 619 * @hw_sob: the H/W SOB used in this signal/wait CS.
 620 * @encaps_sig_hdl: encaps signals hanlder.
 621 * @cs_seq: command submission sequence number.
 622 * @type: type of the CS - signal/wait.
 623 * @sob_val: the SOB value that is used in this signal/wait CS.
 624 * @sob_group: the SOB group that is used in this collective wait CS.
 625 * @encaps_signals: indication whether it's a completion object of cs with
 626 * encaps signals or not.
 627 */
 628struct hl_cs_compl {
 629        struct hl_fence         base_fence;
 630        spinlock_t              lock;
 631        struct hl_device        *hdev;
 632        struct hl_hw_sob        *hw_sob;
 633        struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
 634        u64                     cs_seq;
 635        enum hl_cs_type         type;
 636        u16                     sob_val;
 637        u16                     sob_group;
 638        bool                    encaps_signals;
 639};
 640
 641/*
 642 * Command Buffers
 643 */
 644
 645/**
 646 * struct hl_cb_mgr - describes a Command Buffer Manager.
 647 * @cb_lock: protects cb_handles.
 648 * @cb_handles: an idr to hold all command buffer handles.
 649 */
 650struct hl_cb_mgr {
 651        spinlock_t              cb_lock;
 652        struct idr              cb_handles; /* protected by cb_lock */
 653};
 654
 655/**
 656 * struct hl_cb - describes a Command Buffer.
 657 * @refcount: reference counter for usage of the CB.
 658 * @hdev: pointer to device this CB belongs to.
 659 * @ctx: pointer to the CB owner's context.
 660 * @lock: spinlock to protect mmap flows.
 661 * @debugfs_list: node in debugfs list of command buffers.
 662 * @pool_list: node in pool list of command buffers.
 663 * @va_block_list: list of virtual addresses blocks of the CB if it is mapped to
 664 *                 the device's MMU.
 665 * @id: the CB's ID.
 666 * @kernel_address: Holds the CB's kernel virtual address.
 667 * @bus_address: Holds the CB's DMA address.
 668 * @mmap_size: Holds the CB's size that was mmaped.
 669 * @size: holds the CB's size.
 670 * @cs_cnt: holds number of CS that this CB participates in.
 671 * @mmap: true if the CB is currently mmaped to user.
 672 * @is_pool: true if CB was acquired from the pool, false otherwise.
 673 * @is_internal: internaly allocated
 674 * @is_mmu_mapped: true if the CB is mapped to the device's MMU.
 675 */
 676struct hl_cb {
 677        struct kref             refcount;
 678        struct hl_device        *hdev;
 679        struct hl_ctx           *ctx;
 680        spinlock_t              lock;
 681        struct list_head        debugfs_list;
 682        struct list_head        pool_list;
 683        struct list_head        va_block_list;
 684        u64                     id;
 685        void                    *kernel_address;
 686        dma_addr_t              bus_address;
 687        u32                     mmap_size;
 688        u32                     size;
 689        atomic_t                cs_cnt;
 690        u8                      mmap;
 691        u8                      is_pool;
 692        u8                      is_internal;
 693        u8                      is_mmu_mapped;
 694};
 695
 696
 697/*
 698 * QUEUES
 699 */
 700
 701struct hl_cs;
 702struct hl_cs_job;
 703
 704/* Queue length of external and HW queues */
 705#define HL_QUEUE_LENGTH                 4096
 706#define HL_QUEUE_SIZE_IN_BYTES          (HL_QUEUE_LENGTH * HL_BD_SIZE)
 707
 708#if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH)
 709#error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS"
 710#endif
 711
 712/* HL_CQ_LENGTH is in units of struct hl_cq_entry */
 713#define HL_CQ_LENGTH                    HL_QUEUE_LENGTH
 714#define HL_CQ_SIZE_IN_BYTES             (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)
 715
 716/* Must be power of 2 */
 717#define HL_EQ_LENGTH                    64
 718#define HL_EQ_SIZE_IN_BYTES             (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)
 719
 720/* Host <-> CPU-CP shared memory size */
 721#define HL_CPU_ACCESSIBLE_MEM_SIZE      SZ_2M
 722
 723/**
 724 * struct hl_sync_stream_properties -
 725 *     describes a H/W queue sync stream properties
 726 * @hw_sob: array of the used H/W SOBs by this H/W queue.
 727 * @next_sob_val: the next value to use for the currently used SOB.
 728 * @base_sob_id: the base SOB id of the SOBs used by this queue.
 729 * @base_mon_id: the base MON id of the MONs used by this queue.
 730 * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue
 731 *                          in order to sync with all slave queues.
 732 * @collective_slave_mon_id: the MON id used by this slave queue in order to
 733 *                           sync with its master queue.
 734 * @collective_sob_id: current SOB id used by this collective slave queue
 735 *                     to signal its collective master queue upon completion.
 736 * @curr_sob_offset: the id offset to the currently used SOB from the
 737 *                   HL_RSVD_SOBS that are being used by this queue.
 738 */
 739struct hl_sync_stream_properties {
 740        struct hl_hw_sob hw_sob[HL_RSVD_SOBS];
 741        u16             next_sob_val;
 742        u16             base_sob_id;
 743        u16             base_mon_id;
 744        u16             collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS];
 745        u16             collective_slave_mon_id;
 746        u16             collective_sob_id;
 747        u8              curr_sob_offset;
 748};
 749
 750/**
 751 * struct hl_encaps_signals_mgr - describes sync stream encapsulated signals
 752 * handlers manager
 753 * @lock: protects handles.
 754 * @handles: an idr to hold all encapsulated signals handles.
 755 */
 756struct hl_encaps_signals_mgr {
 757        spinlock_t              lock;
 758        struct idr              handles;
 759};
 760
 761/**
 762 * struct hl_hw_queue - describes a H/W transport queue.
 763 * @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
 764 * @sync_stream_prop: sync stream queue properties
 765 * @queue_type: type of queue.
 766 * @collective_mode: collective mode of current queue
 767 * @kernel_address: holds the queue's kernel virtual address.
 768 * @bus_address: holds the queue's DMA address.
 769 * @pi: holds the queue's pi value.
 770 * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
 771 * @hw_queue_id: the id of the H/W queue.
 772 * @cq_id: the id for the corresponding CQ for this H/W queue.
 773 * @msi_vec: the IRQ number of the H/W queue.
 774 * @int_queue_len: length of internal queue (number of entries).
 775 * @valid: is the queue valid (we have array of 32 queues, not all of them
 776 *         exist).
 777 * @supports_sync_stream: True if queue supports sync stream
 778 */
 779struct hl_hw_queue {
 780        struct hl_cs_job                        **shadow_queue;
 781        struct hl_sync_stream_properties        sync_stream_prop;
 782        enum hl_queue_type                      queue_type;
 783        enum hl_collective_mode                 collective_mode;
 784        void                                    *kernel_address;
 785        dma_addr_t                              bus_address;
 786        u32                                     pi;
 787        atomic_t                                ci;
 788        u32                                     hw_queue_id;
 789        u32                                     cq_id;
 790        u32                                     msi_vec;
 791        u16                                     int_queue_len;
 792        u8                                      valid;
 793        u8                                      supports_sync_stream;
 794};
 795
 796/**
 797 * struct hl_cq - describes a completion queue
 798 * @hdev: pointer to the device structure
 799 * @kernel_address: holds the queue's kernel virtual address
 800 * @bus_address: holds the queue's DMA address
 801 * @cq_idx: completion queue index in array
 802 * @hw_queue_id: the id of the matching H/W queue
 803 * @ci: ci inside the queue
 804 * @pi: pi inside the queue
 805 * @free_slots_cnt: counter of free slots in queue
 806 */
 807struct hl_cq {
 808        struct hl_device        *hdev;
 809        void                    *kernel_address;
 810        dma_addr_t              bus_address;
 811        u32                     cq_idx;
 812        u32                     hw_queue_id;
 813        u32                     ci;
 814        u32                     pi;
 815        atomic_t                free_slots_cnt;
 816};
 817
 818/**
 819 * struct hl_user_interrupt - holds user interrupt information
 820 * @hdev: pointer to the device structure
 821 * @wait_list_head: head to the list of user threads pending on this interrupt
 822 * @wait_list_lock: protects wait_list_head
 823 * @interrupt_id: msix interrupt id
 824 */
 825struct hl_user_interrupt {
 826        struct hl_device        *hdev;
 827        struct list_head        wait_list_head;
 828        spinlock_t              wait_list_lock;
 829        u32                     interrupt_id;
 830};
 831
 832/**
 833 * struct hl_user_pending_interrupt - holds a context to a user thread
 834 *                                    pending on an interrupt
 835 * @wait_list_node: node in the list of user threads pending on an interrupt
 836 * @fence: hl fence object for interrupt completion
 837 */
 838struct hl_user_pending_interrupt {
 839        struct list_head        wait_list_node;
 840        struct hl_fence         fence;
 841};
 842
 843/**
 844 * struct hl_eq - describes the event queue (single one per device)
 845 * @hdev: pointer to the device structure
 846 * @kernel_address: holds the queue's kernel virtual address
 847 * @bus_address: holds the queue's DMA address
 848 * @ci: ci inside the queue
 849 * @prev_eqe_index: the index of the previous event queue entry. The index of
 850 *                  the current entry's index must be +1 of the previous one.
 851 * @check_eqe_index: do we need to check the index of the current entry vs. the
 852 *                   previous one. This is for backward compatibility with older
 853 *                   firmwares
 854 */
 855struct hl_eq {
 856        struct hl_device        *hdev;
 857        void                    *kernel_address;
 858        dma_addr_t              bus_address;
 859        u32                     ci;
 860        u32                     prev_eqe_index;
 861        bool                    check_eqe_index;
 862};
 863
 864
 865/*
 866 * ASICs
 867 */
 868
 869/**
 870 * enum hl_asic_type - supported ASIC types.
 871 * @ASIC_INVALID: Invalid ASIC type.
 872 * @ASIC_GOYA: Goya device.
 873 * @ASIC_GAUDI: Gaudi device.
 874 * @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000).
 875 */
 876enum hl_asic_type {
 877        ASIC_INVALID,
 878        ASIC_GOYA,
 879        ASIC_GAUDI,
 880        ASIC_GAUDI_SEC
 881};
 882
 883struct hl_cs_parser;
 884
 885/**
 886 * enum hl_pm_mng_profile - power management profile.
 887 * @PM_AUTO: internal clock is set by the Linux driver.
 888 * @PM_MANUAL: internal clock is set by the user.
 889 * @PM_LAST: last power management type.
 890 */
 891enum hl_pm_mng_profile {
 892        PM_AUTO = 1,
 893        PM_MANUAL,
 894        PM_LAST
 895};
 896
 897/**
 898 * enum hl_pll_frequency - PLL frequency.
 899 * @PLL_HIGH: high frequency.
 900 * @PLL_LOW: low frequency.
 901 * @PLL_LAST: last frequency values that were configured by the user.
 902 */
 903enum hl_pll_frequency {
 904        PLL_HIGH = 1,
 905        PLL_LOW,
 906        PLL_LAST
 907};
 908
 909#define PLL_REF_CLK 50
 910
 911enum div_select_defs {
 912        DIV_SEL_REF_CLK = 0,
 913        DIV_SEL_PLL_CLK = 1,
 914        DIV_SEL_DIVIDED_REF = 2,
 915        DIV_SEL_DIVIDED_PLL = 3,
 916};
 917
 918enum pci_region {
 919        PCI_REGION_CFG,
 920        PCI_REGION_SRAM,
 921        PCI_REGION_DRAM,
 922        PCI_REGION_SP_SRAM,
 923        PCI_REGION_NUMBER,
 924};
 925
 926/**
 927 * struct pci_mem_region - describe memory region in a PCI bar
 928 * @region_base: region base address
 929 * @region_size: region size
 930 * @bar_size: size of the BAR
 931 * @offset_in_bar: region offset into the bar
 932 * @bar_id: bar ID of the region
 933 * @used: if used 1, otherwise 0
 934 */
 935struct pci_mem_region {
 936        u64 region_base;
 937        u64 region_size;
 938        u64 bar_size;
 939        u64 offset_in_bar;
 940        u8 bar_id;
 941        u8 used;
 942};
 943
 944/**
 945 * struct static_fw_load_mgr - static FW load manager
 946 * @preboot_version_max_off: max offset to preboot version
 947 * @boot_fit_version_max_off: max offset to boot fit version
 948 * @kmd_msg_to_cpu_reg: register address for KDM->CPU messages
 949 * @cpu_cmd_status_to_host_reg: register address for CPU command status response
 950 * @cpu_boot_status_reg: boot status register
 951 * @cpu_boot_dev_status0_reg: boot device status register 0
 952 * @cpu_boot_dev_status1_reg: boot device status register 1
 953 * @boot_err0_reg: boot error register 0
 954 * @boot_err1_reg: boot error register 1
 955 * @preboot_version_offset_reg: SRAM offset to preboot version register
 956 * @boot_fit_version_offset_reg: SRAM offset to boot fit version register
 957 * @sram_offset_mask: mask for getting offset into the SRAM
 958 * @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg
 959 */
 960struct static_fw_load_mgr {
 961        u64 preboot_version_max_off;
 962        u64 boot_fit_version_max_off;
 963        u32 kmd_msg_to_cpu_reg;
 964        u32 cpu_cmd_status_to_host_reg;
 965        u32 cpu_boot_status_reg;
 966        u32 cpu_boot_dev_status0_reg;
 967        u32 cpu_boot_dev_status1_reg;
 968        u32 boot_err0_reg;
 969        u32 boot_err1_reg;
 970        u32 preboot_version_offset_reg;
 971        u32 boot_fit_version_offset_reg;
 972        u32 sram_offset_mask;
 973        u32 cpu_reset_wait_msec;
 974};
 975
 976/**
 977 * struct fw_response - FW response to LKD command
 978 * @ram_offset: descriptor offset into the RAM
 979 * @ram_type: RAM type containing the descriptor (SRAM/DRAM)
 980 * @status: command status
 981 */
 982struct fw_response {
 983        u32 ram_offset;
 984        u8 ram_type;
 985        u8 status;
 986};
 987
 988/**
 989 * struct dynamic_fw_load_mgr - dynamic FW load manager
 990 * @response: FW to LKD response
 991 * @comm_desc: the communication descriptor with FW
 992 * @image_region: region to copy the FW image to
 993 * @fw_image_size: size of FW image to load
 994 * @wait_for_bl_timeout: timeout for waiting for boot loader to respond
 995 */
 996struct dynamic_fw_load_mgr {
 997        struct fw_response response;
 998        struct lkd_fw_comms_desc comm_desc;
 999        struct pci_mem_region *image_region;
1000        size_t fw_image_size;
1001        u32 wait_for_bl_timeout;
1002};
1003
1004/**
1005 * struct fw_image_props - properties of FW image
1006 * @image_name: name of the image
1007 * @src_off: offset in src FW to copy from
1008 * @copy_size: amount of bytes to copy (0 to copy the whole binary)
1009 */
1010struct fw_image_props {
1011        char *image_name;
1012        u32 src_off;
1013        u32 copy_size;
1014};
1015
1016/**
1017 * struct fw_load_mgr - manager FW loading process
1018 * @dynamic_loader: specific structure for dynamic load
1019 * @static_loader: specific structure for static load
1020 * @boot_fit_img: boot fit image properties
1021 * @linux_img: linux image properties
1022 * @cpu_timeout: CPU response timeout in usec
1023 * @boot_fit_timeout: Boot fit load timeout in usec
1024 * @skip_bmc: should BMC be skipped
1025 * @sram_bar_id: SRAM bar ID
1026 * @dram_bar_id: DRAM bar ID
1027 * @linux_loaded: true if linux was loaded so far
1028 */
1029struct fw_load_mgr {
1030        union {
1031                struct dynamic_fw_load_mgr dynamic_loader;
1032                struct static_fw_load_mgr static_loader;
1033        };
1034        struct fw_image_props boot_fit_img;
1035        struct fw_image_props linux_img;
1036        u32 cpu_timeout;
1037        u32 boot_fit_timeout;
1038        u8 skip_bmc;
1039        u8 sram_bar_id;
1040        u8 dram_bar_id;
1041        u8 linux_loaded;
1042};
1043
1044/**
1045 * struct hl_asic_funcs - ASIC specific functions that are can be called from
1046 *                        common code.
1047 * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
1048 * @early_fini: tears down what was done in early_init.
1049 * @late_init: sets up late driver/hw state (post hw_init) - Optional.
1050 * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
1051 * @sw_init: sets up driver state, does not configure H/W.
1052 * @sw_fini: tears down driver state, does not configure H/W.
1053 * @hw_init: sets up the H/W state.
1054 * @hw_fini: tears down the H/W state.
1055 * @halt_engines: halt engines, needed for reset sequence. This also disables
1056 *                interrupts from the device. Should be called before
1057 *                hw_fini and before CS rollback.
1058 * @suspend: handles IP specific H/W or SW changes for suspend.
1059 * @resume: handles IP specific H/W or SW changes for resume.
1060 * @mmap: maps a memory.
1061 * @ring_doorbell: increment PI on a given QMAN.
1062 * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific
1063 *             function because the PQs are located in different memory areas
1064 *             per ASIC (SRAM, DRAM, Host memory) and therefore, the method of
1065 *             writing the PQE must match the destination memory area
1066 *             properties.
1067 * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
1068 *                           dma_alloc_coherent(). This is ASIC function because
1069 *                           its implementation is not trivial when the driver
1070 *                           is loaded in simulation mode (not upstreamed).
1071 * @asic_dma_free_coherent:  Free coherent DMA memory by calling
1072 *                           dma_free_coherent(). This is ASIC function because
1073 *                           its implementation is not trivial when the driver
1074 *                           is loaded in simulation mode (not upstreamed).
1075 * @scrub_device_mem: Scrub device memory given an address and size
1076 * @get_int_queue_base: get the internal queue base address.
1077 * @test_queues: run simple test on all queues for sanity check.
1078 * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
1079 *                        size of allocation is HL_DMA_POOL_BLK_SIZE.
1080 * @asic_dma_pool_free: free small DMA allocation from pool.
1081 * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
1082 * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
1083 * @hl_dma_unmap_sg: DMA unmap scatter-gather list.
1084 * @cs_parser: parse Command Submission.
1085 * @asic_dma_map_sg: DMA map scatter-gather list.
1086 * @get_dma_desc_list_size: get number of LIN_DMA packets required for CB.
1087 * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
1088 * @update_eq_ci: update event queue CI.
1089 * @context_switch: called upon ASID context switch.
1090 * @restore_phase_topology: clear all SOBs amd MONs.
1091 * @debugfs_read32: debug interface for reading u32 from DRAM/SRAM/Host memory.
1092 * @debugfs_write32: debug interface for writing u32 to DRAM/SRAM/Host memory.
1093 * @debugfs_read64: debug interface for reading u64 from DRAM/SRAM/Host memory.
1094 * @debugfs_write64: debug interface for writing u64 to DRAM/SRAM/Host memory.
1095 * @debugfs_read_dma: debug interface for reading up to 2MB from the device's
1096 *                    internal memory via DMA engine.
1097 * @add_device_attr: add ASIC specific device attributes.
1098 * @handle_eqe: handle event queue entry (IRQ) from CPU-CP.
1099 * @set_pll_profile: change PLL profile (manual/automatic).
1100 * @get_events_stat: retrieve event queue entries histogram.
1101 * @read_pte: read MMU page table entry from DRAM.
1102 * @write_pte: write MMU page table entry to DRAM.
1103 * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft
1104 *                        (L1 only) or hard (L0 & L1) flush.
1105 * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with
1106 *                              ASID-VA-size mask.
1107 * @send_heartbeat: send is-alive packet to CPU-CP and verify response.
1108 * @set_clock_gating: enable/disable clock gating per engine according to
1109 *                    clock gating mask in hdev
1110 * @disable_clock_gating: disable clock gating completely
1111 * @debug_coresight: perform certain actions on Coresight for debugging.
1112 * @is_device_idle: return true if device is idle, false otherwise.
1113 * @soft_reset_late_init: perform certain actions needed after soft reset.
1114 * @hw_queues_lock: acquire H/W queues lock.
1115 * @hw_queues_unlock: release H/W queues lock.
1116 * @get_pci_id: retrieve PCI ID.
1117 * @get_eeprom_data: retrieve EEPROM data from F/W.
1118 * @send_cpu_message: send message to F/W. If the message is timedout, the
1119 *                    driver will eventually reset the device. The timeout can
1120 *                    be determined by the calling function or it can be 0 and
1121 *                    then the timeout is the default timeout for the specific
1122 *                    ASIC
1123 * @get_hw_state: retrieve the H/W state
1124 * @pci_bars_map: Map PCI BARs.
1125 * @init_iatu: Initialize the iATU unit inside the PCI controller.
1126 * @rreg: Read a register. Needed for simulator support.
1127 * @wreg: Write a register. Needed for simulator support.
1128 * @halt_coresight: stop the ETF and ETR traces.
1129 * @ctx_init: context dependent initialization.
1130 * @ctx_fini: context dependent cleanup.
1131 * @get_clk_rate: Retrieve the ASIC current and maximum clock rate in MHz
1132 * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index.
1133 * @load_firmware_to_device: load the firmware to the device's memory
1134 * @load_boot_fit_to_device: load boot fit to device's memory
1135 * @get_signal_cb_size: Get signal CB size.
1136 * @get_wait_cb_size: Get wait CB size.
1137 * @gen_signal_cb: Generate a signal CB.
1138 * @gen_wait_cb: Generate a wait CB.
1139 * @reset_sob: Reset a SOB.
1140 * @reset_sob_group: Reset SOB group
1141 * @set_dma_mask_from_fw: set the DMA mask in the driver according to the
1142 *                        firmware configuration
1143 * @get_device_time: Get the device time.
1144 * @collective_wait_init_cs: Generate collective master/slave packets
1145 *                           and place them in the relevant cs jobs
1146 * @collective_wait_create_jobs: allocate collective wait cs jobs
1147 * @scramble_addr: Routine to scramble the address prior of mapping it
1148 *                 in the MMU.
1149 * @descramble_addr: Routine to de-scramble the address prior of
1150 *                   showing it to users.
1151 * @ack_protection_bits_errors: ack and dump all security violations
1152 * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it.
1153 *                   also returns the size of the block if caller supplies
1154 *                   a valid pointer for it
1155 * @hw_block_mmap: mmap a HW block with a given id.
1156 * @enable_events_from_fw: send interrupt to firmware to notify them the
1157 *                         driver is ready to receive asynchronous events. This
1158 *                         function should be called during the first init and
1159 *                         after every hard-reset of the device
1160 * @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event
1161 * @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to
1162 *                         generic f/w compatible PLL Indexes
1163 * @init_firmware_loader: initialize data for FW loader.
1164 * @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling
1165 * @state_dump_init: initialize constants required for state dump
1166 * @get_sob_addr: get SOB base address offset.
1167 * @set_pci_memory_regions: setting properties of PCI memory regions
1168 * @get_stream_master_qid_arr: get pointer to stream masters QID array
1169 */
1170struct hl_asic_funcs {
1171        int (*early_init)(struct hl_device *hdev);
1172        int (*early_fini)(struct hl_device *hdev);
1173        int (*late_init)(struct hl_device *hdev);
1174        void (*late_fini)(struct hl_device *hdev);
1175        int (*sw_init)(struct hl_device *hdev);
1176        int (*sw_fini)(struct hl_device *hdev);
1177        int (*hw_init)(struct hl_device *hdev);
1178        void (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1179        void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1180        int (*suspend)(struct hl_device *hdev);
1181        int (*resume)(struct hl_device *hdev);
1182        int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1183                        void *cpu_addr, dma_addr_t dma_addr, size_t size);
1184        void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
1185        void (*pqe_write)(struct hl_device *hdev, __le64 *pqe,
1186                        struct hl_bd *bd);
1187        void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
1188                                        dma_addr_t *dma_handle, gfp_t flag);
1189        void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
1190                                        void *cpu_addr, dma_addr_t dma_handle);
1191        int (*scrub_device_mem)(struct hl_device *hdev, u64 addr, u64 size);
1192        void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
1193                                dma_addr_t *dma_handle, u16 *queue_len);
1194        int (*test_queues)(struct hl_device *hdev);
1195        void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
1196                                gfp_t mem_flags, dma_addr_t *dma_handle);
1197        void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
1198                                dma_addr_t dma_addr);
1199        void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
1200                                size_t size, dma_addr_t *dma_handle);
1201        void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
1202                                size_t size, void *vaddr);
1203        void (*hl_dma_unmap_sg)(struct hl_device *hdev,
1204                                struct scatterlist *sgl, int nents,
1205                                enum dma_data_direction dir);
1206        int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
1207        int (*asic_dma_map_sg)(struct hl_device *hdev,
1208                                struct scatterlist *sgl, int nents,
1209                                enum dma_data_direction dir);
1210        u32 (*get_dma_desc_list_size)(struct hl_device *hdev,
1211                                        struct sg_table *sgt);
1212        void (*add_end_of_cb_packets)(struct hl_device *hdev,
1213                                        void *kernel_address, u32 len,
1214                                        u64 cq_addr, u32 cq_val, u32 msix_num,
1215                                        bool eb);
1216        void (*update_eq_ci)(struct hl_device *hdev, u32 val);
1217        int (*context_switch)(struct hl_device *hdev, u32 asid);
1218        void (*restore_phase_topology)(struct hl_device *hdev);
1219        int (*debugfs_read32)(struct hl_device *hdev, u64 addr,
1220                                bool user_address, u32 *val);
1221        int (*debugfs_write32)(struct hl_device *hdev, u64 addr,
1222                                bool user_address, u32 val);
1223        int (*debugfs_read64)(struct hl_device *hdev, u64 addr,
1224                                bool user_address, u64 *val);
1225        int (*debugfs_write64)(struct hl_device *hdev, u64 addr,
1226                                bool user_address, u64 val);
1227        int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size,
1228                                void *blob_addr);
1229        void (*add_device_attr)(struct hl_device *hdev,
1230                                struct attribute_group *dev_attr_grp);
1231        void (*handle_eqe)(struct hl_device *hdev,
1232                                struct hl_eq_entry *eq_entry);
1233        void (*set_pll_profile)(struct hl_device *hdev,
1234                        enum hl_pll_frequency freq);
1235        void* (*get_events_stat)(struct hl_device *hdev, bool aggregate,
1236                                u32 *size);
1237        u64 (*read_pte)(struct hl_device *hdev, u64 addr);
1238        void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
1239        int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard,
1240                                        u32 flags);
1241        int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
1242                                u32 flags, u32 asid, u64 va, u64 size);
1243        int (*send_heartbeat)(struct hl_device *hdev);
1244        void (*set_clock_gating)(struct hl_device *hdev);
1245        void (*disable_clock_gating)(struct hl_device *hdev);
1246        int (*debug_coresight)(struct hl_device *hdev, void *data);
1247        bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr,
1248                                        u8 mask_len, struct seq_file *s);
1249        int (*soft_reset_late_init)(struct hl_device *hdev);
1250        void (*hw_queues_lock)(struct hl_device *hdev);
1251        void (*hw_queues_unlock)(struct hl_device *hdev);
1252        u32 (*get_pci_id)(struct hl_device *hdev);
1253        int (*get_eeprom_data)(struct hl_device *hdev, void *data,
1254                                size_t max_size);
1255        int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
1256                                u16 len, u32 timeout, u64 *result);
1257        int (*pci_bars_map)(struct hl_device *hdev);
1258        int (*init_iatu)(struct hl_device *hdev);
1259        u32 (*rreg)(struct hl_device *hdev, u32 reg);
1260        void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
1261        void (*halt_coresight)(struct hl_device *hdev);
1262        int (*ctx_init)(struct hl_ctx *ctx);
1263        void (*ctx_fini)(struct hl_ctx *ctx);
1264        int (*get_clk_rate)(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk);
1265        u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx);
1266        int (*load_firmware_to_device)(struct hl_device *hdev);
1267        int (*load_boot_fit_to_device)(struct hl_device *hdev);
1268        u32 (*get_signal_cb_size)(struct hl_device *hdev);
1269        u32 (*get_wait_cb_size)(struct hl_device *hdev);
1270        u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id,
1271                        u32 size, bool eb);
1272        u32 (*gen_wait_cb)(struct hl_device *hdev,
1273                        struct hl_gen_wait_properties *prop);
1274        void (*reset_sob)(struct hl_device *hdev, void *data);
1275        void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group);
1276        void (*set_dma_mask_from_fw)(struct hl_device *hdev);
1277        u64 (*get_device_time)(struct hl_device *hdev);
1278        int (*collective_wait_init_cs)(struct hl_cs *cs);
1279        int (*collective_wait_create_jobs)(struct hl_device *hdev,
1280                        struct hl_ctx *ctx, struct hl_cs *cs,
1281                        u32 wait_queue_id, u32 collective_engine_id,
1282                        u32 encaps_signal_offset);
1283        u64 (*scramble_addr)(struct hl_device *hdev, u64 addr);
1284        u64 (*descramble_addr)(struct hl_device *hdev, u64 addr);
1285        void (*ack_protection_bits_errors)(struct hl_device *hdev);
1286        int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr,
1287                                u32 *block_size, u32 *block_id);
1288        int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1289                        u32 block_id, u32 block_size);
1290        void (*enable_events_from_fw)(struct hl_device *hdev);
1291        void (*get_msi_info)(__le32 *table);
1292        int (*map_pll_idx_to_fw_idx)(u32 pll_idx);
1293        void (*init_firmware_loader)(struct hl_device *hdev);
1294        void (*init_cpu_scrambler_dram)(struct hl_device *hdev);
1295        void (*state_dump_init)(struct hl_device *hdev);
1296        u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id);
1297        void (*set_pci_memory_regions)(struct hl_device *hdev);
1298        u32* (*get_stream_master_qid_arr)(void);
1299};
1300
1301
1302/*
1303 * CONTEXTS
1304 */
1305
1306#define HL_KERNEL_ASID_ID       0
1307
1308/**
1309 * enum hl_va_range_type - virtual address range type.
1310 * @HL_VA_RANGE_TYPE_HOST: range type of host pages
1311 * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages
1312 * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages
1313 */
1314enum hl_va_range_type {
1315        HL_VA_RANGE_TYPE_HOST,
1316        HL_VA_RANGE_TYPE_HOST_HUGE,
1317        HL_VA_RANGE_TYPE_DRAM,
1318        HL_VA_RANGE_TYPE_MAX
1319};
1320
1321/**
1322 * struct hl_va_range - virtual addresses range.
1323 * @lock: protects the virtual addresses list.
1324 * @list: list of virtual addresses blocks available for mappings.
1325 * @start_addr: range start address.
1326 * @end_addr: range end address.
1327 * @page_size: page size of this va range.
1328 */
1329struct hl_va_range {
1330        struct mutex            lock;
1331        struct list_head        list;
1332        u64                     start_addr;
1333        u64                     end_addr;
1334        u32                     page_size;
1335};
1336
1337/**
1338 * struct hl_cs_counters_atomic - command submission counters
1339 * @out_of_mem_drop_cnt: dropped due to memory allocation issue
1340 * @parsing_drop_cnt: dropped due to error in packet parsing
1341 * @queue_full_drop_cnt: dropped due to queue full
1342 * @device_in_reset_drop_cnt: dropped due to device in reset
1343 * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight
1344 * @validation_drop_cnt: dropped due to error in validation
1345 */
1346struct hl_cs_counters_atomic {
1347        atomic64_t out_of_mem_drop_cnt;
1348        atomic64_t parsing_drop_cnt;
1349        atomic64_t queue_full_drop_cnt;
1350        atomic64_t device_in_reset_drop_cnt;
1351        atomic64_t max_cs_in_flight_drop_cnt;
1352        atomic64_t validation_drop_cnt;
1353};
1354
1355/**
1356 * struct hl_ctx - user/kernel context.
1357 * @mem_hash: holds mapping from virtual address to virtual memory area
1358 *              descriptor (hl_vm_phys_pg_list or hl_userptr).
1359 * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
1360 * @hpriv: pointer to the private (Kernel Driver) data of the process (fd).
1361 * @hdev: pointer to the device structure.
1362 * @refcount: reference counter for the context. Context is released only when
1363 *              this hits 0l. It is incremented on CS and CS_WAIT.
1364 * @cs_pending: array of hl fence objects representing pending CS.
1365 * @va_range: holds available virtual addresses for host and dram mappings.
1366 * @mem_hash_lock: protects the mem_hash.
1367 * @mmu_lock: protects the MMU page tables. Any change to the PGT, modifying the
1368 *            MMU hash or walking the PGT requires talking this lock.
1369 * @hw_block_list_lock: protects the HW block memory list.
1370 * @debugfs_list: node in debugfs list of contexts.
1371 * @hw_block_mem_list: list of HW block virtual mapped addresses.
1372 * @cs_counters: context command submission counters.
1373 * @cb_va_pool: device VA pool for command buffers which are mapped to the
1374 *              device's MMU.
1375 * @sig_mgr: encaps signals handle manager.
1376 * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
1377 *                      to user so user could inquire about CS. It is used as
1378 *                      index to cs_pending array.
1379 * @dram_default_hops: array that holds all hops addresses needed for default
1380 *                     DRAM mapping.
1381 * @cs_lock: spinlock to protect cs_sequence.
1382 * @dram_phys_mem: amount of used physical DRAM memory by this context.
1383 * @thread_ctx_switch_token: token to prevent multiple threads of the same
1384 *                              context from running the context switch phase.
1385 *                              Only a single thread should run it.
1386 * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
1387 *                              the context switch phase from moving to their
1388 *                              execution phase before the context switch phase
1389 *                              has finished.
1390 * @asid: context's unique address space ID in the device's MMU.
1391 * @handle: context's opaque handle for user
1392 */
1393struct hl_ctx {
1394        DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
1395        DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
1396        struct hl_fpriv                 *hpriv;
1397        struct hl_device                *hdev;
1398        struct kref                     refcount;
1399        struct hl_fence                 **cs_pending;
1400        struct hl_va_range              *va_range[HL_VA_RANGE_TYPE_MAX];
1401        struct mutex                    mem_hash_lock;
1402        struct mutex                    mmu_lock;
1403        struct mutex                    hw_block_list_lock;
1404        struct list_head                debugfs_list;
1405        struct list_head                hw_block_mem_list;
1406        struct hl_cs_counters_atomic    cs_counters;
1407        struct gen_pool                 *cb_va_pool;
1408        struct hl_encaps_signals_mgr    sig_mgr;
1409        u64                             cs_sequence;
1410        u64                             *dram_default_hops;
1411        spinlock_t                      cs_lock;
1412        atomic64_t                      dram_phys_mem;
1413        atomic_t                        thread_ctx_switch_token;
1414        u32                             thread_ctx_switch_wait_token;
1415        u32                             asid;
1416        u32                             handle;
1417};
1418
1419/**
1420 * struct hl_ctx_mgr - for handling multiple contexts.
1421 * @ctx_lock: protects ctx_handles.
1422 * @ctx_handles: idr to hold all ctx handles.
1423 */
1424struct hl_ctx_mgr {
1425        struct mutex            ctx_lock;
1426        struct idr              ctx_handles;
1427};
1428
1429
1430
1431/*
1432 * COMMAND SUBMISSIONS
1433 */
1434
1435/**
1436 * struct hl_userptr - memory mapping chunk information
1437 * @vm_type: type of the VM.
1438 * @job_node: linked-list node for hanging the object on the Job's list.
1439 * @pages: pointer to struct page array
1440 * @npages: size of @pages array
1441 * @sgt: pointer to the scatter-gather table that holds the pages.
1442 * @dir: for DMA unmapping, the direction must be supplied, so save it.
1443 * @debugfs_list: node in debugfs list of command submissions.
1444 * @pid: the pid of the user process owning the memory
1445 * @addr: user-space virtual address of the start of the memory area.
1446 * @size: size of the memory area to pin & map.
1447 * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
1448 */
1449struct hl_userptr {
1450        enum vm_type            vm_type; /* must be first */
1451        struct list_head        job_node;
1452        struct page             **pages;
1453        unsigned int            npages;
1454        struct sg_table         *sgt;
1455        enum dma_data_direction dir;
1456        struct list_head        debugfs_list;
1457        pid_t                   pid;
1458        u64                     addr;
1459        u64                     size;
1460        u8                      dma_mapped;
1461};
1462
1463/**
1464 * struct hl_cs - command submission.
1465 * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
1466 * @ctx: the context this CS belongs to.
1467 * @job_list: list of the CS's jobs in the various queues.
1468 * @job_lock: spinlock for the CS's jobs list. Needed for free_job.
1469 * @refcount: reference counter for usage of the CS.
1470 * @fence: pointer to the fence object of this CS.
1471 * @signal_fence: pointer to the fence object of the signal CS (used by wait
1472 *                CS only).
1473 * @finish_work: workqueue object to run when CS is completed by H/W.
1474 * @work_tdr: delayed work node for TDR.
1475 * @mirror_node : node in device mirror list of command submissions.
1476 * @staged_cs_node: node in the staged cs list.
1477 * @debugfs_list: node in debugfs list of command submissions.
1478 * @encaps_sig_hdl: holds the encaps signals handle.
1479 * @sequence: the sequence number of this CS.
1480 * @staged_sequence: the sequence of the staged submission this CS is part of,
1481 *                   relevant only if staged_cs is set.
1482 * @timeout_jiffies: cs timeout in jiffies.
1483 * @submission_time_jiffies: submission time of the cs
1484 * @type: CS_TYPE_*.
1485 * @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs.
1486 * @submitted: true if CS was submitted to H/W.
1487 * @completed: true if CS was completed by device.
1488 * @timedout : true if CS was timedout.
1489 * @tdr_active: true if TDR was activated for this CS (to prevent
1490 *              double TDR activation).
1491 * @aborted: true if CS was aborted due to some device error.
1492 * @timestamp: true if a timestmap must be captured upon completion.
1493 * @staged_last: true if this is the last staged CS and needs completion.
1494 * @staged_first: true if this is the first staged CS and we need to receive
1495 *                timeout for this CS.
1496 * @staged_cs: true if this CS is part of a staged submission.
1497 * @skip_reset_on_timeout: true if we shall not reset the device in case
1498 *                         timeout occurs (debug scenario).
1499 * @encaps_signals: true if this CS has encaps reserved signals.
1500 */
1501struct hl_cs {
1502        u16                     *jobs_in_queue_cnt;
1503        struct hl_ctx           *ctx;
1504        struct list_head        job_list;
1505        spinlock_t              job_lock;
1506        struct kref             refcount;
1507        struct hl_fence         *fence;
1508        struct hl_fence         *signal_fence;
1509        struct work_struct      finish_work;
1510        struct delayed_work     work_tdr;
1511        struct list_head        mirror_node;
1512        struct list_head        staged_cs_node;
1513        struct list_head        debugfs_list;
1514        struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
1515        u64                     sequence;
1516        u64                     staged_sequence;
1517        u64                     timeout_jiffies;
1518        u64                     submission_time_jiffies;
1519        enum hl_cs_type         type;
1520        u32                     encaps_sig_hdl_id;
1521        u8                      submitted;
1522        u8                      completed;
1523        u8                      timedout;
1524        u8                      tdr_active;
1525        u8                      aborted;
1526        u8                      timestamp;
1527        u8                      staged_last;
1528        u8                      staged_first;
1529        u8                      staged_cs;
1530        u8                      skip_reset_on_timeout;
1531        u8                      encaps_signals;
1532};
1533
1534/**
1535 * struct hl_cs_job - command submission job.
1536 * @cs_node: the node to hang on the CS jobs list.
1537 * @cs: the CS this job belongs to.
1538 * @user_cb: the CB we got from the user.
1539 * @patched_cb: in case of patching, this is internal CB which is submitted on
1540 *              the queue instead of the CB we got from the IOCTL.
1541 * @finish_work: workqueue object to run when job is completed.
1542 * @userptr_list: linked-list of userptr mappings that belong to this job and
1543 *                      wait for completion.
1544 * @debugfs_list: node in debugfs list of command submission jobs.
1545 * @refcount: reference counter for usage of the CS job.
1546 * @queue_type: the type of the H/W queue this job is submitted to.
1547 * @id: the id of this job inside a CS.
1548 * @hw_queue_id: the id of the H/W queue this job is submitted to.
1549 * @user_cb_size: the actual size of the CB we got from the user.
1550 * @job_cb_size: the actual size of the CB that we put on the queue.
1551 * @encaps_sig_wait_offset: encapsulated signals offset, which allow user
1552 *                          to wait on part of the reserved signals.
1553 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
1554 *                          handle to a kernel-allocated CB object, false
1555 *                          otherwise (SRAM/DRAM/host address).
1556 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
1557 *                    info is needed later, when adding the 2xMSG_PROT at the
1558 *                    end of the JOB, to know which barriers to put in the
1559 *                    MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
1560 *                    have streams so the engine can't be busy by another
1561 *                    stream.
1562 */
1563struct hl_cs_job {
1564        struct list_head        cs_node;
1565        struct hl_cs            *cs;
1566        struct hl_cb            *user_cb;
1567        struct hl_cb            *patched_cb;
1568        struct work_struct      finish_work;
1569        struct list_head        userptr_list;
1570        struct list_head        debugfs_list;
1571        struct kref             refcount;
1572        enum hl_queue_type      queue_type;
1573        u32                     id;
1574        u32                     hw_queue_id;
1575        u32                     user_cb_size;
1576        u32                     job_cb_size;
1577        u32                     encaps_sig_wait_offset;
1578        u8                      is_kernel_allocated_cb;
1579        u8                      contains_dma_pkt;
1580};
1581
1582/**
1583 * struct hl_cs_parser - command submission parser properties.
1584 * @user_cb: the CB we got from the user.
1585 * @patched_cb: in case of patching, this is internal CB which is submitted on
1586 *              the queue instead of the CB we got from the IOCTL.
1587 * @job_userptr_list: linked-list of userptr mappings that belong to the related
1588 *                      job and wait for completion.
1589 * @cs_sequence: the sequence number of the related CS.
1590 * @queue_type: the type of the H/W queue this job is submitted to.
1591 * @ctx_id: the ID of the context the related CS belongs to.
1592 * @hw_queue_id: the id of the H/W queue this job is submitted to.
1593 * @user_cb_size: the actual size of the CB we got from the user.
1594 * @patched_cb_size: the size of the CB after parsing.
1595 * @job_id: the id of the related job inside the related CS.
1596 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
1597 *                          handle to a kernel-allocated CB object, false
1598 *                          otherwise (SRAM/DRAM/host address).
1599 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
1600 *                    info is needed later, when adding the 2xMSG_PROT at the
1601 *                    end of the JOB, to know which barriers to put in the
1602 *                    MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
1603 *                    have streams so the engine can't be busy by another
1604 *                    stream.
1605 * @completion: true if we need completion for this CS.
1606 */
1607struct hl_cs_parser {
1608        struct hl_cb            *user_cb;
1609        struct hl_cb            *patched_cb;
1610        struct list_head        *job_userptr_list;
1611        u64                     cs_sequence;
1612        enum hl_queue_type      queue_type;
1613        u32                     ctx_id;
1614        u32                     hw_queue_id;
1615        u32                     user_cb_size;
1616        u32                     patched_cb_size;
1617        u8                      job_id;
1618        u8                      is_kernel_allocated_cb;
1619        u8                      contains_dma_pkt;
1620        u8                      completion;
1621};
1622
1623/*
1624 * MEMORY STRUCTURE
1625 */
1626
1627/**
1628 * struct hl_vm_hash_node - hash element from virtual address to virtual
1629 *                              memory area descriptor (hl_vm_phys_pg_list or
1630 *                              hl_userptr).
1631 * @node: node to hang on the hash table in context object.
1632 * @vaddr: key virtual address.
1633 * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
1634 */
1635struct hl_vm_hash_node {
1636        struct hlist_node       node;
1637        u64                     vaddr;
1638        void                    *ptr;
1639};
1640
1641/**
1642 * struct hl_vm_hw_block_list_node - list element from user virtual address to
1643 *                              HW block id.
1644 * @node: node to hang on the list in context object.
1645 * @ctx: the context this node belongs to.
1646 * @vaddr: virtual address of the HW block.
1647 * @size: size of the block.
1648 * @id: HW block id (handle).
1649 */
1650struct hl_vm_hw_block_list_node {
1651        struct list_head        node;
1652        struct hl_ctx           *ctx;
1653        unsigned long           vaddr;
1654        u32                     size;
1655        u32                     id;
1656};
1657
1658/**
1659 * struct hl_vm_phys_pg_pack - physical page pack.
1660 * @vm_type: describes the type of the virtual area descriptor.
1661 * @pages: the physical page array.
1662 * @npages: num physical pages in the pack.
1663 * @total_size: total size of all the pages in this list.
1664 * @mapping_cnt: number of shared mappings.
1665 * @asid: the context related to this list.
1666 * @page_size: size of each page in the pack.
1667 * @flags: HL_MEM_* flags related to this list.
1668 * @handle: the provided handle related to this list.
1669 * @offset: offset from the first page.
1670 * @contiguous: is contiguous physical memory.
1671 * @created_from_userptr: is product of host virtual address.
1672 */
1673struct hl_vm_phys_pg_pack {
1674        enum vm_type            vm_type; /* must be first */
1675        u64                     *pages;
1676        u64                     npages;
1677        u64                     total_size;
1678        atomic_t                mapping_cnt;
1679        u32                     asid;
1680        u32                     page_size;
1681        u32                     flags;
1682        u32                     handle;
1683        u32                     offset;
1684        u8                      contiguous;
1685        u8                      created_from_userptr;
1686};
1687
1688/**
1689 * struct hl_vm_va_block - virtual range block information.
1690 * @node: node to hang on the virtual range list in context object.
1691 * @start: virtual range start address.
1692 * @end: virtual range end address.
1693 * @size: virtual range size.
1694 */
1695struct hl_vm_va_block {
1696        struct list_head        node;
1697        u64                     start;
1698        u64                     end;
1699        u64                     size;
1700};
1701
1702/**
1703 * struct hl_vm - virtual memory manager for MMU.
1704 * @dram_pg_pool: pool for DRAM physical pages of 2MB.
1705 * @dram_pg_pool_refcount: reference counter for the pool usage.
1706 * @idr_lock: protects the phys_pg_list_handles.
1707 * @phys_pg_pack_handles: idr to hold all device allocations handles.
1708 * @init_done: whether initialization was done. We need this because VM
1709 *              initialization might be skipped during device initialization.
1710 */
1711struct hl_vm {
1712        struct gen_pool         *dram_pg_pool;
1713        struct kref             dram_pg_pool_refcount;
1714        spinlock_t              idr_lock;
1715        struct idr              phys_pg_pack_handles;
1716        u8                      init_done;
1717};
1718
1719
1720/*
1721 * DEBUG, PROFILING STRUCTURE
1722 */
1723
1724/**
1725 * struct hl_debug_params - Coresight debug parameters.
1726 * @input: pointer to component specific input parameters.
1727 * @output: pointer to component specific output parameters.
1728 * @output_size: size of output buffer.
1729 * @reg_idx: relevant register ID.
1730 * @op: component operation to execute.
1731 * @enable: true if to enable component debugging, false otherwise.
1732 */
1733struct hl_debug_params {
1734        void *input;
1735        void *output;
1736        u32 output_size;
1737        u32 reg_idx;
1738        u32 op;
1739        bool enable;
1740};
1741
1742/*
1743 * FILE PRIVATE STRUCTURE
1744 */
1745
1746/**
1747 * struct hl_fpriv - process information stored in FD private data.
1748 * @hdev: habanalabs device structure.
1749 * @filp: pointer to the given file structure.
1750 * @taskpid: current process ID.
1751 * @ctx: current executing context. TODO: remove for multiple ctx per process
1752 * @ctx_mgr: context manager to handle multiple context for this FD.
1753 * @cb_mgr: command buffer manager to handle multiple buffers for this FD.
1754 * @debugfs_list: list of relevant ASIC debugfs.
1755 * @dev_node: node in the device list of file private data
1756 * @refcount: number of related contexts.
1757 * @restore_phase_mutex: lock for context switch and restore phase.
1758 * @is_control: true for control device, false otherwise
1759 */
1760struct hl_fpriv {
1761        struct hl_device        *hdev;
1762        struct file             *filp;
1763        struct pid              *taskpid;
1764        struct hl_ctx           *ctx;
1765        struct hl_ctx_mgr       ctx_mgr;
1766        struct hl_cb_mgr        cb_mgr;
1767        struct list_head        debugfs_list;
1768        struct list_head        dev_node;
1769        struct kref             refcount;
1770        struct mutex            restore_phase_mutex;
1771        u8                      is_control;
1772};
1773
1774
1775/*
1776 * DebugFS
1777 */
1778
1779/**
1780 * struct hl_info_list - debugfs file ops.
1781 * @name: file name.
1782 * @show: function to output information.
1783 * @write: function to write to the file.
1784 */
1785struct hl_info_list {
1786        const char      *name;
1787        int             (*show)(struct seq_file *s, void *data);
1788        ssize_t         (*write)(struct file *file, const char __user *buf,
1789                                size_t count, loff_t *f_pos);
1790};
1791
1792/**
1793 * struct hl_debugfs_entry - debugfs dentry wrapper.
1794 * @info_ent: dentry realted ops.
1795 * @dev_entry: ASIC specific debugfs manager.
1796 */
1797struct hl_debugfs_entry {
1798        const struct hl_info_list       *info_ent;
1799        struct hl_dbg_device_entry      *dev_entry;
1800};
1801
1802/**
1803 * struct hl_dbg_device_entry - ASIC specific debugfs manager.
1804 * @root: root dentry.
1805 * @hdev: habanalabs device structure.
1806 * @entry_arr: array of available hl_debugfs_entry.
1807 * @file_list: list of available debugfs files.
1808 * @file_mutex: protects file_list.
1809 * @cb_list: list of available CBs.
1810 * @cb_spinlock: protects cb_list.
1811 * @cs_list: list of available CSs.
1812 * @cs_spinlock: protects cs_list.
1813 * @cs_job_list: list of available CB jobs.
1814 * @cs_job_spinlock: protects cs_job_list.
1815 * @userptr_list: list of available userptrs (virtual memory chunk descriptor).
1816 * @userptr_spinlock: protects userptr_list.
1817 * @ctx_mem_hash_list: list of available contexts with MMU mappings.
1818 * @ctx_mem_hash_spinlock: protects cb_list.
1819 * @blob_desc: descriptor of blob
1820 * @state_dump: data of the system states in case of a bad cs.
1821 * @state_dump_sem: protects state_dump.
1822 * @addr: next address to read/write from/to in read/write32.
1823 * @mmu_addr: next virtual address to translate to physical address in mmu_show.
1824 * @userptr_lookup: the target user ptr to look up for on demand.
1825 * @mmu_asid: ASID to use while translating in mmu_show.
1826 * @state_dump_head: index of the latest state dump
1827 * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
1828 * @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read.
1829 * @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read.
1830 */
1831struct hl_dbg_device_entry {
1832        struct dentry                   *root;
1833        struct hl_device                *hdev;
1834        struct hl_debugfs_entry         *entry_arr;
1835        struct list_head                file_list;
1836        struct mutex                    file_mutex;
1837        struct list_head                cb_list;
1838        spinlock_t                      cb_spinlock;
1839        struct list_head                cs_list;
1840        spinlock_t                      cs_spinlock;
1841        struct list_head                cs_job_list;
1842        spinlock_t                      cs_job_spinlock;
1843        struct list_head                userptr_list;
1844        spinlock_t                      userptr_spinlock;
1845        struct list_head                ctx_mem_hash_list;
1846        spinlock_t                      ctx_mem_hash_spinlock;
1847        struct debugfs_blob_wrapper     blob_desc;
1848        char                            *state_dump[HL_STATE_DUMP_HIST_LEN];
1849        struct rw_semaphore             state_dump_sem;
1850        u64                             addr;
1851        u64                             mmu_addr;
1852        u64                             userptr_lookup;
1853        u32                             mmu_asid;
1854        u32                             state_dump_head;
1855        u8                              i2c_bus;
1856        u8                              i2c_addr;
1857        u8                              i2c_reg;
1858};
1859
1860/**
1861 * struct hl_hw_obj_name_entry - single hw object name, member of
1862 * hl_state_dump_specs
1863 * @node: link to the containing hash table
1864 * @name: hw object name
1865 * @id: object identifier
1866 */
1867struct hl_hw_obj_name_entry {
1868        struct hlist_node       node;
1869        const char              *name;
1870        u32                     id;
1871};
1872
1873enum hl_state_dump_specs_props {
1874        SP_SYNC_OBJ_BASE_ADDR,
1875        SP_NEXT_SYNC_OBJ_ADDR,
1876        SP_SYNC_OBJ_AMOUNT,
1877        SP_MON_OBJ_WR_ADDR_LOW,
1878        SP_MON_OBJ_WR_ADDR_HIGH,
1879        SP_MON_OBJ_WR_DATA,
1880        SP_MON_OBJ_ARM_DATA,
1881        SP_MON_OBJ_STATUS,
1882        SP_MONITORS_AMOUNT,
1883        SP_TPC0_CMDQ,
1884        SP_TPC0_CFG_SO,
1885        SP_NEXT_TPC,
1886        SP_MME_CMDQ,
1887        SP_MME_CFG_SO,
1888        SP_NEXT_MME,
1889        SP_DMA_CMDQ,
1890        SP_DMA_CFG_SO,
1891        SP_DMA_QUEUES_OFFSET,
1892        SP_NUM_OF_MME_ENGINES,
1893        SP_SUB_MME_ENG_NUM,
1894        SP_NUM_OF_DMA_ENGINES,
1895        SP_NUM_OF_TPC_ENGINES,
1896        SP_ENGINE_NUM_OF_QUEUES,
1897        SP_ENGINE_NUM_OF_STREAMS,
1898        SP_ENGINE_NUM_OF_FENCES,
1899        SP_FENCE0_CNT_OFFSET,
1900        SP_FENCE0_RDATA_OFFSET,
1901        SP_CP_STS_OFFSET,
1902        SP_NUM_CORES,
1903
1904        SP_MAX
1905};
1906
1907enum hl_sync_engine_type {
1908        ENGINE_TPC,
1909        ENGINE_DMA,
1910        ENGINE_MME,
1911};
1912
1913/**
1914 * struct hl_mon_state_dump - represents a state dump of a single monitor
1915 * @id: monitor id
1916 * @wr_addr_low: address monitor will write to, low bits
1917 * @wr_addr_high: address monitor will write to, high bits
1918 * @wr_data: data monitor will write
1919 * @arm_data: register value containing monitor configuration
1920 * @status: monitor status
1921 */
1922struct hl_mon_state_dump {
1923        u32             id;
1924        u32             wr_addr_low;
1925        u32             wr_addr_high;
1926        u32             wr_data;
1927        u32             arm_data;
1928        u32             status;
1929};
1930
1931/**
1932 * struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry
1933 * @engine_type: type of the engine
1934 * @engine_id: id of the engine
1935 * @sync_id: id of the sync object
1936 */
1937struct hl_sync_to_engine_map_entry {
1938        struct hlist_node               node;
1939        enum hl_sync_engine_type        engine_type;
1940        u32                             engine_id;
1941        u32                             sync_id;
1942};
1943
1944/**
1945 * struct hl_sync_to_engine_map - maps sync object id to associated engine id
1946 * @tb: hash table containing the mapping, each element is of type
1947 *      struct hl_sync_to_engine_map_entry
1948 */
1949struct hl_sync_to_engine_map {
1950        DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS);
1951};
1952
1953/**
1954 * struct hl_state_dump_specs_funcs - virtual functions used by the state dump
1955 * @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine
1956 * @print_single_monitor: format monitor data as string
1957 * @monitor_valid: return true if given monitor dump is valid
1958 * @print_fences_single_engine: format fences data as string
1959 */
1960struct hl_state_dump_specs_funcs {
1961        int (*gen_sync_to_engine_map)(struct hl_device *hdev,
1962                                struct hl_sync_to_engine_map *map);
1963        int (*print_single_monitor)(char **buf, size_t *size, size_t *offset,
1964                                    struct hl_device *hdev,
1965                                    struct hl_mon_state_dump *mon);
1966        int (*monitor_valid)(struct hl_mon_state_dump *mon);
1967        int (*print_fences_single_engine)(struct hl_device *hdev,
1968                                        u64 base_offset,
1969                                        u64 status_base_offset,
1970                                        enum hl_sync_engine_type engine_type,
1971                                        u32 engine_id, char **buf,
1972                                        size_t *size, size_t *offset);
1973};
1974
1975/**
1976 * struct hl_state_dump_specs - defines ASIC known hw objects names
1977 * @so_id_to_str_tb: sync objects names index table
1978 * @monitor_id_to_str_tb: monitors names index table
1979 * @funcs: virtual functions used for state dump
1980 * @sync_namager_names: readable names for sync manager if available (ex: N_E)
1981 * @props: pointer to a per asic const props array required for state dump
1982 */
1983struct hl_state_dump_specs {
1984        DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
1985        DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
1986        struct hl_state_dump_specs_funcs        funcs;
1987        const char * const                      *sync_namager_names;
1988        s64                                     *props;
1989};
1990
1991
1992/*
1993 * DEVICES
1994 */
1995
1996#define HL_STR_MAX      32
1997
1998#define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1)
1999
2000/* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
2001 * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards.
2002 */
2003#define HL_MAX_MINORS   256
2004
2005/*
2006 * Registers read & write functions.
2007 */
2008
2009u32 hl_rreg(struct hl_device *hdev, u32 reg);
2010void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
2011
2012#define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
2013#define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
2014#define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n",    \
2015                        hdev->asic_funcs->rreg(hdev, (reg)))
2016
2017#define WREG32_P(reg, val, mask)                                \
2018        do {                                                    \
2019                u32 tmp_ = RREG32(reg);                         \
2020                tmp_ &= (mask);                                 \
2021                tmp_ |= ((val) & ~(mask));                      \
2022                WREG32(reg, tmp_);                              \
2023        } while (0)
2024#define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
2025#define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))
2026
2027#define RMWREG32(reg, val, mask)                                \
2028        do {                                                    \
2029                u32 tmp_ = RREG32(reg);                         \
2030                tmp_ &= ~(mask);                                \
2031                tmp_ |= ((val) << __ffs(mask));                 \
2032                WREG32(reg, tmp_);                              \
2033        } while (0)
2034
2035#define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask))
2036
2037#define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
2038#define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
2039#define WREG32_FIELD(reg, offset, field, val)   \
2040        WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \
2041                                ~REG_FIELD_MASK(reg, field)) | \
2042                                (val) << REG_FIELD_SHIFT(reg, field))
2043
2044/* Timeout should be longer when working with simulator but cap the
2045 * increased timeout to some maximum
2046 */
2047#define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
2048({ \
2049        ktime_t __timeout; \
2050        if (hdev->pdev) \
2051                __timeout = ktime_add_us(ktime_get(), timeout_us); \
2052        else \
2053                __timeout = ktime_add_us(ktime_get(),\
2054                                min((u64)(timeout_us * 10), \
2055                                        (u64) HL_SIM_MAX_TIMEOUT_US)); \
2056        might_sleep_if(sleep_us); \
2057        for (;;) { \
2058                (val) = RREG32(addr); \
2059                if (cond) \
2060                        break; \
2061                if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2062                        (val) = RREG32(addr); \
2063                        break; \
2064                } \
2065                if (sleep_us) \
2066                        usleep_range((sleep_us >> 2) + 1, sleep_us); \
2067        } \
2068        (cond) ? 0 : -ETIMEDOUT; \
2069})
2070
2071/*
2072 * address in this macro points always to a memory location in the
2073 * host's (server's) memory. That location is updated asynchronously
2074 * either by the direct access of the device or by another core.
2075 *
2076 * To work both in LE and BE architectures, we need to distinguish between the
2077 * two states (device or another core updates the memory location). Therefore,
2078 * if mem_written_by_device is true, the host memory being polled will be
2079 * updated directly by the device. If false, the host memory being polled will
2080 * be updated by host CPU. Required so host knows whether or not the memory
2081 * might need to be byte-swapped before returning value to caller.
2082 */
2083#define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \
2084                                mem_written_by_device) \
2085({ \
2086        ktime_t __timeout; \
2087        if (hdev->pdev) \
2088                __timeout = ktime_add_us(ktime_get(), timeout_us); \
2089        else \
2090                __timeout = ktime_add_us(ktime_get(),\
2091                                min((u64)(timeout_us * 10), \
2092                                        (u64) HL_SIM_MAX_TIMEOUT_US)); \
2093        might_sleep_if(sleep_us); \
2094        for (;;) { \
2095                /* Verify we read updates done by other cores or by device */ \
2096                mb(); \
2097                (val) = *((u32 *)(addr)); \
2098                if (mem_written_by_device) \
2099                        (val) = le32_to_cpu(*(__le32 *) &(val)); \
2100                if (cond) \
2101                        break; \
2102                if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2103                        (val) = *((u32 *)(addr)); \
2104                        if (mem_written_by_device) \
2105                                (val) = le32_to_cpu(*(__le32 *) &(val)); \
2106                        break; \
2107                } \
2108                if (sleep_us) \
2109                        usleep_range((sleep_us >> 2) + 1, sleep_us); \
2110        } \
2111        (cond) ? 0 : -ETIMEDOUT; \
2112})
2113
2114#define hl_poll_timeout_device_memory(hdev, addr, val, cond, sleep_us, \
2115                                        timeout_us) \
2116({ \
2117        ktime_t __timeout; \
2118        if (hdev->pdev) \
2119                __timeout = ktime_add_us(ktime_get(), timeout_us); \
2120        else \
2121                __timeout = ktime_add_us(ktime_get(),\
2122                                min((u64)(timeout_us * 10), \
2123                                        (u64) HL_SIM_MAX_TIMEOUT_US)); \
2124        might_sleep_if(sleep_us); \
2125        for (;;) { \
2126                (val) = readl(addr); \
2127                if (cond) \
2128                        break; \
2129                if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2130                        (val) = readl(addr); \
2131                        break; \
2132                } \
2133                if (sleep_us) \
2134                        usleep_range((sleep_us >> 2) + 1, sleep_us); \
2135        } \
2136        (cond) ? 0 : -ETIMEDOUT; \
2137})
2138
2139struct hwmon_chip_info;
2140
2141/**
2142 * struct hl_device_reset_work - reset workqueue task wrapper.
2143 * @wq: work queue for device reset procedure.
2144 * @reset_work: reset work to be done.
2145 * @hdev: habanalabs device structure.
2146 * @fw_reset: whether f/w will do the reset without us sending them a message to do it.
2147 */
2148struct hl_device_reset_work {
2149        struct workqueue_struct         *wq;
2150        struct delayed_work             reset_work;
2151        struct hl_device                *hdev;
2152        bool                            fw_reset;
2153};
2154
2155/**
2156 * struct hr_mmu_hop_addrs - used for holding per-device host-resident mmu hop
2157 * information.
2158 * @virt_addr: the virtual address of the hop.
2159 * @phys-addr: the physical address of the hop (used by the device-mmu).
2160 * @shadow_addr: The shadow of the hop used by the driver for walking the hops.
2161 */
2162struct hr_mmu_hop_addrs {
2163        u64 virt_addr;
2164        u64 phys_addr;
2165        u64 shadow_addr;
2166};
2167
2168/**
2169 * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident
2170 * page-table internal information.
2171 * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
2172 * @mmu_shadow_hop0: shadow array of hop0 tables.
2173 */
2174struct hl_mmu_hr_priv {
2175        struct gen_pool *mmu_pgt_pool;
2176        struct hr_mmu_hop_addrs *mmu_shadow_hop0;
2177};
2178
2179/**
2180 * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident
2181 * page-table internal information.
2182 * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
2183 * @mmu_shadow_hop0: shadow array of hop0 tables.
2184 */
2185struct hl_mmu_dr_priv {
2186        struct gen_pool *mmu_pgt_pool;
2187        void *mmu_shadow_hop0;
2188};
2189
2190/**
2191 * struct hl_mmu_priv - used for holding per-device mmu internal information.
2192 * @dr: information on the device-resident MMU, when exists.
2193 * @hr: information on the host-resident MMU, when exists.
2194 */
2195struct hl_mmu_priv {
2196        struct hl_mmu_dr_priv dr;
2197        struct hl_mmu_hr_priv hr;
2198};
2199
2200/**
2201 * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry
2202 *                that was created in order to translate a virtual address to a
2203 *                physical one.
2204 * @hop_addr: The address of the hop.
2205 * @hop_pte_addr: The address of the hop entry.
2206 * @hop_pte_val: The value in the hop entry.
2207 */
2208struct hl_mmu_per_hop_info {
2209        u64 hop_addr;
2210        u64 hop_pte_addr;
2211        u64 hop_pte_val;
2212};
2213
2214/**
2215 * struct hl_mmu_hop_info - A structure describing the TLB hops and their
2216 * hop-entries that were created in order to translate a virtual address to a
2217 * physical one.
2218 * @scrambled_vaddr: The value of the virtual address after scrambling. This
2219 *                   address replaces the original virtual-address when mapped
2220 *                   in the MMU tables.
2221 * @unscrambled_paddr: The un-scrambled physical address.
2222 * @hop_info: Array holding the per-hop information used for the translation.
2223 * @used_hops: The number of hops used for the translation.
2224 * @range_type: virtual address range type.
2225 */
2226struct hl_mmu_hop_info {
2227        u64 scrambled_vaddr;
2228        u64 unscrambled_paddr;
2229        struct hl_mmu_per_hop_info hop_info[MMU_ARCH_5_HOPS];
2230        u32 used_hops;
2231        enum hl_va_range_type range_type;
2232};
2233
2234/**
2235 * struct hl_mmu_funcs - Device related MMU functions.
2236 * @init: initialize the MMU module.
2237 * @fini: release the MMU module.
2238 * @ctx_init: Initialize a context for using the MMU module.
2239 * @ctx_fini: disable a ctx from using the mmu module.
2240 * @map: maps a virtual address to physical address for a context.
2241 * @unmap: unmap a virtual address of a context.
2242 * @flush: flush all writes from all cores to reach device MMU.
2243 * @swap_out: marks all mapping of the given context as swapped out.
2244 * @swap_in: marks all mapping of the given context as swapped in.
2245 * @get_tlb_info: returns the list of hops and hop-entries used that were
2246 *                created in order to translate the giver virtual address to a
2247 *                physical one.
2248 */
2249struct hl_mmu_funcs {
2250        int (*init)(struct hl_device *hdev);
2251        void (*fini)(struct hl_device *hdev);
2252        int (*ctx_init)(struct hl_ctx *ctx);
2253        void (*ctx_fini)(struct hl_ctx *ctx);
2254        int (*map)(struct hl_ctx *ctx,
2255                        u64 virt_addr, u64 phys_addr, u32 page_size,
2256                        bool is_dram_addr);
2257        int (*unmap)(struct hl_ctx *ctx,
2258                        u64 virt_addr, bool is_dram_addr);
2259        void (*flush)(struct hl_ctx *ctx);
2260        void (*swap_out)(struct hl_ctx *ctx);
2261        void (*swap_in)(struct hl_ctx *ctx);
2262        int (*get_tlb_info)(struct hl_ctx *ctx,
2263                        u64 virt_addr, struct hl_mmu_hop_info *hops);
2264};
2265
2266/**
2267 * number of user contexts allowed to call wait_for_multi_cs ioctl in
2268 * parallel
2269 */
2270#define MULTI_CS_MAX_USER_CTX   2
2271
2272/**
2273 * struct multi_cs_completion - multi CS wait completion.
2274 * @completion: completion of any of the CS in the list
2275 * @lock: spinlock for the completion structure
2276 * @timestamp: timestamp for the multi-CS completion
2277 * @stream_master_qid_map: bitmap of all stream masters on which the multi-CS
2278 *                        is waiting
2279 * @used: 1 if in use, otherwise 0
2280 */
2281struct multi_cs_completion {
2282        struct completion       completion;
2283        spinlock_t              lock;
2284        s64                     timestamp;
2285        u32                     stream_master_qid_map;
2286        u8                      used;
2287};
2288
2289/**
2290 * struct multi_cs_data - internal data for multi CS call
2291 * @ctx: pointer to the context structure
2292 * @fence_arr: array of fences of all CSs
2293 * @seq_arr: array of CS sequence numbers
2294 * @timeout_us: timeout in usec for waiting for CS to complete
2295 * @timestamp: timestamp of first completed CS
2296 * @wait_status: wait for CS status
2297 * @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0)
2298 * @stream_master_qid_map: bitmap of all stream master QIDs on which the
2299 *                         multi-CS is waiting
2300 * @arr_len: fence_arr and seq_arr array length
2301 * @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0)
2302 * @update_ts: update timestamp. 1- update the timestamp, otherwise 0.
2303 */
2304struct multi_cs_data {
2305        struct hl_ctx   *ctx;
2306        struct hl_fence **fence_arr;
2307        u64             *seq_arr;
2308        s64             timeout_us;
2309        s64             timestamp;
2310        long            wait_status;
2311        u32             completion_bitmap;
2312        u32             stream_master_qid_map;
2313        u8              arr_len;
2314        u8              gone_cs;
2315        u8              update_ts;
2316};
2317
2318/**
2319 * struct hl_device - habanalabs device structure.
2320 * @pdev: pointer to PCI device, can be NULL in case of simulator device.
2321 * @pcie_bar_phys: array of available PCIe bars physical addresses.
2322 *                 (required only for PCI address match mode)
2323 * @pcie_bar: array of available PCIe bars virtual addresses.
2324 * @rmmio: configuration area address on SRAM.
2325 * @cdev: related char device.
2326 * @cdev_ctrl: char device for control operations only (INFO IOCTL)
2327 * @dev: related kernel basic device structure.
2328 * @dev_ctrl: related kernel device structure for the control device
2329 * @work_freq: delayed work to lower device frequency if possible.
2330 * @work_heartbeat: delayed work for CPU-CP is-alive check.
2331 * @device_reset_work: delayed work which performs hard reset
2332 * @asic_name: ASIC specific name.
2333 * @asic_type: ASIC specific type.
2334 * @completion_queue: array of hl_cq.
2335 * @user_interrupt: array of hl_user_interrupt. upon the corresponding user
2336 *                  interrupt, driver will monitor the list of fences
2337 *                  registered to this interrupt.
2338 * @common_user_interrupt: common user interrupt for all user interrupts.
2339 *                         upon any user interrupt, driver will monitor the
2340 *                         list of fences registered to this common structure.
2341 * @cq_wq: work queues of completion queues for executing work in process
2342 *         context.
2343 * @eq_wq: work queue of event queue for executing work in process context.
2344 * @sob_reset_wq: work queue for sob reset executions.
2345 * @kernel_ctx: Kernel driver context structure.
2346 * @kernel_queues: array of hl_hw_queue.
2347 * @cs_mirror_list: CS mirror list for TDR.
2348 * @cs_mirror_lock: protects cs_mirror_list.
2349 * @kernel_cb_mgr: command buffer manager for creating/destroying/handling CBs.
2350 * @event_queue: event queue for IRQ from CPU-CP.
2351 * @dma_pool: DMA pool for small allocations.
2352 * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address.
2353 * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address.
2354 * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool.
2355 * @asid_bitmap: holds used/available ASIDs.
2356 * @asid_mutex: protects asid_bitmap.
2357 * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue.
2358 * @debug_lock: protects critical section of setting debug mode for device
2359 * @asic_prop: ASIC specific immutable properties.
2360 * @asic_funcs: ASIC specific functions.
2361 * @asic_specific: ASIC specific information to use only from ASIC files.
2362 * @vm: virtual memory manager for MMU.
2363 * @hwmon_dev: H/W monitor device.
2364 * @pm_mng_profile: current power management profile.
2365 * @hl_chip_info: ASIC's sensors information.
2366 * @device_status_description: device status description.
2367 * @hl_debugfs: device's debugfs manager.
2368 * @cb_pool: list of preallocated CBs.
2369 * @cb_pool_lock: protects the CB pool.
2370 * @internal_cb_pool_virt_addr: internal command buffer pool virtual address.
2371 * @internal_cb_pool_dma_addr: internal command buffer pool dma address.
2372 * @internal_cb_pool: internal command buffer memory pool.
2373 * @internal_cb_va_base: internal cb pool mmu virtual address base
2374 * @fpriv_list: list of file private data structures. Each structure is created
2375 *              when a user opens the device
2376 * @fpriv_list_lock: protects the fpriv_list
2377 * @compute_ctx: current compute context executing.
2378 * @aggregated_cs_counters: aggregated cs counters among all contexts
2379 * @mmu_priv: device-specific MMU data.
2380 * @mmu_func: device-related MMU functions.
2381 * @fw_loader: FW loader manager.
2382 * @pci_mem_region: array of memory regions in the PCI
2383 * @state_dump_specs: constants and dictionaries needed to dump system state.
2384 * @multi_cs_completion: array of multi-CS completion.
2385 * @dram_used_mem: current DRAM memory consumption.
2386 * @timeout_jiffies: device CS timeout value.
2387 * @max_power: the max power of the device, as configured by the sysadmin. This
2388 *             value is saved so in case of hard-reset, the driver will restore
2389 *             this value and update the F/W after the re-initialization
2390 * @clock_gating_mask: is clock gating enabled. bitmask that represents the
2391 *                     different engines. See debugfs-driver-habanalabs for
2392 *                     details.
2393 * @boot_error_status_mask: contains a mask of the device boot error status.
2394 *                          Each bit represents a different error, according to
2395 *                          the defines in hl_boot_if.h. If the bit is cleared,
2396 *                          the error will be ignored by the driver during
2397 *                          device initialization. Mainly used to debug and
2398 *                          workaround firmware bugs
2399 * @last_successful_open_jif: timestamp (jiffies) of the last successful
2400 *                            device open.
2401 * @last_open_session_duration_jif: duration (jiffies) of the last device open
2402 *                                  session.
2403 * @open_counter: number of successful device open operations.
2404 * @in_reset: is device in reset flow.
2405 * @curr_pll_profile: current PLL profile.
2406 * @card_type: Various ASICs have several card types. This indicates the card
2407 *             type of the current device.
2408 * @major: habanalabs kernel driver major.
2409 * @high_pll: high PLL profile frequency.
2410 * @soft_reset_cnt: number of soft reset since the driver was loaded.
2411 * @hard_reset_cnt: number of hard reset since the driver was loaded.
2412 * @clk_throttling_reason: bitmask represents the current clk throttling reasons
2413 * @id: device minor.
2414 * @id_control: minor of the control device
2415 * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit
2416 *                    addresses.
2417 * @disabled: is device disabled.
2418 * @late_init_done: is late init stage was done during initialization.
2419 * @hwmon_initialized: is H/W monitor sensors was initialized.
2420 * @hard_reset_pending: is there a hard reset work pending.
2421 * @heartbeat: is heartbeat sanity check towards CPU-CP enabled.
2422 * @reset_on_lockup: true if a reset should be done in case of stuck CS, false
2423 *                   otherwise.
2424 * @dram_default_page_mapping: is DRAM default page mapping enabled.
2425 * @memory_scrub: true to perform device memory scrub in various locations,
2426 *                such as context-switch, context close, page free, etc.
2427 * @pmmu_huge_range: is a different virtual addresses range used for PMMU with
2428 *                   huge pages.
2429 * @init_done: is the initialization of the device done.
2430 * @device_cpu_disabled: is the device CPU disabled (due to timeouts)
2431 * @dma_mask: the dma mask that was set for this device
2432 * @in_debug: is device under debug. This, together with fpriv_list, enforces
2433 *            that only a single user is configuring the debug infrastructure.
2434 * @power9_64bit_dma_enable: true to enable 64-bit DMA mask support. Relevant
2435 *                           only to POWER9 machines.
2436 * @cdev_sysfs_created: were char devices and sysfs nodes created.
2437 * @stop_on_err: true if engines should stop on error.
2438 * @supports_sync_stream: is sync stream supported.
2439 * @sync_stream_queue_idx: helper index for sync stream queues initialization.
2440 * @collective_mon_idx: helper index for collective initialization
2441 * @supports_coresight: is CoreSight supported.
2442 * @supports_soft_reset: is soft reset supported.
2443 * @allow_external_soft_reset: true if soft reset initiated by user or TDR is
2444 *                             allowed.
2445 * @supports_cb_mapping: is mapping a CB to the device's MMU supported.
2446 * @needs_reset: true if reset_on_lockup is false and device should be reset
2447 *               due to lockup.
2448 * @process_kill_trial_cnt: number of trials reset thread tried killing
2449 *                          user processes
2450 * @device_fini_pending: true if device_fini was called and might be
2451 *                       waiting for the reset thread to finish
2452 * @supports_staged_submission: true if staged submissions are supported
2453 * @curr_reset_cause: saves an enumerated reset cause when a hard reset is
2454 *                    triggered, and cleared after it is shared with preboot.
2455 * @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to
2456 *                         complete instead.
2457 * @device_cpu_is_halted: Flag to indicate whether the device CPU was already
2458 *                        halted. We can't halt it again because the COMMS
2459 *                        protocol will throw an error. Relevant only for
2460 *                        cases where Linux was not loaded to device CPU
2461 * @supports_wait_for_multi_cs: true if wait for multi CS is supported
2462 */
2463struct hl_device {
2464        struct pci_dev                  *pdev;
2465        u64                             pcie_bar_phys[HL_PCI_NUM_BARS];
2466        void __iomem                    *pcie_bar[HL_PCI_NUM_BARS];
2467        void __iomem                    *rmmio;
2468        struct cdev                     cdev;
2469        struct cdev                     cdev_ctrl;
2470        struct device                   *dev;
2471        struct device                   *dev_ctrl;
2472        struct delayed_work             work_freq;
2473        struct delayed_work             work_heartbeat;
2474        struct hl_device_reset_work     device_reset_work;
2475        char                            asic_name[HL_STR_MAX];
2476        char                            status[HL_DEV_STS_MAX][HL_STR_MAX];
2477        enum hl_asic_type               asic_type;
2478        struct hl_cq                    *completion_queue;
2479        struct hl_user_interrupt        *user_interrupt;
2480        struct hl_user_interrupt        common_user_interrupt;
2481        struct workqueue_struct         **cq_wq;
2482        struct workqueue_struct         *eq_wq;
2483        struct workqueue_struct         *sob_reset_wq;
2484        struct hl_ctx                   *kernel_ctx;
2485        struct hl_hw_queue              *kernel_queues;
2486        struct list_head                cs_mirror_list;
2487        spinlock_t                      cs_mirror_lock;
2488        struct hl_cb_mgr                kernel_cb_mgr;
2489        struct hl_eq                    event_queue;
2490        struct dma_pool                 *dma_pool;
2491        void                            *cpu_accessible_dma_mem;
2492        dma_addr_t                      cpu_accessible_dma_address;
2493        struct gen_pool                 *cpu_accessible_dma_pool;
2494        unsigned long                   *asid_bitmap;
2495        struct mutex                    asid_mutex;
2496        struct mutex                    send_cpu_message_lock;
2497        struct mutex                    debug_lock;
2498        struct asic_fixed_properties    asic_prop;
2499        const struct hl_asic_funcs      *asic_funcs;
2500        void                            *asic_specific;
2501        struct hl_vm                    vm;
2502        struct device                   *hwmon_dev;
2503        enum hl_pm_mng_profile          pm_mng_profile;
2504        struct hwmon_chip_info          *hl_chip_info;
2505
2506        struct hl_dbg_device_entry      hl_debugfs;
2507
2508        struct list_head                cb_pool;
2509        spinlock_t                      cb_pool_lock;
2510
2511        void                            *internal_cb_pool_virt_addr;
2512        dma_addr_t                      internal_cb_pool_dma_addr;
2513        struct gen_pool                 *internal_cb_pool;
2514        u64                             internal_cb_va_base;
2515
2516        struct list_head                fpriv_list;
2517        struct mutex                    fpriv_list_lock;
2518
2519        struct hl_ctx                   *compute_ctx;
2520
2521        struct hl_cs_counters_atomic    aggregated_cs_counters;
2522
2523        struct hl_mmu_priv              mmu_priv;
2524        struct hl_mmu_funcs             mmu_func[MMU_NUM_PGT_LOCATIONS];
2525
2526        struct fw_load_mgr              fw_loader;
2527
2528        struct pci_mem_region           pci_mem_region[PCI_REGION_NUMBER];
2529
2530        struct hl_state_dump_specs      state_dump_specs;
2531
2532        struct multi_cs_completion      multi_cs_completion[
2533                                                        MULTI_CS_MAX_USER_CTX];
2534        u32                             *stream_master_qid_arr;
2535        atomic64_t                      dram_used_mem;
2536        u64                             timeout_jiffies;
2537        u64                             max_power;
2538        u64                             clock_gating_mask;
2539        u64                             boot_error_status_mask;
2540        u64                             last_successful_open_jif;
2541        u64                             last_open_session_duration_jif;
2542        u64                             open_counter;
2543        atomic_t                        in_reset;
2544        enum hl_pll_frequency           curr_pll_profile;
2545        enum cpucp_card_types           card_type;
2546        u32                             major;
2547        u32                             high_pll;
2548        u32                             soft_reset_cnt;
2549        u32                             hard_reset_cnt;
2550        u32                             clk_throttling_reason;
2551        u16                             id;
2552        u16                             id_control;
2553        u16                             cpu_pci_msb_addr;
2554        u8                              disabled;
2555        u8                              late_init_done;
2556        u8                              hwmon_initialized;
2557        u8                              hard_reset_pending;
2558        u8                              heartbeat;
2559        u8                              reset_on_lockup;
2560        u8                              dram_default_page_mapping;
2561        u8                              memory_scrub;
2562        u8                              pmmu_huge_range;
2563        u8                              init_done;
2564        u8                              device_cpu_disabled;
2565        u8                              dma_mask;
2566        u8                              in_debug;
2567        u8                              power9_64bit_dma_enable;
2568        u8                              cdev_sysfs_created;
2569        u8                              stop_on_err;
2570        u8                              supports_sync_stream;
2571        u8                              sync_stream_queue_idx;
2572        u8                              collective_mon_idx;
2573        u8                              supports_coresight;
2574        u8                              supports_soft_reset;
2575        u8                              allow_external_soft_reset;
2576        u8                              supports_cb_mapping;
2577        u8                              needs_reset;
2578        u8                              process_kill_trial_cnt;
2579        u8                              device_fini_pending;
2580        u8                              supports_staged_submission;
2581        u8                              curr_reset_cause;
2582        u8                              skip_reset_on_timeout;
2583        u8                              device_cpu_is_halted;
2584        u8                              supports_wait_for_multi_cs;
2585        u8                              stream_master_qid_arr_size;
2586
2587        /* Parameters for bring-up */
2588        u64                             nic_ports_mask;
2589        u64                             fw_components;
2590        u8                              mmu_enable;
2591        u8                              mmu_huge_page_opt;
2592        u8                              reset_pcilink;
2593        u8                              cpu_queues_enable;
2594        u8                              pldm;
2595        u8                              axi_drain;
2596        u8                              sram_scrambler_enable;
2597        u8                              dram_scrambler_enable;
2598        u8                              hard_reset_on_fw_events;
2599        u8                              bmc_enable;
2600        u8                              rl_enable;
2601        u8                              reset_on_preboot_fail;
2602        u8                              reset_upon_device_release;
2603        u8                              reset_if_device_not_idle;
2604};
2605
2606
2607/**
2608 * struct hl_cs_encaps_sig_handle - encapsulated signals handle structure
2609 * @refcount: refcount used to protect removing this id when several
2610 *            wait cs are used to wait of the reserved encaps signals.
2611 * @hdev: pointer to habanalabs device structure.
2612 * @hw_sob: pointer to  H/W SOB used in the reservation.
2613 * @cs_seq: staged cs sequence which contains encapsulated signals
2614 * @id: idr handler id to be used to fetch the handler info
2615 * @q_idx: stream queue index
2616 * @pre_sob_val: current SOB value before reservation
2617 * @count: signals number
2618 */
2619struct hl_cs_encaps_sig_handle {
2620        struct kref refcount;
2621        struct hl_device *hdev;
2622        struct hl_hw_sob *hw_sob;
2623        u64  cs_seq;
2624        u32  id;
2625        u32  q_idx;
2626        u32  pre_sob_val;
2627        u32  count;
2628};
2629
2630/*
2631 * IOCTLs
2632 */
2633
2634/**
2635 * typedef hl_ioctl_t - typedef for ioctl function in the driver
2636 * @hpriv: pointer to the FD's private data, which contains state of
2637 *              user process
2638 * @data: pointer to the input/output arguments structure of the IOCTL
2639 *
2640 * Return: 0 for success, negative value for error
2641 */
2642typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);
2643
2644/**
2645 * struct hl_ioctl_desc - describes an IOCTL entry of the driver.
2646 * @cmd: the IOCTL code as created by the kernel macros.
2647 * @func: pointer to the driver's function that should be called for this IOCTL.
2648 */
2649struct hl_ioctl_desc {
2650        unsigned int cmd;
2651        hl_ioctl_t *func;
2652};
2653
2654
2655/*
2656 * Kernel module functions that can be accessed by entire module
2657 */
2658
2659/**
2660 * hl_get_sg_info() - get number of pages and the DMA address from SG list.
2661 * @sg: the SG list.
2662 * @dma_addr: pointer to DMA address to return.
2663 *
2664 * Calculate the number of consecutive pages described by the SG list. Take the
2665 * offset of the address in the first page, add to it the length and round it up
2666 * to the number of needed pages.
2667 */
2668static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
2669{
2670        *dma_addr = sg_dma_address(sg);
2671
2672        return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
2673                        (PAGE_SIZE - 1)) >> PAGE_SHIFT;
2674}
2675
2676/**
2677 * hl_mem_area_inside_range() - Checks whether address+size are inside a range.
2678 * @address: The start address of the area we want to validate.
2679 * @size: The size in bytes of the area we want to validate.
2680 * @range_start_address: The start address of the valid range.
2681 * @range_end_address: The end address of the valid range.
2682 *
2683 * Return: true if the area is inside the valid range, false otherwise.
2684 */
2685static inline bool hl_mem_area_inside_range(u64 address, u64 size,
2686                                u64 range_start_address, u64 range_end_address)
2687{
2688        u64 end_address = address + size;
2689
2690        if ((address >= range_start_address) &&
2691                        (end_address <= range_end_address) &&
2692                        (end_address > address))
2693                return true;
2694
2695        return false;
2696}
2697
2698/**
2699 * hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
2700 * @address: The start address of the area we want to validate.
2701 * @size: The size in bytes of the area we want to validate.
2702 * @range_start_address: The start address of the valid range.
2703 * @range_end_address: The end address of the valid range.
2704 *
2705 * Return: true if the area overlaps part or all of the valid range,
2706 *              false otherwise.
2707 */
2708static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
2709                                u64 range_start_address, u64 range_end_address)
2710{
2711        u64 end_address = address + size;
2712
2713        if ((address >= range_start_address) &&
2714                        (address < range_end_address))
2715                return true;
2716
2717        if ((end_address >= range_start_address) &&
2718                        (end_address < range_end_address))
2719                return true;
2720
2721        if ((address < range_start_address) &&
2722                        (end_address >= range_end_address))
2723                return true;
2724
2725        return false;
2726}
2727
2728int hl_device_open(struct inode *inode, struct file *filp);
2729int hl_device_open_ctrl(struct inode *inode, struct file *filp);
2730bool hl_device_operational(struct hl_device *hdev,
2731                enum hl_device_status *status);
2732enum hl_device_status hl_device_status(struct hl_device *hdev);
2733int hl_device_set_debug_mode(struct hl_device *hdev, bool enable);
2734int create_hdev(struct hl_device **dev, struct pci_dev *pdev,
2735                enum hl_asic_type asic_type, int minor);
2736void destroy_hdev(struct hl_device *hdev);
2737int hl_hw_queues_create(struct hl_device *hdev);
2738void hl_hw_queues_destroy(struct hl_device *hdev);
2739int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
2740                u32 cb_size, u64 cb_ptr);
2741void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
2742                u32 ctl, u32 len, u64 ptr);
2743int hl_hw_queue_schedule_cs(struct hl_cs *cs);
2744u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
2745void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
2746void hl_hw_queue_update_ci(struct hl_cs *cs);
2747void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);
2748
2749#define hl_queue_inc_ptr(p)             hl_hw_queue_add_ptr(p, 1)
2750#define hl_pi_2_offset(pi)              ((pi) & (HL_QUEUE_LENGTH - 1))
2751
2752int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
2753void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
2754int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
2755void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
2756void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
2757void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
2758irqreturn_t hl_irq_handler_cq(int irq, void *arg);
2759irqreturn_t hl_irq_handler_eq(int irq, void *arg);
2760irqreturn_t hl_irq_handler_user_cq(int irq, void *arg);
2761irqreturn_t hl_irq_handler_default(int irq, void *arg);
2762u32 hl_cq_inc_ptr(u32 ptr);
2763
2764int hl_asid_init(struct hl_device *hdev);
2765void hl_asid_fini(struct hl_device *hdev);
2766unsigned long hl_asid_alloc(struct hl_device *hdev);
2767void hl_asid_free(struct hl_device *hdev, unsigned long asid);
2768
2769int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
2770void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
2771int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
2772void hl_ctx_do_release(struct kref *ref);
2773void hl_ctx_get(struct hl_device *hdev, struct hl_ctx *ctx);
2774int hl_ctx_put(struct hl_ctx *ctx);
2775struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
2776int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr,
2777                                struct hl_fence **fence, u32 arr_len);
2778void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
2779void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);
2780
2781int hl_device_init(struct hl_device *hdev, struct class *hclass);
2782void hl_device_fini(struct hl_device *hdev);
2783int hl_device_suspend(struct hl_device *hdev);
2784int hl_device_resume(struct hl_device *hdev);
2785int hl_device_reset(struct hl_device *hdev, u32 flags);
2786void hl_hpriv_get(struct hl_fpriv *hpriv);
2787int hl_hpriv_put(struct hl_fpriv *hpriv);
2788int hl_device_set_frequency(struct hl_device *hdev, enum hl_pll_frequency freq);
2789int hl_device_utilization(struct hl_device *hdev, u32 *utilization);
2790
2791int hl_build_hwmon_channel_info(struct hl_device *hdev,
2792                struct cpucp_sensor *sensors_arr);
2793
2794int hl_sysfs_init(struct hl_device *hdev);
2795void hl_sysfs_fini(struct hl_device *hdev);
2796
2797int hl_hwmon_init(struct hl_device *hdev);
2798void hl_hwmon_fini(struct hl_device *hdev);
2799
2800int hl_cb_create(struct hl_device *hdev, struct hl_cb_mgr *mgr,
2801                        struct hl_ctx *ctx, u32 cb_size, bool internal_cb,
2802                        bool map_cb, u64 *handle);
2803int hl_cb_destroy(struct hl_device *hdev, struct hl_cb_mgr *mgr, u64 cb_handle);
2804int hl_cb_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
2805int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
2806struct hl_cb *hl_cb_get(struct hl_device *hdev, struct hl_cb_mgr *mgr,
2807                        u32 handle);
2808void hl_cb_put(struct hl_cb *cb);
2809void hl_cb_mgr_init(struct hl_cb_mgr *mgr);
2810void hl_cb_mgr_fini(struct hl_device *hdev, struct hl_cb_mgr *mgr);
2811struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
2812                                        bool internal_cb);
2813int hl_cb_pool_init(struct hl_device *hdev);
2814int hl_cb_pool_fini(struct hl_device *hdev);
2815int hl_cb_va_pool_init(struct hl_ctx *ctx);
2816void hl_cb_va_pool_fini(struct hl_ctx *ctx);
2817
2818void hl_cs_rollback_all(struct hl_device *hdev);
2819struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
2820                enum hl_queue_type queue_type, bool is_kernel_allocated_cb);
2821void hl_sob_reset_error(struct kref *ref);
2822int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask);
2823void hl_fence_put(struct hl_fence *fence);
2824void hl_fences_put(struct hl_fence **fence, int len);
2825void hl_fence_get(struct hl_fence *fence);
2826void cs_get(struct hl_cs *cs);
2827bool cs_needs_completion(struct hl_cs *cs);
2828bool cs_needs_timeout(struct hl_cs *cs);
2829bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs);
2830struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq);
2831void hl_multi_cs_completion_init(struct hl_device *hdev);
2832
2833void goya_set_asic_funcs(struct hl_device *hdev);
2834void gaudi_set_asic_funcs(struct hl_device *hdev);
2835
2836int hl_vm_ctx_init(struct hl_ctx *ctx);
2837void hl_vm_ctx_fini(struct hl_ctx *ctx);
2838
2839int hl_vm_init(struct hl_device *hdev);
2840void hl_vm_fini(struct hl_device *hdev);
2841
2842void hl_hw_block_mem_init(struct hl_ctx *ctx);
2843void hl_hw_block_mem_fini(struct hl_ctx *ctx);
2844
2845u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
2846                enum hl_va_range_type type, u32 size, u32 alignment);
2847int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
2848                u64 start_addr, u64 size);
2849int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
2850                        struct hl_userptr *userptr);
2851void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
2852void hl_userptr_delete_list(struct hl_device *hdev,
2853                                struct list_head *userptr_list);
2854bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
2855                                struct list_head *userptr_list,
2856                                struct hl_userptr **userptr);
2857
2858int hl_mmu_init(struct hl_device *hdev);
2859void hl_mmu_fini(struct hl_device *hdev);
2860int hl_mmu_ctx_init(struct hl_ctx *ctx);
2861void hl_mmu_ctx_fini(struct hl_ctx *ctx);
2862int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
2863                u32 page_size, bool flush_pte);
2864int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
2865                bool flush_pte);
2866int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
2867                                        u64 phys_addr, u32 size);
2868int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size);
2869void hl_mmu_swap_out(struct hl_ctx *ctx);
2870void hl_mmu_swap_in(struct hl_ctx *ctx);
2871int hl_mmu_if_set_funcs(struct hl_device *hdev);
2872void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
2873int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr);
2874int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
2875                        struct hl_mmu_hop_info *hops);
2876u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr);
2877u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr);
2878bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr);
2879
2880int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
2881                                void __iomem *dst, u32 src_offset, u32 size);
2882int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode);
2883int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
2884                                u16 len, u32 timeout, u64 *result);
2885int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type);
2886int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
2887                size_t irq_arr_size);
2888int hl_fw_test_cpu_queue(struct hl_device *hdev);
2889void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
2890                                                dma_addr_t *dma_handle);
2891void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
2892                                        void *vaddr);
2893int hl_fw_send_heartbeat(struct hl_device *hdev);
2894int hl_fw_cpucp_info_get(struct hl_device *hdev,
2895                                u32 sts_boot_dev_sts0_reg,
2896                                u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
2897                                u32 boot_err1_reg);
2898int hl_fw_cpucp_handshake(struct hl_device *hdev,
2899                                u32 sts_boot_dev_sts0_reg,
2900                                u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
2901                                u32 boot_err1_reg);
2902int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
2903int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
2904                struct hl_info_pci_counters *counters);
2905int hl_fw_cpucp_total_energy_get(struct hl_device *hdev,
2906                        u64 *total_energy);
2907int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index,
2908                                                enum pll_index *pll_index);
2909int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index,
2910                u16 *pll_freq_arr);
2911int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power);
2912void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev);
2913void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev);
2914int hl_fw_init_cpu(struct hl_device *hdev);
2915int hl_fw_read_preboot_status(struct hl_device *hdev, u32 cpu_boot_status_reg,
2916                                u32 sts_boot_dev_sts0_reg,
2917                                u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
2918                                u32 boot_err1_reg, u32 timeout);
2919int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev,
2920                                struct fw_load_mgr *fw_loader,
2921                                enum comms_cmd cmd, unsigned int size,
2922                                bool wait_ok, u32 timeout);
2923int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
2924                        bool is_wc[3]);
2925int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data);
2926int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
2927int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region,
2928                struct hl_inbound_pci_region *pci_region);
2929int hl_pci_set_outbound_region(struct hl_device *hdev,
2930                struct hl_outbound_pci_region *pci_region);
2931enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr);
2932int hl_pci_init(struct hl_device *hdev);
2933void hl_pci_fini(struct hl_device *hdev);
2934
2935long hl_get_frequency(struct hl_device *hdev, u32 pll_index,
2936                                                                bool curr);
2937void hl_set_frequency(struct hl_device *hdev, u32 pll_index,
2938                                                                u64 freq);
2939int hl_get_temperature(struct hl_device *hdev,
2940                       int sensor_index, u32 attr, long *value);
2941int hl_set_temperature(struct hl_device *hdev,
2942                       int sensor_index, u32 attr, long value);
2943int hl_get_voltage(struct hl_device *hdev,
2944                   int sensor_index, u32 attr, long *value);
2945int hl_get_current(struct hl_device *hdev,
2946                   int sensor_index, u32 attr, long *value);
2947int hl_get_fan_speed(struct hl_device *hdev,
2948                     int sensor_index, u32 attr, long *value);
2949int hl_get_pwm_info(struct hl_device *hdev,
2950                    int sensor_index, u32 attr, long *value);
2951void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr,
2952                        long value);
2953u64 hl_get_max_power(struct hl_device *hdev);
2954void hl_set_max_power(struct hl_device *hdev);
2955int hl_set_voltage(struct hl_device *hdev,
2956                        int sensor_index, u32 attr, long value);
2957int hl_set_current(struct hl_device *hdev,
2958                        int sensor_index, u32 attr, long value);
2959void hw_sob_get(struct hl_hw_sob *hw_sob);
2960void hw_sob_put(struct hl_hw_sob *hw_sob);
2961void hl_encaps_handle_do_release(struct kref *ref);
2962void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
2963                        struct hl_cs *cs, struct hl_cs_job *job,
2964                        struct hl_cs_compl *cs_cmpl);
2965void hl_release_pending_user_interrupts(struct hl_device *hdev);
2966int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
2967                        struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig);
2968
2969int hl_state_dump(struct hl_device *hdev);
2970const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id);
2971const char *hl_state_dump_get_monitor_name(struct hl_device *hdev,
2972                                        struct hl_mon_state_dump *mon);
2973void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map);
2974__printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset,
2975                                        const char *format, ...);
2976char *hl_format_as_binary(char *buf, size_t buf_len, u32 n);
2977const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type);
2978
2979#ifdef CONFIG_DEBUG_FS
2980
2981void hl_debugfs_init(void);
2982void hl_debugfs_fini(void);
2983void hl_debugfs_add_device(struct hl_device *hdev);
2984void hl_debugfs_remove_device(struct hl_device *hdev);
2985void hl_debugfs_add_file(struct hl_fpriv *hpriv);
2986void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
2987void hl_debugfs_add_cb(struct hl_cb *cb);
2988void hl_debugfs_remove_cb(struct hl_cb *cb);
2989void hl_debugfs_add_cs(struct hl_cs *cs);
2990void hl_debugfs_remove_cs(struct hl_cs *cs);
2991void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
2992void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
2993void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
2994void hl_debugfs_remove_userptr(struct hl_device *hdev,
2995                                struct hl_userptr *userptr);
2996void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
2997void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
2998void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data,
2999                                        unsigned long length);
3000
3001#else
3002
3003static inline void __init hl_debugfs_init(void)
3004{
3005}
3006
3007static inline void hl_debugfs_fini(void)
3008{
3009}
3010
3011static inline void hl_debugfs_add_device(struct hl_device *hdev)
3012{
3013}
3014
3015static inline void hl_debugfs_remove_device(struct hl_device *hdev)
3016{
3017}
3018
3019static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
3020{
3021}
3022
3023static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
3024{
3025}
3026
3027static inline void hl_debugfs_add_cb(struct hl_cb *cb)
3028{
3029}
3030
3031static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
3032{
3033}
3034
3035static inline void hl_debugfs_add_cs(struct hl_cs *cs)
3036{
3037}
3038
3039static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
3040{
3041}
3042
3043static inline void hl_debugfs_add_job(struct hl_device *hdev,
3044                                        struct hl_cs_job *job)
3045{
3046}
3047
3048static inline void hl_debugfs_remove_job(struct hl_device *hdev,
3049                                        struct hl_cs_job *job)
3050{
3051}
3052
3053static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
3054                                        struct hl_userptr *userptr)
3055{
3056}
3057
3058static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
3059                                        struct hl_userptr *userptr)
3060{
3061}
3062
3063static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
3064                                        struct hl_ctx *ctx)
3065{
3066}
3067
3068static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
3069                                        struct hl_ctx *ctx)
3070{
3071}
3072
3073static inline void hl_debugfs_set_state_dump(struct hl_device *hdev,
3074                                        char *data, unsigned long length)
3075{
3076}
3077
3078#endif
3079
3080/* IOCTLs */
3081long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
3082long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg);
3083int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data);
3084int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data);
3085int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data);
3086int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data);
3087
3088#endif /* HABANALABSP_H_ */
3089