linux/mm/slab_common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Slab allocator functions that are independent of the allocator strategy
   4 *
   5 * (C) 2012 Christoph Lameter <cl@linux.com>
   6 */
   7#include <linux/slab.h>
   8
   9#include <linux/mm.h>
  10#include <linux/poison.h>
  11#include <linux/interrupt.h>
  12#include <linux/memory.h>
  13#include <linux/cache.h>
  14#include <linux/compiler.h>
  15#include <linux/kfence.h>
  16#include <linux/module.h>
  17#include <linux/cpu.h>
  18#include <linux/uaccess.h>
  19#include <linux/seq_file.h>
  20#include <linux/proc_fs.h>
  21#include <linux/debugfs.h>
  22#include <linux/kasan.h>
  23#include <asm/cacheflush.h>
  24#include <asm/tlbflush.h>
  25#include <asm/page.h>
  26#include <linux/memcontrol.h>
  27
  28#define CREATE_TRACE_POINTS
  29#include <trace/events/kmem.h>
  30
  31#include "internal.h"
  32
  33#include "slab.h"
  34
  35enum slab_state slab_state;
  36LIST_HEAD(slab_caches);
  37DEFINE_MUTEX(slab_mutex);
  38struct kmem_cache *kmem_cache;
  39
  40#ifdef CONFIG_HARDENED_USERCOPY
  41bool usercopy_fallback __ro_after_init =
  42                IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
  43module_param(usercopy_fallback, bool, 0400);
  44MODULE_PARM_DESC(usercopy_fallback,
  45                "WARN instead of reject usercopy whitelist violations");
  46#endif
  47
  48static LIST_HEAD(slab_caches_to_rcu_destroy);
  49static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
  50static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
  51                    slab_caches_to_rcu_destroy_workfn);
  52
  53/*
  54 * Set of flags that will prevent slab merging
  55 */
  56#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  57                SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
  58                SLAB_FAILSLAB | kasan_never_merge())
  59
  60#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
  61                         SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
  62
  63/*
  64 * Merge control. If this is set then no merging of slab caches will occur.
  65 */
  66static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
  67
  68static int __init setup_slab_nomerge(char *str)
  69{
  70        slab_nomerge = true;
  71        return 1;
  72}
  73
  74static int __init setup_slab_merge(char *str)
  75{
  76        slab_nomerge = false;
  77        return 1;
  78}
  79
  80#ifdef CONFIG_SLUB
  81__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
  82__setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
  83#endif
  84
  85__setup("slab_nomerge", setup_slab_nomerge);
  86__setup("slab_merge", setup_slab_merge);
  87
  88/*
  89 * Determine the size of a slab object
  90 */
  91unsigned int kmem_cache_size(struct kmem_cache *s)
  92{
  93        return s->object_size;
  94}
  95EXPORT_SYMBOL(kmem_cache_size);
  96
  97#ifdef CONFIG_DEBUG_VM
  98static int kmem_cache_sanity_check(const char *name, unsigned int size)
  99{
 100        if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
 101                pr_err("kmem_cache_create(%s) integrity check failed\n", name);
 102                return -EINVAL;
 103        }
 104
 105        WARN_ON(strchr(name, ' '));     /* It confuses parsers */
 106        return 0;
 107}
 108#else
 109static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
 110{
 111        return 0;
 112}
 113#endif
 114
 115void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
 116{
 117        size_t i;
 118
 119        for (i = 0; i < nr; i++) {
 120                if (s)
 121                        kmem_cache_free(s, p[i]);
 122                else
 123                        kfree(p[i]);
 124        }
 125}
 126
 127int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
 128                                                                void **p)
 129{
 130        size_t i;
 131
 132        for (i = 0; i < nr; i++) {
 133                void *x = p[i] = kmem_cache_alloc(s, flags);
 134                if (!x) {
 135                        __kmem_cache_free_bulk(s, i, p);
 136                        return 0;
 137                }
 138        }
 139        return i;
 140}
 141
 142/*
 143 * Figure out what the alignment of the objects will be given a set of
 144 * flags, a user specified alignment and the size of the objects.
 145 */
 146static unsigned int calculate_alignment(slab_flags_t flags,
 147                unsigned int align, unsigned int size)
 148{
 149        /*
 150         * If the user wants hardware cache aligned objects then follow that
 151         * suggestion if the object is sufficiently large.
 152         *
 153         * The hardware cache alignment cannot override the specified
 154         * alignment though. If that is greater then use it.
 155         */
 156        if (flags & SLAB_HWCACHE_ALIGN) {
 157                unsigned int ralign;
 158
 159                ralign = cache_line_size();
 160                while (size <= ralign / 2)
 161                        ralign /= 2;
 162                align = max(align, ralign);
 163        }
 164
 165        if (align < ARCH_SLAB_MINALIGN)
 166                align = ARCH_SLAB_MINALIGN;
 167
 168        return ALIGN(align, sizeof(void *));
 169}
 170
 171/*
 172 * Find a mergeable slab cache
 173 */
 174int slab_unmergeable(struct kmem_cache *s)
 175{
 176        if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
 177                return 1;
 178
 179        if (s->ctor)
 180                return 1;
 181
 182        if (s->usersize)
 183                return 1;
 184
 185        /*
 186         * We may have set a slab to be unmergeable during bootstrap.
 187         */
 188        if (s->refcount < 0)
 189                return 1;
 190
 191        return 0;
 192}
 193
 194struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
 195                slab_flags_t flags, const char *name, void (*ctor)(void *))
 196{
 197        struct kmem_cache *s;
 198
 199        if (slab_nomerge)
 200                return NULL;
 201
 202        if (ctor)
 203                return NULL;
 204
 205        size = ALIGN(size, sizeof(void *));
 206        align = calculate_alignment(flags, align, size);
 207        size = ALIGN(size, align);
 208        flags = kmem_cache_flags(size, flags, name);
 209
 210        if (flags & SLAB_NEVER_MERGE)
 211                return NULL;
 212
 213        list_for_each_entry_reverse(s, &slab_caches, list) {
 214                if (slab_unmergeable(s))
 215                        continue;
 216
 217                if (size > s->size)
 218                        continue;
 219
 220                if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
 221                        continue;
 222                /*
 223                 * Check if alignment is compatible.
 224                 * Courtesy of Adrian Drzewiecki
 225                 */
 226                if ((s->size & ~(align - 1)) != s->size)
 227                        continue;
 228
 229                if (s->size - size >= sizeof(void *))
 230                        continue;
 231
 232                if (IS_ENABLED(CONFIG_SLAB) && align &&
 233                        (align > s->align || s->align % align))
 234                        continue;
 235
 236                return s;
 237        }
 238        return NULL;
 239}
 240
 241static struct kmem_cache *create_cache(const char *name,
 242                unsigned int object_size, unsigned int align,
 243                slab_flags_t flags, unsigned int useroffset,
 244                unsigned int usersize, void (*ctor)(void *),
 245                struct kmem_cache *root_cache)
 246{
 247        struct kmem_cache *s;
 248        int err;
 249
 250        if (WARN_ON(useroffset + usersize > object_size))
 251                useroffset = usersize = 0;
 252
 253        err = -ENOMEM;
 254        s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
 255        if (!s)
 256                goto out;
 257
 258        s->name = name;
 259        s->size = s->object_size = object_size;
 260        s->align = align;
 261        s->ctor = ctor;
 262        s->useroffset = useroffset;
 263        s->usersize = usersize;
 264
 265        err = __kmem_cache_create(s, flags);
 266        if (err)
 267                goto out_free_cache;
 268
 269        s->refcount = 1;
 270        list_add(&s->list, &slab_caches);
 271out:
 272        if (err)
 273                return ERR_PTR(err);
 274        return s;
 275
 276out_free_cache:
 277        kmem_cache_free(kmem_cache, s);
 278        goto out;
 279}
 280
 281/**
 282 * kmem_cache_create_usercopy - Create a cache with a region suitable
 283 * for copying to userspace
 284 * @name: A string which is used in /proc/slabinfo to identify this cache.
 285 * @size: The size of objects to be created in this cache.
 286 * @align: The required alignment for the objects.
 287 * @flags: SLAB flags
 288 * @useroffset: Usercopy region offset
 289 * @usersize: Usercopy region size
 290 * @ctor: A constructor for the objects.
 291 *
 292 * Cannot be called within a interrupt, but can be interrupted.
 293 * The @ctor is run when new pages are allocated by the cache.
 294 *
 295 * The flags are
 296 *
 297 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 298 * to catch references to uninitialised memory.
 299 *
 300 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 301 * for buffer overruns.
 302 *
 303 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 304 * cacheline.  This can be beneficial if you're counting cycles as closely
 305 * as davem.
 306 *
 307 * Return: a pointer to the cache on success, NULL on failure.
 308 */
 309struct kmem_cache *
 310kmem_cache_create_usercopy(const char *name,
 311                  unsigned int size, unsigned int align,
 312                  slab_flags_t flags,
 313                  unsigned int useroffset, unsigned int usersize,
 314                  void (*ctor)(void *))
 315{
 316        struct kmem_cache *s = NULL;
 317        const char *cache_name;
 318        int err;
 319
 320#ifdef CONFIG_SLUB_DEBUG
 321        /*
 322         * If no slub_debug was enabled globally, the static key is not yet
 323         * enabled by setup_slub_debug(). Enable it if the cache is being
 324         * created with any of the debugging flags passed explicitly.
 325         */
 326        if (flags & SLAB_DEBUG_FLAGS)
 327                static_branch_enable(&slub_debug_enabled);
 328#endif
 329
 330        mutex_lock(&slab_mutex);
 331
 332        err = kmem_cache_sanity_check(name, size);
 333        if (err) {
 334                goto out_unlock;
 335        }
 336
 337        /* Refuse requests with allocator specific flags */
 338        if (flags & ~SLAB_FLAGS_PERMITTED) {
 339                err = -EINVAL;
 340                goto out_unlock;
 341        }
 342
 343        /*
 344         * Some allocators will constraint the set of valid flags to a subset
 345         * of all flags. We expect them to define CACHE_CREATE_MASK in this
 346         * case, and we'll just provide them with a sanitized version of the
 347         * passed flags.
 348         */
 349        flags &= CACHE_CREATE_MASK;
 350
 351        /* Fail closed on bad usersize of useroffset values. */
 352        if (WARN_ON(!usersize && useroffset) ||
 353            WARN_ON(size < usersize || size - usersize < useroffset))
 354                usersize = useroffset = 0;
 355
 356        if (!usersize)
 357                s = __kmem_cache_alias(name, size, align, flags, ctor);
 358        if (s)
 359                goto out_unlock;
 360
 361        cache_name = kstrdup_const(name, GFP_KERNEL);
 362        if (!cache_name) {
 363                err = -ENOMEM;
 364                goto out_unlock;
 365        }
 366
 367        s = create_cache(cache_name, size,
 368                         calculate_alignment(flags, align, size),
 369                         flags, useroffset, usersize, ctor, NULL);
 370        if (IS_ERR(s)) {
 371                err = PTR_ERR(s);
 372                kfree_const(cache_name);
 373        }
 374
 375out_unlock:
 376        mutex_unlock(&slab_mutex);
 377
 378        if (err) {
 379                if (flags & SLAB_PANIC)
 380                        panic("%s: Failed to create slab '%s'. Error %d\n",
 381                                __func__, name, err);
 382                else {
 383                        pr_warn("%s(%s) failed with error %d\n",
 384                                __func__, name, err);
 385                        dump_stack();
 386                }
 387                return NULL;
 388        }
 389        return s;
 390}
 391EXPORT_SYMBOL(kmem_cache_create_usercopy);
 392
 393/**
 394 * kmem_cache_create - Create a cache.
 395 * @name: A string which is used in /proc/slabinfo to identify this cache.
 396 * @size: The size of objects to be created in this cache.
 397 * @align: The required alignment for the objects.
 398 * @flags: SLAB flags
 399 * @ctor: A constructor for the objects.
 400 *
 401 * Cannot be called within a interrupt, but can be interrupted.
 402 * The @ctor is run when new pages are allocated by the cache.
 403 *
 404 * The flags are
 405 *
 406 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 407 * to catch references to uninitialised memory.
 408 *
 409 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 410 * for buffer overruns.
 411 *
 412 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 413 * cacheline.  This can be beneficial if you're counting cycles as closely
 414 * as davem.
 415 *
 416 * Return: a pointer to the cache on success, NULL on failure.
 417 */
 418struct kmem_cache *
 419kmem_cache_create(const char *name, unsigned int size, unsigned int align,
 420                slab_flags_t flags, void (*ctor)(void *))
 421{
 422        return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
 423                                          ctor);
 424}
 425EXPORT_SYMBOL(kmem_cache_create);
 426
 427static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
 428{
 429        LIST_HEAD(to_destroy);
 430        struct kmem_cache *s, *s2;
 431
 432        /*
 433         * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
 434         * @slab_caches_to_rcu_destroy list.  The slab pages are freed
 435         * through RCU and the associated kmem_cache are dereferenced
 436         * while freeing the pages, so the kmem_caches should be freed only
 437         * after the pending RCU operations are finished.  As rcu_barrier()
 438         * is a pretty slow operation, we batch all pending destructions
 439         * asynchronously.
 440         */
 441        mutex_lock(&slab_mutex);
 442        list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
 443        mutex_unlock(&slab_mutex);
 444
 445        if (list_empty(&to_destroy))
 446                return;
 447
 448        rcu_barrier();
 449
 450        list_for_each_entry_safe(s, s2, &to_destroy, list) {
 451                debugfs_slab_release(s);
 452                kfence_shutdown_cache(s);
 453#ifdef SLAB_SUPPORTS_SYSFS
 454                sysfs_slab_release(s);
 455#else
 456                slab_kmem_cache_release(s);
 457#endif
 458        }
 459}
 460
 461static int shutdown_cache(struct kmem_cache *s)
 462{
 463        /* free asan quarantined objects */
 464        kasan_cache_shutdown(s);
 465
 466        if (__kmem_cache_shutdown(s) != 0)
 467                return -EBUSY;
 468
 469        list_del(&s->list);
 470
 471        if (s->flags & SLAB_TYPESAFE_BY_RCU) {
 472#ifdef SLAB_SUPPORTS_SYSFS
 473                sysfs_slab_unlink(s);
 474#endif
 475                list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
 476                schedule_work(&slab_caches_to_rcu_destroy_work);
 477        } else {
 478                kfence_shutdown_cache(s);
 479                debugfs_slab_release(s);
 480#ifdef SLAB_SUPPORTS_SYSFS
 481                sysfs_slab_unlink(s);
 482                sysfs_slab_release(s);
 483#else
 484                slab_kmem_cache_release(s);
 485#endif
 486        }
 487
 488        return 0;
 489}
 490
 491void slab_kmem_cache_release(struct kmem_cache *s)
 492{
 493        __kmem_cache_release(s);
 494        kfree_const(s->name);
 495        kmem_cache_free(kmem_cache, s);
 496}
 497
 498void kmem_cache_destroy(struct kmem_cache *s)
 499{
 500        int err;
 501
 502        if (unlikely(!s))
 503                return;
 504
 505        cpus_read_lock();
 506        mutex_lock(&slab_mutex);
 507
 508        s->refcount--;
 509        if (s->refcount)
 510                goto out_unlock;
 511
 512        err = shutdown_cache(s);
 513        if (err) {
 514                pr_err("%s %s: Slab cache still has objects\n",
 515                       __func__, s->name);
 516                dump_stack();
 517        }
 518out_unlock:
 519        mutex_unlock(&slab_mutex);
 520        cpus_read_unlock();
 521}
 522EXPORT_SYMBOL(kmem_cache_destroy);
 523
 524/**
 525 * kmem_cache_shrink - Shrink a cache.
 526 * @cachep: The cache to shrink.
 527 *
 528 * Releases as many slabs as possible for a cache.
 529 * To help debugging, a zero exit status indicates all slabs were released.
 530 *
 531 * Return: %0 if all slabs were released, non-zero otherwise
 532 */
 533int kmem_cache_shrink(struct kmem_cache *cachep)
 534{
 535        int ret;
 536
 537
 538        kasan_cache_shrink(cachep);
 539        ret = __kmem_cache_shrink(cachep);
 540
 541        return ret;
 542}
 543EXPORT_SYMBOL(kmem_cache_shrink);
 544
 545bool slab_is_available(void)
 546{
 547        return slab_state >= UP;
 548}
 549
 550#ifdef CONFIG_PRINTK
 551/**
 552 * kmem_valid_obj - does the pointer reference a valid slab object?
 553 * @object: pointer to query.
 554 *
 555 * Return: %true if the pointer is to a not-yet-freed object from
 556 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
 557 * is to an already-freed object, and %false otherwise.
 558 */
 559bool kmem_valid_obj(void *object)
 560{
 561        struct page *page;
 562
 563        /* Some arches consider ZERO_SIZE_PTR to be a valid address. */
 564        if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
 565                return false;
 566        page = virt_to_head_page(object);
 567        return PageSlab(page);
 568}
 569EXPORT_SYMBOL_GPL(kmem_valid_obj);
 570
 571/**
 572 * kmem_dump_obj - Print available slab provenance information
 573 * @object: slab object for which to find provenance information.
 574 *
 575 * This function uses pr_cont(), so that the caller is expected to have
 576 * printed out whatever preamble is appropriate.  The provenance information
 577 * depends on the type of object and on how much debugging is enabled.
 578 * For a slab-cache object, the fact that it is a slab object is printed,
 579 * and, if available, the slab name, return address, and stack trace from
 580 * the allocation and last free path of that object.
 581 *
 582 * This function will splat if passed a pointer to a non-slab object.
 583 * If you are not sure what type of object you have, you should instead
 584 * use mem_dump_obj().
 585 */
 586void kmem_dump_obj(void *object)
 587{
 588        char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
 589        int i;
 590        struct page *page;
 591        unsigned long ptroffset;
 592        struct kmem_obj_info kp = { };
 593
 594        if (WARN_ON_ONCE(!virt_addr_valid(object)))
 595                return;
 596        page = virt_to_head_page(object);
 597        if (WARN_ON_ONCE(!PageSlab(page))) {
 598                pr_cont(" non-slab memory.\n");
 599                return;
 600        }
 601        kmem_obj_info(&kp, object, page);
 602        if (kp.kp_slab_cache)
 603                pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
 604        else
 605                pr_cont(" slab%s", cp);
 606        if (kp.kp_objp)
 607                pr_cont(" start %px", kp.kp_objp);
 608        if (kp.kp_data_offset)
 609                pr_cont(" data offset %lu", kp.kp_data_offset);
 610        if (kp.kp_objp) {
 611                ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
 612                pr_cont(" pointer offset %lu", ptroffset);
 613        }
 614        if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
 615                pr_cont(" size %u", kp.kp_slab_cache->usersize);
 616        if (kp.kp_ret)
 617                pr_cont(" allocated at %pS\n", kp.kp_ret);
 618        else
 619                pr_cont("\n");
 620        for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
 621                if (!kp.kp_stack[i])
 622                        break;
 623                pr_info("    %pS\n", kp.kp_stack[i]);
 624        }
 625
 626        if (kp.kp_free_stack[0])
 627                pr_cont(" Free path:\n");
 628
 629        for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
 630                if (!kp.kp_free_stack[i])
 631                        break;
 632                pr_info("    %pS\n", kp.kp_free_stack[i]);
 633        }
 634
 635}
 636EXPORT_SYMBOL_GPL(kmem_dump_obj);
 637#endif
 638
 639#ifndef CONFIG_SLOB
 640/* Create a cache during boot when no slab services are available yet */
 641void __init create_boot_cache(struct kmem_cache *s, const char *name,
 642                unsigned int size, slab_flags_t flags,
 643                unsigned int useroffset, unsigned int usersize)
 644{
 645        int err;
 646        unsigned int align = ARCH_KMALLOC_MINALIGN;
 647
 648        s->name = name;
 649        s->size = s->object_size = size;
 650
 651        /*
 652         * For power of two sizes, guarantee natural alignment for kmalloc
 653         * caches, regardless of SL*B debugging options.
 654         */
 655        if (is_power_of_2(size))
 656                align = max(align, size);
 657        s->align = calculate_alignment(flags, align, size);
 658
 659        s->useroffset = useroffset;
 660        s->usersize = usersize;
 661
 662        err = __kmem_cache_create(s, flags);
 663
 664        if (err)
 665                panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
 666                                        name, size, err);
 667
 668        s->refcount = -1;       /* Exempt from merging for now */
 669}
 670
 671struct kmem_cache *__init create_kmalloc_cache(const char *name,
 672                unsigned int size, slab_flags_t flags,
 673                unsigned int useroffset, unsigned int usersize)
 674{
 675        struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
 676
 677        if (!s)
 678                panic("Out of memory when creating slab %s\n", name);
 679
 680        create_boot_cache(s, name, size, flags, useroffset, usersize);
 681        kasan_cache_create_kmalloc(s);
 682        list_add(&s->list, &slab_caches);
 683        s->refcount = 1;
 684        return s;
 685}
 686
 687struct kmem_cache *
 688kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
 689{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
 690EXPORT_SYMBOL(kmalloc_caches);
 691
 692/*
 693 * Conversion table for small slabs sizes / 8 to the index in the
 694 * kmalloc array. This is necessary for slabs < 192 since we have non power
 695 * of two cache sizes there. The size of larger slabs can be determined using
 696 * fls.
 697 */
 698static u8 size_index[24] __ro_after_init = {
 699        3,      /* 8 */
 700        4,      /* 16 */
 701        5,      /* 24 */
 702        5,      /* 32 */
 703        6,      /* 40 */
 704        6,      /* 48 */
 705        6,      /* 56 */
 706        6,      /* 64 */
 707        1,      /* 72 */
 708        1,      /* 80 */
 709        1,      /* 88 */
 710        1,      /* 96 */
 711        7,      /* 104 */
 712        7,      /* 112 */
 713        7,      /* 120 */
 714        7,      /* 128 */
 715        2,      /* 136 */
 716        2,      /* 144 */
 717        2,      /* 152 */
 718        2,      /* 160 */
 719        2,      /* 168 */
 720        2,      /* 176 */
 721        2,      /* 184 */
 722        2       /* 192 */
 723};
 724
 725static inline unsigned int size_index_elem(unsigned int bytes)
 726{
 727        return (bytes - 1) / 8;
 728}
 729
 730/*
 731 * Find the kmem_cache structure that serves a given size of
 732 * allocation
 733 */
 734struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
 735{
 736        unsigned int index;
 737
 738        if (size <= 192) {
 739                if (!size)
 740                        return ZERO_SIZE_PTR;
 741
 742                index = size_index[size_index_elem(size)];
 743        } else {
 744                if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
 745                        return NULL;
 746                index = fls(size - 1);
 747        }
 748
 749        return kmalloc_caches[kmalloc_type(flags)][index];
 750}
 751
 752#ifdef CONFIG_ZONE_DMA
 753#define KMALLOC_DMA_NAME(sz)    .name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
 754#else
 755#define KMALLOC_DMA_NAME(sz)
 756#endif
 757
 758#ifdef CONFIG_MEMCG_KMEM
 759#define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
 760#else
 761#define KMALLOC_CGROUP_NAME(sz)
 762#endif
 763
 764#define INIT_KMALLOC_INFO(__size, __short_size)                 \
 765{                                                               \
 766        .name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,      \
 767        .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,  \
 768        KMALLOC_CGROUP_NAME(__short_size)                       \
 769        KMALLOC_DMA_NAME(__short_size)                          \
 770        .size = __size,                                         \
 771}
 772
 773/*
 774 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 775 * kmalloc_index() supports up to 2^25=32MB, so the final entry of the table is
 776 * kmalloc-32M.
 777 */
 778const struct kmalloc_info_struct kmalloc_info[] __initconst = {
 779        INIT_KMALLOC_INFO(0, 0),
 780        INIT_KMALLOC_INFO(96, 96),
 781        INIT_KMALLOC_INFO(192, 192),
 782        INIT_KMALLOC_INFO(8, 8),
 783        INIT_KMALLOC_INFO(16, 16),
 784        INIT_KMALLOC_INFO(32, 32),
 785        INIT_KMALLOC_INFO(64, 64),
 786        INIT_KMALLOC_INFO(128, 128),
 787        INIT_KMALLOC_INFO(256, 256),
 788        INIT_KMALLOC_INFO(512, 512),
 789        INIT_KMALLOC_INFO(1024, 1k),
 790        INIT_KMALLOC_INFO(2048, 2k),
 791        INIT_KMALLOC_INFO(4096, 4k),
 792        INIT_KMALLOC_INFO(8192, 8k),
 793        INIT_KMALLOC_INFO(16384, 16k),
 794        INIT_KMALLOC_INFO(32768, 32k),
 795        INIT_KMALLOC_INFO(65536, 64k),
 796        INIT_KMALLOC_INFO(131072, 128k),
 797        INIT_KMALLOC_INFO(262144, 256k),
 798        INIT_KMALLOC_INFO(524288, 512k),
 799        INIT_KMALLOC_INFO(1048576, 1M),
 800        INIT_KMALLOC_INFO(2097152, 2M),
 801        INIT_KMALLOC_INFO(4194304, 4M),
 802        INIT_KMALLOC_INFO(8388608, 8M),
 803        INIT_KMALLOC_INFO(16777216, 16M),
 804        INIT_KMALLOC_INFO(33554432, 32M)
 805};
 806
 807/*
 808 * Patch up the size_index table if we have strange large alignment
 809 * requirements for the kmalloc array. This is only the case for
 810 * MIPS it seems. The standard arches will not generate any code here.
 811 *
 812 * Largest permitted alignment is 256 bytes due to the way we
 813 * handle the index determination for the smaller caches.
 814 *
 815 * Make sure that nothing crazy happens if someone starts tinkering
 816 * around with ARCH_KMALLOC_MINALIGN
 817 */
 818void __init setup_kmalloc_cache_index_table(void)
 819{
 820        unsigned int i;
 821
 822        BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
 823                (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
 824
 825        for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
 826                unsigned int elem = size_index_elem(i);
 827
 828                if (elem >= ARRAY_SIZE(size_index))
 829                        break;
 830                size_index[elem] = KMALLOC_SHIFT_LOW;
 831        }
 832
 833        if (KMALLOC_MIN_SIZE >= 64) {
 834                /*
 835                 * The 96 byte size cache is not used if the alignment
 836                 * is 64 byte.
 837                 */
 838                for (i = 64 + 8; i <= 96; i += 8)
 839                        size_index[size_index_elem(i)] = 7;
 840
 841        }
 842
 843        if (KMALLOC_MIN_SIZE >= 128) {
 844                /*
 845                 * The 192 byte sized cache is not used if the alignment
 846                 * is 128 byte. Redirect kmalloc to use the 256 byte cache
 847                 * instead.
 848                 */
 849                for (i = 128 + 8; i <= 192; i += 8)
 850                        size_index[size_index_elem(i)] = 8;
 851        }
 852}
 853
 854static void __init
 855new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
 856{
 857        if (type == KMALLOC_RECLAIM) {
 858                flags |= SLAB_RECLAIM_ACCOUNT;
 859        } else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
 860                if (cgroup_memory_nokmem) {
 861                        kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
 862                        return;
 863                }
 864                flags |= SLAB_ACCOUNT;
 865        }
 866
 867        kmalloc_caches[type][idx] = create_kmalloc_cache(
 868                                        kmalloc_info[idx].name[type],
 869                                        kmalloc_info[idx].size, flags, 0,
 870                                        kmalloc_info[idx].size);
 871
 872        /*
 873         * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
 874         * KMALLOC_NORMAL caches.
 875         */
 876        if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
 877                kmalloc_caches[type][idx]->refcount = -1;
 878}
 879
 880/*
 881 * Create the kmalloc array. Some of the regular kmalloc arrays
 882 * may already have been created because they were needed to
 883 * enable allocations for slab creation.
 884 */
 885void __init create_kmalloc_caches(slab_flags_t flags)
 886{
 887        int i;
 888        enum kmalloc_cache_type type;
 889
 890        /*
 891         * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
 892         */
 893        for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
 894                for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
 895                        if (!kmalloc_caches[type][i])
 896                                new_kmalloc_cache(i, type, flags);
 897
 898                        /*
 899                         * Caches that are not of the two-to-the-power-of size.
 900                         * These have to be created immediately after the
 901                         * earlier power of two caches
 902                         */
 903                        if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
 904                                        !kmalloc_caches[type][1])
 905                                new_kmalloc_cache(1, type, flags);
 906                        if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
 907                                        !kmalloc_caches[type][2])
 908                                new_kmalloc_cache(2, type, flags);
 909                }
 910        }
 911
 912        /* Kmalloc array is now usable */
 913        slab_state = UP;
 914
 915#ifdef CONFIG_ZONE_DMA
 916        for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
 917                struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
 918
 919                if (s) {
 920                        kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
 921                                kmalloc_info[i].name[KMALLOC_DMA],
 922                                kmalloc_info[i].size,
 923                                SLAB_CACHE_DMA | flags, 0,
 924                                kmalloc_info[i].size);
 925                }
 926        }
 927#endif
 928}
 929#endif /* !CONFIG_SLOB */
 930
 931gfp_t kmalloc_fix_flags(gfp_t flags)
 932{
 933        gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
 934
 935        flags &= ~GFP_SLAB_BUG_MASK;
 936        pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
 937                        invalid_mask, &invalid_mask, flags, &flags);
 938        dump_stack();
 939
 940        return flags;
 941}
 942
 943/*
 944 * To avoid unnecessary overhead, we pass through large allocation requests
 945 * directly to the page allocator. We use __GFP_COMP, because we will need to
 946 * know the allocation order to free the pages properly in kfree.
 947 */
 948void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
 949{
 950        void *ret = NULL;
 951        struct page *page;
 952
 953        if (unlikely(flags & GFP_SLAB_BUG_MASK))
 954                flags = kmalloc_fix_flags(flags);
 955
 956        flags |= __GFP_COMP;
 957        page = alloc_pages(flags, order);
 958        if (likely(page)) {
 959                ret = page_address(page);
 960                mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
 961                                      PAGE_SIZE << order);
 962        }
 963        ret = kasan_kmalloc_large(ret, size, flags);
 964        /* As ret might get tagged, call kmemleak hook after KASAN. */
 965        kmemleak_alloc(ret, size, 1, flags);
 966        return ret;
 967}
 968EXPORT_SYMBOL(kmalloc_order);
 969
 970#ifdef CONFIG_TRACING
 971void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
 972{
 973        void *ret = kmalloc_order(size, flags, order);
 974        trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
 975        return ret;
 976}
 977EXPORT_SYMBOL(kmalloc_order_trace);
 978#endif
 979
 980#ifdef CONFIG_SLAB_FREELIST_RANDOM
 981/* Randomize a generic freelist */
 982static void freelist_randomize(struct rnd_state *state, unsigned int *list,
 983                               unsigned int count)
 984{
 985        unsigned int rand;
 986        unsigned int i;
 987
 988        for (i = 0; i < count; i++)
 989                list[i] = i;
 990
 991        /* Fisher-Yates shuffle */
 992        for (i = count - 1; i > 0; i--) {
 993                rand = prandom_u32_state(state);
 994                rand %= (i + 1);
 995                swap(list[i], list[rand]);
 996        }
 997}
 998
 999/* Create a random sequence per cache */
1000int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1001                                    gfp_t gfp)
1002{
1003        struct rnd_state state;
1004
1005        if (count < 2 || cachep->random_seq)
1006                return 0;
1007
1008        cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1009        if (!cachep->random_seq)
1010                return -ENOMEM;
1011
1012        /* Get best entropy at this stage of boot */
1013        prandom_seed_state(&state, get_random_long());
1014
1015        freelist_randomize(&state, cachep->random_seq, count);
1016        return 0;
1017}
1018
1019/* Destroy the per-cache random freelist sequence */
1020void cache_random_seq_destroy(struct kmem_cache *cachep)
1021{
1022        kfree(cachep->random_seq);
1023        cachep->random_seq = NULL;
1024}
1025#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1026
1027#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1028#ifdef CONFIG_SLAB
1029#define SLABINFO_RIGHTS (0600)
1030#else
1031#define SLABINFO_RIGHTS (0400)
1032#endif
1033
1034static void print_slabinfo_header(struct seq_file *m)
1035{
1036        /*
1037         * Output format version, so at least we can change it
1038         * without _too_ many complaints.
1039         */
1040#ifdef CONFIG_DEBUG_SLAB
1041        seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1042#else
1043        seq_puts(m, "slabinfo - version: 2.1\n");
1044#endif
1045        seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1046        seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1047        seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1048#ifdef CONFIG_DEBUG_SLAB
1049        seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1050        seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1051#endif
1052        seq_putc(m, '\n');
1053}
1054
1055void *slab_start(struct seq_file *m, loff_t *pos)
1056{
1057        mutex_lock(&slab_mutex);
1058        return seq_list_start(&slab_caches, *pos);
1059}
1060
1061void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1062{
1063        return seq_list_next(p, &slab_caches, pos);
1064}
1065
1066void slab_stop(struct seq_file *m, void *p)
1067{
1068        mutex_unlock(&slab_mutex);
1069}
1070
1071static void cache_show(struct kmem_cache *s, struct seq_file *m)
1072{
1073        struct slabinfo sinfo;
1074
1075        memset(&sinfo, 0, sizeof(sinfo));
1076        get_slabinfo(s, &sinfo);
1077
1078        seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1079                   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1080                   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1081
1082        seq_printf(m, " : tunables %4u %4u %4u",
1083                   sinfo.limit, sinfo.batchcount, sinfo.shared);
1084        seq_printf(m, " : slabdata %6lu %6lu %6lu",
1085                   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1086        slabinfo_show_stats(m, s);
1087        seq_putc(m, '\n');
1088}
1089
1090static int slab_show(struct seq_file *m, void *p)
1091{
1092        struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1093
1094        if (p == slab_caches.next)
1095                print_slabinfo_header(m);
1096        cache_show(s, m);
1097        return 0;
1098}
1099
1100void dump_unreclaimable_slab(void)
1101{
1102        struct kmem_cache *s;
1103        struct slabinfo sinfo;
1104
1105        /*
1106         * Here acquiring slab_mutex is risky since we don't prefer to get
1107         * sleep in oom path. But, without mutex hold, it may introduce a
1108         * risk of crash.
1109         * Use mutex_trylock to protect the list traverse, dump nothing
1110         * without acquiring the mutex.
1111         */
1112        if (!mutex_trylock(&slab_mutex)) {
1113                pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1114                return;
1115        }
1116
1117        pr_info("Unreclaimable slab info:\n");
1118        pr_info("Name                      Used          Total\n");
1119
1120        list_for_each_entry(s, &slab_caches, list) {
1121                if (s->flags & SLAB_RECLAIM_ACCOUNT)
1122                        continue;
1123
1124                get_slabinfo(s, &sinfo);
1125
1126                if (sinfo.num_objs > 0)
1127                        pr_info("%-17s %10luKB %10luKB\n", s->name,
1128                                (sinfo.active_objs * s->size) / 1024,
1129                                (sinfo.num_objs * s->size) / 1024);
1130        }
1131        mutex_unlock(&slab_mutex);
1132}
1133
1134#if defined(CONFIG_MEMCG_KMEM)
1135int memcg_slab_show(struct seq_file *m, void *p)
1136{
1137        /*
1138         * Deprecated.
1139         * Please, take a look at tools/cgroup/slabinfo.py .
1140         */
1141        return 0;
1142}
1143#endif
1144
1145/*
1146 * slabinfo_op - iterator that generates /proc/slabinfo
1147 *
1148 * Output layout:
1149 * cache-name
1150 * num-active-objs
1151 * total-objs
1152 * object size
1153 * num-active-slabs
1154 * total-slabs
1155 * num-pages-per-slab
1156 * + further values on SMP and with statistics enabled
1157 */
1158static const struct seq_operations slabinfo_op = {
1159        .start = slab_start,
1160        .next = slab_next,
1161        .stop = slab_stop,
1162        .show = slab_show,
1163};
1164
1165static int slabinfo_open(struct inode *inode, struct file *file)
1166{
1167        return seq_open(file, &slabinfo_op);
1168}
1169
1170static const struct proc_ops slabinfo_proc_ops = {
1171        .proc_flags     = PROC_ENTRY_PERMANENT,
1172        .proc_open      = slabinfo_open,
1173        .proc_read      = seq_read,
1174        .proc_write     = slabinfo_write,
1175        .proc_lseek     = seq_lseek,
1176        .proc_release   = seq_release,
1177};
1178
1179static int __init slab_proc_init(void)
1180{
1181        proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1182        return 0;
1183}
1184module_init(slab_proc_init);
1185
1186#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1187
1188static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1189                                           gfp_t flags)
1190{
1191        void *ret;
1192        size_t ks;
1193
1194        /* Don't use instrumented ksize to allow precise KASAN poisoning. */
1195        if (likely(!ZERO_OR_NULL_PTR(p))) {
1196                if (!kasan_check_byte(p))
1197                        return NULL;
1198                ks = kfence_ksize(p) ?: __ksize(p);
1199        } else
1200                ks = 0;
1201
1202        /* If the object still fits, repoison it precisely. */
1203        if (ks >= new_size) {
1204                p = kasan_krealloc((void *)p, new_size, flags);
1205                return (void *)p;
1206        }
1207
1208        ret = kmalloc_track_caller(new_size, flags);
1209        if (ret && p) {
1210                /* Disable KASAN checks as the object's redzone is accessed. */
1211                kasan_disable_current();
1212                memcpy(ret, kasan_reset_tag(p), ks);
1213                kasan_enable_current();
1214        }
1215
1216        return ret;
1217}
1218
1219/**
1220 * krealloc - reallocate memory. The contents will remain unchanged.
1221 * @p: object to reallocate memory for.
1222 * @new_size: how many bytes of memory are required.
1223 * @flags: the type of memory to allocate.
1224 *
1225 * The contents of the object pointed to are preserved up to the
1226 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1227 * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
1228 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1229 *
1230 * Return: pointer to the allocated memory or %NULL in case of error
1231 */
1232void *krealloc(const void *p, size_t new_size, gfp_t flags)
1233{
1234        void *ret;
1235
1236        if (unlikely(!new_size)) {
1237                kfree(p);
1238                return ZERO_SIZE_PTR;
1239        }
1240
1241        ret = __do_krealloc(p, new_size, flags);
1242        if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1243                kfree(p);
1244
1245        return ret;
1246}
1247EXPORT_SYMBOL(krealloc);
1248
1249/**
1250 * kfree_sensitive - Clear sensitive information in memory before freeing
1251 * @p: object to free memory of
1252 *
1253 * The memory of the object @p points to is zeroed before freed.
1254 * If @p is %NULL, kfree_sensitive() does nothing.
1255 *
1256 * Note: this function zeroes the whole allocated buffer which can be a good
1257 * deal bigger than the requested buffer size passed to kmalloc(). So be
1258 * careful when using this function in performance sensitive code.
1259 */
1260void kfree_sensitive(const void *p)
1261{
1262        size_t ks;
1263        void *mem = (void *)p;
1264
1265        ks = ksize(mem);
1266        if (ks)
1267                memzero_explicit(mem, ks);
1268        kfree(mem);
1269}
1270EXPORT_SYMBOL(kfree_sensitive);
1271
1272/**
1273 * ksize - get the actual amount of memory allocated for a given object
1274 * @objp: Pointer to the object
1275 *
1276 * kmalloc may internally round up allocations and return more memory
1277 * than requested. ksize() can be used to determine the actual amount of
1278 * memory allocated. The caller may use this additional memory, even though
1279 * a smaller amount of memory was initially specified with the kmalloc call.
1280 * The caller must guarantee that objp points to a valid object previously
1281 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1282 * must not be freed during the duration of the call.
1283 *
1284 * Return: size of the actual memory used by @objp in bytes
1285 */
1286size_t ksize(const void *objp)
1287{
1288        size_t size;
1289
1290        /*
1291         * We need to first check that the pointer to the object is valid, and
1292         * only then unpoison the memory. The report printed from ksize() is
1293         * more useful, then when it's printed later when the behaviour could
1294         * be undefined due to a potential use-after-free or double-free.
1295         *
1296         * We use kasan_check_byte(), which is supported for the hardware
1297         * tag-based KASAN mode, unlike kasan_check_read/write().
1298         *
1299         * If the pointed to memory is invalid, we return 0 to avoid users of
1300         * ksize() writing to and potentially corrupting the memory region.
1301         *
1302         * We want to perform the check before __ksize(), to avoid potentially
1303         * crashing in __ksize() due to accessing invalid metadata.
1304         */
1305        if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1306                return 0;
1307
1308        size = kfence_ksize(objp) ?: __ksize(objp);
1309        /*
1310         * We assume that ksize callers could use whole allocated area,
1311         * so we need to unpoison this area.
1312         */
1313        kasan_unpoison_range(objp, size);
1314        return size;
1315}
1316EXPORT_SYMBOL(ksize);
1317
1318/* Tracepoints definitions. */
1319EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1320EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1321EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1322EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1323EXPORT_TRACEPOINT_SYMBOL(kfree);
1324EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1325
1326int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1327{
1328        if (__should_failslab(s, gfpflags))
1329                return -ENOMEM;
1330        return 0;
1331}
1332ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
1333