linux/arch/x86/kernel/traps.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
   4 *
   5 *  Pentium III FXSR, SSE support
   6 *      Gareth Hughes <gareth@valinux.com>, May 2000
   7 */
   8
   9/*
  10 * Handle hardware traps and faults.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/context_tracking.h>
  16#include <linux/interrupt.h>
  17#include <linux/kallsyms.h>
  18#include <linux/spinlock.h>
  19#include <linux/kprobes.h>
  20#include <linux/uaccess.h>
  21#include <linux/kdebug.h>
  22#include <linux/kgdb.h>
  23#include <linux/kernel.h>
  24#include <linux/export.h>
  25#include <linux/ptrace.h>
  26#include <linux/uprobes.h>
  27#include <linux/string.h>
  28#include <linux/delay.h>
  29#include <linux/errno.h>
  30#include <linux/kexec.h>
  31#include <linux/sched.h>
  32#include <linux/sched/task_stack.h>
  33#include <linux/timer.h>
  34#include <linux/init.h>
  35#include <linux/bug.h>
  36#include <linux/nmi.h>
  37#include <linux/mm.h>
  38#include <linux/smp.h>
  39#include <linux/io.h>
  40#include <linux/hardirq.h>
  41#include <linux/atomic.h>
  42
  43#include <asm/stacktrace.h>
  44#include <asm/processor.h>
  45#include <asm/debugreg.h>
  46#include <asm/realmode.h>
  47#include <asm/text-patching.h>
  48#include <asm/ftrace.h>
  49#include <asm/traps.h>
  50#include <asm/desc.h>
  51#include <asm/fpu/api.h>
  52#include <asm/cpu.h>
  53#include <asm/cpu_entry_area.h>
  54#include <asm/mce.h>
  55#include <asm/fixmap.h>
  56#include <asm/mach_traps.h>
  57#include <asm/alternative.h>
  58#include <asm/fpu/xstate.h>
  59#include <asm/vm86.h>
  60#include <asm/umip.h>
  61#include <asm/insn.h>
  62#include <asm/insn-eval.h>
  63#include <asm/vdso.h>
  64
  65#ifdef CONFIG_X86_64
  66#include <asm/x86_init.h>
  67#include <asm/proto.h>
  68#else
  69#include <asm/processor-flags.h>
  70#include <asm/setup.h>
  71#include <asm/proto.h>
  72#endif
  73
  74DECLARE_BITMAP(system_vectors, NR_VECTORS);
  75
  76static inline void cond_local_irq_enable(struct pt_regs *regs)
  77{
  78        if (regs->flags & X86_EFLAGS_IF)
  79                local_irq_enable();
  80}
  81
  82static inline void cond_local_irq_disable(struct pt_regs *regs)
  83{
  84        if (regs->flags & X86_EFLAGS_IF)
  85                local_irq_disable();
  86}
  87
  88__always_inline int is_valid_bugaddr(unsigned long addr)
  89{
  90        if (addr < TASK_SIZE_MAX)
  91                return 0;
  92
  93        /*
  94         * We got #UD, if the text isn't readable we'd have gotten
  95         * a different exception.
  96         */
  97        return *(unsigned short *)addr == INSN_UD2;
  98}
  99
 100static nokprobe_inline int
 101do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
 102                  struct pt_regs *regs, long error_code)
 103{
 104        if (v8086_mode(regs)) {
 105                /*
 106                 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
 107                 * On nmi (interrupt 2), do_trap should not be called.
 108                 */
 109                if (trapnr < X86_TRAP_UD) {
 110                        if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
 111                                                error_code, trapnr))
 112                                return 0;
 113                }
 114        } else if (!user_mode(regs)) {
 115                if (fixup_exception(regs, trapnr, error_code, 0))
 116                        return 0;
 117
 118                tsk->thread.error_code = error_code;
 119                tsk->thread.trap_nr = trapnr;
 120                die(str, regs, error_code);
 121        } else {
 122                if (fixup_vdso_exception(regs, trapnr, error_code, 0))
 123                        return 0;
 124        }
 125
 126        /*
 127         * We want error_code and trap_nr set for userspace faults and
 128         * kernelspace faults which result in die(), but not
 129         * kernelspace faults which are fixed up.  die() gives the
 130         * process no chance to handle the signal and notice the
 131         * kernel fault information, so that won't result in polluting
 132         * the information about previously queued, but not yet
 133         * delivered, faults.  See also exc_general_protection below.
 134         */
 135        tsk->thread.error_code = error_code;
 136        tsk->thread.trap_nr = trapnr;
 137
 138        return -1;
 139}
 140
 141static void show_signal(struct task_struct *tsk, int signr,
 142                        const char *type, const char *desc,
 143                        struct pt_regs *regs, long error_code)
 144{
 145        if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
 146            printk_ratelimit()) {
 147                pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
 148                        tsk->comm, task_pid_nr(tsk), type, desc,
 149                        regs->ip, regs->sp, error_code);
 150                print_vma_addr(KERN_CONT " in ", regs->ip);
 151                pr_cont("\n");
 152        }
 153}
 154
 155static void
 156do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
 157        long error_code, int sicode, void __user *addr)
 158{
 159        struct task_struct *tsk = current;
 160
 161        if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
 162                return;
 163
 164        show_signal(tsk, signr, "trap ", str, regs, error_code);
 165
 166        if (!sicode)
 167                force_sig(signr);
 168        else
 169                force_sig_fault(signr, sicode, addr);
 170}
 171NOKPROBE_SYMBOL(do_trap);
 172
 173static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
 174        unsigned long trapnr, int signr, int sicode, void __user *addr)
 175{
 176        RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 177
 178        if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
 179                        NOTIFY_STOP) {
 180                cond_local_irq_enable(regs);
 181                do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
 182                cond_local_irq_disable(regs);
 183        }
 184}
 185
 186/*
 187 * Posix requires to provide the address of the faulting instruction for
 188 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
 189 *
 190 * This address is usually regs->ip, but when an uprobe moved the code out
 191 * of line then regs->ip points to the XOL code which would confuse
 192 * anything which analyzes the fault address vs. the unmodified binary. If
 193 * a trap happened in XOL code then uprobe maps regs->ip back to the
 194 * original instruction address.
 195 */
 196static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
 197{
 198        return (void __user *)uprobe_get_trap_addr(regs);
 199}
 200
 201DEFINE_IDTENTRY(exc_divide_error)
 202{
 203        do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
 204                      FPE_INTDIV, error_get_trap_addr(regs));
 205}
 206
 207DEFINE_IDTENTRY(exc_overflow)
 208{
 209        do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
 210}
 211
 212#ifdef CONFIG_X86_F00F_BUG
 213void handle_invalid_op(struct pt_regs *regs)
 214#else
 215static inline void handle_invalid_op(struct pt_regs *regs)
 216#endif
 217{
 218        do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
 219                      ILL_ILLOPN, error_get_trap_addr(regs));
 220}
 221
 222static noinstr bool handle_bug(struct pt_regs *regs)
 223{
 224        bool handled = false;
 225
 226        if (!is_valid_bugaddr(regs->ip))
 227                return handled;
 228
 229        /*
 230         * All lies, just get the WARN/BUG out.
 231         */
 232        instrumentation_begin();
 233        /*
 234         * Since we're emulating a CALL with exceptions, restore the interrupt
 235         * state to what it was at the exception site.
 236         */
 237        if (regs->flags & X86_EFLAGS_IF)
 238                raw_local_irq_enable();
 239        if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) {
 240                regs->ip += LEN_UD2;
 241                handled = true;
 242        }
 243        if (regs->flags & X86_EFLAGS_IF)
 244                raw_local_irq_disable();
 245        instrumentation_end();
 246
 247        return handled;
 248}
 249
 250DEFINE_IDTENTRY_RAW(exc_invalid_op)
 251{
 252        irqentry_state_t state;
 253
 254        /*
 255         * We use UD2 as a short encoding for 'CALL __WARN', as such
 256         * handle it before exception entry to avoid recursive WARN
 257         * in case exception entry is the one triggering WARNs.
 258         */
 259        if (!user_mode(regs) && handle_bug(regs))
 260                return;
 261
 262        state = irqentry_enter(regs);
 263        instrumentation_begin();
 264        handle_invalid_op(regs);
 265        instrumentation_end();
 266        irqentry_exit(regs, state);
 267}
 268
 269DEFINE_IDTENTRY(exc_coproc_segment_overrun)
 270{
 271        do_error_trap(regs, 0, "coprocessor segment overrun",
 272                      X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
 273}
 274
 275DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
 276{
 277        do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
 278                      0, NULL);
 279}
 280
 281DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
 282{
 283        do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
 284                      SIGBUS, 0, NULL);
 285}
 286
 287DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
 288{
 289        do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
 290                      0, NULL);
 291}
 292
 293DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
 294{
 295        char *str = "alignment check";
 296
 297        if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
 298                return;
 299
 300        if (!user_mode(regs))
 301                die("Split lock detected\n", regs, error_code);
 302
 303        local_irq_enable();
 304
 305        if (handle_user_split_lock(regs, error_code))
 306                goto out;
 307
 308        do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
 309                error_code, BUS_ADRALN, NULL);
 310
 311out:
 312        local_irq_disable();
 313}
 314
 315#ifdef CONFIG_VMAP_STACK
 316__visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
 317                                                unsigned long fault_address,
 318                                                struct stack_info *info)
 319{
 320        const char *name = stack_type_name(info->type);
 321
 322        printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
 323               name, (void *)fault_address, info->begin, info->end);
 324
 325        die("stack guard page", regs, 0);
 326
 327        /* Be absolutely certain we don't return. */
 328        panic("%s stack guard hit", name);
 329}
 330#endif
 331
 332/*
 333 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
 334 *
 335 * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
 336 * SDM's warnings about double faults being unrecoverable, returning works as
 337 * expected.  Presumably what the SDM actually means is that the CPU may get
 338 * the register state wrong on entry, so returning could be a bad idea.
 339 *
 340 * Various CPU engineers have promised that double faults due to an IRET fault
 341 * while the stack is read-only are, in fact, recoverable.
 342 *
 343 * On x86_32, this is entered through a task gate, and regs are synthesized
 344 * from the TSS.  Returning is, in principle, okay, but changes to regs will
 345 * be lost.  If, for some reason, we need to return to a context with modified
 346 * regs, the shim code could be adjusted to synchronize the registers.
 347 *
 348 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
 349 * to be read before doing anything else.
 350 */
 351DEFINE_IDTENTRY_DF(exc_double_fault)
 352{
 353        static const char str[] = "double fault";
 354        struct task_struct *tsk = current;
 355
 356#ifdef CONFIG_VMAP_STACK
 357        unsigned long address = read_cr2();
 358        struct stack_info info;
 359#endif
 360
 361#ifdef CONFIG_X86_ESPFIX64
 362        extern unsigned char native_irq_return_iret[];
 363
 364        /*
 365         * If IRET takes a non-IST fault on the espfix64 stack, then we
 366         * end up promoting it to a doublefault.  In that case, take
 367         * advantage of the fact that we're not using the normal (TSS.sp0)
 368         * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
 369         * and then modify our own IRET frame so that, when we return,
 370         * we land directly at the #GP(0) vector with the stack already
 371         * set up according to its expectations.
 372         *
 373         * The net result is that our #GP handler will think that we
 374         * entered from usermode with the bad user context.
 375         *
 376         * No need for nmi_enter() here because we don't use RCU.
 377         */
 378        if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
 379                regs->cs == __KERNEL_CS &&
 380                regs->ip == (unsigned long)native_irq_return_iret)
 381        {
 382                struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
 383                unsigned long *p = (unsigned long *)regs->sp;
 384
 385                /*
 386                 * regs->sp points to the failing IRET frame on the
 387                 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
 388                 * in gpregs->ss through gpregs->ip.
 389                 *
 390                 */
 391                gpregs->ip      = p[0];
 392                gpregs->cs      = p[1];
 393                gpregs->flags   = p[2];
 394                gpregs->sp      = p[3];
 395                gpregs->ss      = p[4];
 396                gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
 397
 398                /*
 399                 * Adjust our frame so that we return straight to the #GP
 400                 * vector with the expected RSP value.  This is safe because
 401                 * we won't enable interrupts or schedule before we invoke
 402                 * general_protection, so nothing will clobber the stack
 403                 * frame we just set up.
 404                 *
 405                 * We will enter general_protection with kernel GSBASE,
 406                 * which is what the stub expects, given that the faulting
 407                 * RIP will be the IRET instruction.
 408                 */
 409                regs->ip = (unsigned long)asm_exc_general_protection;
 410                regs->sp = (unsigned long)&gpregs->orig_ax;
 411
 412                return;
 413        }
 414#endif
 415
 416        irqentry_nmi_enter(regs);
 417        instrumentation_begin();
 418        notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
 419
 420        tsk->thread.error_code = error_code;
 421        tsk->thread.trap_nr = X86_TRAP_DF;
 422
 423#ifdef CONFIG_VMAP_STACK
 424        /*
 425         * If we overflow the stack into a guard page, the CPU will fail
 426         * to deliver #PF and will send #DF instead.  Similarly, if we
 427         * take any non-IST exception while too close to the bottom of
 428         * the stack, the processor will get a page fault while
 429         * delivering the exception and will generate a double fault.
 430         *
 431         * According to the SDM (footnote in 6.15 under "Interrupt 14 -
 432         * Page-Fault Exception (#PF):
 433         *
 434         *   Processors update CR2 whenever a page fault is detected. If a
 435         *   second page fault occurs while an earlier page fault is being
 436         *   delivered, the faulting linear address of the second fault will
 437         *   overwrite the contents of CR2 (replacing the previous
 438         *   address). These updates to CR2 occur even if the page fault
 439         *   results in a double fault or occurs during the delivery of a
 440         *   double fault.
 441         *
 442         * The logic below has a small possibility of incorrectly diagnosing
 443         * some errors as stack overflows.  For example, if the IDT or GDT
 444         * gets corrupted such that #GP delivery fails due to a bad descriptor
 445         * causing #GP and we hit this condition while CR2 coincidentally
 446         * points to the stack guard page, we'll think we overflowed the
 447         * stack.  Given that we're going to panic one way or another
 448         * if this happens, this isn't necessarily worth fixing.
 449         *
 450         * If necessary, we could improve the test by only diagnosing
 451         * a stack overflow if the saved RSP points within 47 bytes of
 452         * the bottom of the stack: if RSP == tsk_stack + 48 and we
 453         * take an exception, the stack is already aligned and there
 454         * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
 455         * possible error code, so a stack overflow would *not* double
 456         * fault.  With any less space left, exception delivery could
 457         * fail, and, as a practical matter, we've overflowed the
 458         * stack even if the actual trigger for the double fault was
 459         * something else.
 460         */
 461        if (get_stack_guard_info((void *)address, &info))
 462                handle_stack_overflow(regs, address, &info);
 463#endif
 464
 465        pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
 466        die("double fault", regs, error_code);
 467        panic("Machine halted.");
 468        instrumentation_end();
 469}
 470
 471DEFINE_IDTENTRY(exc_bounds)
 472{
 473        if (notify_die(DIE_TRAP, "bounds", regs, 0,
 474                        X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
 475                return;
 476        cond_local_irq_enable(regs);
 477
 478        if (!user_mode(regs))
 479                die("bounds", regs, 0);
 480
 481        do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
 482
 483        cond_local_irq_disable(regs);
 484}
 485
 486enum kernel_gp_hint {
 487        GP_NO_HINT,
 488        GP_NON_CANONICAL,
 489        GP_CANONICAL
 490};
 491
 492/*
 493 * When an uncaught #GP occurs, try to determine the memory address accessed by
 494 * the instruction and return that address to the caller. Also, try to figure
 495 * out whether any part of the access to that address was non-canonical.
 496 */
 497static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
 498                                                 unsigned long *addr)
 499{
 500        u8 insn_buf[MAX_INSN_SIZE];
 501        struct insn insn;
 502        int ret;
 503
 504        if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
 505                        MAX_INSN_SIZE))
 506                return GP_NO_HINT;
 507
 508        ret = insn_decode_kernel(&insn, insn_buf);
 509        if (ret < 0)
 510                return GP_NO_HINT;
 511
 512        *addr = (unsigned long)insn_get_addr_ref(&insn, regs);
 513        if (*addr == -1UL)
 514                return GP_NO_HINT;
 515
 516#ifdef CONFIG_X86_64
 517        /*
 518         * Check that:
 519         *  - the operand is not in the kernel half
 520         *  - the last byte of the operand is not in the user canonical half
 521         */
 522        if (*addr < ~__VIRTUAL_MASK &&
 523            *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
 524                return GP_NON_CANONICAL;
 525#endif
 526
 527        return GP_CANONICAL;
 528}
 529
 530#define GPFSTR "general protection fault"
 531
 532static bool fixup_iopl_exception(struct pt_regs *regs)
 533{
 534        struct thread_struct *t = &current->thread;
 535        unsigned char byte;
 536        unsigned long ip;
 537
 538        if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
 539                return false;
 540
 541        if (insn_get_effective_ip(regs, &ip))
 542                return false;
 543
 544        if (get_user(byte, (const char __user *)ip))
 545                return false;
 546
 547        if (byte != 0xfa && byte != 0xfb)
 548                return false;
 549
 550        if (!t->iopl_warn && printk_ratelimit()) {
 551                pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
 552                       current->comm, task_pid_nr(current), ip);
 553                print_vma_addr(KERN_CONT " in ", ip);
 554                pr_cont("\n");
 555                t->iopl_warn = 1;
 556        }
 557
 558        regs->ip += 1;
 559        return true;
 560}
 561
 562DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
 563{
 564        char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
 565        enum kernel_gp_hint hint = GP_NO_HINT;
 566        struct task_struct *tsk;
 567        unsigned long gp_addr;
 568        int ret;
 569
 570        cond_local_irq_enable(regs);
 571
 572        if (static_cpu_has(X86_FEATURE_UMIP)) {
 573                if (user_mode(regs) && fixup_umip_exception(regs))
 574                        goto exit;
 575        }
 576
 577        if (v8086_mode(regs)) {
 578                local_irq_enable();
 579                handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
 580                local_irq_disable();
 581                return;
 582        }
 583
 584        tsk = current;
 585
 586        if (user_mode(regs)) {
 587                if (fixup_iopl_exception(regs))
 588                        goto exit;
 589
 590                tsk->thread.error_code = error_code;
 591                tsk->thread.trap_nr = X86_TRAP_GP;
 592
 593                if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
 594                        goto exit;
 595
 596                show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
 597                force_sig(SIGSEGV);
 598                goto exit;
 599        }
 600
 601        if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
 602                goto exit;
 603
 604        tsk->thread.error_code = error_code;
 605        tsk->thread.trap_nr = X86_TRAP_GP;
 606
 607        /*
 608         * To be potentially processing a kprobe fault and to trust the result
 609         * from kprobe_running(), we have to be non-preemptible.
 610         */
 611        if (!preemptible() &&
 612            kprobe_running() &&
 613            kprobe_fault_handler(regs, X86_TRAP_GP))
 614                goto exit;
 615
 616        ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
 617        if (ret == NOTIFY_STOP)
 618                goto exit;
 619
 620        if (error_code)
 621                snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
 622        else
 623                hint = get_kernel_gp_address(regs, &gp_addr);
 624
 625        if (hint != GP_NO_HINT)
 626                snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
 627                         (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
 628                                                    : "maybe for address",
 629                         gp_addr);
 630
 631        /*
 632         * KASAN is interested only in the non-canonical case, clear it
 633         * otherwise.
 634         */
 635        if (hint != GP_NON_CANONICAL)
 636                gp_addr = 0;
 637
 638        die_addr(desc, regs, error_code, gp_addr);
 639
 640exit:
 641        cond_local_irq_disable(regs);
 642}
 643
 644static bool do_int3(struct pt_regs *regs)
 645{
 646        int res;
 647
 648#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 649        if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
 650                         SIGTRAP) == NOTIFY_STOP)
 651                return true;
 652#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 653
 654#ifdef CONFIG_KPROBES
 655        if (kprobe_int3_handler(regs))
 656                return true;
 657#endif
 658        res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
 659
 660        return res == NOTIFY_STOP;
 661}
 662
 663static void do_int3_user(struct pt_regs *regs)
 664{
 665        if (do_int3(regs))
 666                return;
 667
 668        cond_local_irq_enable(regs);
 669        do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
 670        cond_local_irq_disable(regs);
 671}
 672
 673DEFINE_IDTENTRY_RAW(exc_int3)
 674{
 675        /*
 676         * poke_int3_handler() is completely self contained code; it does (and
 677         * must) *NOT* call out to anything, lest it hits upon yet another
 678         * INT3.
 679         */
 680        if (poke_int3_handler(regs))
 681                return;
 682
 683        /*
 684         * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
 685         * and therefore can trigger INT3, hence poke_int3_handler() must
 686         * be done before. If the entry came from kernel mode, then use
 687         * nmi_enter() because the INT3 could have been hit in any context
 688         * including NMI.
 689         */
 690        if (user_mode(regs)) {
 691                irqentry_enter_from_user_mode(regs);
 692                instrumentation_begin();
 693                do_int3_user(regs);
 694                instrumentation_end();
 695                irqentry_exit_to_user_mode(regs);
 696        } else {
 697                irqentry_state_t irq_state = irqentry_nmi_enter(regs);
 698
 699                instrumentation_begin();
 700                if (!do_int3(regs))
 701                        die("int3", regs, 0);
 702                instrumentation_end();
 703                irqentry_nmi_exit(regs, irq_state);
 704        }
 705}
 706
 707#ifdef CONFIG_X86_64
 708/*
 709 * Help handler running on a per-cpu (IST or entry trampoline) stack
 710 * to switch to the normal thread stack if the interrupted code was in
 711 * user mode. The actual stack switch is done in entry_64.S
 712 */
 713asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
 714{
 715        struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
 716        if (regs != eregs)
 717                *regs = *eregs;
 718        return regs;
 719}
 720
 721#ifdef CONFIG_AMD_MEM_ENCRYPT
 722asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
 723{
 724        unsigned long sp, *stack;
 725        struct stack_info info;
 726        struct pt_regs *regs_ret;
 727
 728        /*
 729         * In the SYSCALL entry path the RSP value comes from user-space - don't
 730         * trust it and switch to the current kernel stack
 731         */
 732        if (ip_within_syscall_gap(regs)) {
 733                sp = this_cpu_read(cpu_current_top_of_stack);
 734                goto sync;
 735        }
 736
 737        /*
 738         * From here on the RSP value is trusted. Now check whether entry
 739         * happened from a safe stack. Not safe are the entry or unknown stacks,
 740         * use the fall-back stack instead in this case.
 741         */
 742        sp    = regs->sp;
 743        stack = (unsigned long *)sp;
 744
 745        if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
 746            info.type > STACK_TYPE_EXCEPTION_LAST)
 747                sp = __this_cpu_ist_top_va(VC2);
 748
 749sync:
 750        /*
 751         * Found a safe stack - switch to it as if the entry didn't happen via
 752         * IST stack. The code below only copies pt_regs, the real switch happens
 753         * in assembly code.
 754         */
 755        sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
 756
 757        regs_ret = (struct pt_regs *)sp;
 758        *regs_ret = *regs;
 759
 760        return regs_ret;
 761}
 762#endif
 763
 764struct bad_iret_stack {
 765        void *error_entry_ret;
 766        struct pt_regs regs;
 767};
 768
 769asmlinkage __visible noinstr
 770struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
 771{
 772        /*
 773         * This is called from entry_64.S early in handling a fault
 774         * caused by a bad iret to user mode.  To handle the fault
 775         * correctly, we want to move our stack frame to where it would
 776         * be had we entered directly on the entry stack (rather than
 777         * just below the IRET frame) and we want to pretend that the
 778         * exception came from the IRET target.
 779         */
 780        struct bad_iret_stack tmp, *new_stack =
 781                (struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
 782
 783        /* Copy the IRET target to the temporary storage. */
 784        __memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8);
 785
 786        /* Copy the remainder of the stack from the current stack. */
 787        __memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip));
 788
 789        /* Update the entry stack */
 790        __memcpy(new_stack, &tmp, sizeof(tmp));
 791
 792        BUG_ON(!user_mode(&new_stack->regs));
 793        return new_stack;
 794}
 795#endif
 796
 797static bool is_sysenter_singlestep(struct pt_regs *regs)
 798{
 799        /*
 800         * We don't try for precision here.  If we're anywhere in the region of
 801         * code that can be single-stepped in the SYSENTER entry path, then
 802         * assume that this is a useless single-step trap due to SYSENTER
 803         * being invoked with TF set.  (We don't know in advance exactly
 804         * which instructions will be hit because BTF could plausibly
 805         * be set.)
 806         */
 807#ifdef CONFIG_X86_32
 808        return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
 809                (unsigned long)__end_SYSENTER_singlestep_region -
 810                (unsigned long)__begin_SYSENTER_singlestep_region;
 811#elif defined(CONFIG_IA32_EMULATION)
 812        return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
 813                (unsigned long)__end_entry_SYSENTER_compat -
 814                (unsigned long)entry_SYSENTER_compat;
 815#else
 816        return false;
 817#endif
 818}
 819
 820static __always_inline unsigned long debug_read_clear_dr6(void)
 821{
 822        unsigned long dr6;
 823
 824        /*
 825         * The Intel SDM says:
 826         *
 827         *   Certain debug exceptions may clear bits 0-3. The remaining
 828         *   contents of the DR6 register are never cleared by the
 829         *   processor. To avoid confusion in identifying debug
 830         *   exceptions, debug handlers should clear the register before
 831         *   returning to the interrupted task.
 832         *
 833         * Keep it simple: clear DR6 immediately.
 834         */
 835        get_debugreg(dr6, 6);
 836        set_debugreg(DR6_RESERVED, 6);
 837        dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
 838
 839        return dr6;
 840}
 841
 842/*
 843 * Our handling of the processor debug registers is non-trivial.
 844 * We do not clear them on entry and exit from the kernel. Therefore
 845 * it is possible to get a watchpoint trap here from inside the kernel.
 846 * However, the code in ./ptrace.c has ensured that the user can
 847 * only set watchpoints on userspace addresses. Therefore the in-kernel
 848 * watchpoint trap can only occur in code which is reading/writing
 849 * from user space. Such code must not hold kernel locks (since it
 850 * can equally take a page fault), therefore it is safe to call
 851 * force_sig_info even though that claims and releases locks.
 852 *
 853 * Code in ./signal.c ensures that the debug control register
 854 * is restored before we deliver any signal, and therefore that
 855 * user code runs with the correct debug control register even though
 856 * we clear it here.
 857 *
 858 * Being careful here means that we don't have to be as careful in a
 859 * lot of more complicated places (task switching can be a bit lazy
 860 * about restoring all the debug state, and ptrace doesn't have to
 861 * find every occurrence of the TF bit that could be saved away even
 862 * by user code)
 863 *
 864 * May run on IST stack.
 865 */
 866
 867static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
 868{
 869        /*
 870         * Notifiers will clear bits in @dr6 to indicate the event has been
 871         * consumed - hw_breakpoint_handler(), single_stop_cont().
 872         *
 873         * Notifiers will set bits in @virtual_dr6 to indicate the desire
 874         * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
 875         */
 876        if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
 877                return true;
 878
 879        return false;
 880}
 881
 882static __always_inline void exc_debug_kernel(struct pt_regs *regs,
 883                                             unsigned long dr6)
 884{
 885        /*
 886         * Disable breakpoints during exception handling; recursive exceptions
 887         * are exceedingly 'fun'.
 888         *
 889         * Since this function is NOKPROBE, and that also applies to
 890         * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
 891         * HW_BREAKPOINT_W on our stack)
 892         *
 893         * Entry text is excluded for HW_BP_X and cpu_entry_area, which
 894         * includes the entry stack is excluded for everything.
 895         */
 896        unsigned long dr7 = local_db_save();
 897        irqentry_state_t irq_state = irqentry_nmi_enter(regs);
 898        instrumentation_begin();
 899
 900        /*
 901         * If something gets miswired and we end up here for a user mode
 902         * #DB, we will malfunction.
 903         */
 904        WARN_ON_ONCE(user_mode(regs));
 905
 906        if (test_thread_flag(TIF_BLOCKSTEP)) {
 907                /*
 908                 * The SDM says "The processor clears the BTF flag when it
 909                 * generates a debug exception." but PTRACE_BLOCKSTEP requested
 910                 * it for userspace, but we just took a kernel #DB, so re-set
 911                 * BTF.
 912                 */
 913                unsigned long debugctl;
 914
 915                rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 916                debugctl |= DEBUGCTLMSR_BTF;
 917                wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 918        }
 919
 920        /*
 921         * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
 922         * watchpoint at the same time then that will still be handled.
 923         */
 924        if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
 925                dr6 &= ~DR_STEP;
 926
 927        /*
 928         * The kernel doesn't use INT1
 929         */
 930        if (!dr6)
 931                goto out;
 932
 933        if (notify_debug(regs, &dr6))
 934                goto out;
 935
 936        /*
 937         * The kernel doesn't use TF single-step outside of:
 938         *
 939         *  - Kprobes, consumed through kprobe_debug_handler()
 940         *  - KGDB, consumed through notify_debug()
 941         *
 942         * So if we get here with DR_STEP set, something is wonky.
 943         *
 944         * A known way to trigger this is through QEMU's GDB stub,
 945         * which leaks #DB into the guest and causes IST recursion.
 946         */
 947        if (WARN_ON_ONCE(dr6 & DR_STEP))
 948                regs->flags &= ~X86_EFLAGS_TF;
 949out:
 950        instrumentation_end();
 951        irqentry_nmi_exit(regs, irq_state);
 952
 953        local_db_restore(dr7);
 954}
 955
 956static __always_inline void exc_debug_user(struct pt_regs *regs,
 957                                           unsigned long dr6)
 958{
 959        bool icebp;
 960
 961        /*
 962         * If something gets miswired and we end up here for a kernel mode
 963         * #DB, we will malfunction.
 964         */
 965        WARN_ON_ONCE(!user_mode(regs));
 966
 967        /*
 968         * NB: We can't easily clear DR7 here because
 969         * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
 970         * user memory, etc.  This means that a recursive #DB is possible.  If
 971         * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
 972         * Since we're not on the IST stack right now, everything will be
 973         * fine.
 974         */
 975
 976        irqentry_enter_from_user_mode(regs);
 977        instrumentation_begin();
 978
 979        /*
 980         * Start the virtual/ptrace DR6 value with just the DR_STEP mask
 981         * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
 982         *
 983         * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
 984         * even if it is not the result of PTRACE_SINGLESTEP.
 985         */
 986        current->thread.virtual_dr6 = (dr6 & DR_STEP);
 987
 988        /*
 989         * The SDM says "The processor clears the BTF flag when it
 990         * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
 991         * TIF_BLOCKSTEP in sync with the hardware BTF flag.
 992         */
 993        clear_thread_flag(TIF_BLOCKSTEP);
 994
 995        /*
 996         * If dr6 has no reason to give us about the origin of this trap,
 997         * then it's very likely the result of an icebp/int01 trap.
 998         * User wants a sigtrap for that.
 999         */
1000        icebp = !dr6;
1001
1002        if (notify_debug(regs, &dr6))
1003                goto out;
1004
1005        /* It's safe to allow irq's after DR6 has been saved */
1006        local_irq_enable();
1007
1008        if (v8086_mode(regs)) {
1009                handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
1010                goto out_irq;
1011        }
1012
1013        /* #DB for bus lock can only be triggered from userspace. */
1014        if (dr6 & DR_BUS_LOCK)
1015                handle_bus_lock(regs);
1016
1017        /* Add the virtual_dr6 bits for signals. */
1018        dr6 |= current->thread.virtual_dr6;
1019        if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
1020                send_sigtrap(regs, 0, get_si_code(dr6));
1021
1022out_irq:
1023        local_irq_disable();
1024out:
1025        instrumentation_end();
1026        irqentry_exit_to_user_mode(regs);
1027}
1028
1029#ifdef CONFIG_X86_64
1030/* IST stack entry */
1031DEFINE_IDTENTRY_DEBUG(exc_debug)
1032{
1033        exc_debug_kernel(regs, debug_read_clear_dr6());
1034}
1035
1036/* User entry, runs on regular task stack */
1037DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1038{
1039        exc_debug_user(regs, debug_read_clear_dr6());
1040}
1041#else
1042/* 32 bit does not have separate entry points. */
1043DEFINE_IDTENTRY_RAW(exc_debug)
1044{
1045        unsigned long dr6 = debug_read_clear_dr6();
1046
1047        if (user_mode(regs))
1048                exc_debug_user(regs, dr6);
1049        else
1050                exc_debug_kernel(regs, dr6);
1051}
1052#endif
1053
1054/*
1055 * Note that we play around with the 'TS' bit in an attempt to get
1056 * the correct behaviour even in the presence of the asynchronous
1057 * IRQ13 behaviour
1058 */
1059static void math_error(struct pt_regs *regs, int trapnr)
1060{
1061        struct task_struct *task = current;
1062        struct fpu *fpu = &task->thread.fpu;
1063        int si_code;
1064        char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1065                                                "simd exception";
1066
1067        cond_local_irq_enable(regs);
1068
1069        if (!user_mode(regs)) {
1070                if (fixup_exception(regs, trapnr, 0, 0))
1071                        goto exit;
1072
1073                task->thread.error_code = 0;
1074                task->thread.trap_nr = trapnr;
1075
1076                if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1077                               SIGFPE) != NOTIFY_STOP)
1078                        die(str, regs, 0);
1079                goto exit;
1080        }
1081
1082        /*
1083         * Synchronize the FPU register state to the memory register state
1084         * if necessary. This allows the exception handler to inspect it.
1085         */
1086        fpu_sync_fpstate(fpu);
1087
1088        task->thread.trap_nr    = trapnr;
1089        task->thread.error_code = 0;
1090
1091        si_code = fpu__exception_code(fpu, trapnr);
1092        /* Retry when we get spurious exceptions: */
1093        if (!si_code)
1094                goto exit;
1095
1096        if (fixup_vdso_exception(regs, trapnr, 0, 0))
1097                goto exit;
1098
1099        force_sig_fault(SIGFPE, si_code,
1100                        (void __user *)uprobe_get_trap_addr(regs));
1101exit:
1102        cond_local_irq_disable(regs);
1103}
1104
1105DEFINE_IDTENTRY(exc_coprocessor_error)
1106{
1107        math_error(regs, X86_TRAP_MF);
1108}
1109
1110DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1111{
1112        if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1113                /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1114                if (!static_cpu_has(X86_FEATURE_XMM)) {
1115                        __exc_general_protection(regs, 0);
1116                        return;
1117                }
1118        }
1119        math_error(regs, X86_TRAP_XF);
1120}
1121
1122DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1123{
1124        /*
1125         * This addresses a Pentium Pro Erratum:
1126         *
1127         * PROBLEM: If the APIC subsystem is configured in mixed mode with
1128         * Virtual Wire mode implemented through the local APIC, an
1129         * interrupt vector of 0Fh (Intel reserved encoding) may be
1130         * generated by the local APIC (Int 15).  This vector may be
1131         * generated upon receipt of a spurious interrupt (an interrupt
1132         * which is removed before the system receives the INTA sequence)
1133         * instead of the programmed 8259 spurious interrupt vector.
1134         *
1135         * IMPLICATION: The spurious interrupt vector programmed in the
1136         * 8259 is normally handled by an operating system's spurious
1137         * interrupt handler. However, a vector of 0Fh is unknown to some
1138         * operating systems, which would crash if this erratum occurred.
1139         *
1140         * In theory this could be limited to 32bit, but the handler is not
1141         * hurting and who knows which other CPUs suffer from this.
1142         */
1143}
1144
1145static bool handle_xfd_event(struct pt_regs *regs)
1146{
1147        u64 xfd_err;
1148        int err;
1149
1150        if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
1151                return false;
1152
1153        rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
1154        if (!xfd_err)
1155                return false;
1156
1157        wrmsrl(MSR_IA32_XFD_ERR, 0);
1158
1159        /* Die if that happens in kernel space */
1160        if (WARN_ON(!user_mode(regs)))
1161                return false;
1162
1163        local_irq_enable();
1164
1165        err = xfd_enable_feature(xfd_err);
1166
1167        switch (err) {
1168        case -EPERM:
1169                force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
1170                break;
1171        case -EFAULT:
1172                force_sig(SIGSEGV);
1173                break;
1174        }
1175
1176        local_irq_disable();
1177        return true;
1178}
1179
1180DEFINE_IDTENTRY(exc_device_not_available)
1181{
1182        unsigned long cr0 = read_cr0();
1183
1184        if (handle_xfd_event(regs))
1185                return;
1186
1187#ifdef CONFIG_MATH_EMULATION
1188        if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1189                struct math_emu_info info = { };
1190
1191                cond_local_irq_enable(regs);
1192
1193                info.regs = regs;
1194                math_emulate(&info);
1195
1196                cond_local_irq_disable(regs);
1197                return;
1198        }
1199#endif
1200
1201        /* This should not happen. */
1202        if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1203                /* Try to fix it up and carry on. */
1204                write_cr0(cr0 & ~X86_CR0_TS);
1205        } else {
1206                /*
1207                 * Something terrible happened, and we're better off trying
1208                 * to kill the task than getting stuck in a never-ending
1209                 * loop of #NM faults.
1210                 */
1211                die("unexpected #NM exception", regs, 0);
1212        }
1213}
1214
1215#ifdef CONFIG_X86_32
1216DEFINE_IDTENTRY_SW(iret_error)
1217{
1218        local_irq_enable();
1219        if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1220                        X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1221                do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1222                        ILL_BADSTK, (void __user *)NULL);
1223        }
1224        local_irq_disable();
1225}
1226#endif
1227
1228void __init trap_init(void)
1229{
1230        /* Init cpu_entry_area before IST entries are set up */
1231        setup_cpu_entry_areas();
1232
1233        /* Init GHCB memory pages when running as an SEV-ES guest */
1234        sev_es_init_vc_handling();
1235
1236        /* Initialize TSS before setting up traps so ISTs work */
1237        cpu_init_exception_handling();
1238        /* Setup traps as cpu_init() might #GP */
1239        idt_setup_traps();
1240        cpu_init();
1241}
1242