linux/tools/testing/selftests/kvm/access_tracking_perf_test.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * access_tracking_perf_test
   4 *
   5 * Copyright (C) 2021, Google, Inc.
   6 *
   7 * This test measures the performance effects of KVM's access tracking.
   8 * Access tracking is driven by the MMU notifiers test_young, clear_young, and
   9 * clear_flush_young. These notifiers do not have a direct userspace API,
  10 * however the clear_young notifier can be triggered by marking a pages as idle
  11 * in /sys/kernel/mm/page_idle/bitmap. This test leverages that mechanism to
  12 * enable access tracking on guest memory.
  13 *
  14 * To measure performance this test runs a VM with a configurable number of
  15 * vCPUs that each touch every page in disjoint regions of memory. Performance
  16 * is measured in the time it takes all vCPUs to finish touching their
  17 * predefined region.
  18 *
  19 * Note that a deterministic correctness test of access tracking is not possible
  20 * by using page_idle as it exists today. This is for a few reasons:
  21 *
  22 * 1. page_idle only issues clear_young notifiers, which lack a TLB flush. This
  23 *    means subsequent guest accesses are not guaranteed to see page table
  24 *    updates made by KVM until some time in the future.
  25 *
  26 * 2. page_idle only operates on LRU pages. Newly allocated pages are not
  27 *    immediately allocated to LRU lists. Instead they are held in a "pagevec",
  28 *    which is drained to LRU lists some time in the future. There is no
  29 *    userspace API to force this drain to occur.
  30 *
  31 * These limitations are worked around in this test by using a large enough
  32 * region of memory for each vCPU such that the number of translations cached in
  33 * the TLB and the number of pages held in pagevecs are a small fraction of the
  34 * overall workload. And if either of those conditions are not true this test
  35 * will fail rather than silently passing.
  36 */
  37#include <inttypes.h>
  38#include <limits.h>
  39#include <pthread.h>
  40#include <sys/mman.h>
  41#include <sys/types.h>
  42#include <sys/stat.h>
  43
  44#include "kvm_util.h"
  45#include "test_util.h"
  46#include "perf_test_util.h"
  47#include "guest_modes.h"
  48
  49/* Global variable used to synchronize all of the vCPU threads. */
  50static int iteration = -1;
  51
  52/* Defines what vCPU threads should do during a given iteration. */
  53static enum {
  54        /* Run the vCPU to access all its memory. */
  55        ITERATION_ACCESS_MEMORY,
  56        /* Mark the vCPU's memory idle in page_idle. */
  57        ITERATION_MARK_IDLE,
  58} iteration_work;
  59
  60/* Set to true when vCPU threads should exit. */
  61static bool done;
  62
  63/* The iteration that was last completed by each vCPU. */
  64static int vcpu_last_completed_iteration[KVM_MAX_VCPUS];
  65
  66/* Whether to overlap the regions of memory vCPUs access. */
  67static bool overlap_memory_access;
  68
  69struct test_params {
  70        /* The backing source for the region of memory. */
  71        enum vm_mem_backing_src_type backing_src;
  72
  73        /* The amount of memory to allocate for each vCPU. */
  74        uint64_t vcpu_memory_bytes;
  75
  76        /* The number of vCPUs to create in the VM. */
  77        int vcpus;
  78};
  79
  80static uint64_t pread_uint64(int fd, const char *filename, uint64_t index)
  81{
  82        uint64_t value;
  83        off_t offset = index * sizeof(value);
  84
  85        TEST_ASSERT(pread(fd, &value, sizeof(value), offset) == sizeof(value),
  86                    "pread from %s offset 0x%" PRIx64 " failed!",
  87                    filename, offset);
  88
  89        return value;
  90
  91}
  92
  93#define PAGEMAP_PRESENT (1ULL << 63)
  94#define PAGEMAP_PFN_MASK ((1ULL << 55) - 1)
  95
  96static uint64_t lookup_pfn(int pagemap_fd, struct kvm_vm *vm, uint64_t gva)
  97{
  98        uint64_t hva = (uint64_t) addr_gva2hva(vm, gva);
  99        uint64_t entry;
 100        uint64_t pfn;
 101
 102        entry = pread_uint64(pagemap_fd, "pagemap", hva / getpagesize());
 103        if (!(entry & PAGEMAP_PRESENT))
 104                return 0;
 105
 106        pfn = entry & PAGEMAP_PFN_MASK;
 107        if (!pfn) {
 108                print_skip("Looking up PFNs requires CAP_SYS_ADMIN");
 109                exit(KSFT_SKIP);
 110        }
 111
 112        return pfn;
 113}
 114
 115static bool is_page_idle(int page_idle_fd, uint64_t pfn)
 116{
 117        uint64_t bits = pread_uint64(page_idle_fd, "page_idle", pfn / 64);
 118
 119        return !!((bits >> (pfn % 64)) & 1);
 120}
 121
 122static void mark_page_idle(int page_idle_fd, uint64_t pfn)
 123{
 124        uint64_t bits = 1ULL << (pfn % 64);
 125
 126        TEST_ASSERT(pwrite(page_idle_fd, &bits, 8, 8 * (pfn / 64)) == 8,
 127                    "Set page_idle bits for PFN 0x%" PRIx64, pfn);
 128}
 129
 130static void mark_vcpu_memory_idle(struct kvm_vm *vm, int vcpu_id)
 131{
 132        uint64_t base_gva = perf_test_args.vcpu_args[vcpu_id].gva;
 133        uint64_t pages = perf_test_args.vcpu_args[vcpu_id].pages;
 134        uint64_t page;
 135        uint64_t still_idle = 0;
 136        uint64_t no_pfn = 0;
 137        int page_idle_fd;
 138        int pagemap_fd;
 139
 140        /* If vCPUs are using an overlapping region, let vCPU 0 mark it idle. */
 141        if (overlap_memory_access && vcpu_id)
 142                return;
 143
 144        page_idle_fd = open("/sys/kernel/mm/page_idle/bitmap", O_RDWR);
 145        TEST_ASSERT(page_idle_fd > 0, "Failed to open page_idle.");
 146
 147        pagemap_fd = open("/proc/self/pagemap", O_RDONLY);
 148        TEST_ASSERT(pagemap_fd > 0, "Failed to open pagemap.");
 149
 150        for (page = 0; page < pages; page++) {
 151                uint64_t gva = base_gva + page * perf_test_args.guest_page_size;
 152                uint64_t pfn = lookup_pfn(pagemap_fd, vm, gva);
 153
 154                if (!pfn) {
 155                        no_pfn++;
 156                        continue;
 157                }
 158
 159                if (is_page_idle(page_idle_fd, pfn)) {
 160                        still_idle++;
 161                        continue;
 162                }
 163
 164                mark_page_idle(page_idle_fd, pfn);
 165        }
 166
 167        /*
 168         * Assumption: Less than 1% of pages are going to be swapped out from
 169         * under us during this test.
 170         */
 171        TEST_ASSERT(no_pfn < pages / 100,
 172                    "vCPU %d: No PFN for %" PRIu64 " out of %" PRIu64 " pages.",
 173                    vcpu_id, no_pfn, pages);
 174
 175        /*
 176         * Test that at least 90% of memory has been marked idle (the rest might
 177         * not be marked idle because the pages have not yet made it to an LRU
 178         * list or the translations are still cached in the TLB). 90% is
 179         * arbitrary; high enough that we ensure most memory access went through
 180         * access tracking but low enough as to not make the test too brittle
 181         * over time and across architectures.
 182         */
 183        TEST_ASSERT(still_idle < pages / 10,
 184                    "vCPU%d: Too many pages still idle (%"PRIu64 " out of %"
 185                    PRIu64 ").\n",
 186                    vcpu_id, still_idle, pages);
 187
 188        close(page_idle_fd);
 189        close(pagemap_fd);
 190}
 191
 192static void assert_ucall(struct kvm_vm *vm, uint32_t vcpu_id,
 193                         uint64_t expected_ucall)
 194{
 195        struct ucall uc;
 196        uint64_t actual_ucall = get_ucall(vm, vcpu_id, &uc);
 197
 198        TEST_ASSERT(expected_ucall == actual_ucall,
 199                    "Guest exited unexpectedly (expected ucall %" PRIu64
 200                    ", got %" PRIu64 ")",
 201                    expected_ucall, actual_ucall);
 202}
 203
 204static bool spin_wait_for_next_iteration(int *current_iteration)
 205{
 206        int last_iteration = *current_iteration;
 207
 208        do {
 209                if (READ_ONCE(done))
 210                        return false;
 211
 212                *current_iteration = READ_ONCE(iteration);
 213        } while (last_iteration == *current_iteration);
 214
 215        return true;
 216}
 217
 218static void *vcpu_thread_main(void *arg)
 219{
 220        struct perf_test_vcpu_args *vcpu_args = arg;
 221        struct kvm_vm *vm = perf_test_args.vm;
 222        int vcpu_id = vcpu_args->vcpu_id;
 223        int current_iteration = -1;
 224
 225        while (spin_wait_for_next_iteration(&current_iteration)) {
 226                switch (READ_ONCE(iteration_work)) {
 227                case ITERATION_ACCESS_MEMORY:
 228                        vcpu_run(vm, vcpu_id);
 229                        assert_ucall(vm, vcpu_id, UCALL_SYNC);
 230                        break;
 231                case ITERATION_MARK_IDLE:
 232                        mark_vcpu_memory_idle(vm, vcpu_id);
 233                        break;
 234                };
 235
 236                vcpu_last_completed_iteration[vcpu_id] = current_iteration;
 237        }
 238
 239        return NULL;
 240}
 241
 242static void spin_wait_for_vcpu(int vcpu_id, int target_iteration)
 243{
 244        while (READ_ONCE(vcpu_last_completed_iteration[vcpu_id]) !=
 245               target_iteration) {
 246                continue;
 247        }
 248}
 249
 250/* The type of memory accesses to perform in the VM. */
 251enum access_type {
 252        ACCESS_READ,
 253        ACCESS_WRITE,
 254};
 255
 256static void run_iteration(struct kvm_vm *vm, int vcpus, const char *description)
 257{
 258        struct timespec ts_start;
 259        struct timespec ts_elapsed;
 260        int next_iteration;
 261        int vcpu_id;
 262
 263        /* Kick off the vCPUs by incrementing iteration. */
 264        next_iteration = ++iteration;
 265
 266        clock_gettime(CLOCK_MONOTONIC, &ts_start);
 267
 268        /* Wait for all vCPUs to finish the iteration. */
 269        for (vcpu_id = 0; vcpu_id < vcpus; vcpu_id++)
 270                spin_wait_for_vcpu(vcpu_id, next_iteration);
 271
 272        ts_elapsed = timespec_elapsed(ts_start);
 273        pr_info("%-30s: %ld.%09lds\n",
 274                description, ts_elapsed.tv_sec, ts_elapsed.tv_nsec);
 275}
 276
 277static void access_memory(struct kvm_vm *vm, int vcpus, enum access_type access,
 278                          const char *description)
 279{
 280        perf_test_args.wr_fract = (access == ACCESS_READ) ? INT_MAX : 1;
 281        sync_global_to_guest(vm, perf_test_args);
 282        iteration_work = ITERATION_ACCESS_MEMORY;
 283        run_iteration(vm, vcpus, description);
 284}
 285
 286static void mark_memory_idle(struct kvm_vm *vm, int vcpus)
 287{
 288        /*
 289         * Even though this parallelizes the work across vCPUs, this is still a
 290         * very slow operation because page_idle forces the test to mark one pfn
 291         * at a time and the clear_young notifier serializes on the KVM MMU
 292         * lock.
 293         */
 294        pr_debug("Marking VM memory idle (slow)...\n");
 295        iteration_work = ITERATION_MARK_IDLE;
 296        run_iteration(vm, vcpus, "Mark memory idle");
 297}
 298
 299static pthread_t *create_vcpu_threads(int vcpus)
 300{
 301        pthread_t *vcpu_threads;
 302        int i;
 303
 304        vcpu_threads = malloc(vcpus * sizeof(vcpu_threads[0]));
 305        TEST_ASSERT(vcpu_threads, "Failed to allocate vcpu_threads.");
 306
 307        for (i = 0; i < vcpus; i++) {
 308                vcpu_last_completed_iteration[i] = iteration;
 309                pthread_create(&vcpu_threads[i], NULL, vcpu_thread_main,
 310                               &perf_test_args.vcpu_args[i]);
 311        }
 312
 313        return vcpu_threads;
 314}
 315
 316static void terminate_vcpu_threads(pthread_t *vcpu_threads, int vcpus)
 317{
 318        int i;
 319
 320        /* Set done to signal the vCPU threads to exit */
 321        done = true;
 322
 323        for (i = 0; i < vcpus; i++)
 324                pthread_join(vcpu_threads[i], NULL);
 325}
 326
 327static void run_test(enum vm_guest_mode mode, void *arg)
 328{
 329        struct test_params *params = arg;
 330        struct kvm_vm *vm;
 331        pthread_t *vcpu_threads;
 332        int vcpus = params->vcpus;
 333
 334        vm = perf_test_create_vm(mode, vcpus, params->vcpu_memory_bytes, 1,
 335                                 params->backing_src);
 336
 337        perf_test_setup_vcpus(vm, vcpus, params->vcpu_memory_bytes,
 338                              !overlap_memory_access);
 339
 340        vcpu_threads = create_vcpu_threads(vcpus);
 341
 342        pr_info("\n");
 343        access_memory(vm, vcpus, ACCESS_WRITE, "Populating memory");
 344
 345        /* As a control, read and write to the populated memory first. */
 346        access_memory(vm, vcpus, ACCESS_WRITE, "Writing to populated memory");
 347        access_memory(vm, vcpus, ACCESS_READ, "Reading from populated memory");
 348
 349        /* Repeat on memory that has been marked as idle. */
 350        mark_memory_idle(vm, vcpus);
 351        access_memory(vm, vcpus, ACCESS_WRITE, "Writing to idle memory");
 352        mark_memory_idle(vm, vcpus);
 353        access_memory(vm, vcpus, ACCESS_READ, "Reading from idle memory");
 354
 355        terminate_vcpu_threads(vcpu_threads, vcpus);
 356        free(vcpu_threads);
 357        perf_test_destroy_vm(vm);
 358}
 359
 360static void help(char *name)
 361{
 362        puts("");
 363        printf("usage: %s [-h] [-m mode] [-b vcpu_bytes] [-v vcpus] [-o]  [-s mem_type]\n",
 364               name);
 365        puts("");
 366        printf(" -h: Display this help message.");
 367        guest_modes_help();
 368        printf(" -b: specify the size of the memory region which should be\n"
 369               "     dirtied by each vCPU. e.g. 10M or 3G.\n"
 370               "     (default: 1G)\n");
 371        printf(" -v: specify the number of vCPUs to run.\n");
 372        printf(" -o: Overlap guest memory accesses instead of partitioning\n"
 373               "     them into a separate region of memory for each vCPU.\n");
 374        backing_src_help("-s");
 375        puts("");
 376        exit(0);
 377}
 378
 379int main(int argc, char *argv[])
 380{
 381        struct test_params params = {
 382                .backing_src = DEFAULT_VM_MEM_SRC,
 383                .vcpu_memory_bytes = DEFAULT_PER_VCPU_MEM_SIZE,
 384                .vcpus = 1,
 385        };
 386        int page_idle_fd;
 387        int opt;
 388
 389        guest_modes_append_default();
 390
 391        while ((opt = getopt(argc, argv, "hm:b:v:os:")) != -1) {
 392                switch (opt) {
 393                case 'm':
 394                        guest_modes_cmdline(optarg);
 395                        break;
 396                case 'b':
 397                        params.vcpu_memory_bytes = parse_size(optarg);
 398                        break;
 399                case 'v':
 400                        params.vcpus = atoi(optarg);
 401                        break;
 402                case 'o':
 403                        overlap_memory_access = true;
 404                        break;
 405                case 's':
 406                        params.backing_src = parse_backing_src_type(optarg);
 407                        break;
 408                case 'h':
 409                default:
 410                        help(argv[0]);
 411                        break;
 412                }
 413        }
 414
 415        page_idle_fd = open("/sys/kernel/mm/page_idle/bitmap", O_RDWR);
 416        if (page_idle_fd < 0) {
 417                print_skip("CONFIG_IDLE_PAGE_TRACKING is not enabled");
 418                exit(KSFT_SKIP);
 419        }
 420        close(page_idle_fd);
 421
 422        for_each_guest_mode(run_test, &params);
 423
 424        return 0;
 425}
 426