linux/kernel/time/time.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1991, 1992  Linus Torvalds
   4 *
   5 *  This file contains the interface functions for the various time related
   6 *  system calls: time, stime, gettimeofday, settimeofday, adjtime
   7 *
   8 * Modification history:
   9 *
  10 * 1993-09-02    Philip Gladstone
  11 *      Created file with time related functions from sched/core.c and adjtimex()
  12 * 1993-10-08    Torsten Duwe
  13 *      adjtime interface update and CMOS clock write code
  14 * 1995-08-13    Torsten Duwe
  15 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
  16 * 1999-01-16    Ulrich Windl
  17 *      Introduced error checking for many cases in adjtimex().
  18 *      Updated NTP code according to technical memorandum Jan '96
  19 *      "A Kernel Model for Precision Timekeeping" by Dave Mills
  20 *      Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  21 *      (Even though the technical memorandum forbids it)
  22 * 2004-07-14    Christoph Lameter
  23 *      Added getnstimeofday to allow the posix timer functions to return
  24 *      with nanosecond accuracy
  25 */
  26
  27#include <linux/export.h>
  28#include <linux/kernel.h>
  29#include <linux/timex.h>
  30#include <linux/capability.h>
  31#include <linux/timekeeper_internal.h>
  32#include <linux/errno.h>
  33#include <linux/syscalls.h>
  34#include <linux/security.h>
  35#include <linux/fs.h>
  36#include <linux/math64.h>
  37#include <linux/ptrace.h>
  38
  39#include <linux/uaccess.h>
  40#include <linux/compat.h>
  41#include <asm/unistd.h>
  42
  43#include <generated/timeconst.h>
  44#include "timekeeping.h"
  45
  46/*
  47 * The timezone where the local system is located.  Used as a default by some
  48 * programs who obtain this value by using gettimeofday.
  49 */
  50struct timezone sys_tz;
  51
  52EXPORT_SYMBOL(sys_tz);
  53
  54#ifdef __ARCH_WANT_SYS_TIME
  55
  56/*
  57 * sys_time() can be implemented in user-level using
  58 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
  59 * why not move it into the appropriate arch directory (for those
  60 * architectures that need it).
  61 */
  62SYSCALL_DEFINE1(time, __kernel_old_time_t __user *, tloc)
  63{
  64        __kernel_old_time_t i = (__kernel_old_time_t)ktime_get_real_seconds();
  65
  66        if (tloc) {
  67                if (put_user(i,tloc))
  68                        return -EFAULT;
  69        }
  70        force_successful_syscall_return();
  71        return i;
  72}
  73
  74/*
  75 * sys_stime() can be implemented in user-level using
  76 * sys_settimeofday().  Is this for backwards compatibility?  If so,
  77 * why not move it into the appropriate arch directory (for those
  78 * architectures that need it).
  79 */
  80
  81SYSCALL_DEFINE1(stime, __kernel_old_time_t __user *, tptr)
  82{
  83        struct timespec64 tv;
  84        int err;
  85
  86        if (get_user(tv.tv_sec, tptr))
  87                return -EFAULT;
  88
  89        tv.tv_nsec = 0;
  90
  91        err = security_settime64(&tv, NULL);
  92        if (err)
  93                return err;
  94
  95        do_settimeofday64(&tv);
  96        return 0;
  97}
  98
  99#endif /* __ARCH_WANT_SYS_TIME */
 100
 101#ifdef CONFIG_COMPAT_32BIT_TIME
 102#ifdef __ARCH_WANT_SYS_TIME32
 103
 104/* old_time32_t is a 32 bit "long" and needs to get converted. */
 105SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc)
 106{
 107        old_time32_t i;
 108
 109        i = (old_time32_t)ktime_get_real_seconds();
 110
 111        if (tloc) {
 112                if (put_user(i,tloc))
 113                        return -EFAULT;
 114        }
 115        force_successful_syscall_return();
 116        return i;
 117}
 118
 119SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr)
 120{
 121        struct timespec64 tv;
 122        int err;
 123
 124        if (get_user(tv.tv_sec, tptr))
 125                return -EFAULT;
 126
 127        tv.tv_nsec = 0;
 128
 129        err = security_settime64(&tv, NULL);
 130        if (err)
 131                return err;
 132
 133        do_settimeofday64(&tv);
 134        return 0;
 135}
 136
 137#endif /* __ARCH_WANT_SYS_TIME32 */
 138#endif
 139
 140SYSCALL_DEFINE2(gettimeofday, struct __kernel_old_timeval __user *, tv,
 141                struct timezone __user *, tz)
 142{
 143        if (likely(tv != NULL)) {
 144                struct timespec64 ts;
 145
 146                ktime_get_real_ts64(&ts);
 147                if (put_user(ts.tv_sec, &tv->tv_sec) ||
 148                    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
 149                        return -EFAULT;
 150        }
 151        if (unlikely(tz != NULL)) {
 152                if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
 153                        return -EFAULT;
 154        }
 155        return 0;
 156}
 157
 158/*
 159 * In case for some reason the CMOS clock has not already been running
 160 * in UTC, but in some local time: The first time we set the timezone,
 161 * we will warp the clock so that it is ticking UTC time instead of
 162 * local time. Presumably, if someone is setting the timezone then we
 163 * are running in an environment where the programs understand about
 164 * timezones. This should be done at boot time in the /etc/rc script,
 165 * as soon as possible, so that the clock can be set right. Otherwise,
 166 * various programs will get confused when the clock gets warped.
 167 */
 168
 169int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
 170{
 171        static int firsttime = 1;
 172        int error = 0;
 173
 174        if (tv && !timespec64_valid_settod(tv))
 175                return -EINVAL;
 176
 177        error = security_settime64(tv, tz);
 178        if (error)
 179                return error;
 180
 181        if (tz) {
 182                /* Verify we're within the +-15 hrs range */
 183                if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
 184                        return -EINVAL;
 185
 186                sys_tz = *tz;
 187                update_vsyscall_tz();
 188                if (firsttime) {
 189                        firsttime = 0;
 190                        if (!tv)
 191                                timekeeping_warp_clock();
 192                }
 193        }
 194        if (tv)
 195                return do_settimeofday64(tv);
 196        return 0;
 197}
 198
 199SYSCALL_DEFINE2(settimeofday, struct __kernel_old_timeval __user *, tv,
 200                struct timezone __user *, tz)
 201{
 202        struct timespec64 new_ts;
 203        struct timezone new_tz;
 204
 205        if (tv) {
 206                if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
 207                    get_user(new_ts.tv_nsec, &tv->tv_usec))
 208                        return -EFAULT;
 209
 210                if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
 211                        return -EINVAL;
 212
 213                new_ts.tv_nsec *= NSEC_PER_USEC;
 214        }
 215        if (tz) {
 216                if (copy_from_user(&new_tz, tz, sizeof(*tz)))
 217                        return -EFAULT;
 218        }
 219
 220        return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
 221}
 222
 223#ifdef CONFIG_COMPAT
 224COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
 225                       struct timezone __user *, tz)
 226{
 227        if (tv) {
 228                struct timespec64 ts;
 229
 230                ktime_get_real_ts64(&ts);
 231                if (put_user(ts.tv_sec, &tv->tv_sec) ||
 232                    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
 233                        return -EFAULT;
 234        }
 235        if (tz) {
 236                if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
 237                        return -EFAULT;
 238        }
 239
 240        return 0;
 241}
 242
 243COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
 244                       struct timezone __user *, tz)
 245{
 246        struct timespec64 new_ts;
 247        struct timezone new_tz;
 248
 249        if (tv) {
 250                if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
 251                    get_user(new_ts.tv_nsec, &tv->tv_usec))
 252                        return -EFAULT;
 253
 254                if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
 255                        return -EINVAL;
 256
 257                new_ts.tv_nsec *= NSEC_PER_USEC;
 258        }
 259        if (tz) {
 260                if (copy_from_user(&new_tz, tz, sizeof(*tz)))
 261                        return -EFAULT;
 262        }
 263
 264        return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
 265}
 266#endif
 267
 268#ifdef CONFIG_64BIT
 269SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p)
 270{
 271        struct __kernel_timex txc;              /* Local copy of parameter */
 272        int ret;
 273
 274        /* Copy the user data space into the kernel copy
 275         * structure. But bear in mind that the structures
 276         * may change
 277         */
 278        if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex)))
 279                return -EFAULT;
 280        ret = do_adjtimex(&txc);
 281        return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret;
 282}
 283#endif
 284
 285#ifdef CONFIG_COMPAT_32BIT_TIME
 286int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp)
 287{
 288        struct old_timex32 tx32;
 289
 290        memset(txc, 0, sizeof(struct __kernel_timex));
 291        if (copy_from_user(&tx32, utp, sizeof(struct old_timex32)))
 292                return -EFAULT;
 293
 294        txc->modes = tx32.modes;
 295        txc->offset = tx32.offset;
 296        txc->freq = tx32.freq;
 297        txc->maxerror = tx32.maxerror;
 298        txc->esterror = tx32.esterror;
 299        txc->status = tx32.status;
 300        txc->constant = tx32.constant;
 301        txc->precision = tx32.precision;
 302        txc->tolerance = tx32.tolerance;
 303        txc->time.tv_sec = tx32.time.tv_sec;
 304        txc->time.tv_usec = tx32.time.tv_usec;
 305        txc->tick = tx32.tick;
 306        txc->ppsfreq = tx32.ppsfreq;
 307        txc->jitter = tx32.jitter;
 308        txc->shift = tx32.shift;
 309        txc->stabil = tx32.stabil;
 310        txc->jitcnt = tx32.jitcnt;
 311        txc->calcnt = tx32.calcnt;
 312        txc->errcnt = tx32.errcnt;
 313        txc->stbcnt = tx32.stbcnt;
 314
 315        return 0;
 316}
 317
 318int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc)
 319{
 320        struct old_timex32 tx32;
 321
 322        memset(&tx32, 0, sizeof(struct old_timex32));
 323        tx32.modes = txc->modes;
 324        tx32.offset = txc->offset;
 325        tx32.freq = txc->freq;
 326        tx32.maxerror = txc->maxerror;
 327        tx32.esterror = txc->esterror;
 328        tx32.status = txc->status;
 329        tx32.constant = txc->constant;
 330        tx32.precision = txc->precision;
 331        tx32.tolerance = txc->tolerance;
 332        tx32.time.tv_sec = txc->time.tv_sec;
 333        tx32.time.tv_usec = txc->time.tv_usec;
 334        tx32.tick = txc->tick;
 335        tx32.ppsfreq = txc->ppsfreq;
 336        tx32.jitter = txc->jitter;
 337        tx32.shift = txc->shift;
 338        tx32.stabil = txc->stabil;
 339        tx32.jitcnt = txc->jitcnt;
 340        tx32.calcnt = txc->calcnt;
 341        tx32.errcnt = txc->errcnt;
 342        tx32.stbcnt = txc->stbcnt;
 343        tx32.tai = txc->tai;
 344        if (copy_to_user(utp, &tx32, sizeof(struct old_timex32)))
 345                return -EFAULT;
 346        return 0;
 347}
 348
 349SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp)
 350{
 351        struct __kernel_timex txc;
 352        int err, ret;
 353
 354        err = get_old_timex32(&txc, utp);
 355        if (err)
 356                return err;
 357
 358        ret = do_adjtimex(&txc);
 359
 360        err = put_old_timex32(utp, &txc);
 361        if (err)
 362                return err;
 363
 364        return ret;
 365}
 366#endif
 367
 368/*
 369 * Convert jiffies to milliseconds and back.
 370 *
 371 * Avoid unnecessary multiplications/divisions in the
 372 * two most common HZ cases:
 373 */
 374unsigned int jiffies_to_msecs(const unsigned long j)
 375{
 376#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
 377        return (MSEC_PER_SEC / HZ) * j;
 378#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
 379        return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
 380#else
 381# if BITS_PER_LONG == 32
 382        return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
 383               HZ_TO_MSEC_SHR32;
 384# else
 385        return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
 386# endif
 387#endif
 388}
 389EXPORT_SYMBOL(jiffies_to_msecs);
 390
 391unsigned int jiffies_to_usecs(const unsigned long j)
 392{
 393        /*
 394         * Hz usually doesn't go much further MSEC_PER_SEC.
 395         * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
 396         */
 397        BUILD_BUG_ON(HZ > USEC_PER_SEC);
 398
 399#if !(USEC_PER_SEC % HZ)
 400        return (USEC_PER_SEC / HZ) * j;
 401#else
 402# if BITS_PER_LONG == 32
 403        return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
 404# else
 405        return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
 406# endif
 407#endif
 408}
 409EXPORT_SYMBOL(jiffies_to_usecs);
 410
 411/*
 412 * mktime64 - Converts date to seconds.
 413 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
 414 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
 415 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
 416 *
 417 * [For the Julian calendar (which was used in Russia before 1917,
 418 * Britain & colonies before 1752, anywhere else before 1582,
 419 * and is still in use by some communities) leave out the
 420 * -year/100+year/400 terms, and add 10.]
 421 *
 422 * This algorithm was first published by Gauss (I think).
 423 *
 424 * A leap second can be indicated by calling this function with sec as
 425 * 60 (allowable under ISO 8601).  The leap second is treated the same
 426 * as the following second since they don't exist in UNIX time.
 427 *
 428 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
 429 * tomorrow - (allowable under ISO 8601) is supported.
 430 */
 431time64_t mktime64(const unsigned int year0, const unsigned int mon0,
 432                const unsigned int day, const unsigned int hour,
 433                const unsigned int min, const unsigned int sec)
 434{
 435        unsigned int mon = mon0, year = year0;
 436
 437        /* 1..12 -> 11,12,1..10 */
 438        if (0 >= (int) (mon -= 2)) {
 439                mon += 12;      /* Puts Feb last since it has leap day */
 440                year -= 1;
 441        }
 442
 443        return ((((time64_t)
 444                  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
 445                  year*365 - 719499
 446            )*24 + hour /* now have hours - midnight tomorrow handled here */
 447          )*60 + min /* now have minutes */
 448        )*60 + sec; /* finally seconds */
 449}
 450EXPORT_SYMBOL(mktime64);
 451
 452struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
 453{
 454        struct timespec64 ts = ns_to_timespec64(nsec);
 455        struct __kernel_old_timeval tv;
 456
 457        tv.tv_sec = ts.tv_sec;
 458        tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
 459
 460        return tv;
 461}
 462EXPORT_SYMBOL(ns_to_kernel_old_timeval);
 463
 464/**
 465 * set_normalized_timespec - set timespec sec and nsec parts and normalize
 466 *
 467 * @ts:         pointer to timespec variable to be set
 468 * @sec:        seconds to set
 469 * @nsec:       nanoseconds to set
 470 *
 471 * Set seconds and nanoseconds field of a timespec variable and
 472 * normalize to the timespec storage format
 473 *
 474 * Note: The tv_nsec part is always in the range of
 475 *      0 <= tv_nsec < NSEC_PER_SEC
 476 * For negative values only the tv_sec field is negative !
 477 */
 478void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
 479{
 480        while (nsec >= NSEC_PER_SEC) {
 481                /*
 482                 * The following asm() prevents the compiler from
 483                 * optimising this loop into a modulo operation. See
 484                 * also __iter_div_u64_rem() in include/linux/time.h
 485                 */
 486                asm("" : "+rm"(nsec));
 487                nsec -= NSEC_PER_SEC;
 488                ++sec;
 489        }
 490        while (nsec < 0) {
 491                asm("" : "+rm"(nsec));
 492                nsec += NSEC_PER_SEC;
 493                --sec;
 494        }
 495        ts->tv_sec = sec;
 496        ts->tv_nsec = nsec;
 497}
 498EXPORT_SYMBOL(set_normalized_timespec64);
 499
 500/**
 501 * ns_to_timespec64 - Convert nanoseconds to timespec64
 502 * @nsec:       the nanoseconds value to be converted
 503 *
 504 * Returns the timespec64 representation of the nsec parameter.
 505 */
 506struct timespec64 ns_to_timespec64(const s64 nsec)
 507{
 508        struct timespec64 ts = { 0, 0 };
 509        s32 rem;
 510
 511        if (likely(nsec > 0)) {
 512                ts.tv_sec = div_u64_rem(nsec, NSEC_PER_SEC, &rem);
 513                ts.tv_nsec = rem;
 514        } else if (nsec < 0) {
 515                /*
 516                 * With negative times, tv_sec points to the earlier
 517                 * second, and tv_nsec counts the nanoseconds since
 518                 * then, so tv_nsec is always a positive number.
 519                 */
 520                ts.tv_sec = -div_u64_rem(-nsec - 1, NSEC_PER_SEC, &rem) - 1;
 521                ts.tv_nsec = NSEC_PER_SEC - rem - 1;
 522        }
 523
 524        return ts;
 525}
 526EXPORT_SYMBOL(ns_to_timespec64);
 527
 528/**
 529 * msecs_to_jiffies: - convert milliseconds to jiffies
 530 * @m:  time in milliseconds
 531 *
 532 * conversion is done as follows:
 533 *
 534 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
 535 *
 536 * - 'too large' values [that would result in larger than
 537 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 538 *
 539 * - all other values are converted to jiffies by either multiplying
 540 *   the input value by a factor or dividing it with a factor and
 541 *   handling any 32-bit overflows.
 542 *   for the details see __msecs_to_jiffies()
 543 *
 544 * msecs_to_jiffies() checks for the passed in value being a constant
 545 * via __builtin_constant_p() allowing gcc to eliminate most of the
 546 * code, __msecs_to_jiffies() is called if the value passed does not
 547 * allow constant folding and the actual conversion must be done at
 548 * runtime.
 549 * the _msecs_to_jiffies helpers are the HZ dependent conversion
 550 * routines found in include/linux/jiffies.h
 551 */
 552unsigned long __msecs_to_jiffies(const unsigned int m)
 553{
 554        /*
 555         * Negative value, means infinite timeout:
 556         */
 557        if ((int)m < 0)
 558                return MAX_JIFFY_OFFSET;
 559        return _msecs_to_jiffies(m);
 560}
 561EXPORT_SYMBOL(__msecs_to_jiffies);
 562
 563unsigned long __usecs_to_jiffies(const unsigned int u)
 564{
 565        if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
 566                return MAX_JIFFY_OFFSET;
 567        return _usecs_to_jiffies(u);
 568}
 569EXPORT_SYMBOL(__usecs_to_jiffies);
 570
 571/*
 572 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
 573 * that a remainder subtract here would not do the right thing as the
 574 * resolution values don't fall on second boundaries.  I.e. the line:
 575 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
 576 * Note that due to the small error in the multiplier here, this
 577 * rounding is incorrect for sufficiently large values of tv_nsec, but
 578 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
 579 * OK.
 580 *
 581 * Rather, we just shift the bits off the right.
 582 *
 583 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
 584 * value to a scaled second value.
 585 */
 586
 587unsigned long
 588timespec64_to_jiffies(const struct timespec64 *value)
 589{
 590        u64 sec = value->tv_sec;
 591        long nsec = value->tv_nsec + TICK_NSEC - 1;
 592
 593        if (sec >= MAX_SEC_IN_JIFFIES){
 594                sec = MAX_SEC_IN_JIFFIES;
 595                nsec = 0;
 596        }
 597        return ((sec * SEC_CONVERSION) +
 598                (((u64)nsec * NSEC_CONVERSION) >>
 599                 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
 600
 601}
 602EXPORT_SYMBOL(timespec64_to_jiffies);
 603
 604void
 605jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
 606{
 607        /*
 608         * Convert jiffies to nanoseconds and separate with
 609         * one divide.
 610         */
 611        u32 rem;
 612        value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
 613                                    NSEC_PER_SEC, &rem);
 614        value->tv_nsec = rem;
 615}
 616EXPORT_SYMBOL(jiffies_to_timespec64);
 617
 618/*
 619 * Convert jiffies/jiffies_64 to clock_t and back.
 620 */
 621clock_t jiffies_to_clock_t(unsigned long x)
 622{
 623#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
 624# if HZ < USER_HZ
 625        return x * (USER_HZ / HZ);
 626# else
 627        return x / (HZ / USER_HZ);
 628# endif
 629#else
 630        return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
 631#endif
 632}
 633EXPORT_SYMBOL(jiffies_to_clock_t);
 634
 635unsigned long clock_t_to_jiffies(unsigned long x)
 636{
 637#if (HZ % USER_HZ)==0
 638        if (x >= ~0UL / (HZ / USER_HZ))
 639                return ~0UL;
 640        return x * (HZ / USER_HZ);
 641#else
 642        /* Don't worry about loss of precision here .. */
 643        if (x >= ~0UL / HZ * USER_HZ)
 644                return ~0UL;
 645
 646        /* .. but do try to contain it here */
 647        return div_u64((u64)x * HZ, USER_HZ);
 648#endif
 649}
 650EXPORT_SYMBOL(clock_t_to_jiffies);
 651
 652u64 jiffies_64_to_clock_t(u64 x)
 653{
 654#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
 655# if HZ < USER_HZ
 656        x = div_u64(x * USER_HZ, HZ);
 657# elif HZ > USER_HZ
 658        x = div_u64(x, HZ / USER_HZ);
 659# else
 660        /* Nothing to do */
 661# endif
 662#else
 663        /*
 664         * There are better ways that don't overflow early,
 665         * but even this doesn't overflow in hundreds of years
 666         * in 64 bits, so..
 667         */
 668        x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
 669#endif
 670        return x;
 671}
 672EXPORT_SYMBOL(jiffies_64_to_clock_t);
 673
 674u64 nsec_to_clock_t(u64 x)
 675{
 676#if (NSEC_PER_SEC % USER_HZ) == 0
 677        return div_u64(x, NSEC_PER_SEC / USER_HZ);
 678#elif (USER_HZ % 512) == 0
 679        return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
 680#else
 681        /*
 682         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
 683         * overflow after 64.99 years.
 684         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
 685         */
 686        return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
 687#endif
 688}
 689
 690u64 jiffies64_to_nsecs(u64 j)
 691{
 692#if !(NSEC_PER_SEC % HZ)
 693        return (NSEC_PER_SEC / HZ) * j;
 694# else
 695        return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
 696#endif
 697}
 698EXPORT_SYMBOL(jiffies64_to_nsecs);
 699
 700u64 jiffies64_to_msecs(const u64 j)
 701{
 702#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
 703        return (MSEC_PER_SEC / HZ) * j;
 704#else
 705        return div_u64(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
 706#endif
 707}
 708EXPORT_SYMBOL(jiffies64_to_msecs);
 709
 710/**
 711 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
 712 *
 713 * @n:  nsecs in u64
 714 *
 715 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 716 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 717 * for scheduler, not for use in device drivers to calculate timeout value.
 718 *
 719 * note:
 720 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 721 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 722 */
 723u64 nsecs_to_jiffies64(u64 n)
 724{
 725#if (NSEC_PER_SEC % HZ) == 0
 726        /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
 727        return div_u64(n, NSEC_PER_SEC / HZ);
 728#elif (HZ % 512) == 0
 729        /* overflow after 292 years if HZ = 1024 */
 730        return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
 731#else
 732        /*
 733         * Generic case - optimized for cases where HZ is a multiple of 3.
 734         * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
 735         */
 736        return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
 737#endif
 738}
 739EXPORT_SYMBOL(nsecs_to_jiffies64);
 740
 741/**
 742 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
 743 *
 744 * @n:  nsecs in u64
 745 *
 746 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 747 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 748 * for scheduler, not for use in device drivers to calculate timeout value.
 749 *
 750 * note:
 751 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 752 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 753 */
 754unsigned long nsecs_to_jiffies(u64 n)
 755{
 756        return (unsigned long)nsecs_to_jiffies64(n);
 757}
 758EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
 759
 760/*
 761 * Add two timespec64 values and do a safety check for overflow.
 762 * It's assumed that both values are valid (>= 0).
 763 * And, each timespec64 is in normalized form.
 764 */
 765struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
 766                                const struct timespec64 rhs)
 767{
 768        struct timespec64 res;
 769
 770        set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
 771                        lhs.tv_nsec + rhs.tv_nsec);
 772
 773        if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
 774                res.tv_sec = TIME64_MAX;
 775                res.tv_nsec = 0;
 776        }
 777
 778        return res;
 779}
 780
 781int get_timespec64(struct timespec64 *ts,
 782                   const struct __kernel_timespec __user *uts)
 783{
 784        struct __kernel_timespec kts;
 785        int ret;
 786
 787        ret = copy_from_user(&kts, uts, sizeof(kts));
 788        if (ret)
 789                return -EFAULT;
 790
 791        ts->tv_sec = kts.tv_sec;
 792
 793        /* Zero out the padding in compat mode */
 794        if (in_compat_syscall())
 795                kts.tv_nsec &= 0xFFFFFFFFUL;
 796
 797        /* In 32-bit mode, this drops the padding */
 798        ts->tv_nsec = kts.tv_nsec;
 799
 800        return 0;
 801}
 802EXPORT_SYMBOL_GPL(get_timespec64);
 803
 804int put_timespec64(const struct timespec64 *ts,
 805                   struct __kernel_timespec __user *uts)
 806{
 807        struct __kernel_timespec kts = {
 808                .tv_sec = ts->tv_sec,
 809                .tv_nsec = ts->tv_nsec
 810        };
 811
 812        return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
 813}
 814EXPORT_SYMBOL_GPL(put_timespec64);
 815
 816static int __get_old_timespec32(struct timespec64 *ts64,
 817                                   const struct old_timespec32 __user *cts)
 818{
 819        struct old_timespec32 ts;
 820        int ret;
 821
 822        ret = copy_from_user(&ts, cts, sizeof(ts));
 823        if (ret)
 824                return -EFAULT;
 825
 826        ts64->tv_sec = ts.tv_sec;
 827        ts64->tv_nsec = ts.tv_nsec;
 828
 829        return 0;
 830}
 831
 832static int __put_old_timespec32(const struct timespec64 *ts64,
 833                                   struct old_timespec32 __user *cts)
 834{
 835        struct old_timespec32 ts = {
 836                .tv_sec = ts64->tv_sec,
 837                .tv_nsec = ts64->tv_nsec
 838        };
 839        return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
 840}
 841
 842int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
 843{
 844        if (COMPAT_USE_64BIT_TIME)
 845                return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
 846        else
 847                return __get_old_timespec32(ts, uts);
 848}
 849EXPORT_SYMBOL_GPL(get_old_timespec32);
 850
 851int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
 852{
 853        if (COMPAT_USE_64BIT_TIME)
 854                return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
 855        else
 856                return __put_old_timespec32(ts, uts);
 857}
 858EXPORT_SYMBOL_GPL(put_old_timespec32);
 859
 860int get_itimerspec64(struct itimerspec64 *it,
 861                        const struct __kernel_itimerspec __user *uit)
 862{
 863        int ret;
 864
 865        ret = get_timespec64(&it->it_interval, &uit->it_interval);
 866        if (ret)
 867                return ret;
 868
 869        ret = get_timespec64(&it->it_value, &uit->it_value);
 870
 871        return ret;
 872}
 873EXPORT_SYMBOL_GPL(get_itimerspec64);
 874
 875int put_itimerspec64(const struct itimerspec64 *it,
 876                        struct __kernel_itimerspec __user *uit)
 877{
 878        int ret;
 879
 880        ret = put_timespec64(&it->it_interval, &uit->it_interval);
 881        if (ret)
 882                return ret;
 883
 884        ret = put_timespec64(&it->it_value, &uit->it_value);
 885
 886        return ret;
 887}
 888EXPORT_SYMBOL_GPL(put_itimerspec64);
 889
 890int get_old_itimerspec32(struct itimerspec64 *its,
 891                        const struct old_itimerspec32 __user *uits)
 892{
 893
 894        if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
 895            __get_old_timespec32(&its->it_value, &uits->it_value))
 896                return -EFAULT;
 897        return 0;
 898}
 899EXPORT_SYMBOL_GPL(get_old_itimerspec32);
 900
 901int put_old_itimerspec32(const struct itimerspec64 *its,
 902                        struct old_itimerspec32 __user *uits)
 903{
 904        if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
 905            __put_old_timespec32(&its->it_value, &uits->it_value))
 906                return -EFAULT;
 907        return 0;
 908}
 909EXPORT_SYMBOL_GPL(put_old_itimerspec32);
 910