linux/arch/powerpc/perf/isa207-common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Common Performance counter support functions for PowerISA v2.07 processors.
   4 *
   5 * Copyright 2009 Paul Mackerras, IBM Corporation.
   6 * Copyright 2013 Michael Ellerman, IBM Corporation.
   7 * Copyright 2016 Madhavan Srinivasan, IBM Corporation.
   8 */
   9#include "isa207-common.h"
  10
  11PMU_FORMAT_ATTR(event,          "config:0-49");
  12PMU_FORMAT_ATTR(pmcxsel,        "config:0-7");
  13PMU_FORMAT_ATTR(mark,           "config:8");
  14PMU_FORMAT_ATTR(combine,        "config:11");
  15PMU_FORMAT_ATTR(unit,           "config:12-15");
  16PMU_FORMAT_ATTR(pmc,            "config:16-19");
  17PMU_FORMAT_ATTR(cache_sel,      "config:20-23");
  18PMU_FORMAT_ATTR(sample_mode,    "config:24-28");
  19PMU_FORMAT_ATTR(thresh_sel,     "config:29-31");
  20PMU_FORMAT_ATTR(thresh_stop,    "config:32-35");
  21PMU_FORMAT_ATTR(thresh_start,   "config:36-39");
  22PMU_FORMAT_ATTR(thresh_cmp,     "config:40-49");
  23
  24static struct attribute *isa207_pmu_format_attr[] = {
  25        &format_attr_event.attr,
  26        &format_attr_pmcxsel.attr,
  27        &format_attr_mark.attr,
  28        &format_attr_combine.attr,
  29        &format_attr_unit.attr,
  30        &format_attr_pmc.attr,
  31        &format_attr_cache_sel.attr,
  32        &format_attr_sample_mode.attr,
  33        &format_attr_thresh_sel.attr,
  34        &format_attr_thresh_stop.attr,
  35        &format_attr_thresh_start.attr,
  36        &format_attr_thresh_cmp.attr,
  37        NULL,
  38};
  39
  40struct attribute_group isa207_pmu_format_group = {
  41        .name = "format",
  42        .attrs = isa207_pmu_format_attr,
  43};
  44
  45static inline bool event_is_fab_match(u64 event)
  46{
  47        /* Only check pmc, unit and pmcxsel, ignore the edge bit (0) */
  48        event &= 0xff0fe;
  49
  50        /* PM_MRK_FAB_RSP_MATCH & PM_MRK_FAB_RSP_MATCH_CYC */
  51        return (event == 0x30056 || event == 0x4f052);
  52}
  53
  54static bool is_event_valid(u64 event)
  55{
  56        u64 valid_mask = EVENT_VALID_MASK;
  57
  58        if (cpu_has_feature(CPU_FTR_ARCH_31))
  59                valid_mask = p10_EVENT_VALID_MASK;
  60        else if (cpu_has_feature(CPU_FTR_ARCH_300))
  61                valid_mask = p9_EVENT_VALID_MASK;
  62
  63        return !(event & ~valid_mask);
  64}
  65
  66static inline bool is_event_marked(u64 event)
  67{
  68        if (event & EVENT_IS_MARKED)
  69                return true;
  70
  71        return false;
  72}
  73
  74static unsigned long sdar_mod_val(u64 event)
  75{
  76        if (cpu_has_feature(CPU_FTR_ARCH_31))
  77                return p10_SDAR_MODE(event);
  78
  79        return p9_SDAR_MODE(event);
  80}
  81
  82static void mmcra_sdar_mode(u64 event, unsigned long *mmcra)
  83{
  84        /*
  85         * MMCRA[SDAR_MODE] specifices how the SDAR should be updated in
  86         * continous sampling mode.
  87         *
  88         * Incase of Power8:
  89         * MMCRA[SDAR_MODE] will be programmed as "0b01" for continous sampling
  90         * mode and will be un-changed when setting MMCRA[63] (Marked events).
  91         *
  92         * Incase of Power9/power10:
  93         * Marked event: MMCRA[SDAR_MODE] will be set to 0b00 ('No Updates'),
  94         *               or if group already have any marked events.
  95         * For rest
  96         *      MMCRA[SDAR_MODE] will be set from event code.
  97         *      If sdar_mode from event is zero, default to 0b01. Hardware
  98         *      requires that we set a non-zero value.
  99         */
 100        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 101                if (is_event_marked(event) || (*mmcra & MMCRA_SAMPLE_ENABLE))
 102                        *mmcra &= MMCRA_SDAR_MODE_NO_UPDATES;
 103                else if (sdar_mod_val(event))
 104                        *mmcra |= sdar_mod_val(event) << MMCRA_SDAR_MODE_SHIFT;
 105                else
 106                        *mmcra |= MMCRA_SDAR_MODE_DCACHE;
 107        } else
 108                *mmcra |= MMCRA_SDAR_MODE_TLB;
 109}
 110
 111static u64 p10_thresh_cmp_val(u64 value)
 112{
 113        int exp = 0;
 114        u64 result = value;
 115
 116        if (!value)
 117                return value;
 118
 119        /*
 120         * Incase of P10, thresh_cmp value is not part of raw event code
 121         * and provided via attr.config1 parameter. To program threshold in MMCRA,
 122         * take a 18 bit number N and shift right 2 places and increment
 123         * the exponent E by 1 until the upper 10 bits of N are zero.
 124         * Write E to the threshold exponent and write the lower 8 bits of N
 125         * to the threshold mantissa.
 126         * The max threshold that can be written is 261120.
 127         */
 128        if (cpu_has_feature(CPU_FTR_ARCH_31)) {
 129                if (value > 261120)
 130                        value = 261120;
 131                while ((64 - __builtin_clzl(value)) > 8) {
 132                        exp++;
 133                        value >>= 2;
 134                }
 135
 136                /*
 137                 * Note that it is invalid to write a mantissa with the
 138                 * upper 2 bits of mantissa being zero, unless the
 139                 * exponent is also zero.
 140                 */
 141                if (!(value & 0xC0) && exp)
 142                        result = 0;
 143                else
 144                        result = (exp << 8) | value;
 145        }
 146        return result;
 147}
 148
 149static u64 thresh_cmp_val(u64 value)
 150{
 151        if (cpu_has_feature(CPU_FTR_ARCH_31))
 152                value = p10_thresh_cmp_val(value);
 153
 154        /*
 155         * Since location of threshold compare bits in MMCRA
 156         * is different for p8, using different shift value.
 157         */
 158        if (cpu_has_feature(CPU_FTR_ARCH_300))
 159                return value << p9_MMCRA_THR_CMP_SHIFT;
 160        else
 161                return value << MMCRA_THR_CMP_SHIFT;
 162}
 163
 164static unsigned long combine_from_event(u64 event)
 165{
 166        if (cpu_has_feature(CPU_FTR_ARCH_300))
 167                return p9_EVENT_COMBINE(event);
 168
 169        return EVENT_COMBINE(event);
 170}
 171
 172static unsigned long combine_shift(unsigned long pmc)
 173{
 174        if (cpu_has_feature(CPU_FTR_ARCH_300))
 175                return p9_MMCR1_COMBINE_SHIFT(pmc);
 176
 177        return MMCR1_COMBINE_SHIFT(pmc);
 178}
 179
 180static inline bool event_is_threshold(u64 event)
 181{
 182        return (event >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK;
 183}
 184
 185static bool is_thresh_cmp_valid(u64 event)
 186{
 187        unsigned int cmp, exp;
 188
 189        if (cpu_has_feature(CPU_FTR_ARCH_31))
 190                return p10_thresh_cmp_val(event) != 0;
 191
 192        /*
 193         * Check the mantissa upper two bits are not zero, unless the
 194         * exponent is also zero. See the THRESH_CMP_MANTISSA doc.
 195         */
 196
 197        cmp = (event >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK;
 198        exp = cmp >> 7;
 199
 200        if (exp && (cmp & 0x60) == 0)
 201                return false;
 202
 203        return true;
 204}
 205
 206static unsigned int dc_ic_rld_quad_l1_sel(u64 event)
 207{
 208        unsigned int cache;
 209
 210        cache = (event >> EVENT_CACHE_SEL_SHIFT) & MMCR1_DC_IC_QUAL_MASK;
 211        return cache;
 212}
 213
 214static inline u64 isa207_find_source(u64 idx, u32 sub_idx)
 215{
 216        u64 ret = PERF_MEM_NA;
 217
 218        switch(idx) {
 219        case 0:
 220                /* Nothing to do */
 221                break;
 222        case 1:
 223                ret = PH(LVL, L1);
 224                break;
 225        case 2:
 226                ret = PH(LVL, L2);
 227                break;
 228        case 3:
 229                ret = PH(LVL, L3);
 230                break;
 231        case 4:
 232                if (sub_idx <= 1)
 233                        ret = PH(LVL, LOC_RAM);
 234                else if (sub_idx > 1 && sub_idx <= 2)
 235                        ret = PH(LVL, REM_RAM1);
 236                else
 237                        ret = PH(LVL, REM_RAM2);
 238                ret |= P(SNOOP, HIT);
 239                break;
 240        case 5:
 241                if (cpu_has_feature(CPU_FTR_ARCH_31)) {
 242                        ret = REM | P(HOPS, 0);
 243
 244                        if (sub_idx == 0 || sub_idx == 4)
 245                                ret |= PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HIT);
 246                        else if (sub_idx == 1 || sub_idx == 5)
 247                                ret |= PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HITM);
 248                        else if (sub_idx == 2 || sub_idx == 6)
 249                                ret |= PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
 250                        else if (sub_idx == 3 || sub_idx == 7)
 251                                ret |= PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
 252                } else {
 253                        if (sub_idx == 0)
 254                                ret = PH(LVL, L2) | LEVEL(L2) | REM | P(SNOOP, HIT) | P(HOPS, 0);
 255                        else if (sub_idx == 1)
 256                                ret = PH(LVL, L2) | LEVEL(L2) | REM | P(SNOOP, HITM) | P(HOPS, 0);
 257                        else if (sub_idx == 2 || sub_idx == 4)
 258                                ret = PH(LVL, L3) | LEVEL(L3) | REM | P(SNOOP, HIT) | P(HOPS, 0);
 259                        else if (sub_idx == 3 || sub_idx == 5)
 260                                ret = PH(LVL, L3) | LEVEL(L3) | REM | P(SNOOP, HITM) | P(HOPS, 0);
 261                }
 262                break;
 263        case 6:
 264                ret = PH(LVL, REM_CCE2);
 265                if ((sub_idx == 0) || (sub_idx == 2))
 266                        ret |= P(SNOOP, HIT);
 267                else if ((sub_idx == 1) || (sub_idx == 3))
 268                        ret |= P(SNOOP, HITM);
 269                break;
 270        case 7:
 271                ret = PM(LVL, L1);
 272                break;
 273        }
 274
 275        return ret;
 276}
 277
 278void isa207_get_mem_data_src(union perf_mem_data_src *dsrc, u32 flags,
 279                                                        struct pt_regs *regs)
 280{
 281        u64 idx;
 282        u32 sub_idx;
 283        u64 sier;
 284        u64 val;
 285
 286        /* Skip if no SIER support */
 287        if (!(flags & PPMU_HAS_SIER)) {
 288                dsrc->val = 0;
 289                return;
 290        }
 291
 292        sier = mfspr(SPRN_SIER);
 293        val = (sier & ISA207_SIER_TYPE_MASK) >> ISA207_SIER_TYPE_SHIFT;
 294        if (val != 1 && val != 2 && !(val == 7 && cpu_has_feature(CPU_FTR_ARCH_31)))
 295                return;
 296
 297        idx = (sier & ISA207_SIER_LDST_MASK) >> ISA207_SIER_LDST_SHIFT;
 298        sub_idx = (sier & ISA207_SIER_DATA_SRC_MASK) >> ISA207_SIER_DATA_SRC_SHIFT;
 299
 300        dsrc->val = isa207_find_source(idx, sub_idx);
 301        if (val == 7) {
 302                u64 mmcra;
 303                u32 op_type;
 304
 305                /*
 306                 * Type 0b111 denotes either larx or stcx instruction. Use the
 307                 * MMCRA sampling bits [57:59] along with the type value
 308                 * to determine the exact instruction type. If the sampling
 309                 * criteria is neither load or store, set the type as default
 310                 * to NA.
 311                 */
 312                mmcra = mfspr(SPRN_MMCRA);
 313
 314                op_type = (mmcra >> MMCRA_SAMP_ELIG_SHIFT) & MMCRA_SAMP_ELIG_MASK;
 315                switch (op_type) {
 316                case 5:
 317                        dsrc->val |= P(OP, LOAD);
 318                        break;
 319                case 7:
 320                        dsrc->val |= P(OP, STORE);
 321                        break;
 322                default:
 323                        dsrc->val |= P(OP, NA);
 324                        break;
 325                }
 326        } else {
 327                dsrc->val |= (val == 1) ? P(OP, LOAD) : P(OP, STORE);
 328        }
 329}
 330
 331void isa207_get_mem_weight(u64 *weight, u64 type)
 332{
 333        union perf_sample_weight *weight_fields;
 334        u64 weight_lat;
 335        u64 mmcra = mfspr(SPRN_MMCRA);
 336        u64 exp = MMCRA_THR_CTR_EXP(mmcra);
 337        u64 mantissa = MMCRA_THR_CTR_MANT(mmcra);
 338        u64 sier = mfspr(SPRN_SIER);
 339        u64 val = (sier & ISA207_SIER_TYPE_MASK) >> ISA207_SIER_TYPE_SHIFT;
 340
 341        if (cpu_has_feature(CPU_FTR_ARCH_31))
 342                mantissa = P10_MMCRA_THR_CTR_MANT(mmcra);
 343
 344        if (val == 0 || (val == 7 && !cpu_has_feature(CPU_FTR_ARCH_31)))
 345                weight_lat = 0;
 346        else
 347                weight_lat = mantissa << (2 * exp);
 348
 349        /*
 350         * Use 64 bit weight field (full) if sample type is
 351         * WEIGHT.
 352         *
 353         * if sample type is WEIGHT_STRUCT:
 354         * - store memory latency in the lower 32 bits.
 355         * - For ISA v3.1, use remaining two 16 bit fields of
 356         *   perf_sample_weight to store cycle counter values
 357         *   from sier2.
 358         */
 359        weight_fields = (union perf_sample_weight *)weight;
 360        if (type & PERF_SAMPLE_WEIGHT)
 361                weight_fields->full = weight_lat;
 362        else {
 363                weight_fields->var1_dw = (u32)weight_lat;
 364                if (cpu_has_feature(CPU_FTR_ARCH_31)) {
 365                        weight_fields->var2_w = P10_SIER2_FINISH_CYC(mfspr(SPRN_SIER2));
 366                        weight_fields->var3_w = P10_SIER2_DISPATCH_CYC(mfspr(SPRN_SIER2));
 367                }
 368        }
 369}
 370
 371int isa207_get_constraint(u64 event, unsigned long *maskp, unsigned long *valp, u64 event_config1)
 372{
 373        unsigned int unit, pmc, cache, ebb;
 374        unsigned long mask, value;
 375
 376        mask = value = 0;
 377
 378        if (!is_event_valid(event))
 379                return -1;
 380
 381        pmc   = (event >> EVENT_PMC_SHIFT)        & EVENT_PMC_MASK;
 382        unit  = (event >> EVENT_UNIT_SHIFT)       & EVENT_UNIT_MASK;
 383        if (cpu_has_feature(CPU_FTR_ARCH_31))
 384                cache = (event >> EVENT_CACHE_SEL_SHIFT) &
 385                        p10_EVENT_CACHE_SEL_MASK;
 386        else
 387                cache = (event >> EVENT_CACHE_SEL_SHIFT) &
 388                        EVENT_CACHE_SEL_MASK;
 389        ebb   = (event >> EVENT_EBB_SHIFT)        & EVENT_EBB_MASK;
 390
 391        if (pmc) {
 392                u64 base_event;
 393
 394                if (pmc > 6)
 395                        return -1;
 396
 397                /* Ignore Linux defined bits when checking event below */
 398                base_event = event & ~EVENT_LINUX_MASK;
 399
 400                if (pmc >= 5 && base_event != 0x500fa &&
 401                                base_event != 0x600f4)
 402                        return -1;
 403
 404                mask  |= CNST_PMC_MASK(pmc);
 405                value |= CNST_PMC_VAL(pmc);
 406
 407                /*
 408                 * PMC5 and PMC6 are used to count cycles and instructions and
 409                 * they do not support most of the constraint bits. Add a check
 410                 * to exclude PMC5/6 from most of the constraints except for
 411                 * EBB/BHRB.
 412                 */
 413                if (pmc >= 5)
 414                        goto ebb_bhrb;
 415        }
 416
 417        if (pmc <= 4) {
 418                /*
 419                 * Add to number of counters in use. Note this includes events with
 420                 * a PMC of 0 - they still need a PMC, it's just assigned later.
 421                 * Don't count events on PMC 5 & 6, there is only one valid event
 422                 * on each of those counters, and they are handled above.
 423                 */
 424                mask  |= CNST_NC_MASK;
 425                value |= CNST_NC_VAL;
 426        }
 427
 428        if (unit >= 6 && unit <= 9) {
 429                if (cpu_has_feature(CPU_FTR_ARCH_31)) {
 430                        if (unit == 6) {
 431                                mask |= CNST_L2L3_GROUP_MASK;
 432                                value |= CNST_L2L3_GROUP_VAL(event >> p10_L2L3_EVENT_SHIFT);
 433                        }
 434                } else if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 435                        mask  |= CNST_CACHE_GROUP_MASK;
 436                        value |= CNST_CACHE_GROUP_VAL(event & 0xff);
 437
 438                        mask |= CNST_CACHE_PMC4_MASK;
 439                        if (pmc == 4)
 440                                value |= CNST_CACHE_PMC4_VAL;
 441                } else if (cache & 0x7) {
 442                        /*
 443                         * L2/L3 events contain a cache selector field, which is
 444                         * supposed to be programmed into MMCRC. However MMCRC is only
 445                         * HV writable, and there is no API for guest kernels to modify
 446                         * it. The solution is for the hypervisor to initialise the
 447                         * field to zeroes, and for us to only ever allow events that
 448                         * have a cache selector of zero. The bank selector (bit 3) is
 449                         * irrelevant, as long as the rest of the value is 0.
 450                         */
 451                        return -1;
 452                }
 453
 454        } else if (cpu_has_feature(CPU_FTR_ARCH_300) || (event & EVENT_IS_L1)) {
 455                mask  |= CNST_L1_QUAL_MASK;
 456                value |= CNST_L1_QUAL_VAL(cache);
 457        }
 458
 459        if (cpu_has_feature(CPU_FTR_ARCH_31)) {
 460                mask |= CNST_RADIX_SCOPE_GROUP_MASK;
 461                value |= CNST_RADIX_SCOPE_GROUP_VAL(event >> p10_EVENT_RADIX_SCOPE_QUAL_SHIFT);
 462        }
 463
 464        if (is_event_marked(event)) {
 465                mask  |= CNST_SAMPLE_MASK;
 466                value |= CNST_SAMPLE_VAL(event >> EVENT_SAMPLE_SHIFT);
 467        }
 468
 469        if (cpu_has_feature(CPU_FTR_ARCH_31)) {
 470                if (event_is_threshold(event) && is_thresh_cmp_valid(event_config1)) {
 471                        mask  |= CNST_THRESH_CTL_SEL_MASK;
 472                        value |= CNST_THRESH_CTL_SEL_VAL(event >> EVENT_THRESH_SHIFT);
 473                        mask  |= p10_CNST_THRESH_CMP_MASK;
 474                        value |= p10_CNST_THRESH_CMP_VAL(p10_thresh_cmp_val(event_config1));
 475                }
 476        } else if (cpu_has_feature(CPU_FTR_ARCH_300))  {
 477                if (event_is_threshold(event) && is_thresh_cmp_valid(event)) {
 478                        mask  |= CNST_THRESH_MASK;
 479                        value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT);
 480                }
 481        } else {
 482                /*
 483                 * Special case for PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
 484                 * the threshold control bits are used for the match value.
 485                 */
 486                if (event_is_fab_match(event)) {
 487                        mask  |= CNST_FAB_MATCH_MASK;
 488                        value |= CNST_FAB_MATCH_VAL(event >> EVENT_THR_CTL_SHIFT);
 489                } else {
 490                        if (!is_thresh_cmp_valid(event))
 491                                return -1;
 492
 493                        mask  |= CNST_THRESH_MASK;
 494                        value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT);
 495                }
 496        }
 497
 498ebb_bhrb:
 499        if (!pmc && ebb)
 500                /* EBB events must specify the PMC */
 501                return -1;
 502
 503        if (event & EVENT_WANTS_BHRB) {
 504                if (!ebb)
 505                        /* Only EBB events can request BHRB */
 506                        return -1;
 507
 508                mask  |= CNST_IFM_MASK;
 509                value |= CNST_IFM_VAL(event >> EVENT_IFM_SHIFT);
 510        }
 511
 512        /*
 513         * All events must agree on EBB, either all request it or none.
 514         * EBB events are pinned & exclusive, so this should never actually
 515         * hit, but we leave it as a fallback in case.
 516         */
 517        mask  |= CNST_EBB_MASK;
 518        value |= CNST_EBB_VAL(ebb);
 519
 520        *maskp = mask;
 521        *valp = value;
 522
 523        return 0;
 524}
 525
 526int isa207_compute_mmcr(u64 event[], int n_ev,
 527                               unsigned int hwc[], struct mmcr_regs *mmcr,
 528                               struct perf_event *pevents[], u32 flags)
 529{
 530        unsigned long mmcra, mmcr1, mmcr2, unit, combine, psel, cache, val;
 531        unsigned long mmcr3;
 532        unsigned int pmc, pmc_inuse;
 533        int i;
 534
 535        pmc_inuse = 0;
 536
 537        /* First pass to count resource use */
 538        for (i = 0; i < n_ev; ++i) {
 539                pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
 540                if (pmc)
 541                        pmc_inuse |= 1 << pmc;
 542        }
 543
 544        mmcra = mmcr1 = mmcr2 = mmcr3 = 0;
 545
 546        /*
 547         * Disable bhrb unless explicitly requested
 548         * by setting MMCRA (BHRBRD) bit.
 549         */
 550        if (cpu_has_feature(CPU_FTR_ARCH_31))
 551                mmcra |= MMCRA_BHRB_DISABLE;
 552
 553        /* Second pass: assign PMCs, set all MMCR1 fields */
 554        for (i = 0; i < n_ev; ++i) {
 555                pmc     = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
 556                unit    = (event[i] >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK;
 557                combine = combine_from_event(event[i]);
 558                psel    =  event[i] & EVENT_PSEL_MASK;
 559
 560                if (!pmc) {
 561                        for (pmc = 1; pmc <= 4; ++pmc) {
 562                                if (!(pmc_inuse & (1 << pmc)))
 563                                        break;
 564                        }
 565
 566                        pmc_inuse |= 1 << pmc;
 567                }
 568
 569                if (pmc <= 4) {
 570                        mmcr1 |= unit << MMCR1_UNIT_SHIFT(pmc);
 571                        mmcr1 |= combine << combine_shift(pmc);
 572                        mmcr1 |= psel << MMCR1_PMCSEL_SHIFT(pmc);
 573                }
 574
 575                /* In continuous sampling mode, update SDAR on TLB miss */
 576                mmcra_sdar_mode(event[i], &mmcra);
 577
 578                if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 579                        cache = dc_ic_rld_quad_l1_sel(event[i]);
 580                        mmcr1 |= (cache) << MMCR1_DC_IC_QUAL_SHIFT;
 581                } else {
 582                        if (event[i] & EVENT_IS_L1) {
 583                                cache = dc_ic_rld_quad_l1_sel(event[i]);
 584                                mmcr1 |= (cache) << MMCR1_DC_IC_QUAL_SHIFT;
 585                        }
 586                }
 587
 588                /* Set RADIX_SCOPE_QUAL bit */
 589                if (cpu_has_feature(CPU_FTR_ARCH_31)) {
 590                        val = (event[i] >> p10_EVENT_RADIX_SCOPE_QUAL_SHIFT) &
 591                                p10_EVENT_RADIX_SCOPE_QUAL_MASK;
 592                        mmcr1 |= val << p10_MMCR1_RADIX_SCOPE_QUAL_SHIFT;
 593                }
 594
 595                if (is_event_marked(event[i])) {
 596                        mmcra |= MMCRA_SAMPLE_ENABLE;
 597
 598                        val = (event[i] >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK;
 599                        if (val) {
 600                                mmcra |= (val &  3) << MMCRA_SAMP_MODE_SHIFT;
 601                                mmcra |= (val >> 2) << MMCRA_SAMP_ELIG_SHIFT;
 602                        }
 603                }
 604
 605                /*
 606                 * PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
 607                 * the threshold bits are used for the match value.
 608                 */
 609                if (!cpu_has_feature(CPU_FTR_ARCH_300) && event_is_fab_match(event[i])) {
 610                        mmcr1 |= ((event[i] >> EVENT_THR_CTL_SHIFT) &
 611                                  EVENT_THR_CTL_MASK) << MMCR1_FAB_SHIFT;
 612                } else {
 613                        val = (event[i] >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK;
 614                        mmcra |= val << MMCRA_THR_CTL_SHIFT;
 615                        val = (event[i] >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK;
 616                        mmcra |= val << MMCRA_THR_SEL_SHIFT;
 617                        if (!cpu_has_feature(CPU_FTR_ARCH_31)) {
 618                                val = (event[i] >> EVENT_THR_CMP_SHIFT) &
 619                                        EVENT_THR_CMP_MASK;
 620                                mmcra |= thresh_cmp_val(val);
 621                        } else if (flags & PPMU_HAS_ATTR_CONFIG1) {
 622                                val = (pevents[i]->attr.config1 >> p10_EVENT_THR_CMP_SHIFT) &
 623                                        p10_EVENT_THR_CMP_MASK;
 624                                mmcra |= thresh_cmp_val(val);
 625                        }
 626                }
 627
 628                if (cpu_has_feature(CPU_FTR_ARCH_31) && (unit == 6)) {
 629                        val = (event[i] >> p10_L2L3_EVENT_SHIFT) &
 630                                p10_EVENT_L2L3_SEL_MASK;
 631                        mmcr2 |= val << p10_L2L3_SEL_SHIFT;
 632                }
 633
 634                if (event[i] & EVENT_WANTS_BHRB) {
 635                        val = (event[i] >> EVENT_IFM_SHIFT) & EVENT_IFM_MASK;
 636                        mmcra |= val << MMCRA_IFM_SHIFT;
 637                }
 638
 639                /* set MMCRA (BHRBRD) to 0 if there is user request for BHRB */
 640                if (cpu_has_feature(CPU_FTR_ARCH_31) &&
 641                                (has_branch_stack(pevents[i]) || (event[i] & EVENT_WANTS_BHRB)))
 642                        mmcra &= ~MMCRA_BHRB_DISABLE;
 643
 644                if (pevents[i]->attr.exclude_user)
 645                        mmcr2 |= MMCR2_FCP(pmc);
 646
 647                if (pevents[i]->attr.exclude_hv)
 648                        mmcr2 |= MMCR2_FCH(pmc);
 649
 650                if (pevents[i]->attr.exclude_kernel) {
 651                        if (cpu_has_feature(CPU_FTR_HVMODE))
 652                                mmcr2 |= MMCR2_FCH(pmc);
 653                        else
 654                                mmcr2 |= MMCR2_FCS(pmc);
 655                }
 656
 657                if (cpu_has_feature(CPU_FTR_ARCH_31)) {
 658                        if (pmc <= 4) {
 659                                val = (event[i] >> p10_EVENT_MMCR3_SHIFT) &
 660                                        p10_EVENT_MMCR3_MASK;
 661                                mmcr3 |= val << MMCR3_SHIFT(pmc);
 662                        }
 663                }
 664
 665                hwc[i] = pmc - 1;
 666        }
 667
 668        /* Return MMCRx values */
 669        mmcr->mmcr0 = 0;
 670
 671        /* pmc_inuse is 1-based */
 672        if (pmc_inuse & 2)
 673                mmcr->mmcr0 = MMCR0_PMC1CE;
 674
 675        if (pmc_inuse & 0x7c)
 676                mmcr->mmcr0 |= MMCR0_PMCjCE;
 677
 678        /* If we're not using PMC 5 or 6, freeze them */
 679        if (!(pmc_inuse & 0x60))
 680                mmcr->mmcr0 |= MMCR0_FC56;
 681
 682        /*
 683         * Set mmcr0 (PMCCEXT) for p10 which
 684         * will restrict access to group B registers
 685         * when MMCR0 PMCC=0b00.
 686         */
 687        if (cpu_has_feature(CPU_FTR_ARCH_31))
 688                mmcr->mmcr0 |= MMCR0_PMCCEXT;
 689
 690        mmcr->mmcr1 = mmcr1;
 691        mmcr->mmcra = mmcra;
 692        mmcr->mmcr2 = mmcr2;
 693        mmcr->mmcr3 = mmcr3;
 694
 695        return 0;
 696}
 697
 698void isa207_disable_pmc(unsigned int pmc, struct mmcr_regs *mmcr)
 699{
 700        if (pmc <= 3)
 701                mmcr->mmcr1 &= ~(0xffUL << MMCR1_PMCSEL_SHIFT(pmc + 1));
 702}
 703
 704static int find_alternative(u64 event, const unsigned int ev_alt[][MAX_ALT], int size)
 705{
 706        int i, j;
 707
 708        for (i = 0; i < size; ++i) {
 709                if (event < ev_alt[i][0])
 710                        break;
 711
 712                for (j = 0; j < MAX_ALT && ev_alt[i][j]; ++j)
 713                        if (event == ev_alt[i][j])
 714                                return i;
 715        }
 716
 717        return -1;
 718}
 719
 720int isa207_get_alternatives(u64 event, u64 alt[], int size, unsigned int flags,
 721                                        const unsigned int ev_alt[][MAX_ALT])
 722{
 723        int i, j, num_alt = 0;
 724        u64 alt_event;
 725
 726        alt[num_alt++] = event;
 727        i = find_alternative(event, ev_alt, size);
 728        if (i >= 0) {
 729                /* Filter out the original event, it's already in alt[0] */
 730                for (j = 0; j < MAX_ALT; ++j) {
 731                        alt_event = ev_alt[i][j];
 732                        if (alt_event && alt_event != event)
 733                                alt[num_alt++] = alt_event;
 734                }
 735        }
 736
 737        if (flags & PPMU_ONLY_COUNT_RUN) {
 738                /*
 739                 * We're only counting in RUN state, so PM_CYC is equivalent to
 740                 * PM_RUN_CYC and PM_INST_CMPL === PM_RUN_INST_CMPL.
 741                 */
 742                j = num_alt;
 743                for (i = 0; i < num_alt; ++i) {
 744                        switch (alt[i]) {
 745                        case 0x1e:                      /* PMC_CYC */
 746                                alt[j++] = 0x600f4;     /* PM_RUN_CYC */
 747                                break;
 748                        case 0x600f4:
 749                                alt[j++] = 0x1e;
 750                                break;
 751                        case 0x2:                       /* PM_INST_CMPL */
 752                                alt[j++] = 0x500fa;     /* PM_RUN_INST_CMPL */
 753                                break;
 754                        case 0x500fa:
 755                                alt[j++] = 0x2;
 756                                break;
 757                        }
 758                }
 759                num_alt = j;
 760        }
 761
 762        return num_alt;
 763}
 764
 765int isa3XX_check_attr_config(struct perf_event *ev)
 766{
 767        u64 val, sample_mode;
 768        u64 event = ev->attr.config;
 769
 770        val = (event >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK;
 771        sample_mode = val & 0x3;
 772
 773        /*
 774         * MMCRA[61:62] is Random Sampling Mode (SM).
 775         * value of 0b11 is reserved.
 776         */
 777        if (sample_mode == 0x3)
 778                return -EINVAL;
 779
 780        /*
 781         * Check for all reserved value
 782         * Source: Performance Monitoring Unit User Guide
 783         */
 784        switch (val) {
 785        case 0x5:
 786        case 0x9:
 787        case 0xD:
 788        case 0x19:
 789        case 0x1D:
 790        case 0x1A:
 791        case 0x1E:
 792                return -EINVAL;
 793        }
 794
 795        /*
 796         * MMCRA[48:51]/[52:55]) Threshold Start/Stop
 797         * Events Selection.
 798         * 0b11110000/0b00001111 is reserved.
 799         */
 800        val = (event >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK;
 801        if (((val & 0xF0) == 0xF0) || ((val & 0xF) == 0xF))
 802                return -EINVAL;
 803
 804        return 0;
 805}
 806