linux/kernel/kprobes.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Kernel Probes (KProbes)
   4 *  kernel/kprobes.c
   5 *
   6 * Copyright (C) IBM Corporation, 2002, 2004
   7 *
   8 * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
   9 *              Probes initial implementation (includes suggestions from
  10 *              Rusty Russell).
  11 * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
  12 *              hlists and exceptions notifier as suggested by Andi Kleen.
  13 * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  14 *              interface to access function arguments.
  15 * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
  16 *              exceptions notifier to be first on the priority list.
  17 * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  18 *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  19 *              <prasanna@in.ibm.com> added function-return probes.
  20 */
  21#include <linux/kprobes.h>
  22#include <linux/hash.h>
  23#include <linux/init.h>
  24#include <linux/slab.h>
  25#include <linux/stddef.h>
  26#include <linux/export.h>
  27#include <linux/moduleloader.h>
  28#include <linux/kallsyms.h>
  29#include <linux/freezer.h>
  30#include <linux/seq_file.h>
  31#include <linux/debugfs.h>
  32#include <linux/sysctl.h>
  33#include <linux/kdebug.h>
  34#include <linux/memory.h>
  35#include <linux/ftrace.h>
  36#include <linux/cpu.h>
  37#include <linux/jump_label.h>
  38#include <linux/static_call.h>
  39#include <linux/perf_event.h>
  40
  41#include <asm/sections.h>
  42#include <asm/cacheflush.h>
  43#include <asm/errno.h>
  44#include <linux/uaccess.h>
  45
  46#define KPROBE_HASH_BITS 6
  47#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
  48
  49
  50static int kprobes_initialized;
  51/* kprobe_table can be accessed by
  52 * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
  53 * Or
  54 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
  55 */
  56static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
  57
  58/* NOTE: change this value only with kprobe_mutex held */
  59static bool kprobes_all_disarmed;
  60
  61/* This protects kprobe_table and optimizing_list */
  62static DEFINE_MUTEX(kprobe_mutex);
  63static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
  64
  65kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
  66                                        unsigned int __unused)
  67{
  68        return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
  69}
  70
  71/* Blacklist -- list of struct kprobe_blacklist_entry */
  72static LIST_HEAD(kprobe_blacklist);
  73
  74#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
  75/*
  76 * kprobe->ainsn.insn points to the copy of the instruction to be
  77 * single-stepped. x86_64, POWER4 and above have no-exec support and
  78 * stepping on the instruction on a vmalloced/kmalloced/data page
  79 * is a recipe for disaster
  80 */
  81struct kprobe_insn_page {
  82        struct list_head list;
  83        kprobe_opcode_t *insns;         /* Page of instruction slots */
  84        struct kprobe_insn_cache *cache;
  85        int nused;
  86        int ngarbage;
  87        char slot_used[];
  88};
  89
  90#define KPROBE_INSN_PAGE_SIZE(slots)                    \
  91        (offsetof(struct kprobe_insn_page, slot_used) + \
  92         (sizeof(char) * (slots)))
  93
  94static int slots_per_page(struct kprobe_insn_cache *c)
  95{
  96        return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
  97}
  98
  99enum kprobe_slot_state {
 100        SLOT_CLEAN = 0,
 101        SLOT_DIRTY = 1,
 102        SLOT_USED = 2,
 103};
 104
 105void __weak *alloc_insn_page(void)
 106{
 107        return module_alloc(PAGE_SIZE);
 108}
 109
 110static void free_insn_page(void *page)
 111{
 112        module_memfree(page);
 113}
 114
 115struct kprobe_insn_cache kprobe_insn_slots = {
 116        .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
 117        .alloc = alloc_insn_page,
 118        .free = free_insn_page,
 119        .sym = KPROBE_INSN_PAGE_SYM,
 120        .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
 121        .insn_size = MAX_INSN_SIZE,
 122        .nr_garbage = 0,
 123};
 124static int collect_garbage_slots(struct kprobe_insn_cache *c);
 125
 126/**
 127 * __get_insn_slot() - Find a slot on an executable page for an instruction.
 128 * We allocate an executable page if there's no room on existing ones.
 129 */
 130kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
 131{
 132        struct kprobe_insn_page *kip;
 133        kprobe_opcode_t *slot = NULL;
 134
 135        /* Since the slot array is not protected by rcu, we need a mutex */
 136        mutex_lock(&c->mutex);
 137 retry:
 138        rcu_read_lock();
 139        list_for_each_entry_rcu(kip, &c->pages, list) {
 140                if (kip->nused < slots_per_page(c)) {
 141                        int i;
 142                        for (i = 0; i < slots_per_page(c); i++) {
 143                                if (kip->slot_used[i] == SLOT_CLEAN) {
 144                                        kip->slot_used[i] = SLOT_USED;
 145                                        kip->nused++;
 146                                        slot = kip->insns + (i * c->insn_size);
 147                                        rcu_read_unlock();
 148                                        goto out;
 149                                }
 150                        }
 151                        /* kip->nused is broken. Fix it. */
 152                        kip->nused = slots_per_page(c);
 153                        WARN_ON(1);
 154                }
 155        }
 156        rcu_read_unlock();
 157
 158        /* If there are any garbage slots, collect it and try again. */
 159        if (c->nr_garbage && collect_garbage_slots(c) == 0)
 160                goto retry;
 161
 162        /* All out of space.  Need to allocate a new page. */
 163        kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
 164        if (!kip)
 165                goto out;
 166
 167        /*
 168         * Use module_alloc so this page is within +/- 2GB of where the
 169         * kernel image and loaded module images reside. This is required
 170         * so x86_64 can correctly handle the %rip-relative fixups.
 171         */
 172        kip->insns = c->alloc();
 173        if (!kip->insns) {
 174                kfree(kip);
 175                goto out;
 176        }
 177        INIT_LIST_HEAD(&kip->list);
 178        memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
 179        kip->slot_used[0] = SLOT_USED;
 180        kip->nused = 1;
 181        kip->ngarbage = 0;
 182        kip->cache = c;
 183        list_add_rcu(&kip->list, &c->pages);
 184        slot = kip->insns;
 185
 186        /* Record the perf ksymbol register event after adding the page */
 187        perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
 188                           PAGE_SIZE, false, c->sym);
 189out:
 190        mutex_unlock(&c->mutex);
 191        return slot;
 192}
 193
 194/* Return 1 if all garbages are collected, otherwise 0. */
 195static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
 196{
 197        kip->slot_used[idx] = SLOT_CLEAN;
 198        kip->nused--;
 199        if (kip->nused == 0) {
 200                /*
 201                 * Page is no longer in use.  Free it unless
 202                 * it's the last one.  We keep the last one
 203                 * so as not to have to set it up again the
 204                 * next time somebody inserts a probe.
 205                 */
 206                if (!list_is_singular(&kip->list)) {
 207                        /*
 208                         * Record perf ksymbol unregister event before removing
 209                         * the page.
 210                         */
 211                        perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
 212                                           (unsigned long)kip->insns, PAGE_SIZE, true,
 213                                           kip->cache->sym);
 214                        list_del_rcu(&kip->list);
 215                        synchronize_rcu();
 216                        kip->cache->free(kip->insns);
 217                        kfree(kip);
 218                }
 219                return 1;
 220        }
 221        return 0;
 222}
 223
 224static int collect_garbage_slots(struct kprobe_insn_cache *c)
 225{
 226        struct kprobe_insn_page *kip, *next;
 227
 228        /* Ensure no-one is interrupted on the garbages */
 229        synchronize_rcu();
 230
 231        list_for_each_entry_safe(kip, next, &c->pages, list) {
 232                int i;
 233                if (kip->ngarbage == 0)
 234                        continue;
 235                kip->ngarbage = 0;      /* we will collect all garbages */
 236                for (i = 0; i < slots_per_page(c); i++) {
 237                        if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
 238                                break;
 239                }
 240        }
 241        c->nr_garbage = 0;
 242        return 0;
 243}
 244
 245void __free_insn_slot(struct kprobe_insn_cache *c,
 246                      kprobe_opcode_t *slot, int dirty)
 247{
 248        struct kprobe_insn_page *kip;
 249        long idx;
 250
 251        mutex_lock(&c->mutex);
 252        rcu_read_lock();
 253        list_for_each_entry_rcu(kip, &c->pages, list) {
 254                idx = ((long)slot - (long)kip->insns) /
 255                        (c->insn_size * sizeof(kprobe_opcode_t));
 256                if (idx >= 0 && idx < slots_per_page(c))
 257                        goto out;
 258        }
 259        /* Could not find this slot. */
 260        WARN_ON(1);
 261        kip = NULL;
 262out:
 263        rcu_read_unlock();
 264        /* Mark and sweep: this may sleep */
 265        if (kip) {
 266                /* Check double free */
 267                WARN_ON(kip->slot_used[idx] != SLOT_USED);
 268                if (dirty) {
 269                        kip->slot_used[idx] = SLOT_DIRTY;
 270                        kip->ngarbage++;
 271                        if (++c->nr_garbage > slots_per_page(c))
 272                                collect_garbage_slots(c);
 273                } else {
 274                        collect_one_slot(kip, idx);
 275                }
 276        }
 277        mutex_unlock(&c->mutex);
 278}
 279
 280/*
 281 * Check given address is on the page of kprobe instruction slots.
 282 * This will be used for checking whether the address on a stack
 283 * is on a text area or not.
 284 */
 285bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
 286{
 287        struct kprobe_insn_page *kip;
 288        bool ret = false;
 289
 290        rcu_read_lock();
 291        list_for_each_entry_rcu(kip, &c->pages, list) {
 292                if (addr >= (unsigned long)kip->insns &&
 293                    addr < (unsigned long)kip->insns + PAGE_SIZE) {
 294                        ret = true;
 295                        break;
 296                }
 297        }
 298        rcu_read_unlock();
 299
 300        return ret;
 301}
 302
 303int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
 304                             unsigned long *value, char *type, char *sym)
 305{
 306        struct kprobe_insn_page *kip;
 307        int ret = -ERANGE;
 308
 309        rcu_read_lock();
 310        list_for_each_entry_rcu(kip, &c->pages, list) {
 311                if ((*symnum)--)
 312                        continue;
 313                strlcpy(sym, c->sym, KSYM_NAME_LEN);
 314                *type = 't';
 315                *value = (unsigned long)kip->insns;
 316                ret = 0;
 317                break;
 318        }
 319        rcu_read_unlock();
 320
 321        return ret;
 322}
 323
 324#ifdef CONFIG_OPTPROBES
 325void __weak *alloc_optinsn_page(void)
 326{
 327        return alloc_insn_page();
 328}
 329
 330void __weak free_optinsn_page(void *page)
 331{
 332        free_insn_page(page);
 333}
 334
 335/* For optimized_kprobe buffer */
 336struct kprobe_insn_cache kprobe_optinsn_slots = {
 337        .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
 338        .alloc = alloc_optinsn_page,
 339        .free = free_optinsn_page,
 340        .sym = KPROBE_OPTINSN_PAGE_SYM,
 341        .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
 342        /* .insn_size is initialized later */
 343        .nr_garbage = 0,
 344};
 345#endif
 346#endif
 347
 348/* We have preemption disabled.. so it is safe to use __ versions */
 349static inline void set_kprobe_instance(struct kprobe *kp)
 350{
 351        __this_cpu_write(kprobe_instance, kp);
 352}
 353
 354static inline void reset_kprobe_instance(void)
 355{
 356        __this_cpu_write(kprobe_instance, NULL);
 357}
 358
 359/*
 360 * This routine is called either:
 361 *      - under the kprobe_mutex - during kprobe_[un]register()
 362 *                              OR
 363 *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
 364 */
 365struct kprobe *get_kprobe(void *addr)
 366{
 367        struct hlist_head *head;
 368        struct kprobe *p;
 369
 370        head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
 371        hlist_for_each_entry_rcu(p, head, hlist,
 372                                 lockdep_is_held(&kprobe_mutex)) {
 373                if (p->addr == addr)
 374                        return p;
 375        }
 376
 377        return NULL;
 378}
 379NOKPROBE_SYMBOL(get_kprobe);
 380
 381static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
 382
 383/* Return true if the kprobe is an aggregator */
 384static inline int kprobe_aggrprobe(struct kprobe *p)
 385{
 386        return p->pre_handler == aggr_pre_handler;
 387}
 388
 389/* Return true(!0) if the kprobe is unused */
 390static inline int kprobe_unused(struct kprobe *p)
 391{
 392        return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
 393               list_empty(&p->list);
 394}
 395
 396/*
 397 * Keep all fields in the kprobe consistent
 398 */
 399static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
 400{
 401        memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
 402        memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
 403}
 404
 405#ifdef CONFIG_OPTPROBES
 406/* NOTE: change this value only with kprobe_mutex held */
 407static bool kprobes_allow_optimization;
 408
 409/*
 410 * Call all pre_handler on the list, but ignores its return value.
 411 * This must be called from arch-dep optimized caller.
 412 */
 413void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
 414{
 415        struct kprobe *kp;
 416
 417        list_for_each_entry_rcu(kp, &p->list, list) {
 418                if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
 419                        set_kprobe_instance(kp);
 420                        kp->pre_handler(kp, regs);
 421                }
 422                reset_kprobe_instance();
 423        }
 424}
 425NOKPROBE_SYMBOL(opt_pre_handler);
 426
 427/* Free optimized instructions and optimized_kprobe */
 428static void free_aggr_kprobe(struct kprobe *p)
 429{
 430        struct optimized_kprobe *op;
 431
 432        op = container_of(p, struct optimized_kprobe, kp);
 433        arch_remove_optimized_kprobe(op);
 434        arch_remove_kprobe(p);
 435        kfree(op);
 436}
 437
 438/* Return true(!0) if the kprobe is ready for optimization. */
 439static inline int kprobe_optready(struct kprobe *p)
 440{
 441        struct optimized_kprobe *op;
 442
 443        if (kprobe_aggrprobe(p)) {
 444                op = container_of(p, struct optimized_kprobe, kp);
 445                return arch_prepared_optinsn(&op->optinsn);
 446        }
 447
 448        return 0;
 449}
 450
 451/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
 452static inline int kprobe_disarmed(struct kprobe *p)
 453{
 454        struct optimized_kprobe *op;
 455
 456        /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
 457        if (!kprobe_aggrprobe(p))
 458                return kprobe_disabled(p);
 459
 460        op = container_of(p, struct optimized_kprobe, kp);
 461
 462        return kprobe_disabled(p) && list_empty(&op->list);
 463}
 464
 465/* Return true(!0) if the probe is queued on (un)optimizing lists */
 466static int kprobe_queued(struct kprobe *p)
 467{
 468        struct optimized_kprobe *op;
 469
 470        if (kprobe_aggrprobe(p)) {
 471                op = container_of(p, struct optimized_kprobe, kp);
 472                if (!list_empty(&op->list))
 473                        return 1;
 474        }
 475        return 0;
 476}
 477
 478/*
 479 * Return an optimized kprobe whose optimizing code replaces
 480 * instructions including addr (exclude breakpoint).
 481 */
 482static struct kprobe *get_optimized_kprobe(unsigned long addr)
 483{
 484        int i;
 485        struct kprobe *p = NULL;
 486        struct optimized_kprobe *op;
 487
 488        /* Don't check i == 0, since that is a breakpoint case. */
 489        for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
 490                p = get_kprobe((void *)(addr - i));
 491
 492        if (p && kprobe_optready(p)) {
 493                op = container_of(p, struct optimized_kprobe, kp);
 494                if (arch_within_optimized_kprobe(op, addr))
 495                        return p;
 496        }
 497
 498        return NULL;
 499}
 500
 501/* Optimization staging list, protected by kprobe_mutex */
 502static LIST_HEAD(optimizing_list);
 503static LIST_HEAD(unoptimizing_list);
 504static LIST_HEAD(freeing_list);
 505
 506static void kprobe_optimizer(struct work_struct *work);
 507static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
 508#define OPTIMIZE_DELAY 5
 509
 510/*
 511 * Optimize (replace a breakpoint with a jump) kprobes listed on
 512 * optimizing_list.
 513 */
 514static void do_optimize_kprobes(void)
 515{
 516        lockdep_assert_held(&text_mutex);
 517        /*
 518         * The optimization/unoptimization refers online_cpus via
 519         * stop_machine() and cpu-hotplug modifies online_cpus.
 520         * And same time, text_mutex will be held in cpu-hotplug and here.
 521         * This combination can cause a deadlock (cpu-hotplug try to lock
 522         * text_mutex but stop_machine can not be done because online_cpus
 523         * has been changed)
 524         * To avoid this deadlock, caller must have locked cpu hotplug
 525         * for preventing cpu-hotplug outside of text_mutex locking.
 526         */
 527        lockdep_assert_cpus_held();
 528
 529        /* Optimization never be done when disarmed */
 530        if (kprobes_all_disarmed || !kprobes_allow_optimization ||
 531            list_empty(&optimizing_list))
 532                return;
 533
 534        arch_optimize_kprobes(&optimizing_list);
 535}
 536
 537/*
 538 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
 539 * if need) kprobes listed on unoptimizing_list.
 540 */
 541static void do_unoptimize_kprobes(void)
 542{
 543        struct optimized_kprobe *op, *tmp;
 544
 545        lockdep_assert_held(&text_mutex);
 546        /* See comment in do_optimize_kprobes() */
 547        lockdep_assert_cpus_held();
 548
 549        /* Unoptimization must be done anytime */
 550        if (list_empty(&unoptimizing_list))
 551                return;
 552
 553        arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
 554        /* Loop free_list for disarming */
 555        list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 556                /* Switching from detour code to origin */
 557                op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 558                /* Disarm probes if marked disabled */
 559                if (kprobe_disabled(&op->kp))
 560                        arch_disarm_kprobe(&op->kp);
 561                if (kprobe_unused(&op->kp)) {
 562                        /*
 563                         * Remove unused probes from hash list. After waiting
 564                         * for synchronization, these probes are reclaimed.
 565                         * (reclaiming is done by do_free_cleaned_kprobes.)
 566                         */
 567                        hlist_del_rcu(&op->kp.hlist);
 568                } else
 569                        list_del_init(&op->list);
 570        }
 571}
 572
 573/* Reclaim all kprobes on the free_list */
 574static void do_free_cleaned_kprobes(void)
 575{
 576        struct optimized_kprobe *op, *tmp;
 577
 578        list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 579                list_del_init(&op->list);
 580                if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
 581                        /*
 582                         * This must not happen, but if there is a kprobe
 583                         * still in use, keep it on kprobes hash list.
 584                         */
 585                        continue;
 586                }
 587                free_aggr_kprobe(&op->kp);
 588        }
 589}
 590
 591/* Start optimizer after OPTIMIZE_DELAY passed */
 592static void kick_kprobe_optimizer(void)
 593{
 594        schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
 595}
 596
 597/* Kprobe jump optimizer */
 598static void kprobe_optimizer(struct work_struct *work)
 599{
 600        mutex_lock(&kprobe_mutex);
 601        cpus_read_lock();
 602        mutex_lock(&text_mutex);
 603
 604        /*
 605         * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
 606         * kprobes before waiting for quiesence period.
 607         */
 608        do_unoptimize_kprobes();
 609
 610        /*
 611         * Step 2: Wait for quiesence period to ensure all potentially
 612         * preempted tasks to have normally scheduled. Because optprobe
 613         * may modify multiple instructions, there is a chance that Nth
 614         * instruction is preempted. In that case, such tasks can return
 615         * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
 616         * Note that on non-preemptive kernel, this is transparently converted
 617         * to synchronoze_sched() to wait for all interrupts to have completed.
 618         */
 619        synchronize_rcu_tasks();
 620
 621        /* Step 3: Optimize kprobes after quiesence period */
 622        do_optimize_kprobes();
 623
 624        /* Step 4: Free cleaned kprobes after quiesence period */
 625        do_free_cleaned_kprobes();
 626
 627        mutex_unlock(&text_mutex);
 628        cpus_read_unlock();
 629
 630        /* Step 5: Kick optimizer again if needed */
 631        if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
 632                kick_kprobe_optimizer();
 633
 634        mutex_unlock(&kprobe_mutex);
 635}
 636
 637/* Wait for completing optimization and unoptimization */
 638void wait_for_kprobe_optimizer(void)
 639{
 640        mutex_lock(&kprobe_mutex);
 641
 642        while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
 643                mutex_unlock(&kprobe_mutex);
 644
 645                /* this will also make optimizing_work execute immmediately */
 646                flush_delayed_work(&optimizing_work);
 647                /* @optimizing_work might not have been queued yet, relax */
 648                cpu_relax();
 649
 650                mutex_lock(&kprobe_mutex);
 651        }
 652
 653        mutex_unlock(&kprobe_mutex);
 654}
 655
 656static bool optprobe_queued_unopt(struct optimized_kprobe *op)
 657{
 658        struct optimized_kprobe *_op;
 659
 660        list_for_each_entry(_op, &unoptimizing_list, list) {
 661                if (op == _op)
 662                        return true;
 663        }
 664
 665        return false;
 666}
 667
 668/* Optimize kprobe if p is ready to be optimized */
 669static void optimize_kprobe(struct kprobe *p)
 670{
 671        struct optimized_kprobe *op;
 672
 673        /* Check if the kprobe is disabled or not ready for optimization. */
 674        if (!kprobe_optready(p) || !kprobes_allow_optimization ||
 675            (kprobe_disabled(p) || kprobes_all_disarmed))
 676                return;
 677
 678        /* kprobes with post_handler can not be optimized */
 679        if (p->post_handler)
 680                return;
 681
 682        op = container_of(p, struct optimized_kprobe, kp);
 683
 684        /* Check there is no other kprobes at the optimized instructions */
 685        if (arch_check_optimized_kprobe(op) < 0)
 686                return;
 687
 688        /* Check if it is already optimized. */
 689        if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
 690                if (optprobe_queued_unopt(op)) {
 691                        /* This is under unoptimizing. Just dequeue the probe */
 692                        list_del_init(&op->list);
 693                }
 694                return;
 695        }
 696        op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
 697
 698        /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
 699        if (WARN_ON_ONCE(!list_empty(&op->list)))
 700                return;
 701
 702        list_add(&op->list, &optimizing_list);
 703        kick_kprobe_optimizer();
 704}
 705
 706/* Short cut to direct unoptimizing */
 707static void force_unoptimize_kprobe(struct optimized_kprobe *op)
 708{
 709        lockdep_assert_cpus_held();
 710        arch_unoptimize_kprobe(op);
 711        op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 712}
 713
 714/* Unoptimize a kprobe if p is optimized */
 715static void unoptimize_kprobe(struct kprobe *p, bool force)
 716{
 717        struct optimized_kprobe *op;
 718
 719        if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
 720                return; /* This is not an optprobe nor optimized */
 721
 722        op = container_of(p, struct optimized_kprobe, kp);
 723        if (!kprobe_optimized(p))
 724                return;
 725
 726        if (!list_empty(&op->list)) {
 727                if (optprobe_queued_unopt(op)) {
 728                        /* Queued in unoptimizing queue */
 729                        if (force) {
 730                                /*
 731                                 * Forcibly unoptimize the kprobe here, and queue it
 732                                 * in the freeing list for release afterwards.
 733                                 */
 734                                force_unoptimize_kprobe(op);
 735                                list_move(&op->list, &freeing_list);
 736                        }
 737                } else {
 738                        /* Dequeue from the optimizing queue */
 739                        list_del_init(&op->list);
 740                        op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 741                }
 742                return;
 743        }
 744
 745        /* Optimized kprobe case */
 746        if (force) {
 747                /* Forcibly update the code: this is a special case */
 748                force_unoptimize_kprobe(op);
 749        } else {
 750                list_add(&op->list, &unoptimizing_list);
 751                kick_kprobe_optimizer();
 752        }
 753}
 754
 755/* Cancel unoptimizing for reusing */
 756static int reuse_unused_kprobe(struct kprobe *ap)
 757{
 758        struct optimized_kprobe *op;
 759
 760        /*
 761         * Unused kprobe MUST be on the way of delayed unoptimizing (means
 762         * there is still a relative jump) and disabled.
 763         */
 764        op = container_of(ap, struct optimized_kprobe, kp);
 765        WARN_ON_ONCE(list_empty(&op->list));
 766        /* Enable the probe again */
 767        ap->flags &= ~KPROBE_FLAG_DISABLED;
 768        /* Optimize it again (remove from op->list) */
 769        if (!kprobe_optready(ap))
 770                return -EINVAL;
 771
 772        optimize_kprobe(ap);
 773        return 0;
 774}
 775
 776/* Remove optimized instructions */
 777static void kill_optimized_kprobe(struct kprobe *p)
 778{
 779        struct optimized_kprobe *op;
 780
 781        op = container_of(p, struct optimized_kprobe, kp);
 782        if (!list_empty(&op->list))
 783                /* Dequeue from the (un)optimization queue */
 784                list_del_init(&op->list);
 785        op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 786
 787        if (kprobe_unused(p)) {
 788                /* Enqueue if it is unused */
 789                list_add(&op->list, &freeing_list);
 790                /*
 791                 * Remove unused probes from the hash list. After waiting
 792                 * for synchronization, this probe is reclaimed.
 793                 * (reclaiming is done by do_free_cleaned_kprobes().)
 794                 */
 795                hlist_del_rcu(&op->kp.hlist);
 796        }
 797
 798        /* Don't touch the code, because it is already freed. */
 799        arch_remove_optimized_kprobe(op);
 800}
 801
 802static inline
 803void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
 804{
 805        if (!kprobe_ftrace(p))
 806                arch_prepare_optimized_kprobe(op, p);
 807}
 808
 809/* Try to prepare optimized instructions */
 810static void prepare_optimized_kprobe(struct kprobe *p)
 811{
 812        struct optimized_kprobe *op;
 813
 814        op = container_of(p, struct optimized_kprobe, kp);
 815        __prepare_optimized_kprobe(op, p);
 816}
 817
 818/* Allocate new optimized_kprobe and try to prepare optimized instructions */
 819static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 820{
 821        struct optimized_kprobe *op;
 822
 823        op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
 824        if (!op)
 825                return NULL;
 826
 827        INIT_LIST_HEAD(&op->list);
 828        op->kp.addr = p->addr;
 829        __prepare_optimized_kprobe(op, p);
 830
 831        return &op->kp;
 832}
 833
 834static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
 835
 836/*
 837 * Prepare an optimized_kprobe and optimize it
 838 * NOTE: p must be a normal registered kprobe
 839 */
 840static void try_to_optimize_kprobe(struct kprobe *p)
 841{
 842        struct kprobe *ap;
 843        struct optimized_kprobe *op;
 844
 845        /* Impossible to optimize ftrace-based kprobe */
 846        if (kprobe_ftrace(p))
 847                return;
 848
 849        /* For preparing optimization, jump_label_text_reserved() is called */
 850        cpus_read_lock();
 851        jump_label_lock();
 852        mutex_lock(&text_mutex);
 853
 854        ap = alloc_aggr_kprobe(p);
 855        if (!ap)
 856                goto out;
 857
 858        op = container_of(ap, struct optimized_kprobe, kp);
 859        if (!arch_prepared_optinsn(&op->optinsn)) {
 860                /* If failed to setup optimizing, fallback to kprobe */
 861                arch_remove_optimized_kprobe(op);
 862                kfree(op);
 863                goto out;
 864        }
 865
 866        init_aggr_kprobe(ap, p);
 867        optimize_kprobe(ap);    /* This just kicks optimizer thread */
 868
 869out:
 870        mutex_unlock(&text_mutex);
 871        jump_label_unlock();
 872        cpus_read_unlock();
 873}
 874
 875static void optimize_all_kprobes(void)
 876{
 877        struct hlist_head *head;
 878        struct kprobe *p;
 879        unsigned int i;
 880
 881        mutex_lock(&kprobe_mutex);
 882        /* If optimization is already allowed, just return */
 883        if (kprobes_allow_optimization)
 884                goto out;
 885
 886        cpus_read_lock();
 887        kprobes_allow_optimization = true;
 888        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 889                head = &kprobe_table[i];
 890                hlist_for_each_entry(p, head, hlist)
 891                        if (!kprobe_disabled(p))
 892                                optimize_kprobe(p);
 893        }
 894        cpus_read_unlock();
 895        printk(KERN_INFO "Kprobes globally optimized\n");
 896out:
 897        mutex_unlock(&kprobe_mutex);
 898}
 899
 900#ifdef CONFIG_SYSCTL
 901static void unoptimize_all_kprobes(void)
 902{
 903        struct hlist_head *head;
 904        struct kprobe *p;
 905        unsigned int i;
 906
 907        mutex_lock(&kprobe_mutex);
 908        /* If optimization is already prohibited, just return */
 909        if (!kprobes_allow_optimization) {
 910                mutex_unlock(&kprobe_mutex);
 911                return;
 912        }
 913
 914        cpus_read_lock();
 915        kprobes_allow_optimization = false;
 916        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 917                head = &kprobe_table[i];
 918                hlist_for_each_entry(p, head, hlist) {
 919                        if (!kprobe_disabled(p))
 920                                unoptimize_kprobe(p, false);
 921                }
 922        }
 923        cpus_read_unlock();
 924        mutex_unlock(&kprobe_mutex);
 925
 926        /* Wait for unoptimizing completion */
 927        wait_for_kprobe_optimizer();
 928        printk(KERN_INFO "Kprobes globally unoptimized\n");
 929}
 930
 931static DEFINE_MUTEX(kprobe_sysctl_mutex);
 932int sysctl_kprobes_optimization;
 933int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
 934                                      void *buffer, size_t *length,
 935                                      loff_t *ppos)
 936{
 937        int ret;
 938
 939        mutex_lock(&kprobe_sysctl_mutex);
 940        sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
 941        ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
 942
 943        if (sysctl_kprobes_optimization)
 944                optimize_all_kprobes();
 945        else
 946                unoptimize_all_kprobes();
 947        mutex_unlock(&kprobe_sysctl_mutex);
 948
 949        return ret;
 950}
 951#endif /* CONFIG_SYSCTL */
 952
 953/* Put a breakpoint for a probe. Must be called with text_mutex locked */
 954static void __arm_kprobe(struct kprobe *p)
 955{
 956        struct kprobe *_p;
 957
 958        /* Check collision with other optimized kprobes */
 959        _p = get_optimized_kprobe((unsigned long)p->addr);
 960        if (unlikely(_p))
 961                /* Fallback to unoptimized kprobe */
 962                unoptimize_kprobe(_p, true);
 963
 964        arch_arm_kprobe(p);
 965        optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
 966}
 967
 968/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
 969static void __disarm_kprobe(struct kprobe *p, bool reopt)
 970{
 971        struct kprobe *_p;
 972
 973        /* Try to unoptimize */
 974        unoptimize_kprobe(p, kprobes_all_disarmed);
 975
 976        if (!kprobe_queued(p)) {
 977                arch_disarm_kprobe(p);
 978                /* If another kprobe was blocked, optimize it. */
 979                _p = get_optimized_kprobe((unsigned long)p->addr);
 980                if (unlikely(_p) && reopt)
 981                        optimize_kprobe(_p);
 982        }
 983        /* TODO: reoptimize others after unoptimized this probe */
 984}
 985
 986#else /* !CONFIG_OPTPROBES */
 987
 988#define optimize_kprobe(p)                      do {} while (0)
 989#define unoptimize_kprobe(p, f)                 do {} while (0)
 990#define kill_optimized_kprobe(p)                do {} while (0)
 991#define prepare_optimized_kprobe(p)             do {} while (0)
 992#define try_to_optimize_kprobe(p)               do {} while (0)
 993#define __arm_kprobe(p)                         arch_arm_kprobe(p)
 994#define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
 995#define kprobe_disarmed(p)                      kprobe_disabled(p)
 996#define wait_for_kprobe_optimizer()             do {} while (0)
 997
 998static int reuse_unused_kprobe(struct kprobe *ap)
 999{
1000        /*
1001         * If the optimized kprobe is NOT supported, the aggr kprobe is
1002         * released at the same time that the last aggregated kprobe is
1003         * unregistered.
1004         * Thus there should be no chance to reuse unused kprobe.
1005         */
1006        printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
1007        return -EINVAL;
1008}
1009
1010static void free_aggr_kprobe(struct kprobe *p)
1011{
1012        arch_remove_kprobe(p);
1013        kfree(p);
1014}
1015
1016static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1017{
1018        return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1019}
1020#endif /* CONFIG_OPTPROBES */
1021
1022#ifdef CONFIG_KPROBES_ON_FTRACE
1023static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1024        .func = kprobe_ftrace_handler,
1025        .flags = FTRACE_OPS_FL_SAVE_REGS,
1026};
1027
1028static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1029        .func = kprobe_ftrace_handler,
1030        .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1031};
1032
1033static int kprobe_ipmodify_enabled;
1034static int kprobe_ftrace_enabled;
1035
1036/* Must ensure p->addr is really on ftrace */
1037static int prepare_kprobe(struct kprobe *p)
1038{
1039        if (!kprobe_ftrace(p))
1040                return arch_prepare_kprobe(p);
1041
1042        return arch_prepare_kprobe_ftrace(p);
1043}
1044
1045/* Caller must lock kprobe_mutex */
1046static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1047                               int *cnt)
1048{
1049        int ret = 0;
1050
1051        ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1052        if (ret) {
1053                pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1054                         p->addr, ret);
1055                return ret;
1056        }
1057
1058        if (*cnt == 0) {
1059                ret = register_ftrace_function(ops);
1060                if (ret) {
1061                        pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1062                        goto err_ftrace;
1063                }
1064        }
1065
1066        (*cnt)++;
1067        return ret;
1068
1069err_ftrace:
1070        /*
1071         * At this point, sinec ops is not registered, we should be sefe from
1072         * registering empty filter.
1073         */
1074        ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1075        return ret;
1076}
1077
1078static int arm_kprobe_ftrace(struct kprobe *p)
1079{
1080        bool ipmodify = (p->post_handler != NULL);
1081
1082        return __arm_kprobe_ftrace(p,
1083                ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1084                ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1085}
1086
1087/* Caller must lock kprobe_mutex */
1088static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1089                                  int *cnt)
1090{
1091        int ret = 0;
1092
1093        if (*cnt == 1) {
1094                ret = unregister_ftrace_function(ops);
1095                if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1096                        return ret;
1097        }
1098
1099        (*cnt)--;
1100
1101        ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1102        WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1103                  p->addr, ret);
1104        return ret;
1105}
1106
1107static int disarm_kprobe_ftrace(struct kprobe *p)
1108{
1109        bool ipmodify = (p->post_handler != NULL);
1110
1111        return __disarm_kprobe_ftrace(p,
1112                ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1113                ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1114}
1115#else   /* !CONFIG_KPROBES_ON_FTRACE */
1116static inline int prepare_kprobe(struct kprobe *p)
1117{
1118        return arch_prepare_kprobe(p);
1119}
1120
1121static inline int arm_kprobe_ftrace(struct kprobe *p)
1122{
1123        return -ENODEV;
1124}
1125
1126static inline int disarm_kprobe_ftrace(struct kprobe *p)
1127{
1128        return -ENODEV;
1129}
1130#endif
1131
1132/* Arm a kprobe with text_mutex */
1133static int arm_kprobe(struct kprobe *kp)
1134{
1135        if (unlikely(kprobe_ftrace(kp)))
1136                return arm_kprobe_ftrace(kp);
1137
1138        cpus_read_lock();
1139        mutex_lock(&text_mutex);
1140        __arm_kprobe(kp);
1141        mutex_unlock(&text_mutex);
1142        cpus_read_unlock();
1143
1144        return 0;
1145}
1146
1147/* Disarm a kprobe with text_mutex */
1148static int disarm_kprobe(struct kprobe *kp, bool reopt)
1149{
1150        if (unlikely(kprobe_ftrace(kp)))
1151                return disarm_kprobe_ftrace(kp);
1152
1153        cpus_read_lock();
1154        mutex_lock(&text_mutex);
1155        __disarm_kprobe(kp, reopt);
1156        mutex_unlock(&text_mutex);
1157        cpus_read_unlock();
1158
1159        return 0;
1160}
1161
1162/*
1163 * Aggregate handlers for multiple kprobes support - these handlers
1164 * take care of invoking the individual kprobe handlers on p->list
1165 */
1166static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1167{
1168        struct kprobe *kp;
1169
1170        list_for_each_entry_rcu(kp, &p->list, list) {
1171                if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1172                        set_kprobe_instance(kp);
1173                        if (kp->pre_handler(kp, regs))
1174                                return 1;
1175                }
1176                reset_kprobe_instance();
1177        }
1178        return 0;
1179}
1180NOKPROBE_SYMBOL(aggr_pre_handler);
1181
1182static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1183                              unsigned long flags)
1184{
1185        struct kprobe *kp;
1186
1187        list_for_each_entry_rcu(kp, &p->list, list) {
1188                if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1189                        set_kprobe_instance(kp);
1190                        kp->post_handler(kp, regs, flags);
1191                        reset_kprobe_instance();
1192                }
1193        }
1194}
1195NOKPROBE_SYMBOL(aggr_post_handler);
1196
1197/* Walks the list and increments nmissed count for multiprobe case */
1198void kprobes_inc_nmissed_count(struct kprobe *p)
1199{
1200        struct kprobe *kp;
1201        if (!kprobe_aggrprobe(p)) {
1202                p->nmissed++;
1203        } else {
1204                list_for_each_entry_rcu(kp, &p->list, list)
1205                        kp->nmissed++;
1206        }
1207        return;
1208}
1209NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1210
1211static void free_rp_inst_rcu(struct rcu_head *head)
1212{
1213        struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1214
1215        if (refcount_dec_and_test(&ri->rph->ref))
1216                kfree(ri->rph);
1217        kfree(ri);
1218}
1219NOKPROBE_SYMBOL(free_rp_inst_rcu);
1220
1221static void recycle_rp_inst(struct kretprobe_instance *ri)
1222{
1223        struct kretprobe *rp = get_kretprobe(ri);
1224
1225        if (likely(rp)) {
1226                freelist_add(&ri->freelist, &rp->freelist);
1227        } else
1228                call_rcu(&ri->rcu, free_rp_inst_rcu);
1229}
1230NOKPROBE_SYMBOL(recycle_rp_inst);
1231
1232static struct kprobe kprobe_busy = {
1233        .addr = (void *) get_kprobe,
1234};
1235
1236void kprobe_busy_begin(void)
1237{
1238        struct kprobe_ctlblk *kcb;
1239
1240        preempt_disable();
1241        __this_cpu_write(current_kprobe, &kprobe_busy);
1242        kcb = get_kprobe_ctlblk();
1243        kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1244}
1245
1246void kprobe_busy_end(void)
1247{
1248        __this_cpu_write(current_kprobe, NULL);
1249        preempt_enable();
1250}
1251
1252/*
1253 * This function is called from finish_task_switch when task tk becomes dead,
1254 * so that we can recycle any function-return probe instances associated
1255 * with this task. These left over instances represent probed functions
1256 * that have been called but will never return.
1257 */
1258void kprobe_flush_task(struct task_struct *tk)
1259{
1260        struct kretprobe_instance *ri;
1261        struct llist_node *node;
1262
1263        /* Early boot, not yet initialized. */
1264        if (unlikely(!kprobes_initialized))
1265                return;
1266
1267        kprobe_busy_begin();
1268
1269        node = __llist_del_all(&tk->kretprobe_instances);
1270        while (node) {
1271                ri = container_of(node, struct kretprobe_instance, llist);
1272                node = node->next;
1273
1274                recycle_rp_inst(ri);
1275        }
1276
1277        kprobe_busy_end();
1278}
1279NOKPROBE_SYMBOL(kprobe_flush_task);
1280
1281static inline void free_rp_inst(struct kretprobe *rp)
1282{
1283        struct kretprobe_instance *ri;
1284        struct freelist_node *node;
1285        int count = 0;
1286
1287        node = rp->freelist.head;
1288        while (node) {
1289                ri = container_of(node, struct kretprobe_instance, freelist);
1290                node = node->next;
1291
1292                kfree(ri);
1293                count++;
1294        }
1295
1296        if (refcount_sub_and_test(count, &rp->rph->ref)) {
1297                kfree(rp->rph);
1298                rp->rph = NULL;
1299        }
1300}
1301
1302/* Add the new probe to ap->list */
1303static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1304{
1305        if (p->post_handler)
1306                unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1307
1308        list_add_rcu(&p->list, &ap->list);
1309        if (p->post_handler && !ap->post_handler)
1310                ap->post_handler = aggr_post_handler;
1311
1312        return 0;
1313}
1314
1315/*
1316 * Fill in the required fields of the "manager kprobe". Replace the
1317 * earlier kprobe in the hlist with the manager kprobe
1318 */
1319static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1320{
1321        /* Copy p's insn slot to ap */
1322        copy_kprobe(p, ap);
1323        flush_insn_slot(ap);
1324        ap->addr = p->addr;
1325        ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1326        ap->pre_handler = aggr_pre_handler;
1327        /* We don't care the kprobe which has gone. */
1328        if (p->post_handler && !kprobe_gone(p))
1329                ap->post_handler = aggr_post_handler;
1330
1331        INIT_LIST_HEAD(&ap->list);
1332        INIT_HLIST_NODE(&ap->hlist);
1333
1334        list_add_rcu(&p->list, &ap->list);
1335        hlist_replace_rcu(&p->hlist, &ap->hlist);
1336}
1337
1338/*
1339 * This is the second or subsequent kprobe at the address - handle
1340 * the intricacies
1341 */
1342static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1343{
1344        int ret = 0;
1345        struct kprobe *ap = orig_p;
1346
1347        cpus_read_lock();
1348
1349        /* For preparing optimization, jump_label_text_reserved() is called */
1350        jump_label_lock();
1351        mutex_lock(&text_mutex);
1352
1353        if (!kprobe_aggrprobe(orig_p)) {
1354                /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1355                ap = alloc_aggr_kprobe(orig_p);
1356                if (!ap) {
1357                        ret = -ENOMEM;
1358                        goto out;
1359                }
1360                init_aggr_kprobe(ap, orig_p);
1361        } else if (kprobe_unused(ap)) {
1362                /* This probe is going to die. Rescue it */
1363                ret = reuse_unused_kprobe(ap);
1364                if (ret)
1365                        goto out;
1366        }
1367
1368        if (kprobe_gone(ap)) {
1369                /*
1370                 * Attempting to insert new probe at the same location that
1371                 * had a probe in the module vaddr area which already
1372                 * freed. So, the instruction slot has already been
1373                 * released. We need a new slot for the new probe.
1374                 */
1375                ret = arch_prepare_kprobe(ap);
1376                if (ret)
1377                        /*
1378                         * Even if fail to allocate new slot, don't need to
1379                         * free aggr_probe. It will be used next time, or
1380                         * freed by unregister_kprobe.
1381                         */
1382                        goto out;
1383
1384                /* Prepare optimized instructions if possible. */
1385                prepare_optimized_kprobe(ap);
1386
1387                /*
1388                 * Clear gone flag to prevent allocating new slot again, and
1389                 * set disabled flag because it is not armed yet.
1390                 */
1391                ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1392                            | KPROBE_FLAG_DISABLED;
1393        }
1394
1395        /* Copy ap's insn slot to p */
1396        copy_kprobe(ap, p);
1397        ret = add_new_kprobe(ap, p);
1398
1399out:
1400        mutex_unlock(&text_mutex);
1401        jump_label_unlock();
1402        cpus_read_unlock();
1403
1404        if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1405                ap->flags &= ~KPROBE_FLAG_DISABLED;
1406                if (!kprobes_all_disarmed) {
1407                        /* Arm the breakpoint again. */
1408                        ret = arm_kprobe(ap);
1409                        if (ret) {
1410                                ap->flags |= KPROBE_FLAG_DISABLED;
1411                                list_del_rcu(&p->list);
1412                                synchronize_rcu();
1413                        }
1414                }
1415        }
1416        return ret;
1417}
1418
1419bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1420{
1421        /* The __kprobes marked functions and entry code must not be probed */
1422        return addr >= (unsigned long)__kprobes_text_start &&
1423               addr < (unsigned long)__kprobes_text_end;
1424}
1425
1426static bool __within_kprobe_blacklist(unsigned long addr)
1427{
1428        struct kprobe_blacklist_entry *ent;
1429
1430        if (arch_within_kprobe_blacklist(addr))
1431                return true;
1432        /*
1433         * If there exists a kprobe_blacklist, verify and
1434         * fail any probe registration in the prohibited area
1435         */
1436        list_for_each_entry(ent, &kprobe_blacklist, list) {
1437                if (addr >= ent->start_addr && addr < ent->end_addr)
1438                        return true;
1439        }
1440        return false;
1441}
1442
1443bool within_kprobe_blacklist(unsigned long addr)
1444{
1445        char symname[KSYM_NAME_LEN], *p;
1446
1447        if (__within_kprobe_blacklist(addr))
1448                return true;
1449
1450        /* Check if the address is on a suffixed-symbol */
1451        if (!lookup_symbol_name(addr, symname)) {
1452                p = strchr(symname, '.');
1453                if (!p)
1454                        return false;
1455                *p = '\0';
1456                addr = (unsigned long)kprobe_lookup_name(symname, 0);
1457                if (addr)
1458                        return __within_kprobe_blacklist(addr);
1459        }
1460        return false;
1461}
1462
1463/*
1464 * If we have a symbol_name argument, look it up and add the offset field
1465 * to it. This way, we can specify a relative address to a symbol.
1466 * This returns encoded errors if it fails to look up symbol or invalid
1467 * combination of parameters.
1468 */
1469static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1470                        const char *symbol_name, unsigned int offset)
1471{
1472        if ((symbol_name && addr) || (!symbol_name && !addr))
1473                goto invalid;
1474
1475        if (symbol_name) {
1476                addr = kprobe_lookup_name(symbol_name, offset);
1477                if (!addr)
1478                        return ERR_PTR(-ENOENT);
1479        }
1480
1481        addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1482        if (addr)
1483                return addr;
1484
1485invalid:
1486        return ERR_PTR(-EINVAL);
1487}
1488
1489static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1490{
1491        return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1492}
1493
1494/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1495static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1496{
1497        struct kprobe *ap, *list_p;
1498
1499        lockdep_assert_held(&kprobe_mutex);
1500
1501        ap = get_kprobe(p->addr);
1502        if (unlikely(!ap))
1503                return NULL;
1504
1505        if (p != ap) {
1506                list_for_each_entry(list_p, &ap->list, list)
1507                        if (list_p == p)
1508                        /* kprobe p is a valid probe */
1509                                goto valid;
1510                return NULL;
1511        }
1512valid:
1513        return ap;
1514}
1515
1516/*
1517 * Warn and return error if the kprobe is being re-registered since
1518 * there must be a software bug.
1519 */
1520static inline int warn_kprobe_rereg(struct kprobe *p)
1521{
1522        int ret = 0;
1523
1524        mutex_lock(&kprobe_mutex);
1525        if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1526                ret = -EINVAL;
1527        mutex_unlock(&kprobe_mutex);
1528
1529        return ret;
1530}
1531
1532int __weak arch_check_ftrace_location(struct kprobe *p)
1533{
1534        unsigned long ftrace_addr;
1535
1536        ftrace_addr = ftrace_location((unsigned long)p->addr);
1537        if (ftrace_addr) {
1538#ifdef CONFIG_KPROBES_ON_FTRACE
1539                /* Given address is not on the instruction boundary */
1540                if ((unsigned long)p->addr != ftrace_addr)
1541                        return -EILSEQ;
1542                p->flags |= KPROBE_FLAG_FTRACE;
1543#else   /* !CONFIG_KPROBES_ON_FTRACE */
1544                return -EINVAL;
1545#endif
1546        }
1547        return 0;
1548}
1549
1550static int check_kprobe_address_safe(struct kprobe *p,
1551                                     struct module **probed_mod)
1552{
1553        int ret;
1554
1555        ret = arch_check_ftrace_location(p);
1556        if (ret)
1557                return ret;
1558        jump_label_lock();
1559        preempt_disable();
1560
1561        /* Ensure it is not in reserved area nor out of text */
1562        if (!kernel_text_address((unsigned long) p->addr) ||
1563            within_kprobe_blacklist((unsigned long) p->addr) ||
1564            jump_label_text_reserved(p->addr, p->addr) ||
1565            static_call_text_reserved(p->addr, p->addr) ||
1566            find_bug((unsigned long)p->addr)) {
1567                ret = -EINVAL;
1568                goto out;
1569        }
1570
1571        /* Check if are we probing a module */
1572        *probed_mod = __module_text_address((unsigned long) p->addr);
1573        if (*probed_mod) {
1574                /*
1575                 * We must hold a refcount of the probed module while updating
1576                 * its code to prohibit unexpected unloading.
1577                 */
1578                if (unlikely(!try_module_get(*probed_mod))) {
1579                        ret = -ENOENT;
1580                        goto out;
1581                }
1582
1583                /*
1584                 * If the module freed .init.text, we couldn't insert
1585                 * kprobes in there.
1586                 */
1587                if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1588                    (*probed_mod)->state != MODULE_STATE_COMING) {
1589                        module_put(*probed_mod);
1590                        *probed_mod = NULL;
1591                        ret = -ENOENT;
1592                }
1593        }
1594out:
1595        preempt_enable();
1596        jump_label_unlock();
1597
1598        return ret;
1599}
1600
1601int register_kprobe(struct kprobe *p)
1602{
1603        int ret;
1604        struct kprobe *old_p;
1605        struct module *probed_mod;
1606        kprobe_opcode_t *addr;
1607
1608        /* Adjust probe address from symbol */
1609        addr = kprobe_addr(p);
1610        if (IS_ERR(addr))
1611                return PTR_ERR(addr);
1612        p->addr = addr;
1613
1614        ret = warn_kprobe_rereg(p);
1615        if (ret)
1616                return ret;
1617
1618        /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1619        p->flags &= KPROBE_FLAG_DISABLED;
1620        p->nmissed = 0;
1621        INIT_LIST_HEAD(&p->list);
1622
1623        ret = check_kprobe_address_safe(p, &probed_mod);
1624        if (ret)
1625                return ret;
1626
1627        mutex_lock(&kprobe_mutex);
1628
1629        old_p = get_kprobe(p->addr);
1630        if (old_p) {
1631                /* Since this may unoptimize old_p, locking text_mutex. */
1632                ret = register_aggr_kprobe(old_p, p);
1633                goto out;
1634        }
1635
1636        cpus_read_lock();
1637        /* Prevent text modification */
1638        mutex_lock(&text_mutex);
1639        ret = prepare_kprobe(p);
1640        mutex_unlock(&text_mutex);
1641        cpus_read_unlock();
1642        if (ret)
1643                goto out;
1644
1645        INIT_HLIST_NODE(&p->hlist);
1646        hlist_add_head_rcu(&p->hlist,
1647                       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1648
1649        if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1650                ret = arm_kprobe(p);
1651                if (ret) {
1652                        hlist_del_rcu(&p->hlist);
1653                        synchronize_rcu();
1654                        goto out;
1655                }
1656        }
1657
1658        /* Try to optimize kprobe */
1659        try_to_optimize_kprobe(p);
1660out:
1661        mutex_unlock(&kprobe_mutex);
1662
1663        if (probed_mod)
1664                module_put(probed_mod);
1665
1666        return ret;
1667}
1668EXPORT_SYMBOL_GPL(register_kprobe);
1669
1670/* Check if all probes on the aggrprobe are disabled */
1671static int aggr_kprobe_disabled(struct kprobe *ap)
1672{
1673        struct kprobe *kp;
1674
1675        lockdep_assert_held(&kprobe_mutex);
1676
1677        list_for_each_entry(kp, &ap->list, list)
1678                if (!kprobe_disabled(kp))
1679                        /*
1680                         * There is an active probe on the list.
1681                         * We can't disable this ap.
1682                         */
1683                        return 0;
1684
1685        return 1;
1686}
1687
1688/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1689static struct kprobe *__disable_kprobe(struct kprobe *p)
1690{
1691        struct kprobe *orig_p;
1692        int ret;
1693
1694        /* Get an original kprobe for return */
1695        orig_p = __get_valid_kprobe(p);
1696        if (unlikely(orig_p == NULL))
1697                return ERR_PTR(-EINVAL);
1698
1699        if (!kprobe_disabled(p)) {
1700                /* Disable probe if it is a child probe */
1701                if (p != orig_p)
1702                        p->flags |= KPROBE_FLAG_DISABLED;
1703
1704                /* Try to disarm and disable this/parent probe */
1705                if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1706                        /*
1707                         * If kprobes_all_disarmed is set, orig_p
1708                         * should have already been disarmed, so
1709                         * skip unneed disarming process.
1710                         */
1711                        if (!kprobes_all_disarmed) {
1712                                ret = disarm_kprobe(orig_p, true);
1713                                if (ret) {
1714                                        p->flags &= ~KPROBE_FLAG_DISABLED;
1715                                        return ERR_PTR(ret);
1716                                }
1717                        }
1718                        orig_p->flags |= KPROBE_FLAG_DISABLED;
1719                }
1720        }
1721
1722        return orig_p;
1723}
1724
1725/*
1726 * Unregister a kprobe without a scheduler synchronization.
1727 */
1728static int __unregister_kprobe_top(struct kprobe *p)
1729{
1730        struct kprobe *ap, *list_p;
1731
1732        /* Disable kprobe. This will disarm it if needed. */
1733        ap = __disable_kprobe(p);
1734        if (IS_ERR(ap))
1735                return PTR_ERR(ap);
1736
1737        if (ap == p)
1738                /*
1739                 * This probe is an independent(and non-optimized) kprobe
1740                 * (not an aggrprobe). Remove from the hash list.
1741                 */
1742                goto disarmed;
1743
1744        /* Following process expects this probe is an aggrprobe */
1745        WARN_ON(!kprobe_aggrprobe(ap));
1746
1747        if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1748                /*
1749                 * !disarmed could be happen if the probe is under delayed
1750                 * unoptimizing.
1751                 */
1752                goto disarmed;
1753        else {
1754                /* If disabling probe has special handlers, update aggrprobe */
1755                if (p->post_handler && !kprobe_gone(p)) {
1756                        list_for_each_entry(list_p, &ap->list, list) {
1757                                if ((list_p != p) && (list_p->post_handler))
1758                                        goto noclean;
1759                        }
1760                        ap->post_handler = NULL;
1761                }
1762noclean:
1763                /*
1764                 * Remove from the aggrprobe: this path will do nothing in
1765                 * __unregister_kprobe_bottom().
1766                 */
1767                list_del_rcu(&p->list);
1768                if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1769                        /*
1770                         * Try to optimize this probe again, because post
1771                         * handler may have been changed.
1772                         */
1773                        optimize_kprobe(ap);
1774        }
1775        return 0;
1776
1777disarmed:
1778        hlist_del_rcu(&ap->hlist);
1779        return 0;
1780}
1781
1782static void __unregister_kprobe_bottom(struct kprobe *p)
1783{
1784        struct kprobe *ap;
1785
1786        if (list_empty(&p->list))
1787                /* This is an independent kprobe */
1788                arch_remove_kprobe(p);
1789        else if (list_is_singular(&p->list)) {
1790                /* This is the last child of an aggrprobe */
1791                ap = list_entry(p->list.next, struct kprobe, list);
1792                list_del(&p->list);
1793                free_aggr_kprobe(ap);
1794        }
1795        /* Otherwise, do nothing. */
1796}
1797
1798int register_kprobes(struct kprobe **kps, int num)
1799{
1800        int i, ret = 0;
1801
1802        if (num <= 0)
1803                return -EINVAL;
1804        for (i = 0; i < num; i++) {
1805                ret = register_kprobe(kps[i]);
1806                if (ret < 0) {
1807                        if (i > 0)
1808                                unregister_kprobes(kps, i);
1809                        break;
1810                }
1811        }
1812        return ret;
1813}
1814EXPORT_SYMBOL_GPL(register_kprobes);
1815
1816void unregister_kprobe(struct kprobe *p)
1817{
1818        unregister_kprobes(&p, 1);
1819}
1820EXPORT_SYMBOL_GPL(unregister_kprobe);
1821
1822void unregister_kprobes(struct kprobe **kps, int num)
1823{
1824        int i;
1825
1826        if (num <= 0)
1827                return;
1828        mutex_lock(&kprobe_mutex);
1829        for (i = 0; i < num; i++)
1830                if (__unregister_kprobe_top(kps[i]) < 0)
1831                        kps[i]->addr = NULL;
1832        mutex_unlock(&kprobe_mutex);
1833
1834        synchronize_rcu();
1835        for (i = 0; i < num; i++)
1836                if (kps[i]->addr)
1837                        __unregister_kprobe_bottom(kps[i]);
1838}
1839EXPORT_SYMBOL_GPL(unregister_kprobes);
1840
1841int __weak kprobe_exceptions_notify(struct notifier_block *self,
1842                                        unsigned long val, void *data)
1843{
1844        return NOTIFY_DONE;
1845}
1846NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1847
1848static struct notifier_block kprobe_exceptions_nb = {
1849        .notifier_call = kprobe_exceptions_notify,
1850        .priority = 0x7fffffff /* we need to be notified first */
1851};
1852
1853unsigned long __weak arch_deref_entry_point(void *entry)
1854{
1855        return (unsigned long)entry;
1856}
1857
1858#ifdef CONFIG_KRETPROBES
1859
1860unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
1861                                             void *trampoline_address,
1862                                             void *frame_pointer)
1863{
1864        kprobe_opcode_t *correct_ret_addr = NULL;
1865        struct kretprobe_instance *ri = NULL;
1866        struct llist_node *first, *node;
1867        struct kretprobe *rp;
1868
1869        /* Find all nodes for this frame. */
1870        first = node = current->kretprobe_instances.first;
1871        while (node) {
1872                ri = container_of(node, struct kretprobe_instance, llist);
1873
1874                BUG_ON(ri->fp != frame_pointer);
1875
1876                if (ri->ret_addr != trampoline_address) {
1877                        correct_ret_addr = ri->ret_addr;
1878                        /*
1879                         * This is the real return address. Any other
1880                         * instances associated with this task are for
1881                         * other calls deeper on the call stack
1882                         */
1883                        goto found;
1884                }
1885
1886                node = node->next;
1887        }
1888        pr_err("Oops! Kretprobe fails to find correct return address.\n");
1889        BUG_ON(1);
1890
1891found:
1892        /* Unlink all nodes for this frame. */
1893        current->kretprobe_instances.first = node->next;
1894        node->next = NULL;
1895
1896        /* Run them..  */
1897        while (first) {
1898                ri = container_of(first, struct kretprobe_instance, llist);
1899                first = first->next;
1900
1901                rp = get_kretprobe(ri);
1902                if (rp && rp->handler) {
1903                        struct kprobe *prev = kprobe_running();
1904
1905                        __this_cpu_write(current_kprobe, &rp->kp);
1906                        ri->ret_addr = correct_ret_addr;
1907                        rp->handler(ri, regs);
1908                        __this_cpu_write(current_kprobe, prev);
1909                }
1910
1911                recycle_rp_inst(ri);
1912        }
1913
1914        return (unsigned long)correct_ret_addr;
1915}
1916NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
1917
1918/*
1919 * This kprobe pre_handler is registered with every kretprobe. When probe
1920 * hits it will set up the return probe.
1921 */
1922static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1923{
1924        struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1925        struct kretprobe_instance *ri;
1926        struct freelist_node *fn;
1927
1928        fn = freelist_try_get(&rp->freelist);
1929        if (!fn) {
1930                rp->nmissed++;
1931                return 0;
1932        }
1933
1934        ri = container_of(fn, struct kretprobe_instance, freelist);
1935
1936        if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1937                freelist_add(&ri->freelist, &rp->freelist);
1938                return 0;
1939        }
1940
1941        arch_prepare_kretprobe(ri, regs);
1942
1943        __llist_add(&ri->llist, &current->kretprobe_instances);
1944
1945        return 0;
1946}
1947NOKPROBE_SYMBOL(pre_handler_kretprobe);
1948
1949bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1950{
1951        return !offset;
1952}
1953
1954/**
1955 * kprobe_on_func_entry() -- check whether given address is function entry
1956 * @addr: Target address
1957 * @sym:  Target symbol name
1958 * @offset: The offset from the symbol or the address
1959 *
1960 * This checks whether the given @addr+@offset or @sym+@offset is on the
1961 * function entry address or not.
1962 * This returns 0 if it is the function entry, or -EINVAL if it is not.
1963 * And also it returns -ENOENT if it fails the symbol or address lookup.
1964 * Caller must pass @addr or @sym (either one must be NULL), or this
1965 * returns -EINVAL.
1966 */
1967int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1968{
1969        kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1970
1971        if (IS_ERR(kp_addr))
1972                return PTR_ERR(kp_addr);
1973
1974        if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
1975                return -ENOENT;
1976
1977        if (!arch_kprobe_on_func_entry(offset))
1978                return -EINVAL;
1979
1980        return 0;
1981}
1982
1983int register_kretprobe(struct kretprobe *rp)
1984{
1985        int ret;
1986        struct kretprobe_instance *inst;
1987        int i;
1988        void *addr;
1989
1990        ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
1991        if (ret)
1992                return ret;
1993
1994        /* If only rp->kp.addr is specified, check reregistering kprobes */
1995        if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
1996                return -EINVAL;
1997
1998        if (kretprobe_blacklist_size) {
1999                addr = kprobe_addr(&rp->kp);
2000                if (IS_ERR(addr))
2001                        return PTR_ERR(addr);
2002
2003                for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2004                        if (kretprobe_blacklist[i].addr == addr)
2005                                return -EINVAL;
2006                }
2007        }
2008
2009        rp->kp.pre_handler = pre_handler_kretprobe;
2010        rp->kp.post_handler = NULL;
2011
2012        /* Pre-allocate memory for max kretprobe instances */
2013        if (rp->maxactive <= 0) {
2014#ifdef CONFIG_PREEMPTION
2015                rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2016#else
2017                rp->maxactive = num_possible_cpus();
2018#endif
2019        }
2020        rp->freelist.head = NULL;
2021        rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2022        if (!rp->rph)
2023                return -ENOMEM;
2024
2025        rp->rph->rp = rp;
2026        for (i = 0; i < rp->maxactive; i++) {
2027                inst = kzalloc(sizeof(struct kretprobe_instance) +
2028                               rp->data_size, GFP_KERNEL);
2029                if (inst == NULL) {
2030                        refcount_set(&rp->rph->ref, i);
2031                        free_rp_inst(rp);
2032                        return -ENOMEM;
2033                }
2034                inst->rph = rp->rph;
2035                freelist_add(&inst->freelist, &rp->freelist);
2036        }
2037        refcount_set(&rp->rph->ref, i);
2038
2039        rp->nmissed = 0;
2040        /* Establish function entry probe point */
2041        ret = register_kprobe(&rp->kp);
2042        if (ret != 0)
2043                free_rp_inst(rp);
2044        return ret;
2045}
2046EXPORT_SYMBOL_GPL(register_kretprobe);
2047
2048int register_kretprobes(struct kretprobe **rps, int num)
2049{
2050        int ret = 0, i;
2051
2052        if (num <= 0)
2053                return -EINVAL;
2054        for (i = 0; i < num; i++) {
2055                ret = register_kretprobe(rps[i]);
2056                if (ret < 0) {
2057                        if (i > 0)
2058                                unregister_kretprobes(rps, i);
2059                        break;
2060                }
2061        }
2062        return ret;
2063}
2064EXPORT_SYMBOL_GPL(register_kretprobes);
2065
2066void unregister_kretprobe(struct kretprobe *rp)
2067{
2068        unregister_kretprobes(&rp, 1);
2069}
2070EXPORT_SYMBOL_GPL(unregister_kretprobe);
2071
2072void unregister_kretprobes(struct kretprobe **rps, int num)
2073{
2074        int i;
2075
2076        if (num <= 0)
2077                return;
2078        mutex_lock(&kprobe_mutex);
2079        for (i = 0; i < num; i++) {
2080                if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2081                        rps[i]->kp.addr = NULL;
2082                rps[i]->rph->rp = NULL;
2083        }
2084        mutex_unlock(&kprobe_mutex);
2085
2086        synchronize_rcu();
2087        for (i = 0; i < num; i++) {
2088                if (rps[i]->kp.addr) {
2089                        __unregister_kprobe_bottom(&rps[i]->kp);
2090                        free_rp_inst(rps[i]);
2091                }
2092        }
2093}
2094EXPORT_SYMBOL_GPL(unregister_kretprobes);
2095
2096#else /* CONFIG_KRETPROBES */
2097int register_kretprobe(struct kretprobe *rp)
2098{
2099        return -ENOSYS;
2100}
2101EXPORT_SYMBOL_GPL(register_kretprobe);
2102
2103int register_kretprobes(struct kretprobe **rps, int num)
2104{
2105        return -ENOSYS;
2106}
2107EXPORT_SYMBOL_GPL(register_kretprobes);
2108
2109void unregister_kretprobe(struct kretprobe *rp)
2110{
2111}
2112EXPORT_SYMBOL_GPL(unregister_kretprobe);
2113
2114void unregister_kretprobes(struct kretprobe **rps, int num)
2115{
2116}
2117EXPORT_SYMBOL_GPL(unregister_kretprobes);
2118
2119static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2120{
2121        return 0;
2122}
2123NOKPROBE_SYMBOL(pre_handler_kretprobe);
2124
2125#endif /* CONFIG_KRETPROBES */
2126
2127/* Set the kprobe gone and remove its instruction buffer. */
2128static void kill_kprobe(struct kprobe *p)
2129{
2130        struct kprobe *kp;
2131
2132        lockdep_assert_held(&kprobe_mutex);
2133
2134        p->flags |= KPROBE_FLAG_GONE;
2135        if (kprobe_aggrprobe(p)) {
2136                /*
2137                 * If this is an aggr_kprobe, we have to list all the
2138                 * chained probes and mark them GONE.
2139                 */
2140                list_for_each_entry(kp, &p->list, list)
2141                        kp->flags |= KPROBE_FLAG_GONE;
2142                p->post_handler = NULL;
2143                kill_optimized_kprobe(p);
2144        }
2145        /*
2146         * Here, we can remove insn_slot safely, because no thread calls
2147         * the original probed function (which will be freed soon) any more.
2148         */
2149        arch_remove_kprobe(p);
2150
2151        /*
2152         * The module is going away. We should disarm the kprobe which
2153         * is using ftrace, because ftrace framework is still available at
2154         * MODULE_STATE_GOING notification.
2155         */
2156        if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2157                disarm_kprobe_ftrace(p);
2158}
2159
2160/* Disable one kprobe */
2161int disable_kprobe(struct kprobe *kp)
2162{
2163        int ret = 0;
2164        struct kprobe *p;
2165
2166        mutex_lock(&kprobe_mutex);
2167
2168        /* Disable this kprobe */
2169        p = __disable_kprobe(kp);
2170        if (IS_ERR(p))
2171                ret = PTR_ERR(p);
2172
2173        mutex_unlock(&kprobe_mutex);
2174        return ret;
2175}
2176EXPORT_SYMBOL_GPL(disable_kprobe);
2177
2178/* Enable one kprobe */
2179int enable_kprobe(struct kprobe *kp)
2180{
2181        int ret = 0;
2182        struct kprobe *p;
2183
2184        mutex_lock(&kprobe_mutex);
2185
2186        /* Check whether specified probe is valid. */
2187        p = __get_valid_kprobe(kp);
2188        if (unlikely(p == NULL)) {
2189                ret = -EINVAL;
2190                goto out;
2191        }
2192
2193        if (kprobe_gone(kp)) {
2194                /* This kprobe has gone, we couldn't enable it. */
2195                ret = -EINVAL;
2196                goto out;
2197        }
2198
2199        if (p != kp)
2200                kp->flags &= ~KPROBE_FLAG_DISABLED;
2201
2202        if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2203                p->flags &= ~KPROBE_FLAG_DISABLED;
2204                ret = arm_kprobe(p);
2205                if (ret)
2206                        p->flags |= KPROBE_FLAG_DISABLED;
2207        }
2208out:
2209        mutex_unlock(&kprobe_mutex);
2210        return ret;
2211}
2212EXPORT_SYMBOL_GPL(enable_kprobe);
2213
2214/* Caller must NOT call this in usual path. This is only for critical case */
2215void dump_kprobe(struct kprobe *kp)
2216{
2217        pr_err("Dumping kprobe:\n");
2218        pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2219               kp->symbol_name, kp->offset, kp->addr);
2220}
2221NOKPROBE_SYMBOL(dump_kprobe);
2222
2223int kprobe_add_ksym_blacklist(unsigned long entry)
2224{
2225        struct kprobe_blacklist_entry *ent;
2226        unsigned long offset = 0, size = 0;
2227
2228        if (!kernel_text_address(entry) ||
2229            !kallsyms_lookup_size_offset(entry, &size, &offset))
2230                return -EINVAL;
2231
2232        ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2233        if (!ent)
2234                return -ENOMEM;
2235        ent->start_addr = entry;
2236        ent->end_addr = entry + size;
2237        INIT_LIST_HEAD(&ent->list);
2238        list_add_tail(&ent->list, &kprobe_blacklist);
2239
2240        return (int)size;
2241}
2242
2243/* Add all symbols in given area into kprobe blacklist */
2244int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2245{
2246        unsigned long entry;
2247        int ret = 0;
2248
2249        for (entry = start; entry < end; entry += ret) {
2250                ret = kprobe_add_ksym_blacklist(entry);
2251                if (ret < 0)
2252                        return ret;
2253                if (ret == 0)   /* In case of alias symbol */
2254                        ret = 1;
2255        }
2256        return 0;
2257}
2258
2259/* Remove all symbols in given area from kprobe blacklist */
2260static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2261{
2262        struct kprobe_blacklist_entry *ent, *n;
2263
2264        list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2265                if (ent->start_addr < start || ent->start_addr >= end)
2266                        continue;
2267                list_del(&ent->list);
2268                kfree(ent);
2269        }
2270}
2271
2272static void kprobe_remove_ksym_blacklist(unsigned long entry)
2273{
2274        kprobe_remove_area_blacklist(entry, entry + 1);
2275}
2276
2277int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2278                                   char *type, char *sym)
2279{
2280        return -ERANGE;
2281}
2282
2283int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2284                       char *sym)
2285{
2286#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2287        if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2288                return 0;
2289#ifdef CONFIG_OPTPROBES
2290        if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2291                return 0;
2292#endif
2293#endif
2294        if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2295                return 0;
2296        return -ERANGE;
2297}
2298
2299int __init __weak arch_populate_kprobe_blacklist(void)
2300{
2301        return 0;
2302}
2303
2304/*
2305 * Lookup and populate the kprobe_blacklist.
2306 *
2307 * Unlike the kretprobe blacklist, we'll need to determine
2308 * the range of addresses that belong to the said functions,
2309 * since a kprobe need not necessarily be at the beginning
2310 * of a function.
2311 */
2312static int __init populate_kprobe_blacklist(unsigned long *start,
2313                                             unsigned long *end)
2314{
2315        unsigned long entry;
2316        unsigned long *iter;
2317        int ret;
2318
2319        for (iter = start; iter < end; iter++) {
2320                entry = arch_deref_entry_point((void *)*iter);
2321                ret = kprobe_add_ksym_blacklist(entry);
2322                if (ret == -EINVAL)
2323                        continue;
2324                if (ret < 0)
2325                        return ret;
2326        }
2327
2328        /* Symbols in __kprobes_text are blacklisted */
2329        ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2330                                        (unsigned long)__kprobes_text_end);
2331        if (ret)
2332                return ret;
2333
2334        /* Symbols in noinstr section are blacklisted */
2335        ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2336                                        (unsigned long)__noinstr_text_end);
2337
2338        return ret ? : arch_populate_kprobe_blacklist();
2339}
2340
2341static void add_module_kprobe_blacklist(struct module *mod)
2342{
2343        unsigned long start, end;
2344        int i;
2345
2346        if (mod->kprobe_blacklist) {
2347                for (i = 0; i < mod->num_kprobe_blacklist; i++)
2348                        kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2349        }
2350
2351        start = (unsigned long)mod->kprobes_text_start;
2352        if (start) {
2353                end = start + mod->kprobes_text_size;
2354                kprobe_add_area_blacklist(start, end);
2355        }
2356
2357        start = (unsigned long)mod->noinstr_text_start;
2358        if (start) {
2359                end = start + mod->noinstr_text_size;
2360                kprobe_add_area_blacklist(start, end);
2361        }
2362}
2363
2364static void remove_module_kprobe_blacklist(struct module *mod)
2365{
2366        unsigned long start, end;
2367        int i;
2368
2369        if (mod->kprobe_blacklist) {
2370                for (i = 0; i < mod->num_kprobe_blacklist; i++)
2371                        kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2372        }
2373
2374        start = (unsigned long)mod->kprobes_text_start;
2375        if (start) {
2376                end = start + mod->kprobes_text_size;
2377                kprobe_remove_area_blacklist(start, end);
2378        }
2379
2380        start = (unsigned long)mod->noinstr_text_start;
2381        if (start) {
2382                end = start + mod->noinstr_text_size;
2383                kprobe_remove_area_blacklist(start, end);
2384        }
2385}
2386
2387/* Module notifier call back, checking kprobes on the module */
2388static int kprobes_module_callback(struct notifier_block *nb,
2389                                   unsigned long val, void *data)
2390{
2391        struct module *mod = data;
2392        struct hlist_head *head;
2393        struct kprobe *p;
2394        unsigned int i;
2395        int checkcore = (val == MODULE_STATE_GOING);
2396
2397        if (val == MODULE_STATE_COMING) {
2398                mutex_lock(&kprobe_mutex);
2399                add_module_kprobe_blacklist(mod);
2400                mutex_unlock(&kprobe_mutex);
2401        }
2402        if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2403                return NOTIFY_DONE;
2404
2405        /*
2406         * When MODULE_STATE_GOING was notified, both of module .text and
2407         * .init.text sections would be freed. When MODULE_STATE_LIVE was
2408         * notified, only .init.text section would be freed. We need to
2409         * disable kprobes which have been inserted in the sections.
2410         */
2411        mutex_lock(&kprobe_mutex);
2412        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2413                head = &kprobe_table[i];
2414                hlist_for_each_entry(p, head, hlist)
2415                        if (within_module_init((unsigned long)p->addr, mod) ||
2416                            (checkcore &&
2417                             within_module_core((unsigned long)p->addr, mod))) {
2418                                /*
2419                                 * The vaddr this probe is installed will soon
2420                                 * be vfreed buy not synced to disk. Hence,
2421                                 * disarming the breakpoint isn't needed.
2422                                 *
2423                                 * Note, this will also move any optimized probes
2424                                 * that are pending to be removed from their
2425                                 * corresponding lists to the freeing_list and
2426                                 * will not be touched by the delayed
2427                                 * kprobe_optimizer work handler.
2428                                 */
2429                                kill_kprobe(p);
2430                        }
2431        }
2432        if (val == MODULE_STATE_GOING)
2433                remove_module_kprobe_blacklist(mod);
2434        mutex_unlock(&kprobe_mutex);
2435        return NOTIFY_DONE;
2436}
2437
2438static struct notifier_block kprobe_module_nb = {
2439        .notifier_call = kprobes_module_callback,
2440        .priority = 0
2441};
2442
2443/* Markers of _kprobe_blacklist section */
2444extern unsigned long __start_kprobe_blacklist[];
2445extern unsigned long __stop_kprobe_blacklist[];
2446
2447void kprobe_free_init_mem(void)
2448{
2449        void *start = (void *)(&__init_begin);
2450        void *end = (void *)(&__init_end);
2451        struct hlist_head *head;
2452        struct kprobe *p;
2453        int i;
2454
2455        mutex_lock(&kprobe_mutex);
2456
2457        /* Kill all kprobes on initmem */
2458        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2459                head = &kprobe_table[i];
2460                hlist_for_each_entry(p, head, hlist) {
2461                        if (start <= (void *)p->addr && (void *)p->addr < end)
2462                                kill_kprobe(p);
2463                }
2464        }
2465
2466        mutex_unlock(&kprobe_mutex);
2467}
2468
2469static int __init init_kprobes(void)
2470{
2471        int i, err = 0;
2472
2473        /* FIXME allocate the probe table, currently defined statically */
2474        /* initialize all list heads */
2475        for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2476                INIT_HLIST_HEAD(&kprobe_table[i]);
2477
2478        err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2479                                        __stop_kprobe_blacklist);
2480        if (err) {
2481                pr_err("kprobes: failed to populate blacklist: %d\n", err);
2482                pr_err("Please take care of using kprobes.\n");
2483        }
2484
2485        if (kretprobe_blacklist_size) {
2486                /* lookup the function address from its name */
2487                for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2488                        kretprobe_blacklist[i].addr =
2489                                kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2490                        if (!kretprobe_blacklist[i].addr)
2491                                printk("kretprobe: lookup failed: %s\n",
2492                                       kretprobe_blacklist[i].name);
2493                }
2494        }
2495
2496        /* By default, kprobes are armed */
2497        kprobes_all_disarmed = false;
2498
2499#if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2500        /* Init kprobe_optinsn_slots for allocation */
2501        kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2502#endif
2503
2504        err = arch_init_kprobes();
2505        if (!err)
2506                err = register_die_notifier(&kprobe_exceptions_nb);
2507        if (!err)
2508                err = register_module_notifier(&kprobe_module_nb);
2509
2510        kprobes_initialized = (err == 0);
2511
2512        if (!err)
2513                init_test_probes();
2514        return err;
2515}
2516early_initcall(init_kprobes);
2517
2518#if defined(CONFIG_OPTPROBES)
2519static int __init init_optprobes(void)
2520{
2521        /*
2522         * Enable kprobe optimization - this kicks the optimizer which
2523         * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2524         * not spawned in early initcall. So delay the optimization.
2525         */
2526        optimize_all_kprobes();
2527
2528        return 0;
2529}
2530subsys_initcall(init_optprobes);
2531#endif
2532
2533#ifdef CONFIG_DEBUG_FS
2534static void report_probe(struct seq_file *pi, struct kprobe *p,
2535                const char *sym, int offset, char *modname, struct kprobe *pp)
2536{
2537        char *kprobe_type;
2538        void *addr = p->addr;
2539
2540        if (p->pre_handler == pre_handler_kretprobe)
2541                kprobe_type = "r";
2542        else
2543                kprobe_type = "k";
2544
2545        if (!kallsyms_show_value(pi->file->f_cred))
2546                addr = NULL;
2547
2548        if (sym)
2549                seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2550                        addr, kprobe_type, sym, offset,
2551                        (modname ? modname : " "));
2552        else    /* try to use %pS */
2553                seq_printf(pi, "%px  %s  %pS ",
2554                        addr, kprobe_type, p->addr);
2555
2556        if (!pp)
2557                pp = p;
2558        seq_printf(pi, "%s%s%s%s\n",
2559                (kprobe_gone(p) ? "[GONE]" : ""),
2560                ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2561                (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2562                (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2563}
2564
2565static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2566{
2567        return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2568}
2569
2570static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2571{
2572        (*pos)++;
2573        if (*pos >= KPROBE_TABLE_SIZE)
2574                return NULL;
2575        return pos;
2576}
2577
2578static void kprobe_seq_stop(struct seq_file *f, void *v)
2579{
2580        /* Nothing to do */
2581}
2582
2583static int show_kprobe_addr(struct seq_file *pi, void *v)
2584{
2585        struct hlist_head *head;
2586        struct kprobe *p, *kp;
2587        const char *sym = NULL;
2588        unsigned int i = *(loff_t *) v;
2589        unsigned long offset = 0;
2590        char *modname, namebuf[KSYM_NAME_LEN];
2591
2592        head = &kprobe_table[i];
2593        preempt_disable();
2594        hlist_for_each_entry_rcu(p, head, hlist) {
2595                sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2596                                        &offset, &modname, namebuf);
2597                if (kprobe_aggrprobe(p)) {
2598                        list_for_each_entry_rcu(kp, &p->list, list)
2599                                report_probe(pi, kp, sym, offset, modname, p);
2600                } else
2601                        report_probe(pi, p, sym, offset, modname, NULL);
2602        }
2603        preempt_enable();
2604        return 0;
2605}
2606
2607static const struct seq_operations kprobes_sops = {
2608        .start = kprobe_seq_start,
2609        .next  = kprobe_seq_next,
2610        .stop  = kprobe_seq_stop,
2611        .show  = show_kprobe_addr
2612};
2613
2614DEFINE_SEQ_ATTRIBUTE(kprobes);
2615
2616/* kprobes/blacklist -- shows which functions can not be probed */
2617static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2618{
2619        mutex_lock(&kprobe_mutex);
2620        return seq_list_start(&kprobe_blacklist, *pos);
2621}
2622
2623static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2624{
2625        return seq_list_next(v, &kprobe_blacklist, pos);
2626}
2627
2628static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2629{
2630        struct kprobe_blacklist_entry *ent =
2631                list_entry(v, struct kprobe_blacklist_entry, list);
2632
2633        /*
2634         * If /proc/kallsyms is not showing kernel address, we won't
2635         * show them here either.
2636         */
2637        if (!kallsyms_show_value(m->file->f_cred))
2638                seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2639                           (void *)ent->start_addr);
2640        else
2641                seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2642                           (void *)ent->end_addr, (void *)ent->start_addr);
2643        return 0;
2644}
2645
2646static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2647{
2648        mutex_unlock(&kprobe_mutex);
2649}
2650
2651static const struct seq_operations kprobe_blacklist_sops = {
2652        .start = kprobe_blacklist_seq_start,
2653        .next  = kprobe_blacklist_seq_next,
2654        .stop  = kprobe_blacklist_seq_stop,
2655        .show  = kprobe_blacklist_seq_show,
2656};
2657DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2658
2659static int arm_all_kprobes(void)
2660{
2661        struct hlist_head *head;
2662        struct kprobe *p;
2663        unsigned int i, total = 0, errors = 0;
2664        int err, ret = 0;
2665
2666        mutex_lock(&kprobe_mutex);
2667
2668        /* If kprobes are armed, just return */
2669        if (!kprobes_all_disarmed)
2670                goto already_enabled;
2671
2672        /*
2673         * optimize_kprobe() called by arm_kprobe() checks
2674         * kprobes_all_disarmed, so set kprobes_all_disarmed before
2675         * arm_kprobe.
2676         */
2677        kprobes_all_disarmed = false;
2678        /* Arming kprobes doesn't optimize kprobe itself */
2679        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2680                head = &kprobe_table[i];
2681                /* Arm all kprobes on a best-effort basis */
2682                hlist_for_each_entry(p, head, hlist) {
2683                        if (!kprobe_disabled(p)) {
2684                                err = arm_kprobe(p);
2685                                if (err)  {
2686                                        errors++;
2687                                        ret = err;
2688                                }
2689                                total++;
2690                        }
2691                }
2692        }
2693
2694        if (errors)
2695                pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2696                        errors, total);
2697        else
2698                pr_info("Kprobes globally enabled\n");
2699
2700already_enabled:
2701        mutex_unlock(&kprobe_mutex);
2702        return ret;
2703}
2704
2705static int disarm_all_kprobes(void)
2706{
2707        struct hlist_head *head;
2708        struct kprobe *p;
2709        unsigned int i, total = 0, errors = 0;
2710        int err, ret = 0;
2711
2712        mutex_lock(&kprobe_mutex);
2713
2714        /* If kprobes are already disarmed, just return */
2715        if (kprobes_all_disarmed) {
2716                mutex_unlock(&kprobe_mutex);
2717                return 0;
2718        }
2719
2720        kprobes_all_disarmed = true;
2721
2722        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2723                head = &kprobe_table[i];
2724                /* Disarm all kprobes on a best-effort basis */
2725                hlist_for_each_entry(p, head, hlist) {
2726                        if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2727                                err = disarm_kprobe(p, false);
2728                                if (err) {
2729                                        errors++;
2730                                        ret = err;
2731                                }
2732                                total++;
2733                        }
2734                }
2735        }
2736
2737        if (errors)
2738                pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2739                        errors, total);
2740        else
2741                pr_info("Kprobes globally disabled\n");
2742
2743        mutex_unlock(&kprobe_mutex);
2744
2745        /* Wait for disarming all kprobes by optimizer */
2746        wait_for_kprobe_optimizer();
2747
2748        return ret;
2749}
2750
2751/*
2752 * XXX: The debugfs bool file interface doesn't allow for callbacks
2753 * when the bool state is switched. We can reuse that facility when
2754 * available
2755 */
2756static ssize_t read_enabled_file_bool(struct file *file,
2757               char __user *user_buf, size_t count, loff_t *ppos)
2758{
2759        char buf[3];
2760
2761        if (!kprobes_all_disarmed)
2762                buf[0] = '1';
2763        else
2764                buf[0] = '0';
2765        buf[1] = '\n';
2766        buf[2] = 0x00;
2767        return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2768}
2769
2770static ssize_t write_enabled_file_bool(struct file *file,
2771               const char __user *user_buf, size_t count, loff_t *ppos)
2772{
2773        char buf[32];
2774        size_t buf_size;
2775        int ret = 0;
2776
2777        buf_size = min(count, (sizeof(buf)-1));
2778        if (copy_from_user(buf, user_buf, buf_size))
2779                return -EFAULT;
2780
2781        buf[buf_size] = '\0';
2782        switch (buf[0]) {
2783        case 'y':
2784        case 'Y':
2785        case '1':
2786                ret = arm_all_kprobes();
2787                break;
2788        case 'n':
2789        case 'N':
2790        case '0':
2791                ret = disarm_all_kprobes();
2792                break;
2793        default:
2794                return -EINVAL;
2795        }
2796
2797        if (ret)
2798                return ret;
2799
2800        return count;
2801}
2802
2803static const struct file_operations fops_kp = {
2804        .read =         read_enabled_file_bool,
2805        .write =        write_enabled_file_bool,
2806        .llseek =       default_llseek,
2807};
2808
2809static int __init debugfs_kprobe_init(void)
2810{
2811        struct dentry *dir;
2812        unsigned int value = 1;
2813
2814        dir = debugfs_create_dir("kprobes", NULL);
2815
2816        debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2817
2818        debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2819
2820        debugfs_create_file("blacklist", 0400, dir, NULL,
2821                            &kprobe_blacklist_fops);
2822
2823        return 0;
2824}
2825
2826late_initcall(debugfs_kprobe_init);
2827#endif /* CONFIG_DEBUG_FS */
2828