linux/Documentation/x86/exception-tables.rst
<<
>>
Prefs
   1.. SPDX-License-Identifier: GPL-2.0
   2
   3===============================
   4Kernel level exception handling
   5===============================
   6
   7Commentary by Joerg Pommnitz <joerg@raleigh.ibm.com>
   8
   9When a process runs in kernel mode, it often has to access user
  10mode memory whose address has been passed by an untrusted program.
  11To protect itself the kernel has to verify this address.
  12
  13In older versions of Linux this was done with the
  14int verify_area(int type, const void * addr, unsigned long size)
  15function (which has since been replaced by access_ok()).
  16
  17This function verified that the memory area starting at address
  18'addr' and of size 'size' was accessible for the operation specified
  19in type (read or write). To do this, verify_read had to look up the
  20virtual memory area (vma) that contained the address addr. In the
  21normal case (correctly working program), this test was successful.
  22It only failed for a few buggy programs. In some kernel profiling
  23tests, this normally unneeded verification used up a considerable
  24amount of time.
  25
  26To overcome this situation, Linus decided to let the virtual memory
  27hardware present in every Linux-capable CPU handle this test.
  28
  29How does this work?
  30
  31Whenever the kernel tries to access an address that is currently not
  32accessible, the CPU generates a page fault exception and calls the
  33page fault handler::
  34
  35  void do_page_fault(struct pt_regs *regs, unsigned long error_code)
  36
  37in arch/x86/mm/fault.c. The parameters on the stack are set up by
  38the low level assembly glue in arch/x86/entry/entry_32.S. The parameter
  39regs is a pointer to the saved registers on the stack, error_code
  40contains a reason code for the exception.
  41
  42do_page_fault first obtains the unaccessible address from the CPU
  43control register CR2. If the address is within the virtual address
  44space of the process, the fault probably occurred, because the page
  45was not swapped in, write protected or something similar. However,
  46we are interested in the other case: the address is not valid, there
  47is no vma that contains this address. In this case, the kernel jumps
  48to the bad_area label.
  49
  50There it uses the address of the instruction that caused the exception
  51(i.e. regs->eip) to find an address where the execution can continue
  52(fixup). If this search is successful, the fault handler modifies the
  53return address (again regs->eip) and returns. The execution will
  54continue at the address in fixup.
  55
  56Where does fixup point to?
  57
  58Since we jump to the contents of fixup, fixup obviously points
  59to executable code. This code is hidden inside the user access macros.
  60I have picked the get_user macro defined in arch/x86/include/asm/uaccess.h
  61as an example. The definition is somewhat hard to follow, so let's peek at
  62the code generated by the preprocessor and the compiler. I selected
  63the get_user call in drivers/char/sysrq.c for a detailed examination.
  64
  65The original code in sysrq.c line 587::
  66
  67        get_user(c, buf);
  68
  69The preprocessor output (edited to become somewhat readable)::
  70
  71  (
  72    {
  73      long __gu_err = - 14 , __gu_val = 0;
  74      const __typeof__(*( (  buf ) )) *__gu_addr = ((buf));
  75      if (((((0 + current_set[0])->tss.segment) == 0x18 )  ||
  76        (((sizeof(*(buf))) <= 0xC0000000UL) &&
  77        ((unsigned long)(__gu_addr ) <= 0xC0000000UL - (sizeof(*(buf)))))))
  78        do {
  79          __gu_err  = 0;
  80          switch ((sizeof(*(buf)))) {
  81            case 1:
  82              __asm__ __volatile__(
  83                "1:      mov" "b" " %2,%" "b" "1\n"
  84                "2:\n"
  85                ".section .fixup,\"ax\"\n"
  86                "3:      movl %3,%0\n"
  87                "        xor" "b" " %" "b" "1,%" "b" "1\n"
  88                "        jmp 2b\n"
  89                ".section __ex_table,\"a\"\n"
  90                "        .align 4\n"
  91                "        .long 1b,3b\n"
  92                ".text"        : "=r"(__gu_err), "=q" (__gu_val): "m"((*(struct __large_struct *)
  93                              (   __gu_addr   )) ), "i"(- 14 ), "0"(  __gu_err  )) ;
  94                break;
  95            case 2:
  96              __asm__ __volatile__(
  97                "1:      mov" "w" " %2,%" "w" "1\n"
  98                "2:\n"
  99                ".section .fixup,\"ax\"\n"
 100                "3:      movl %3,%0\n"
 101                "        xor" "w" " %" "w" "1,%" "w" "1\n"
 102                "        jmp 2b\n"
 103                ".section __ex_table,\"a\"\n"
 104                "        .align 4\n"
 105                "        .long 1b,3b\n"
 106                ".text"        : "=r"(__gu_err), "=r" (__gu_val) : "m"((*(struct __large_struct *)
 107                              (   __gu_addr   )) ), "i"(- 14 ), "0"(  __gu_err  ));
 108                break;
 109            case 4:
 110              __asm__ __volatile__(
 111                "1:      mov" "l" " %2,%" "" "1\n"
 112                "2:\n"
 113                ".section .fixup,\"ax\"\n"
 114                "3:      movl %3,%0\n"
 115                "        xor" "l" " %" "" "1,%" "" "1\n"
 116                "        jmp 2b\n"
 117                ".section __ex_table,\"a\"\n"
 118                "        .align 4\n"        "        .long 1b,3b\n"
 119                ".text"        : "=r"(__gu_err), "=r" (__gu_val) : "m"((*(struct __large_struct *)
 120                              (   __gu_addr   )) ), "i"(- 14 ), "0"(__gu_err));
 121                break;
 122            default:
 123              (__gu_val) = __get_user_bad();
 124          }
 125        } while (0) ;
 126      ((c)) = (__typeof__(*((buf))))__gu_val;
 127      __gu_err;
 128    }
 129  );
 130
 131WOW! Black GCC/assembly magic. This is impossible to follow, so let's
 132see what code gcc generates::
 133
 134 >         xorl %edx,%edx
 135 >         movl current_set,%eax
 136 >         cmpl $24,788(%eax)
 137 >         je .L1424
 138 >         cmpl $-1073741825,64(%esp)
 139 >         ja .L1423
 140 > .L1424:
 141 >         movl %edx,%eax
 142 >         movl 64(%esp),%ebx
 143 > #APP
 144 > 1:      movb (%ebx),%dl                /* this is the actual user access */
 145 > 2:
 146 > .section .fixup,"ax"
 147 > 3:      movl $-14,%eax
 148 >         xorb %dl,%dl
 149 >         jmp 2b
 150 > .section __ex_table,"a"
 151 >         .align 4
 152 >         .long 1b,3b
 153 > .text
 154 > #NO_APP
 155 > .L1423:
 156 >         movzbl %dl,%esi
 157
 158The optimizer does a good job and gives us something we can actually
 159understand. Can we? The actual user access is quite obvious. Thanks
 160to the unified address space we can just access the address in user
 161memory. But what does the .section stuff do?????
 162
 163To understand this we have to look at the final kernel::
 164
 165 > objdump --section-headers vmlinux
 166 >
 167 > vmlinux:     file format elf32-i386
 168 >
 169 > Sections:
 170 > Idx Name          Size      VMA       LMA       File off  Algn
 171 >   0 .text         00098f40  c0100000  c0100000  00001000  2**4
 172 >                   CONTENTS, ALLOC, LOAD, READONLY, CODE
 173 >   1 .fixup        000016bc  c0198f40  c0198f40  00099f40  2**0
 174 >                   CONTENTS, ALLOC, LOAD, READONLY, CODE
 175 >   2 .rodata       0000f127  c019a5fc  c019a5fc  0009b5fc  2**2
 176 >                   CONTENTS, ALLOC, LOAD, READONLY, DATA
 177 >   3 __ex_table    000015c0  c01a9724  c01a9724  000aa724  2**2
 178 >                   CONTENTS, ALLOC, LOAD, READONLY, DATA
 179 >   4 .data         0000ea58  c01abcf0  c01abcf0  000abcf0  2**4
 180 >                   CONTENTS, ALLOC, LOAD, DATA
 181 >   5 .bss          00018e21  c01ba748  c01ba748  000ba748  2**2
 182 >                   ALLOC
 183 >   6 .comment      00000ec4  00000000  00000000  000ba748  2**0
 184 >                   CONTENTS, READONLY
 185 >   7 .note         00001068  00000ec4  00000ec4  000bb60c  2**0
 186 >                   CONTENTS, READONLY
 187
 188There are obviously 2 non standard ELF sections in the generated object
 189file. But first we want to find out what happened to our code in the
 190final kernel executable::
 191
 192 > objdump --disassemble --section=.text vmlinux
 193 >
 194 > c017e785 <do_con_write+c1> xorl   %edx,%edx
 195 > c017e787 <do_con_write+c3> movl   0xc01c7bec,%eax
 196 > c017e78c <do_con_write+c8> cmpl   $0x18,0x314(%eax)
 197 > c017e793 <do_con_write+cf> je     c017e79f <do_con_write+db>
 198 > c017e795 <do_con_write+d1> cmpl   $0xbfffffff,0x40(%esp,1)
 199 > c017e79d <do_con_write+d9> ja     c017e7a7 <do_con_write+e3>
 200 > c017e79f <do_con_write+db> movl   %edx,%eax
 201 > c017e7a1 <do_con_write+dd> movl   0x40(%esp,1),%ebx
 202 > c017e7a5 <do_con_write+e1> movb   (%ebx),%dl
 203 > c017e7a7 <do_con_write+e3> movzbl %dl,%esi
 204
 205The whole user memory access is reduced to 10 x86 machine instructions.
 206The instructions bracketed in the .section directives are no longer
 207in the normal execution path. They are located in a different section
 208of the executable file::
 209
 210 > objdump --disassemble --section=.fixup vmlinux
 211 >
 212 > c0199ff5 <.fixup+10b5> movl   $0xfffffff2,%eax
 213 > c0199ffa <.fixup+10ba> xorb   %dl,%dl
 214 > c0199ffc <.fixup+10bc> jmp    c017e7a7 <do_con_write+e3>
 215
 216And finally::
 217
 218 > objdump --full-contents --section=__ex_table vmlinux
 219 >
 220 >  c01aa7c4 93c017c0 e09f19c0 97c017c0 99c017c0  ................
 221 >  c01aa7d4 f6c217c0 e99f19c0 a5e717c0 f59f19c0  ................
 222 >  c01aa7e4 080a18c0 01a019c0 0a0a18c0 04a019c0  ................
 223
 224or in human readable byte order::
 225
 226 >  c01aa7c4 c017c093 c0199fe0 c017c097 c017c099  ................
 227 >  c01aa7d4 c017c2f6 c0199fe9 c017e7a5 c0199ff5  ................
 228                               ^^^^^^^^^^^^^^^^^
 229                               this is the interesting part!
 230 >  c01aa7e4 c0180a08 c019a001 c0180a0a c019a004  ................
 231
 232What happened? The assembly directives::
 233
 234  .section .fixup,"ax"
 235  .section __ex_table,"a"
 236
 237told the assembler to move the following code to the specified
 238sections in the ELF object file. So the instructions::
 239
 240  3:      movl $-14,%eax
 241          xorb %dl,%dl
 242          jmp 2b
 243
 244ended up in the .fixup section of the object file and the addresses::
 245
 246        .long 1b,3b
 247
 248ended up in the __ex_table section of the object file. 1b and 3b
 249are local labels. The local label 1b (1b stands for next label 1
 250backward) is the address of the instruction that might fault, i.e.
 251in our case the address of the label 1 is c017e7a5:
 252the original assembly code: > 1:      movb (%ebx),%dl
 253and linked in vmlinux     : > c017e7a5 <do_con_write+e1> movb   (%ebx),%dl
 254
 255The local label 3 (backwards again) is the address of the code to handle
 256the fault, in our case the actual value is c0199ff5:
 257the original assembly code: > 3:      movl $-14,%eax
 258and linked in vmlinux     : > c0199ff5 <.fixup+10b5> movl   $0xfffffff2,%eax
 259
 260If the fixup was able to handle the exception, control flow may be returned
 261to the instruction after the one that triggered the fault, ie. local label 2b.
 262
 263The assembly code::
 264
 265 > .section __ex_table,"a"
 266 >         .align 4
 267 >         .long 1b,3b
 268
 269becomes the value pair::
 270
 271 >  c01aa7d4 c017c2f6 c0199fe9 c017e7a5 c0199ff5  ................
 272                               ^this is ^this is
 273                               1b       3b
 274
 275c017e7a5,c0199ff5 in the exception table of the kernel.
 276
 277So, what actually happens if a fault from kernel mode with no suitable
 278vma occurs?
 279
 280#. access to invalid address::
 281
 282    > c017e7a5 <do_con_write+e1> movb   (%ebx),%dl
 283#. MMU generates exception
 284#. CPU calls do_page_fault
 285#. do page fault calls search_exception_table (regs->eip == c017e7a5);
 286#. search_exception_table looks up the address c017e7a5 in the
 287   exception table (i.e. the contents of the ELF section __ex_table)
 288   and returns the address of the associated fault handle code c0199ff5.
 289#. do_page_fault modifies its own return address to point to the fault
 290   handle code and returns.
 291#. execution continues in the fault handling code.
 292#. a) EAX becomes -EFAULT (== -14)
 293   b) DL  becomes zero (the value we "read" from user space)
 294   c) execution continues at local label 2 (address of the
 295      instruction immediately after the faulting user access).
 296
 297The steps 8a to 8c in a certain way emulate the faulting instruction.
 298
 299That's it, mostly. If you look at our example, you might ask why
 300we set EAX to -EFAULT in the exception handler code. Well, the
 301get_user macro actually returns a value: 0, if the user access was
 302successful, -EFAULT on failure. Our original code did not test this
 303return value, however the inline assembly code in get_user tries to
 304return -EFAULT. GCC selected EAX to return this value.
 305
 306NOTE:
 307Due to the way that the exception table is built and needs to be ordered,
 308only use exceptions for code in the .text section.  Any other section
 309will cause the exception table to not be sorted correctly, and the
 310exceptions will fail.
 311
 312Things changed when 64-bit support was added to x86 Linux. Rather than
 313double the size of the exception table by expanding the two entries
 314from 32-bits to 64 bits, a clever trick was used to store addresses
 315as relative offsets from the table itself. The assembly code changed
 316from::
 317
 318    .long 1b,3b
 319  to:
 320          .long (from) - .
 321          .long (to) - .
 322
 323and the C-code that uses these values converts back to absolute addresses
 324like this::
 325
 326        ex_insn_addr(const struct exception_table_entry *x)
 327        {
 328                return (unsigned long)&x->insn + x->insn;
 329        }
 330
 331In v4.6 the exception table entry was expanded with a new field "handler".
 332This is also 32-bits wide and contains a third relative function
 333pointer which points to one of:
 334
 3351) ``int ex_handler_default(const struct exception_table_entry *fixup)``
 336     This is legacy case that just jumps to the fixup code
 337
 3382) ``int ex_handler_fault(const struct exception_table_entry *fixup)``
 339     This case provides the fault number of the trap that occurred at
 340     entry->insn. It is used to distinguish page faults from machine
 341     check.
 342
 343More functions can easily be added.
 344
 345CONFIG_BUILDTIME_TABLE_SORT allows the __ex_table section to be sorted post
 346link of the kernel image, via a host utility scripts/sorttable. It will set the
 347symbol main_extable_sort_needed to 0, avoiding sorting the __ex_table section
 348at boot time. With the exception table sorted, at runtime when an exception
 349occurs we can quickly lookup the __ex_table entry via binary search.
 350
 351This is not just a boot time optimization, some architectures require this
 352table to be sorted in order to handle exceptions relatively early in the boot
 353process. For example, i386 makes use of this form of exception handling before
 354paging support is even enabled!
 355