linux/arch/arm64/kernel/setup.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Based on arch/arm/kernel/setup.c
   4 *
   5 * Copyright (C) 1995-2001 Russell King
   6 * Copyright (C) 2012 ARM Ltd.
   7 */
   8
   9#include <linux/acpi.h>
  10#include <linux/export.h>
  11#include <linux/kernel.h>
  12#include <linux/stddef.h>
  13#include <linux/ioport.h>
  14#include <linux/delay.h>
  15#include <linux/initrd.h>
  16#include <linux/console.h>
  17#include <linux/cache.h>
  18#include <linux/screen_info.h>
  19#include <linux/init.h>
  20#include <linux/kexec.h>
  21#include <linux/root_dev.h>
  22#include <linux/cpu.h>
  23#include <linux/interrupt.h>
  24#include <linux/smp.h>
  25#include <linux/fs.h>
  26#include <linux/panic_notifier.h>
  27#include <linux/proc_fs.h>
  28#include <linux/memblock.h>
  29#include <linux/of_fdt.h>
  30#include <linux/efi.h>
  31#include <linux/psci.h>
  32#include <linux/sched/task.h>
  33#include <linux/mm.h>
  34
  35#include <asm/acpi.h>
  36#include <asm/fixmap.h>
  37#include <asm/cpu.h>
  38#include <asm/cputype.h>
  39#include <asm/daifflags.h>
  40#include <asm/elf.h>
  41#include <asm/cpufeature.h>
  42#include <asm/cpu_ops.h>
  43#include <asm/kasan.h>
  44#include <asm/numa.h>
  45#include <asm/sections.h>
  46#include <asm/setup.h>
  47#include <asm/smp_plat.h>
  48#include <asm/cacheflush.h>
  49#include <asm/tlbflush.h>
  50#include <asm/traps.h>
  51#include <asm/efi.h>
  52#include <asm/xen/hypervisor.h>
  53#include <asm/mmu_context.h>
  54
  55static int num_standard_resources;
  56static struct resource *standard_resources;
  57
  58phys_addr_t __fdt_pointer __initdata;
  59
  60/*
  61 * Standard memory resources
  62 */
  63static struct resource mem_res[] = {
  64        {
  65                .name = "Kernel code",
  66                .start = 0,
  67                .end = 0,
  68                .flags = IORESOURCE_SYSTEM_RAM
  69        },
  70        {
  71                .name = "Kernel data",
  72                .start = 0,
  73                .end = 0,
  74                .flags = IORESOURCE_SYSTEM_RAM
  75        }
  76};
  77
  78#define kernel_code mem_res[0]
  79#define kernel_data mem_res[1]
  80
  81/*
  82 * The recorded values of x0 .. x3 upon kernel entry.
  83 */
  84u64 __cacheline_aligned boot_args[4];
  85
  86void __init smp_setup_processor_id(void)
  87{
  88        u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
  89        set_cpu_logical_map(0, mpidr);
  90
  91        pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n",
  92                (unsigned long)mpidr, read_cpuid_id());
  93}
  94
  95bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
  96{
  97        return phys_id == cpu_logical_map(cpu);
  98}
  99
 100struct mpidr_hash mpidr_hash;
 101/**
 102 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
 103 *                        level in order to build a linear index from an
 104 *                        MPIDR value. Resulting algorithm is a collision
 105 *                        free hash carried out through shifting and ORing
 106 */
 107static void __init smp_build_mpidr_hash(void)
 108{
 109        u32 i, affinity, fs[4], bits[4], ls;
 110        u64 mask = 0;
 111        /*
 112         * Pre-scan the list of MPIDRS and filter out bits that do
 113         * not contribute to affinity levels, ie they never toggle.
 114         */
 115        for_each_possible_cpu(i)
 116                mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
 117        pr_debug("mask of set bits %#llx\n", mask);
 118        /*
 119         * Find and stash the last and first bit set at all affinity levels to
 120         * check how many bits are required to represent them.
 121         */
 122        for (i = 0; i < 4; i++) {
 123                affinity = MPIDR_AFFINITY_LEVEL(mask, i);
 124                /*
 125                 * Find the MSB bit and LSB bits position
 126                 * to determine how many bits are required
 127                 * to express the affinity level.
 128                 */
 129                ls = fls(affinity);
 130                fs[i] = affinity ? ffs(affinity) - 1 : 0;
 131                bits[i] = ls - fs[i];
 132        }
 133        /*
 134         * An index can be created from the MPIDR_EL1 by isolating the
 135         * significant bits at each affinity level and by shifting
 136         * them in order to compress the 32 bits values space to a
 137         * compressed set of values. This is equivalent to hashing
 138         * the MPIDR_EL1 through shifting and ORing. It is a collision free
 139         * hash though not minimal since some levels might contain a number
 140         * of CPUs that is not an exact power of 2 and their bit
 141         * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
 142         */
 143        mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0];
 144        mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0];
 145        mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] -
 146                                                (bits[1] + bits[0]);
 147        mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) +
 148                                  fs[3] - (bits[2] + bits[1] + bits[0]);
 149        mpidr_hash.mask = mask;
 150        mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0];
 151        pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
 152                mpidr_hash.shift_aff[0],
 153                mpidr_hash.shift_aff[1],
 154                mpidr_hash.shift_aff[2],
 155                mpidr_hash.shift_aff[3],
 156                mpidr_hash.mask,
 157                mpidr_hash.bits);
 158        /*
 159         * 4x is an arbitrary value used to warn on a hash table much bigger
 160         * than expected on most systems.
 161         */
 162        if (mpidr_hash_size() > 4 * num_possible_cpus())
 163                pr_warn("Large number of MPIDR hash buckets detected\n");
 164}
 165
 166static void *early_fdt_ptr __initdata;
 167
 168void __init *get_early_fdt_ptr(void)
 169{
 170        return early_fdt_ptr;
 171}
 172
 173asmlinkage void __init early_fdt_map(u64 dt_phys)
 174{
 175        int fdt_size;
 176
 177        early_fixmap_init();
 178        early_fdt_ptr = fixmap_remap_fdt(dt_phys, &fdt_size, PAGE_KERNEL);
 179}
 180
 181static void __init setup_machine_fdt(phys_addr_t dt_phys)
 182{
 183        int size;
 184        void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
 185        const char *name;
 186
 187        if (dt_virt)
 188                memblock_reserve(dt_phys, size);
 189
 190        if (!dt_virt || !early_init_dt_scan(dt_virt)) {
 191                pr_crit("\n"
 192                        "Error: invalid device tree blob at physical address %pa (virtual address 0x%p)\n"
 193                        "The dtb must be 8-byte aligned and must not exceed 2 MB in size\n"
 194                        "\nPlease check your bootloader.",
 195                        &dt_phys, dt_virt);
 196
 197                while (true)
 198                        cpu_relax();
 199        }
 200
 201        /* Early fixups are done, map the FDT as read-only now */
 202        fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO);
 203
 204        name = of_flat_dt_get_machine_name();
 205        if (!name)
 206                return;
 207
 208        pr_info("Machine model: %s\n", name);
 209        dump_stack_set_arch_desc("%s (DT)", name);
 210}
 211
 212static void __init request_standard_resources(void)
 213{
 214        struct memblock_region *region;
 215        struct resource *res;
 216        unsigned long i = 0;
 217        size_t res_size;
 218
 219        kernel_code.start   = __pa_symbol(_stext);
 220        kernel_code.end     = __pa_symbol(__init_begin - 1);
 221        kernel_data.start   = __pa_symbol(_sdata);
 222        kernel_data.end     = __pa_symbol(_end - 1);
 223
 224        num_standard_resources = memblock.memory.cnt;
 225        res_size = num_standard_resources * sizeof(*standard_resources);
 226        standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES);
 227        if (!standard_resources)
 228                panic("%s: Failed to allocate %zu bytes\n", __func__, res_size);
 229
 230        for_each_mem_region(region) {
 231                res = &standard_resources[i++];
 232                if (memblock_is_nomap(region)) {
 233                        res->name  = "reserved";
 234                        res->flags = IORESOURCE_MEM;
 235                } else {
 236                        res->name  = "System RAM";
 237                        res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 238                }
 239                res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
 240                res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
 241
 242                request_resource(&iomem_resource, res);
 243
 244                if (kernel_code.start >= res->start &&
 245                    kernel_code.end <= res->end)
 246                        request_resource(res, &kernel_code);
 247                if (kernel_data.start >= res->start &&
 248                    kernel_data.end <= res->end)
 249                        request_resource(res, &kernel_data);
 250#ifdef CONFIG_KEXEC_CORE
 251                /* Userspace will find "Crash kernel" region in /proc/iomem. */
 252                if (crashk_res.end && crashk_res.start >= res->start &&
 253                    crashk_res.end <= res->end)
 254                        request_resource(res, &crashk_res);
 255#endif
 256        }
 257}
 258
 259static int __init reserve_memblock_reserved_regions(void)
 260{
 261        u64 i, j;
 262
 263        for (i = 0; i < num_standard_resources; ++i) {
 264                struct resource *mem = &standard_resources[i];
 265                phys_addr_t r_start, r_end, mem_size = resource_size(mem);
 266
 267                if (!memblock_is_region_reserved(mem->start, mem_size))
 268                        continue;
 269
 270                for_each_reserved_mem_range(j, &r_start, &r_end) {
 271                        resource_size_t start, end;
 272
 273                        start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
 274                        end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
 275
 276                        if (start > mem->end || end < mem->start)
 277                                continue;
 278
 279                        reserve_region_with_split(mem, start, end, "reserved");
 280                }
 281        }
 282
 283        return 0;
 284}
 285arch_initcall(reserve_memblock_reserved_regions);
 286
 287u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
 288
 289u64 cpu_logical_map(unsigned int cpu)
 290{
 291        return __cpu_logical_map[cpu];
 292}
 293
 294void __init __no_sanitize_address setup_arch(char **cmdline_p)
 295{
 296        setup_initial_init_mm(_stext, _etext, _edata, _end);
 297
 298        *cmdline_p = boot_command_line;
 299
 300        /*
 301         * If know now we are going to need KPTI then use non-global
 302         * mappings from the start, avoiding the cost of rewriting
 303         * everything later.
 304         */
 305        arm64_use_ng_mappings = kaslr_requires_kpti();
 306
 307        early_fixmap_init();
 308        early_ioremap_init();
 309
 310        setup_machine_fdt(__fdt_pointer);
 311
 312        /*
 313         * Initialise the static keys early as they may be enabled by the
 314         * cpufeature code and early parameters.
 315         */
 316        jump_label_init();
 317        parse_early_param();
 318
 319        /*
 320         * Unmask asynchronous aborts and fiq after bringing up possible
 321         * earlycon. (Report possible System Errors once we can report this
 322         * occurred).
 323         */
 324        local_daif_restore(DAIF_PROCCTX_NOIRQ);
 325
 326        /*
 327         * TTBR0 is only used for the identity mapping at this stage. Make it
 328         * point to zero page to avoid speculatively fetching new entries.
 329         */
 330        cpu_uninstall_idmap();
 331
 332        xen_early_init();
 333        efi_init();
 334
 335        if (!efi_enabled(EFI_BOOT) && ((u64)_text % MIN_KIMG_ALIGN) != 0)
 336             pr_warn(FW_BUG "Kernel image misaligned at boot, please fix your bootloader!");
 337
 338        arm64_memblock_init();
 339
 340        paging_init();
 341
 342        acpi_table_upgrade();
 343
 344        /* Parse the ACPI tables for possible boot-time configuration */
 345        acpi_boot_table_init();
 346
 347        if (acpi_disabled)
 348                unflatten_device_tree();
 349
 350        bootmem_init();
 351
 352        kasan_init();
 353
 354        request_standard_resources();
 355
 356        early_ioremap_reset();
 357
 358        if (acpi_disabled)
 359                psci_dt_init();
 360        else
 361                psci_acpi_init();
 362
 363        init_bootcpu_ops();
 364        smp_init_cpus();
 365        smp_build_mpidr_hash();
 366
 367        /* Init percpu seeds for random tags after cpus are set up. */
 368        kasan_init_sw_tags();
 369
 370#ifdef CONFIG_ARM64_SW_TTBR0_PAN
 371        /*
 372         * Make sure init_thread_info.ttbr0 always generates translation
 373         * faults in case uaccess_enable() is inadvertently called by the init
 374         * thread.
 375         */
 376        init_task.thread_info.ttbr0 = phys_to_ttbr(__pa_symbol(reserved_pg_dir));
 377#endif
 378
 379        if (boot_args[1] || boot_args[2] || boot_args[3]) {
 380                pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n"
 381                        "\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n"
 382                        "This indicates a broken bootloader or old kernel\n",
 383                        boot_args[1], boot_args[2], boot_args[3]);
 384        }
 385}
 386
 387static inline bool cpu_can_disable(unsigned int cpu)
 388{
 389#ifdef CONFIG_HOTPLUG_CPU
 390        const struct cpu_operations *ops = get_cpu_ops(cpu);
 391
 392        if (ops && ops->cpu_can_disable)
 393                return ops->cpu_can_disable(cpu);
 394#endif
 395        return false;
 396}
 397
 398static int __init topology_init(void)
 399{
 400        int i;
 401
 402        for_each_online_node(i)
 403                register_one_node(i);
 404
 405        for_each_possible_cpu(i) {
 406                struct cpu *cpu = &per_cpu(cpu_data.cpu, i);
 407                cpu->hotpluggable = cpu_can_disable(i);
 408                register_cpu(cpu, i);
 409        }
 410
 411        return 0;
 412}
 413subsys_initcall(topology_init);
 414
 415static void dump_kernel_offset(void)
 416{
 417        const unsigned long offset = kaslr_offset();
 418
 419        if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) {
 420                pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
 421                         offset, KIMAGE_VADDR);
 422                pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET);
 423        } else {
 424                pr_emerg("Kernel Offset: disabled\n");
 425        }
 426}
 427
 428static int arm64_panic_block_dump(struct notifier_block *self,
 429                                  unsigned long v, void *p)
 430{
 431        dump_kernel_offset();
 432        dump_cpu_features();
 433        dump_mem_limit();
 434        return 0;
 435}
 436
 437static struct notifier_block arm64_panic_block = {
 438        .notifier_call = arm64_panic_block_dump
 439};
 440
 441static int __init register_arm64_panic_block(void)
 442{
 443        atomic_notifier_chain_register(&panic_notifier_list,
 444                                       &arm64_panic_block);
 445        return 0;
 446}
 447device_initcall(register_arm64_panic_block);
 448