linux/arch/x86/kvm/mmu.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef __KVM_X86_MMU_H
   3#define __KVM_X86_MMU_H
   4
   5#include <linux/kvm_host.h>
   6#include "kvm_cache_regs.h"
   7#include "cpuid.h"
   8
   9#define PT64_PT_BITS 9
  10#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  11#define PT32_PT_BITS 10
  12#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  13
  14#define PT_WRITABLE_SHIFT 1
  15#define PT_USER_SHIFT 2
  16
  17#define PT_PRESENT_MASK (1ULL << 0)
  18#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  19#define PT_USER_MASK (1ULL << PT_USER_SHIFT)
  20#define PT_PWT_MASK (1ULL << 3)
  21#define PT_PCD_MASK (1ULL << 4)
  22#define PT_ACCESSED_SHIFT 5
  23#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
  24#define PT_DIRTY_SHIFT 6
  25#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
  26#define PT_PAGE_SIZE_SHIFT 7
  27#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
  28#define PT_PAT_MASK (1ULL << 7)
  29#define PT_GLOBAL_MASK (1ULL << 8)
  30#define PT64_NX_SHIFT 63
  31#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
  32
  33#define PT_PAT_SHIFT 7
  34#define PT_DIR_PAT_SHIFT 12
  35#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  36
  37#define PT32_DIR_PSE36_SIZE 4
  38#define PT32_DIR_PSE36_SHIFT 13
  39#define PT32_DIR_PSE36_MASK \
  40        (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  41
  42#define PT64_ROOT_5LEVEL 5
  43#define PT64_ROOT_4LEVEL 4
  44#define PT32_ROOT_LEVEL 2
  45#define PT32E_ROOT_LEVEL 3
  46
  47#define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_LA57 | \
  48                               X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE)
  49
  50#define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP)
  51
  52static __always_inline u64 rsvd_bits(int s, int e)
  53{
  54        BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s);
  55
  56        if (__builtin_constant_p(e))
  57                BUILD_BUG_ON(e > 63);
  58        else
  59                e &= 63;
  60
  61        if (e < s)
  62                return 0;
  63
  64        return ((2ULL << (e - s)) - 1) << s;
  65}
  66
  67void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask);
  68void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only);
  69
  70void kvm_init_mmu(struct kvm_vcpu *vcpu);
  71void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
  72                             unsigned long cr4, u64 efer, gpa_t nested_cr3);
  73void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
  74                             bool accessed_dirty, gpa_t new_eptp);
  75bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
  76int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
  77                                u64 fault_address, char *insn, int insn_len);
  78
  79int kvm_mmu_load(struct kvm_vcpu *vcpu);
  80void kvm_mmu_unload(struct kvm_vcpu *vcpu);
  81void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
  82void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu);
  83
  84static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
  85{
  86        if (likely(vcpu->arch.mmu->root_hpa != INVALID_PAGE))
  87                return 0;
  88
  89        return kvm_mmu_load(vcpu);
  90}
  91
  92static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
  93{
  94        BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
  95
  96        return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
  97               ? cr3 & X86_CR3_PCID_MASK
  98               : 0;
  99}
 100
 101static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
 102{
 103        return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
 104}
 105
 106static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
 107{
 108        u64 root_hpa = vcpu->arch.mmu->root_hpa;
 109
 110        if (!VALID_PAGE(root_hpa))
 111                return;
 112
 113        static_call(kvm_x86_load_mmu_pgd)(vcpu, root_hpa,
 114                                          vcpu->arch.mmu->shadow_root_level);
 115}
 116
 117struct kvm_page_fault {
 118        /* arguments to kvm_mmu_do_page_fault.  */
 119        const gpa_t addr;
 120        const u32 error_code;
 121        const bool prefetch;
 122
 123        /* Derived from error_code.  */
 124        const bool exec;
 125        const bool write;
 126        const bool present;
 127        const bool rsvd;
 128        const bool user;
 129
 130        /* Derived from mmu and global state.  */
 131        const bool is_tdp;
 132        const bool nx_huge_page_workaround_enabled;
 133
 134        /*
 135         * Whether a >4KB mapping can be created or is forbidden due to NX
 136         * hugepages.
 137         */
 138        bool huge_page_disallowed;
 139
 140        /*
 141         * Maximum page size that can be created for this fault; input to
 142         * FNAME(fetch), __direct_map and kvm_tdp_mmu_map.
 143         */
 144        u8 max_level;
 145
 146        /*
 147         * Page size that can be created based on the max_level and the
 148         * page size used by the host mapping.
 149         */
 150        u8 req_level;
 151
 152        /*
 153         * Page size that will be created based on the req_level and
 154         * huge_page_disallowed.
 155         */
 156        u8 goal_level;
 157
 158        /* Shifted addr, or result of guest page table walk if addr is a gva.  */
 159        gfn_t gfn;
 160
 161        /* The memslot containing gfn. May be NULL. */
 162        struct kvm_memory_slot *slot;
 163
 164        /* Outputs of kvm_faultin_pfn.  */
 165        kvm_pfn_t pfn;
 166        hva_t hva;
 167        bool map_writable;
 168};
 169
 170int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
 171
 172extern int nx_huge_pages;
 173static inline bool is_nx_huge_page_enabled(void)
 174{
 175        return READ_ONCE(nx_huge_pages);
 176}
 177
 178static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
 179                                        u32 err, bool prefetch)
 180{
 181        struct kvm_page_fault fault = {
 182                .addr = cr2_or_gpa,
 183                .error_code = err,
 184                .exec = err & PFERR_FETCH_MASK,
 185                .write = err & PFERR_WRITE_MASK,
 186                .present = err & PFERR_PRESENT_MASK,
 187                .rsvd = err & PFERR_RSVD_MASK,
 188                .user = err & PFERR_USER_MASK,
 189                .prefetch = prefetch,
 190                .is_tdp = likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault),
 191                .nx_huge_page_workaround_enabled = is_nx_huge_page_enabled(),
 192
 193                .max_level = KVM_MAX_HUGEPAGE_LEVEL,
 194                .req_level = PG_LEVEL_4K,
 195                .goal_level = PG_LEVEL_4K,
 196        };
 197#ifdef CONFIG_RETPOLINE
 198        if (fault.is_tdp)
 199                return kvm_tdp_page_fault(vcpu, &fault);
 200#endif
 201        return vcpu->arch.mmu->page_fault(vcpu, &fault);
 202}
 203
 204/*
 205 * Currently, we have two sorts of write-protection, a) the first one
 206 * write-protects guest page to sync the guest modification, b) another one is
 207 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
 208 * between these two sorts are:
 209 * 1) the first case clears MMU-writable bit.
 210 * 2) the first case requires flushing tlb immediately avoiding corrupting
 211 *    shadow page table between all vcpus so it should be in the protection of
 212 *    mmu-lock. And the another case does not need to flush tlb until returning
 213 *    the dirty bitmap to userspace since it only write-protects the page
 214 *    logged in the bitmap, that means the page in the dirty bitmap is not
 215 *    missed, so it can flush tlb out of mmu-lock.
 216 *
 217 * So, there is the problem: the first case can meet the corrupted tlb caused
 218 * by another case which write-protects pages but without flush tlb
 219 * immediately. In order to making the first case be aware this problem we let
 220 * it flush tlb if we try to write-protect a spte whose MMU-writable bit
 221 * is set, it works since another case never touches MMU-writable bit.
 222 *
 223 * Anyway, whenever a spte is updated (only permission and status bits are
 224 * changed) we need to check whether the spte with MMU-writable becomes
 225 * readonly, if that happens, we need to flush tlb. Fortunately,
 226 * mmu_spte_update() has already handled it perfectly.
 227 *
 228 * The rules to use MMU-writable and PT_WRITABLE_MASK:
 229 * - if we want to see if it has writable tlb entry or if the spte can be
 230 *   writable on the mmu mapping, check MMU-writable, this is the most
 231 *   case, otherwise
 232 * - if we fix page fault on the spte or do write-protection by dirty logging,
 233 *   check PT_WRITABLE_MASK.
 234 *
 235 * TODO: introduce APIs to split these two cases.
 236 */
 237static inline bool is_writable_pte(unsigned long pte)
 238{
 239        return pte & PT_WRITABLE_MASK;
 240}
 241
 242/*
 243 * Check if a given access (described through the I/D, W/R and U/S bits of a
 244 * page fault error code pfec) causes a permission fault with the given PTE
 245 * access rights (in ACC_* format).
 246 *
 247 * Return zero if the access does not fault; return the page fault error code
 248 * if the access faults.
 249 */
 250static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 251                                  unsigned pte_access, unsigned pte_pkey,
 252                                  unsigned pfec)
 253{
 254        int cpl = static_call(kvm_x86_get_cpl)(vcpu);
 255        unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
 256
 257        /*
 258         * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
 259         *
 260         * If CPL = 3, SMAP applies to all supervisor-mode data accesses
 261         * (these are implicit supervisor accesses) regardless of the value
 262         * of EFLAGS.AC.
 263         *
 264         * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
 265         * the result in X86_EFLAGS_AC. We then insert it in place of
 266         * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
 267         * but it will be one in index if SMAP checks are being overridden.
 268         * It is important to keep this branchless.
 269         */
 270        unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
 271        int index = (pfec >> 1) +
 272                    (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
 273        bool fault = (mmu->permissions[index] >> pte_access) & 1;
 274        u32 errcode = PFERR_PRESENT_MASK;
 275
 276        WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
 277        if (unlikely(mmu->pkru_mask)) {
 278                u32 pkru_bits, offset;
 279
 280                /*
 281                * PKRU defines 32 bits, there are 16 domains and 2
 282                * attribute bits per domain in pkru.  pte_pkey is the
 283                * index of the protection domain, so pte_pkey * 2 is
 284                * is the index of the first bit for the domain.
 285                */
 286                pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
 287
 288                /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
 289                offset = (pfec & ~1) +
 290                        ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
 291
 292                pkru_bits &= mmu->pkru_mask >> offset;
 293                errcode |= -pkru_bits & PFERR_PK_MASK;
 294                fault |= (pkru_bits != 0);
 295        }
 296
 297        return -(u32)fault & errcode;
 298}
 299
 300void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
 301
 302int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
 303
 304int kvm_mmu_post_init_vm(struct kvm *kvm);
 305void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
 306
 307static inline bool kvm_shadow_root_allocated(struct kvm *kvm)
 308{
 309        /*
 310         * Read shadow_root_allocated before related pointers. Hence, threads
 311         * reading shadow_root_allocated in any lock context are guaranteed to
 312         * see the pointers. Pairs with smp_store_release in
 313         * mmu_first_shadow_root_alloc.
 314         */
 315        return smp_load_acquire(&kvm->arch.shadow_root_allocated);
 316}
 317
 318#ifdef CONFIG_X86_64
 319static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return kvm->arch.tdp_mmu_enabled; }
 320#else
 321static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return false; }
 322#endif
 323
 324static inline bool kvm_memslots_have_rmaps(struct kvm *kvm)
 325{
 326        return !is_tdp_mmu_enabled(kvm) || kvm_shadow_root_allocated(kvm);
 327}
 328
 329static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
 330{
 331        /* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */
 332        return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
 333                (base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
 334}
 335
 336static inline unsigned long
 337__kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, unsigned long npages,
 338                      int level)
 339{
 340        return gfn_to_index(slot->base_gfn + npages - 1,
 341                            slot->base_gfn, level) + 1;
 342}
 343
 344static inline unsigned long
 345kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, int level)
 346{
 347        return __kvm_mmu_slot_lpages(slot, slot->npages, level);
 348}
 349
 350static inline void kvm_update_page_stats(struct kvm *kvm, int level, int count)
 351{
 352        atomic64_add(count, &kvm->stat.pages[level - 1]);
 353}
 354#endif
 355