linux/arch/arc/mm/tlb.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * TLB Management (flush/create/diagnostics) for MMUv3 and MMUv4
   4 *
   5 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
   6 *
   7 */
   8
   9#include <linux/module.h>
  10#include <linux/bug.h>
  11#include <linux/mm_types.h>
  12
  13#include <asm/arcregs.h>
  14#include <asm/setup.h>
  15#include <asm/mmu_context.h>
  16#include <asm/mmu.h>
  17
  18/* A copy of the ASID from the PID reg is kept in asid_cache */
  19DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE;
  20
  21static int __read_mostly pae_exists;
  22
  23/*
  24 * Utility Routine to erase a J-TLB entry
  25 * Caller needs to setup Index Reg (manually or via getIndex)
  26 */
  27static inline void __tlb_entry_erase(void)
  28{
  29        write_aux_reg(ARC_REG_TLBPD1, 0);
  30
  31        if (is_pae40_enabled())
  32                write_aux_reg(ARC_REG_TLBPD1HI, 0);
  33
  34        write_aux_reg(ARC_REG_TLBPD0, 0);
  35        write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
  36}
  37
  38static void utlb_invalidate(void)
  39{
  40        write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
  41}
  42
  43#ifdef CONFIG_ARC_MMU_V3
  44
  45static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid)
  46{
  47        unsigned int idx;
  48
  49        write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
  50
  51        write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
  52        idx = read_aux_reg(ARC_REG_TLBINDEX);
  53
  54        return idx;
  55}
  56
  57static void tlb_entry_erase(unsigned int vaddr_n_asid)
  58{
  59        unsigned int idx;
  60
  61        /* Locate the TLB entry for this vaddr + ASID */
  62        idx = tlb_entry_lkup(vaddr_n_asid);
  63
  64        /* No error means entry found, zero it out */
  65        if (likely(!(idx & TLB_LKUP_ERR))) {
  66                __tlb_entry_erase();
  67        } else {
  68                /* Duplicate entry error */
  69                WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n",
  70                                           vaddr_n_asid);
  71        }
  72}
  73
  74static void tlb_entry_insert(unsigned int pd0, phys_addr_t pd1)
  75{
  76        unsigned int idx;
  77
  78        /*
  79         * First verify if entry for this vaddr+ASID already exists
  80         * This also sets up PD0 (vaddr, ASID..) for final commit
  81         */
  82        idx = tlb_entry_lkup(pd0);
  83
  84        /*
  85         * If Not already present get a free slot from MMU.
  86         * Otherwise, Probe would have located the entry and set INDEX Reg
  87         * with existing location. This will cause Write CMD to over-write
  88         * existing entry with new PD0 and PD1
  89         */
  90        if (likely(idx & TLB_LKUP_ERR))
  91                write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
  92
  93        /* setup the other half of TLB entry (pfn, rwx..) */
  94        write_aux_reg(ARC_REG_TLBPD1, pd1);
  95
  96        /*
  97         * Commit the Entry to MMU
  98         * It doesn't sound safe to use the TLBWriteNI cmd here
  99         * which doesn't flush uTLBs. I'd rather be safe than sorry.
 100         */
 101        write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
 102}
 103
 104#else   /* MMUv4 */
 105
 106static void tlb_entry_erase(unsigned int vaddr_n_asid)
 107{
 108        write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT);
 109        write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry);
 110}
 111
 112static void tlb_entry_insert(unsigned int pd0, phys_addr_t pd1)
 113{
 114        write_aux_reg(ARC_REG_TLBPD0, pd0);
 115
 116        if (!is_pae40_enabled()) {
 117                write_aux_reg(ARC_REG_TLBPD1, pd1);
 118        } else {
 119                write_aux_reg(ARC_REG_TLBPD1, pd1 & 0xFFFFFFFF);
 120                write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32);
 121        }
 122
 123        write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry);
 124}
 125
 126#endif
 127
 128/*
 129 * Un-conditionally (without lookup) erase the entire MMU contents
 130 */
 131
 132noinline void local_flush_tlb_all(void)
 133{
 134        struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
 135        unsigned long flags;
 136        unsigned int entry;
 137        int num_tlb = mmu->sets * mmu->ways;
 138
 139        local_irq_save(flags);
 140
 141        /* Load PD0 and PD1 with template for a Blank Entry */
 142        write_aux_reg(ARC_REG_TLBPD1, 0);
 143
 144        if (is_pae40_enabled())
 145                write_aux_reg(ARC_REG_TLBPD1HI, 0);
 146
 147        write_aux_reg(ARC_REG_TLBPD0, 0);
 148
 149        for (entry = 0; entry < num_tlb; entry++) {
 150                /* write this entry to the TLB */
 151                write_aux_reg(ARC_REG_TLBINDEX, entry);
 152                write_aux_reg(ARC_REG_TLBCOMMAND, TLBWriteNI);
 153        }
 154
 155        if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
 156                const int stlb_idx = 0x800;
 157
 158                /* Blank sTLB entry */
 159                write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ);
 160
 161                for (entry = stlb_idx; entry < stlb_idx + 16; entry++) {
 162                        write_aux_reg(ARC_REG_TLBINDEX, entry);
 163                        write_aux_reg(ARC_REG_TLBCOMMAND, TLBWriteNI);
 164                }
 165        }
 166
 167        utlb_invalidate();
 168
 169        local_irq_restore(flags);
 170}
 171
 172/*
 173 * Flush the entire MM for userland. The fastest way is to move to Next ASID
 174 */
 175noinline void local_flush_tlb_mm(struct mm_struct *mm)
 176{
 177        /*
 178         * Small optimisation courtesy IA64
 179         * flush_mm called during fork,exit,munmap etc, multiple times as well.
 180         * Only for fork( ) do we need to move parent to a new MMU ctxt,
 181         * all other cases are NOPs, hence this check.
 182         */
 183        if (atomic_read(&mm->mm_users) == 0)
 184                return;
 185
 186        /*
 187         * - Move to a new ASID, but only if the mm is still wired in
 188         *   (Android Binder ended up calling this for vma->mm != tsk->mm,
 189         *    causing h/w - s/w ASID to get out of sync)
 190         * - Also get_new_mmu_context() new implementation allocates a new
 191         *   ASID only if it is not allocated already - so unallocate first
 192         */
 193        destroy_context(mm);
 194        if (current->mm == mm)
 195                get_new_mmu_context(mm);
 196}
 197
 198/*
 199 * Flush a Range of TLB entries for userland.
 200 * @start is inclusive, while @end is exclusive
 201 * Difference between this and Kernel Range Flush is
 202 *  -Here the fastest way (if range is too large) is to move to next ASID
 203 *      without doing any explicit Shootdown
 204 *  -In case of kernel Flush, entry has to be shot down explicitly
 205 */
 206void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 207                           unsigned long end)
 208{
 209        const unsigned int cpu = smp_processor_id();
 210        unsigned long flags;
 211
 212        /* If range @start to @end is more than 32 TLB entries deep,
 213         * its better to move to a new ASID rather than searching for
 214         * individual entries and then shooting them down
 215         *
 216         * The calc above is rough, doesn't account for unaligned parts,
 217         * since this is heuristics based anyways
 218         */
 219        if (unlikely((end - start) >= PAGE_SIZE * 32)) {
 220                local_flush_tlb_mm(vma->vm_mm);
 221                return;
 222        }
 223
 224        /*
 225         * @start moved to page start: this alone suffices for checking
 226         * loop end condition below, w/o need for aligning @end to end
 227         * e.g. 2000 to 4001 will anyhow loop twice
 228         */
 229        start &= PAGE_MASK;
 230
 231        local_irq_save(flags);
 232
 233        if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
 234                while (start < end) {
 235                        tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu));
 236                        start += PAGE_SIZE;
 237                }
 238        }
 239
 240        local_irq_restore(flags);
 241}
 242
 243/* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
 244 *  @start, @end interpreted as kvaddr
 245 * Interestingly, shared TLB entries can also be flushed using just
 246 * @start,@end alone (interpreted as user vaddr), although technically SASID
 247 * is also needed. However our smart TLbProbe lookup takes care of that.
 248 */
 249void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
 250{
 251        unsigned long flags;
 252
 253        /* exactly same as above, except for TLB entry not taking ASID */
 254
 255        if (unlikely((end - start) >= PAGE_SIZE * 32)) {
 256                local_flush_tlb_all();
 257                return;
 258        }
 259
 260        start &= PAGE_MASK;
 261
 262        local_irq_save(flags);
 263        while (start < end) {
 264                tlb_entry_erase(start);
 265                start += PAGE_SIZE;
 266        }
 267
 268        local_irq_restore(flags);
 269}
 270
 271/*
 272 * Delete TLB entry in MMU for a given page (??? address)
 273 * NOTE One TLB entry contains translation for single PAGE
 274 */
 275
 276void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 277{
 278        const unsigned int cpu = smp_processor_id();
 279        unsigned long flags;
 280
 281        /* Note that it is critical that interrupts are DISABLED between
 282         * checking the ASID and using it flush the TLB entry
 283         */
 284        local_irq_save(flags);
 285
 286        if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
 287                tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu));
 288        }
 289
 290        local_irq_restore(flags);
 291}
 292
 293#ifdef CONFIG_SMP
 294
 295struct tlb_args {
 296        struct vm_area_struct *ta_vma;
 297        unsigned long ta_start;
 298        unsigned long ta_end;
 299};
 300
 301static inline void ipi_flush_tlb_page(void *arg)
 302{
 303        struct tlb_args *ta = arg;
 304
 305        local_flush_tlb_page(ta->ta_vma, ta->ta_start);
 306}
 307
 308static inline void ipi_flush_tlb_range(void *arg)
 309{
 310        struct tlb_args *ta = arg;
 311
 312        local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
 313}
 314
 315#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 316static inline void ipi_flush_pmd_tlb_range(void *arg)
 317{
 318        struct tlb_args *ta = arg;
 319
 320        local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
 321}
 322#endif
 323
 324static inline void ipi_flush_tlb_kernel_range(void *arg)
 325{
 326        struct tlb_args *ta = (struct tlb_args *)arg;
 327
 328        local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
 329}
 330
 331void flush_tlb_all(void)
 332{
 333        on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1);
 334}
 335
 336void flush_tlb_mm(struct mm_struct *mm)
 337{
 338        on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm,
 339                         mm, 1);
 340}
 341
 342void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
 343{
 344        struct tlb_args ta = {
 345                .ta_vma = vma,
 346                .ta_start = uaddr
 347        };
 348
 349        on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1);
 350}
 351
 352void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 353                     unsigned long end)
 354{
 355        struct tlb_args ta = {
 356                .ta_vma = vma,
 357                .ta_start = start,
 358                .ta_end = end
 359        };
 360
 361        on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1);
 362}
 363
 364#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 365void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
 366                         unsigned long end)
 367{
 368        struct tlb_args ta = {
 369                .ta_vma = vma,
 370                .ta_start = start,
 371                .ta_end = end
 372        };
 373
 374        on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1);
 375}
 376#endif
 377
 378void flush_tlb_kernel_range(unsigned long start, unsigned long end)
 379{
 380        struct tlb_args ta = {
 381                .ta_start = start,
 382                .ta_end = end
 383        };
 384
 385        on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
 386}
 387#endif
 388
 389/*
 390 * Routine to create a TLB entry
 391 */
 392void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep)
 393{
 394        unsigned long flags;
 395        unsigned int asid_or_sasid, rwx;
 396        unsigned long pd0;
 397        phys_addr_t pd1;
 398
 399        /*
 400         * create_tlb() assumes that current->mm == vma->mm, since
 401         * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
 402         * -completes the lazy write to SASID reg (again valid for curr tsk)
 403         *
 404         * Removing the assumption involves
 405         * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
 406         * -More importantly it makes this handler inconsistent with fast-path
 407         *  TLB Refill handler which always deals with "current"
 408         *
 409         * Lets see the use cases when current->mm != vma->mm and we land here
 410         *  1. execve->copy_strings()->__get_user_pages->handle_mm_fault
 411         *     Here VM wants to pre-install a TLB entry for user stack while
 412         *     current->mm still points to pre-execve mm (hence the condition).
 413         *     However the stack vaddr is soon relocated (randomization) and
 414         *     move_page_tables() tries to undo that TLB entry.
 415         *     Thus not creating TLB entry is not any worse.
 416         *
 417         *  2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
 418         *     breakpoint in debugged task. Not creating a TLB now is not
 419         *     performance critical.
 420         *
 421         * Both the cases above are not good enough for code churn.
 422         */
 423        if (current->active_mm != vma->vm_mm)
 424                return;
 425
 426        local_irq_save(flags);
 427
 428        vaddr &= PAGE_MASK;
 429
 430        /* update this PTE credentials */
 431        pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
 432
 433        /* Create HW TLB(PD0,PD1) from PTE  */
 434
 435        /* ASID for this task */
 436        asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
 437
 438        pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0);
 439
 440        /*
 441         * ARC MMU provides fully orthogonal access bits for K/U mode,
 442         * however Linux only saves 1 set to save PTE real-estate
 443         * Here we convert 3 PTE bits into 6 MMU bits:
 444         * -Kernel only entries have Kr Kw Kx 0 0 0
 445         * -User entries have mirrored K and U bits
 446         */
 447        rwx = pte_val(*ptep) & PTE_BITS_RWX;
 448
 449        if (pte_val(*ptep) & _PAGE_GLOBAL)
 450                rwx <<= 3;              /* r w x => Kr Kw Kx 0 0 0 */
 451        else
 452                rwx |= (rwx << 3);      /* r w x => Kr Kw Kx Ur Uw Ux */
 453
 454        pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1);
 455
 456        tlb_entry_insert(pd0, pd1);
 457
 458        local_irq_restore(flags);
 459}
 460
 461/*
 462 * Called at the end of pagefault, for a userspace mapped page
 463 *  -pre-install the corresponding TLB entry into MMU
 464 *  -Finalize the delayed D-cache flush of kernel mapping of page due to
 465 *      flush_dcache_page(), copy_user_page()
 466 *
 467 * Note that flush (when done) involves both WBACK - so physical page is
 468 * in sync as well as INV - so any non-congruent aliases don't remain
 469 */
 470void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned,
 471                      pte_t *ptep)
 472{
 473        unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
 474        phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK_PHYS;
 475        struct page *page = pfn_to_page(pte_pfn(*ptep));
 476
 477        create_tlb(vma, vaddr, ptep);
 478
 479        if (page == ZERO_PAGE(0)) {
 480                return;
 481        }
 482
 483        /*
 484         * Exec page : Independent of aliasing/page-color considerations,
 485         *             since icache doesn't snoop dcache on ARC, any dirty
 486         *             K-mapping of a code page needs to be wback+inv so that
 487         *             icache fetch by userspace sees code correctly.
 488         * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
 489         *             so userspace sees the right data.
 490         *  (Avoids the flush for Non-exec + congruent mapping case)
 491         */
 492        if ((vma->vm_flags & VM_EXEC) ||
 493             addr_not_cache_congruent(paddr, vaddr)) {
 494
 495                int dirty = !test_and_set_bit(PG_dc_clean, &page->flags);
 496                if (dirty) {
 497                        /* wback + inv dcache lines (K-mapping) */
 498                        __flush_dcache_page(paddr, paddr);
 499
 500                        /* invalidate any existing icache lines (U-mapping) */
 501                        if (vma->vm_flags & VM_EXEC)
 502                                __inv_icache_page(paddr, vaddr);
 503                }
 504        }
 505}
 506
 507#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 508
 509/*
 510 * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
 511 * support.
 512 *
 513 * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
 514 * new bit "SZ" in TLB page descriptor to distinguish between them.
 515 * Super Page size is configurable in hardware (4K to 16M), but fixed once
 516 * RTL builds.
 517 *
 518 * The exact THP size a Linux configuration will support is a function of:
 519 *  - MMU page size (typical 8K, RTL fixed)
 520 *  - software page walker address split between PGD:PTE:PFN (typical
 521 *    11:8:13, but can be changed with 1 line)
 522 * So for above default, THP size supported is 8K * (2^8) = 2M
 523 *
 524 * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
 525 * reduces to 1 level (as PTE is folded into PGD and canonically referred
 526 * to as PMD).
 527 * Thus THP PMD accessors are implemented in terms of PTE (just like sparc)
 528 */
 529
 530void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
 531                                 pmd_t *pmd)
 532{
 533        pte_t pte = __pte(pmd_val(*pmd));
 534        update_mmu_cache(vma, addr, &pte);
 535}
 536
 537void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
 538                               unsigned long end)
 539{
 540        unsigned int cpu;
 541        unsigned long flags;
 542
 543        local_irq_save(flags);
 544
 545        cpu = smp_processor_id();
 546
 547        if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) {
 548                unsigned int asid = hw_pid(vma->vm_mm, cpu);
 549
 550                /* No need to loop here: this will always be for 1 Huge Page */
 551                tlb_entry_erase(start | _PAGE_HW_SZ | asid);
 552        }
 553
 554        local_irq_restore(flags);
 555}
 556
 557#endif
 558
 559/* Read the Cache Build Configuration Registers, Decode them and save into
 560 * the cpuinfo structure for later use.
 561 * No Validation is done here, simply read/convert the BCRs
 562 */
 563void read_decode_mmu_bcr(void)
 564{
 565        struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
 566        unsigned int tmp;
 567        struct bcr_mmu_3 {
 568#ifdef CONFIG_CPU_BIG_ENDIAN
 569        unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4,
 570                     u_itlb:4, u_dtlb:4;
 571#else
 572        unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4,
 573                     ways:4, ver:8;
 574#endif
 575        } *mmu3;
 576
 577        struct bcr_mmu_4 {
 578#ifdef CONFIG_CPU_BIG_ENDIAN
 579        unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1,
 580                     n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3;
 581#else
 582        /*           DTLB      ITLB      JES        JE         JA      */
 583        unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2,
 584                     pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8;
 585#endif
 586        } *mmu4;
 587
 588        tmp = read_aux_reg(ARC_REG_MMU_BCR);
 589        mmu->ver = (tmp >> 24);
 590
 591        if (is_isa_arcompact() && mmu->ver == 3) {
 592                mmu3 = (struct bcr_mmu_3 *)&tmp;
 593                mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1);
 594                mmu->sets = 1 << mmu3->sets;
 595                mmu->ways = 1 << mmu3->ways;
 596                mmu->u_dtlb = mmu3->u_dtlb;
 597                mmu->u_itlb = mmu3->u_itlb;
 598                mmu->sasid = mmu3->sasid;
 599        } else {
 600                mmu4 = (struct bcr_mmu_4 *)&tmp;
 601                mmu->pg_sz_k = 1 << (mmu4->sz0 - 1);
 602                mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11);
 603                mmu->sets = 64 << mmu4->n_entry;
 604                mmu->ways = mmu4->n_ways * 2;
 605                mmu->u_dtlb = mmu4->u_dtlb * 4;
 606                mmu->u_itlb = mmu4->u_itlb * 4;
 607                mmu->sasid = mmu4->sasid;
 608                pae_exists = mmu->pae = mmu4->pae;
 609        }
 610}
 611
 612char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len)
 613{
 614        int n = 0;
 615        struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu;
 616        char super_pg[64] = "";
 617
 618        if (p_mmu->s_pg_sz_m)
 619                scnprintf(super_pg, 64, "%dM Super Page %s",
 620                          p_mmu->s_pg_sz_m,
 621                          IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE));
 622
 623        n += scnprintf(buf + n, len - n,
 624                      "MMU [v%x]\t: %dk PAGE, %s, swalk %d lvl, JTLB %d (%dx%d), uDTLB %d, uITLB %d%s%s\n",
 625                       p_mmu->ver, p_mmu->pg_sz_k, super_pg,  CONFIG_PGTABLE_LEVELS,
 626                       p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways,
 627                       p_mmu->u_dtlb, p_mmu->u_itlb,
 628                       IS_AVAIL2(p_mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40));
 629
 630        return buf;
 631}
 632
 633int pae40_exist_but_not_enab(void)
 634{
 635        return pae_exists && !is_pae40_enabled();
 636}
 637
 638void arc_mmu_init(void)
 639{
 640        struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
 641        char str[256];
 642        int compat = 0;
 643
 644        pr_info("%s", arc_mmu_mumbojumbo(0, str, sizeof(str)));
 645
 646        /*
 647         * Can't be done in processor.h due to header include dependencies
 648         */
 649        BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE));
 650
 651        /*
 652         * stack top size sanity check,
 653         * Can't be done in processor.h due to header include dependencies
 654         */
 655        BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE));
 656
 657        /*
 658         * Ensure that MMU features assumed by kernel exist in hardware.
 659         *  - For older ARC700 cpus, only v3 supported
 660         *  - For HS cpus, v4 was baseline and v5 is backwards compatible
 661         *    (will run older software).
 662         */
 663        if (is_isa_arcompact() && mmu->ver == 3)
 664                compat = 1;
 665        else if (is_isa_arcv2() && mmu->ver >= 4)
 666                compat = 1;
 667
 668        if (!compat)
 669                panic("MMU ver %d doesn't match kernel built for\n", mmu->ver);
 670
 671        if (mmu->pg_sz_k != TO_KB(PAGE_SIZE))
 672                panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
 673
 674        if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
 675            mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE))
 676                panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n",
 677                      (unsigned long)TO_MB(HPAGE_PMD_SIZE));
 678
 679        if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae)
 680                panic("Hardware doesn't support PAE40\n");
 681
 682        /* Enable the MMU with ASID 0 */
 683        mmu_setup_asid(NULL, 0);
 684
 685        /* cache the pgd pointer in MMU SCRATCH reg (ARCv2 only) */
 686        mmu_setup_pgd(NULL, swapper_pg_dir);
 687
 688        if (pae40_exist_but_not_enab())
 689                write_aux_reg(ARC_REG_TLBPD1HI, 0);
 690}
 691
 692/*
 693 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
 694 * The mapping is Column-first.
 695 *              ---------------------   -----------
 696 *              |way0|way1|way2|way3|   |way0|way1|
 697 *              ---------------------   -----------
 698 * [set0]       |  0 |  1 |  2 |  3 |   |  0 |  1 |
 699 * [set1]       |  4 |  5 |  6 |  7 |   |  2 |  3 |
 700 *              ~                   ~   ~         ~
 701 * [set127]     | 508| 509| 510| 511|   | 254| 255|
 702 *              ---------------------   -----------
 703 * For normal operations we don't(must not) care how above works since
 704 * MMU cmd getIndex(vaddr) abstracts that out.
 705 * However for walking WAYS of a SET, we need to know this
 706 */
 707#define SET_WAY_TO_IDX(mmu, set, way)  ((set) * mmu->ways + (way))
 708
 709/* Handling of Duplicate PD (TLB entry) in MMU.
 710 * -Could be due to buggy customer tapeouts or obscure kernel bugs
 711 * -MMU complaints not at the time of duplicate PD installation, but at the
 712 *      time of lookup matching multiple ways.
 713 * -Ideally these should never happen - but if they do - workaround by deleting
 714 *      the duplicate one.
 715 * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
 716 */
 717volatile int dup_pd_silent; /* Be silent abt it or complain (default) */
 718
 719void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
 720                          struct pt_regs *regs)
 721{
 722        struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
 723        unsigned long flags;
 724        int set, n_ways = mmu->ways;
 725
 726        n_ways = min(n_ways, 4);
 727        BUG_ON(mmu->ways > 4);
 728
 729        local_irq_save(flags);
 730
 731        /* loop thru all sets of TLB */
 732        for (set = 0; set < mmu->sets; set++) {
 733
 734                int is_valid, way;
 735                unsigned int pd0[4];
 736
 737                /* read out all the ways of current set */
 738                for (way = 0, is_valid = 0; way < n_ways; way++) {
 739                        write_aux_reg(ARC_REG_TLBINDEX,
 740                                          SET_WAY_TO_IDX(mmu, set, way));
 741                        write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
 742                        pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
 743                        is_valid |= pd0[way] & _PAGE_PRESENT;
 744                        pd0[way] &= PAGE_MASK;
 745                }
 746
 747                /* If all the WAYS in SET are empty, skip to next SET */
 748                if (!is_valid)
 749                        continue;
 750
 751                /* Scan the set for duplicate ways: needs a nested loop */
 752                for (way = 0; way < n_ways - 1; way++) {
 753
 754                        int n;
 755
 756                        if (!pd0[way])
 757                                continue;
 758
 759                        for (n = way + 1; n < n_ways; n++) {
 760                                if (pd0[way] != pd0[n])
 761                                        continue;
 762
 763                                if (!dup_pd_silent)
 764                                        pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n",
 765                                                pd0[way], set, way, n);
 766
 767                                /*
 768                                 * clear entry @way and not @n.
 769                                 * This is critical to our optimised loop
 770                                 */
 771                                pd0[way] = 0;
 772                                write_aux_reg(ARC_REG_TLBINDEX,
 773                                                SET_WAY_TO_IDX(mmu, set, way));
 774                                __tlb_entry_erase();
 775                        }
 776                }
 777        }
 778
 779        local_irq_restore(flags);
 780}
 781