linux/drivers/scsi/mpt3sas/mpt3sas_base.c
<<
>>
Prefs
   1/*
   2 * This is the Fusion MPT base driver providing common API layer interface
   3 * for access to MPT (Message Passing Technology) firmware.
   4 *
   5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
   6 * Copyright (C) 2012-2014  LSI Corporation
   7 * Copyright (C) 2013-2014 Avago Technologies
   8 *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version 2
  13 * of the License, or (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * NO WARRANTY
  21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
  22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
  23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
  24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
  25 * solely responsible for determining the appropriateness of using and
  26 * distributing the Program and assumes all risks associated with its
  27 * exercise of rights under this Agreement, including but not limited to
  28 * the risks and costs of program errors, damage to or loss of data,
  29 * programs or equipment, and unavailability or interruption of operations.
  30
  31 * DISCLAIMER OF LIABILITY
  32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
  33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
  35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
  36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
  38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
  39
  40 * You should have received a copy of the GNU General Public License
  41 * along with this program; if not, write to the Free Software
  42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
  43 * USA.
  44 */
  45
  46#include <linux/kernel.h>
  47#include <linux/module.h>
  48#include <linux/errno.h>
  49#include <linux/init.h>
  50#include <linux/slab.h>
  51#include <linux/types.h>
  52#include <linux/pci.h>
  53#include <linux/kdev_t.h>
  54#include <linux/blkdev.h>
  55#include <linux/delay.h>
  56#include <linux/interrupt.h>
  57#include <linux/dma-mapping.h>
  58#include <linux/io.h>
  59#include <linux/time.h>
  60#include <linux/ktime.h>
  61#include <linux/kthread.h>
  62#include <asm/page.h>        /* To get host page size per arch */
  63#include <linux/aer.h>
  64
  65
  66#include "mpt3sas_base.h"
  67
  68static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
  69
  70
  71#define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
  72
  73 /* maximum controller queue depth */
  74#define MAX_HBA_QUEUE_DEPTH     30000
  75#define MAX_CHAIN_DEPTH         100000
  76static int max_queue_depth = -1;
  77module_param(max_queue_depth, int, 0444);
  78MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
  79
  80static int max_sgl_entries = -1;
  81module_param(max_sgl_entries, int, 0444);
  82MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
  83
  84static int msix_disable = -1;
  85module_param(msix_disable, int, 0444);
  86MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
  87
  88static int smp_affinity_enable = 1;
  89module_param(smp_affinity_enable, int, 0444);
  90MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
  91
  92static int max_msix_vectors = -1;
  93module_param(max_msix_vectors, int, 0444);
  94MODULE_PARM_DESC(max_msix_vectors,
  95        " max msix vectors");
  96
  97static int irqpoll_weight = -1;
  98module_param(irqpoll_weight, int, 0444);
  99MODULE_PARM_DESC(irqpoll_weight,
 100        "irq poll weight (default= one fourth of HBA queue depth)");
 101
 102static int mpt3sas_fwfault_debug;
 103MODULE_PARM_DESC(mpt3sas_fwfault_debug,
 104        " enable detection of firmware fault and halt firmware - (default=0)");
 105
 106static int perf_mode = -1;
 107module_param(perf_mode, int, 0444);
 108MODULE_PARM_DESC(perf_mode,
 109        "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
 110        "0 - balanced: high iops mode is enabled &\n\t\t"
 111        "interrupt coalescing is enabled only on high iops queues,\n\t\t"
 112        "1 - iops: high iops mode is disabled &\n\t\t"
 113        "interrupt coalescing is enabled on all queues,\n\t\t"
 114        "2 - latency: high iops mode is disabled &\n\t\t"
 115        "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
 116        "\t\tdefault - default perf_mode is 'balanced'"
 117        );
 118
 119static int poll_queues;
 120module_param(poll_queues, int, 0444);
 121MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t"
 122        "This parameter is effective only if host_tagset_enable=1. &\n\t\t"
 123        "when poll_queues are enabled then &\n\t\t"
 124        "perf_mode is set to latency mode. &\n\t\t"
 125        );
 126
 127enum mpt3sas_perf_mode {
 128        MPT_PERF_MODE_DEFAULT   = -1,
 129        MPT_PERF_MODE_BALANCED  = 0,
 130        MPT_PERF_MODE_IOPS      = 1,
 131        MPT_PERF_MODE_LATENCY   = 2,
 132};
 133
 134static int
 135_base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
 136                u32 ioc_state, int timeout);
 137static int
 138_base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
 139static void
 140_base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
 141
 142/**
 143 * mpt3sas_base_check_cmd_timeout - Function
 144 *              to check timeout and command termination due
 145 *              to Host reset.
 146 *
 147 * @ioc:        per adapter object.
 148 * @status:     Status of issued command.
 149 * @mpi_request:mf request pointer.
 150 * @sz:         size of buffer.
 151 *
 152 * Return: 1/0 Reset to be done or Not
 153 */
 154u8
 155mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
 156                u8 status, void *mpi_request, int sz)
 157{
 158        u8 issue_reset = 0;
 159
 160        if (!(status & MPT3_CMD_RESET))
 161                issue_reset = 1;
 162
 163        ioc_err(ioc, "Command %s\n",
 164                issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
 165        _debug_dump_mf(mpi_request, sz);
 166
 167        return issue_reset;
 168}
 169
 170/**
 171 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
 172 * @val: ?
 173 * @kp: ?
 174 *
 175 * Return: ?
 176 */
 177static int
 178_scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
 179{
 180        int ret = param_set_int(val, kp);
 181        struct MPT3SAS_ADAPTER *ioc;
 182
 183        if (ret)
 184                return ret;
 185
 186        /* global ioc spinlock to protect controller list on list operations */
 187        pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
 188        spin_lock(&gioc_lock);
 189        list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
 190                ioc->fwfault_debug = mpt3sas_fwfault_debug;
 191        spin_unlock(&gioc_lock);
 192        return 0;
 193}
 194module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
 195        param_get_int, &mpt3sas_fwfault_debug, 0644);
 196
 197/**
 198 * _base_readl_aero - retry readl for max three times.
 199 * @addr: MPT Fusion system interface register address
 200 *
 201 * Retry the readl() for max three times if it gets zero value
 202 * while reading the system interface register.
 203 */
 204static inline u32
 205_base_readl_aero(const volatile void __iomem *addr)
 206{
 207        u32 i = 0, ret_val;
 208
 209        do {
 210                ret_val = readl(addr);
 211                i++;
 212        } while (ret_val == 0 && i < 3);
 213
 214        return ret_val;
 215}
 216
 217static inline u32
 218_base_readl(const volatile void __iomem *addr)
 219{
 220        return readl(addr);
 221}
 222
 223/**
 224 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
 225 *                                in BAR0 space.
 226 *
 227 * @ioc: per adapter object
 228 * @reply: reply message frame(lower 32bit addr)
 229 * @index: System request message index.
 230 */
 231static void
 232_base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
 233                u32 index)
 234{
 235        /*
 236         * 256 is offset within sys register.
 237         * 256 offset MPI frame starts. Max MPI frame supported is 32.
 238         * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
 239         */
 240        u16 cmd_credit = ioc->facts.RequestCredit + 1;
 241        void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
 242                        MPI_FRAME_START_OFFSET +
 243                        (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
 244
 245        writel(reply, reply_free_iomem);
 246}
 247
 248/**
 249 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
 250 *                              to system/BAR0 region.
 251 *
 252 * @dst_iomem: Pointer to the destination location in BAR0 space.
 253 * @src: Pointer to the Source data.
 254 * @size: Size of data to be copied.
 255 */
 256static void
 257_base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
 258{
 259        int i;
 260        u32 *src_virt_mem = (u32 *)src;
 261
 262        for (i = 0; i < size/4; i++)
 263                writel((u32)src_virt_mem[i],
 264                                (void __iomem *)dst_iomem + (i * 4));
 265}
 266
 267/**
 268 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
 269 *
 270 * @dst_iomem: Pointer to the destination location in BAR0 space.
 271 * @src: Pointer to the Source data.
 272 * @size: Size of data to be copied.
 273 */
 274static void
 275_base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
 276{
 277        int i;
 278        u32 *src_virt_mem = (u32 *)(src);
 279
 280        for (i = 0; i < size/4; i++)
 281                writel((u32)src_virt_mem[i],
 282                        (void __iomem *)dst_iomem + (i * 4));
 283}
 284
 285/**
 286 * _base_get_chain - Calculates and Returns virtual chain address
 287 *                       for the provided smid in BAR0 space.
 288 *
 289 * @ioc: per adapter object
 290 * @smid: system request message index
 291 * @sge_chain_count: Scatter gather chain count.
 292 *
 293 * Return: the chain address.
 294 */
 295static inline void __iomem*
 296_base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
 297                u8 sge_chain_count)
 298{
 299        void __iomem *base_chain, *chain_virt;
 300        u16 cmd_credit = ioc->facts.RequestCredit + 1;
 301
 302        base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
 303                (cmd_credit * ioc->request_sz) +
 304                REPLY_FREE_POOL_SIZE;
 305        chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
 306                        ioc->request_sz) + (sge_chain_count * ioc->request_sz);
 307        return chain_virt;
 308}
 309
 310/**
 311 * _base_get_chain_phys - Calculates and Returns physical address
 312 *                      in BAR0 for scatter gather chains, for
 313 *                      the provided smid.
 314 *
 315 * @ioc: per adapter object
 316 * @smid: system request message index
 317 * @sge_chain_count: Scatter gather chain count.
 318 *
 319 * Return: Physical chain address.
 320 */
 321static inline phys_addr_t
 322_base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
 323                u8 sge_chain_count)
 324{
 325        phys_addr_t base_chain_phys, chain_phys;
 326        u16 cmd_credit = ioc->facts.RequestCredit + 1;
 327
 328        base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
 329                (cmd_credit * ioc->request_sz) +
 330                REPLY_FREE_POOL_SIZE;
 331        chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
 332                        ioc->request_sz) + (sge_chain_count * ioc->request_sz);
 333        return chain_phys;
 334}
 335
 336/**
 337 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
 338 *                      buffer address for the provided smid.
 339 *                      (Each smid can have 64K starts from 17024)
 340 *
 341 * @ioc: per adapter object
 342 * @smid: system request message index
 343 *
 344 * Return: Pointer to buffer location in BAR0.
 345 */
 346
 347static void __iomem *
 348_base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
 349{
 350        u16 cmd_credit = ioc->facts.RequestCredit + 1;
 351        // Added extra 1 to reach end of chain.
 352        void __iomem *chain_end = _base_get_chain(ioc,
 353                        cmd_credit + 1,
 354                        ioc->facts.MaxChainDepth);
 355        return chain_end + (smid * 64 * 1024);
 356}
 357
 358/**
 359 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
 360 *              Host buffer Physical address for the provided smid.
 361 *              (Each smid can have 64K starts from 17024)
 362 *
 363 * @ioc: per adapter object
 364 * @smid: system request message index
 365 *
 366 * Return: Pointer to buffer location in BAR0.
 367 */
 368static phys_addr_t
 369_base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
 370{
 371        u16 cmd_credit = ioc->facts.RequestCredit + 1;
 372        phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
 373                        cmd_credit + 1,
 374                        ioc->facts.MaxChainDepth);
 375        return chain_end_phys + (smid * 64 * 1024);
 376}
 377
 378/**
 379 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
 380 *                      lookup list and Provides chain_buffer
 381 *                      address for the matching dma address.
 382 *                      (Each smid can have 64K starts from 17024)
 383 *
 384 * @ioc: per adapter object
 385 * @chain_buffer_dma: Chain buffer dma address.
 386 *
 387 * Return: Pointer to chain buffer. Or Null on Failure.
 388 */
 389static void *
 390_base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
 391                dma_addr_t chain_buffer_dma)
 392{
 393        u16 index, j;
 394        struct chain_tracker *ct;
 395
 396        for (index = 0; index < ioc->scsiio_depth; index++) {
 397                for (j = 0; j < ioc->chains_needed_per_io; j++) {
 398                        ct = &ioc->chain_lookup[index].chains_per_smid[j];
 399                        if (ct && ct->chain_buffer_dma == chain_buffer_dma)
 400                                return ct->chain_buffer;
 401                }
 402        }
 403        ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
 404        return NULL;
 405}
 406
 407/**
 408 * _clone_sg_entries -  MPI EP's scsiio and config requests
 409 *                      are handled here. Base function for
 410 *                      double buffering, before submitting
 411 *                      the requests.
 412 *
 413 * @ioc: per adapter object.
 414 * @mpi_request: mf request pointer.
 415 * @smid: system request message index.
 416 */
 417static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
 418                void *mpi_request, u16 smid)
 419{
 420        Mpi2SGESimple32_t *sgel, *sgel_next;
 421        u32  sgl_flags, sge_chain_count = 0;
 422        bool is_write = false;
 423        u16 i = 0;
 424        void __iomem *buffer_iomem;
 425        phys_addr_t buffer_iomem_phys;
 426        void __iomem *buff_ptr;
 427        phys_addr_t buff_ptr_phys;
 428        void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
 429        void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
 430        phys_addr_t dst_addr_phys;
 431        MPI2RequestHeader_t *request_hdr;
 432        struct scsi_cmnd *scmd;
 433        struct scatterlist *sg_scmd = NULL;
 434        int is_scsiio_req = 0;
 435
 436        request_hdr = (MPI2RequestHeader_t *) mpi_request;
 437
 438        if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
 439                Mpi25SCSIIORequest_t *scsiio_request =
 440                        (Mpi25SCSIIORequest_t *)mpi_request;
 441                sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
 442                is_scsiio_req = 1;
 443        } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
 444                Mpi2ConfigRequest_t  *config_req =
 445                        (Mpi2ConfigRequest_t *)mpi_request;
 446                sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
 447        } else
 448                return;
 449
 450        /* From smid we can get scsi_cmd, once we have sg_scmd,
 451         * we just need to get sg_virt and sg_next to get virtual
 452         * address associated with sgel->Address.
 453         */
 454
 455        if (is_scsiio_req) {
 456                /* Get scsi_cmd using smid */
 457                scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
 458                if (scmd == NULL) {
 459                        ioc_err(ioc, "scmd is NULL\n");
 460                        return;
 461                }
 462
 463                /* Get sg_scmd from scmd provided */
 464                sg_scmd = scsi_sglist(scmd);
 465        }
 466
 467        /*
 468         * 0 - 255      System register
 469         * 256 - 4352   MPI Frame. (This is based on maxCredit 32)
 470         * 4352 - 4864  Reply_free pool (512 byte is reserved
 471         *              considering maxCredit 32. Reply need extra
 472         *              room, for mCPU case kept four times of
 473         *              maxCredit).
 474         * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
 475         *              128 byte size = 12288)
 476         * 17152 - x    Host buffer mapped with smid.
 477         *              (Each smid can have 64K Max IO.)
 478         * BAR0+Last 1K MSIX Addr and Data
 479         * Total size in use 2113664 bytes of 4MB BAR0
 480         */
 481
 482        buffer_iomem = _base_get_buffer_bar0(ioc, smid);
 483        buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
 484
 485        buff_ptr = buffer_iomem;
 486        buff_ptr_phys = buffer_iomem_phys;
 487        WARN_ON(buff_ptr_phys > U32_MAX);
 488
 489        if (le32_to_cpu(sgel->FlagsLength) &
 490                        (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
 491                is_write = true;
 492
 493        for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
 494
 495                sgl_flags =
 496                    (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
 497
 498                switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
 499                case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
 500                        /*
 501                         * Helper function which on passing
 502                         * chain_buffer_dma returns chain_buffer. Get
 503                         * the virtual address for sgel->Address
 504                         */
 505                        sgel_next =
 506                                _base_get_chain_buffer_dma_to_chain_buffer(ioc,
 507                                                le32_to_cpu(sgel->Address));
 508                        if (sgel_next == NULL)
 509                                return;
 510                        /*
 511                         * This is coping 128 byte chain
 512                         * frame (not a host buffer)
 513                         */
 514                        dst_chain_addr[sge_chain_count] =
 515                                _base_get_chain(ioc,
 516                                        smid, sge_chain_count);
 517                        src_chain_addr[sge_chain_count] =
 518                                                (void *) sgel_next;
 519                        dst_addr_phys = _base_get_chain_phys(ioc,
 520                                                smid, sge_chain_count);
 521                        WARN_ON(dst_addr_phys > U32_MAX);
 522                        sgel->Address =
 523                                cpu_to_le32(lower_32_bits(dst_addr_phys));
 524                        sgel = sgel_next;
 525                        sge_chain_count++;
 526                        break;
 527                case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
 528                        if (is_write) {
 529                                if (is_scsiio_req) {
 530                                        _base_clone_to_sys_mem(buff_ptr,
 531                                            sg_virt(sg_scmd),
 532                                            (le32_to_cpu(sgel->FlagsLength) &
 533                                            0x00ffffff));
 534                                        /*
 535                                         * FIXME: this relies on a a zero
 536                                         * PCI mem_offset.
 537                                         */
 538                                        sgel->Address =
 539                                            cpu_to_le32((u32)buff_ptr_phys);
 540                                } else {
 541                                        _base_clone_to_sys_mem(buff_ptr,
 542                                            ioc->config_vaddr,
 543                                            (le32_to_cpu(sgel->FlagsLength) &
 544                                            0x00ffffff));
 545                                        sgel->Address =
 546                                            cpu_to_le32((u32)buff_ptr_phys);
 547                                }
 548                        }
 549                        buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
 550                            0x00ffffff);
 551                        buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
 552                            0x00ffffff);
 553                        if ((le32_to_cpu(sgel->FlagsLength) &
 554                            (MPI2_SGE_FLAGS_END_OF_BUFFER
 555                                        << MPI2_SGE_FLAGS_SHIFT)))
 556                                goto eob_clone_chain;
 557                        else {
 558                                /*
 559                                 * Every single element in MPT will have
 560                                 * associated sg_next. Better to sanity that
 561                                 * sg_next is not NULL, but it will be a bug
 562                                 * if it is null.
 563                                 */
 564                                if (is_scsiio_req) {
 565                                        sg_scmd = sg_next(sg_scmd);
 566                                        if (sg_scmd)
 567                                                sgel++;
 568                                        else
 569                                                goto eob_clone_chain;
 570                                }
 571                        }
 572                        break;
 573                }
 574        }
 575
 576eob_clone_chain:
 577        for (i = 0; i < sge_chain_count; i++) {
 578                if (is_scsiio_req)
 579                        _base_clone_to_sys_mem(dst_chain_addr[i],
 580                                src_chain_addr[i], ioc->request_sz);
 581        }
 582}
 583
 584/**
 585 *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
 586 * @arg: input argument, used to derive ioc
 587 *
 588 * Return:
 589 * 0 if controller is removed from pci subsystem.
 590 * -1 for other case.
 591 */
 592static int mpt3sas_remove_dead_ioc_func(void *arg)
 593{
 594        struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
 595        struct pci_dev *pdev;
 596
 597        if (!ioc)
 598                return -1;
 599
 600        pdev = ioc->pdev;
 601        if (!pdev)
 602                return -1;
 603        pci_stop_and_remove_bus_device_locked(pdev);
 604        return 0;
 605}
 606
 607/**
 608 * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
 609 * @ioc: Per Adapter Object
 610 *
 611 * Return: nothing.
 612 */
 613static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc)
 614{
 615        Mpi26IoUnitControlRequest_t *mpi_request;
 616        Mpi26IoUnitControlReply_t *mpi_reply;
 617        u16 smid;
 618        ktime_t current_time;
 619        u64 TimeStamp = 0;
 620        u8 issue_reset = 0;
 621
 622        mutex_lock(&ioc->scsih_cmds.mutex);
 623        if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) {
 624                ioc_err(ioc, "scsih_cmd in use %s\n", __func__);
 625                goto out;
 626        }
 627        ioc->scsih_cmds.status = MPT3_CMD_PENDING;
 628        smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx);
 629        if (!smid) {
 630                ioc_err(ioc, "Failed obtaining a smid %s\n", __func__);
 631                ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
 632                goto out;
 633        }
 634        mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
 635        ioc->scsih_cmds.smid = smid;
 636        memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t));
 637        mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL;
 638        mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER;
 639        mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP;
 640        current_time = ktime_get_real();
 641        TimeStamp = ktime_to_ms(current_time);
 642        mpi_request->Reserved7 = cpu_to_le32(TimeStamp & 0xFFFFFFFF);
 643        mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp >> 32);
 644        init_completion(&ioc->scsih_cmds.done);
 645        ioc->put_smid_default(ioc, smid);
 646        dinitprintk(ioc, ioc_info(ioc,
 647            "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
 648            TimeStamp));
 649        wait_for_completion_timeout(&ioc->scsih_cmds.done,
 650                MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ);
 651        if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) {
 652                mpt3sas_check_cmd_timeout(ioc,
 653                    ioc->scsih_cmds.status, mpi_request,
 654                    sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
 655                goto issue_host_reset;
 656        }
 657        if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) {
 658                mpi_reply = ioc->scsih_cmds.reply;
 659                dinitprintk(ioc, ioc_info(ioc,
 660                    "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n",
 661                    le16_to_cpu(mpi_reply->IOCStatus),
 662                    le32_to_cpu(mpi_reply->IOCLogInfo)));
 663        }
 664issue_host_reset:
 665        if (issue_reset)
 666                mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
 667        ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
 668out:
 669        mutex_unlock(&ioc->scsih_cmds.mutex);
 670}
 671
 672/**
 673 * _base_fault_reset_work - workq handling ioc fault conditions
 674 * @work: input argument, used to derive ioc
 675 *
 676 * Context: sleep.
 677 */
 678static void
 679_base_fault_reset_work(struct work_struct *work)
 680{
 681        struct MPT3SAS_ADAPTER *ioc =
 682            container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
 683        unsigned long    flags;
 684        u32 doorbell;
 685        int rc;
 686        struct task_struct *p;
 687
 688
 689        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
 690        if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
 691                        ioc->pci_error_recovery)
 692                goto rearm_timer;
 693        spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
 694
 695        doorbell = mpt3sas_base_get_iocstate(ioc, 0);
 696        if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
 697                ioc_err(ioc, "SAS host is non-operational !!!!\n");
 698
 699                /* It may be possible that EEH recovery can resolve some of
 700                 * pci bus failure issues rather removing the dead ioc function
 701                 * by considering controller is in a non-operational state. So
 702                 * here priority is given to the EEH recovery. If it doesn't
 703                 * not resolve this issue, mpt3sas driver will consider this
 704                 * controller to non-operational state and remove the dead ioc
 705                 * function.
 706                 */
 707                if (ioc->non_operational_loop++ < 5) {
 708                        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
 709                                                         flags);
 710                        goto rearm_timer;
 711                }
 712
 713                /*
 714                 * Call _scsih_flush_pending_cmds callback so that we flush all
 715                 * pending commands back to OS. This call is required to avoid
 716                 * deadlock at block layer. Dead IOC will fail to do diag reset,
 717                 * and this call is safe since dead ioc will never return any
 718                 * command back from HW.
 719                 */
 720                mpt3sas_base_pause_mq_polling(ioc);
 721                ioc->schedule_dead_ioc_flush_running_cmds(ioc);
 722                /*
 723                 * Set remove_host flag early since kernel thread will
 724                 * take some time to execute.
 725                 */
 726                ioc->remove_host = 1;
 727                /*Remove the Dead Host */
 728                p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
 729                    "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
 730                if (IS_ERR(p))
 731                        ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
 732                                __func__);
 733                else
 734                        ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
 735                                __func__);
 736                return; /* don't rearm timer */
 737        }
 738
 739        if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
 740                u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
 741                    ioc->manu_pg11.CoreDumpTOSec :
 742                    MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
 743
 744                timeout /= (FAULT_POLLING_INTERVAL/1000);
 745
 746                if (ioc->ioc_coredump_loop == 0) {
 747                        mpt3sas_print_coredump_info(ioc,
 748                            doorbell & MPI2_DOORBELL_DATA_MASK);
 749                        /* do not accept any IOs and disable the interrupts */
 750                        spin_lock_irqsave(
 751                            &ioc->ioc_reset_in_progress_lock, flags);
 752                        ioc->shost_recovery = 1;
 753                        spin_unlock_irqrestore(
 754                            &ioc->ioc_reset_in_progress_lock, flags);
 755                        mpt3sas_base_mask_interrupts(ioc);
 756                        mpt3sas_base_pause_mq_polling(ioc);
 757                        _base_clear_outstanding_commands(ioc);
 758                }
 759
 760                ioc_info(ioc, "%s: CoreDump loop %d.",
 761                    __func__, ioc->ioc_coredump_loop);
 762
 763                /* Wait until CoreDump completes or times out */
 764                if (ioc->ioc_coredump_loop++ < timeout) {
 765                        spin_lock_irqsave(
 766                            &ioc->ioc_reset_in_progress_lock, flags);
 767                        goto rearm_timer;
 768                }
 769        }
 770
 771        if (ioc->ioc_coredump_loop) {
 772                if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
 773                        ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
 774                            __func__, ioc->ioc_coredump_loop);
 775                else
 776                        ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
 777                            __func__, ioc->ioc_coredump_loop);
 778                ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
 779        }
 780        ioc->non_operational_loop = 0;
 781        if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
 782                rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
 783                ioc_warn(ioc, "%s: hard reset: %s\n",
 784                         __func__, rc == 0 ? "success" : "failed");
 785                doorbell = mpt3sas_base_get_iocstate(ioc, 0);
 786                if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
 787                        mpt3sas_print_fault_code(ioc, doorbell &
 788                            MPI2_DOORBELL_DATA_MASK);
 789                } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
 790                    MPI2_IOC_STATE_COREDUMP)
 791                        mpt3sas_print_coredump_info(ioc, doorbell &
 792                            MPI2_DOORBELL_DATA_MASK);
 793                if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
 794                    MPI2_IOC_STATE_OPERATIONAL)
 795                        return; /* don't rearm timer */
 796        }
 797        ioc->ioc_coredump_loop = 0;
 798        if (ioc->time_sync_interval &&
 799            ++ioc->timestamp_update_count >= ioc->time_sync_interval) {
 800                ioc->timestamp_update_count = 0;
 801                _base_sync_drv_fw_timestamp(ioc);
 802        }
 803        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
 804 rearm_timer:
 805        if (ioc->fault_reset_work_q)
 806                queue_delayed_work(ioc->fault_reset_work_q,
 807                    &ioc->fault_reset_work,
 808                    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
 809        spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
 810}
 811
 812/**
 813 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
 814 * @ioc: per adapter object
 815 *
 816 * Context: sleep.
 817 */
 818void
 819mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
 820{
 821        unsigned long    flags;
 822
 823        if (ioc->fault_reset_work_q)
 824                return;
 825
 826        ioc->timestamp_update_count = 0;
 827        /* initialize fault polling */
 828
 829        INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
 830        snprintf(ioc->fault_reset_work_q_name,
 831            sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
 832            ioc->driver_name, ioc->id);
 833        ioc->fault_reset_work_q =
 834                create_singlethread_workqueue(ioc->fault_reset_work_q_name);
 835        if (!ioc->fault_reset_work_q) {
 836                ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
 837                return;
 838        }
 839        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
 840        if (ioc->fault_reset_work_q)
 841                queue_delayed_work(ioc->fault_reset_work_q,
 842                    &ioc->fault_reset_work,
 843                    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
 844        spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
 845}
 846
 847/**
 848 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
 849 * @ioc: per adapter object
 850 *
 851 * Context: sleep.
 852 */
 853void
 854mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
 855{
 856        unsigned long flags;
 857        struct workqueue_struct *wq;
 858
 859        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
 860        wq = ioc->fault_reset_work_q;
 861        ioc->fault_reset_work_q = NULL;
 862        spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
 863        if (wq) {
 864                if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
 865                        flush_workqueue(wq);
 866                destroy_workqueue(wq);
 867        }
 868}
 869
 870/**
 871 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
 872 * @ioc: per adapter object
 873 * @fault_code: fault code
 874 */
 875void
 876mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
 877{
 878        ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
 879}
 880
 881/**
 882 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
 883 * @ioc: per adapter object
 884 * @fault_code: fault code
 885 *
 886 * Return: nothing.
 887 */
 888void
 889mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
 890{
 891        ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
 892}
 893
 894/**
 895 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
 896 * completes or times out
 897 * @ioc: per adapter object
 898 * @caller: caller function name
 899 *
 900 * Return: 0 for success, non-zero for failure.
 901 */
 902int
 903mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
 904                const char *caller)
 905{
 906        u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
 907                        ioc->manu_pg11.CoreDumpTOSec :
 908                        MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
 909
 910        int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
 911                                        timeout);
 912
 913        if (ioc_state)
 914                ioc_err(ioc,
 915                    "%s: CoreDump timed out. (ioc_state=0x%x)\n",
 916                    caller, ioc_state);
 917        else
 918                ioc_info(ioc,
 919                    "%s: CoreDump completed. (ioc_state=0x%x)\n",
 920                    caller, ioc_state);
 921
 922        return ioc_state;
 923}
 924
 925/**
 926 * mpt3sas_halt_firmware - halt's mpt controller firmware
 927 * @ioc: per adapter object
 928 *
 929 * For debugging timeout related issues.  Writing 0xCOFFEE00
 930 * to the doorbell register will halt controller firmware. With
 931 * the purpose to stop both driver and firmware, the enduser can
 932 * obtain a ring buffer from controller UART.
 933 */
 934void
 935mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
 936{
 937        u32 doorbell;
 938
 939        if (!ioc->fwfault_debug)
 940                return;
 941
 942        dump_stack();
 943
 944        doorbell = ioc->base_readl(&ioc->chip->Doorbell);
 945        if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
 946                mpt3sas_print_fault_code(ioc, doorbell &
 947                    MPI2_DOORBELL_DATA_MASK);
 948        } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
 949            MPI2_IOC_STATE_COREDUMP) {
 950                mpt3sas_print_coredump_info(ioc, doorbell &
 951                    MPI2_DOORBELL_DATA_MASK);
 952        } else {
 953                writel(0xC0FFEE00, &ioc->chip->Doorbell);
 954                ioc_err(ioc, "Firmware is halted due to command timeout\n");
 955        }
 956
 957        if (ioc->fwfault_debug == 2)
 958                for (;;)
 959                        ;
 960        else
 961                panic("panic in %s\n", __func__);
 962}
 963
 964/**
 965 * _base_sas_ioc_info - verbose translation of the ioc status
 966 * @ioc: per adapter object
 967 * @mpi_reply: reply mf payload returned from firmware
 968 * @request_hdr: request mf
 969 */
 970static void
 971_base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
 972        MPI2RequestHeader_t *request_hdr)
 973{
 974        u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
 975            MPI2_IOCSTATUS_MASK;
 976        char *desc = NULL;
 977        u16 frame_sz;
 978        char *func_str = NULL;
 979
 980        /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
 981        if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
 982            request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
 983            request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
 984                return;
 985
 986        if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
 987                return;
 988        /*
 989         * Older Firmware version doesn't support driver trigger pages.
 990         * So, skip displaying 'config invalid type' type
 991         * of error message.
 992         */
 993        if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
 994                Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr;
 995
 996                if ((rqst->ExtPageType ==
 997                    MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) &&
 998                    !(ioc->logging_level & MPT_DEBUG_CONFIG)) {
 999                        return;
1000                }
1001        }
1002
1003        switch (ioc_status) {
1004
1005/****************************************************************************
1006*  Common IOCStatus values for all replies
1007****************************************************************************/
1008
1009        case MPI2_IOCSTATUS_INVALID_FUNCTION:
1010                desc = "invalid function";
1011                break;
1012        case MPI2_IOCSTATUS_BUSY:
1013                desc = "busy";
1014                break;
1015        case MPI2_IOCSTATUS_INVALID_SGL:
1016                desc = "invalid sgl";
1017                break;
1018        case MPI2_IOCSTATUS_INTERNAL_ERROR:
1019                desc = "internal error";
1020                break;
1021        case MPI2_IOCSTATUS_INVALID_VPID:
1022                desc = "invalid vpid";
1023                break;
1024        case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
1025                desc = "insufficient resources";
1026                break;
1027        case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
1028                desc = "insufficient power";
1029                break;
1030        case MPI2_IOCSTATUS_INVALID_FIELD:
1031                desc = "invalid field";
1032                break;
1033        case MPI2_IOCSTATUS_INVALID_STATE:
1034                desc = "invalid state";
1035                break;
1036        case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
1037                desc = "op state not supported";
1038                break;
1039
1040/****************************************************************************
1041*  Config IOCStatus values
1042****************************************************************************/
1043
1044        case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
1045                desc = "config invalid action";
1046                break;
1047        case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
1048                desc = "config invalid type";
1049                break;
1050        case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
1051                desc = "config invalid page";
1052                break;
1053        case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
1054                desc = "config invalid data";
1055                break;
1056        case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
1057                desc = "config no defaults";
1058                break;
1059        case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
1060                desc = "config cant commit";
1061                break;
1062
1063/****************************************************************************
1064*  SCSI IO Reply
1065****************************************************************************/
1066
1067        case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1068        case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1069        case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1070        case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1071        case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1072        case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1073        case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1074        case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1075        case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1076        case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1077        case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1078        case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1079                break;
1080
1081/****************************************************************************
1082*  For use by SCSI Initiator and SCSI Target end-to-end data protection
1083****************************************************************************/
1084
1085        case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1086                desc = "eedp guard error";
1087                break;
1088        case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1089                desc = "eedp ref tag error";
1090                break;
1091        case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1092                desc = "eedp app tag error";
1093                break;
1094
1095/****************************************************************************
1096*  SCSI Target values
1097****************************************************************************/
1098
1099        case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1100                desc = "target invalid io index";
1101                break;
1102        case MPI2_IOCSTATUS_TARGET_ABORTED:
1103                desc = "target aborted";
1104                break;
1105        case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1106                desc = "target no conn retryable";
1107                break;
1108        case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1109                desc = "target no connection";
1110                break;
1111        case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1112                desc = "target xfer count mismatch";
1113                break;
1114        case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1115                desc = "target data offset error";
1116                break;
1117        case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1118                desc = "target too much write data";
1119                break;
1120        case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1121                desc = "target iu too short";
1122                break;
1123        case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1124                desc = "target ack nak timeout";
1125                break;
1126        case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1127                desc = "target nak received";
1128                break;
1129
1130/****************************************************************************
1131*  Serial Attached SCSI values
1132****************************************************************************/
1133
1134        case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1135                desc = "smp request failed";
1136                break;
1137        case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1138                desc = "smp data overrun";
1139                break;
1140
1141/****************************************************************************
1142*  Diagnostic Buffer Post / Diagnostic Release values
1143****************************************************************************/
1144
1145        case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1146                desc = "diagnostic released";
1147                break;
1148        default:
1149                break;
1150        }
1151
1152        if (!desc)
1153                return;
1154
1155        switch (request_hdr->Function) {
1156        case MPI2_FUNCTION_CONFIG:
1157                frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1158                func_str = "config_page";
1159                break;
1160        case MPI2_FUNCTION_SCSI_TASK_MGMT:
1161                frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1162                func_str = "task_mgmt";
1163                break;
1164        case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1165                frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1166                func_str = "sas_iounit_ctl";
1167                break;
1168        case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1169                frame_sz = sizeof(Mpi2SepRequest_t);
1170                func_str = "enclosure";
1171                break;
1172        case MPI2_FUNCTION_IOC_INIT:
1173                frame_sz = sizeof(Mpi2IOCInitRequest_t);
1174                func_str = "ioc_init";
1175                break;
1176        case MPI2_FUNCTION_PORT_ENABLE:
1177                frame_sz = sizeof(Mpi2PortEnableRequest_t);
1178                func_str = "port_enable";
1179                break;
1180        case MPI2_FUNCTION_SMP_PASSTHROUGH:
1181                frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1182                func_str = "smp_passthru";
1183                break;
1184        case MPI2_FUNCTION_NVME_ENCAPSULATED:
1185                frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1186                    ioc->sge_size;
1187                func_str = "nvme_encapsulated";
1188                break;
1189        default:
1190                frame_sz = 32;
1191                func_str = "unknown";
1192                break;
1193        }
1194
1195        ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1196                 desc, ioc_status, request_hdr, func_str);
1197
1198        _debug_dump_mf(request_hdr, frame_sz/4);
1199}
1200
1201/**
1202 * _base_display_event_data - verbose translation of firmware asyn events
1203 * @ioc: per adapter object
1204 * @mpi_reply: reply mf payload returned from firmware
1205 */
1206static void
1207_base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1208        Mpi2EventNotificationReply_t *mpi_reply)
1209{
1210        char *desc = NULL;
1211        u16 event;
1212
1213        if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1214                return;
1215
1216        event = le16_to_cpu(mpi_reply->Event);
1217
1218        switch (event) {
1219        case MPI2_EVENT_LOG_DATA:
1220                desc = "Log Data";
1221                break;
1222        case MPI2_EVENT_STATE_CHANGE:
1223                desc = "Status Change";
1224                break;
1225        case MPI2_EVENT_HARD_RESET_RECEIVED:
1226                desc = "Hard Reset Received";
1227                break;
1228        case MPI2_EVENT_EVENT_CHANGE:
1229                desc = "Event Change";
1230                break;
1231        case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1232                desc = "Device Status Change";
1233                break;
1234        case MPI2_EVENT_IR_OPERATION_STATUS:
1235                if (!ioc->hide_ir_msg)
1236                        desc = "IR Operation Status";
1237                break;
1238        case MPI2_EVENT_SAS_DISCOVERY:
1239        {
1240                Mpi2EventDataSasDiscovery_t *event_data =
1241                    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1242                ioc_info(ioc, "Discovery: (%s)",
1243                         event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1244                         "start" : "stop");
1245                if (event_data->DiscoveryStatus)
1246                        pr_cont(" discovery_status(0x%08x)",
1247                            le32_to_cpu(event_data->DiscoveryStatus));
1248                pr_cont("\n");
1249                return;
1250        }
1251        case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1252                desc = "SAS Broadcast Primitive";
1253                break;
1254        case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1255                desc = "SAS Init Device Status Change";
1256                break;
1257        case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1258                desc = "SAS Init Table Overflow";
1259                break;
1260        case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1261                desc = "SAS Topology Change List";
1262                break;
1263        case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1264                desc = "SAS Enclosure Device Status Change";
1265                break;
1266        case MPI2_EVENT_IR_VOLUME:
1267                if (!ioc->hide_ir_msg)
1268                        desc = "IR Volume";
1269                break;
1270        case MPI2_EVENT_IR_PHYSICAL_DISK:
1271                if (!ioc->hide_ir_msg)
1272                        desc = "IR Physical Disk";
1273                break;
1274        case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1275                if (!ioc->hide_ir_msg)
1276                        desc = "IR Configuration Change List";
1277                break;
1278        case MPI2_EVENT_LOG_ENTRY_ADDED:
1279                if (!ioc->hide_ir_msg)
1280                        desc = "Log Entry Added";
1281                break;
1282        case MPI2_EVENT_TEMP_THRESHOLD:
1283                desc = "Temperature Threshold";
1284                break;
1285        case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1286                desc = "Cable Event";
1287                break;
1288        case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1289                desc = "SAS Device Discovery Error";
1290                break;
1291        case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1292                desc = "PCIE Device Status Change";
1293                break;
1294        case MPI2_EVENT_PCIE_ENUMERATION:
1295        {
1296                Mpi26EventDataPCIeEnumeration_t *event_data =
1297                        (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1298                ioc_info(ioc, "PCIE Enumeration: (%s)",
1299                         event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1300                         "start" : "stop");
1301                if (event_data->EnumerationStatus)
1302                        pr_cont("enumeration_status(0x%08x)",
1303                                le32_to_cpu(event_data->EnumerationStatus));
1304                pr_cont("\n");
1305                return;
1306        }
1307        case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1308                desc = "PCIE Topology Change List";
1309                break;
1310        }
1311
1312        if (!desc)
1313                return;
1314
1315        ioc_info(ioc, "%s\n", desc);
1316}
1317
1318/**
1319 * _base_sas_log_info - verbose translation of firmware log info
1320 * @ioc: per adapter object
1321 * @log_info: log info
1322 */
1323static void
1324_base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1325{
1326        union loginfo_type {
1327                u32     loginfo;
1328                struct {
1329                        u32     subcode:16;
1330                        u32     code:8;
1331                        u32     originator:4;
1332                        u32     bus_type:4;
1333                } dw;
1334        };
1335        union loginfo_type sas_loginfo;
1336        char *originator_str = NULL;
1337
1338        sas_loginfo.loginfo = log_info;
1339        if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1340                return;
1341
1342        /* each nexus loss loginfo */
1343        if (log_info == 0x31170000)
1344                return;
1345
1346        /* eat the loginfos associated with task aborts */
1347        if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1348            0x31140000 || log_info == 0x31130000))
1349                return;
1350
1351        switch (sas_loginfo.dw.originator) {
1352        case 0:
1353                originator_str = "IOP";
1354                break;
1355        case 1:
1356                originator_str = "PL";
1357                break;
1358        case 2:
1359                if (!ioc->hide_ir_msg)
1360                        originator_str = "IR";
1361                else
1362                        originator_str = "WarpDrive";
1363                break;
1364        }
1365
1366        ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1367                 log_info,
1368                 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1369}
1370
1371/**
1372 * _base_display_reply_info - handle reply descriptors depending on IOC Status
1373 * @ioc: per adapter object
1374 * @smid: system request message index
1375 * @msix_index: MSIX table index supplied by the OS
1376 * @reply: reply message frame (lower 32bit addr)
1377 */
1378static void
1379_base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1380        u32 reply)
1381{
1382        MPI2DefaultReply_t *mpi_reply;
1383        u16 ioc_status;
1384        u32 loginfo = 0;
1385
1386        mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1387        if (unlikely(!mpi_reply)) {
1388                ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1389                        __FILE__, __LINE__, __func__);
1390                return;
1391        }
1392        ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1393
1394        if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1395            (ioc->logging_level & MPT_DEBUG_REPLY)) {
1396                _base_sas_ioc_info(ioc , mpi_reply,
1397                   mpt3sas_base_get_msg_frame(ioc, smid));
1398        }
1399
1400        if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1401                loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1402                _base_sas_log_info(ioc, loginfo);
1403        }
1404
1405        if (ioc_status || loginfo) {
1406                ioc_status &= MPI2_IOCSTATUS_MASK;
1407                mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1408        }
1409}
1410
1411/**
1412 * mpt3sas_base_done - base internal command completion routine
1413 * @ioc: per adapter object
1414 * @smid: system request message index
1415 * @msix_index: MSIX table index supplied by the OS
1416 * @reply: reply message frame(lower 32bit addr)
1417 *
1418 * Return:
1419 * 1 meaning mf should be freed from _base_interrupt
1420 * 0 means the mf is freed from this function.
1421 */
1422u8
1423mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1424        u32 reply)
1425{
1426        MPI2DefaultReply_t *mpi_reply;
1427
1428        mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1429        if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1430                return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1431
1432        if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1433                return 1;
1434
1435        ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1436        if (mpi_reply) {
1437                ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1438                memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1439        }
1440        ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1441
1442        complete(&ioc->base_cmds.done);
1443        return 1;
1444}
1445
1446/**
1447 * _base_async_event - main callback handler for firmware asyn events
1448 * @ioc: per adapter object
1449 * @msix_index: MSIX table index supplied by the OS
1450 * @reply: reply message frame(lower 32bit addr)
1451 *
1452 * Return:
1453 * 1 meaning mf should be freed from _base_interrupt
1454 * 0 means the mf is freed from this function.
1455 */
1456static u8
1457_base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1458{
1459        Mpi2EventNotificationReply_t *mpi_reply;
1460        Mpi2EventAckRequest_t *ack_request;
1461        u16 smid;
1462        struct _event_ack_list *delayed_event_ack;
1463
1464        mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1465        if (!mpi_reply)
1466                return 1;
1467        if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1468                return 1;
1469
1470        _base_display_event_data(ioc, mpi_reply);
1471
1472        if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1473                goto out;
1474        smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1475        if (!smid) {
1476                delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1477                                        GFP_ATOMIC);
1478                if (!delayed_event_ack)
1479                        goto out;
1480                INIT_LIST_HEAD(&delayed_event_ack->list);
1481                delayed_event_ack->Event = mpi_reply->Event;
1482                delayed_event_ack->EventContext = mpi_reply->EventContext;
1483                list_add_tail(&delayed_event_ack->list,
1484                                &ioc->delayed_event_ack_list);
1485                dewtprintk(ioc,
1486                           ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1487                                    le16_to_cpu(mpi_reply->Event)));
1488                goto out;
1489        }
1490
1491        ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1492        memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1493        ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1494        ack_request->Event = mpi_reply->Event;
1495        ack_request->EventContext = mpi_reply->EventContext;
1496        ack_request->VF_ID = 0;  /* TODO */
1497        ack_request->VP_ID = 0;
1498        ioc->put_smid_default(ioc, smid);
1499
1500 out:
1501
1502        /* scsih callback handler */
1503        mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1504
1505        /* ctl callback handler */
1506        mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1507
1508        return 1;
1509}
1510
1511static struct scsiio_tracker *
1512_get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1513{
1514        struct scsi_cmnd *cmd;
1515
1516        if (WARN_ON(!smid) ||
1517            WARN_ON(smid >= ioc->hi_priority_smid))
1518                return NULL;
1519
1520        cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1521        if (cmd)
1522                return scsi_cmd_priv(cmd);
1523
1524        return NULL;
1525}
1526
1527/**
1528 * _base_get_cb_idx - obtain the callback index
1529 * @ioc: per adapter object
1530 * @smid: system request message index
1531 *
1532 * Return: callback index.
1533 */
1534static u8
1535_base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1536{
1537        int i;
1538        u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1539        u8 cb_idx = 0xFF;
1540
1541        if (smid < ioc->hi_priority_smid) {
1542                struct scsiio_tracker *st;
1543
1544                if (smid < ctl_smid) {
1545                        st = _get_st_from_smid(ioc, smid);
1546                        if (st)
1547                                cb_idx = st->cb_idx;
1548                } else if (smid == ctl_smid)
1549                        cb_idx = ioc->ctl_cb_idx;
1550        } else if (smid < ioc->internal_smid) {
1551                i = smid - ioc->hi_priority_smid;
1552                cb_idx = ioc->hpr_lookup[i].cb_idx;
1553        } else if (smid <= ioc->hba_queue_depth) {
1554                i = smid - ioc->internal_smid;
1555                cb_idx = ioc->internal_lookup[i].cb_idx;
1556        }
1557        return cb_idx;
1558}
1559
1560/**
1561 * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues
1562 *                              when driver is flushing out the IOs.
1563 * @ioc: per adapter object
1564 *
1565 * Pause polling on the mq poll (io uring) queues when driver is flushing
1566 * out the IOs. Otherwise we may see the race condition of completing the same
1567 * IO from two paths.
1568 *
1569 * Returns nothing.
1570 */
1571void
1572mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1573{
1574        int iopoll_q_count =
1575            ioc->reply_queue_count - ioc->iopoll_q_start_index;
1576        int qid;
1577
1578        for (qid = 0; qid < iopoll_q_count; qid++)
1579                atomic_set(&ioc->io_uring_poll_queues[qid].pause, 1);
1580
1581        /*
1582         * wait for current poll to complete.
1583         */
1584        for (qid = 0; qid < iopoll_q_count; qid++) {
1585                while (atomic_read(&ioc->io_uring_poll_queues[qid].busy)) {
1586                        cpu_relax();
1587                        udelay(500);
1588                }
1589        }
1590}
1591
1592/**
1593 * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues.
1594 * @ioc: per adapter object
1595 *
1596 * Returns nothing.
1597 */
1598void
1599mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1600{
1601        int iopoll_q_count =
1602            ioc->reply_queue_count - ioc->iopoll_q_start_index;
1603        int qid;
1604
1605        for (qid = 0; qid < iopoll_q_count; qid++)
1606                atomic_set(&ioc->io_uring_poll_queues[qid].pause, 0);
1607}
1608
1609/**
1610 * mpt3sas_base_mask_interrupts - disable interrupts
1611 * @ioc: per adapter object
1612 *
1613 * Disabling ResetIRQ, Reply and Doorbell Interrupts
1614 */
1615void
1616mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1617{
1618        u32 him_register;
1619
1620        ioc->mask_interrupts = 1;
1621        him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1622        him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1623        writel(him_register, &ioc->chip->HostInterruptMask);
1624        ioc->base_readl(&ioc->chip->HostInterruptMask);
1625}
1626
1627/**
1628 * mpt3sas_base_unmask_interrupts - enable interrupts
1629 * @ioc: per adapter object
1630 *
1631 * Enabling only Reply Interrupts
1632 */
1633void
1634mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1635{
1636        u32 him_register;
1637
1638        him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1639        him_register &= ~MPI2_HIM_RIM;
1640        writel(him_register, &ioc->chip->HostInterruptMask);
1641        ioc->mask_interrupts = 0;
1642}
1643
1644union reply_descriptor {
1645        u64 word;
1646        struct {
1647                u32 low;
1648                u32 high;
1649        } u;
1650};
1651
1652static u32 base_mod64(u64 dividend, u32 divisor)
1653{
1654        u32 remainder;
1655
1656        if (!divisor)
1657                pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1658        remainder = do_div(dividend, divisor);
1659        return remainder;
1660}
1661
1662/**
1663 * _base_process_reply_queue - Process reply descriptors from reply
1664 *              descriptor post queue.
1665 * @reply_q: per IRQ's reply queue object.
1666 *
1667 * Return: number of reply descriptors processed from reply
1668 *              descriptor queue.
1669 */
1670static int
1671_base_process_reply_queue(struct adapter_reply_queue *reply_q)
1672{
1673        union reply_descriptor rd;
1674        u64 completed_cmds;
1675        u8 request_descript_type;
1676        u16 smid;
1677        u8 cb_idx;
1678        u32 reply;
1679        u8 msix_index = reply_q->msix_index;
1680        struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1681        Mpi2ReplyDescriptorsUnion_t *rpf;
1682        u8 rc;
1683
1684        completed_cmds = 0;
1685        if (!atomic_add_unless(&reply_q->busy, 1, 1))
1686                return completed_cmds;
1687
1688        rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1689        request_descript_type = rpf->Default.ReplyFlags
1690             & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1691        if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1692                atomic_dec(&reply_q->busy);
1693                return completed_cmds;
1694        }
1695
1696        cb_idx = 0xFF;
1697        do {
1698                rd.word = le64_to_cpu(rpf->Words);
1699                if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1700                        goto out;
1701                reply = 0;
1702                smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1703                if (request_descript_type ==
1704                    MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1705                    request_descript_type ==
1706                    MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1707                    request_descript_type ==
1708                    MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1709                        cb_idx = _base_get_cb_idx(ioc, smid);
1710                        if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1711                            (likely(mpt_callbacks[cb_idx] != NULL))) {
1712                                rc = mpt_callbacks[cb_idx](ioc, smid,
1713                                    msix_index, 0);
1714                                if (rc)
1715                                        mpt3sas_base_free_smid(ioc, smid);
1716                        }
1717                } else if (request_descript_type ==
1718                    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1719                        reply = le32_to_cpu(
1720                            rpf->AddressReply.ReplyFrameAddress);
1721                        if (reply > ioc->reply_dma_max_address ||
1722                            reply < ioc->reply_dma_min_address)
1723                                reply = 0;
1724                        if (smid) {
1725                                cb_idx = _base_get_cb_idx(ioc, smid);
1726                                if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1727                                    (likely(mpt_callbacks[cb_idx] != NULL))) {
1728                                        rc = mpt_callbacks[cb_idx](ioc, smid,
1729                                            msix_index, reply);
1730                                        if (reply)
1731                                                _base_display_reply_info(ioc,
1732                                                    smid, msix_index, reply);
1733                                        if (rc)
1734                                                mpt3sas_base_free_smid(ioc,
1735                                                    smid);
1736                                }
1737                        } else {
1738                                _base_async_event(ioc, msix_index, reply);
1739                        }
1740
1741                        /* reply free queue handling */
1742                        if (reply) {
1743                                ioc->reply_free_host_index =
1744                                    (ioc->reply_free_host_index ==
1745                                    (ioc->reply_free_queue_depth - 1)) ?
1746                                    0 : ioc->reply_free_host_index + 1;
1747                                ioc->reply_free[ioc->reply_free_host_index] =
1748                                    cpu_to_le32(reply);
1749                                if (ioc->is_mcpu_endpoint)
1750                                        _base_clone_reply_to_sys_mem(ioc,
1751                                                reply,
1752                                                ioc->reply_free_host_index);
1753                                writel(ioc->reply_free_host_index,
1754                                    &ioc->chip->ReplyFreeHostIndex);
1755                        }
1756                }
1757
1758                rpf->Words = cpu_to_le64(ULLONG_MAX);
1759                reply_q->reply_post_host_index =
1760                    (reply_q->reply_post_host_index ==
1761                    (ioc->reply_post_queue_depth - 1)) ? 0 :
1762                    reply_q->reply_post_host_index + 1;
1763                request_descript_type =
1764                    reply_q->reply_post_free[reply_q->reply_post_host_index].
1765                    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1766                completed_cmds++;
1767                /* Update the reply post host index after continuously
1768                 * processing the threshold number of Reply Descriptors.
1769                 * So that FW can find enough entries to post the Reply
1770                 * Descriptors in the reply descriptor post queue.
1771                 */
1772                if (completed_cmds >= ioc->thresh_hold) {
1773                        if (ioc->combined_reply_queue) {
1774                                writel(reply_q->reply_post_host_index |
1775                                                ((msix_index  & 7) <<
1776                                                 MPI2_RPHI_MSIX_INDEX_SHIFT),
1777                                    ioc->replyPostRegisterIndex[msix_index/8]);
1778                        } else {
1779                                writel(reply_q->reply_post_host_index |
1780                                                (msix_index <<
1781                                                 MPI2_RPHI_MSIX_INDEX_SHIFT),
1782                                                &ioc->chip->ReplyPostHostIndex);
1783                        }
1784                        if (!reply_q->is_iouring_poll_q &&
1785                            !reply_q->irq_poll_scheduled) {
1786                                reply_q->irq_poll_scheduled = true;
1787                                irq_poll_sched(&reply_q->irqpoll);
1788                        }
1789                        atomic_dec(&reply_q->busy);
1790                        return completed_cmds;
1791                }
1792                if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1793                        goto out;
1794                if (!reply_q->reply_post_host_index)
1795                        rpf = reply_q->reply_post_free;
1796                else
1797                        rpf++;
1798        } while (1);
1799
1800 out:
1801
1802        if (!completed_cmds) {
1803                atomic_dec(&reply_q->busy);
1804                return completed_cmds;
1805        }
1806
1807        if (ioc->is_warpdrive) {
1808                writel(reply_q->reply_post_host_index,
1809                ioc->reply_post_host_index[msix_index]);
1810                atomic_dec(&reply_q->busy);
1811                return completed_cmds;
1812        }
1813
1814        /* Update Reply Post Host Index.
1815         * For those HBA's which support combined reply queue feature
1816         * 1. Get the correct Supplemental Reply Post Host Index Register.
1817         *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1818         *    Index Register address bank i.e replyPostRegisterIndex[],
1819         * 2. Then update this register with new reply host index value
1820         *    in ReplyPostIndex field and the MSIxIndex field with
1821         *    msix_index value reduced to a value between 0 and 7,
1822         *    using a modulo 8 operation. Since each Supplemental Reply Post
1823         *    Host Index Register supports 8 MSI-X vectors.
1824         *
1825         * For other HBA's just update the Reply Post Host Index register with
1826         * new reply host index value in ReplyPostIndex Field and msix_index
1827         * value in MSIxIndex field.
1828         */
1829        if (ioc->combined_reply_queue)
1830                writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1831                        MPI2_RPHI_MSIX_INDEX_SHIFT),
1832                        ioc->replyPostRegisterIndex[msix_index/8]);
1833        else
1834                writel(reply_q->reply_post_host_index | (msix_index <<
1835                        MPI2_RPHI_MSIX_INDEX_SHIFT),
1836                        &ioc->chip->ReplyPostHostIndex);
1837        atomic_dec(&reply_q->busy);
1838        return completed_cmds;
1839}
1840
1841/**
1842 * mpt3sas_blk_mq_poll - poll the blk mq poll queue
1843 * @shost: Scsi_Host object
1844 * @queue_num: hw ctx queue number
1845 *
1846 * Return number of entries that has been processed from poll queue.
1847 */
1848int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num)
1849{
1850        struct MPT3SAS_ADAPTER *ioc =
1851            (struct MPT3SAS_ADAPTER *)shost->hostdata;
1852        struct adapter_reply_queue *reply_q;
1853        int num_entries = 0;
1854        int qid = queue_num - ioc->iopoll_q_start_index;
1855
1856        if (atomic_read(&ioc->io_uring_poll_queues[qid].pause) ||
1857            !atomic_add_unless(&ioc->io_uring_poll_queues[qid].busy, 1, 1))
1858                return 0;
1859
1860        reply_q = ioc->io_uring_poll_queues[qid].reply_q;
1861
1862        num_entries = _base_process_reply_queue(reply_q);
1863        atomic_dec(&ioc->io_uring_poll_queues[qid].busy);
1864
1865        return num_entries;
1866}
1867
1868/**
1869 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1870 * @irq: irq number (not used)
1871 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1872 *
1873 * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1874 */
1875static irqreturn_t
1876_base_interrupt(int irq, void *bus_id)
1877{
1878        struct adapter_reply_queue *reply_q = bus_id;
1879        struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1880
1881        if (ioc->mask_interrupts)
1882                return IRQ_NONE;
1883        if (reply_q->irq_poll_scheduled)
1884                return IRQ_HANDLED;
1885        return ((_base_process_reply_queue(reply_q) > 0) ?
1886                        IRQ_HANDLED : IRQ_NONE);
1887}
1888
1889/**
1890 * _base_irqpoll - IRQ poll callback handler
1891 * @irqpoll: irq_poll object
1892 * @budget: irq poll weight
1893 *
1894 * Return: number of reply descriptors processed
1895 */
1896static int
1897_base_irqpoll(struct irq_poll *irqpoll, int budget)
1898{
1899        struct adapter_reply_queue *reply_q;
1900        int num_entries = 0;
1901
1902        reply_q = container_of(irqpoll, struct adapter_reply_queue,
1903                        irqpoll);
1904        if (reply_q->irq_line_enable) {
1905                disable_irq_nosync(reply_q->os_irq);
1906                reply_q->irq_line_enable = false;
1907        }
1908        num_entries = _base_process_reply_queue(reply_q);
1909        if (num_entries < budget) {
1910                irq_poll_complete(irqpoll);
1911                reply_q->irq_poll_scheduled = false;
1912                reply_q->irq_line_enable = true;
1913                enable_irq(reply_q->os_irq);
1914                /*
1915                 * Go for one more round of processing the
1916                 * reply descriptor post queue in case the HBA
1917                 * Firmware has posted some reply descriptors
1918                 * while reenabling the IRQ.
1919                 */
1920                _base_process_reply_queue(reply_q);
1921        }
1922
1923        return num_entries;
1924}
1925
1926/**
1927 * _base_init_irqpolls - initliaze IRQ polls
1928 * @ioc: per adapter object
1929 *
1930 * Return: nothing
1931 */
1932static void
1933_base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1934{
1935        struct adapter_reply_queue *reply_q, *next;
1936
1937        if (list_empty(&ioc->reply_queue_list))
1938                return;
1939
1940        list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1941                if (reply_q->is_iouring_poll_q)
1942                        continue;
1943                irq_poll_init(&reply_q->irqpoll,
1944                        ioc->hba_queue_depth/4, _base_irqpoll);
1945                reply_q->irq_poll_scheduled = false;
1946                reply_q->irq_line_enable = true;
1947                reply_q->os_irq = pci_irq_vector(ioc->pdev,
1948                    reply_q->msix_index);
1949        }
1950}
1951
1952/**
1953 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1954 * @ioc: per adapter object
1955 *
1956 * Return: Whether or not MSI/X is enabled.
1957 */
1958static inline int
1959_base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1960{
1961        return (ioc->facts.IOCCapabilities &
1962            MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1963}
1964
1965/**
1966 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1967 * @ioc: per adapter object
1968 * @poll: poll over reply descriptor pools incase interrupt for
1969 *              timed-out SCSI command got delayed
1970 * Context: non-ISR context
1971 *
1972 * Called when a Task Management request has completed.
1973 */
1974void
1975mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1976{
1977        struct adapter_reply_queue *reply_q;
1978
1979        /* If MSIX capability is turned off
1980         * then multi-queues are not enabled
1981         */
1982        if (!_base_is_controller_msix_enabled(ioc))
1983                return;
1984
1985        list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1986                if (ioc->shost_recovery || ioc->remove_host ||
1987                                ioc->pci_error_recovery)
1988                        return;
1989                /* TMs are on msix_index == 0 */
1990                if (reply_q->msix_index == 0)
1991                        continue;
1992
1993                if (reply_q->is_iouring_poll_q) {
1994                        _base_process_reply_queue(reply_q);
1995                        continue;
1996                }
1997
1998                synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1999                if (reply_q->irq_poll_scheduled) {
2000                        /* Calling irq_poll_disable will wait for any pending
2001                         * callbacks to have completed.
2002                         */
2003                        irq_poll_disable(&reply_q->irqpoll);
2004                        irq_poll_enable(&reply_q->irqpoll);
2005                        /* check how the scheduled poll has ended,
2006                         * clean up only if necessary
2007                         */
2008                        if (reply_q->irq_poll_scheduled) {
2009                                reply_q->irq_poll_scheduled = false;
2010                                reply_q->irq_line_enable = true;
2011                                enable_irq(reply_q->os_irq);
2012                        }
2013                }
2014        }
2015        if (poll)
2016                _base_process_reply_queue(reply_q);
2017}
2018
2019/**
2020 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
2021 * @cb_idx: callback index
2022 */
2023void
2024mpt3sas_base_release_callback_handler(u8 cb_idx)
2025{
2026        mpt_callbacks[cb_idx] = NULL;
2027}
2028
2029/**
2030 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
2031 * @cb_func: callback function
2032 *
2033 * Return: Index of @cb_func.
2034 */
2035u8
2036mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
2037{
2038        u8 cb_idx;
2039
2040        for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
2041                if (mpt_callbacks[cb_idx] == NULL)
2042                        break;
2043
2044        mpt_callbacks[cb_idx] = cb_func;
2045        return cb_idx;
2046}
2047
2048/**
2049 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
2050 */
2051void
2052mpt3sas_base_initialize_callback_handler(void)
2053{
2054        u8 cb_idx;
2055
2056        for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
2057                mpt3sas_base_release_callback_handler(cb_idx);
2058}
2059
2060
2061/**
2062 * _base_build_zero_len_sge - build zero length sg entry
2063 * @ioc: per adapter object
2064 * @paddr: virtual address for SGE
2065 *
2066 * Create a zero length scatter gather entry to insure the IOCs hardware has
2067 * something to use if the target device goes brain dead and tries
2068 * to send data even when none is asked for.
2069 */
2070static void
2071_base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2072{
2073        u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
2074            MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
2075            MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
2076            MPI2_SGE_FLAGS_SHIFT);
2077        ioc->base_add_sg_single(paddr, flags_length, -1);
2078}
2079
2080/**
2081 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
2082 * @paddr: virtual address for SGE
2083 * @flags_length: SGE flags and data transfer length
2084 * @dma_addr: Physical address
2085 */
2086static void
2087_base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2088{
2089        Mpi2SGESimple32_t *sgel = paddr;
2090
2091        flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
2092            MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2093        sgel->FlagsLength = cpu_to_le32(flags_length);
2094        sgel->Address = cpu_to_le32(dma_addr);
2095}
2096
2097
2098/**
2099 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
2100 * @paddr: virtual address for SGE
2101 * @flags_length: SGE flags and data transfer length
2102 * @dma_addr: Physical address
2103 */
2104static void
2105_base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2106{
2107        Mpi2SGESimple64_t *sgel = paddr;
2108
2109        flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2110            MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2111        sgel->FlagsLength = cpu_to_le32(flags_length);
2112        sgel->Address = cpu_to_le64(dma_addr);
2113}
2114
2115/**
2116 * _base_get_chain_buffer_tracker - obtain chain tracker
2117 * @ioc: per adapter object
2118 * @scmd: SCSI commands of the IO request
2119 *
2120 * Return: chain tracker from chain_lookup table using key as
2121 * smid and smid's chain_offset.
2122 */
2123static struct chain_tracker *
2124_base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
2125                               struct scsi_cmnd *scmd)
2126{
2127        struct chain_tracker *chain_req;
2128        struct scsiio_tracker *st = scsi_cmd_priv(scmd);
2129        u16 smid = st->smid;
2130        u8 chain_offset =
2131           atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
2132
2133        if (chain_offset == ioc->chains_needed_per_io)
2134                return NULL;
2135
2136        chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
2137        atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
2138        return chain_req;
2139}
2140
2141
2142/**
2143 * _base_build_sg - build generic sg
2144 * @ioc: per adapter object
2145 * @psge: virtual address for SGE
2146 * @data_out_dma: physical address for WRITES
2147 * @data_out_sz: data xfer size for WRITES
2148 * @data_in_dma: physical address for READS
2149 * @data_in_sz: data xfer size for READS
2150 */
2151static void
2152_base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
2153        dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2154        size_t data_in_sz)
2155{
2156        u32 sgl_flags;
2157
2158        if (!data_out_sz && !data_in_sz) {
2159                _base_build_zero_len_sge(ioc, psge);
2160                return;
2161        }
2162
2163        if (data_out_sz && data_in_sz) {
2164                /* WRITE sgel first */
2165                sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2166                    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
2167                sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2168                ioc->base_add_sg_single(psge, sgl_flags |
2169                    data_out_sz, data_out_dma);
2170
2171                /* incr sgel */
2172                psge += ioc->sge_size;
2173
2174                /* READ sgel last */
2175                sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2176                    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2177                    MPI2_SGE_FLAGS_END_OF_LIST);
2178                sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2179                ioc->base_add_sg_single(psge, sgl_flags |
2180                    data_in_sz, data_in_dma);
2181        } else if (data_out_sz) /* WRITE */ {
2182                sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2183                    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2184                    MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2185                sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2186                ioc->base_add_sg_single(psge, sgl_flags |
2187                    data_out_sz, data_out_dma);
2188        } else if (data_in_sz) /* READ */ {
2189                sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2190                    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2191                    MPI2_SGE_FLAGS_END_OF_LIST);
2192                sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2193                ioc->base_add_sg_single(psge, sgl_flags |
2194                    data_in_sz, data_in_dma);
2195        }
2196}
2197
2198/* IEEE format sgls */
2199
2200/**
2201 * _base_build_nvme_prp - This function is called for NVMe end devices to build
2202 *                        a native SGL (NVMe PRP).
2203 * @ioc: per adapter object
2204 * @smid: system request message index for getting asscociated SGL
2205 * @nvme_encap_request: the NVMe request msg frame pointer
2206 * @data_out_dma: physical address for WRITES
2207 * @data_out_sz: data xfer size for WRITES
2208 * @data_in_dma: physical address for READS
2209 * @data_in_sz: data xfer size for READS
2210 *
2211 * The native SGL is built starting in the first PRP
2212 * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
2213 * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
2214 * used to describe a larger data buffer.  If the data buffer is too large to
2215 * describe using the two PRP entriess inside the NVMe message, then PRP1
2216 * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2217 * list located elsewhere in memory to describe the remaining data memory
2218 * segments.  The PRP list will be contiguous.
2219 *
2220 * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
2221 * consists of a list of PRP entries to describe a number of noncontigous
2222 * physical memory segments as a single memory buffer, just as a SGL does.  Note
2223 * however, that this function is only used by the IOCTL call, so the memory
2224 * given will be guaranteed to be contiguous.  There is no need to translate
2225 * non-contiguous SGL into a PRP in this case.  All PRPs will describe
2226 * contiguous space that is one page size each.
2227 *
2228 * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
2229 * a PRP list pointer or a PRP element, depending upon the command.  PRP2
2230 * contains the second PRP element if the memory being described fits within 2
2231 * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2232 *
2233 * A PRP list pointer contains the address of a PRP list, structured as a linear
2234 * array of PRP entries.  Each PRP entry in this list describes a segment of
2235 * physical memory.
2236 *
2237 * Each 64-bit PRP entry comprises an address and an offset field.  The address
2238 * always points at the beginning of a 4KB physical memory page, and the offset
2239 * describes where within that 4KB page the memory segment begins.  Only the
2240 * first element in a PRP list may contain a non-zero offset, implying that all
2241 * memory segments following the first begin at the start of a 4KB page.
2242 *
2243 * Each PRP element normally describes 4KB of physical memory, with exceptions
2244 * for the first and last elements in the list.  If the memory being described
2245 * by the list begins at a non-zero offset within the first 4KB page, then the
2246 * first PRP element will contain a non-zero offset indicating where the region
2247 * begins within the 4KB page.  The last memory segment may end before the end
2248 * of the 4KB segment, depending upon the overall size of the memory being
2249 * described by the PRP list.
2250 *
2251 * Since PRP entries lack any indication of size, the overall data buffer length
2252 * is used to determine where the end of the data memory buffer is located, and
2253 * how many PRP entries are required to describe it.
2254 */
2255static void
2256_base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2257        Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2258        dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2259        size_t data_in_sz)
2260{
2261        int             prp_size = NVME_PRP_SIZE;
2262        __le64          *prp_entry, *prp1_entry, *prp2_entry;
2263        __le64          *prp_page;
2264        dma_addr_t      prp_entry_dma, prp_page_dma, dma_addr;
2265        u32             offset, entry_len;
2266        u32             page_mask_result, page_mask;
2267        size_t          length;
2268        struct mpt3sas_nvme_cmd *nvme_cmd =
2269                (void *)nvme_encap_request->NVMe_Command;
2270
2271        /*
2272         * Not all commands require a data transfer. If no data, just return
2273         * without constructing any PRP.
2274         */
2275        if (!data_in_sz && !data_out_sz)
2276                return;
2277        prp1_entry = &nvme_cmd->prp1;
2278        prp2_entry = &nvme_cmd->prp2;
2279        prp_entry = prp1_entry;
2280        /*
2281         * For the PRP entries, use the specially allocated buffer of
2282         * contiguous memory.
2283         */
2284        prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2285        prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2286
2287        /*
2288         * Check if we are within 1 entry of a page boundary we don't
2289         * want our first entry to be a PRP List entry.
2290         */
2291        page_mask = ioc->page_size - 1;
2292        page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2293        if (!page_mask_result) {
2294                /* Bump up to next page boundary. */
2295                prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2296                prp_page_dma = prp_page_dma + prp_size;
2297        }
2298
2299        /*
2300         * Set PRP physical pointer, which initially points to the current PRP
2301         * DMA memory page.
2302         */
2303        prp_entry_dma = prp_page_dma;
2304
2305        /* Get physical address and length of the data buffer. */
2306        if (data_in_sz) {
2307                dma_addr = data_in_dma;
2308                length = data_in_sz;
2309        } else {
2310                dma_addr = data_out_dma;
2311                length = data_out_sz;
2312        }
2313
2314        /* Loop while the length is not zero. */
2315        while (length) {
2316                /*
2317                 * Check if we need to put a list pointer here if we are at
2318                 * page boundary - prp_size (8 bytes).
2319                 */
2320                page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2321                if (!page_mask_result) {
2322                        /*
2323                         * This is the last entry in a PRP List, so we need to
2324                         * put a PRP list pointer here.  What this does is:
2325                         *   - bump the current memory pointer to the next
2326                         *     address, which will be the next full page.
2327                         *   - set the PRP Entry to point to that page.  This
2328                         *     is now the PRP List pointer.
2329                         *   - bump the PRP Entry pointer the start of the
2330                         *     next page.  Since all of this PRP memory is
2331                         *     contiguous, no need to get a new page - it's
2332                         *     just the next address.
2333                         */
2334                        prp_entry_dma++;
2335                        *prp_entry = cpu_to_le64(prp_entry_dma);
2336                        prp_entry++;
2337                }
2338
2339                /* Need to handle if entry will be part of a page. */
2340                offset = dma_addr & page_mask;
2341                entry_len = ioc->page_size - offset;
2342
2343                if (prp_entry == prp1_entry) {
2344                        /*
2345                         * Must fill in the first PRP pointer (PRP1) before
2346                         * moving on.
2347                         */
2348                        *prp1_entry = cpu_to_le64(dma_addr);
2349
2350                        /*
2351                         * Now point to the second PRP entry within the
2352                         * command (PRP2).
2353                         */
2354                        prp_entry = prp2_entry;
2355                } else if (prp_entry == prp2_entry) {
2356                        /*
2357                         * Should the PRP2 entry be a PRP List pointer or just
2358                         * a regular PRP pointer?  If there is more than one
2359                         * more page of data, must use a PRP List pointer.
2360                         */
2361                        if (length > ioc->page_size) {
2362                                /*
2363                                 * PRP2 will contain a PRP List pointer because
2364                                 * more PRP's are needed with this command. The
2365                                 * list will start at the beginning of the
2366                                 * contiguous buffer.
2367                                 */
2368                                *prp2_entry = cpu_to_le64(prp_entry_dma);
2369
2370                                /*
2371                                 * The next PRP Entry will be the start of the
2372                                 * first PRP List.
2373                                 */
2374                                prp_entry = prp_page;
2375                        } else {
2376                                /*
2377                                 * After this, the PRP Entries are complete.
2378                                 * This command uses 2 PRP's and no PRP list.
2379                                 */
2380                                *prp2_entry = cpu_to_le64(dma_addr);
2381                        }
2382                } else {
2383                        /*
2384                         * Put entry in list and bump the addresses.
2385                         *
2386                         * After PRP1 and PRP2 are filled in, this will fill in
2387                         * all remaining PRP entries in a PRP List, one per
2388                         * each time through the loop.
2389                         */
2390                        *prp_entry = cpu_to_le64(dma_addr);
2391                        prp_entry++;
2392                        prp_entry_dma++;
2393                }
2394
2395                /*
2396                 * Bump the phys address of the command's data buffer by the
2397                 * entry_len.
2398                 */
2399                dma_addr += entry_len;
2400
2401                /* Decrement length accounting for last partial page. */
2402                if (entry_len > length)
2403                        length = 0;
2404                else
2405                        length -= entry_len;
2406        }
2407}
2408
2409/**
2410 * base_make_prp_nvme - Prepare PRPs (Physical Region Page) -
2411 *                      SGLs specific to NVMe drives only
2412 *
2413 * @ioc:                per adapter object
2414 * @scmd:               SCSI command from the mid-layer
2415 * @mpi_request:        mpi request
2416 * @smid:               msg Index
2417 * @sge_count:          scatter gather element count.
2418 *
2419 * Return:              true: PRPs are built
2420 *                      false: IEEE SGLs needs to be built
2421 */
2422static void
2423base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2424                struct scsi_cmnd *scmd,
2425                Mpi25SCSIIORequest_t *mpi_request,
2426                u16 smid, int sge_count)
2427{
2428        int sge_len, num_prp_in_chain = 0;
2429        Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2430        __le64 *curr_buff;
2431        dma_addr_t msg_dma, sge_addr, offset;
2432        u32 page_mask, page_mask_result;
2433        struct scatterlist *sg_scmd;
2434        u32 first_prp_len;
2435        int data_len = scsi_bufflen(scmd);
2436        u32 nvme_pg_size;
2437
2438        nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2439        /*
2440         * Nvme has a very convoluted prp format.  One prp is required
2441         * for each page or partial page. Driver need to split up OS sg_list
2442         * entries if it is longer than one page or cross a page
2443         * boundary.  Driver also have to insert a PRP list pointer entry as
2444         * the last entry in each physical page of the PRP list.
2445         *
2446         * NOTE: The first PRP "entry" is actually placed in the first
2447         * SGL entry in the main message as IEEE 64 format.  The 2nd
2448         * entry in the main message is the chain element, and the rest
2449         * of the PRP entries are built in the contiguous pcie buffer.
2450         */
2451        page_mask = nvme_pg_size - 1;
2452
2453        /*
2454         * Native SGL is needed.
2455         * Put a chain element in main message frame that points to the first
2456         * chain buffer.
2457         *
2458         * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2459         *        a native SGL.
2460         */
2461
2462        /* Set main message chain element pointer */
2463        main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2464        /*
2465         * For NVMe the chain element needs to be the 2nd SG entry in the main
2466         * message.
2467         */
2468        main_chain_element = (Mpi25IeeeSgeChain64_t *)
2469                ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2470
2471        /*
2472         * For the PRP entries, use the specially allocated buffer of
2473         * contiguous memory.  Normal chain buffers can't be used
2474         * because each chain buffer would need to be the size of an OS
2475         * page (4k).
2476         */
2477        curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2478        msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2479
2480        main_chain_element->Address = cpu_to_le64(msg_dma);
2481        main_chain_element->NextChainOffset = 0;
2482        main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2483                        MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2484                        MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2485
2486        /* Build first prp, sge need not to be page aligned*/
2487        ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2488        sg_scmd = scsi_sglist(scmd);
2489        sge_addr = sg_dma_address(sg_scmd);
2490        sge_len = sg_dma_len(sg_scmd);
2491
2492        offset = sge_addr & page_mask;
2493        first_prp_len = nvme_pg_size - offset;
2494
2495        ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2496        ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2497
2498        data_len -= first_prp_len;
2499
2500        if (sge_len > first_prp_len) {
2501                sge_addr += first_prp_len;
2502                sge_len -= first_prp_len;
2503        } else if (data_len && (sge_len == first_prp_len)) {
2504                sg_scmd = sg_next(sg_scmd);
2505                sge_addr = sg_dma_address(sg_scmd);
2506                sge_len = sg_dma_len(sg_scmd);
2507        }
2508
2509        for (;;) {
2510                offset = sge_addr & page_mask;
2511
2512                /* Put PRP pointer due to page boundary*/
2513                page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2514                if (unlikely(!page_mask_result)) {
2515                        scmd_printk(KERN_NOTICE,
2516                                scmd, "page boundary curr_buff: 0x%p\n",
2517                                curr_buff);
2518                        msg_dma += 8;
2519                        *curr_buff = cpu_to_le64(msg_dma);
2520                        curr_buff++;
2521                        num_prp_in_chain++;
2522                }
2523
2524                *curr_buff = cpu_to_le64(sge_addr);
2525                curr_buff++;
2526                msg_dma += 8;
2527                num_prp_in_chain++;
2528
2529                sge_addr += nvme_pg_size;
2530                sge_len -= nvme_pg_size;
2531                data_len -= nvme_pg_size;
2532
2533                if (data_len <= 0)
2534                        break;
2535
2536                if (sge_len > 0)
2537                        continue;
2538
2539                sg_scmd = sg_next(sg_scmd);
2540                sge_addr = sg_dma_address(sg_scmd);
2541                sge_len = sg_dma_len(sg_scmd);
2542        }
2543
2544        main_chain_element->Length =
2545                cpu_to_le32(num_prp_in_chain * sizeof(u64));
2546        return;
2547}
2548
2549static bool
2550base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2551        struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2552{
2553        u32 data_length = 0;
2554        bool build_prp = true;
2555
2556        data_length = scsi_bufflen(scmd);
2557        if (pcie_device &&
2558            (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2559                build_prp = false;
2560                return build_prp;
2561        }
2562
2563        /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2564         * we built IEEE SGL
2565         */
2566        if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2567                build_prp = false;
2568
2569        return build_prp;
2570}
2571
2572/**
2573 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2574 * determine if the driver needs to build a native SGL.  If so, that native
2575 * SGL is built in the special contiguous buffers allocated especially for
2576 * PCIe SGL creation.  If the driver will not build a native SGL, return
2577 * TRUE and a normal IEEE SGL will be built.  Currently this routine
2578 * supports NVMe.
2579 * @ioc: per adapter object
2580 * @mpi_request: mf request pointer
2581 * @smid: system request message index
2582 * @scmd: scsi command
2583 * @pcie_device: points to the PCIe device's info
2584 *
2585 * Return: 0 if native SGL was built, 1 if no SGL was built
2586 */
2587static int
2588_base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2589        Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2590        struct _pcie_device *pcie_device)
2591{
2592        int sges_left;
2593
2594        /* Get the SG list pointer and info. */
2595        sges_left = scsi_dma_map(scmd);
2596        if (sges_left < 0) {
2597                sdev_printk(KERN_ERR, scmd->device,
2598                        "scsi_dma_map failed: request for %d bytes!\n",
2599                        scsi_bufflen(scmd));
2600                return 1;
2601        }
2602
2603        /* Check if we need to build a native SG list. */
2604        if (!base_is_prp_possible(ioc, pcie_device,
2605                                scmd, sges_left)) {
2606                /* We built a native SG list, just return. */
2607                goto out;
2608        }
2609
2610        /*
2611         * Build native NVMe PRP.
2612         */
2613        base_make_prp_nvme(ioc, scmd, mpi_request,
2614                        smid, sges_left);
2615
2616        return 0;
2617out:
2618        scsi_dma_unmap(scmd);
2619        return 1;
2620}
2621
2622/**
2623 * _base_add_sg_single_ieee - add sg element for IEEE format
2624 * @paddr: virtual address for SGE
2625 * @flags: SGE flags
2626 * @chain_offset: number of 128 byte elements from start of segment
2627 * @length: data transfer length
2628 * @dma_addr: Physical address
2629 */
2630static void
2631_base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2632        dma_addr_t dma_addr)
2633{
2634        Mpi25IeeeSgeChain64_t *sgel = paddr;
2635
2636        sgel->Flags = flags;
2637        sgel->NextChainOffset = chain_offset;
2638        sgel->Length = cpu_to_le32(length);
2639        sgel->Address = cpu_to_le64(dma_addr);
2640}
2641
2642/**
2643 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2644 * @ioc: per adapter object
2645 * @paddr: virtual address for SGE
2646 *
2647 * Create a zero length scatter gather entry to insure the IOCs hardware has
2648 * something to use if the target device goes brain dead and tries
2649 * to send data even when none is asked for.
2650 */
2651static void
2652_base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2653{
2654        u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2655                MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2656                MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2657
2658        _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2659}
2660
2661/**
2662 * _base_build_sg_scmd - main sg creation routine
2663 *              pcie_device is unused here!
2664 * @ioc: per adapter object
2665 * @scmd: scsi command
2666 * @smid: system request message index
2667 * @unused: unused pcie_device pointer
2668 * Context: none.
2669 *
2670 * The main routine that builds scatter gather table from a given
2671 * scsi request sent via the .queuecommand main handler.
2672 *
2673 * Return: 0 success, anything else error
2674 */
2675static int
2676_base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2677        struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2678{
2679        Mpi2SCSIIORequest_t *mpi_request;
2680        dma_addr_t chain_dma;
2681        struct scatterlist *sg_scmd;
2682        void *sg_local, *chain;
2683        u32 chain_offset;
2684        u32 chain_length;
2685        u32 chain_flags;
2686        int sges_left;
2687        u32 sges_in_segment;
2688        u32 sgl_flags;
2689        u32 sgl_flags_last_element;
2690        u32 sgl_flags_end_buffer;
2691        struct chain_tracker *chain_req;
2692
2693        mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2694
2695        /* init scatter gather flags */
2696        sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2697        if (scmd->sc_data_direction == DMA_TO_DEVICE)
2698                sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2699        sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2700            << MPI2_SGE_FLAGS_SHIFT;
2701        sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2702            MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2703            << MPI2_SGE_FLAGS_SHIFT;
2704        sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2705
2706        sg_scmd = scsi_sglist(scmd);
2707        sges_left = scsi_dma_map(scmd);
2708        if (sges_left < 0) {
2709                sdev_printk(KERN_ERR, scmd->device,
2710                 "scsi_dma_map failed: request for %d bytes!\n",
2711                 scsi_bufflen(scmd));
2712                return -ENOMEM;
2713        }
2714
2715        sg_local = &mpi_request->SGL;
2716        sges_in_segment = ioc->max_sges_in_main_message;
2717        if (sges_left <= sges_in_segment)
2718                goto fill_in_last_segment;
2719
2720        mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2721            (sges_in_segment * ioc->sge_size))/4;
2722
2723        /* fill in main message segment when there is a chain following */
2724        while (sges_in_segment) {
2725                if (sges_in_segment == 1)
2726                        ioc->base_add_sg_single(sg_local,
2727                            sgl_flags_last_element | sg_dma_len(sg_scmd),
2728                            sg_dma_address(sg_scmd));
2729                else
2730                        ioc->base_add_sg_single(sg_local, sgl_flags |
2731                            sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2732                sg_scmd = sg_next(sg_scmd);
2733                sg_local += ioc->sge_size;
2734                sges_left--;
2735                sges_in_segment--;
2736        }
2737
2738        /* initializing the chain flags and pointers */
2739        chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2740        chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2741        if (!chain_req)
2742                return -1;
2743        chain = chain_req->chain_buffer;
2744        chain_dma = chain_req->chain_buffer_dma;
2745        do {
2746                sges_in_segment = (sges_left <=
2747                    ioc->max_sges_in_chain_message) ? sges_left :
2748                    ioc->max_sges_in_chain_message;
2749                chain_offset = (sges_left == sges_in_segment) ?
2750                    0 : (sges_in_segment * ioc->sge_size)/4;
2751                chain_length = sges_in_segment * ioc->sge_size;
2752                if (chain_offset) {
2753                        chain_offset = chain_offset <<
2754                            MPI2_SGE_CHAIN_OFFSET_SHIFT;
2755                        chain_length += ioc->sge_size;
2756                }
2757                ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2758                    chain_length, chain_dma);
2759                sg_local = chain;
2760                if (!chain_offset)
2761                        goto fill_in_last_segment;
2762
2763                /* fill in chain segments */
2764                while (sges_in_segment) {
2765                        if (sges_in_segment == 1)
2766                                ioc->base_add_sg_single(sg_local,
2767                                    sgl_flags_last_element |
2768                                    sg_dma_len(sg_scmd),
2769                                    sg_dma_address(sg_scmd));
2770                        else
2771                                ioc->base_add_sg_single(sg_local, sgl_flags |
2772                                    sg_dma_len(sg_scmd),
2773                                    sg_dma_address(sg_scmd));
2774                        sg_scmd = sg_next(sg_scmd);
2775                        sg_local += ioc->sge_size;
2776                        sges_left--;
2777                        sges_in_segment--;
2778                }
2779
2780                chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2781                if (!chain_req)
2782                        return -1;
2783                chain = chain_req->chain_buffer;
2784                chain_dma = chain_req->chain_buffer_dma;
2785        } while (1);
2786
2787
2788 fill_in_last_segment:
2789
2790        /* fill the last segment */
2791        while (sges_left) {
2792                if (sges_left == 1)
2793                        ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2794                            sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2795                else
2796                        ioc->base_add_sg_single(sg_local, sgl_flags |
2797                            sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2798                sg_scmd = sg_next(sg_scmd);
2799                sg_local += ioc->sge_size;
2800                sges_left--;
2801        }
2802
2803        return 0;
2804}
2805
2806/**
2807 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2808 * @ioc: per adapter object
2809 * @scmd: scsi command
2810 * @smid: system request message index
2811 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2812 * constructed on need.
2813 * Context: none.
2814 *
2815 * The main routine that builds scatter gather table from a given
2816 * scsi request sent via the .queuecommand main handler.
2817 *
2818 * Return: 0 success, anything else error
2819 */
2820static int
2821_base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2822        struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2823{
2824        Mpi25SCSIIORequest_t *mpi_request;
2825        dma_addr_t chain_dma;
2826        struct scatterlist *sg_scmd;
2827        void *sg_local, *chain;
2828        u32 chain_offset;
2829        u32 chain_length;
2830        int sges_left;
2831        u32 sges_in_segment;
2832        u8 simple_sgl_flags;
2833        u8 simple_sgl_flags_last;
2834        u8 chain_sgl_flags;
2835        struct chain_tracker *chain_req;
2836
2837        mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2838
2839        /* init scatter gather flags */
2840        simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2841            MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2842        simple_sgl_flags_last = simple_sgl_flags |
2843            MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2844        chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2845            MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2846
2847        /* Check if we need to build a native SG list. */
2848        if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2849                        smid, scmd, pcie_device) == 0)) {
2850                /* We built a native SG list, just return. */
2851                return 0;
2852        }
2853
2854        sg_scmd = scsi_sglist(scmd);
2855        sges_left = scsi_dma_map(scmd);
2856        if (sges_left < 0) {
2857                sdev_printk(KERN_ERR, scmd->device,
2858                        "scsi_dma_map failed: request for %d bytes!\n",
2859                        scsi_bufflen(scmd));
2860                return -ENOMEM;
2861        }
2862
2863        sg_local = &mpi_request->SGL;
2864        sges_in_segment = (ioc->request_sz -
2865                   offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2866        if (sges_left <= sges_in_segment)
2867                goto fill_in_last_segment;
2868
2869        mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2870            (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2871
2872        /* fill in main message segment when there is a chain following */
2873        while (sges_in_segment > 1) {
2874                _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2875                    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2876                sg_scmd = sg_next(sg_scmd);
2877                sg_local += ioc->sge_size_ieee;
2878                sges_left--;
2879                sges_in_segment--;
2880        }
2881
2882        /* initializing the pointers */
2883        chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2884        if (!chain_req)
2885                return -1;
2886        chain = chain_req->chain_buffer;
2887        chain_dma = chain_req->chain_buffer_dma;
2888        do {
2889                sges_in_segment = (sges_left <=
2890                    ioc->max_sges_in_chain_message) ? sges_left :
2891                    ioc->max_sges_in_chain_message;
2892                chain_offset = (sges_left == sges_in_segment) ?
2893                    0 : sges_in_segment;
2894                chain_length = sges_in_segment * ioc->sge_size_ieee;
2895                if (chain_offset)
2896                        chain_length += ioc->sge_size_ieee;
2897                _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2898                    chain_offset, chain_length, chain_dma);
2899
2900                sg_local = chain;
2901                if (!chain_offset)
2902                        goto fill_in_last_segment;
2903
2904                /* fill in chain segments */
2905                while (sges_in_segment) {
2906                        _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2907                            sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2908                        sg_scmd = sg_next(sg_scmd);
2909                        sg_local += ioc->sge_size_ieee;
2910                        sges_left--;
2911                        sges_in_segment--;
2912                }
2913
2914                chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2915                if (!chain_req)
2916                        return -1;
2917                chain = chain_req->chain_buffer;
2918                chain_dma = chain_req->chain_buffer_dma;
2919        } while (1);
2920
2921
2922 fill_in_last_segment:
2923
2924        /* fill the last segment */
2925        while (sges_left > 0) {
2926                if (sges_left == 1)
2927                        _base_add_sg_single_ieee(sg_local,
2928                            simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2929                            sg_dma_address(sg_scmd));
2930                else
2931                        _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2932                            sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2933                sg_scmd = sg_next(sg_scmd);
2934                sg_local += ioc->sge_size_ieee;
2935                sges_left--;
2936        }
2937
2938        return 0;
2939}
2940
2941/**
2942 * _base_build_sg_ieee - build generic sg for IEEE format
2943 * @ioc: per adapter object
2944 * @psge: virtual address for SGE
2945 * @data_out_dma: physical address for WRITES
2946 * @data_out_sz: data xfer size for WRITES
2947 * @data_in_dma: physical address for READS
2948 * @data_in_sz: data xfer size for READS
2949 */
2950static void
2951_base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2952        dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2953        size_t data_in_sz)
2954{
2955        u8 sgl_flags;
2956
2957        if (!data_out_sz && !data_in_sz) {
2958                _base_build_zero_len_sge_ieee(ioc, psge);
2959                return;
2960        }
2961
2962        if (data_out_sz && data_in_sz) {
2963                /* WRITE sgel first */
2964                sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2965                    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2966                _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2967                    data_out_dma);
2968
2969                /* incr sgel */
2970                psge += ioc->sge_size_ieee;
2971
2972                /* READ sgel last */
2973                sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2974                _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2975                    data_in_dma);
2976        } else if (data_out_sz) /* WRITE */ {
2977                sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2978                    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2979                    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2980                _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2981                    data_out_dma);
2982        } else if (data_in_sz) /* READ */ {
2983                sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2984                    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2985                    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2986                _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2987                    data_in_dma);
2988        }
2989}
2990
2991#define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2992
2993/**
2994 * _base_config_dma_addressing - set dma addressing
2995 * @ioc: per adapter object
2996 * @pdev: PCI device struct
2997 *
2998 * Return: 0 for success, non-zero for failure.
2999 */
3000static int
3001_base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
3002{
3003        struct sysinfo s;
3004
3005        if (ioc->is_mcpu_endpoint ||
3006            sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma ||
3007            dma_get_required_mask(&pdev->dev) <= 32)
3008                ioc->dma_mask = 32;
3009        /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
3010        else if (ioc->hba_mpi_version_belonged > MPI2_VERSION)
3011                ioc->dma_mask = 63;
3012        else
3013                ioc->dma_mask = 64;
3014
3015        if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)) ||
3016            dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)))
3017                return -ENODEV;
3018
3019        if (ioc->dma_mask > 32) {
3020                ioc->base_add_sg_single = &_base_add_sg_single_64;
3021                ioc->sge_size = sizeof(Mpi2SGESimple64_t);
3022        } else {
3023                ioc->base_add_sg_single = &_base_add_sg_single_32;
3024                ioc->sge_size = sizeof(Mpi2SGESimple32_t);
3025        }
3026
3027        si_meminfo(&s);
3028        ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
3029                ioc->dma_mask, convert_to_kb(s.totalram));
3030
3031        return 0;
3032}
3033
3034/**
3035 * _base_check_enable_msix - checks MSIX capabable.
3036 * @ioc: per adapter object
3037 *
3038 * Check to see if card is capable of MSIX, and set number
3039 * of available msix vectors
3040 */
3041static int
3042_base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3043{
3044        int base;
3045        u16 message_control;
3046
3047        /* Check whether controller SAS2008 B0 controller,
3048         * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
3049         */
3050        if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
3051            ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
3052                return -EINVAL;
3053        }
3054
3055        base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
3056        if (!base) {
3057                dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
3058                return -EINVAL;
3059        }
3060
3061        /* get msix vector count */
3062        /* NUMA_IO not supported for older controllers */
3063        if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
3064            ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
3065            ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
3066            ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
3067            ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
3068            ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
3069            ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
3070                ioc->msix_vector_count = 1;
3071        else {
3072                pci_read_config_word(ioc->pdev, base + 2, &message_control);
3073                ioc->msix_vector_count = (message_control & 0x3FF) + 1;
3074        }
3075        dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
3076                                  ioc->msix_vector_count));
3077        return 0;
3078}
3079
3080/**
3081 * mpt3sas_base_free_irq - free irq
3082 * @ioc: per adapter object
3083 *
3084 * Freeing respective reply_queue from the list.
3085 */
3086void
3087mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
3088{
3089        struct adapter_reply_queue *reply_q, *next;
3090
3091        if (list_empty(&ioc->reply_queue_list))
3092                return;
3093
3094        list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
3095                list_del(&reply_q->list);
3096                if (reply_q->is_iouring_poll_q) {
3097                        kfree(reply_q);
3098                        continue;
3099                }
3100
3101                if (ioc->smp_affinity_enable)
3102                        irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
3103                            reply_q->msix_index), NULL);
3104                free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
3105                         reply_q);
3106                kfree(reply_q);
3107        }
3108}
3109
3110/**
3111 * _base_request_irq - request irq
3112 * @ioc: per adapter object
3113 * @index: msix index into vector table
3114 *
3115 * Inserting respective reply_queue into the list.
3116 */
3117static int
3118_base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
3119{
3120        struct pci_dev *pdev = ioc->pdev;
3121        struct adapter_reply_queue *reply_q;
3122        int r, qid;
3123
3124        reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
3125        if (!reply_q) {
3126                ioc_err(ioc, "unable to allocate memory %zu!\n",
3127                        sizeof(struct adapter_reply_queue));
3128                return -ENOMEM;
3129        }
3130        reply_q->ioc = ioc;
3131        reply_q->msix_index = index;
3132
3133        atomic_set(&reply_q->busy, 0);
3134
3135        if (index >= ioc->iopoll_q_start_index) {
3136                qid = index - ioc->iopoll_q_start_index;
3137                snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-mq-poll%d",
3138                    ioc->driver_name, ioc->id, qid);
3139                reply_q->is_iouring_poll_q = 1;
3140                ioc->io_uring_poll_queues[qid].reply_q = reply_q;
3141                goto out;
3142        }
3143
3144
3145        if (ioc->msix_enable)
3146                snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
3147                    ioc->driver_name, ioc->id, index);
3148        else
3149                snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
3150                    ioc->driver_name, ioc->id);
3151        r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
3152                        IRQF_SHARED, reply_q->name, reply_q);
3153        if (r) {
3154                pr_err("%s: unable to allocate interrupt %d!\n",
3155                       reply_q->name, pci_irq_vector(pdev, index));
3156                kfree(reply_q);
3157                return -EBUSY;
3158        }
3159out:
3160        INIT_LIST_HEAD(&reply_q->list);
3161        list_add_tail(&reply_q->list, &ioc->reply_queue_list);
3162        return 0;
3163}
3164
3165/**
3166 * _base_assign_reply_queues - assigning msix index for each cpu
3167 * @ioc: per adapter object
3168 *
3169 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
3170 *
3171 * It would nice if we could call irq_set_affinity, however it is not
3172 * an exported symbol
3173 */
3174static void
3175_base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
3176{
3177        unsigned int cpu, nr_cpus, nr_msix, index = 0;
3178        struct adapter_reply_queue *reply_q;
3179        int local_numa_node;
3180        int iopoll_q_count = ioc->reply_queue_count -
3181            ioc->iopoll_q_start_index;
3182
3183        if (!_base_is_controller_msix_enabled(ioc))
3184                return;
3185
3186        if (ioc->msix_load_balance)
3187                return;
3188
3189        memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
3190
3191        nr_cpus = num_online_cpus();
3192        nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3193                                               ioc->facts.MaxMSIxVectors);
3194        if (!nr_msix)
3195                return;
3196
3197        if (ioc->smp_affinity_enable) {
3198
3199                /*
3200                 * set irq affinity to local numa node for those irqs
3201                 * corresponding to high iops queues.
3202                 */
3203                if (ioc->high_iops_queues) {
3204                        local_numa_node = dev_to_node(&ioc->pdev->dev);
3205                        for (index = 0; index < ioc->high_iops_queues;
3206                            index++) {
3207                                irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
3208                                    index), cpumask_of_node(local_numa_node));
3209                        }
3210                }
3211
3212                list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3213                        const cpumask_t *mask;
3214
3215                        if (reply_q->msix_index < ioc->high_iops_queues ||
3216                            reply_q->msix_index >= ioc->iopoll_q_start_index)
3217                                continue;
3218
3219                        mask = pci_irq_get_affinity(ioc->pdev,
3220                            reply_q->msix_index);
3221                        if (!mask) {
3222                                ioc_warn(ioc, "no affinity for msi %x\n",
3223                                         reply_q->msix_index);
3224                                goto fall_back;
3225                        }
3226
3227                        for_each_cpu_and(cpu, mask, cpu_online_mask) {
3228                                if (cpu >= ioc->cpu_msix_table_sz)
3229                                        break;
3230                                ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3231                        }
3232                }
3233                return;
3234        }
3235
3236fall_back:
3237        cpu = cpumask_first(cpu_online_mask);
3238        nr_msix -= (ioc->high_iops_queues - iopoll_q_count);
3239        index = 0;
3240
3241        list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3242                unsigned int i, group = nr_cpus / nr_msix;
3243
3244                if (reply_q->msix_index < ioc->high_iops_queues ||
3245                    reply_q->msix_index >= ioc->iopoll_q_start_index)
3246                        continue;
3247
3248                if (cpu >= nr_cpus)
3249                        break;
3250
3251                if (index < nr_cpus % nr_msix)
3252                        group++;
3253
3254                for (i = 0 ; i < group ; i++) {
3255                        ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3256                        cpu = cpumask_next(cpu, cpu_online_mask);
3257                }
3258                index++;
3259        }
3260}
3261
3262/**
3263 * _base_check_and_enable_high_iops_queues - enable high iops mode
3264 * @ioc: per adapter object
3265 * @hba_msix_vector_count: msix vectors supported by HBA
3266 *
3267 * Enable high iops queues only if
3268 *  - HBA is a SEA/AERO controller and
3269 *  - MSI-Xs vector supported by the HBA is 128 and
3270 *  - total CPU count in the system >=16 and
3271 *  - loaded driver with default max_msix_vectors module parameter and
3272 *  - system booted in non kdump mode
3273 *
3274 * Return: nothing.
3275 */
3276static void
3277_base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3278                int hba_msix_vector_count)
3279{
3280        u16 lnksta, speed;
3281
3282        /*
3283         * Disable high iops queues if io uring poll queues are enabled.
3284         */
3285        if (perf_mode == MPT_PERF_MODE_IOPS ||
3286            perf_mode == MPT_PERF_MODE_LATENCY ||
3287            ioc->io_uring_poll_queues) {
3288                ioc->high_iops_queues = 0;
3289                return;
3290        }
3291
3292        if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3293
3294                pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3295                speed = lnksta & PCI_EXP_LNKSTA_CLS;
3296
3297                if (speed < 0x4) {
3298                        ioc->high_iops_queues = 0;
3299                        return;
3300                }
3301        }
3302
3303        if (!reset_devices && ioc->is_aero_ioc &&
3304            hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3305            num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3306            max_msix_vectors == -1)
3307                ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3308        else
3309                ioc->high_iops_queues = 0;
3310}
3311
3312/**
3313 * mpt3sas_base_disable_msix - disables msix
3314 * @ioc: per adapter object
3315 *
3316 */
3317void
3318mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3319{
3320        if (!ioc->msix_enable)
3321                return;
3322        pci_free_irq_vectors(ioc->pdev);
3323        ioc->msix_enable = 0;
3324        kfree(ioc->io_uring_poll_queues);
3325}
3326
3327/**
3328 * _base_alloc_irq_vectors - allocate msix vectors
3329 * @ioc: per adapter object
3330 *
3331 */
3332static int
3333_base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3334{
3335        int i, irq_flags = PCI_IRQ_MSIX;
3336        struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3337        struct irq_affinity *descp = &desc;
3338        /*
3339         * Don't allocate msix vectors for poll_queues.
3340         * msix_vectors is always within a range of FW supported reply queue.
3341         */
3342        int nr_msix_vectors = ioc->iopoll_q_start_index;
3343
3344
3345        if (ioc->smp_affinity_enable)
3346                irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES;
3347        else
3348                descp = NULL;
3349
3350        ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues,
3351            ioc->reply_queue_count, nr_msix_vectors);
3352
3353        i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3354            ioc->high_iops_queues,
3355            nr_msix_vectors, irq_flags, descp);
3356
3357        return i;
3358}
3359
3360/**
3361 * _base_enable_msix - enables msix, failback to io_apic
3362 * @ioc: per adapter object
3363 *
3364 */
3365static int
3366_base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3367{
3368        int r;
3369        int i, local_max_msix_vectors;
3370        u8 try_msix = 0;
3371        int iopoll_q_count = 0;
3372
3373        ioc->msix_load_balance = false;
3374
3375        if (msix_disable == -1 || msix_disable == 0)
3376                try_msix = 1;
3377
3378        if (!try_msix)
3379                goto try_ioapic;
3380
3381        if (_base_check_enable_msix(ioc) != 0)
3382                goto try_ioapic;
3383
3384        ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3385        pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3386                ioc->cpu_count, max_msix_vectors);
3387
3388        ioc->reply_queue_count =
3389                min_t(int, ioc->cpu_count, ioc->msix_vector_count);
3390
3391        if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3392                local_max_msix_vectors = (reset_devices) ? 1 : 8;
3393        else
3394                local_max_msix_vectors = max_msix_vectors;
3395
3396        if (local_max_msix_vectors == 0)
3397                goto try_ioapic;
3398
3399        /*
3400         * Enable msix_load_balance only if combined reply queue mode is
3401         * disabled on SAS3 & above generation HBA devices.
3402         */
3403        if (!ioc->combined_reply_queue &&
3404            ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3405                ioc_info(ioc,
3406                    "combined ReplyQueue is off, Enabling msix load balance\n");
3407                ioc->msix_load_balance = true;
3408        }
3409
3410        /*
3411         * smp affinity setting is not need when msix load balance
3412         * is enabled.
3413         */
3414        if (ioc->msix_load_balance)
3415                ioc->smp_affinity_enable = 0;
3416
3417        if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1)
3418                ioc->shost->host_tagset = 0;
3419
3420        /*
3421         * Enable io uring poll queues only if host_tagset is enabled.
3422         */
3423        if (ioc->shost->host_tagset)
3424                iopoll_q_count = poll_queues;
3425
3426        if (iopoll_q_count) {
3427                ioc->io_uring_poll_queues = kcalloc(iopoll_q_count,
3428                    sizeof(struct io_uring_poll_queue), GFP_KERNEL);
3429                if (!ioc->io_uring_poll_queues)
3430                        iopoll_q_count = 0;
3431        }
3432
3433        if (ioc->is_aero_ioc)
3434                _base_check_and_enable_high_iops_queues(ioc,
3435                    ioc->msix_vector_count);
3436
3437        /*
3438         * Add high iops queues count to reply queue count if high iops queues
3439         * are enabled.
3440         */
3441        ioc->reply_queue_count = min_t(int,
3442            ioc->reply_queue_count + ioc->high_iops_queues,
3443            ioc->msix_vector_count);
3444
3445        /*
3446         * Adjust the reply queue count incase reply queue count
3447         * exceeds the user provided MSIx vectors count.
3448         */
3449        if (local_max_msix_vectors > 0)
3450                ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3451                    ioc->reply_queue_count);
3452        /*
3453         * Add io uring poll queues count to reply queues count
3454         * if io uring is enabled in driver.
3455         */
3456        if (iopoll_q_count) {
3457                if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS))
3458                        iopoll_q_count = 0;
3459                ioc->reply_queue_count = min_t(int,
3460                    ioc->reply_queue_count + iopoll_q_count,
3461                    ioc->msix_vector_count);
3462        }
3463
3464        /*
3465         * Starting index of io uring poll queues in reply queue list.
3466         */
3467        ioc->iopoll_q_start_index =
3468            ioc->reply_queue_count - iopoll_q_count;
3469
3470        r = _base_alloc_irq_vectors(ioc);
3471        if (r < 0) {
3472                ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3473                goto try_ioapic;
3474        }
3475
3476        /*
3477         * Adjust the reply queue count if the allocated
3478         * MSIx vectors is less then the requested number
3479         * of MSIx vectors.
3480         */
3481        if (r < ioc->iopoll_q_start_index) {
3482                ioc->reply_queue_count = r + iopoll_q_count;
3483                ioc->iopoll_q_start_index =
3484                    ioc->reply_queue_count - iopoll_q_count;
3485        }
3486
3487        ioc->msix_enable = 1;
3488        for (i = 0; i < ioc->reply_queue_count; i++) {
3489                r = _base_request_irq(ioc, i);
3490                if (r) {
3491                        mpt3sas_base_free_irq(ioc);
3492                        mpt3sas_base_disable_msix(ioc);
3493                        goto try_ioapic;
3494                }
3495        }
3496
3497        ioc_info(ioc, "High IOPs queues : %s\n",
3498                        ioc->high_iops_queues ? "enabled" : "disabled");
3499
3500        return 0;
3501
3502/* failback to io_apic interrupt routing */
3503 try_ioapic:
3504        ioc->high_iops_queues = 0;
3505        ioc_info(ioc, "High IOPs queues : disabled\n");
3506        ioc->reply_queue_count = 1;
3507        ioc->iopoll_q_start_index = ioc->reply_queue_count - 0;
3508        r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3509        if (r < 0) {
3510                dfailprintk(ioc,
3511                            ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3512                                     r));
3513        } else
3514                r = _base_request_irq(ioc, 0);
3515
3516        return r;
3517}
3518
3519/**
3520 * mpt3sas_base_unmap_resources - free controller resources
3521 * @ioc: per adapter object
3522 */
3523static void
3524mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3525{
3526        struct pci_dev *pdev = ioc->pdev;
3527
3528        dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3529
3530        mpt3sas_base_free_irq(ioc);
3531        mpt3sas_base_disable_msix(ioc);
3532
3533        kfree(ioc->replyPostRegisterIndex);
3534        ioc->replyPostRegisterIndex = NULL;
3535
3536
3537        if (ioc->chip_phys) {
3538                iounmap(ioc->chip);
3539                ioc->chip_phys = 0;
3540        }
3541
3542        if (pci_is_enabled(pdev)) {
3543                pci_release_selected_regions(ioc->pdev, ioc->bars);
3544                pci_disable_pcie_error_reporting(pdev);
3545                pci_disable_device(pdev);
3546        }
3547}
3548
3549static int
3550_base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3551
3552/**
3553 * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state
3554 *     and if it is in fault state then issue diag reset.
3555 * @ioc: per adapter object
3556 *
3557 * Return: 0 for success, non-zero for failure.
3558 */
3559int
3560mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3561{
3562        u32 ioc_state;
3563        int rc = -EFAULT;
3564
3565        dinitprintk(ioc, pr_info("%s\n", __func__));
3566        if (ioc->pci_error_recovery)
3567                return 0;
3568        ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3569        dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3570
3571        if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3572                mpt3sas_print_fault_code(ioc, ioc_state &
3573                    MPI2_DOORBELL_DATA_MASK);
3574                mpt3sas_base_mask_interrupts(ioc);
3575                rc = _base_diag_reset(ioc);
3576        } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3577            MPI2_IOC_STATE_COREDUMP) {
3578                mpt3sas_print_coredump_info(ioc, ioc_state &
3579                     MPI2_DOORBELL_DATA_MASK);
3580                mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3581                mpt3sas_base_mask_interrupts(ioc);
3582                rc = _base_diag_reset(ioc);
3583        }
3584
3585        return rc;
3586}
3587
3588/**
3589 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3590 * @ioc: per adapter object
3591 *
3592 * Return: 0 for success, non-zero for failure.
3593 */
3594int
3595mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3596{
3597        struct pci_dev *pdev = ioc->pdev;
3598        u32 memap_sz;
3599        u32 pio_sz;
3600        int i, r = 0, rc;
3601        u64 pio_chip = 0;
3602        phys_addr_t chip_phys = 0;
3603        struct adapter_reply_queue *reply_q;
3604        int iopoll_q_count = 0;
3605
3606        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3607
3608        ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3609        if (pci_enable_device_mem(pdev)) {
3610                ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3611                ioc->bars = 0;
3612                return -ENODEV;
3613        }
3614
3615
3616        if (pci_request_selected_regions(pdev, ioc->bars,
3617            ioc->driver_name)) {
3618                ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3619                ioc->bars = 0;
3620                r = -ENODEV;
3621                goto out_fail;
3622        }
3623
3624/* AER (Advanced Error Reporting) hooks */
3625        pci_enable_pcie_error_reporting(pdev);
3626
3627        pci_set_master(pdev);
3628
3629
3630        if (_base_config_dma_addressing(ioc, pdev) != 0) {
3631                ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3632                r = -ENODEV;
3633                goto out_fail;
3634        }
3635
3636        for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3637             (!memap_sz || !pio_sz); i++) {
3638                if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3639                        if (pio_sz)
3640                                continue;
3641                        pio_chip = (u64)pci_resource_start(pdev, i);
3642                        pio_sz = pci_resource_len(pdev, i);
3643                } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3644                        if (memap_sz)
3645                                continue;
3646                        ioc->chip_phys = pci_resource_start(pdev, i);
3647                        chip_phys = ioc->chip_phys;
3648                        memap_sz = pci_resource_len(pdev, i);
3649                        ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3650                }
3651        }
3652
3653        if (ioc->chip == NULL) {
3654                ioc_err(ioc,
3655                    "unable to map adapter memory! or resource not found\n");
3656                r = -EINVAL;
3657                goto out_fail;
3658        }
3659
3660        mpt3sas_base_mask_interrupts(ioc);
3661
3662        r = _base_get_ioc_facts(ioc);
3663        if (r) {
3664                rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
3665                if (rc || (_base_get_ioc_facts(ioc)))
3666                        goto out_fail;
3667        }
3668
3669        if (!ioc->rdpq_array_enable_assigned) {
3670                ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3671                ioc->rdpq_array_enable_assigned = 1;
3672        }
3673
3674        r = _base_enable_msix(ioc);
3675        if (r)
3676                goto out_fail;
3677
3678        iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index;
3679        for (i = 0; i < iopoll_q_count; i++) {
3680                atomic_set(&ioc->io_uring_poll_queues[i].busy, 0);
3681                atomic_set(&ioc->io_uring_poll_queues[i].pause, 0);
3682        }
3683
3684        if (!ioc->is_driver_loading)
3685                _base_init_irqpolls(ioc);
3686        /* Use the Combined reply queue feature only for SAS3 C0 & higher
3687         * revision HBAs and also only when reply queue count is greater than 8
3688         */
3689        if (ioc->combined_reply_queue) {
3690                /* Determine the Supplemental Reply Post Host Index Registers
3691                 * Addresse. Supplemental Reply Post Host Index Registers
3692                 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3693                 * each register is at offset bytes of
3694                 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3695                 */
3696                ioc->replyPostRegisterIndex = kcalloc(
3697                     ioc->combined_reply_index_count,
3698                     sizeof(resource_size_t *), GFP_KERNEL);
3699                if (!ioc->replyPostRegisterIndex) {
3700                        ioc_err(ioc,
3701                            "allocation for replyPostRegisterIndex failed!\n");
3702                        r = -ENOMEM;
3703                        goto out_fail;
3704                }
3705
3706                for (i = 0; i < ioc->combined_reply_index_count; i++) {
3707                        ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3708                             ((u8 __force *)&ioc->chip->Doorbell +
3709                             MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3710                             (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3711                }
3712        }
3713
3714        if (ioc->is_warpdrive) {
3715                ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3716                    &ioc->chip->ReplyPostHostIndex;
3717
3718                for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3719                        ioc->reply_post_host_index[i] =
3720                        (resource_size_t __iomem *)
3721                        ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3722                        * 4)));
3723        }
3724
3725        list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3726                if (reply_q->msix_index >= ioc->iopoll_q_start_index) {
3727                        pr_info("%s: enabled: index: %d\n",
3728                            reply_q->name, reply_q->msix_index);
3729                        continue;
3730                }
3731
3732                pr_info("%s: %s enabled: IRQ %d\n",
3733                        reply_q->name,
3734                        ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3735                        pci_irq_vector(ioc->pdev, reply_q->msix_index));
3736        }
3737
3738        ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3739                 &chip_phys, ioc->chip, memap_sz);
3740        ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3741                 (unsigned long long)pio_chip, pio_sz);
3742
3743        /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3744        pci_save_state(pdev);
3745        return 0;
3746
3747 out_fail:
3748        mpt3sas_base_unmap_resources(ioc);
3749        return r;
3750}
3751
3752/**
3753 * mpt3sas_base_get_msg_frame - obtain request mf pointer
3754 * @ioc: per adapter object
3755 * @smid: system request message index(smid zero is invalid)
3756 *
3757 * Return: virt pointer to message frame.
3758 */
3759void *
3760mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3761{
3762        return (void *)(ioc->request + (smid * ioc->request_sz));
3763}
3764
3765/**
3766 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3767 * @ioc: per adapter object
3768 * @smid: system request message index
3769 *
3770 * Return: virt pointer to sense buffer.
3771 */
3772void *
3773mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3774{
3775        return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3776}
3777
3778/**
3779 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3780 * @ioc: per adapter object
3781 * @smid: system request message index
3782 *
3783 * Return: phys pointer to the low 32bit address of the sense buffer.
3784 */
3785__le32
3786mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3787{
3788        return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3789            SCSI_SENSE_BUFFERSIZE));
3790}
3791
3792/**
3793 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3794 * @ioc: per adapter object
3795 * @smid: system request message index
3796 *
3797 * Return: virt pointer to a PCIe SGL.
3798 */
3799void *
3800mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3801{
3802        return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3803}
3804
3805/**
3806 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3807 * @ioc: per adapter object
3808 * @smid: system request message index
3809 *
3810 * Return: phys pointer to the address of the PCIe buffer.
3811 */
3812dma_addr_t
3813mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3814{
3815        return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3816}
3817
3818/**
3819 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3820 * @ioc: per adapter object
3821 * @phys_addr: lower 32 physical addr of the reply
3822 *
3823 * Converts 32bit lower physical addr into a virt address.
3824 */
3825void *
3826mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3827{
3828        if (!phys_addr)
3829                return NULL;
3830        return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3831}
3832
3833/**
3834 * _base_get_msix_index - get the msix index
3835 * @ioc: per adapter object
3836 * @scmd: scsi_cmnd object
3837 *
3838 * Return: msix index of general reply queues,
3839 * i.e. reply queue on which IO request's reply
3840 * should be posted by the HBA firmware.
3841 */
3842static inline u8
3843_base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3844        struct scsi_cmnd *scmd)
3845{
3846        /* Enables reply_queue load balancing */
3847        if (ioc->msix_load_balance)
3848                return ioc->reply_queue_count ?
3849                    base_mod64(atomic64_add_return(1,
3850                    &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3851
3852        if (scmd && ioc->shost->nr_hw_queues > 1) {
3853                u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3854
3855                return blk_mq_unique_tag_to_hwq(tag) +
3856                        ioc->high_iops_queues;
3857        }
3858
3859        return ioc->cpu_msix_table[raw_smp_processor_id()];
3860}
3861
3862/**
3863 * _base_get_high_iops_msix_index - get the msix index of
3864 *                              high iops queues
3865 * @ioc: per adapter object
3866 * @scmd: scsi_cmnd object
3867 *
3868 * Return: msix index of high iops reply queues.
3869 * i.e. high iops reply queue on which IO request's
3870 * reply should be posted by the HBA firmware.
3871 */
3872static inline u8
3873_base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3874        struct scsi_cmnd *scmd)
3875{
3876        /**
3877         * Round robin the IO interrupts among the high iops
3878         * reply queues in terms of batch count 16 when outstanding
3879         * IOs on the target device is >=8.
3880         */
3881
3882        if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3883                return base_mod64((
3884                    atomic64_add_return(1, &ioc->high_iops_outstanding) /
3885                    MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3886                    MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3887
3888        return _base_get_msix_index(ioc, scmd);
3889}
3890
3891/**
3892 * mpt3sas_base_get_smid - obtain a free smid from internal queue
3893 * @ioc: per adapter object
3894 * @cb_idx: callback index
3895 *
3896 * Return: smid (zero is invalid)
3897 */
3898u16
3899mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3900{
3901        unsigned long flags;
3902        struct request_tracker *request;
3903        u16 smid;
3904
3905        spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3906        if (list_empty(&ioc->internal_free_list)) {
3907                spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3908                ioc_err(ioc, "%s: smid not available\n", __func__);
3909                return 0;
3910        }
3911
3912        request = list_entry(ioc->internal_free_list.next,
3913            struct request_tracker, tracker_list);
3914        request->cb_idx = cb_idx;
3915        smid = request->smid;
3916        list_del(&request->tracker_list);
3917        spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3918        return smid;
3919}
3920
3921/**
3922 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3923 * @ioc: per adapter object
3924 * @cb_idx: callback index
3925 * @scmd: pointer to scsi command object
3926 *
3927 * Return: smid (zero is invalid)
3928 */
3929u16
3930mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3931        struct scsi_cmnd *scmd)
3932{
3933        struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3934        u16 smid;
3935        u32 tag, unique_tag;
3936
3937        unique_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3938        tag = blk_mq_unique_tag_to_tag(unique_tag);
3939
3940        /*
3941         * Store hw queue number corresponding to the tag.
3942         * This hw queue number is used later to determine
3943         * the unique_tag using the logic below. This unique_tag
3944         * is used to retrieve the scmd pointer corresponding
3945         * to tag using scsi_host_find_tag() API.
3946         *
3947         * tag = smid - 1;
3948         * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag;
3949         */
3950        ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag);
3951
3952        smid = tag + 1;
3953        request->cb_idx = cb_idx;
3954        request->smid = smid;
3955        request->scmd = scmd;
3956        INIT_LIST_HEAD(&request->chain_list);
3957        return smid;
3958}
3959
3960/**
3961 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3962 * @ioc: per adapter object
3963 * @cb_idx: callback index
3964 *
3965 * Return: smid (zero is invalid)
3966 */
3967u16
3968mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3969{
3970        unsigned long flags;
3971        struct request_tracker *request;
3972        u16 smid;
3973
3974        spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3975        if (list_empty(&ioc->hpr_free_list)) {
3976                spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3977                return 0;
3978        }
3979
3980        request = list_entry(ioc->hpr_free_list.next,
3981            struct request_tracker, tracker_list);
3982        request->cb_idx = cb_idx;
3983        smid = request->smid;
3984        list_del(&request->tracker_list);
3985        spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3986        return smid;
3987}
3988
3989static void
3990_base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3991{
3992        /*
3993         * See _wait_for_commands_to_complete() call with regards to this code.
3994         */
3995        if (ioc->shost_recovery && ioc->pending_io_count) {
3996                ioc->pending_io_count = scsi_host_busy(ioc->shost);
3997                if (ioc->pending_io_count == 0)
3998                        wake_up(&ioc->reset_wq);
3999        }
4000}
4001
4002void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
4003                           struct scsiio_tracker *st)
4004{
4005        if (WARN_ON(st->smid == 0))
4006                return;
4007        st->cb_idx = 0xFF;
4008        st->direct_io = 0;
4009        st->scmd = NULL;
4010        atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
4011        st->smid = 0;
4012}
4013
4014/**
4015 * mpt3sas_base_free_smid - put smid back on free_list
4016 * @ioc: per adapter object
4017 * @smid: system request message index
4018 */
4019void
4020mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4021{
4022        unsigned long flags;
4023        int i;
4024
4025        if (smid < ioc->hi_priority_smid) {
4026                struct scsiio_tracker *st;
4027                void *request;
4028
4029                st = _get_st_from_smid(ioc, smid);
4030                if (!st) {
4031                        _base_recovery_check(ioc);
4032                        return;
4033                }
4034
4035                /* Clear MPI request frame */
4036                request = mpt3sas_base_get_msg_frame(ioc, smid);
4037                memset(request, 0, ioc->request_sz);
4038
4039                mpt3sas_base_clear_st(ioc, st);
4040                _base_recovery_check(ioc);
4041                ioc->io_queue_num[smid - 1] = 0;
4042                return;
4043        }
4044
4045        spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4046        if (smid < ioc->internal_smid) {
4047                /* hi-priority */
4048                i = smid - ioc->hi_priority_smid;
4049                ioc->hpr_lookup[i].cb_idx = 0xFF;
4050                list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
4051        } else if (smid <= ioc->hba_queue_depth) {
4052                /* internal queue */
4053                i = smid - ioc->internal_smid;
4054                ioc->internal_lookup[i].cb_idx = 0xFF;
4055                list_add(&ioc->internal_lookup[i].tracker_list,
4056                    &ioc->internal_free_list);
4057        }
4058        spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4059}
4060
4061/**
4062 * _base_mpi_ep_writeq - 32 bit write to MMIO
4063 * @b: data payload
4064 * @addr: address in MMIO space
4065 * @writeq_lock: spin lock
4066 *
4067 * This special handling for MPI EP to take care of 32 bit
4068 * environment where its not quarenteed to send the entire word
4069 * in one transfer.
4070 */
4071static inline void
4072_base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
4073                                        spinlock_t *writeq_lock)
4074{
4075        unsigned long flags;
4076
4077        spin_lock_irqsave(writeq_lock, flags);
4078        __raw_writel((u32)(b), addr);
4079        __raw_writel((u32)(b >> 32), (addr + 4));
4080        spin_unlock_irqrestore(writeq_lock, flags);
4081}
4082
4083/**
4084 * _base_writeq - 64 bit write to MMIO
4085 * @b: data payload
4086 * @addr: address in MMIO space
4087 * @writeq_lock: spin lock
4088 *
4089 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
4090 * care of 32 bit environment where its not quarenteed to send the entire word
4091 * in one transfer.
4092 */
4093#if defined(writeq) && defined(CONFIG_64BIT)
4094static inline void
4095_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4096{
4097        wmb();
4098        __raw_writeq(b, addr);
4099        barrier();
4100}
4101#else
4102static inline void
4103_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4104{
4105        _base_mpi_ep_writeq(b, addr, writeq_lock);
4106}
4107#endif
4108
4109/**
4110 * _base_set_and_get_msix_index - get the msix index and assign to msix_io
4111 *                                variable of scsi tracker
4112 * @ioc: per adapter object
4113 * @smid: system request message index
4114 *
4115 * Return: msix index.
4116 */
4117static u8
4118_base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4119{
4120        struct scsiio_tracker *st = NULL;
4121
4122        if (smid < ioc->hi_priority_smid)
4123                st = _get_st_from_smid(ioc, smid);
4124
4125        if (st == NULL)
4126                return  _base_get_msix_index(ioc, NULL);
4127
4128        st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
4129        return st->msix_io;
4130}
4131
4132/**
4133 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
4134 * @ioc: per adapter object
4135 * @smid: system request message index
4136 * @handle: device handle
4137 */
4138static void
4139_base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
4140        u16 smid, u16 handle)
4141{
4142        Mpi2RequestDescriptorUnion_t descriptor;
4143        u64 *request = (u64 *)&descriptor;
4144        void *mpi_req_iomem;
4145        __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4146
4147        _clone_sg_entries(ioc, (void *) mfp, smid);
4148        mpi_req_iomem = (void __force *)ioc->chip +
4149                        MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4150        _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4151                                        ioc->request_sz);
4152        descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4153        descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4154        descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4155        descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4156        descriptor.SCSIIO.LMID = 0;
4157        _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4158            &ioc->scsi_lookup_lock);
4159}
4160
4161/**
4162 * _base_put_smid_scsi_io - send SCSI_IO request to firmware
4163 * @ioc: per adapter object
4164 * @smid: system request message index
4165 * @handle: device handle
4166 */
4167static void
4168_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
4169{
4170        Mpi2RequestDescriptorUnion_t descriptor;
4171        u64 *request = (u64 *)&descriptor;
4172
4173
4174        descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4175        descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4176        descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4177        descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4178        descriptor.SCSIIO.LMID = 0;
4179        _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4180            &ioc->scsi_lookup_lock);
4181}
4182
4183/**
4184 * _base_put_smid_fast_path - send fast path request to firmware
4185 * @ioc: per adapter object
4186 * @smid: system request message index
4187 * @handle: device handle
4188 */
4189static void
4190_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4191        u16 handle)
4192{
4193        Mpi2RequestDescriptorUnion_t descriptor;
4194        u64 *request = (u64 *)&descriptor;
4195
4196        descriptor.SCSIIO.RequestFlags =
4197            MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4198        descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4199        descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4200        descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4201        descriptor.SCSIIO.LMID = 0;
4202        _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4203            &ioc->scsi_lookup_lock);
4204}
4205
4206/**
4207 * _base_put_smid_hi_priority - send Task Management request to firmware
4208 * @ioc: per adapter object
4209 * @smid: system request message index
4210 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4211 */
4212static void
4213_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4214        u16 msix_task)
4215{
4216        Mpi2RequestDescriptorUnion_t descriptor;
4217        void *mpi_req_iomem;
4218        u64 *request;
4219
4220        if (ioc->is_mcpu_endpoint) {
4221                __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4222
4223                /* TBD 256 is offset within sys register. */
4224                mpi_req_iomem = (void __force *)ioc->chip
4225                                        + MPI_FRAME_START_OFFSET
4226                                        + (smid * ioc->request_sz);
4227                _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4228                                                        ioc->request_sz);
4229        }
4230
4231        request = (u64 *)&descriptor;
4232
4233        descriptor.HighPriority.RequestFlags =
4234            MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4235        descriptor.HighPriority.MSIxIndex =  msix_task;
4236        descriptor.HighPriority.SMID = cpu_to_le16(smid);
4237        descriptor.HighPriority.LMID = 0;
4238        descriptor.HighPriority.Reserved1 = 0;
4239        if (ioc->is_mcpu_endpoint)
4240                _base_mpi_ep_writeq(*request,
4241                                &ioc->chip->RequestDescriptorPostLow,
4242                                &ioc->scsi_lookup_lock);
4243        else
4244                _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4245                    &ioc->scsi_lookup_lock);
4246}
4247
4248/**
4249 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
4250 *  firmware
4251 * @ioc: per adapter object
4252 * @smid: system request message index
4253 */
4254void
4255mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4256{
4257        Mpi2RequestDescriptorUnion_t descriptor;
4258        u64 *request = (u64 *)&descriptor;
4259
4260        descriptor.Default.RequestFlags =
4261                MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
4262        descriptor.Default.MSIxIndex =  _base_set_and_get_msix_index(ioc, smid);
4263        descriptor.Default.SMID = cpu_to_le16(smid);
4264        descriptor.Default.LMID = 0;
4265        descriptor.Default.DescriptorTypeDependent = 0;
4266        _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4267            &ioc->scsi_lookup_lock);
4268}
4269
4270/**
4271 * _base_put_smid_default - Default, primarily used for config pages
4272 * @ioc: per adapter object
4273 * @smid: system request message index
4274 */
4275static void
4276_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4277{
4278        Mpi2RequestDescriptorUnion_t descriptor;
4279        void *mpi_req_iomem;
4280        u64 *request;
4281
4282        if (ioc->is_mcpu_endpoint) {
4283                __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4284
4285                _clone_sg_entries(ioc, (void *) mfp, smid);
4286                /* TBD 256 is offset within sys register */
4287                mpi_req_iomem = (void __force *)ioc->chip +
4288                        MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4289                _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4290                                                        ioc->request_sz);
4291        }
4292        request = (u64 *)&descriptor;
4293        descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4294        descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4295        descriptor.Default.SMID = cpu_to_le16(smid);
4296        descriptor.Default.LMID = 0;
4297        descriptor.Default.DescriptorTypeDependent = 0;
4298        if (ioc->is_mcpu_endpoint)
4299                _base_mpi_ep_writeq(*request,
4300                                &ioc->chip->RequestDescriptorPostLow,
4301                                &ioc->scsi_lookup_lock);
4302        else
4303                _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4304                                &ioc->scsi_lookup_lock);
4305}
4306
4307/**
4308 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4309 *   Atomic Request Descriptor
4310 * @ioc: per adapter object
4311 * @smid: system request message index
4312 * @handle: device handle, unused in this function, for function type match
4313 *
4314 * Return: nothing.
4315 */
4316static void
4317_base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4318        u16 handle)
4319{
4320        Mpi26AtomicRequestDescriptor_t descriptor;
4321        u32 *request = (u32 *)&descriptor;
4322
4323        descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4324        descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4325        descriptor.SMID = cpu_to_le16(smid);
4326
4327        writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4328}
4329
4330/**
4331 * _base_put_smid_fast_path_atomic - send fast path request to firmware
4332 * using Atomic Request Descriptor
4333 * @ioc: per adapter object
4334 * @smid: system request message index
4335 * @handle: device handle, unused in this function, for function type match
4336 * Return: nothing
4337 */
4338static void
4339_base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4340        u16 handle)
4341{
4342        Mpi26AtomicRequestDescriptor_t descriptor;
4343        u32 *request = (u32 *)&descriptor;
4344
4345        descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4346        descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4347        descriptor.SMID = cpu_to_le16(smid);
4348
4349        writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4350}
4351
4352/**
4353 * _base_put_smid_hi_priority_atomic - send Task Management request to
4354 * firmware using Atomic Request Descriptor
4355 * @ioc: per adapter object
4356 * @smid: system request message index
4357 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4358 *
4359 * Return: nothing.
4360 */
4361static void
4362_base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4363        u16 msix_task)
4364{
4365        Mpi26AtomicRequestDescriptor_t descriptor;
4366        u32 *request = (u32 *)&descriptor;
4367
4368        descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4369        descriptor.MSIxIndex = msix_task;
4370        descriptor.SMID = cpu_to_le16(smid);
4371
4372        writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4373}
4374
4375/**
4376 * _base_put_smid_default_atomic - Default, primarily used for config pages
4377 * use Atomic Request Descriptor
4378 * @ioc: per adapter object
4379 * @smid: system request message index
4380 *
4381 * Return: nothing.
4382 */
4383static void
4384_base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4385{
4386        Mpi26AtomicRequestDescriptor_t descriptor;
4387        u32 *request = (u32 *)&descriptor;
4388
4389        descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4390        descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4391        descriptor.SMID = cpu_to_le16(smid);
4392
4393        writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4394}
4395
4396/**
4397 * _base_display_OEMs_branding - Display branding string
4398 * @ioc: per adapter object
4399 */
4400static void
4401_base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4402{
4403        if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4404                return;
4405
4406        switch (ioc->pdev->subsystem_vendor) {
4407        case PCI_VENDOR_ID_INTEL:
4408                switch (ioc->pdev->device) {
4409                case MPI2_MFGPAGE_DEVID_SAS2008:
4410                        switch (ioc->pdev->subsystem_device) {
4411                        case MPT2SAS_INTEL_RMS2LL080_SSDID:
4412                                ioc_info(ioc, "%s\n",
4413                                         MPT2SAS_INTEL_RMS2LL080_BRANDING);
4414                                break;
4415                        case MPT2SAS_INTEL_RMS2LL040_SSDID:
4416                                ioc_info(ioc, "%s\n",
4417                                         MPT2SAS_INTEL_RMS2LL040_BRANDING);
4418                                break;
4419                        case MPT2SAS_INTEL_SSD910_SSDID:
4420                                ioc_info(ioc, "%s\n",
4421                                         MPT2SAS_INTEL_SSD910_BRANDING);
4422                                break;
4423                        default:
4424                                ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4425                                         ioc->pdev->subsystem_device);
4426                                break;
4427                        }
4428                        break;
4429                case MPI2_MFGPAGE_DEVID_SAS2308_2:
4430                        switch (ioc->pdev->subsystem_device) {
4431                        case MPT2SAS_INTEL_RS25GB008_SSDID:
4432                                ioc_info(ioc, "%s\n",
4433                                         MPT2SAS_INTEL_RS25GB008_BRANDING);
4434                                break;
4435                        case MPT2SAS_INTEL_RMS25JB080_SSDID:
4436                                ioc_info(ioc, "%s\n",
4437                                         MPT2SAS_INTEL_RMS25JB080_BRANDING);
4438                                break;
4439                        case MPT2SAS_INTEL_RMS25JB040_SSDID:
4440                                ioc_info(ioc, "%s\n",
4441                                         MPT2SAS_INTEL_RMS25JB040_BRANDING);
4442                                break;
4443                        case MPT2SAS_INTEL_RMS25KB080_SSDID:
4444                                ioc_info(ioc, "%s\n",
4445                                         MPT2SAS_INTEL_RMS25KB080_BRANDING);
4446                                break;
4447                        case MPT2SAS_INTEL_RMS25KB040_SSDID:
4448                                ioc_info(ioc, "%s\n",
4449                                         MPT2SAS_INTEL_RMS25KB040_BRANDING);
4450                                break;
4451                        case MPT2SAS_INTEL_RMS25LB040_SSDID:
4452                                ioc_info(ioc, "%s\n",
4453                                         MPT2SAS_INTEL_RMS25LB040_BRANDING);
4454                                break;
4455                        case MPT2SAS_INTEL_RMS25LB080_SSDID:
4456                                ioc_info(ioc, "%s\n",
4457                                         MPT2SAS_INTEL_RMS25LB080_BRANDING);
4458                                break;
4459                        default:
4460                                ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4461                                         ioc->pdev->subsystem_device);
4462                                break;
4463                        }
4464                        break;
4465                case MPI25_MFGPAGE_DEVID_SAS3008:
4466                        switch (ioc->pdev->subsystem_device) {
4467                        case MPT3SAS_INTEL_RMS3JC080_SSDID:
4468                                ioc_info(ioc, "%s\n",
4469                                         MPT3SAS_INTEL_RMS3JC080_BRANDING);
4470                                break;
4471
4472                        case MPT3SAS_INTEL_RS3GC008_SSDID:
4473                                ioc_info(ioc, "%s\n",
4474                                         MPT3SAS_INTEL_RS3GC008_BRANDING);
4475                                break;
4476                        case MPT3SAS_INTEL_RS3FC044_SSDID:
4477                                ioc_info(ioc, "%s\n",
4478                                         MPT3SAS_INTEL_RS3FC044_BRANDING);
4479                                break;
4480                        case MPT3SAS_INTEL_RS3UC080_SSDID:
4481                                ioc_info(ioc, "%s\n",
4482                                         MPT3SAS_INTEL_RS3UC080_BRANDING);
4483                                break;
4484                        default:
4485                                ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4486                                         ioc->pdev->subsystem_device);
4487                                break;
4488                        }
4489                        break;
4490                default:
4491                        ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4492                                 ioc->pdev->subsystem_device);
4493                        break;
4494                }
4495                break;
4496        case PCI_VENDOR_ID_DELL:
4497                switch (ioc->pdev->device) {
4498                case MPI2_MFGPAGE_DEVID_SAS2008:
4499                        switch (ioc->pdev->subsystem_device) {
4500                        case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4501                                ioc_info(ioc, "%s\n",
4502                                         MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4503                                break;
4504                        case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4505                                ioc_info(ioc, "%s\n",
4506                                         MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4507                                break;
4508                        case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4509                                ioc_info(ioc, "%s\n",
4510                                         MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4511                                break;
4512                        case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4513                                ioc_info(ioc, "%s\n",
4514                                         MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4515                                break;
4516                        case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4517                                ioc_info(ioc, "%s\n",
4518                                         MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4519                                break;
4520                        case MPT2SAS_DELL_PERC_H200_SSDID:
4521                                ioc_info(ioc, "%s\n",
4522                                         MPT2SAS_DELL_PERC_H200_BRANDING);
4523                                break;
4524                        case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4525                                ioc_info(ioc, "%s\n",
4526                                         MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4527                                break;
4528                        default:
4529                                ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4530                                         ioc->pdev->subsystem_device);
4531                                break;
4532                        }
4533                        break;
4534                case MPI25_MFGPAGE_DEVID_SAS3008:
4535                        switch (ioc->pdev->subsystem_device) {
4536                        case MPT3SAS_DELL_12G_HBA_SSDID:
4537                                ioc_info(ioc, "%s\n",
4538                                         MPT3SAS_DELL_12G_HBA_BRANDING);
4539                                break;
4540                        default:
4541                                ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4542                                         ioc->pdev->subsystem_device);
4543                                break;
4544                        }
4545                        break;
4546                default:
4547                        ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4548                                 ioc->pdev->subsystem_device);
4549                        break;
4550                }
4551                break;
4552        case PCI_VENDOR_ID_CISCO:
4553                switch (ioc->pdev->device) {
4554                case MPI25_MFGPAGE_DEVID_SAS3008:
4555                        switch (ioc->pdev->subsystem_device) {
4556                        case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4557                                ioc_info(ioc, "%s\n",
4558                                         MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4559                                break;
4560                        case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4561                                ioc_info(ioc, "%s\n",
4562                                         MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4563                                break;
4564                        case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4565                                ioc_info(ioc, "%s\n",
4566                                         MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4567                                break;
4568                        default:
4569                                ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4570                                         ioc->pdev->subsystem_device);
4571                                break;
4572                        }
4573                        break;
4574                case MPI25_MFGPAGE_DEVID_SAS3108_1:
4575                        switch (ioc->pdev->subsystem_device) {
4576                        case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4577                                ioc_info(ioc, "%s\n",
4578                                         MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4579                                break;
4580                        case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4581                                ioc_info(ioc, "%s\n",
4582                                         MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4583                                break;
4584                        default:
4585                                ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4586                                         ioc->pdev->subsystem_device);
4587                                break;
4588                        }
4589                        break;
4590                default:
4591                        ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4592                                 ioc->pdev->subsystem_device);
4593                        break;
4594                }
4595                break;
4596        case MPT2SAS_HP_3PAR_SSVID:
4597                switch (ioc->pdev->device) {
4598                case MPI2_MFGPAGE_DEVID_SAS2004:
4599                        switch (ioc->pdev->subsystem_device) {
4600                        case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4601                                ioc_info(ioc, "%s\n",
4602                                         MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4603                                break;
4604                        default:
4605                                ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4606                                         ioc->pdev->subsystem_device);
4607                                break;
4608                        }
4609                        break;
4610                case MPI2_MFGPAGE_DEVID_SAS2308_2:
4611                        switch (ioc->pdev->subsystem_device) {
4612                        case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4613                                ioc_info(ioc, "%s\n",
4614                                         MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4615                                break;
4616                        case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4617                                ioc_info(ioc, "%s\n",
4618                                         MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4619                                break;
4620                        case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4621                                ioc_info(ioc, "%s\n",
4622                                         MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4623                                break;
4624                        case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4625                                ioc_info(ioc, "%s\n",
4626                                         MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4627                                break;
4628                        default:
4629                                ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4630                                         ioc->pdev->subsystem_device);
4631                                break;
4632                        }
4633                        break;
4634                default:
4635                        ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4636                                 ioc->pdev->subsystem_device);
4637                        break;
4638                }
4639                break;
4640        default:
4641                break;
4642        }
4643}
4644
4645/**
4646 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4647 *                              version from FW Image Header.
4648 * @ioc: per adapter object
4649 *
4650 * Return: 0 for success, non-zero for failure.
4651 */
4652        static int
4653_base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4654{
4655        Mpi2FWImageHeader_t *fw_img_hdr;
4656        Mpi26ComponentImageHeader_t *cmp_img_hdr;
4657        Mpi25FWUploadRequest_t *mpi_request;
4658        Mpi2FWUploadReply_t mpi_reply;
4659        int r = 0, issue_diag_reset = 0;
4660        u32  package_version = 0;
4661        void *fwpkg_data = NULL;
4662        dma_addr_t fwpkg_data_dma;
4663        u16 smid, ioc_status;
4664        size_t data_length;
4665
4666        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4667
4668        if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4669                ioc_err(ioc, "%s: internal command already in use\n", __func__);
4670                return -EAGAIN;
4671        }
4672
4673        data_length = sizeof(Mpi2FWImageHeader_t);
4674        fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4675                        &fwpkg_data_dma, GFP_KERNEL);
4676        if (!fwpkg_data) {
4677                ioc_err(ioc,
4678                    "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4679                        __FILE__, __LINE__, __func__);
4680                return -ENOMEM;
4681        }
4682
4683        smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4684        if (!smid) {
4685                ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4686                r = -EAGAIN;
4687                goto out;
4688        }
4689
4690        ioc->base_cmds.status = MPT3_CMD_PENDING;
4691        mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4692        ioc->base_cmds.smid = smid;
4693        memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4694        mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4695        mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4696        mpi_request->ImageSize = cpu_to_le32(data_length);
4697        ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4698                        data_length);
4699        init_completion(&ioc->base_cmds.done);
4700        ioc->put_smid_default(ioc, smid);
4701        /* Wait for 15 seconds */
4702        wait_for_completion_timeout(&ioc->base_cmds.done,
4703                        FW_IMG_HDR_READ_TIMEOUT*HZ);
4704        ioc_info(ioc, "%s: complete\n", __func__);
4705        if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4706                ioc_err(ioc, "%s: timeout\n", __func__);
4707                _debug_dump_mf(mpi_request,
4708                                sizeof(Mpi25FWUploadRequest_t)/4);
4709                issue_diag_reset = 1;
4710        } else {
4711                memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4712                if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4713                        memcpy(&mpi_reply, ioc->base_cmds.reply,
4714                                        sizeof(Mpi2FWUploadReply_t));
4715                        ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4716                                                MPI2_IOCSTATUS_MASK;
4717                        if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4718                                fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4719                                if (le32_to_cpu(fw_img_hdr->Signature) ==
4720                                    MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4721                                        cmp_img_hdr =
4722                                            (Mpi26ComponentImageHeader_t *)
4723                                            (fwpkg_data);
4724                                        package_version =
4725                                            le32_to_cpu(
4726                                            cmp_img_hdr->ApplicationSpecific);
4727                                } else
4728                                        package_version =
4729                                            le32_to_cpu(
4730                                            fw_img_hdr->PackageVersion.Word);
4731                                if (package_version)
4732                                        ioc_info(ioc,
4733                                        "FW Package Ver(%02d.%02d.%02d.%02d)\n",
4734                                        ((package_version) & 0xFF000000) >> 24,
4735                                        ((package_version) & 0x00FF0000) >> 16,
4736                                        ((package_version) & 0x0000FF00) >> 8,
4737                                        (package_version) & 0x000000FF);
4738                        } else {
4739                                _debug_dump_mf(&mpi_reply,
4740                                                sizeof(Mpi2FWUploadReply_t)/4);
4741                        }
4742                }
4743        }
4744        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4745out:
4746        if (fwpkg_data)
4747                dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4748                                fwpkg_data_dma);
4749        if (issue_diag_reset) {
4750                if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
4751                        return -EFAULT;
4752                if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
4753                        return -EFAULT;
4754                r = -EAGAIN;
4755        }
4756        return r;
4757}
4758
4759/**
4760 * _base_display_ioc_capabilities - Display IOC's capabilities.
4761 * @ioc: per adapter object
4762 */
4763static void
4764_base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4765{
4766        int i = 0;
4767        char desc[16];
4768        u32 iounit_pg1_flags;
4769        u32 bios_version;
4770
4771        bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4772        strncpy(desc, ioc->manu_pg0.ChipName, 16);
4773        ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4774                 desc,
4775                 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4776                 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4777                 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4778                 ioc->facts.FWVersion.Word & 0x000000FF,
4779                 ioc->pdev->revision,
4780                 (bios_version & 0xFF000000) >> 24,
4781                 (bios_version & 0x00FF0000) >> 16,
4782                 (bios_version & 0x0000FF00) >> 8,
4783                 bios_version & 0x000000FF);
4784
4785        _base_display_OEMs_branding(ioc);
4786
4787        if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4788                pr_info("%sNVMe", i ? "," : "");
4789                i++;
4790        }
4791
4792        ioc_info(ioc, "Protocol=(");
4793
4794        if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4795                pr_cont("Initiator");
4796                i++;
4797        }
4798
4799        if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4800                pr_cont("%sTarget", i ? "," : "");
4801                i++;
4802        }
4803
4804        i = 0;
4805        pr_cont("), Capabilities=(");
4806
4807        if (!ioc->hide_ir_msg) {
4808                if (ioc->facts.IOCCapabilities &
4809                    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4810                        pr_cont("Raid");
4811                        i++;
4812                }
4813        }
4814
4815        if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4816                pr_cont("%sTLR", i ? "," : "");
4817                i++;
4818        }
4819
4820        if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4821                pr_cont("%sMulticast", i ? "," : "");
4822                i++;
4823        }
4824
4825        if (ioc->facts.IOCCapabilities &
4826            MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4827                pr_cont("%sBIDI Target", i ? "," : "");
4828                i++;
4829        }
4830
4831        if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4832                pr_cont("%sEEDP", i ? "," : "");
4833                i++;
4834        }
4835
4836        if (ioc->facts.IOCCapabilities &
4837            MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4838                pr_cont("%sSnapshot Buffer", i ? "," : "");
4839                i++;
4840        }
4841
4842        if (ioc->facts.IOCCapabilities &
4843            MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4844                pr_cont("%sDiag Trace Buffer", i ? "," : "");
4845                i++;
4846        }
4847
4848        if (ioc->facts.IOCCapabilities &
4849            MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4850                pr_cont("%sDiag Extended Buffer", i ? "," : "");
4851                i++;
4852        }
4853
4854        if (ioc->facts.IOCCapabilities &
4855            MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4856                pr_cont("%sTask Set Full", i ? "," : "");
4857                i++;
4858        }
4859
4860        iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4861        if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4862                pr_cont("%sNCQ", i ? "," : "");
4863                i++;
4864        }
4865
4866        pr_cont(")\n");
4867}
4868
4869/**
4870 * mpt3sas_base_update_missing_delay - change the missing delay timers
4871 * @ioc: per adapter object
4872 * @device_missing_delay: amount of time till device is reported missing
4873 * @io_missing_delay: interval IO is returned when there is a missing device
4874 *
4875 * Passed on the command line, this function will modify the device missing
4876 * delay, as well as the io missing delay. This should be called at driver
4877 * load time.
4878 */
4879void
4880mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4881        u16 device_missing_delay, u8 io_missing_delay)
4882{
4883        u16 dmd, dmd_new, dmd_orignal;
4884        u8 io_missing_delay_original;
4885        u16 sz;
4886        Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4887        Mpi2ConfigReply_t mpi_reply;
4888        u8 num_phys = 0;
4889        u16 ioc_status;
4890
4891        mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4892        if (!num_phys)
4893                return;
4894
4895        sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4896            sizeof(Mpi2SasIOUnit1PhyData_t));
4897        sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4898        if (!sas_iounit_pg1) {
4899                ioc_err(ioc, "failure at %s:%d/%s()!\n",
4900                        __FILE__, __LINE__, __func__);
4901                goto out;
4902        }
4903        if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4904            sas_iounit_pg1, sz))) {
4905                ioc_err(ioc, "failure at %s:%d/%s()!\n",
4906                        __FILE__, __LINE__, __func__);
4907                goto out;
4908        }
4909        ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4910            MPI2_IOCSTATUS_MASK;
4911        if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4912                ioc_err(ioc, "failure at %s:%d/%s()!\n",
4913                        __FILE__, __LINE__, __func__);
4914                goto out;
4915        }
4916
4917        /* device missing delay */
4918        dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4919        if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4920                dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4921        else
4922                dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4923        dmd_orignal = dmd;
4924        if (device_missing_delay > 0x7F) {
4925                dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4926                    device_missing_delay;
4927                dmd = dmd / 16;
4928                dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4929        } else
4930                dmd = device_missing_delay;
4931        sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4932
4933        /* io missing delay */
4934        io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4935        sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4936
4937        if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4938            sz)) {
4939                if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4940                        dmd_new = (dmd &
4941                            MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4942                else
4943                        dmd_new =
4944                    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4945                ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4946                         dmd_orignal, dmd_new);
4947                ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4948                         io_missing_delay_original,
4949                         io_missing_delay);
4950                ioc->device_missing_delay = dmd_new;
4951                ioc->io_missing_delay = io_missing_delay;
4952        }
4953
4954out:
4955        kfree(sas_iounit_pg1);
4956}
4957
4958/**
4959 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4960 *    according to performance mode.
4961 * @ioc : per adapter object
4962 *
4963 * Return: zero on success; otherwise return EAGAIN error code asking the
4964 * caller to retry.
4965 */
4966static int
4967_base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4968{
4969        Mpi2IOCPage1_t ioc_pg1;
4970        Mpi2ConfigReply_t mpi_reply;
4971        int rc;
4972
4973        rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4974        if (rc)
4975                return rc;
4976        memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4977
4978        switch (perf_mode) {
4979        case MPT_PERF_MODE_DEFAULT:
4980        case MPT_PERF_MODE_BALANCED:
4981                if (ioc->high_iops_queues) {
4982                        ioc_info(ioc,
4983                                "Enable interrupt coalescing only for first\t"
4984                                "%d reply queues\n",
4985                                MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4986                        /*
4987                         * If 31st bit is zero then interrupt coalescing is
4988                         * enabled for all reply descriptor post queues.
4989                         * If 31st bit is set to one then user can
4990                         * enable/disable interrupt coalescing on per reply
4991                         * descriptor post queue group(8) basis. So to enable
4992                         * interrupt coalescing only on first reply descriptor
4993                         * post queue group 31st bit and zero th bit is enabled.
4994                         */
4995                        ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4996                            ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4997                        rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4998                        if (rc)
4999                                return rc;
5000                        ioc_info(ioc, "performance mode: balanced\n");
5001                        return 0;
5002                }
5003                fallthrough;
5004        case MPT_PERF_MODE_LATENCY:
5005                /*
5006                 * Enable interrupt coalescing on all reply queues
5007                 * with timeout value 0xA
5008                 */
5009                ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
5010                ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5011                ioc_pg1.ProductSpecific = 0;
5012                rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5013                if (rc)
5014                        return rc;
5015                ioc_info(ioc, "performance mode: latency\n");
5016                break;
5017        case MPT_PERF_MODE_IOPS:
5018                /*
5019                 * Enable interrupt coalescing on all reply queues.
5020                 */
5021                ioc_info(ioc,
5022                    "performance mode: iops with coalescing timeout: 0x%x\n",
5023                    le32_to_cpu(ioc_pg1.CoalescingTimeout));
5024                ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5025                ioc_pg1.ProductSpecific = 0;
5026                rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5027                if (rc)
5028                        return rc;
5029                break;
5030        }
5031        return 0;
5032}
5033
5034/**
5035 * _base_get_event_diag_triggers - get event diag trigger values from
5036 *                              persistent pages
5037 * @ioc : per adapter object
5038 *
5039 * Return: nothing.
5040 */
5041static int
5042_base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5043{
5044        Mpi26DriverTriggerPage2_t trigger_pg2;
5045        struct SL_WH_EVENT_TRIGGER_T *event_tg;
5046        MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg;
5047        Mpi2ConfigReply_t mpi_reply;
5048        int r = 0, i = 0;
5049        u16 count = 0;
5050        u16 ioc_status;
5051
5052        r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply,
5053            &trigger_pg2);
5054        if (r)
5055                return r;
5056
5057        ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5058            MPI2_IOCSTATUS_MASK;
5059        if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5060                dinitprintk(ioc,
5061                    ioc_err(ioc,
5062                    "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
5063                   __func__, ioc_status));
5064                return 0;
5065        }
5066
5067        if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) {
5068                count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger);
5069                count = min_t(u16, NUM_VALID_ENTRIES, count);
5070                ioc->diag_trigger_event.ValidEntries = count;
5071
5072                event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0];
5073                mpi_event_tg = &trigger_pg2.MPIEventTriggers[0];
5074                for (i = 0; i < count; i++) {
5075                        event_tg->EventValue = le16_to_cpu(
5076                            mpi_event_tg->MPIEventCode);
5077                        event_tg->LogEntryQualifier = le16_to_cpu(
5078                            mpi_event_tg->MPIEventCodeSpecific);
5079                        event_tg++;
5080                        mpi_event_tg++;
5081                }
5082        }
5083        return 0;
5084}
5085
5086/**
5087 * _base_get_scsi_diag_triggers - get scsi diag trigger values from
5088 *                              persistent pages
5089 * @ioc : per adapter object
5090 *
5091 * Return: 0 on success; otherwise return failure status.
5092 */
5093static int
5094_base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5095{
5096        Mpi26DriverTriggerPage3_t trigger_pg3;
5097        struct SL_WH_SCSI_TRIGGER_T *scsi_tg;
5098        MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg;
5099        Mpi2ConfigReply_t mpi_reply;
5100        int r = 0, i = 0;
5101        u16 count = 0;
5102        u16 ioc_status;
5103
5104        r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply,
5105            &trigger_pg3);
5106        if (r)
5107                return r;
5108
5109        ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5110            MPI2_IOCSTATUS_MASK;
5111        if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5112                dinitprintk(ioc,
5113                    ioc_err(ioc,
5114                    "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
5115                    __func__, ioc_status));
5116                return 0;
5117        }
5118
5119        if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) {
5120                count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger);
5121                count = min_t(u16, NUM_VALID_ENTRIES, count);
5122                ioc->diag_trigger_scsi.ValidEntries = count;
5123
5124                scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0];
5125                mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0];
5126                for (i = 0; i < count; i++) {
5127                        scsi_tg->ASCQ = mpi_scsi_tg->ASCQ;
5128                        scsi_tg->ASC = mpi_scsi_tg->ASC;
5129                        scsi_tg->SenseKey = mpi_scsi_tg->SenseKey;
5130
5131                        scsi_tg++;
5132                        mpi_scsi_tg++;
5133                }
5134        }
5135        return 0;
5136}
5137
5138/**
5139 * _base_get_mpi_diag_triggers - get mpi diag trigger values from
5140 *                              persistent pages
5141 * @ioc : per adapter object
5142 *
5143 * Return: 0 on success; otherwise return failure status.
5144 */
5145static int
5146_base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5147{
5148        Mpi26DriverTriggerPage4_t trigger_pg4;
5149        struct SL_WH_MPI_TRIGGER_T *status_tg;
5150        MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg;
5151        Mpi2ConfigReply_t mpi_reply;
5152        int r = 0, i = 0;
5153        u16 count = 0;
5154        u16 ioc_status;
5155
5156        r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply,
5157            &trigger_pg4);
5158        if (r)
5159                return r;
5160
5161        ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5162            MPI2_IOCSTATUS_MASK;
5163        if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5164                dinitprintk(ioc,
5165                    ioc_err(ioc,
5166                    "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
5167                    __func__, ioc_status));
5168                return 0;
5169        }
5170
5171        if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) {
5172                count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger);
5173                count = min_t(u16, NUM_VALID_ENTRIES, count);
5174                ioc->diag_trigger_mpi.ValidEntries = count;
5175
5176                status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0];
5177                mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0];
5178
5179                for (i = 0; i < count; i++) {
5180                        status_tg->IOCStatus = le16_to_cpu(
5181                            mpi_status_tg->IOCStatus);
5182                        status_tg->IocLogInfo = le32_to_cpu(
5183                            mpi_status_tg->LogInfo);
5184
5185                        status_tg++;
5186                        mpi_status_tg++;
5187                }
5188        }
5189        return 0;
5190}
5191
5192/**
5193 * _base_get_master_diag_triggers - get master diag trigger values from
5194 *                              persistent pages
5195 * @ioc : per adapter object
5196 *
5197 * Return: nothing.
5198 */
5199static int
5200_base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5201{
5202        Mpi26DriverTriggerPage1_t trigger_pg1;
5203        Mpi2ConfigReply_t mpi_reply;
5204        int r;
5205        u16 ioc_status;
5206
5207        r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply,
5208            &trigger_pg1);
5209        if (r)
5210                return r;
5211
5212        ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5213            MPI2_IOCSTATUS_MASK;
5214        if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5215                dinitprintk(ioc,
5216                    ioc_err(ioc,
5217                    "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
5218                   __func__, ioc_status));
5219                return 0;
5220        }
5221
5222        if (le16_to_cpu(trigger_pg1.NumMasterTrigger))
5223                ioc->diag_trigger_master.MasterData |=
5224                    le32_to_cpu(
5225                    trigger_pg1.MasterTriggers[0].MasterTriggerFlags);
5226        return 0;
5227}
5228
5229/**
5230 * _base_check_for_trigger_pages_support - checks whether HBA FW supports
5231 *                                      driver trigger pages or not
5232 * @ioc : per adapter object
5233 * @trigger_flags : address where trigger page0's TriggerFlags value is copied
5234 *
5235 * Return: trigger flags mask if HBA FW supports driver trigger pages;
5236 * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or
5237 * return EAGAIN if diag reset occurred due to FW fault and asking the
5238 * caller to retry the command.
5239 *
5240 */
5241static int
5242_base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags)
5243{
5244        Mpi26DriverTriggerPage0_t trigger_pg0;
5245        int r = 0;
5246        Mpi2ConfigReply_t mpi_reply;
5247        u16 ioc_status;
5248
5249        r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply,
5250            &trigger_pg0);
5251        if (r)
5252                return r;
5253
5254        ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5255            MPI2_IOCSTATUS_MASK;
5256        if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5257                return -EFAULT;
5258
5259        *trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags);
5260        return 0;
5261}
5262
5263/**
5264 * _base_get_diag_triggers - Retrieve diag trigger values from
5265 *                              persistent pages.
5266 * @ioc : per adapter object
5267 *
5268 * Return: zero on success; otherwise return EAGAIN error codes
5269 * asking the caller to retry.
5270 */
5271static int
5272_base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5273{
5274        int trigger_flags;
5275        int r;
5276
5277        /*
5278         * Default setting of master trigger.
5279         */
5280        ioc->diag_trigger_master.MasterData =
5281            (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
5282
5283        r = _base_check_for_trigger_pages_support(ioc, &trigger_flags);
5284        if (r) {
5285                if (r == -EAGAIN)
5286                        return r;
5287                /*
5288                 * Don't go for error handling when FW doesn't support
5289                 * driver trigger pages.
5290                 */
5291                return 0;
5292        }
5293
5294        ioc->supports_trigger_pages = 1;
5295
5296        /*
5297         * Retrieve master diag trigger values from driver trigger pg1
5298         * if master trigger bit enabled in TriggerFlags.
5299         */
5300        if ((u16)trigger_flags &
5301            MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) {
5302                r = _base_get_master_diag_triggers(ioc);
5303                if (r)
5304                        return r;
5305        }
5306
5307        /*
5308         * Retrieve event diag trigger values from driver trigger pg2
5309         * if event trigger bit enabled in TriggerFlags.
5310         */
5311        if ((u16)trigger_flags &
5312            MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) {
5313                r = _base_get_event_diag_triggers(ioc);
5314                if (r)
5315                        return r;
5316        }
5317
5318        /*
5319         * Retrieve scsi diag trigger values from driver trigger pg3
5320         * if scsi trigger bit enabled in TriggerFlags.
5321         */
5322        if ((u16)trigger_flags &
5323            MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) {
5324                r = _base_get_scsi_diag_triggers(ioc);
5325                if (r)
5326                        return r;
5327        }
5328        /*
5329         * Retrieve mpi error diag trigger values from driver trigger pg4
5330         * if loginfo trigger bit enabled in TriggerFlags.
5331         */
5332        if ((u16)trigger_flags &
5333            MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) {
5334                r = _base_get_mpi_diag_triggers(ioc);
5335                if (r)
5336                        return r;
5337        }
5338        return 0;
5339}
5340
5341/**
5342 * _base_update_diag_trigger_pages - Update the driver trigger pages after
5343 *                      online FW update, in case updated FW supports driver
5344 *                      trigger pages.
5345 * @ioc : per adapter object
5346 *
5347 * Return: nothing.
5348 */
5349static void
5350_base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc)
5351{
5352
5353        if (ioc->diag_trigger_master.MasterData)
5354                mpt3sas_config_update_driver_trigger_pg1(ioc,
5355                    &ioc->diag_trigger_master, 1);
5356
5357        if (ioc->diag_trigger_event.ValidEntries)
5358                mpt3sas_config_update_driver_trigger_pg2(ioc,
5359                    &ioc->diag_trigger_event, 1);
5360
5361        if (ioc->diag_trigger_scsi.ValidEntries)
5362                mpt3sas_config_update_driver_trigger_pg3(ioc,
5363                    &ioc->diag_trigger_scsi, 1);
5364
5365        if (ioc->diag_trigger_mpi.ValidEntries)
5366                mpt3sas_config_update_driver_trigger_pg4(ioc,
5367                    &ioc->diag_trigger_mpi, 1);
5368}
5369
5370/**
5371 * _base_assign_fw_reported_qd  - Get FW reported QD for SAS/SATA devices.
5372 *                              - On failure set default QD values.
5373 * @ioc : per adapter object
5374 *
5375 * Returns 0 for success, non-zero for failure.
5376 *
5377 */
5378static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc)
5379{
5380        Mpi2ConfigReply_t mpi_reply;
5381        Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
5382        Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1;
5383        int sz;
5384        int rc = 0;
5385
5386        ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5387        ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5388        ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH;
5389        ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH;
5390        if (!ioc->is_gen35_ioc)
5391                goto out;
5392        /* sas iounit page 1 */
5393        sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData);
5394        sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
5395        if (!sas_iounit_pg1) {
5396                pr_err("%s: failure at %s:%d/%s()!\n",
5397                    ioc->name, __FILE__, __LINE__, __func__);
5398                return rc;
5399        }
5400        rc = mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
5401            sas_iounit_pg1, sz);
5402        if (rc) {
5403                pr_err("%s: failure at %s:%d/%s()!\n",
5404                    ioc->name, __FILE__, __LINE__, __func__);
5405                goto out;
5406        }
5407        ioc->max_wideport_qd =
5408            (le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth)) ?
5409            le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth) :
5410            MPT3SAS_SAS_QUEUE_DEPTH;
5411        ioc->max_narrowport_qd =
5412            (le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth)) ?
5413            le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth) :
5414            MPT3SAS_SAS_QUEUE_DEPTH;
5415        ioc->max_sata_qd = (sas_iounit_pg1->SATAMaxQDepth) ?
5416            sas_iounit_pg1->SATAMaxQDepth : MPT3SAS_SATA_QUEUE_DEPTH;
5417        /* pcie iounit page 1 */
5418        rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, &mpi_reply,
5419            &pcie_iounit_pg1, sizeof(Mpi26PCIeIOUnitPage1_t));
5420        if (rc) {
5421                pr_err("%s: failure at %s:%d/%s()!\n",
5422                    ioc->name, __FILE__, __LINE__, __func__);
5423                goto out;
5424        }
5425        ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ?
5426            (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) :
5427            MPT3SAS_NVME_QUEUE_DEPTH;
5428out:
5429        dinitprintk(ioc, pr_err(
5430            "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n",
5431            ioc->max_wideport_qd, ioc->max_narrowport_qd,
5432            ioc->max_sata_qd, ioc->max_nvme_qd));
5433        kfree(sas_iounit_pg1);
5434        return rc;
5435}
5436
5437/**
5438 * _base_static_config_pages - static start of day config pages
5439 * @ioc: per adapter object
5440 */
5441static int
5442_base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
5443{
5444        Mpi2ConfigReply_t mpi_reply;
5445        u32 iounit_pg1_flags;
5446        int tg_flags = 0;
5447        int rc;
5448        ioc->nvme_abort_timeout = 30;
5449
5450        rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply,
5451            &ioc->manu_pg0);
5452        if (rc)
5453                return rc;
5454        if (ioc->ir_firmware) {
5455                rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
5456                    &ioc->manu_pg10);
5457                if (rc)
5458                        return rc;
5459        }
5460        /*
5461         * Ensure correct T10 PI operation if vendor left EEDPTagMode
5462         * flag unset in NVDATA.
5463         */
5464        rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply,
5465            &ioc->manu_pg11);
5466        if (rc)
5467                return rc;
5468        if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
5469                pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
5470                    ioc->name);
5471                ioc->manu_pg11.EEDPTagMode &= ~0x3;
5472                ioc->manu_pg11.EEDPTagMode |= 0x1;
5473                mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
5474                    &ioc->manu_pg11);
5475        }
5476        if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
5477                ioc->tm_custom_handling = 1;
5478        else {
5479                ioc->tm_custom_handling = 0;
5480                if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
5481                        ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
5482                else if (ioc->manu_pg11.NVMeAbortTO >
5483                                        NVME_TASK_ABORT_MAX_TIMEOUT)
5484                        ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
5485                else
5486                        ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
5487        }
5488        ioc->time_sync_interval =
5489            ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK;
5490        if (ioc->time_sync_interval) {
5491                if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK)
5492                        ioc->time_sync_interval =
5493                            ioc->time_sync_interval * SECONDS_PER_HOUR;
5494                else
5495                        ioc->time_sync_interval =
5496                            ioc->time_sync_interval * SECONDS_PER_MIN;
5497                dinitprintk(ioc, ioc_info(ioc,
5498                    "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n",
5499                    ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval &
5500                    MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute"));
5501        } else {
5502                if (ioc->is_gen35_ioc)
5503                        ioc_warn(ioc,
5504                            "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n");
5505        }
5506        rc = _base_assign_fw_reported_qd(ioc);
5507        if (rc)
5508                return rc;
5509        rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
5510        if (rc)
5511                return rc;
5512        rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
5513        if (rc)
5514                return rc;
5515        rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
5516        if (rc)
5517                return rc;
5518        rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
5519        if (rc)
5520                return rc;
5521        rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5522        if (rc)
5523                return rc;
5524        rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
5525        if (rc)
5526                return rc;
5527        _base_display_ioc_capabilities(ioc);
5528
5529        /*
5530         * Enable task_set_full handling in iounit_pg1 when the
5531         * facts capabilities indicate that its supported.
5532         */
5533        iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
5534        if ((ioc->facts.IOCCapabilities &
5535            MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
5536                iounit_pg1_flags &=
5537                    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5538        else
5539                iounit_pg1_flags |=
5540                    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5541        ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
5542        rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5543        if (rc)
5544                return rc;
5545
5546        if (ioc->iounit_pg8.NumSensors)
5547                ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
5548        if (ioc->is_aero_ioc) {
5549                rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc);
5550                if (rc)
5551                        return rc;
5552        }
5553        if (ioc->is_gen35_ioc) {
5554                if (ioc->is_driver_loading) {
5555                        rc = _base_get_diag_triggers(ioc);
5556                        if (rc)
5557                                return rc;
5558                } else {
5559                        /*
5560                         * In case of online HBA FW update operation,
5561                         * check whether updated FW supports the driver trigger
5562                         * pages or not.
5563                         * - If previous FW has not supported driver trigger
5564                         *   pages and newer FW supports them then update these
5565                         *   pages with current diag trigger values.
5566                         * - If previous FW has supported driver trigger pages
5567                         *   and new FW doesn't support them then disable
5568                         *   support_trigger_pages flag.
5569                         */
5570                        _base_check_for_trigger_pages_support(ioc, &tg_flags);
5571                        if (!ioc->supports_trigger_pages && tg_flags != -EFAULT)
5572                                _base_update_diag_trigger_pages(ioc);
5573                        else if (ioc->supports_trigger_pages &&
5574                            tg_flags == -EFAULT)
5575                                ioc->supports_trigger_pages = 0;
5576                }
5577        }
5578        return 0;
5579}
5580
5581/**
5582 * mpt3sas_free_enclosure_list - release memory
5583 * @ioc: per adapter object
5584 *
5585 * Free memory allocated during enclosure add.
5586 */
5587void
5588mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
5589{
5590        struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
5591
5592        /* Free enclosure list */
5593        list_for_each_entry_safe(enclosure_dev,
5594                        enclosure_dev_next, &ioc->enclosure_list, list) {
5595                list_del(&enclosure_dev->list);
5596                kfree(enclosure_dev);
5597        }
5598}
5599
5600/**
5601 * _base_release_memory_pools - release memory
5602 * @ioc: per adapter object
5603 *
5604 * Free memory allocated from _base_allocate_memory_pools.
5605 */
5606static void
5607_base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5608{
5609        int i = 0;
5610        int j = 0;
5611        int dma_alloc_count = 0;
5612        struct chain_tracker *ct;
5613        int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5614
5615        dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5616
5617        if (ioc->request) {
5618                dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
5619                    ioc->request,  ioc->request_dma);
5620                dexitprintk(ioc,
5621                            ioc_info(ioc, "request_pool(0x%p): free\n",
5622                                     ioc->request));
5623                ioc->request = NULL;
5624        }
5625
5626        if (ioc->sense) {
5627                dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5628                dma_pool_destroy(ioc->sense_dma_pool);
5629                dexitprintk(ioc,
5630                            ioc_info(ioc, "sense_pool(0x%p): free\n",
5631                                     ioc->sense));
5632                ioc->sense = NULL;
5633        }
5634
5635        if (ioc->reply) {
5636                dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
5637                dma_pool_destroy(ioc->reply_dma_pool);
5638                dexitprintk(ioc,
5639                            ioc_info(ioc, "reply_pool(0x%p): free\n",
5640                                     ioc->reply));
5641                ioc->reply = NULL;
5642        }
5643
5644        if (ioc->reply_free) {
5645                dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
5646                    ioc->reply_free_dma);
5647                dma_pool_destroy(ioc->reply_free_dma_pool);
5648                dexitprintk(ioc,
5649                            ioc_info(ioc, "reply_free_pool(0x%p): free\n",
5650                                     ioc->reply_free));
5651                ioc->reply_free = NULL;
5652        }
5653
5654        if (ioc->reply_post) {
5655                dma_alloc_count = DIV_ROUND_UP(count,
5656                                RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5657                for (i = 0; i < count; i++) {
5658                        if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
5659                            && dma_alloc_count) {
5660                                if (ioc->reply_post[i].reply_post_free) {
5661                                        dma_pool_free(
5662                                            ioc->reply_post_free_dma_pool,
5663                                            ioc->reply_post[i].reply_post_free,
5664                                        ioc->reply_post[i].reply_post_free_dma);
5665                                        dexitprintk(ioc, ioc_info(ioc,
5666                                           "reply_post_free_pool(0x%p): free\n",
5667                                           ioc->reply_post[i].reply_post_free));
5668                                        ioc->reply_post[i].reply_post_free =
5669                                                                        NULL;
5670                                }
5671                                --dma_alloc_count;
5672                        }
5673                }
5674                dma_pool_destroy(ioc->reply_post_free_dma_pool);
5675                if (ioc->reply_post_free_array &&
5676                        ioc->rdpq_array_enable) {
5677                        dma_pool_free(ioc->reply_post_free_array_dma_pool,
5678                            ioc->reply_post_free_array,
5679                            ioc->reply_post_free_array_dma);
5680                        ioc->reply_post_free_array = NULL;
5681                }
5682                dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
5683                kfree(ioc->reply_post);
5684        }
5685
5686        if (ioc->pcie_sgl_dma_pool) {
5687                for (i = 0; i < ioc->scsiio_depth; i++) {
5688                        dma_pool_free(ioc->pcie_sgl_dma_pool,
5689                                        ioc->pcie_sg_lookup[i].pcie_sgl,
5690                                        ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5691                        ioc->pcie_sg_lookup[i].pcie_sgl = NULL;
5692                }
5693                dma_pool_destroy(ioc->pcie_sgl_dma_pool);
5694        }
5695        if (ioc->config_page) {
5696                dexitprintk(ioc,
5697                            ioc_info(ioc, "config_page(0x%p): free\n",
5698                                     ioc->config_page));
5699                dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
5700                    ioc->config_page, ioc->config_page_dma);
5701        }
5702
5703        kfree(ioc->hpr_lookup);
5704        ioc->hpr_lookup = NULL;
5705        kfree(ioc->internal_lookup);
5706        ioc->internal_lookup = NULL;
5707        if (ioc->chain_lookup) {
5708                for (i = 0; i < ioc->scsiio_depth; i++) {
5709                        for (j = ioc->chains_per_prp_buffer;
5710                            j < ioc->chains_needed_per_io; j++) {
5711                                ct = &ioc->chain_lookup[i].chains_per_smid[j];
5712                                if (ct && ct->chain_buffer)
5713                                        dma_pool_free(ioc->chain_dma_pool,
5714                                                ct->chain_buffer,
5715                                                ct->chain_buffer_dma);
5716                        }
5717                        kfree(ioc->chain_lookup[i].chains_per_smid);
5718                }
5719                dma_pool_destroy(ioc->chain_dma_pool);
5720                kfree(ioc->chain_lookup);
5721                ioc->chain_lookup = NULL;
5722        }
5723
5724        kfree(ioc->io_queue_num);
5725        ioc->io_queue_num = NULL;
5726}
5727
5728/**
5729 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
5730 *      having same upper 32bits in their base memory address.
5731 * @reply_pool_start_address: Base address of a reply queue set
5732 * @pool_sz: Size of single Reply Descriptor Post Queues pool size
5733 *
5734 * Return: 1 if reply queues in a set have a same upper 32bits in their base
5735 * memory address, else 0.
5736 */
5737
5738static int
5739mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz)
5740{
5741        long reply_pool_end_address;
5742
5743        reply_pool_end_address = reply_pool_start_address + pool_sz;
5744
5745        if (upper_32_bits(reply_pool_start_address) ==
5746                upper_32_bits(reply_pool_end_address))
5747                return 1;
5748        else
5749                return 0;
5750}
5751
5752/**
5753 * _base_reduce_hba_queue_depth- Retry with reduced queue depth
5754 * @ioc: Adapter object
5755 *
5756 * Return: 0 for success, non-zero for failure.
5757 **/
5758static inline int
5759_base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
5760{
5761        int reduce_sz = 64;
5762
5763        if ((ioc->hba_queue_depth - reduce_sz) >
5764            (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
5765                ioc->hba_queue_depth -= reduce_sz;
5766                return 0;
5767        } else
5768                return -ENOMEM;
5769}
5770
5771/**
5772 * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
5773 *                      for pcie sgl pools.
5774 * @ioc: Adapter object
5775 * @sz: DMA Pool size
5776 *
5777 * Return: 0 for success, non-zero for failure.
5778 */
5779
5780static int
5781_base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5782{
5783        int i = 0, j = 0;
5784        struct chain_tracker *ct;
5785
5786        ioc->pcie_sgl_dma_pool =
5787            dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz,
5788            ioc->page_size, 0);
5789        if (!ioc->pcie_sgl_dma_pool) {
5790                ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5791                return -ENOMEM;
5792        }
5793
5794        ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5795        ioc->chains_per_prp_buffer =
5796            min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
5797        for (i = 0; i < ioc->scsiio_depth; i++) {
5798                ioc->pcie_sg_lookup[i].pcie_sgl =
5799                    dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5800                    &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5801                if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5802                        ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5803                        return -EAGAIN;
5804                }
5805
5806                if (!mpt3sas_check_same_4gb_region(
5807                    (long)ioc->pcie_sg_lookup[i].pcie_sgl, sz)) {
5808                        ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n",
5809                            ioc->pcie_sg_lookup[i].pcie_sgl,
5810                            (unsigned long long)
5811                            ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5812                        ioc->use_32bit_dma = true;
5813                        return -EAGAIN;
5814                }
5815
5816                for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5817                        ct = &ioc->chain_lookup[i].chains_per_smid[j];
5818                        ct->chain_buffer =
5819                            ioc->pcie_sg_lookup[i].pcie_sgl +
5820                            (j * ioc->chain_segment_sz);
5821                        ct->chain_buffer_dma =
5822                            ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5823                            (j * ioc->chain_segment_sz);
5824                }
5825        }
5826        dinitprintk(ioc, ioc_info(ioc,
5827            "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5828            ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
5829        dinitprintk(ioc, ioc_info(ioc,
5830            "Number of chains can fit in a PRP page(%d)\n",
5831            ioc->chains_per_prp_buffer));
5832        return 0;
5833}
5834
5835/**
5836 * _base_allocate_chain_dma_pool - Allocating DMA'able memory
5837 *                      for chain dma pool.
5838 * @ioc: Adapter object
5839 * @sz: DMA Pool size
5840 *
5841 * Return: 0 for success, non-zero for failure.
5842 */
5843static int
5844_base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5845{
5846        int i = 0, j = 0;
5847        struct chain_tracker *ctr;
5848
5849        ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5850            ioc->chain_segment_sz, 16, 0);
5851        if (!ioc->chain_dma_pool)
5852                return -ENOMEM;
5853
5854        for (i = 0; i < ioc->scsiio_depth; i++) {
5855                for (j = ioc->chains_per_prp_buffer;
5856                    j < ioc->chains_needed_per_io; j++) {
5857                        ctr = &ioc->chain_lookup[i].chains_per_smid[j];
5858                        ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool,
5859                            GFP_KERNEL, &ctr->chain_buffer_dma);
5860                        if (!ctr->chain_buffer)
5861                                return -EAGAIN;
5862                        if (!mpt3sas_check_same_4gb_region((long)
5863                            ctr->chain_buffer, ioc->chain_segment_sz)) {
5864                                ioc_err(ioc,
5865                                    "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n",
5866                                    ctr->chain_buffer,
5867                                    (unsigned long long)ctr->chain_buffer_dma);
5868                                ioc->use_32bit_dma = true;
5869                                return -EAGAIN;
5870                        }
5871                }
5872        }
5873        dinitprintk(ioc, ioc_info(ioc,
5874            "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n",
5875            ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth *
5876            (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) *
5877            ioc->chain_segment_sz))/1024));
5878        return 0;
5879}
5880
5881/**
5882 * _base_allocate_sense_dma_pool - Allocating DMA'able memory
5883 *                      for sense dma pool.
5884 * @ioc: Adapter object
5885 * @sz: DMA Pool size
5886 * Return: 0 for success, non-zero for failure.
5887 */
5888static int
5889_base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5890{
5891        ioc->sense_dma_pool =
5892            dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0);
5893        if (!ioc->sense_dma_pool)
5894                return -ENOMEM;
5895        ioc->sense = dma_pool_alloc(ioc->sense_dma_pool,
5896            GFP_KERNEL, &ioc->sense_dma);
5897        if (!ioc->sense)
5898                return -EAGAIN;
5899        if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) {
5900                dinitprintk(ioc, pr_err(
5901                    "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n",
5902                    ioc->sense, (unsigned long long) ioc->sense_dma));
5903                ioc->use_32bit_dma = true;
5904                return -EAGAIN;
5905        }
5906        ioc_info(ioc,
5907            "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n",
5908            ioc->sense, (unsigned long long)ioc->sense_dma,
5909            ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024);
5910        return 0;
5911}
5912
5913/**
5914 * _base_allocate_reply_pool - Allocating DMA'able memory
5915 *                      for reply pool.
5916 * @ioc: Adapter object
5917 * @sz: DMA Pool size
5918 * Return: 0 for success, non-zero for failure.
5919 */
5920static int
5921_base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5922{
5923        /* reply pool, 4 byte align */
5924        ioc->reply_dma_pool = dma_pool_create("reply pool",
5925            &ioc->pdev->dev, sz, 4, 0);
5926        if (!ioc->reply_dma_pool)
5927                return -ENOMEM;
5928        ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5929            &ioc->reply_dma);
5930        if (!ioc->reply)
5931                return -EAGAIN;
5932        if (!mpt3sas_check_same_4gb_region((long)ioc->reply_free, sz)) {
5933                dinitprintk(ioc, pr_err(
5934                    "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n",
5935                    ioc->reply, (unsigned long long) ioc->reply_dma));
5936                ioc->use_32bit_dma = true;
5937                return -EAGAIN;
5938        }
5939        ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5940        ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5941        ioc_info(ioc,
5942            "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5943            ioc->reply, (unsigned long long)ioc->reply_dma,
5944            ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024);
5945        return 0;
5946}
5947
5948/**
5949 * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory
5950 *                      for reply free dma pool.
5951 * @ioc: Adapter object
5952 * @sz: DMA Pool size
5953 * Return: 0 for success, non-zero for failure.
5954 */
5955static int
5956_base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5957{
5958        /* reply free queue, 16 byte align */
5959        ioc->reply_free_dma_pool = dma_pool_create(
5960            "reply_free pool", &ioc->pdev->dev, sz, 16, 0);
5961        if (!ioc->reply_free_dma_pool)
5962                return -ENOMEM;
5963        ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool,
5964            GFP_KERNEL, &ioc->reply_free_dma);
5965        if (!ioc->reply_free)
5966                return -EAGAIN;
5967        if (!mpt3sas_check_same_4gb_region((long)ioc->reply_free, sz)) {
5968                dinitprintk(ioc,
5969                    pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
5970                    ioc->reply_free, (unsigned long long) ioc->reply_free_dma));
5971                ioc->use_32bit_dma = true;
5972                return -EAGAIN;
5973        }
5974        memset(ioc->reply_free, 0, sz);
5975        dinitprintk(ioc, ioc_info(ioc,
5976            "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5977            ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
5978        dinitprintk(ioc, ioc_info(ioc,
5979            "reply_free_dma (0x%llx)\n",
5980            (unsigned long long)ioc->reply_free_dma));
5981        return 0;
5982}
5983
5984/**
5985 * _base_allocate_reply_post_free_array - Allocating DMA'able memory
5986 *                      for reply post free array.
5987 * @ioc: Adapter object
5988 * @reply_post_free_array_sz: DMA Pool size
5989 * Return: 0 for success, non-zero for failure.
5990 */
5991
5992static int
5993_base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc,
5994        u32 reply_post_free_array_sz)
5995{
5996        ioc->reply_post_free_array_dma_pool =
5997            dma_pool_create("reply_post_free_array pool",
5998            &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5999        if (!ioc->reply_post_free_array_dma_pool)
6000                return -ENOMEM;
6001        ioc->reply_post_free_array =
6002            dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
6003            GFP_KERNEL, &ioc->reply_post_free_array_dma);
6004        if (!ioc->reply_post_free_array)
6005                return -EAGAIN;
6006        if (!mpt3sas_check_same_4gb_region((long)ioc->reply_post_free_array,
6007            reply_post_free_array_sz)) {
6008                dinitprintk(ioc, pr_err(
6009                    "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6010                    ioc->reply_free,
6011                    (unsigned long long) ioc->reply_free_dma));
6012                ioc->use_32bit_dma = true;
6013                return -EAGAIN;
6014        }
6015        return 0;
6016}
6017/**
6018 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
6019 *                     for reply queues.
6020 * @ioc: per adapter object
6021 * @sz: DMA Pool size
6022 * Return: 0 for success, non-zero for failure.
6023 */
6024static int
6025base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
6026{
6027        int i = 0;
6028        u32 dma_alloc_count = 0;
6029        int reply_post_free_sz = ioc->reply_post_queue_depth *
6030                sizeof(Mpi2DefaultReplyDescriptor_t);
6031        int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
6032
6033        ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
6034                        GFP_KERNEL);
6035        if (!ioc->reply_post)
6036                return -ENOMEM;
6037        /*
6038         *  For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
6039         *  VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
6040         *  be within 4GB boundary i.e reply queues in a set must have same
6041         *  upper 32-bits in their memory address. so here driver is allocating
6042         *  the DMA'able memory for reply queues according.
6043         *  Driver uses limitation of
6044         *  VENTURA_SERIES to manage INVADER_SERIES as well.
6045         */
6046        dma_alloc_count = DIV_ROUND_UP(count,
6047                                RDPQ_MAX_INDEX_IN_ONE_CHUNK);
6048        ioc->reply_post_free_dma_pool =
6049                dma_pool_create("reply_post_free pool",
6050                    &ioc->pdev->dev, sz, 16, 0);
6051        if (!ioc->reply_post_free_dma_pool)
6052                return -ENOMEM;
6053        for (i = 0; i < count; i++) {
6054                if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
6055                        ioc->reply_post[i].reply_post_free =
6056                            dma_pool_zalloc(ioc->reply_post_free_dma_pool,
6057                                GFP_KERNEL,
6058                                &ioc->reply_post[i].reply_post_free_dma);
6059                        if (!ioc->reply_post[i].reply_post_free)
6060                                return -ENOMEM;
6061                        /*
6062                         * Each set of RDPQ pool must satisfy 4gb boundary
6063                         * restriction.
6064                         * 1) Check if allocated resources for RDPQ pool are in
6065                         *      the same 4GB range.
6066                         * 2) If #1 is true, continue with 64 bit DMA.
6067                         * 3) If #1 is false, return 1. which means free all the
6068                         * resources and set DMA mask to 32 and allocate.
6069                         */
6070                        if (!mpt3sas_check_same_4gb_region(
6071                                (long)ioc->reply_post[i].reply_post_free, sz)) {
6072                                dinitprintk(ioc,
6073                                    ioc_err(ioc, "bad Replypost free pool(0x%p)"
6074                                    "reply_post_free_dma = (0x%llx)\n",
6075                                    ioc->reply_post[i].reply_post_free,
6076                                    (unsigned long long)
6077                                    ioc->reply_post[i].reply_post_free_dma));
6078                                return -EAGAIN;
6079                        }
6080                        dma_alloc_count--;
6081
6082                } else {
6083                        ioc->reply_post[i].reply_post_free =
6084                            (Mpi2ReplyDescriptorsUnion_t *)
6085                            ((long)ioc->reply_post[i-1].reply_post_free
6086                            + reply_post_free_sz);
6087                        ioc->reply_post[i].reply_post_free_dma =
6088                            (dma_addr_t)
6089                            (ioc->reply_post[i-1].reply_post_free_dma +
6090                            reply_post_free_sz);
6091                }
6092        }
6093        return 0;
6094}
6095
6096/**
6097 * _base_allocate_memory_pools - allocate start of day memory pools
6098 * @ioc: per adapter object
6099 *
6100 * Return: 0 success, anything else error.
6101 */
6102static int
6103_base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
6104{
6105        struct mpt3sas_facts *facts;
6106        u16 max_sge_elements;
6107        u16 chains_needed_per_io;
6108        u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
6109        u32 retry_sz;
6110        u32 rdpq_sz = 0, sense_sz = 0;
6111        u16 max_request_credit, nvme_blocks_needed;
6112        unsigned short sg_tablesize;
6113        u16 sge_size;
6114        int i;
6115        int ret = 0, rc = 0;
6116
6117        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6118
6119
6120        retry_sz = 0;
6121        facts = &ioc->facts;
6122
6123        /* command line tunables for max sgl entries */
6124        if (max_sgl_entries != -1)
6125                sg_tablesize = max_sgl_entries;
6126        else {
6127                if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
6128                        sg_tablesize = MPT2SAS_SG_DEPTH;
6129                else
6130                        sg_tablesize = MPT3SAS_SG_DEPTH;
6131        }
6132
6133        /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
6134        if (reset_devices)
6135                sg_tablesize = min_t(unsigned short, sg_tablesize,
6136                   MPT_KDUMP_MIN_PHYS_SEGMENTS);
6137
6138        if (ioc->is_mcpu_endpoint)
6139                ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6140        else {
6141                if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
6142                        sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6143                else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
6144                        sg_tablesize = min_t(unsigned short, sg_tablesize,
6145                                        SG_MAX_SEGMENTS);
6146                        ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
6147                                 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
6148                }
6149                ioc->shost->sg_tablesize = sg_tablesize;
6150        }
6151
6152        ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
6153                (facts->RequestCredit / 4));
6154        if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
6155                if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
6156                                INTERNAL_SCSIIO_CMDS_COUNT)) {
6157                        ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
6158                                facts->RequestCredit);
6159                        return -ENOMEM;
6160                }
6161                ioc->internal_depth = 10;
6162        }
6163
6164        ioc->hi_priority_depth = ioc->internal_depth - (5);
6165        /* command line tunables  for max controller queue depth */
6166        if (max_queue_depth != -1 && max_queue_depth != 0) {
6167                max_request_credit = min_t(u16, max_queue_depth +
6168                        ioc->internal_depth, facts->RequestCredit);
6169                if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
6170                        max_request_credit =  MAX_HBA_QUEUE_DEPTH;
6171        } else if (reset_devices)
6172                max_request_credit = min_t(u16, facts->RequestCredit,
6173                    (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
6174        else
6175                max_request_credit = min_t(u16, facts->RequestCredit,
6176                    MAX_HBA_QUEUE_DEPTH);
6177
6178        /* Firmware maintains additional facts->HighPriorityCredit number of
6179         * credits for HiPriprity Request messages, so hba queue depth will be
6180         * sum of max_request_credit and high priority queue depth.
6181         */
6182        ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
6183
6184        /* request frame size */
6185        ioc->request_sz = facts->IOCRequestFrameSize * 4;
6186
6187        /* reply frame size */
6188        ioc->reply_sz = facts->ReplyFrameSize * 4;
6189
6190        /* chain segment size */
6191        if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6192                if (facts->IOCMaxChainSegmentSize)
6193                        ioc->chain_segment_sz =
6194                                        facts->IOCMaxChainSegmentSize *
6195                                        MAX_CHAIN_ELEMT_SZ;
6196                else
6197                /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
6198                        ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
6199                                                    MAX_CHAIN_ELEMT_SZ;
6200        } else
6201                ioc->chain_segment_sz = ioc->request_sz;
6202
6203        /* calculate the max scatter element size */
6204        sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
6205
6206 retry_allocation:
6207        total_sz = 0;
6208        /* calculate number of sg elements left over in the 1st frame */
6209        max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
6210            sizeof(Mpi2SGEIOUnion_t)) + sge_size);
6211        ioc->max_sges_in_main_message = max_sge_elements/sge_size;
6212
6213        /* now do the same for a chain buffer */
6214        max_sge_elements = ioc->chain_segment_sz - sge_size;
6215        ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
6216
6217        /*
6218         *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
6219         */
6220        chains_needed_per_io = ((ioc->shost->sg_tablesize -
6221           ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
6222            + 1;
6223        if (chains_needed_per_io > facts->MaxChainDepth) {
6224                chains_needed_per_io = facts->MaxChainDepth;
6225                ioc->shost->sg_tablesize = min_t(u16,
6226                ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
6227                * chains_needed_per_io), ioc->shost->sg_tablesize);
6228        }
6229        ioc->chains_needed_per_io = chains_needed_per_io;
6230
6231        /* reply free queue sizing - taking into account for 64 FW events */
6232        ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6233
6234        /* mCPU manage single counters for simplicity */
6235        if (ioc->is_mcpu_endpoint)
6236                ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
6237        else {
6238                /* calculate reply descriptor post queue depth */
6239                ioc->reply_post_queue_depth = ioc->hba_queue_depth +
6240                        ioc->reply_free_queue_depth +  1;
6241                /* align the reply post queue on the next 16 count boundary */
6242                if (ioc->reply_post_queue_depth % 16)
6243                        ioc->reply_post_queue_depth += 16 -
6244                                (ioc->reply_post_queue_depth % 16);
6245        }
6246
6247        if (ioc->reply_post_queue_depth >
6248            facts->MaxReplyDescriptorPostQueueDepth) {
6249                ioc->reply_post_queue_depth =
6250                                facts->MaxReplyDescriptorPostQueueDepth -
6251                    (facts->MaxReplyDescriptorPostQueueDepth % 16);
6252                ioc->hba_queue_depth =
6253                                ((ioc->reply_post_queue_depth - 64) / 2) - 1;
6254                ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6255        }
6256
6257        ioc_info(ioc,
6258            "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
6259            "sge_per_io(%d), chains_per_io(%d)\n",
6260            ioc->max_sges_in_main_message,
6261            ioc->max_sges_in_chain_message,
6262            ioc->shost->sg_tablesize,
6263            ioc->chains_needed_per_io);
6264
6265        /* reply post queue, 16 byte align */
6266        reply_post_free_sz = ioc->reply_post_queue_depth *
6267            sizeof(Mpi2DefaultReplyDescriptor_t);
6268        rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
6269        if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
6270            || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK))
6271                rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
6272        ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
6273        if (ret == -EAGAIN) {
6274                /*
6275                 * Free allocated bad RDPQ memory pools.
6276                 * Change dma coherent mask to 32 bit and reallocate RDPQ
6277                 */
6278                _base_release_memory_pools(ioc);
6279                ioc->use_32bit_dma = true;
6280                if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6281                        ioc_err(ioc,
6282                            "32 DMA mask failed %s\n", pci_name(ioc->pdev));
6283                        return -ENODEV;
6284                }
6285                if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
6286                        return -ENOMEM;
6287        } else if (ret == -ENOMEM)
6288                return -ENOMEM;
6289        total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
6290            DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
6291        ioc->scsiio_depth = ioc->hba_queue_depth -
6292            ioc->hi_priority_depth - ioc->internal_depth;
6293
6294        /* set the scsi host can_queue depth
6295         * with some internal commands that could be outstanding
6296         */
6297        ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
6298        dinitprintk(ioc,
6299                    ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
6300                             ioc->shost->can_queue));
6301
6302        /* contiguous pool for request and chains, 16 byte align, one extra "
6303         * "frame for smid=0
6304         */
6305        ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
6306        sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
6307
6308        /* hi-priority queue */
6309        sz += (ioc->hi_priority_depth * ioc->request_sz);
6310
6311        /* internal queue */
6312        sz += (ioc->internal_depth * ioc->request_sz);
6313
6314        ioc->request_dma_sz = sz;
6315        ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
6316                        &ioc->request_dma, GFP_KERNEL);
6317        if (!ioc->request) {
6318                ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
6319                        ioc->hba_queue_depth, ioc->chains_needed_per_io,
6320                        ioc->request_sz, sz / 1024);
6321                if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
6322                        goto out;
6323                retry_sz = 64;
6324                ioc->hba_queue_depth -= retry_sz;
6325                _base_release_memory_pools(ioc);
6326                goto retry_allocation;
6327        }
6328
6329        if (retry_sz)
6330                ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
6331                        ioc->hba_queue_depth, ioc->chains_needed_per_io,
6332                        ioc->request_sz, sz / 1024);
6333
6334        /* hi-priority queue */
6335        ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
6336            ioc->request_sz);
6337        ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
6338            ioc->request_sz);
6339
6340        /* internal queue */
6341        ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
6342            ioc->request_sz);
6343        ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
6344            ioc->request_sz);
6345
6346        ioc_info(ioc,
6347            "request pool(0x%p) - dma(0x%llx): "
6348            "depth(%d), frame_size(%d), pool_size(%d kB)\n",
6349            ioc->request, (unsigned long long) ioc->request_dma,
6350            ioc->hba_queue_depth, ioc->request_sz,
6351            (ioc->hba_queue_depth * ioc->request_sz) / 1024);
6352
6353        total_sz += sz;
6354
6355        dinitprintk(ioc,
6356                    ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
6357                             ioc->request, ioc->scsiio_depth));
6358
6359        ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
6360        sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
6361        ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
6362        if (!ioc->chain_lookup) {
6363                ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
6364                goto out;
6365        }
6366
6367        sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
6368        for (i = 0; i < ioc->scsiio_depth; i++) {
6369                ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
6370                if (!ioc->chain_lookup[i].chains_per_smid) {
6371                        ioc_err(ioc, "chain_lookup: kzalloc failed\n");
6372                        goto out;
6373                }
6374        }
6375
6376        /* initialize hi-priority queue smid's */
6377        ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
6378            sizeof(struct request_tracker), GFP_KERNEL);
6379        if (!ioc->hpr_lookup) {
6380                ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
6381                goto out;
6382        }
6383        ioc->hi_priority_smid = ioc->scsiio_depth + 1;
6384        dinitprintk(ioc,
6385                    ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
6386                             ioc->hi_priority,
6387                             ioc->hi_priority_depth, ioc->hi_priority_smid));
6388
6389        /* initialize internal queue smid's */
6390        ioc->internal_lookup = kcalloc(ioc->internal_depth,
6391            sizeof(struct request_tracker), GFP_KERNEL);
6392        if (!ioc->internal_lookup) {
6393                ioc_err(ioc, "internal_lookup: kcalloc failed\n");
6394                goto out;
6395        }
6396        ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
6397        dinitprintk(ioc,
6398                    ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
6399                             ioc->internal,
6400                             ioc->internal_depth, ioc->internal_smid));
6401
6402        ioc->io_queue_num = kcalloc(ioc->scsiio_depth,
6403            sizeof(u16), GFP_KERNEL);
6404        if (!ioc->io_queue_num)
6405                goto out;
6406        /*
6407         * The number of NVMe page sized blocks needed is:
6408         *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
6409         * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
6410         * that is placed in the main message frame.  8 is the size of each PRP
6411         * entry or PRP list pointer entry.  8 is subtracted from page_size
6412         * because of the PRP list pointer entry at the end of a page, so this
6413         * is not counted as a PRP entry.  The 1 added page is a round up.
6414         *
6415         * To avoid allocation failures due to the amount of memory that could
6416         * be required for NVMe PRP's, only each set of NVMe blocks will be
6417         * contiguous, so a new set is allocated for each possible I/O.
6418         */
6419
6420        ioc->chains_per_prp_buffer = 0;
6421        if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
6422                nvme_blocks_needed =
6423                        (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
6424                nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
6425                nvme_blocks_needed++;
6426
6427                sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
6428                ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
6429                if (!ioc->pcie_sg_lookup) {
6430                        ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
6431                        goto out;
6432                }
6433                sz = nvme_blocks_needed * ioc->page_size;
6434                rc = _base_allocate_pcie_sgl_pool(ioc, sz);
6435                if (rc == -ENOMEM)
6436                        return -ENOMEM;
6437                else if (rc == -EAGAIN)
6438                        goto try_32bit_dma;
6439                total_sz += sz * ioc->scsiio_depth;
6440        }
6441
6442        rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz);
6443        if (rc == -ENOMEM)
6444                return -ENOMEM;
6445        else if (rc == -EAGAIN)
6446                goto try_32bit_dma;
6447        total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io -
6448                ioc->chains_per_prp_buffer) * ioc->scsiio_depth);
6449        dinitprintk(ioc,
6450            ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
6451            ioc->chain_depth, ioc->chain_segment_sz,
6452            (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
6453        /* sense buffers, 4 byte align */
6454        sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
6455        rc = _base_allocate_sense_dma_pool(ioc, sense_sz);
6456        if (rc  == -ENOMEM)
6457                return -ENOMEM;
6458        else if (rc == -EAGAIN)
6459                goto try_32bit_dma;
6460        total_sz += sense_sz;
6461        ioc_info(ioc,
6462            "sense pool(0x%p)- dma(0x%llx): depth(%d),"
6463            "element_size(%d), pool_size(%d kB)\n",
6464            ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
6465            SCSI_SENSE_BUFFERSIZE, sz / 1024);
6466        /* reply pool, 4 byte align */
6467        sz = ioc->reply_free_queue_depth * ioc->reply_sz;
6468        rc = _base_allocate_reply_pool(ioc, sz);
6469        if (rc == -ENOMEM)
6470                return -ENOMEM;
6471        else if (rc == -EAGAIN)
6472                goto try_32bit_dma;
6473        total_sz += sz;
6474
6475        /* reply free queue, 16 byte align */
6476        sz = ioc->reply_free_queue_depth * 4;
6477        rc = _base_allocate_reply_free_dma_pool(ioc, sz);
6478        if (rc  == -ENOMEM)
6479                return -ENOMEM;
6480        else if (rc == -EAGAIN)
6481                goto try_32bit_dma;
6482        dinitprintk(ioc,
6483                    ioc_info(ioc, "reply_free_dma (0x%llx)\n",
6484                             (unsigned long long)ioc->reply_free_dma));
6485        total_sz += sz;
6486        if (ioc->rdpq_array_enable) {
6487                reply_post_free_array_sz = ioc->reply_queue_count *
6488                    sizeof(Mpi2IOCInitRDPQArrayEntry);
6489                rc = _base_allocate_reply_post_free_array(ioc,
6490                    reply_post_free_array_sz);
6491                if (rc == -ENOMEM)
6492                        return -ENOMEM;
6493                else if (rc == -EAGAIN)
6494                        goto try_32bit_dma;
6495        }
6496        ioc->config_page_sz = 512;
6497        ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
6498                        ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
6499        if (!ioc->config_page) {
6500                ioc_err(ioc, "config page: dma_pool_alloc failed\n");
6501                goto out;
6502        }
6503
6504        ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
6505            ioc->config_page, (unsigned long long)ioc->config_page_dma,
6506            ioc->config_page_sz);
6507        total_sz += ioc->config_page_sz;
6508
6509        ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
6510                 total_sz / 1024);
6511        ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
6512                 ioc->shost->can_queue, facts->RequestCredit);
6513        ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
6514                 ioc->shost->sg_tablesize);
6515        return 0;
6516
6517try_32bit_dma:
6518        _base_release_memory_pools(ioc);
6519        if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
6520                /* Change dma coherent mask to 32 bit and reallocate */
6521                if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6522                        pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
6523                            pci_name(ioc->pdev));
6524                        return -ENODEV;
6525                }
6526        } else if (_base_reduce_hba_queue_depth(ioc) != 0)
6527                return -ENOMEM;
6528        goto retry_allocation;
6529
6530 out:
6531        return -ENOMEM;
6532}
6533
6534/**
6535 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
6536 * @ioc: Pointer to MPT_ADAPTER structure
6537 * @cooked: Request raw or cooked IOC state
6538 *
6539 * Return: all IOC Doorbell register bits if cooked==0, else just the
6540 * Doorbell bits in MPI_IOC_STATE_MASK.
6541 */
6542u32
6543mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
6544{
6545        u32 s, sc;
6546
6547        s = ioc->base_readl(&ioc->chip->Doorbell);
6548        sc = s & MPI2_IOC_STATE_MASK;
6549        return cooked ? sc : s;
6550}
6551
6552/**
6553 * _base_wait_on_iocstate - waiting on a particular ioc state
6554 * @ioc: ?
6555 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
6556 * @timeout: timeout in second
6557 *
6558 * Return: 0 for success, non-zero for failure.
6559 */
6560static int
6561_base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
6562{
6563        u32 count, cntdn;
6564        u32 current_state;
6565
6566        count = 0;
6567        cntdn = 1000 * timeout;
6568        do {
6569                current_state = mpt3sas_base_get_iocstate(ioc, 1);
6570                if (current_state == ioc_state)
6571                        return 0;
6572                if (count && current_state == MPI2_IOC_STATE_FAULT)
6573                        break;
6574                if (count && current_state == MPI2_IOC_STATE_COREDUMP)
6575                        break;
6576
6577                usleep_range(1000, 1500);
6578                count++;
6579        } while (--cntdn);
6580
6581        return current_state;
6582}
6583
6584/**
6585 * _base_dump_reg_set - This function will print hexdump of register set.
6586 * @ioc: per adapter object
6587 *
6588 * Return: nothing.
6589 */
6590static inline void
6591_base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
6592{
6593        unsigned int i, sz = 256;
6594        u32 __iomem *reg = (u32 __iomem *)ioc->chip;
6595
6596        ioc_info(ioc, "System Register set:\n");
6597        for (i = 0; i < (sz / sizeof(u32)); i++)
6598                pr_info("%08x: %08x\n", (i * 4), readl(&reg[i]));
6599}
6600
6601/**
6602 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
6603 * a write to the doorbell)
6604 * @ioc: per adapter object
6605 * @timeout: timeout in seconds
6606 *
6607 * Return: 0 for success, non-zero for failure.
6608 *
6609 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
6610 */
6611
6612static int
6613_base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6614{
6615        u32 cntdn, count;
6616        u32 int_status;
6617
6618        count = 0;
6619        cntdn = 1000 * timeout;
6620        do {
6621                int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6622                if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6623                        dhsprintk(ioc,
6624                                  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6625                                           __func__, count, timeout));
6626                        return 0;
6627                }
6628
6629                usleep_range(1000, 1500);
6630                count++;
6631        } while (--cntdn);
6632
6633        ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6634                __func__, count, int_status);
6635        return -EFAULT;
6636}
6637
6638static int
6639_base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6640{
6641        u32 cntdn, count;
6642        u32 int_status;
6643
6644        count = 0;
6645        cntdn = 2000 * timeout;
6646        do {
6647                int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6648                if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6649                        dhsprintk(ioc,
6650                                  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6651                                           __func__, count, timeout));
6652                        return 0;
6653                }
6654
6655                udelay(500);
6656                count++;
6657        } while (--cntdn);
6658
6659        ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6660                __func__, count, int_status);
6661        return -EFAULT;
6662
6663}
6664
6665/**
6666 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
6667 * @ioc: per adapter object
6668 * @timeout: timeout in second
6669 *
6670 * Return: 0 for success, non-zero for failure.
6671 *
6672 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
6673 * doorbell.
6674 */
6675static int
6676_base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
6677{
6678        u32 cntdn, count;
6679        u32 int_status;
6680        u32 doorbell;
6681
6682        count = 0;
6683        cntdn = 1000 * timeout;
6684        do {
6685                int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6686                if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
6687                        dhsprintk(ioc,
6688                                  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6689                                           __func__, count, timeout));
6690                        return 0;
6691                } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6692                        doorbell = ioc->base_readl(&ioc->chip->Doorbell);
6693                        if ((doorbell & MPI2_IOC_STATE_MASK) ==
6694                            MPI2_IOC_STATE_FAULT) {
6695                                mpt3sas_print_fault_code(ioc, doorbell);
6696                                return -EFAULT;
6697                        }
6698                        if ((doorbell & MPI2_IOC_STATE_MASK) ==
6699                            MPI2_IOC_STATE_COREDUMP) {
6700                                mpt3sas_print_coredump_info(ioc, doorbell);
6701                                return -EFAULT;
6702                        }
6703                } else if (int_status == 0xFFFFFFFF)
6704                        goto out;
6705
6706                usleep_range(1000, 1500);
6707                count++;
6708        } while (--cntdn);
6709
6710 out:
6711        ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6712                __func__, count, int_status);
6713        return -EFAULT;
6714}
6715
6716/**
6717 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
6718 * @ioc: per adapter object
6719 * @timeout: timeout in second
6720 *
6721 * Return: 0 for success, non-zero for failure.
6722 */
6723static int
6724_base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
6725{
6726        u32 cntdn, count;
6727        u32 doorbell_reg;
6728
6729        count = 0;
6730        cntdn = 1000 * timeout;
6731        do {
6732                doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
6733                if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
6734                        dhsprintk(ioc,
6735                                  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6736                                           __func__, count, timeout));
6737                        return 0;
6738                }
6739
6740                usleep_range(1000, 1500);
6741                count++;
6742        } while (--cntdn);
6743
6744        ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
6745                __func__, count, doorbell_reg);
6746        return -EFAULT;
6747}
6748
6749/**
6750 * _base_send_ioc_reset - send doorbell reset
6751 * @ioc: per adapter object
6752 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
6753 * @timeout: timeout in second
6754 *
6755 * Return: 0 for success, non-zero for failure.
6756 */
6757static int
6758_base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
6759{
6760        u32 ioc_state;
6761        int r = 0;
6762        unsigned long flags;
6763
6764        if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
6765                ioc_err(ioc, "%s: unknown reset_type\n", __func__);
6766                return -EFAULT;
6767        }
6768
6769        if (!(ioc->facts.IOCCapabilities &
6770           MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
6771                return -EFAULT;
6772
6773        ioc_info(ioc, "sending message unit reset !!\n");
6774
6775        writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
6776            &ioc->chip->Doorbell);
6777        if ((_base_wait_for_doorbell_ack(ioc, 15))) {
6778                r = -EFAULT;
6779                goto out;
6780        }
6781
6782        ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6783        if (ioc_state) {
6784                ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6785                        __func__, ioc_state);
6786                r = -EFAULT;
6787                goto out;
6788        }
6789 out:
6790        if (r != 0) {
6791                ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6792                spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6793                /*
6794                 * Wait for IOC state CoreDump to clear only during
6795                 * HBA initialization & release time.
6796                 */
6797                if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6798                    MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
6799                    ioc->fault_reset_work_q == NULL)) {
6800                        spin_unlock_irqrestore(
6801                            &ioc->ioc_reset_in_progress_lock, flags);
6802                        mpt3sas_print_coredump_info(ioc, ioc_state);
6803                        mpt3sas_base_wait_for_coredump_completion(ioc,
6804                            __func__);
6805                        spin_lock_irqsave(
6806                            &ioc->ioc_reset_in_progress_lock, flags);
6807                }
6808                spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6809        }
6810        ioc_info(ioc, "message unit reset: %s\n",
6811                 r == 0 ? "SUCCESS" : "FAILED");
6812        return r;
6813}
6814
6815/**
6816 * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
6817 * @ioc: per adapter object
6818 * @timeout: timeout in seconds
6819 *
6820 * Return: Waits up to timeout seconds for the IOC to
6821 * become operational. Returns 0 if IOC is present
6822 * and operational; otherwise returns %-EFAULT.
6823 */
6824
6825int
6826mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
6827{
6828        int wait_state_count = 0;
6829        u32 ioc_state;
6830
6831        do {
6832                ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
6833                if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
6834                        break;
6835
6836                /*
6837                 * Watchdog thread will be started after IOC Initialization, so
6838                 * no need to wait here for IOC state to become operational
6839                 * when IOC Initialization is on. Instead the driver will
6840                 * return ETIME status, so that calling function can issue
6841                 * diag reset operation and retry the command.
6842                 */
6843                if (ioc->is_driver_loading)
6844                        return -ETIME;
6845
6846                ssleep(1);
6847                ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
6848                                __func__, ++wait_state_count);
6849        } while (--timeout);
6850        if (!timeout) {
6851                ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
6852                return -EFAULT;
6853        }
6854        if (wait_state_count)
6855                ioc_info(ioc, "ioc is operational\n");
6856        return 0;
6857}
6858
6859/**
6860 * _base_handshake_req_reply_wait - send request thru doorbell interface
6861 * @ioc: per adapter object
6862 * @request_bytes: request length
6863 * @request: pointer having request payload
6864 * @reply_bytes: reply length
6865 * @reply: pointer to reply payload
6866 * @timeout: timeout in second
6867 *
6868 * Return: 0 for success, non-zero for failure.
6869 */
6870static int
6871_base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
6872        u32 *request, int reply_bytes, u16 *reply, int timeout)
6873{
6874        MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
6875        int i;
6876        u8 failed;
6877        __le32 *mfp;
6878
6879        /* make sure doorbell is not in use */
6880        if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
6881                ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
6882                return -EFAULT;
6883        }
6884
6885        /* clear pending doorbell interrupts from previous state changes */
6886        if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
6887            MPI2_HIS_IOC2SYS_DB_STATUS)
6888                writel(0, &ioc->chip->HostInterruptStatus);
6889
6890        /* send message to ioc */
6891        writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
6892            ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
6893            &ioc->chip->Doorbell);
6894
6895        if ((_base_spin_on_doorbell_int(ioc, 5))) {
6896                ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6897                        __LINE__);
6898                return -EFAULT;
6899        }
6900        writel(0, &ioc->chip->HostInterruptStatus);
6901
6902        if ((_base_wait_for_doorbell_ack(ioc, 5))) {
6903                ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
6904                        __LINE__);
6905                return -EFAULT;
6906        }
6907
6908        /* send message 32-bits at a time */
6909        for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
6910                writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
6911                if ((_base_wait_for_doorbell_ack(ioc, 5)))
6912                        failed = 1;
6913        }
6914
6915        if (failed) {
6916                ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
6917                        __LINE__);
6918                return -EFAULT;
6919        }
6920
6921        /* now wait for the reply */
6922        if ((_base_wait_for_doorbell_int(ioc, timeout))) {
6923                ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6924                        __LINE__);
6925                return -EFAULT;
6926        }
6927
6928        /* read the first two 16-bits, it gives the total length of the reply */
6929        reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
6930            & MPI2_DOORBELL_DATA_MASK);
6931        writel(0, &ioc->chip->HostInterruptStatus);
6932        if ((_base_wait_for_doorbell_int(ioc, 5))) {
6933                ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6934                        __LINE__);
6935                return -EFAULT;
6936        }
6937        reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
6938            & MPI2_DOORBELL_DATA_MASK);
6939        writel(0, &ioc->chip->HostInterruptStatus);
6940
6941        for (i = 2; i < default_reply->MsgLength * 2; i++)  {
6942                if ((_base_wait_for_doorbell_int(ioc, 5))) {
6943                        ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6944                                __LINE__);
6945                        return -EFAULT;
6946                }
6947                if (i >=  reply_bytes/2) /* overflow case */
6948                        ioc->base_readl(&ioc->chip->Doorbell);
6949                else
6950                        reply[i] = le16_to_cpu(
6951                            ioc->base_readl(&ioc->chip->Doorbell)
6952                            & MPI2_DOORBELL_DATA_MASK);
6953                writel(0, &ioc->chip->HostInterruptStatus);
6954        }
6955
6956        _base_wait_for_doorbell_int(ioc, 5);
6957        if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
6958                dhsprintk(ioc,
6959                          ioc_info(ioc, "doorbell is in use (line=%d)\n",
6960                                   __LINE__));
6961        }
6962        writel(0, &ioc->chip->HostInterruptStatus);
6963
6964        if (ioc->logging_level & MPT_DEBUG_INIT) {
6965                mfp = (__le32 *)reply;
6966                pr_info("\toffset:data\n");
6967                for (i = 0; i < reply_bytes/4; i++)
6968                        ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6969                            le32_to_cpu(mfp[i]));
6970        }
6971        return 0;
6972}
6973
6974/**
6975 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
6976 * @ioc: per adapter object
6977 * @mpi_reply: the reply payload from FW
6978 * @mpi_request: the request payload sent to FW
6979 *
6980 * The SAS IO Unit Control Request message allows the host to perform low-level
6981 * operations, such as resets on the PHYs of the IO Unit, also allows the host
6982 * to obtain the IOC assigned device handles for a device if it has other
6983 * identifying information about the device, in addition allows the host to
6984 * remove IOC resources associated with the device.
6985 *
6986 * Return: 0 for success, non-zero for failure.
6987 */
6988int
6989mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
6990        Mpi2SasIoUnitControlReply_t *mpi_reply,
6991        Mpi2SasIoUnitControlRequest_t *mpi_request)
6992{
6993        u16 smid;
6994        u8 issue_reset = 0;
6995        int rc;
6996        void *request;
6997
6998        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6999
7000        mutex_lock(&ioc->base_cmds.mutex);
7001
7002        if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7003                ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7004                rc = -EAGAIN;
7005                goto out;
7006        }
7007
7008        rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7009        if (rc)
7010                goto out;
7011
7012        smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7013        if (!smid) {
7014                ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7015                rc = -EAGAIN;
7016                goto out;
7017        }
7018
7019        rc = 0;
7020        ioc->base_cmds.status = MPT3_CMD_PENDING;
7021        request = mpt3sas_base_get_msg_frame(ioc, smid);
7022        ioc->base_cmds.smid = smid;
7023        memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
7024        if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7025            mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
7026                ioc->ioc_link_reset_in_progress = 1;
7027        init_completion(&ioc->base_cmds.done);
7028        ioc->put_smid_default(ioc, smid);
7029        wait_for_completion_timeout(&ioc->base_cmds.done,
7030            msecs_to_jiffies(10000));
7031        if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7032            mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
7033            ioc->ioc_link_reset_in_progress)
7034                ioc->ioc_link_reset_in_progress = 0;
7035        if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7036                mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
7037                    mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
7038                    issue_reset);
7039                goto issue_host_reset;
7040        }
7041        if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7042                memcpy(mpi_reply, ioc->base_cmds.reply,
7043                    sizeof(Mpi2SasIoUnitControlReply_t));
7044        else
7045                memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
7046        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7047        goto out;
7048
7049 issue_host_reset:
7050        if (issue_reset)
7051                mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7052        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7053        rc = -EFAULT;
7054 out:
7055        mutex_unlock(&ioc->base_cmds.mutex);
7056        return rc;
7057}
7058
7059/**
7060 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
7061 * @ioc: per adapter object
7062 * @mpi_reply: the reply payload from FW
7063 * @mpi_request: the request payload sent to FW
7064 *
7065 * The SCSI Enclosure Processor request message causes the IOC to
7066 * communicate with SES devices to control LED status signals.
7067 *
7068 * Return: 0 for success, non-zero for failure.
7069 */
7070int
7071mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
7072        Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
7073{
7074        u16 smid;
7075        u8 issue_reset = 0;
7076        int rc;
7077        void *request;
7078
7079        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7080
7081        mutex_lock(&ioc->base_cmds.mutex);
7082
7083        if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7084                ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7085                rc = -EAGAIN;
7086                goto out;
7087        }
7088
7089        rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7090        if (rc)
7091                goto out;
7092
7093        smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7094        if (!smid) {
7095                ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7096                rc = -EAGAIN;
7097                goto out;
7098        }
7099
7100        rc = 0;
7101        ioc->base_cmds.status = MPT3_CMD_PENDING;
7102        request = mpt3sas_base_get_msg_frame(ioc, smid);
7103        ioc->base_cmds.smid = smid;
7104        memset(request, 0, ioc->request_sz);
7105        memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
7106        init_completion(&ioc->base_cmds.done);
7107        ioc->put_smid_default(ioc, smid);
7108        wait_for_completion_timeout(&ioc->base_cmds.done,
7109            msecs_to_jiffies(10000));
7110        if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7111                mpt3sas_check_cmd_timeout(ioc,
7112                    ioc->base_cmds.status, mpi_request,
7113                    sizeof(Mpi2SepRequest_t)/4, issue_reset);
7114                goto issue_host_reset;
7115        }
7116        if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7117                memcpy(mpi_reply, ioc->base_cmds.reply,
7118                    sizeof(Mpi2SepReply_t));
7119        else
7120                memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
7121        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7122        goto out;
7123
7124 issue_host_reset:
7125        if (issue_reset)
7126                mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7127        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7128        rc = -EFAULT;
7129 out:
7130        mutex_unlock(&ioc->base_cmds.mutex);
7131        return rc;
7132}
7133
7134/**
7135 * _base_get_port_facts - obtain port facts reply and save in ioc
7136 * @ioc: per adapter object
7137 * @port: ?
7138 *
7139 * Return: 0 for success, non-zero for failure.
7140 */
7141static int
7142_base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
7143{
7144        Mpi2PortFactsRequest_t mpi_request;
7145        Mpi2PortFactsReply_t mpi_reply;
7146        struct mpt3sas_port_facts *pfacts;
7147        int mpi_reply_sz, mpi_request_sz, r;
7148
7149        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7150
7151        mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
7152        mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
7153        memset(&mpi_request, 0, mpi_request_sz);
7154        mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
7155        mpi_request.PortNumber = port;
7156        r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7157            (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7158
7159        if (r != 0) {
7160                ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7161                return r;
7162        }
7163
7164        pfacts = &ioc->pfacts[port];
7165        memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
7166        pfacts->PortNumber = mpi_reply.PortNumber;
7167        pfacts->VP_ID = mpi_reply.VP_ID;
7168        pfacts->VF_ID = mpi_reply.VF_ID;
7169        pfacts->MaxPostedCmdBuffers =
7170            le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
7171
7172        return 0;
7173}
7174
7175/**
7176 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
7177 * @ioc: per adapter object
7178 * @timeout:
7179 *
7180 * Return: 0 for success, non-zero for failure.
7181 */
7182static int
7183_base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
7184{
7185        u32 ioc_state;
7186        int rc;
7187
7188        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7189
7190        if (ioc->pci_error_recovery) {
7191                dfailprintk(ioc,
7192                            ioc_info(ioc, "%s: host in pci error recovery\n",
7193                                     __func__));
7194                return -EFAULT;
7195        }
7196
7197        ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7198        dhsprintk(ioc,
7199                  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7200                           __func__, ioc_state));
7201
7202        if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
7203            (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7204                return 0;
7205
7206        if (ioc_state & MPI2_DOORBELL_USED) {
7207                dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
7208                goto issue_diag_reset;
7209        }
7210
7211        if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7212                mpt3sas_print_fault_code(ioc, ioc_state &
7213                    MPI2_DOORBELL_DATA_MASK);
7214                goto issue_diag_reset;
7215        } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
7216            MPI2_IOC_STATE_COREDUMP) {
7217                ioc_info(ioc,
7218                    "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
7219                    __func__, ioc_state);
7220                return -EFAULT;
7221        }
7222
7223        ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
7224        if (ioc_state) {
7225                dfailprintk(ioc,
7226                            ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7227                                     __func__, ioc_state));
7228                return -EFAULT;
7229        }
7230
7231 issue_diag_reset:
7232        rc = _base_diag_reset(ioc);
7233        return rc;
7234}
7235
7236/**
7237 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
7238 * @ioc: per adapter object
7239 *
7240 * Return: 0 for success, non-zero for failure.
7241 */
7242static int
7243_base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
7244{
7245        Mpi2IOCFactsRequest_t mpi_request;
7246        Mpi2IOCFactsReply_t mpi_reply;
7247        struct mpt3sas_facts *facts;
7248        int mpi_reply_sz, mpi_request_sz, r;
7249
7250        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7251
7252        r = _base_wait_for_iocstate(ioc, 10);
7253        if (r) {
7254                dfailprintk(ioc,
7255                            ioc_info(ioc, "%s: failed getting to correct state\n",
7256                                     __func__));
7257                return r;
7258        }
7259        mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
7260        mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
7261        memset(&mpi_request, 0, mpi_request_sz);
7262        mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
7263        r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7264            (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7265
7266        if (r != 0) {
7267                ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7268                return r;
7269        }
7270
7271        facts = &ioc->facts;
7272        memset(facts, 0, sizeof(struct mpt3sas_facts));
7273        facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
7274        facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
7275        facts->VP_ID = mpi_reply.VP_ID;
7276        facts->VF_ID = mpi_reply.VF_ID;
7277        facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
7278        facts->MaxChainDepth = mpi_reply.MaxChainDepth;
7279        facts->WhoInit = mpi_reply.WhoInit;
7280        facts->NumberOfPorts = mpi_reply.NumberOfPorts;
7281        facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
7282        if (ioc->msix_enable && (facts->MaxMSIxVectors <=
7283            MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
7284                ioc->combined_reply_queue = 0;
7285        facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
7286        facts->MaxReplyDescriptorPostQueueDepth =
7287            le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
7288        facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
7289        facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
7290        if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
7291                ioc->ir_firmware = 1;
7292        if ((facts->IOCCapabilities &
7293              MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
7294                ioc->rdpq_array_capable = 1;
7295        if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
7296            && ioc->is_aero_ioc)
7297                ioc->atomic_desc_capable = 1;
7298        facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
7299        facts->IOCRequestFrameSize =
7300            le16_to_cpu(mpi_reply.IOCRequestFrameSize);
7301        if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7302                facts->IOCMaxChainSegmentSize =
7303                        le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
7304        }
7305        facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
7306        facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
7307        ioc->shost->max_id = -1;
7308        facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
7309        facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
7310        facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
7311        facts->HighPriorityCredit =
7312            le16_to_cpu(mpi_reply.HighPriorityCredit);
7313        facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
7314        facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
7315        facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
7316
7317        /*
7318         * Get the Page Size from IOC Facts. If it's 0, default to 4k.
7319         */
7320        ioc->page_size = 1 << facts->CurrentHostPageSize;
7321        if (ioc->page_size == 1) {
7322                ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
7323                ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
7324        }
7325        dinitprintk(ioc,
7326                    ioc_info(ioc, "CurrentHostPageSize(%d)\n",
7327                             facts->CurrentHostPageSize));
7328
7329        dinitprintk(ioc,
7330                    ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
7331                             facts->RequestCredit, facts->MaxChainDepth));
7332        dinitprintk(ioc,
7333                    ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
7334                             facts->IOCRequestFrameSize * 4,
7335                             facts->ReplyFrameSize * 4));
7336        return 0;
7337}
7338
7339/**
7340 * _base_send_ioc_init - send ioc_init to firmware
7341 * @ioc: per adapter object
7342 *
7343 * Return: 0 for success, non-zero for failure.
7344 */
7345static int
7346_base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
7347{
7348        Mpi2IOCInitRequest_t mpi_request;
7349        Mpi2IOCInitReply_t mpi_reply;
7350        int i, r = 0;
7351        ktime_t current_time;
7352        u16 ioc_status;
7353        u32 reply_post_free_array_sz = 0;
7354
7355        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7356
7357        memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
7358        mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
7359        mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
7360        mpi_request.VF_ID = 0; /* TODO */
7361        mpi_request.VP_ID = 0;
7362        mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
7363        mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
7364        mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
7365
7366        if (_base_is_controller_msix_enabled(ioc))
7367                mpi_request.HostMSIxVectors = ioc->reply_queue_count;
7368        mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
7369        mpi_request.ReplyDescriptorPostQueueDepth =
7370            cpu_to_le16(ioc->reply_post_queue_depth);
7371        mpi_request.ReplyFreeQueueDepth =
7372            cpu_to_le16(ioc->reply_free_queue_depth);
7373
7374        mpi_request.SenseBufferAddressHigh =
7375            cpu_to_le32((u64)ioc->sense_dma >> 32);
7376        mpi_request.SystemReplyAddressHigh =
7377            cpu_to_le32((u64)ioc->reply_dma >> 32);
7378        mpi_request.SystemRequestFrameBaseAddress =
7379            cpu_to_le64((u64)ioc->request_dma);
7380        mpi_request.ReplyFreeQueueAddress =
7381            cpu_to_le64((u64)ioc->reply_free_dma);
7382
7383        if (ioc->rdpq_array_enable) {
7384                reply_post_free_array_sz = ioc->reply_queue_count *
7385                    sizeof(Mpi2IOCInitRDPQArrayEntry);
7386                memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
7387                for (i = 0; i < ioc->reply_queue_count; i++)
7388                        ioc->reply_post_free_array[i].RDPQBaseAddress =
7389                            cpu_to_le64(
7390                                (u64)ioc->reply_post[i].reply_post_free_dma);
7391                mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
7392                mpi_request.ReplyDescriptorPostQueueAddress =
7393                    cpu_to_le64((u64)ioc->reply_post_free_array_dma);
7394        } else {
7395                mpi_request.ReplyDescriptorPostQueueAddress =
7396                    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
7397        }
7398
7399        /*
7400         * Set the flag to enable CoreDump state feature in IOC firmware.
7401         */
7402        mpi_request.ConfigurationFlags |=
7403            cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
7404
7405        /* This time stamp specifies number of milliseconds
7406         * since epoch ~ midnight January 1, 1970.
7407         */
7408        current_time = ktime_get_real();
7409        mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
7410
7411        if (ioc->logging_level & MPT_DEBUG_INIT) {
7412                __le32 *mfp;
7413                int i;
7414
7415                mfp = (__le32 *)&mpi_request;
7416                ioc_info(ioc, "\toffset:data\n");
7417                for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
7418                        ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7419                            le32_to_cpu(mfp[i]));
7420        }
7421
7422        r = _base_handshake_req_reply_wait(ioc,
7423            sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
7424            sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
7425
7426        if (r != 0) {
7427                ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7428                return r;
7429        }
7430
7431        ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
7432        if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
7433            mpi_reply.IOCLogInfo) {
7434                ioc_err(ioc, "%s: failed\n", __func__);
7435                r = -EIO;
7436        }
7437
7438        /* Reset TimeSync Counter*/
7439        ioc->timestamp_update_count = 0;
7440        return r;
7441}
7442
7443/**
7444 * mpt3sas_port_enable_done - command completion routine for port enable
7445 * @ioc: per adapter object
7446 * @smid: system request message index
7447 * @msix_index: MSIX table index supplied by the OS
7448 * @reply: reply message frame(lower 32bit addr)
7449 *
7450 * Return: 1 meaning mf should be freed from _base_interrupt
7451 *          0 means the mf is freed from this function.
7452 */
7453u8
7454mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
7455        u32 reply)
7456{
7457        MPI2DefaultReply_t *mpi_reply;
7458        u16 ioc_status;
7459
7460        if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
7461                return 1;
7462
7463        mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
7464        if (!mpi_reply)
7465                return 1;
7466
7467        if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
7468                return 1;
7469
7470        ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
7471        ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
7472        ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
7473        memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
7474        ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7475        if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
7476                ioc->port_enable_failed = 1;
7477
7478        if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) {
7479                ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC;
7480                if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
7481                        mpt3sas_port_enable_complete(ioc);
7482                        return 1;
7483                } else {
7484                        ioc->start_scan_failed = ioc_status;
7485                        ioc->start_scan = 0;
7486                        return 1;
7487                }
7488        }
7489        complete(&ioc->port_enable_cmds.done);
7490        return 1;
7491}
7492
7493/**
7494 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
7495 * @ioc: per adapter object
7496 *
7497 * Return: 0 for success, non-zero for failure.
7498 */
7499static int
7500_base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
7501{
7502        Mpi2PortEnableRequest_t *mpi_request;
7503        Mpi2PortEnableReply_t *mpi_reply;
7504        int r = 0;
7505        u16 smid;
7506        u16 ioc_status;
7507
7508        ioc_info(ioc, "sending port enable !!\n");
7509
7510        if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7511                ioc_err(ioc, "%s: internal command already in use\n", __func__);
7512                return -EAGAIN;
7513        }
7514
7515        smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7516        if (!smid) {
7517                ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7518                return -EAGAIN;
7519        }
7520
7521        ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7522        mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7523        ioc->port_enable_cmds.smid = smid;
7524        memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7525        mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7526
7527        init_completion(&ioc->port_enable_cmds.done);
7528        ioc->put_smid_default(ioc, smid);
7529        wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
7530        if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
7531                ioc_err(ioc, "%s: timeout\n", __func__);
7532                _debug_dump_mf(mpi_request,
7533                    sizeof(Mpi2PortEnableRequest_t)/4);
7534                if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
7535                        r = -EFAULT;
7536                else
7537                        r = -ETIME;
7538                goto out;
7539        }
7540
7541        mpi_reply = ioc->port_enable_cmds.reply;
7542        ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7543        if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
7544                ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
7545                        __func__, ioc_status);
7546                r = -EFAULT;
7547                goto out;
7548        }
7549
7550 out:
7551        ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7552        ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
7553        return r;
7554}
7555
7556/**
7557 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
7558 * @ioc: per adapter object
7559 *
7560 * Return: 0 for success, non-zero for failure.
7561 */
7562int
7563mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
7564{
7565        Mpi2PortEnableRequest_t *mpi_request;
7566        u16 smid;
7567
7568        ioc_info(ioc, "sending port enable !!\n");
7569
7570        if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7571                ioc_err(ioc, "%s: internal command already in use\n", __func__);
7572                return -EAGAIN;
7573        }
7574
7575        smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7576        if (!smid) {
7577                ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7578                return -EAGAIN;
7579        }
7580        ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED;
7581        ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7582        ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC;
7583        mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7584        ioc->port_enable_cmds.smid = smid;
7585        memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7586        mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7587
7588        ioc->put_smid_default(ioc, smid);
7589        return 0;
7590}
7591
7592/**
7593 * _base_determine_wait_on_discovery - desposition
7594 * @ioc: per adapter object
7595 *
7596 * Decide whether to wait on discovery to complete. Used to either
7597 * locate boot device, or report volumes ahead of physical devices.
7598 *
7599 * Return: 1 for wait, 0 for don't wait.
7600 */
7601static int
7602_base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
7603{
7604        /* We wait for discovery to complete if IR firmware is loaded.
7605         * The sas topology events arrive before PD events, so we need time to
7606         * turn on the bit in ioc->pd_handles to indicate PD
7607         * Also, it maybe required to report Volumes ahead of physical
7608         * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
7609         */
7610        if (ioc->ir_firmware)
7611                return 1;
7612
7613        /* if no Bios, then we don't need to wait */
7614        if (!ioc->bios_pg3.BiosVersion)
7615                return 0;
7616
7617        /* Bios is present, then we drop down here.
7618         *
7619         * If there any entries in the Bios Page 2, then we wait
7620         * for discovery to complete.
7621         */
7622
7623        /* Current Boot Device */
7624        if ((ioc->bios_pg2.CurrentBootDeviceForm &
7625            MPI2_BIOSPAGE2_FORM_MASK) ==
7626            MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7627        /* Request Boot Device */
7628           (ioc->bios_pg2.ReqBootDeviceForm &
7629            MPI2_BIOSPAGE2_FORM_MASK) ==
7630            MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7631        /* Alternate Request Boot Device */
7632           (ioc->bios_pg2.ReqAltBootDeviceForm &
7633            MPI2_BIOSPAGE2_FORM_MASK) ==
7634            MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
7635                return 0;
7636
7637        return 1;
7638}
7639
7640/**
7641 * _base_unmask_events - turn on notification for this event
7642 * @ioc: per adapter object
7643 * @event: firmware event
7644 *
7645 * The mask is stored in ioc->event_masks.
7646 */
7647static void
7648_base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
7649{
7650        u32 desired_event;
7651
7652        if (event >= 128)
7653                return;
7654
7655        desired_event = (1 << (event % 32));
7656
7657        if (event < 32)
7658                ioc->event_masks[0] &= ~desired_event;
7659        else if (event < 64)
7660                ioc->event_masks[1] &= ~desired_event;
7661        else if (event < 96)
7662                ioc->event_masks[2] &= ~desired_event;
7663        else if (event < 128)
7664                ioc->event_masks[3] &= ~desired_event;
7665}
7666
7667/**
7668 * _base_event_notification - send event notification
7669 * @ioc: per adapter object
7670 *
7671 * Return: 0 for success, non-zero for failure.
7672 */
7673static int
7674_base_event_notification(struct MPT3SAS_ADAPTER *ioc)
7675{
7676        Mpi2EventNotificationRequest_t *mpi_request;
7677        u16 smid;
7678        int r = 0;
7679        int i, issue_diag_reset = 0;
7680
7681        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7682
7683        if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7684                ioc_err(ioc, "%s: internal command already in use\n", __func__);
7685                return -EAGAIN;
7686        }
7687
7688        smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7689        if (!smid) {
7690                ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7691                return -EAGAIN;
7692        }
7693        ioc->base_cmds.status = MPT3_CMD_PENDING;
7694        mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7695        ioc->base_cmds.smid = smid;
7696        memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
7697        mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
7698        mpi_request->VF_ID = 0; /* TODO */
7699        mpi_request->VP_ID = 0;
7700        for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7701                mpi_request->EventMasks[i] =
7702                    cpu_to_le32(ioc->event_masks[i]);
7703        init_completion(&ioc->base_cmds.done);
7704        ioc->put_smid_default(ioc, smid);
7705        wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
7706        if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7707                ioc_err(ioc, "%s: timeout\n", __func__);
7708                _debug_dump_mf(mpi_request,
7709                    sizeof(Mpi2EventNotificationRequest_t)/4);
7710                if (ioc->base_cmds.status & MPT3_CMD_RESET)
7711                        r = -EFAULT;
7712                else
7713                        issue_diag_reset = 1;
7714
7715        } else
7716                dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
7717        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7718
7719        if (issue_diag_reset) {
7720                if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
7721                        return -EFAULT;
7722                if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
7723                        return -EFAULT;
7724                r = -EAGAIN;
7725        }
7726        return r;
7727}
7728
7729/**
7730 * mpt3sas_base_validate_event_type - validating event types
7731 * @ioc: per adapter object
7732 * @event_type: firmware event
7733 *
7734 * This will turn on firmware event notification when application
7735 * ask for that event. We don't mask events that are already enabled.
7736 */
7737void
7738mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
7739{
7740        int i, j;
7741        u32 event_mask, desired_event;
7742        u8 send_update_to_fw;
7743
7744        for (i = 0, send_update_to_fw = 0; i <
7745            MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
7746                event_mask = ~event_type[i];
7747                desired_event = 1;
7748                for (j = 0; j < 32; j++) {
7749                        if (!(event_mask & desired_event) &&
7750                            (ioc->event_masks[i] & desired_event)) {
7751                                ioc->event_masks[i] &= ~desired_event;
7752                                send_update_to_fw = 1;
7753                        }
7754                        desired_event = (desired_event << 1);
7755                }
7756        }
7757
7758        if (!send_update_to_fw)
7759                return;
7760
7761        mutex_lock(&ioc->base_cmds.mutex);
7762        _base_event_notification(ioc);
7763        mutex_unlock(&ioc->base_cmds.mutex);
7764}
7765
7766/**
7767 * _base_diag_reset - the "big hammer" start of day reset
7768 * @ioc: per adapter object
7769 *
7770 * Return: 0 for success, non-zero for failure.
7771 */
7772static int
7773_base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
7774{
7775        u32 host_diagnostic;
7776        u32 ioc_state;
7777        u32 count;
7778        u32 hcb_size;
7779
7780        ioc_info(ioc, "sending diag reset !!\n");
7781
7782        pci_cfg_access_lock(ioc->pdev);
7783
7784        drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
7785
7786        count = 0;
7787        do {
7788                /* Write magic sequence to WriteSequence register
7789                 * Loop until in diagnostic mode
7790                 */
7791                drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
7792                writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7793                writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
7794                writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
7795                writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
7796                writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
7797                writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
7798                writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
7799
7800                /* wait 100 msec */
7801                msleep(100);
7802
7803                if (count++ > 20) {
7804                        ioc_info(ioc,
7805                            "Stop writing magic sequence after 20 retries\n");
7806                        _base_dump_reg_set(ioc);
7807                        goto out;
7808                }
7809
7810                host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7811                drsprintk(ioc,
7812                          ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
7813                                   count, host_diagnostic));
7814
7815        } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
7816
7817        hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
7818
7819        drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
7820        writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
7821             &ioc->chip->HostDiagnostic);
7822
7823        /*This delay allows the chip PCIe hardware time to finish reset tasks*/
7824        msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
7825
7826        /* Approximately 300 second max wait */
7827        for (count = 0; count < (300000000 /
7828                MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
7829
7830                host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7831
7832                if (host_diagnostic == 0xFFFFFFFF) {
7833                        ioc_info(ioc,
7834                            "Invalid host diagnostic register value\n");
7835                        _base_dump_reg_set(ioc);
7836                        goto out;
7837                }
7838                if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
7839                        break;
7840
7841                msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
7842        }
7843
7844        if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
7845
7846                drsprintk(ioc,
7847                          ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
7848                host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
7849                host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
7850                writel(host_diagnostic, &ioc->chip->HostDiagnostic);
7851
7852                drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
7853                writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
7854                    &ioc->chip->HCBSize);
7855        }
7856
7857        drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
7858        writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
7859            &ioc->chip->HostDiagnostic);
7860
7861        drsprintk(ioc,
7862                  ioc_info(ioc, "disable writes to the diagnostic register\n"));
7863        writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7864
7865        drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
7866        ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
7867        if (ioc_state) {
7868                ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7869                        __func__, ioc_state);
7870                _base_dump_reg_set(ioc);
7871                goto out;
7872        }
7873
7874        pci_cfg_access_unlock(ioc->pdev);
7875        ioc_info(ioc, "diag reset: SUCCESS\n");
7876        return 0;
7877
7878 out:
7879        pci_cfg_access_unlock(ioc->pdev);
7880        ioc_err(ioc, "diag reset: FAILED\n");
7881        return -EFAULT;
7882}
7883
7884/**
7885 * mpt3sas_base_make_ioc_ready - put controller in READY state
7886 * @ioc: per adapter object
7887 * @type: FORCE_BIG_HAMMER or SOFT_RESET
7888 *
7889 * Return: 0 for success, non-zero for failure.
7890 */
7891int
7892mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
7893{
7894        u32 ioc_state;
7895        int rc;
7896        int count;
7897
7898        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7899
7900        if (ioc->pci_error_recovery)
7901                return 0;
7902
7903        ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7904        dhsprintk(ioc,
7905                  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7906                           __func__, ioc_state));
7907
7908        /* if in RESET state, it should move to READY state shortly */
7909        count = 0;
7910        if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
7911                while ((ioc_state & MPI2_IOC_STATE_MASK) !=
7912                    MPI2_IOC_STATE_READY) {
7913                        if (count++ == 10) {
7914                                ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7915                                        __func__, ioc_state);
7916                                return -EFAULT;
7917                        }
7918                        ssleep(1);
7919                        ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7920                }
7921        }
7922
7923        if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
7924                return 0;
7925
7926        if (ioc_state & MPI2_DOORBELL_USED) {
7927                ioc_info(ioc, "unexpected doorbell active!\n");
7928                goto issue_diag_reset;
7929        }
7930
7931        if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7932                mpt3sas_print_fault_code(ioc, ioc_state &
7933                    MPI2_DOORBELL_DATA_MASK);
7934                goto issue_diag_reset;
7935        }
7936
7937        if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
7938                /*
7939                 * if host reset is invoked while watch dog thread is waiting
7940                 * for IOC state to be changed to Fault state then driver has
7941                 * to wait here for CoreDump state to clear otherwise reset
7942                 * will be issued to the FW and FW move the IOC state to
7943                 * reset state without copying the FW logs to coredump region.
7944                 */
7945                if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
7946                        mpt3sas_print_coredump_info(ioc, ioc_state &
7947                            MPI2_DOORBELL_DATA_MASK);
7948                        mpt3sas_base_wait_for_coredump_completion(ioc,
7949                            __func__);
7950                }
7951                goto issue_diag_reset;
7952        }
7953
7954        if (type == FORCE_BIG_HAMMER)
7955                goto issue_diag_reset;
7956
7957        if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7958                if (!(_base_send_ioc_reset(ioc,
7959                    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
7960                        return 0;
7961        }
7962
7963 issue_diag_reset:
7964        rc = _base_diag_reset(ioc);
7965        return rc;
7966}
7967
7968/**
7969 * _base_make_ioc_operational - put controller in OPERATIONAL state
7970 * @ioc: per adapter object
7971 *
7972 * Return: 0 for success, non-zero for failure.
7973 */
7974static int
7975_base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
7976{
7977        int r, i, index, rc;
7978        unsigned long   flags;
7979        u32 reply_address;
7980        u16 smid;
7981        struct _tr_list *delayed_tr, *delayed_tr_next;
7982        struct _sc_list *delayed_sc, *delayed_sc_next;
7983        struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
7984        u8 hide_flag;
7985        struct adapter_reply_queue *reply_q;
7986        Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
7987
7988        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7989
7990        /* clean the delayed target reset list */
7991        list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7992            &ioc->delayed_tr_list, list) {
7993                list_del(&delayed_tr->list);
7994                kfree(delayed_tr);
7995        }
7996
7997
7998        list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7999            &ioc->delayed_tr_volume_list, list) {
8000                list_del(&delayed_tr->list);
8001                kfree(delayed_tr);
8002        }
8003
8004        list_for_each_entry_safe(delayed_sc, delayed_sc_next,
8005            &ioc->delayed_sc_list, list) {
8006                list_del(&delayed_sc->list);
8007                kfree(delayed_sc);
8008        }
8009
8010        list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
8011            &ioc->delayed_event_ack_list, list) {
8012                list_del(&delayed_event_ack->list);
8013                kfree(delayed_event_ack);
8014        }
8015
8016        spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
8017
8018        /* hi-priority queue */
8019        INIT_LIST_HEAD(&ioc->hpr_free_list);
8020        smid = ioc->hi_priority_smid;
8021        for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
8022                ioc->hpr_lookup[i].cb_idx = 0xFF;
8023                ioc->hpr_lookup[i].smid = smid;
8024                list_add_tail(&ioc->hpr_lookup[i].tracker_list,
8025                    &ioc->hpr_free_list);
8026        }
8027
8028        /* internal queue */
8029        INIT_LIST_HEAD(&ioc->internal_free_list);
8030        smid = ioc->internal_smid;
8031        for (i = 0; i < ioc->internal_depth; i++, smid++) {
8032                ioc->internal_lookup[i].cb_idx = 0xFF;
8033                ioc->internal_lookup[i].smid = smid;
8034                list_add_tail(&ioc->internal_lookup[i].tracker_list,
8035                    &ioc->internal_free_list);
8036        }
8037
8038        spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
8039
8040        /* initialize Reply Free Queue */
8041        for (i = 0, reply_address = (u32)ioc->reply_dma ;
8042            i < ioc->reply_free_queue_depth ; i++, reply_address +=
8043            ioc->reply_sz) {
8044                ioc->reply_free[i] = cpu_to_le32(reply_address);
8045                if (ioc->is_mcpu_endpoint)
8046                        _base_clone_reply_to_sys_mem(ioc,
8047                                        reply_address, i);
8048        }
8049
8050        /* initialize reply queues */
8051        if (ioc->is_driver_loading)
8052                _base_assign_reply_queues(ioc);
8053
8054        /* initialize Reply Post Free Queue */
8055        index = 0;
8056        reply_post_free_contig = ioc->reply_post[0].reply_post_free;
8057        list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8058                /*
8059                 * If RDPQ is enabled, switch to the next allocation.
8060                 * Otherwise advance within the contiguous region.
8061                 */
8062                if (ioc->rdpq_array_enable) {
8063                        reply_q->reply_post_free =
8064                                ioc->reply_post[index++].reply_post_free;
8065                } else {
8066                        reply_q->reply_post_free = reply_post_free_contig;
8067                        reply_post_free_contig += ioc->reply_post_queue_depth;
8068                }
8069
8070                reply_q->reply_post_host_index = 0;
8071                for (i = 0; i < ioc->reply_post_queue_depth; i++)
8072                        reply_q->reply_post_free[i].Words =
8073                            cpu_to_le64(ULLONG_MAX);
8074                if (!_base_is_controller_msix_enabled(ioc))
8075                        goto skip_init_reply_post_free_queue;
8076        }
8077 skip_init_reply_post_free_queue:
8078
8079        r = _base_send_ioc_init(ioc);
8080        if (r) {
8081                /*
8082                 * No need to check IOC state for fault state & issue
8083                 * diag reset during host reset. This check is need
8084                 * only during driver load time.
8085                 */
8086                if (!ioc->is_driver_loading)
8087                        return r;
8088
8089                rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8090                if (rc || (_base_send_ioc_init(ioc)))
8091                        return r;
8092        }
8093
8094        /* initialize reply free host index */
8095        ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
8096        writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
8097
8098        /* initialize reply post host index */
8099        list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8100                if (ioc->combined_reply_queue)
8101                        writel((reply_q->msix_index & 7)<<
8102                           MPI2_RPHI_MSIX_INDEX_SHIFT,
8103                           ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
8104                else
8105                        writel(reply_q->msix_index <<
8106                                MPI2_RPHI_MSIX_INDEX_SHIFT,
8107                                &ioc->chip->ReplyPostHostIndex);
8108
8109                if (!_base_is_controller_msix_enabled(ioc))
8110                        goto skip_init_reply_post_host_index;
8111        }
8112
8113 skip_init_reply_post_host_index:
8114
8115        mpt3sas_base_unmask_interrupts(ioc);
8116
8117        if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
8118                r = _base_display_fwpkg_version(ioc);
8119                if (r)
8120                        return r;
8121        }
8122
8123        r = _base_static_config_pages(ioc);
8124        if (r)
8125                return r;
8126
8127        r = _base_event_notification(ioc);
8128        if (r)
8129                return r;
8130
8131        if (!ioc->shost_recovery) {
8132
8133                if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
8134                    == 0x80) {
8135                        hide_flag = (u8) (
8136                            le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
8137                            MFG_PAGE10_HIDE_SSDS_MASK);
8138                        if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
8139                                ioc->mfg_pg10_hide_flag = hide_flag;
8140                }
8141
8142                ioc->wait_for_discovery_to_complete =
8143                    _base_determine_wait_on_discovery(ioc);
8144
8145                return r; /* scan_start and scan_finished support */
8146        }
8147
8148        r = _base_send_port_enable(ioc);
8149        if (r)
8150                return r;
8151
8152        return r;
8153}
8154
8155/**
8156 * mpt3sas_base_free_resources - free resources controller resources
8157 * @ioc: per adapter object
8158 */
8159void
8160mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
8161{
8162        dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8163
8164        /* synchronizing freeing resource with pci_access_mutex lock */
8165        mutex_lock(&ioc->pci_access_mutex);
8166        if (ioc->chip_phys && ioc->chip) {
8167                mpt3sas_base_mask_interrupts(ioc);
8168                ioc->shost_recovery = 1;
8169                mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8170                ioc->shost_recovery = 0;
8171        }
8172
8173        mpt3sas_base_unmap_resources(ioc);
8174        mutex_unlock(&ioc->pci_access_mutex);
8175        return;
8176}
8177
8178/**
8179 * mpt3sas_base_attach - attach controller instance
8180 * @ioc: per adapter object
8181 *
8182 * Return: 0 for success, non-zero for failure.
8183 */
8184int
8185mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
8186{
8187        int r, i, rc;
8188        int cpu_id, last_cpu_id = 0;
8189
8190        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8191
8192        /* setup cpu_msix_table */
8193        ioc->cpu_count = num_online_cpus();
8194        for_each_online_cpu(cpu_id)
8195                last_cpu_id = cpu_id;
8196        ioc->cpu_msix_table_sz = last_cpu_id + 1;
8197        ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
8198        ioc->reply_queue_count = 1;
8199        if (!ioc->cpu_msix_table) {
8200                ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
8201                r = -ENOMEM;
8202                goto out_free_resources;
8203        }
8204
8205        if (ioc->is_warpdrive) {
8206                ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
8207                    sizeof(resource_size_t *), GFP_KERNEL);
8208                if (!ioc->reply_post_host_index) {
8209                        ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
8210                        r = -ENOMEM;
8211                        goto out_free_resources;
8212                }
8213        }
8214
8215        ioc->smp_affinity_enable = smp_affinity_enable;
8216
8217        ioc->rdpq_array_enable_assigned = 0;
8218        ioc->use_32bit_dma = false;
8219        ioc->dma_mask = 64;
8220        if (ioc->is_aero_ioc)
8221                ioc->base_readl = &_base_readl_aero;
8222        else
8223                ioc->base_readl = &_base_readl;
8224        r = mpt3sas_base_map_resources(ioc);
8225        if (r)
8226                goto out_free_resources;
8227
8228        pci_set_drvdata(ioc->pdev, ioc->shost);
8229        r = _base_get_ioc_facts(ioc);
8230        if (r) {
8231                rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8232                if (rc || (_base_get_ioc_facts(ioc)))
8233                        goto out_free_resources;
8234        }
8235
8236        switch (ioc->hba_mpi_version_belonged) {
8237        case MPI2_VERSION:
8238                ioc->build_sg_scmd = &_base_build_sg_scmd;
8239                ioc->build_sg = &_base_build_sg;
8240                ioc->build_zero_len_sge = &_base_build_zero_len_sge;
8241                ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8242                break;
8243        case MPI25_VERSION:
8244        case MPI26_VERSION:
8245                /*
8246                 * In SAS3.0,
8247                 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
8248                 * Target Status - all require the IEEE formatted scatter gather
8249                 * elements.
8250                 */
8251                ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
8252                ioc->build_sg = &_base_build_sg_ieee;
8253                ioc->build_nvme_prp = &_base_build_nvme_prp;
8254                ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
8255                ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
8256                if (ioc->high_iops_queues)
8257                        ioc->get_msix_index_for_smlio =
8258                                        &_base_get_high_iops_msix_index;
8259                else
8260                        ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8261                break;
8262        }
8263        if (ioc->atomic_desc_capable) {
8264                ioc->put_smid_default = &_base_put_smid_default_atomic;
8265                ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
8266                ioc->put_smid_fast_path =
8267                                &_base_put_smid_fast_path_atomic;
8268                ioc->put_smid_hi_priority =
8269                                &_base_put_smid_hi_priority_atomic;
8270        } else {
8271                ioc->put_smid_default = &_base_put_smid_default;
8272                ioc->put_smid_fast_path = &_base_put_smid_fast_path;
8273                ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
8274                if (ioc->is_mcpu_endpoint)
8275                        ioc->put_smid_scsi_io =
8276                                &_base_put_smid_mpi_ep_scsi_io;
8277                else
8278                        ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
8279        }
8280        /*
8281         * These function pointers for other requests that don't
8282         * the require IEEE scatter gather elements.
8283         *
8284         * For example Configuration Pages and SAS IOUNIT Control don't.
8285         */
8286        ioc->build_sg_mpi = &_base_build_sg;
8287        ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
8288
8289        r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8290        if (r)
8291                goto out_free_resources;
8292
8293        ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
8294            sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
8295        if (!ioc->pfacts) {
8296                r = -ENOMEM;
8297                goto out_free_resources;
8298        }
8299
8300        for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
8301                r = _base_get_port_facts(ioc, i);
8302                if (r) {
8303                        rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8304                        if (rc || (_base_get_port_facts(ioc, i)))
8305                                goto out_free_resources;
8306                }
8307        }
8308
8309        r = _base_allocate_memory_pools(ioc);
8310        if (r)
8311                goto out_free_resources;
8312
8313        if (irqpoll_weight > 0)
8314                ioc->thresh_hold = irqpoll_weight;
8315        else
8316                ioc->thresh_hold = ioc->hba_queue_depth/4;
8317
8318        _base_init_irqpolls(ioc);
8319        init_waitqueue_head(&ioc->reset_wq);
8320
8321        /* allocate memory pd handle bitmask list */
8322        ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8323        if (ioc->facts.MaxDevHandle % 8)
8324                ioc->pd_handles_sz++;
8325        ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
8326            GFP_KERNEL);
8327        if (!ioc->pd_handles) {
8328                r = -ENOMEM;
8329                goto out_free_resources;
8330        }
8331        ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
8332            GFP_KERNEL);
8333        if (!ioc->blocking_handles) {
8334                r = -ENOMEM;
8335                goto out_free_resources;
8336        }
8337
8338        /* allocate memory for pending OS device add list */
8339        ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
8340        if (ioc->facts.MaxDevHandle % 8)
8341                ioc->pend_os_device_add_sz++;
8342        ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
8343            GFP_KERNEL);
8344        if (!ioc->pend_os_device_add) {
8345                r = -ENOMEM;
8346                goto out_free_resources;
8347        }
8348
8349        ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
8350        ioc->device_remove_in_progress =
8351                kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
8352        if (!ioc->device_remove_in_progress) {
8353                r = -ENOMEM;
8354                goto out_free_resources;
8355        }
8356
8357        ioc->fwfault_debug = mpt3sas_fwfault_debug;
8358
8359        /* base internal command bits */
8360        mutex_init(&ioc->base_cmds.mutex);
8361        ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8362        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
8363
8364        /* port_enable command bits */
8365        ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8366        ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
8367
8368        /* transport internal command bits */
8369        ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8370        ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
8371        mutex_init(&ioc->transport_cmds.mutex);
8372
8373        /* scsih internal command bits */
8374        ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8375        ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
8376        mutex_init(&ioc->scsih_cmds.mutex);
8377
8378        /* task management internal command bits */
8379        ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8380        ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
8381        mutex_init(&ioc->tm_cmds.mutex);
8382
8383        /* config page internal command bits */
8384        ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8385        ioc->config_cmds.status = MPT3_CMD_NOT_USED;
8386        mutex_init(&ioc->config_cmds.mutex);
8387
8388        /* ctl module internal command bits */
8389        ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8390        ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
8391        ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
8392        mutex_init(&ioc->ctl_cmds.mutex);
8393
8394        if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
8395            !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
8396            !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
8397            !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
8398                r = -ENOMEM;
8399                goto out_free_resources;
8400        }
8401
8402        for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
8403                ioc->event_masks[i] = -1;
8404
8405        /* here we enable the events we care about */
8406        _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
8407        _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
8408        _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
8409        _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
8410        _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
8411        _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
8412        _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
8413        _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
8414        _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
8415        _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
8416        _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
8417        _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
8418        _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
8419        if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
8420                if (ioc->is_gen35_ioc) {
8421                        _base_unmask_events(ioc,
8422                                MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
8423                        _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
8424                        _base_unmask_events(ioc,
8425                                MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
8426                }
8427        }
8428        r = _base_make_ioc_operational(ioc);
8429        if (r == -EAGAIN) {
8430                r = _base_make_ioc_operational(ioc);
8431                if (r)
8432                        goto out_free_resources;
8433        }
8434
8435        /*
8436         * Copy current copy of IOCFacts in prev_fw_facts
8437         * and it will be used during online firmware upgrade.
8438         */
8439        memcpy(&ioc->prev_fw_facts, &ioc->facts,
8440            sizeof(struct mpt3sas_facts));
8441
8442        ioc->non_operational_loop = 0;
8443        ioc->ioc_coredump_loop = 0;
8444        ioc->got_task_abort_from_ioctl = 0;
8445        return 0;
8446
8447 out_free_resources:
8448
8449        ioc->remove_host = 1;
8450
8451        mpt3sas_base_free_resources(ioc);
8452        _base_release_memory_pools(ioc);
8453        pci_set_drvdata(ioc->pdev, NULL);
8454        kfree(ioc->cpu_msix_table);
8455        if (ioc->is_warpdrive)
8456                kfree(ioc->reply_post_host_index);
8457        kfree(ioc->pd_handles);
8458        kfree(ioc->blocking_handles);
8459        kfree(ioc->device_remove_in_progress);
8460        kfree(ioc->pend_os_device_add);
8461        kfree(ioc->tm_cmds.reply);
8462        kfree(ioc->transport_cmds.reply);
8463        kfree(ioc->scsih_cmds.reply);
8464        kfree(ioc->config_cmds.reply);
8465        kfree(ioc->base_cmds.reply);
8466        kfree(ioc->port_enable_cmds.reply);
8467        kfree(ioc->ctl_cmds.reply);
8468        kfree(ioc->ctl_cmds.sense);
8469        kfree(ioc->pfacts);
8470        ioc->ctl_cmds.reply = NULL;
8471        ioc->base_cmds.reply = NULL;
8472        ioc->tm_cmds.reply = NULL;
8473        ioc->scsih_cmds.reply = NULL;
8474        ioc->transport_cmds.reply = NULL;
8475        ioc->config_cmds.reply = NULL;
8476        ioc->pfacts = NULL;
8477        return r;
8478}
8479
8480
8481/**
8482 * mpt3sas_base_detach - remove controller instance
8483 * @ioc: per adapter object
8484 */
8485void
8486mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
8487{
8488        dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8489
8490        mpt3sas_base_stop_watchdog(ioc);
8491        mpt3sas_base_free_resources(ioc);
8492        _base_release_memory_pools(ioc);
8493        mpt3sas_free_enclosure_list(ioc);
8494        pci_set_drvdata(ioc->pdev, NULL);
8495        kfree(ioc->cpu_msix_table);
8496        if (ioc->is_warpdrive)
8497                kfree(ioc->reply_post_host_index);
8498        kfree(ioc->pd_handles);
8499        kfree(ioc->blocking_handles);
8500        kfree(ioc->device_remove_in_progress);
8501        kfree(ioc->pend_os_device_add);
8502        kfree(ioc->pfacts);
8503        kfree(ioc->ctl_cmds.reply);
8504        kfree(ioc->ctl_cmds.sense);
8505        kfree(ioc->base_cmds.reply);
8506        kfree(ioc->port_enable_cmds.reply);
8507        kfree(ioc->tm_cmds.reply);
8508        kfree(ioc->transport_cmds.reply);
8509        kfree(ioc->scsih_cmds.reply);
8510        kfree(ioc->config_cmds.reply);
8511}
8512
8513/**
8514 * _base_pre_reset_handler - pre reset handler
8515 * @ioc: per adapter object
8516 */
8517static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
8518{
8519        mpt3sas_scsih_pre_reset_handler(ioc);
8520        mpt3sas_ctl_pre_reset_handler(ioc);
8521        dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
8522}
8523
8524/**
8525 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
8526 * @ioc: per adapter object
8527 */
8528static void
8529_base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
8530{
8531        dtmprintk(ioc,
8532            ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
8533        if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
8534                ioc->transport_cmds.status |= MPT3_CMD_RESET;
8535                mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
8536                complete(&ioc->transport_cmds.done);
8537        }
8538        if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
8539                ioc->base_cmds.status |= MPT3_CMD_RESET;
8540                mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
8541                complete(&ioc->base_cmds.done);
8542        }
8543        if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
8544                ioc->port_enable_failed = 1;
8545                ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
8546                mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
8547                if (ioc->is_driver_loading) {
8548                        ioc->start_scan_failed =
8549                                MPI2_IOCSTATUS_INTERNAL_ERROR;
8550                        ioc->start_scan = 0;
8551                } else {
8552                        complete(&ioc->port_enable_cmds.done);
8553                }
8554        }
8555        if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
8556                ioc->config_cmds.status |= MPT3_CMD_RESET;
8557                mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
8558                ioc->config_cmds.smid = USHRT_MAX;
8559                complete(&ioc->config_cmds.done);
8560        }
8561}
8562
8563/**
8564 * _base_clear_outstanding_commands - clear all outstanding commands
8565 * @ioc: per adapter object
8566 */
8567static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
8568{
8569        mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
8570        mpt3sas_ctl_clear_outstanding_ioctls(ioc);
8571        _base_clear_outstanding_mpt_commands(ioc);
8572}
8573
8574/**
8575 * _base_reset_done_handler - reset done handler
8576 * @ioc: per adapter object
8577 */
8578static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
8579{
8580        mpt3sas_scsih_reset_done_handler(ioc);
8581        mpt3sas_ctl_reset_done_handler(ioc);
8582        dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
8583}
8584
8585/**
8586 * mpt3sas_wait_for_commands_to_complete - reset controller
8587 * @ioc: Pointer to MPT_ADAPTER structure
8588 *
8589 * This function is waiting 10s for all pending commands to complete
8590 * prior to putting controller in reset.
8591 */
8592void
8593mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
8594{
8595        u32 ioc_state;
8596
8597        ioc->pending_io_count = 0;
8598
8599        ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8600        if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
8601                return;
8602
8603        /* pending command count */
8604        ioc->pending_io_count = scsi_host_busy(ioc->shost);
8605
8606        if (!ioc->pending_io_count)
8607                return;
8608
8609        /* wait for pending commands to complete */
8610        wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
8611}
8612
8613/**
8614 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
8615 *     attributes during online firmware upgrade and update the corresponding
8616 *     IOC variables accordingly.
8617 *
8618 * @ioc: Pointer to MPT_ADAPTER structure
8619 */
8620static int
8621_base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
8622{
8623        u16 pd_handles_sz;
8624        void *pd_handles = NULL, *blocking_handles = NULL;
8625        void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
8626        struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
8627
8628        if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
8629                pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8630                if (ioc->facts.MaxDevHandle % 8)
8631                        pd_handles_sz++;
8632
8633                pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
8634                    GFP_KERNEL);
8635                if (!pd_handles) {
8636                        ioc_info(ioc,
8637                            "Unable to allocate the memory for pd_handles of sz: %d\n",
8638                            pd_handles_sz);
8639                        return -ENOMEM;
8640                }
8641                memset(pd_handles + ioc->pd_handles_sz, 0,
8642                    (pd_handles_sz - ioc->pd_handles_sz));
8643                ioc->pd_handles = pd_handles;
8644
8645                blocking_handles = krealloc(ioc->blocking_handles,
8646                    pd_handles_sz, GFP_KERNEL);
8647                if (!blocking_handles) {
8648                        ioc_info(ioc,
8649                            "Unable to allocate the memory for "
8650                            "blocking_handles of sz: %d\n",
8651                            pd_handles_sz);
8652                        return -ENOMEM;
8653                }
8654                memset(blocking_handles + ioc->pd_handles_sz, 0,
8655                    (pd_handles_sz - ioc->pd_handles_sz));
8656                ioc->blocking_handles = blocking_handles;
8657                ioc->pd_handles_sz = pd_handles_sz;
8658
8659                pend_os_device_add = krealloc(ioc->pend_os_device_add,
8660                    pd_handles_sz, GFP_KERNEL);
8661                if (!pend_os_device_add) {
8662                        ioc_info(ioc,
8663                            "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
8664                            pd_handles_sz);
8665                        return -ENOMEM;
8666                }
8667                memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
8668                    (pd_handles_sz - ioc->pend_os_device_add_sz));
8669                ioc->pend_os_device_add = pend_os_device_add;
8670                ioc->pend_os_device_add_sz = pd_handles_sz;
8671
8672                device_remove_in_progress = krealloc(
8673                    ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
8674                if (!device_remove_in_progress) {
8675                        ioc_info(ioc,
8676                            "Unable to allocate the memory for "
8677                            "device_remove_in_progress of sz: %d\n "
8678                            , pd_handles_sz);
8679                        return -ENOMEM;
8680                }
8681                memset(device_remove_in_progress +
8682                    ioc->device_remove_in_progress_sz, 0,
8683                    (pd_handles_sz - ioc->device_remove_in_progress_sz));
8684                ioc->device_remove_in_progress = device_remove_in_progress;
8685                ioc->device_remove_in_progress_sz = pd_handles_sz;
8686        }
8687
8688        memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
8689        return 0;
8690}
8691
8692/**
8693 * mpt3sas_base_hard_reset_handler - reset controller
8694 * @ioc: Pointer to MPT_ADAPTER structure
8695 * @type: FORCE_BIG_HAMMER or SOFT_RESET
8696 *
8697 * Return: 0 for success, non-zero for failure.
8698 */
8699int
8700mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
8701        enum reset_type type)
8702{
8703        int r;
8704        unsigned long flags;
8705        u32 ioc_state;
8706        u8 is_fault = 0, is_trigger = 0;
8707
8708        dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
8709
8710        if (ioc->pci_error_recovery) {
8711                ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
8712                r = 0;
8713                goto out_unlocked;
8714        }
8715
8716        if (mpt3sas_fwfault_debug)
8717                mpt3sas_halt_firmware(ioc);
8718
8719        /* wait for an active reset in progress to complete */
8720        mutex_lock(&ioc->reset_in_progress_mutex);
8721
8722        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8723        ioc->shost_recovery = 1;
8724        spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8725
8726        if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8727            MPT3_DIAG_BUFFER_IS_REGISTERED) &&
8728            (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8729            MPT3_DIAG_BUFFER_IS_RELEASED))) {
8730                is_trigger = 1;
8731                ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8732                if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
8733                    (ioc_state & MPI2_IOC_STATE_MASK) ==
8734                    MPI2_IOC_STATE_COREDUMP) {
8735                        is_fault = 1;
8736                        ioc->htb_rel.trigger_info_dwords[1] =
8737                            (ioc_state & MPI2_DOORBELL_DATA_MASK);
8738                }
8739        }
8740        _base_pre_reset_handler(ioc);
8741        mpt3sas_wait_for_commands_to_complete(ioc);
8742        mpt3sas_base_mask_interrupts(ioc);
8743        mpt3sas_base_pause_mq_polling(ioc);
8744        r = mpt3sas_base_make_ioc_ready(ioc, type);
8745        if (r)
8746                goto out;
8747        _base_clear_outstanding_commands(ioc);
8748
8749        /* If this hard reset is called while port enable is active, then
8750         * there is no reason to call make_ioc_operational
8751         */
8752        if (ioc->is_driver_loading && ioc->port_enable_failed) {
8753                ioc->remove_host = 1;
8754                r = -EFAULT;
8755                goto out;
8756        }
8757        r = _base_get_ioc_facts(ioc);
8758        if (r)
8759                goto out;
8760
8761        r = _base_check_ioc_facts_changes(ioc);
8762        if (r) {
8763                ioc_info(ioc,
8764                    "Some of the parameters got changed in this new firmware"
8765                    " image and it requires system reboot\n");
8766                goto out;
8767        }
8768        if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
8769                panic("%s: Issue occurred with flashing controller firmware."
8770                      "Please reboot the system and ensure that the correct"
8771                      " firmware version is running\n", ioc->name);
8772
8773        r = _base_make_ioc_operational(ioc);
8774        if (!r)
8775                _base_reset_done_handler(ioc);
8776
8777 out:
8778        ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
8779
8780        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8781        ioc->shost_recovery = 0;
8782        spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8783        ioc->ioc_reset_count++;
8784        mutex_unlock(&ioc->reset_in_progress_mutex);
8785        mpt3sas_base_resume_mq_polling(ioc);
8786
8787 out_unlocked:
8788        if ((r == 0) && is_trigger) {
8789                if (is_fault)
8790                        mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
8791                else
8792                        mpt3sas_trigger_master(ioc,
8793                            MASTER_TRIGGER_ADAPTER_RESET);
8794        }
8795        dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
8796        return r;
8797}
8798