linux/arch/x86/kvm/x86.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * derived from drivers/kvm/kvm_main.c
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright (C) 2008 Qumranet, Inc.
   9 * Copyright IBM Corporation, 2008
  10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11 *
  12 * Authors:
  13 *   Avi Kivity   <avi@qumranet.com>
  14 *   Yaniv Kamay  <yaniv@qumranet.com>
  15 *   Amit Shah    <amit.shah@qumranet.com>
  16 *   Ben-Ami Yassour <benami@il.ibm.com>
  17 */
  18
  19#include <linux/kvm_host.h>
  20#include "irq.h"
  21#include "ioapic.h"
  22#include "mmu.h"
  23#include "i8254.h"
  24#include "tss.h"
  25#include "kvm_cache_regs.h"
  26#include "kvm_emulate.h"
  27#include "x86.h"
  28#include "cpuid.h"
  29#include "pmu.h"
  30#include "hyperv.h"
  31#include "lapic.h"
  32#include "xen.h"
  33
  34#include <linux/clocksource.h>
  35#include <linux/interrupt.h>
  36#include <linux/kvm.h>
  37#include <linux/fs.h>
  38#include <linux/vmalloc.h>
  39#include <linux/export.h>
  40#include <linux/moduleparam.h>
  41#include <linux/mman.h>
  42#include <linux/highmem.h>
  43#include <linux/iommu.h>
  44#include <linux/intel-iommu.h>
  45#include <linux/cpufreq.h>
  46#include <linux/user-return-notifier.h>
  47#include <linux/srcu.h>
  48#include <linux/slab.h>
  49#include <linux/perf_event.h>
  50#include <linux/uaccess.h>
  51#include <linux/hash.h>
  52#include <linux/pci.h>
  53#include <linux/timekeeper_internal.h>
  54#include <linux/pvclock_gtod.h>
  55#include <linux/kvm_irqfd.h>
  56#include <linux/irqbypass.h>
  57#include <linux/sched/stat.h>
  58#include <linux/sched/isolation.h>
  59#include <linux/mem_encrypt.h>
  60#include <linux/entry-kvm.h>
  61#include <linux/suspend.h>
  62
  63#include <trace/events/kvm.h>
  64
  65#include <asm/debugreg.h>
  66#include <asm/msr.h>
  67#include <asm/desc.h>
  68#include <asm/mce.h>
  69#include <asm/pkru.h>
  70#include <linux/kernel_stat.h>
  71#include <asm/fpu/api.h>
  72#include <asm/fpu/xcr.h>
  73#include <asm/fpu/xstate.h>
  74#include <asm/pvclock.h>
  75#include <asm/div64.h>
  76#include <asm/irq_remapping.h>
  77#include <asm/mshyperv.h>
  78#include <asm/hypervisor.h>
  79#include <asm/tlbflush.h>
  80#include <asm/intel_pt.h>
  81#include <asm/emulate_prefix.h>
  82#include <asm/sgx.h>
  83#include <clocksource/hyperv_timer.h>
  84
  85#define CREATE_TRACE_POINTS
  86#include "trace.h"
  87
  88#define MAX_IO_MSRS 256
  89#define KVM_MAX_MCE_BANKS 32
  90u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
  91EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
  92
  93#define emul_to_vcpu(ctxt) \
  94        ((struct kvm_vcpu *)(ctxt)->vcpu)
  95
  96/* EFER defaults:
  97 * - enable syscall per default because its emulated by KVM
  98 * - enable LME and LMA per default on 64 bit KVM
  99 */
 100#ifdef CONFIG_X86_64
 101static
 102u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
 103#else
 104static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
 105#endif
 106
 107static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
 108
 109#define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
 110
 111#define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
 112                                    KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
 113
 114static void update_cr8_intercept(struct kvm_vcpu *vcpu);
 115static void process_nmi(struct kvm_vcpu *vcpu);
 116static void process_smi(struct kvm_vcpu *vcpu);
 117static void enter_smm(struct kvm_vcpu *vcpu);
 118static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
 119static void store_regs(struct kvm_vcpu *vcpu);
 120static int sync_regs(struct kvm_vcpu *vcpu);
 121
 122static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
 123static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
 124
 125struct kvm_x86_ops kvm_x86_ops __read_mostly;
 126EXPORT_SYMBOL_GPL(kvm_x86_ops);
 127
 128#define KVM_X86_OP(func)                                             \
 129        DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
 130                                *(((struct kvm_x86_ops *)0)->func));
 131#define KVM_X86_OP_NULL KVM_X86_OP
 132#include <asm/kvm-x86-ops.h>
 133EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
 134EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
 135EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
 136
 137static bool __read_mostly ignore_msrs = 0;
 138module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
 139
 140bool __read_mostly report_ignored_msrs = true;
 141module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
 142EXPORT_SYMBOL_GPL(report_ignored_msrs);
 143
 144unsigned int min_timer_period_us = 200;
 145module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
 146
 147static bool __read_mostly kvmclock_periodic_sync = true;
 148module_param(kvmclock_periodic_sync, bool, S_IRUGO);
 149
 150bool __read_mostly kvm_has_tsc_control;
 151EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
 152u32  __read_mostly kvm_max_guest_tsc_khz;
 153EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
 154u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
 155EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
 156u64  __read_mostly kvm_max_tsc_scaling_ratio;
 157EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
 158u64 __read_mostly kvm_default_tsc_scaling_ratio;
 159EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
 160bool __read_mostly kvm_has_bus_lock_exit;
 161EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
 162
 163/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
 164static u32 __read_mostly tsc_tolerance_ppm = 250;
 165module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
 166
 167/*
 168 * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
 169 * adaptive tuning starting from default advancement of 1000ns.  '0' disables
 170 * advancement entirely.  Any other value is used as-is and disables adaptive
 171 * tuning, i.e. allows privileged userspace to set an exact advancement time.
 172 */
 173static int __read_mostly lapic_timer_advance_ns = -1;
 174module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
 175
 176static bool __read_mostly vector_hashing = true;
 177module_param(vector_hashing, bool, S_IRUGO);
 178
 179bool __read_mostly enable_vmware_backdoor = false;
 180module_param(enable_vmware_backdoor, bool, S_IRUGO);
 181EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
 182
 183static bool __read_mostly force_emulation_prefix = false;
 184module_param(force_emulation_prefix, bool, S_IRUGO);
 185
 186int __read_mostly pi_inject_timer = -1;
 187module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
 188
 189/*
 190 * Restoring the host value for MSRs that are only consumed when running in
 191 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
 192 * returns to userspace, i.e. the kernel can run with the guest's value.
 193 */
 194#define KVM_MAX_NR_USER_RETURN_MSRS 16
 195
 196struct kvm_user_return_msrs {
 197        struct user_return_notifier urn;
 198        bool registered;
 199        struct kvm_user_return_msr_values {
 200                u64 host;
 201                u64 curr;
 202        } values[KVM_MAX_NR_USER_RETURN_MSRS];
 203};
 204
 205u32 __read_mostly kvm_nr_uret_msrs;
 206EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
 207static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
 208static struct kvm_user_return_msrs __percpu *user_return_msrs;
 209
 210#define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
 211                                | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
 212                                | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
 213                                | XFEATURE_MASK_PKRU)
 214
 215u64 __read_mostly host_efer;
 216EXPORT_SYMBOL_GPL(host_efer);
 217
 218bool __read_mostly allow_smaller_maxphyaddr = 0;
 219EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
 220
 221bool __read_mostly enable_apicv = true;
 222EXPORT_SYMBOL_GPL(enable_apicv);
 223
 224u64 __read_mostly host_xss;
 225EXPORT_SYMBOL_GPL(host_xss);
 226u64 __read_mostly supported_xss;
 227EXPORT_SYMBOL_GPL(supported_xss);
 228
 229const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
 230        KVM_GENERIC_VM_STATS(),
 231        STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
 232        STATS_DESC_COUNTER(VM, mmu_pte_write),
 233        STATS_DESC_COUNTER(VM, mmu_pde_zapped),
 234        STATS_DESC_COUNTER(VM, mmu_flooded),
 235        STATS_DESC_COUNTER(VM, mmu_recycled),
 236        STATS_DESC_COUNTER(VM, mmu_cache_miss),
 237        STATS_DESC_ICOUNTER(VM, mmu_unsync),
 238        STATS_DESC_ICOUNTER(VM, pages_4k),
 239        STATS_DESC_ICOUNTER(VM, pages_2m),
 240        STATS_DESC_ICOUNTER(VM, pages_1g),
 241        STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
 242        STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
 243        STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
 244};
 245
 246const struct kvm_stats_header kvm_vm_stats_header = {
 247        .name_size = KVM_STATS_NAME_SIZE,
 248        .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
 249        .id_offset = sizeof(struct kvm_stats_header),
 250        .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
 251        .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
 252                       sizeof(kvm_vm_stats_desc),
 253};
 254
 255const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
 256        KVM_GENERIC_VCPU_STATS(),
 257        STATS_DESC_COUNTER(VCPU, pf_fixed),
 258        STATS_DESC_COUNTER(VCPU, pf_guest),
 259        STATS_DESC_COUNTER(VCPU, tlb_flush),
 260        STATS_DESC_COUNTER(VCPU, invlpg),
 261        STATS_DESC_COUNTER(VCPU, exits),
 262        STATS_DESC_COUNTER(VCPU, io_exits),
 263        STATS_DESC_COUNTER(VCPU, mmio_exits),
 264        STATS_DESC_COUNTER(VCPU, signal_exits),
 265        STATS_DESC_COUNTER(VCPU, irq_window_exits),
 266        STATS_DESC_COUNTER(VCPU, nmi_window_exits),
 267        STATS_DESC_COUNTER(VCPU, l1d_flush),
 268        STATS_DESC_COUNTER(VCPU, halt_exits),
 269        STATS_DESC_COUNTER(VCPU, request_irq_exits),
 270        STATS_DESC_COUNTER(VCPU, irq_exits),
 271        STATS_DESC_COUNTER(VCPU, host_state_reload),
 272        STATS_DESC_COUNTER(VCPU, fpu_reload),
 273        STATS_DESC_COUNTER(VCPU, insn_emulation),
 274        STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
 275        STATS_DESC_COUNTER(VCPU, hypercalls),
 276        STATS_DESC_COUNTER(VCPU, irq_injections),
 277        STATS_DESC_COUNTER(VCPU, nmi_injections),
 278        STATS_DESC_COUNTER(VCPU, req_event),
 279        STATS_DESC_COUNTER(VCPU, nested_run),
 280        STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
 281        STATS_DESC_COUNTER(VCPU, directed_yield_successful),
 282        STATS_DESC_ICOUNTER(VCPU, guest_mode)
 283};
 284
 285const struct kvm_stats_header kvm_vcpu_stats_header = {
 286        .name_size = KVM_STATS_NAME_SIZE,
 287        .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
 288        .id_offset = sizeof(struct kvm_stats_header),
 289        .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
 290        .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
 291                       sizeof(kvm_vcpu_stats_desc),
 292};
 293
 294u64 __read_mostly host_xcr0;
 295u64 __read_mostly supported_xcr0;
 296EXPORT_SYMBOL_GPL(supported_xcr0);
 297
 298static struct kmem_cache *x86_emulator_cache;
 299
 300/*
 301 * When called, it means the previous get/set msr reached an invalid msr.
 302 * Return true if we want to ignore/silent this failed msr access.
 303 */
 304static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
 305{
 306        const char *op = write ? "wrmsr" : "rdmsr";
 307
 308        if (ignore_msrs) {
 309                if (report_ignored_msrs)
 310                        kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
 311                                      op, msr, data);
 312                /* Mask the error */
 313                return true;
 314        } else {
 315                kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
 316                                      op, msr, data);
 317                return false;
 318        }
 319}
 320
 321static struct kmem_cache *kvm_alloc_emulator_cache(void)
 322{
 323        unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
 324        unsigned int size = sizeof(struct x86_emulate_ctxt);
 325
 326        return kmem_cache_create_usercopy("x86_emulator", size,
 327                                          __alignof__(struct x86_emulate_ctxt),
 328                                          SLAB_ACCOUNT, useroffset,
 329                                          size - useroffset, NULL);
 330}
 331
 332static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
 333
 334static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
 335{
 336        int i;
 337        for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
 338                vcpu->arch.apf.gfns[i] = ~0;
 339}
 340
 341static void kvm_on_user_return(struct user_return_notifier *urn)
 342{
 343        unsigned slot;
 344        struct kvm_user_return_msrs *msrs
 345                = container_of(urn, struct kvm_user_return_msrs, urn);
 346        struct kvm_user_return_msr_values *values;
 347        unsigned long flags;
 348
 349        /*
 350         * Disabling irqs at this point since the following code could be
 351         * interrupted and executed through kvm_arch_hardware_disable()
 352         */
 353        local_irq_save(flags);
 354        if (msrs->registered) {
 355                msrs->registered = false;
 356                user_return_notifier_unregister(urn);
 357        }
 358        local_irq_restore(flags);
 359        for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
 360                values = &msrs->values[slot];
 361                if (values->host != values->curr) {
 362                        wrmsrl(kvm_uret_msrs_list[slot], values->host);
 363                        values->curr = values->host;
 364                }
 365        }
 366}
 367
 368static int kvm_probe_user_return_msr(u32 msr)
 369{
 370        u64 val;
 371        int ret;
 372
 373        preempt_disable();
 374        ret = rdmsrl_safe(msr, &val);
 375        if (ret)
 376                goto out;
 377        ret = wrmsrl_safe(msr, val);
 378out:
 379        preempt_enable();
 380        return ret;
 381}
 382
 383int kvm_add_user_return_msr(u32 msr)
 384{
 385        BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
 386
 387        if (kvm_probe_user_return_msr(msr))
 388                return -1;
 389
 390        kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
 391        return kvm_nr_uret_msrs++;
 392}
 393EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
 394
 395int kvm_find_user_return_msr(u32 msr)
 396{
 397        int i;
 398
 399        for (i = 0; i < kvm_nr_uret_msrs; ++i) {
 400                if (kvm_uret_msrs_list[i] == msr)
 401                        return i;
 402        }
 403        return -1;
 404}
 405EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
 406
 407static void kvm_user_return_msr_cpu_online(void)
 408{
 409        unsigned int cpu = smp_processor_id();
 410        struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
 411        u64 value;
 412        int i;
 413
 414        for (i = 0; i < kvm_nr_uret_msrs; ++i) {
 415                rdmsrl_safe(kvm_uret_msrs_list[i], &value);
 416                msrs->values[i].host = value;
 417                msrs->values[i].curr = value;
 418        }
 419}
 420
 421int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
 422{
 423        unsigned int cpu = smp_processor_id();
 424        struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
 425        int err;
 426
 427        value = (value & mask) | (msrs->values[slot].host & ~mask);
 428        if (value == msrs->values[slot].curr)
 429                return 0;
 430        err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
 431        if (err)
 432                return 1;
 433
 434        msrs->values[slot].curr = value;
 435        if (!msrs->registered) {
 436                msrs->urn.on_user_return = kvm_on_user_return;
 437                user_return_notifier_register(&msrs->urn);
 438                msrs->registered = true;
 439        }
 440        return 0;
 441}
 442EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
 443
 444static void drop_user_return_notifiers(void)
 445{
 446        unsigned int cpu = smp_processor_id();
 447        struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
 448
 449        if (msrs->registered)
 450                kvm_on_user_return(&msrs->urn);
 451}
 452
 453u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
 454{
 455        return vcpu->arch.apic_base;
 456}
 457EXPORT_SYMBOL_GPL(kvm_get_apic_base);
 458
 459enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
 460{
 461        return kvm_apic_mode(kvm_get_apic_base(vcpu));
 462}
 463EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
 464
 465int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
 466{
 467        enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
 468        enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
 469        u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
 470                (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
 471
 472        if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
 473                return 1;
 474        if (!msr_info->host_initiated) {
 475                if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
 476                        return 1;
 477                if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
 478                        return 1;
 479        }
 480
 481        kvm_lapic_set_base(vcpu, msr_info->data);
 482        kvm_recalculate_apic_map(vcpu->kvm);
 483        return 0;
 484}
 485EXPORT_SYMBOL_GPL(kvm_set_apic_base);
 486
 487/*
 488 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
 489 *
 490 * Hardware virtualization extension instructions may fault if a reboot turns
 491 * off virtualization while processes are running.  Usually after catching the
 492 * fault we just panic; during reboot instead the instruction is ignored.
 493 */
 494noinstr void kvm_spurious_fault(void)
 495{
 496        /* Fault while not rebooting.  We want the trace. */
 497        BUG_ON(!kvm_rebooting);
 498}
 499EXPORT_SYMBOL_GPL(kvm_spurious_fault);
 500
 501#define EXCPT_BENIGN            0
 502#define EXCPT_CONTRIBUTORY      1
 503#define EXCPT_PF                2
 504
 505static int exception_class(int vector)
 506{
 507        switch (vector) {
 508        case PF_VECTOR:
 509                return EXCPT_PF;
 510        case DE_VECTOR:
 511        case TS_VECTOR:
 512        case NP_VECTOR:
 513        case SS_VECTOR:
 514        case GP_VECTOR:
 515                return EXCPT_CONTRIBUTORY;
 516        default:
 517                break;
 518        }
 519        return EXCPT_BENIGN;
 520}
 521
 522#define EXCPT_FAULT             0
 523#define EXCPT_TRAP              1
 524#define EXCPT_ABORT             2
 525#define EXCPT_INTERRUPT         3
 526
 527static int exception_type(int vector)
 528{
 529        unsigned int mask;
 530
 531        if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
 532                return EXCPT_INTERRUPT;
 533
 534        mask = 1 << vector;
 535
 536        /* #DB is trap, as instruction watchpoints are handled elsewhere */
 537        if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
 538                return EXCPT_TRAP;
 539
 540        if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
 541                return EXCPT_ABORT;
 542
 543        /* Reserved exceptions will result in fault */
 544        return EXCPT_FAULT;
 545}
 546
 547void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
 548{
 549        unsigned nr = vcpu->arch.exception.nr;
 550        bool has_payload = vcpu->arch.exception.has_payload;
 551        unsigned long payload = vcpu->arch.exception.payload;
 552
 553        if (!has_payload)
 554                return;
 555
 556        switch (nr) {
 557        case DB_VECTOR:
 558                /*
 559                 * "Certain debug exceptions may clear bit 0-3.  The
 560                 * remaining contents of the DR6 register are never
 561                 * cleared by the processor".
 562                 */
 563                vcpu->arch.dr6 &= ~DR_TRAP_BITS;
 564                /*
 565                 * In order to reflect the #DB exception payload in guest
 566                 * dr6, three components need to be considered: active low
 567                 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
 568                 * DR6_BS and DR6_BT)
 569                 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
 570                 * In the target guest dr6:
 571                 * FIXED_1 bits should always be set.
 572                 * Active low bits should be cleared if 1-setting in payload.
 573                 * Active high bits should be set if 1-setting in payload.
 574                 *
 575                 * Note, the payload is compatible with the pending debug
 576                 * exceptions/exit qualification under VMX, that active_low bits
 577                 * are active high in payload.
 578                 * So they need to be flipped for DR6.
 579                 */
 580                vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
 581                vcpu->arch.dr6 |= payload;
 582                vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
 583
 584                /*
 585                 * The #DB payload is defined as compatible with the 'pending
 586                 * debug exceptions' field under VMX, not DR6. While bit 12 is
 587                 * defined in the 'pending debug exceptions' field (enabled
 588                 * breakpoint), it is reserved and must be zero in DR6.
 589                 */
 590                vcpu->arch.dr6 &= ~BIT(12);
 591                break;
 592        case PF_VECTOR:
 593                vcpu->arch.cr2 = payload;
 594                break;
 595        }
 596
 597        vcpu->arch.exception.has_payload = false;
 598        vcpu->arch.exception.payload = 0;
 599}
 600EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
 601
 602static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
 603                unsigned nr, bool has_error, u32 error_code,
 604                bool has_payload, unsigned long payload, bool reinject)
 605{
 606        u32 prev_nr;
 607        int class1, class2;
 608
 609        kvm_make_request(KVM_REQ_EVENT, vcpu);
 610
 611        if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
 612        queue:
 613                if (reinject) {
 614                        /*
 615                         * On vmentry, vcpu->arch.exception.pending is only
 616                         * true if an event injection was blocked by
 617                         * nested_run_pending.  In that case, however,
 618                         * vcpu_enter_guest requests an immediate exit,
 619                         * and the guest shouldn't proceed far enough to
 620                         * need reinjection.
 621                         */
 622                        WARN_ON_ONCE(vcpu->arch.exception.pending);
 623                        vcpu->arch.exception.injected = true;
 624                        if (WARN_ON_ONCE(has_payload)) {
 625                                /*
 626                                 * A reinjected event has already
 627                                 * delivered its payload.
 628                                 */
 629                                has_payload = false;
 630                                payload = 0;
 631                        }
 632                } else {
 633                        vcpu->arch.exception.pending = true;
 634                        vcpu->arch.exception.injected = false;
 635                }
 636                vcpu->arch.exception.has_error_code = has_error;
 637                vcpu->arch.exception.nr = nr;
 638                vcpu->arch.exception.error_code = error_code;
 639                vcpu->arch.exception.has_payload = has_payload;
 640                vcpu->arch.exception.payload = payload;
 641                if (!is_guest_mode(vcpu))
 642                        kvm_deliver_exception_payload(vcpu);
 643                return;
 644        }
 645
 646        /* to check exception */
 647        prev_nr = vcpu->arch.exception.nr;
 648        if (prev_nr == DF_VECTOR) {
 649                /* triple fault -> shutdown */
 650                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 651                return;
 652        }
 653        class1 = exception_class(prev_nr);
 654        class2 = exception_class(nr);
 655        if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
 656                || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
 657                /*
 658                 * Generate double fault per SDM Table 5-5.  Set
 659                 * exception.pending = true so that the double fault
 660                 * can trigger a nested vmexit.
 661                 */
 662                vcpu->arch.exception.pending = true;
 663                vcpu->arch.exception.injected = false;
 664                vcpu->arch.exception.has_error_code = true;
 665                vcpu->arch.exception.nr = DF_VECTOR;
 666                vcpu->arch.exception.error_code = 0;
 667                vcpu->arch.exception.has_payload = false;
 668                vcpu->arch.exception.payload = 0;
 669        } else
 670                /* replace previous exception with a new one in a hope
 671                   that instruction re-execution will regenerate lost
 672                   exception */
 673                goto queue;
 674}
 675
 676void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 677{
 678        kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
 679}
 680EXPORT_SYMBOL_GPL(kvm_queue_exception);
 681
 682void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 683{
 684        kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
 685}
 686EXPORT_SYMBOL_GPL(kvm_requeue_exception);
 687
 688void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
 689                           unsigned long payload)
 690{
 691        kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
 692}
 693EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
 694
 695static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
 696                                    u32 error_code, unsigned long payload)
 697{
 698        kvm_multiple_exception(vcpu, nr, true, error_code,
 699                               true, payload, false);
 700}
 701
 702int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
 703{
 704        if (err)
 705                kvm_inject_gp(vcpu, 0);
 706        else
 707                return kvm_skip_emulated_instruction(vcpu);
 708
 709        return 1;
 710}
 711EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
 712
 713void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 714{
 715        ++vcpu->stat.pf_guest;
 716        vcpu->arch.exception.nested_apf =
 717                is_guest_mode(vcpu) && fault->async_page_fault;
 718        if (vcpu->arch.exception.nested_apf) {
 719                vcpu->arch.apf.nested_apf_token = fault->address;
 720                kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
 721        } else {
 722                kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
 723                                        fault->address);
 724        }
 725}
 726EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
 727
 728bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
 729                                    struct x86_exception *fault)
 730{
 731        struct kvm_mmu *fault_mmu;
 732        WARN_ON_ONCE(fault->vector != PF_VECTOR);
 733
 734        fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
 735                                               vcpu->arch.walk_mmu;
 736
 737        /*
 738         * Invalidate the TLB entry for the faulting address, if it exists,
 739         * else the access will fault indefinitely (and to emulate hardware).
 740         */
 741        if ((fault->error_code & PFERR_PRESENT_MASK) &&
 742            !(fault->error_code & PFERR_RSVD_MASK))
 743                kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
 744                                       fault_mmu->root_hpa);
 745
 746        fault_mmu->inject_page_fault(vcpu, fault);
 747        return fault->nested_page_fault;
 748}
 749EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
 750
 751void kvm_inject_nmi(struct kvm_vcpu *vcpu)
 752{
 753        atomic_inc(&vcpu->arch.nmi_queued);
 754        kvm_make_request(KVM_REQ_NMI, vcpu);
 755}
 756EXPORT_SYMBOL_GPL(kvm_inject_nmi);
 757
 758void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 759{
 760        kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
 761}
 762EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
 763
 764void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 765{
 766        kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
 767}
 768EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
 769
 770/*
 771 * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
 772 * a #GP and return false.
 773 */
 774bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
 775{
 776        if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
 777                return true;
 778        kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
 779        return false;
 780}
 781EXPORT_SYMBOL_GPL(kvm_require_cpl);
 782
 783bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
 784{
 785        if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 786                return true;
 787
 788        kvm_queue_exception(vcpu, UD_VECTOR);
 789        return false;
 790}
 791EXPORT_SYMBOL_GPL(kvm_require_dr);
 792
 793static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
 794{
 795        return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
 796}
 797
 798/*
 799 * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
 800 */
 801int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
 802{
 803        gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
 804        gpa_t real_gpa;
 805        int i;
 806        int ret;
 807        u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
 808
 809        /*
 810         * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
 811         * to an L1 GPA.
 812         */
 813        real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(pdpt_gfn),
 814                                      PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
 815        if (real_gpa == UNMAPPED_GVA)
 816                return 0;
 817
 818        /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
 819        ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
 820                                       cr3 & GENMASK(11, 5), sizeof(pdpte));
 821        if (ret < 0)
 822                return 0;
 823
 824        for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
 825                if ((pdpte[i] & PT_PRESENT_MASK) &&
 826                    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
 827                        return 0;
 828                }
 829        }
 830
 831        memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
 832        kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
 833        vcpu->arch.pdptrs_from_userspace = false;
 834
 835        return 1;
 836}
 837EXPORT_SYMBOL_GPL(load_pdptrs);
 838
 839void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
 840{
 841        if ((cr0 ^ old_cr0) & X86_CR0_PG) {
 842                kvm_clear_async_pf_completion_queue(vcpu);
 843                kvm_async_pf_hash_reset(vcpu);
 844        }
 845
 846        if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
 847                kvm_mmu_reset_context(vcpu);
 848
 849        if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
 850            kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
 851            !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
 852                kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
 853}
 854EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
 855
 856int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
 857{
 858        unsigned long old_cr0 = kvm_read_cr0(vcpu);
 859        unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
 860
 861        cr0 |= X86_CR0_ET;
 862
 863#ifdef CONFIG_X86_64
 864        if (cr0 & 0xffffffff00000000UL)
 865                return 1;
 866#endif
 867
 868        cr0 &= ~CR0_RESERVED_BITS;
 869
 870        if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
 871                return 1;
 872
 873        if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
 874                return 1;
 875
 876#ifdef CONFIG_X86_64
 877        if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
 878            (cr0 & X86_CR0_PG)) {
 879                int cs_db, cs_l;
 880
 881                if (!is_pae(vcpu))
 882                        return 1;
 883                static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
 884                if (cs_l)
 885                        return 1;
 886        }
 887#endif
 888        if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
 889            is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
 890            !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
 891                return 1;
 892
 893        if (!(cr0 & X86_CR0_PG) &&
 894            (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
 895                return 1;
 896
 897        static_call(kvm_x86_set_cr0)(vcpu, cr0);
 898
 899        kvm_post_set_cr0(vcpu, old_cr0, cr0);
 900
 901        return 0;
 902}
 903EXPORT_SYMBOL_GPL(kvm_set_cr0);
 904
 905void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
 906{
 907        (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
 908}
 909EXPORT_SYMBOL_GPL(kvm_lmsw);
 910
 911void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
 912{
 913        if (vcpu->arch.guest_state_protected)
 914                return;
 915
 916        if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
 917
 918                if (vcpu->arch.xcr0 != host_xcr0)
 919                        xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
 920
 921                if (vcpu->arch.xsaves_enabled &&
 922                    vcpu->arch.ia32_xss != host_xss)
 923                        wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
 924        }
 925
 926        if (static_cpu_has(X86_FEATURE_PKU) &&
 927            (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
 928             (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
 929            vcpu->arch.pkru != vcpu->arch.host_pkru)
 930                write_pkru(vcpu->arch.pkru);
 931}
 932EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
 933
 934void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
 935{
 936        if (vcpu->arch.guest_state_protected)
 937                return;
 938
 939        if (static_cpu_has(X86_FEATURE_PKU) &&
 940            (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
 941             (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
 942                vcpu->arch.pkru = rdpkru();
 943                if (vcpu->arch.pkru != vcpu->arch.host_pkru)
 944                        write_pkru(vcpu->arch.host_pkru);
 945        }
 946
 947        if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
 948
 949                if (vcpu->arch.xcr0 != host_xcr0)
 950                        xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
 951
 952                if (vcpu->arch.xsaves_enabled &&
 953                    vcpu->arch.ia32_xss != host_xss)
 954                        wrmsrl(MSR_IA32_XSS, host_xss);
 955        }
 956
 957}
 958EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
 959
 960static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 961{
 962        u64 xcr0 = xcr;
 963        u64 old_xcr0 = vcpu->arch.xcr0;
 964        u64 valid_bits;
 965
 966        /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
 967        if (index != XCR_XFEATURE_ENABLED_MASK)
 968                return 1;
 969        if (!(xcr0 & XFEATURE_MASK_FP))
 970                return 1;
 971        if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
 972                return 1;
 973
 974        /*
 975         * Do not allow the guest to set bits that we do not support
 976         * saving.  However, xcr0 bit 0 is always set, even if the
 977         * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
 978         */
 979        valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
 980        if (xcr0 & ~valid_bits)
 981                return 1;
 982
 983        if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
 984            (!(xcr0 & XFEATURE_MASK_BNDCSR)))
 985                return 1;
 986
 987        if (xcr0 & XFEATURE_MASK_AVX512) {
 988                if (!(xcr0 & XFEATURE_MASK_YMM))
 989                        return 1;
 990                if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
 991                        return 1;
 992        }
 993        vcpu->arch.xcr0 = xcr0;
 994
 995        if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
 996                kvm_update_cpuid_runtime(vcpu);
 997        return 0;
 998}
 999
1000int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1001{
1002        if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1003            __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1004                kvm_inject_gp(vcpu, 0);
1005                return 1;
1006        }
1007
1008        return kvm_skip_emulated_instruction(vcpu);
1009}
1010EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1011
1012bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1013{
1014        if (cr4 & cr4_reserved_bits)
1015                return false;
1016
1017        if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1018                return false;
1019
1020        return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1021}
1022EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1023
1024void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1025{
1026        /*
1027         * If any role bit is changed, the MMU needs to be reset.
1028         *
1029         * If CR4.PCIDE is changed 1 -> 0, the guest TLB must be flushed.
1030         * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1031         * according to the SDM; however, stale prev_roots could be reused
1032         * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1033         * free them all.  KVM_REQ_MMU_RELOAD is fit for the both cases; it
1034         * is slow, but changing CR4.PCIDE is a rare case.
1035         *
1036         * If CR4.PGE is changed, the guest TLB must be flushed.
1037         *
1038         * Note: resetting MMU is a superset of KVM_REQ_MMU_RELOAD and
1039         * KVM_REQ_MMU_RELOAD is a superset of KVM_REQ_TLB_FLUSH_GUEST, hence
1040         * the usage of "else if".
1041         */
1042        if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1043                kvm_mmu_reset_context(vcpu);
1044        else if ((cr4 ^ old_cr4) & X86_CR4_PCIDE)
1045                kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
1046        else if ((cr4 ^ old_cr4) & X86_CR4_PGE)
1047                kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1048}
1049EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1050
1051int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1052{
1053        unsigned long old_cr4 = kvm_read_cr4(vcpu);
1054        unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1055                                   X86_CR4_SMEP;
1056
1057        if (!kvm_is_valid_cr4(vcpu, cr4))
1058                return 1;
1059
1060        if (is_long_mode(vcpu)) {
1061                if (!(cr4 & X86_CR4_PAE))
1062                        return 1;
1063                if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1064                        return 1;
1065        } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1066                   && ((cr4 ^ old_cr4) & pdptr_bits)
1067                   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1068                                   kvm_read_cr3(vcpu)))
1069                return 1;
1070
1071        if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1072                if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1073                        return 1;
1074
1075                /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1076                if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1077                        return 1;
1078        }
1079
1080        static_call(kvm_x86_set_cr4)(vcpu, cr4);
1081
1082        kvm_post_set_cr4(vcpu, old_cr4, cr4);
1083
1084        return 0;
1085}
1086EXPORT_SYMBOL_GPL(kvm_set_cr4);
1087
1088static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1089{
1090        struct kvm_mmu *mmu = vcpu->arch.mmu;
1091        unsigned long roots_to_free = 0;
1092        int i;
1093
1094        /*
1095         * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1096         * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1097         * also via the emulator.  KVM's TDP page tables are not in the scope of
1098         * the invalidation, but the guest's TLB entries need to be flushed as
1099         * the CPU may have cached entries in its TLB for the target PCID.
1100         */
1101        if (unlikely(tdp_enabled)) {
1102                kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1103                return;
1104        }
1105
1106        /*
1107         * If neither the current CR3 nor any of the prev_roots use the given
1108         * PCID, then nothing needs to be done here because a resync will
1109         * happen anyway before switching to any other CR3.
1110         */
1111        if (kvm_get_active_pcid(vcpu) == pcid) {
1112                kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1113                kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1114        }
1115
1116        /*
1117         * If PCID is disabled, there is no need to free prev_roots even if the
1118         * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1119         * with PCIDE=0.
1120         */
1121        if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1122                return;
1123
1124        for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1125                if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1126                        roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1127
1128        kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1129}
1130
1131int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1132{
1133        bool skip_tlb_flush = false;
1134        unsigned long pcid = 0;
1135#ifdef CONFIG_X86_64
1136        bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1137
1138        if (pcid_enabled) {
1139                skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1140                cr3 &= ~X86_CR3_PCID_NOFLUSH;
1141                pcid = cr3 & X86_CR3_PCID_MASK;
1142        }
1143#endif
1144
1145        /* PDPTRs are always reloaded for PAE paging. */
1146        if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1147                goto handle_tlb_flush;
1148
1149        /*
1150         * Do not condition the GPA check on long mode, this helper is used to
1151         * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1152         * the current vCPU mode is accurate.
1153         */
1154        if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1155                return 1;
1156
1157        if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1158                return 1;
1159
1160        if (cr3 != kvm_read_cr3(vcpu))
1161                kvm_mmu_new_pgd(vcpu, cr3);
1162
1163        vcpu->arch.cr3 = cr3;
1164        kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1165
1166handle_tlb_flush:
1167        /*
1168         * A load of CR3 that flushes the TLB flushes only the current PCID,
1169         * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1170         * moot point in the end because _disabling_ PCID will flush all PCIDs,
1171         * and it's impossible to use a non-zero PCID when PCID is disabled,
1172         * i.e. only PCID=0 can be relevant.
1173         */
1174        if (!skip_tlb_flush)
1175                kvm_invalidate_pcid(vcpu, pcid);
1176
1177        return 0;
1178}
1179EXPORT_SYMBOL_GPL(kvm_set_cr3);
1180
1181int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1182{
1183        if (cr8 & CR8_RESERVED_BITS)
1184                return 1;
1185        if (lapic_in_kernel(vcpu))
1186                kvm_lapic_set_tpr(vcpu, cr8);
1187        else
1188                vcpu->arch.cr8 = cr8;
1189        return 0;
1190}
1191EXPORT_SYMBOL_GPL(kvm_set_cr8);
1192
1193unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1194{
1195        if (lapic_in_kernel(vcpu))
1196                return kvm_lapic_get_cr8(vcpu);
1197        else
1198                return vcpu->arch.cr8;
1199}
1200EXPORT_SYMBOL_GPL(kvm_get_cr8);
1201
1202static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1203{
1204        int i;
1205
1206        if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1207                for (i = 0; i < KVM_NR_DB_REGS; i++)
1208                        vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1209        }
1210}
1211
1212void kvm_update_dr7(struct kvm_vcpu *vcpu)
1213{
1214        unsigned long dr7;
1215
1216        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1217                dr7 = vcpu->arch.guest_debug_dr7;
1218        else
1219                dr7 = vcpu->arch.dr7;
1220        static_call(kvm_x86_set_dr7)(vcpu, dr7);
1221        vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1222        if (dr7 & DR7_BP_EN_MASK)
1223                vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1224}
1225EXPORT_SYMBOL_GPL(kvm_update_dr7);
1226
1227static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1228{
1229        u64 fixed = DR6_FIXED_1;
1230
1231        if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1232                fixed |= DR6_RTM;
1233
1234        if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1235                fixed |= DR6_BUS_LOCK;
1236        return fixed;
1237}
1238
1239int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1240{
1241        size_t size = ARRAY_SIZE(vcpu->arch.db);
1242
1243        switch (dr) {
1244        case 0 ... 3:
1245                vcpu->arch.db[array_index_nospec(dr, size)] = val;
1246                if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1247                        vcpu->arch.eff_db[dr] = val;
1248                break;
1249        case 4:
1250        case 6:
1251                if (!kvm_dr6_valid(val))
1252                        return 1; /* #GP */
1253                vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1254                break;
1255        case 5:
1256        default: /* 7 */
1257                if (!kvm_dr7_valid(val))
1258                        return 1; /* #GP */
1259                vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1260                kvm_update_dr7(vcpu);
1261                break;
1262        }
1263
1264        return 0;
1265}
1266EXPORT_SYMBOL_GPL(kvm_set_dr);
1267
1268void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1269{
1270        size_t size = ARRAY_SIZE(vcpu->arch.db);
1271
1272        switch (dr) {
1273        case 0 ... 3:
1274                *val = vcpu->arch.db[array_index_nospec(dr, size)];
1275                break;
1276        case 4:
1277        case 6:
1278                *val = vcpu->arch.dr6;
1279                break;
1280        case 5:
1281        default: /* 7 */
1282                *val = vcpu->arch.dr7;
1283                break;
1284        }
1285}
1286EXPORT_SYMBOL_GPL(kvm_get_dr);
1287
1288int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1289{
1290        u32 ecx = kvm_rcx_read(vcpu);
1291        u64 data;
1292
1293        if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1294                kvm_inject_gp(vcpu, 0);
1295                return 1;
1296        }
1297
1298        kvm_rax_write(vcpu, (u32)data);
1299        kvm_rdx_write(vcpu, data >> 32);
1300        return kvm_skip_emulated_instruction(vcpu);
1301}
1302EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1303
1304/*
1305 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1306 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1307 *
1308 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1309 * extract the supported MSRs from the related const lists.
1310 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1311 * capabilities of the host cpu. This capabilities test skips MSRs that are
1312 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1313 * may depend on host virtualization features rather than host cpu features.
1314 */
1315
1316static const u32 msrs_to_save_all[] = {
1317        MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1318        MSR_STAR,
1319#ifdef CONFIG_X86_64
1320        MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1321#endif
1322        MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1323        MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1324        MSR_IA32_SPEC_CTRL,
1325        MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1326        MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1327        MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1328        MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1329        MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1330        MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1331        MSR_IA32_UMWAIT_CONTROL,
1332
1333        MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1334        MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1335        MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1336        MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1337        MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1338        MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1339        MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1340        MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1341        MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1342        MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1343        MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1344        MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1345        MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1346        MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1347        MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1348        MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1349        MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1350        MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1351        MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1352        MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1353        MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1354        MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1355
1356        MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1357        MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1358        MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1359        MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1360        MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1361        MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1362};
1363
1364static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1365static unsigned num_msrs_to_save;
1366
1367static const u32 emulated_msrs_all[] = {
1368        MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1369        MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1370        HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1371        HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1372        HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1373        HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1374        HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1375        HV_X64_MSR_RESET,
1376        HV_X64_MSR_VP_INDEX,
1377        HV_X64_MSR_VP_RUNTIME,
1378        HV_X64_MSR_SCONTROL,
1379        HV_X64_MSR_STIMER0_CONFIG,
1380        HV_X64_MSR_VP_ASSIST_PAGE,
1381        HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1382        HV_X64_MSR_TSC_EMULATION_STATUS,
1383        HV_X64_MSR_SYNDBG_OPTIONS,
1384        HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1385        HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1386        HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1387
1388        MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1389        MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1390
1391        MSR_IA32_TSC_ADJUST,
1392        MSR_IA32_TSC_DEADLINE,
1393        MSR_IA32_ARCH_CAPABILITIES,
1394        MSR_IA32_PERF_CAPABILITIES,
1395        MSR_IA32_MISC_ENABLE,
1396        MSR_IA32_MCG_STATUS,
1397        MSR_IA32_MCG_CTL,
1398        MSR_IA32_MCG_EXT_CTL,
1399        MSR_IA32_SMBASE,
1400        MSR_SMI_COUNT,
1401        MSR_PLATFORM_INFO,
1402        MSR_MISC_FEATURES_ENABLES,
1403        MSR_AMD64_VIRT_SPEC_CTRL,
1404        MSR_AMD64_TSC_RATIO,
1405        MSR_IA32_POWER_CTL,
1406        MSR_IA32_UCODE_REV,
1407
1408        /*
1409         * The following list leaves out MSRs whose values are determined
1410         * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1411         * We always support the "true" VMX control MSRs, even if the host
1412         * processor does not, so I am putting these registers here rather
1413         * than in msrs_to_save_all.
1414         */
1415        MSR_IA32_VMX_BASIC,
1416        MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1417        MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1418        MSR_IA32_VMX_TRUE_EXIT_CTLS,
1419        MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1420        MSR_IA32_VMX_MISC,
1421        MSR_IA32_VMX_CR0_FIXED0,
1422        MSR_IA32_VMX_CR4_FIXED0,
1423        MSR_IA32_VMX_VMCS_ENUM,
1424        MSR_IA32_VMX_PROCBASED_CTLS2,
1425        MSR_IA32_VMX_EPT_VPID_CAP,
1426        MSR_IA32_VMX_VMFUNC,
1427
1428        MSR_K7_HWCR,
1429        MSR_KVM_POLL_CONTROL,
1430};
1431
1432static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1433static unsigned num_emulated_msrs;
1434
1435/*
1436 * List of msr numbers which are used to expose MSR-based features that
1437 * can be used by a hypervisor to validate requested CPU features.
1438 */
1439static const u32 msr_based_features_all[] = {
1440        MSR_IA32_VMX_BASIC,
1441        MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1442        MSR_IA32_VMX_PINBASED_CTLS,
1443        MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1444        MSR_IA32_VMX_PROCBASED_CTLS,
1445        MSR_IA32_VMX_TRUE_EXIT_CTLS,
1446        MSR_IA32_VMX_EXIT_CTLS,
1447        MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1448        MSR_IA32_VMX_ENTRY_CTLS,
1449        MSR_IA32_VMX_MISC,
1450        MSR_IA32_VMX_CR0_FIXED0,
1451        MSR_IA32_VMX_CR0_FIXED1,
1452        MSR_IA32_VMX_CR4_FIXED0,
1453        MSR_IA32_VMX_CR4_FIXED1,
1454        MSR_IA32_VMX_VMCS_ENUM,
1455        MSR_IA32_VMX_PROCBASED_CTLS2,
1456        MSR_IA32_VMX_EPT_VPID_CAP,
1457        MSR_IA32_VMX_VMFUNC,
1458
1459        MSR_F10H_DECFG,
1460        MSR_IA32_UCODE_REV,
1461        MSR_IA32_ARCH_CAPABILITIES,
1462        MSR_IA32_PERF_CAPABILITIES,
1463};
1464
1465static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1466static unsigned int num_msr_based_features;
1467
1468static u64 kvm_get_arch_capabilities(void)
1469{
1470        u64 data = 0;
1471
1472        if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1473                rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1474
1475        /*
1476         * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1477         * the nested hypervisor runs with NX huge pages.  If it is not,
1478         * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1479         * L1 guests, so it need not worry about its own (L2) guests.
1480         */
1481        data |= ARCH_CAP_PSCHANGE_MC_NO;
1482
1483        /*
1484         * If we're doing cache flushes (either "always" or "cond")
1485         * we will do one whenever the guest does a vmlaunch/vmresume.
1486         * If an outer hypervisor is doing the cache flush for us
1487         * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1488         * capability to the guest too, and if EPT is disabled we're not
1489         * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1490         * require a nested hypervisor to do a flush of its own.
1491         */
1492        if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1493                data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1494
1495        if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1496                data |= ARCH_CAP_RDCL_NO;
1497        if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1498                data |= ARCH_CAP_SSB_NO;
1499        if (!boot_cpu_has_bug(X86_BUG_MDS))
1500                data |= ARCH_CAP_MDS_NO;
1501
1502        if (!boot_cpu_has(X86_FEATURE_RTM)) {
1503                /*
1504                 * If RTM=0 because the kernel has disabled TSX, the host might
1505                 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1506                 * and therefore knows that there cannot be TAA) but keep
1507                 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1508                 * and we want to allow migrating those guests to tsx=off hosts.
1509                 */
1510                data &= ~ARCH_CAP_TAA_NO;
1511        } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1512                data |= ARCH_CAP_TAA_NO;
1513        } else {
1514                /*
1515                 * Nothing to do here; we emulate TSX_CTRL if present on the
1516                 * host so the guest can choose between disabling TSX or
1517                 * using VERW to clear CPU buffers.
1518                 */
1519        }
1520
1521        return data;
1522}
1523
1524static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1525{
1526        switch (msr->index) {
1527        case MSR_IA32_ARCH_CAPABILITIES:
1528                msr->data = kvm_get_arch_capabilities();
1529                break;
1530        case MSR_IA32_UCODE_REV:
1531                rdmsrl_safe(msr->index, &msr->data);
1532                break;
1533        default:
1534                return static_call(kvm_x86_get_msr_feature)(msr);
1535        }
1536        return 0;
1537}
1538
1539static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1540{
1541        struct kvm_msr_entry msr;
1542        int r;
1543
1544        msr.index = index;
1545        r = kvm_get_msr_feature(&msr);
1546
1547        if (r == KVM_MSR_RET_INVALID) {
1548                /* Unconditionally clear the output for simplicity */
1549                *data = 0;
1550                if (kvm_msr_ignored_check(index, 0, false))
1551                        r = 0;
1552        }
1553
1554        if (r)
1555                return r;
1556
1557        *data = msr.data;
1558
1559        return 0;
1560}
1561
1562static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1563{
1564        if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1565                return false;
1566
1567        if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1568                return false;
1569
1570        if (efer & (EFER_LME | EFER_LMA) &&
1571            !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1572                return false;
1573
1574        if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1575                return false;
1576
1577        return true;
1578
1579}
1580bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1581{
1582        if (efer & efer_reserved_bits)
1583                return false;
1584
1585        return __kvm_valid_efer(vcpu, efer);
1586}
1587EXPORT_SYMBOL_GPL(kvm_valid_efer);
1588
1589static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1590{
1591        u64 old_efer = vcpu->arch.efer;
1592        u64 efer = msr_info->data;
1593        int r;
1594
1595        if (efer & efer_reserved_bits)
1596                return 1;
1597
1598        if (!msr_info->host_initiated) {
1599                if (!__kvm_valid_efer(vcpu, efer))
1600                        return 1;
1601
1602                if (is_paging(vcpu) &&
1603                    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1604                        return 1;
1605        }
1606
1607        efer &= ~EFER_LMA;
1608        efer |= vcpu->arch.efer & EFER_LMA;
1609
1610        r = static_call(kvm_x86_set_efer)(vcpu, efer);
1611        if (r) {
1612                WARN_ON(r > 0);
1613                return r;
1614        }
1615
1616        /* Update reserved bits */
1617        if ((efer ^ old_efer) & EFER_NX)
1618                kvm_mmu_reset_context(vcpu);
1619
1620        return 0;
1621}
1622
1623void kvm_enable_efer_bits(u64 mask)
1624{
1625       efer_reserved_bits &= ~mask;
1626}
1627EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1628
1629bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1630{
1631        struct kvm_x86_msr_filter *msr_filter;
1632        struct msr_bitmap_range *ranges;
1633        struct kvm *kvm = vcpu->kvm;
1634        bool allowed;
1635        int idx;
1636        u32 i;
1637
1638        /* x2APIC MSRs do not support filtering. */
1639        if (index >= 0x800 && index <= 0x8ff)
1640                return true;
1641
1642        idx = srcu_read_lock(&kvm->srcu);
1643
1644        msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1645        if (!msr_filter) {
1646                allowed = true;
1647                goto out;
1648        }
1649
1650        allowed = msr_filter->default_allow;
1651        ranges = msr_filter->ranges;
1652
1653        for (i = 0; i < msr_filter->count; i++) {
1654                u32 start = ranges[i].base;
1655                u32 end = start + ranges[i].nmsrs;
1656                u32 flags = ranges[i].flags;
1657                unsigned long *bitmap = ranges[i].bitmap;
1658
1659                if ((index >= start) && (index < end) && (flags & type)) {
1660                        allowed = !!test_bit(index - start, bitmap);
1661                        break;
1662                }
1663        }
1664
1665out:
1666        srcu_read_unlock(&kvm->srcu, idx);
1667
1668        return allowed;
1669}
1670EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1671
1672/*
1673 * Write @data into the MSR specified by @index.  Select MSR specific fault
1674 * checks are bypassed if @host_initiated is %true.
1675 * Returns 0 on success, non-0 otherwise.
1676 * Assumes vcpu_load() was already called.
1677 */
1678static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1679                         bool host_initiated)
1680{
1681        struct msr_data msr;
1682
1683        if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1684                return KVM_MSR_RET_FILTERED;
1685
1686        switch (index) {
1687        case MSR_FS_BASE:
1688        case MSR_GS_BASE:
1689        case MSR_KERNEL_GS_BASE:
1690        case MSR_CSTAR:
1691        case MSR_LSTAR:
1692                if (is_noncanonical_address(data, vcpu))
1693                        return 1;
1694                break;
1695        case MSR_IA32_SYSENTER_EIP:
1696        case MSR_IA32_SYSENTER_ESP:
1697                /*
1698                 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1699                 * non-canonical address is written on Intel but not on
1700                 * AMD (which ignores the top 32-bits, because it does
1701                 * not implement 64-bit SYSENTER).
1702                 *
1703                 * 64-bit code should hence be able to write a non-canonical
1704                 * value on AMD.  Making the address canonical ensures that
1705                 * vmentry does not fail on Intel after writing a non-canonical
1706                 * value, and that something deterministic happens if the guest
1707                 * invokes 64-bit SYSENTER.
1708                 */
1709                data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1710                break;
1711        case MSR_TSC_AUX:
1712                if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1713                        return 1;
1714
1715                if (!host_initiated &&
1716                    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1717                    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1718                        return 1;
1719
1720                /*
1721                 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1722                 * incomplete and conflicting architectural behavior.  Current
1723                 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1724                 * reserved and always read as zeros.  Enforce Intel's reserved
1725                 * bits check if and only if the guest CPU is Intel, and clear
1726                 * the bits in all other cases.  This ensures cross-vendor
1727                 * migration will provide consistent behavior for the guest.
1728                 */
1729                if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1730                        return 1;
1731
1732                data = (u32)data;
1733                break;
1734        }
1735
1736        msr.data = data;
1737        msr.index = index;
1738        msr.host_initiated = host_initiated;
1739
1740        return static_call(kvm_x86_set_msr)(vcpu, &msr);
1741}
1742
1743static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1744                                     u32 index, u64 data, bool host_initiated)
1745{
1746        int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1747
1748        if (ret == KVM_MSR_RET_INVALID)
1749                if (kvm_msr_ignored_check(index, data, true))
1750                        ret = 0;
1751
1752        return ret;
1753}
1754
1755/*
1756 * Read the MSR specified by @index into @data.  Select MSR specific fault
1757 * checks are bypassed if @host_initiated is %true.
1758 * Returns 0 on success, non-0 otherwise.
1759 * Assumes vcpu_load() was already called.
1760 */
1761int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1762                  bool host_initiated)
1763{
1764        struct msr_data msr;
1765        int ret;
1766
1767        if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1768                return KVM_MSR_RET_FILTERED;
1769
1770        switch (index) {
1771        case MSR_TSC_AUX:
1772                if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1773                        return 1;
1774
1775                if (!host_initiated &&
1776                    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1777                    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1778                        return 1;
1779                break;
1780        }
1781
1782        msr.index = index;
1783        msr.host_initiated = host_initiated;
1784
1785        ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1786        if (!ret)
1787                *data = msr.data;
1788        return ret;
1789}
1790
1791static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1792                                     u32 index, u64 *data, bool host_initiated)
1793{
1794        int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1795
1796        if (ret == KVM_MSR_RET_INVALID) {
1797                /* Unconditionally clear *data for simplicity */
1798                *data = 0;
1799                if (kvm_msr_ignored_check(index, 0, false))
1800                        ret = 0;
1801        }
1802
1803        return ret;
1804}
1805
1806int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1807{
1808        return kvm_get_msr_ignored_check(vcpu, index, data, false);
1809}
1810EXPORT_SYMBOL_GPL(kvm_get_msr);
1811
1812int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1813{
1814        return kvm_set_msr_ignored_check(vcpu, index, data, false);
1815}
1816EXPORT_SYMBOL_GPL(kvm_set_msr);
1817
1818static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1819{
1820        int err = vcpu->run->msr.error;
1821        if (!err) {
1822                kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1823                kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1824        }
1825
1826        return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1827}
1828
1829static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1830{
1831        return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1832}
1833
1834static u64 kvm_msr_reason(int r)
1835{
1836        switch (r) {
1837        case KVM_MSR_RET_INVALID:
1838                return KVM_MSR_EXIT_REASON_UNKNOWN;
1839        case KVM_MSR_RET_FILTERED:
1840                return KVM_MSR_EXIT_REASON_FILTER;
1841        default:
1842                return KVM_MSR_EXIT_REASON_INVAL;
1843        }
1844}
1845
1846static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1847                              u32 exit_reason, u64 data,
1848                              int (*completion)(struct kvm_vcpu *vcpu),
1849                              int r)
1850{
1851        u64 msr_reason = kvm_msr_reason(r);
1852
1853        /* Check if the user wanted to know about this MSR fault */
1854        if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1855                return 0;
1856
1857        vcpu->run->exit_reason = exit_reason;
1858        vcpu->run->msr.error = 0;
1859        memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1860        vcpu->run->msr.reason = msr_reason;
1861        vcpu->run->msr.index = index;
1862        vcpu->run->msr.data = data;
1863        vcpu->arch.complete_userspace_io = completion;
1864
1865        return 1;
1866}
1867
1868static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1869{
1870        return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1871                                   complete_emulated_rdmsr, r);
1872}
1873
1874static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1875{
1876        return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1877                                   complete_emulated_wrmsr, r);
1878}
1879
1880int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1881{
1882        u32 ecx = kvm_rcx_read(vcpu);
1883        u64 data;
1884        int r;
1885
1886        r = kvm_get_msr(vcpu, ecx, &data);
1887
1888        /* MSR read failed? See if we should ask user space */
1889        if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1890                /* Bounce to user space */
1891                return 0;
1892        }
1893
1894        if (!r) {
1895                trace_kvm_msr_read(ecx, data);
1896
1897                kvm_rax_write(vcpu, data & -1u);
1898                kvm_rdx_write(vcpu, (data >> 32) & -1u);
1899        } else {
1900                trace_kvm_msr_read_ex(ecx);
1901        }
1902
1903        return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1904}
1905EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1906
1907int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1908{
1909        u32 ecx = kvm_rcx_read(vcpu);
1910        u64 data = kvm_read_edx_eax(vcpu);
1911        int r;
1912
1913        r = kvm_set_msr(vcpu, ecx, data);
1914
1915        /* MSR write failed? See if we should ask user space */
1916        if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1917                /* Bounce to user space */
1918                return 0;
1919
1920        /* Signal all other negative errors to userspace */
1921        if (r < 0)
1922                return r;
1923
1924        if (!r)
1925                trace_kvm_msr_write(ecx, data);
1926        else
1927                trace_kvm_msr_write_ex(ecx, data);
1928
1929        return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1930}
1931EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1932
1933int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1934{
1935        return kvm_skip_emulated_instruction(vcpu);
1936}
1937EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1938
1939int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1940{
1941        /* Treat an INVD instruction as a NOP and just skip it. */
1942        return kvm_emulate_as_nop(vcpu);
1943}
1944EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1945
1946int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1947{
1948        pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1949        return kvm_emulate_as_nop(vcpu);
1950}
1951EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1952
1953int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1954{
1955        kvm_queue_exception(vcpu, UD_VECTOR);
1956        return 1;
1957}
1958EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1959
1960int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1961{
1962        pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1963        return kvm_emulate_as_nop(vcpu);
1964}
1965EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1966
1967static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1968{
1969        xfer_to_guest_mode_prepare();
1970        return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1971                xfer_to_guest_mode_work_pending();
1972}
1973
1974/*
1975 * The fast path for frequent and performance sensitive wrmsr emulation,
1976 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1977 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1978 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1979 * other cases which must be called after interrupts are enabled on the host.
1980 */
1981static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1982{
1983        if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1984                return 1;
1985
1986        if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1987                ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1988                ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1989                ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1990
1991                data &= ~(1 << 12);
1992                kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1993                kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1994                kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1995                trace_kvm_apic_write(APIC_ICR, (u32)data);
1996                return 0;
1997        }
1998
1999        return 1;
2000}
2001
2002static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2003{
2004        if (!kvm_can_use_hv_timer(vcpu))
2005                return 1;
2006
2007        kvm_set_lapic_tscdeadline_msr(vcpu, data);
2008        return 0;
2009}
2010
2011fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2012{
2013        u32 msr = kvm_rcx_read(vcpu);
2014        u64 data;
2015        fastpath_t ret = EXIT_FASTPATH_NONE;
2016
2017        switch (msr) {
2018        case APIC_BASE_MSR + (APIC_ICR >> 4):
2019                data = kvm_read_edx_eax(vcpu);
2020                if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2021                        kvm_skip_emulated_instruction(vcpu);
2022                        ret = EXIT_FASTPATH_EXIT_HANDLED;
2023                }
2024                break;
2025        case MSR_IA32_TSC_DEADLINE:
2026                data = kvm_read_edx_eax(vcpu);
2027                if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2028                        kvm_skip_emulated_instruction(vcpu);
2029                        ret = EXIT_FASTPATH_REENTER_GUEST;
2030                }
2031                break;
2032        default:
2033                break;
2034        }
2035
2036        if (ret != EXIT_FASTPATH_NONE)
2037                trace_kvm_msr_write(msr, data);
2038
2039        return ret;
2040}
2041EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2042
2043/*
2044 * Adapt set_msr() to msr_io()'s calling convention
2045 */
2046static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2047{
2048        return kvm_get_msr_ignored_check(vcpu, index, data, true);
2049}
2050
2051static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2052{
2053        return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2054}
2055
2056#ifdef CONFIG_X86_64
2057struct pvclock_clock {
2058        int vclock_mode;
2059        u64 cycle_last;
2060        u64 mask;
2061        u32 mult;
2062        u32 shift;
2063        u64 base_cycles;
2064        u64 offset;
2065};
2066
2067struct pvclock_gtod_data {
2068        seqcount_t      seq;
2069
2070        struct pvclock_clock clock; /* extract of a clocksource struct */
2071        struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2072
2073        ktime_t         offs_boot;
2074        u64             wall_time_sec;
2075};
2076
2077static struct pvclock_gtod_data pvclock_gtod_data;
2078
2079static void update_pvclock_gtod(struct timekeeper *tk)
2080{
2081        struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2082
2083        write_seqcount_begin(&vdata->seq);
2084
2085        /* copy pvclock gtod data */
2086        vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2087        vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2088        vdata->clock.mask               = tk->tkr_mono.mask;
2089        vdata->clock.mult               = tk->tkr_mono.mult;
2090        vdata->clock.shift              = tk->tkr_mono.shift;
2091        vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2092        vdata->clock.offset             = tk->tkr_mono.base;
2093
2094        vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2095        vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2096        vdata->raw_clock.mask           = tk->tkr_raw.mask;
2097        vdata->raw_clock.mult           = tk->tkr_raw.mult;
2098        vdata->raw_clock.shift          = tk->tkr_raw.shift;
2099        vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2100        vdata->raw_clock.offset         = tk->tkr_raw.base;
2101
2102        vdata->wall_time_sec            = tk->xtime_sec;
2103
2104        vdata->offs_boot                = tk->offs_boot;
2105
2106        write_seqcount_end(&vdata->seq);
2107}
2108
2109static s64 get_kvmclock_base_ns(void)
2110{
2111        /* Count up from boot time, but with the frequency of the raw clock.  */
2112        return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2113}
2114#else
2115static s64 get_kvmclock_base_ns(void)
2116{
2117        /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2118        return ktime_get_boottime_ns();
2119}
2120#endif
2121
2122void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2123{
2124        int version;
2125        int r;
2126        struct pvclock_wall_clock wc;
2127        u32 wc_sec_hi;
2128        u64 wall_nsec;
2129
2130        if (!wall_clock)
2131                return;
2132
2133        r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2134        if (r)
2135                return;
2136
2137        if (version & 1)
2138                ++version;  /* first time write, random junk */
2139
2140        ++version;
2141
2142        if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2143                return;
2144
2145        /*
2146         * The guest calculates current wall clock time by adding
2147         * system time (updated by kvm_guest_time_update below) to the
2148         * wall clock specified here.  We do the reverse here.
2149         */
2150        wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2151
2152        wc.nsec = do_div(wall_nsec, 1000000000);
2153        wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2154        wc.version = version;
2155
2156        kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2157
2158        if (sec_hi_ofs) {
2159                wc_sec_hi = wall_nsec >> 32;
2160                kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2161                                &wc_sec_hi, sizeof(wc_sec_hi));
2162        }
2163
2164        version++;
2165        kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2166}
2167
2168static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2169                                  bool old_msr, bool host_initiated)
2170{
2171        struct kvm_arch *ka = &vcpu->kvm->arch;
2172
2173        if (vcpu->vcpu_id == 0 && !host_initiated) {
2174                if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2175                        kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2176
2177                ka->boot_vcpu_runs_old_kvmclock = old_msr;
2178        }
2179
2180        vcpu->arch.time = system_time;
2181        kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2182
2183        /* we verify if the enable bit is set... */
2184        vcpu->arch.pv_time_enabled = false;
2185        if (!(system_time & 1))
2186                return;
2187
2188        if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2189                                       &vcpu->arch.pv_time, system_time & ~1ULL,
2190                                       sizeof(struct pvclock_vcpu_time_info)))
2191                vcpu->arch.pv_time_enabled = true;
2192
2193        return;
2194}
2195
2196static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2197{
2198        do_shl32_div32(dividend, divisor);
2199        return dividend;
2200}
2201
2202static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2203                               s8 *pshift, u32 *pmultiplier)
2204{
2205        uint64_t scaled64;
2206        int32_t  shift = 0;
2207        uint64_t tps64;
2208        uint32_t tps32;
2209
2210        tps64 = base_hz;
2211        scaled64 = scaled_hz;
2212        while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2213                tps64 >>= 1;
2214                shift--;
2215        }
2216
2217        tps32 = (uint32_t)tps64;
2218        while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2219                if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2220                        scaled64 >>= 1;
2221                else
2222                        tps32 <<= 1;
2223                shift++;
2224        }
2225
2226        *pshift = shift;
2227        *pmultiplier = div_frac(scaled64, tps32);
2228}
2229
2230#ifdef CONFIG_X86_64
2231static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2232#endif
2233
2234static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2235static unsigned long max_tsc_khz;
2236
2237static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2238{
2239        u64 v = (u64)khz * (1000000 + ppm);
2240        do_div(v, 1000000);
2241        return v;
2242}
2243
2244static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2245
2246static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2247{
2248        u64 ratio;
2249
2250        /* Guest TSC same frequency as host TSC? */
2251        if (!scale) {
2252                kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2253                return 0;
2254        }
2255
2256        /* TSC scaling supported? */
2257        if (!kvm_has_tsc_control) {
2258                if (user_tsc_khz > tsc_khz) {
2259                        vcpu->arch.tsc_catchup = 1;
2260                        vcpu->arch.tsc_always_catchup = 1;
2261                        return 0;
2262                } else {
2263                        pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2264                        return -1;
2265                }
2266        }
2267
2268        /* TSC scaling required  - calculate ratio */
2269        ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2270                                user_tsc_khz, tsc_khz);
2271
2272        if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2273                pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2274                                    user_tsc_khz);
2275                return -1;
2276        }
2277
2278        kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2279        return 0;
2280}
2281
2282static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2283{
2284        u32 thresh_lo, thresh_hi;
2285        int use_scaling = 0;
2286
2287        /* tsc_khz can be zero if TSC calibration fails */
2288        if (user_tsc_khz == 0) {
2289                /* set tsc_scaling_ratio to a safe value */
2290                kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2291                return -1;
2292        }
2293
2294        /* Compute a scale to convert nanoseconds in TSC cycles */
2295        kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2296                           &vcpu->arch.virtual_tsc_shift,
2297                           &vcpu->arch.virtual_tsc_mult);
2298        vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2299
2300        /*
2301         * Compute the variation in TSC rate which is acceptable
2302         * within the range of tolerance and decide if the
2303         * rate being applied is within that bounds of the hardware
2304         * rate.  If so, no scaling or compensation need be done.
2305         */
2306        thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2307        thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2308        if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2309                pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2310                use_scaling = 1;
2311        }
2312        return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2313}
2314
2315static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2316{
2317        u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2318                                      vcpu->arch.virtual_tsc_mult,
2319                                      vcpu->arch.virtual_tsc_shift);
2320        tsc += vcpu->arch.this_tsc_write;
2321        return tsc;
2322}
2323
2324static inline int gtod_is_based_on_tsc(int mode)
2325{
2326        return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2327}
2328
2329static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2330{
2331#ifdef CONFIG_X86_64
2332        bool vcpus_matched;
2333        struct kvm_arch *ka = &vcpu->kvm->arch;
2334        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2335
2336        vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2337                         atomic_read(&vcpu->kvm->online_vcpus));
2338
2339        /*
2340         * Once the masterclock is enabled, always perform request in
2341         * order to update it.
2342         *
2343         * In order to enable masterclock, the host clocksource must be TSC
2344         * and the vcpus need to have matched TSCs.  When that happens,
2345         * perform request to enable masterclock.
2346         */
2347        if (ka->use_master_clock ||
2348            (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2349                kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2350
2351        trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2352                            atomic_read(&vcpu->kvm->online_vcpus),
2353                            ka->use_master_clock, gtod->clock.vclock_mode);
2354#endif
2355}
2356
2357/*
2358 * Multiply tsc by a fixed point number represented by ratio.
2359 *
2360 * The most significant 64-N bits (mult) of ratio represent the
2361 * integral part of the fixed point number; the remaining N bits
2362 * (frac) represent the fractional part, ie. ratio represents a fixed
2363 * point number (mult + frac * 2^(-N)).
2364 *
2365 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2366 */
2367static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2368{
2369        return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2370}
2371
2372u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2373{
2374        u64 _tsc = tsc;
2375
2376        if (ratio != kvm_default_tsc_scaling_ratio)
2377                _tsc = __scale_tsc(ratio, tsc);
2378
2379        return _tsc;
2380}
2381EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2382
2383static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2384{
2385        u64 tsc;
2386
2387        tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2388
2389        return target_tsc - tsc;
2390}
2391
2392u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2393{
2394        return vcpu->arch.l1_tsc_offset +
2395                kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2396}
2397EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2398
2399u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2400{
2401        u64 nested_offset;
2402
2403        if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2404                nested_offset = l1_offset;
2405        else
2406                nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2407                                                kvm_tsc_scaling_ratio_frac_bits);
2408
2409        nested_offset += l2_offset;
2410        return nested_offset;
2411}
2412EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2413
2414u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2415{
2416        if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2417                return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2418                                       kvm_tsc_scaling_ratio_frac_bits);
2419
2420        return l1_multiplier;
2421}
2422EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2423
2424static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2425{
2426        trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2427                                   vcpu->arch.l1_tsc_offset,
2428                                   l1_offset);
2429
2430        vcpu->arch.l1_tsc_offset = l1_offset;
2431
2432        /*
2433         * If we are here because L1 chose not to trap WRMSR to TSC then
2434         * according to the spec this should set L1's TSC (as opposed to
2435         * setting L1's offset for L2).
2436         */
2437        if (is_guest_mode(vcpu))
2438                vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2439                        l1_offset,
2440                        static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2441                        static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2442        else
2443                vcpu->arch.tsc_offset = l1_offset;
2444
2445        static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2446}
2447
2448static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2449{
2450        vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2451
2452        /* Userspace is changing the multiplier while L2 is active */
2453        if (is_guest_mode(vcpu))
2454                vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2455                        l1_multiplier,
2456                        static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2457        else
2458                vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2459
2460        if (kvm_has_tsc_control)
2461                static_call(kvm_x86_write_tsc_multiplier)(
2462                        vcpu, vcpu->arch.tsc_scaling_ratio);
2463}
2464
2465static inline bool kvm_check_tsc_unstable(void)
2466{
2467#ifdef CONFIG_X86_64
2468        /*
2469         * TSC is marked unstable when we're running on Hyper-V,
2470         * 'TSC page' clocksource is good.
2471         */
2472        if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2473                return false;
2474#endif
2475        return check_tsc_unstable();
2476}
2477
2478/*
2479 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2480 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2481 * participates in.
2482 */
2483static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2484                                  u64 ns, bool matched)
2485{
2486        struct kvm *kvm = vcpu->kvm;
2487
2488        lockdep_assert_held(&kvm->arch.tsc_write_lock);
2489
2490        /*
2491         * We also track th most recent recorded KHZ, write and time to
2492         * allow the matching interval to be extended at each write.
2493         */
2494        kvm->arch.last_tsc_nsec = ns;
2495        kvm->arch.last_tsc_write = tsc;
2496        kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2497        kvm->arch.last_tsc_offset = offset;
2498
2499        vcpu->arch.last_guest_tsc = tsc;
2500
2501        kvm_vcpu_write_tsc_offset(vcpu, offset);
2502
2503        if (!matched) {
2504                /*
2505                 * We split periods of matched TSC writes into generations.
2506                 * For each generation, we track the original measured
2507                 * nanosecond time, offset, and write, so if TSCs are in
2508                 * sync, we can match exact offset, and if not, we can match
2509                 * exact software computation in compute_guest_tsc()
2510                 *
2511                 * These values are tracked in kvm->arch.cur_xxx variables.
2512                 */
2513                kvm->arch.cur_tsc_generation++;
2514                kvm->arch.cur_tsc_nsec = ns;
2515                kvm->arch.cur_tsc_write = tsc;
2516                kvm->arch.cur_tsc_offset = offset;
2517                kvm->arch.nr_vcpus_matched_tsc = 0;
2518        } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2519                kvm->arch.nr_vcpus_matched_tsc++;
2520        }
2521
2522        /* Keep track of which generation this VCPU has synchronized to */
2523        vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2524        vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2525        vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2526
2527        kvm_track_tsc_matching(vcpu);
2528}
2529
2530static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2531{
2532        struct kvm *kvm = vcpu->kvm;
2533        u64 offset, ns, elapsed;
2534        unsigned long flags;
2535        bool matched = false;
2536        bool synchronizing = false;
2537
2538        raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2539        offset = kvm_compute_l1_tsc_offset(vcpu, data);
2540        ns = get_kvmclock_base_ns();
2541        elapsed = ns - kvm->arch.last_tsc_nsec;
2542
2543        if (vcpu->arch.virtual_tsc_khz) {
2544                if (data == 0) {
2545                        /*
2546                         * detection of vcpu initialization -- need to sync
2547                         * with other vCPUs. This particularly helps to keep
2548                         * kvm_clock stable after CPU hotplug
2549                         */
2550                        synchronizing = true;
2551                } else {
2552                        u64 tsc_exp = kvm->arch.last_tsc_write +
2553                                                nsec_to_cycles(vcpu, elapsed);
2554                        u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2555                        /*
2556                         * Special case: TSC write with a small delta (1 second)
2557                         * of virtual cycle time against real time is
2558                         * interpreted as an attempt to synchronize the CPU.
2559                         */
2560                        synchronizing = data < tsc_exp + tsc_hz &&
2561                                        data + tsc_hz > tsc_exp;
2562                }
2563        }
2564
2565        /*
2566         * For a reliable TSC, we can match TSC offsets, and for an unstable
2567         * TSC, we add elapsed time in this computation.  We could let the
2568         * compensation code attempt to catch up if we fall behind, but
2569         * it's better to try to match offsets from the beginning.
2570         */
2571        if (synchronizing &&
2572            vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2573                if (!kvm_check_tsc_unstable()) {
2574                        offset = kvm->arch.cur_tsc_offset;
2575                } else {
2576                        u64 delta = nsec_to_cycles(vcpu, elapsed);
2577                        data += delta;
2578                        offset = kvm_compute_l1_tsc_offset(vcpu, data);
2579                }
2580                matched = true;
2581        }
2582
2583        __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2584        raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2585}
2586
2587static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2588                                           s64 adjustment)
2589{
2590        u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2591        kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2592}
2593
2594static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2595{
2596        if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2597                WARN_ON(adjustment < 0);
2598        adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2599                                   vcpu->arch.l1_tsc_scaling_ratio);
2600        adjust_tsc_offset_guest(vcpu, adjustment);
2601}
2602
2603#ifdef CONFIG_X86_64
2604
2605static u64 read_tsc(void)
2606{
2607        u64 ret = (u64)rdtsc_ordered();
2608        u64 last = pvclock_gtod_data.clock.cycle_last;
2609
2610        if (likely(ret >= last))
2611                return ret;
2612
2613        /*
2614         * GCC likes to generate cmov here, but this branch is extremely
2615         * predictable (it's just a function of time and the likely is
2616         * very likely) and there's a data dependence, so force GCC
2617         * to generate a branch instead.  I don't barrier() because
2618         * we don't actually need a barrier, and if this function
2619         * ever gets inlined it will generate worse code.
2620         */
2621        asm volatile ("");
2622        return last;
2623}
2624
2625static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2626                          int *mode)
2627{
2628        long v;
2629        u64 tsc_pg_val;
2630
2631        switch (clock->vclock_mode) {
2632        case VDSO_CLOCKMODE_HVCLOCK:
2633                tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2634                                                  tsc_timestamp);
2635                if (tsc_pg_val != U64_MAX) {
2636                        /* TSC page valid */
2637                        *mode = VDSO_CLOCKMODE_HVCLOCK;
2638                        v = (tsc_pg_val - clock->cycle_last) &
2639                                clock->mask;
2640                } else {
2641                        /* TSC page invalid */
2642                        *mode = VDSO_CLOCKMODE_NONE;
2643                }
2644                break;
2645        case VDSO_CLOCKMODE_TSC:
2646                *mode = VDSO_CLOCKMODE_TSC;
2647                *tsc_timestamp = read_tsc();
2648                v = (*tsc_timestamp - clock->cycle_last) &
2649                        clock->mask;
2650                break;
2651        default:
2652                *mode = VDSO_CLOCKMODE_NONE;
2653        }
2654
2655        if (*mode == VDSO_CLOCKMODE_NONE)
2656                *tsc_timestamp = v = 0;
2657
2658        return v * clock->mult;
2659}
2660
2661static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2662{
2663        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2664        unsigned long seq;
2665        int mode;
2666        u64 ns;
2667
2668        do {
2669                seq = read_seqcount_begin(&gtod->seq);
2670                ns = gtod->raw_clock.base_cycles;
2671                ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2672                ns >>= gtod->raw_clock.shift;
2673                ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2674        } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2675        *t = ns;
2676
2677        return mode;
2678}
2679
2680static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2681{
2682        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2683        unsigned long seq;
2684        int mode;
2685        u64 ns;
2686
2687        do {
2688                seq = read_seqcount_begin(&gtod->seq);
2689                ts->tv_sec = gtod->wall_time_sec;
2690                ns = gtod->clock.base_cycles;
2691                ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2692                ns >>= gtod->clock.shift;
2693        } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2694
2695        ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2696        ts->tv_nsec = ns;
2697
2698        return mode;
2699}
2700
2701/* returns true if host is using TSC based clocksource */
2702static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2703{
2704        /* checked again under seqlock below */
2705        if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2706                return false;
2707
2708        return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2709                                                      tsc_timestamp));
2710}
2711
2712/* returns true if host is using TSC based clocksource */
2713static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2714                                           u64 *tsc_timestamp)
2715{
2716        /* checked again under seqlock below */
2717        if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2718                return false;
2719
2720        return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2721}
2722#endif
2723
2724/*
2725 *
2726 * Assuming a stable TSC across physical CPUS, and a stable TSC
2727 * across virtual CPUs, the following condition is possible.
2728 * Each numbered line represents an event visible to both
2729 * CPUs at the next numbered event.
2730 *
2731 * "timespecX" represents host monotonic time. "tscX" represents
2732 * RDTSC value.
2733 *
2734 *              VCPU0 on CPU0           |       VCPU1 on CPU1
2735 *
2736 * 1.  read timespec0,tsc0
2737 * 2.                                   | timespec1 = timespec0 + N
2738 *                                      | tsc1 = tsc0 + M
2739 * 3. transition to guest               | transition to guest
2740 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2741 * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2742 *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2743 *
2744 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2745 *
2746 *      - ret0 < ret1
2747 *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2748 *              ...
2749 *      - 0 < N - M => M < N
2750 *
2751 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2752 * always the case (the difference between two distinct xtime instances
2753 * might be smaller then the difference between corresponding TSC reads,
2754 * when updating guest vcpus pvclock areas).
2755 *
2756 * To avoid that problem, do not allow visibility of distinct
2757 * system_timestamp/tsc_timestamp values simultaneously: use a master
2758 * copy of host monotonic time values. Update that master copy
2759 * in lockstep.
2760 *
2761 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2762 *
2763 */
2764
2765static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2766{
2767#ifdef CONFIG_X86_64
2768        struct kvm_arch *ka = &kvm->arch;
2769        int vclock_mode;
2770        bool host_tsc_clocksource, vcpus_matched;
2771
2772        lockdep_assert_held(&kvm->arch.tsc_write_lock);
2773        vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2774                        atomic_read(&kvm->online_vcpus));
2775
2776        /*
2777         * If the host uses TSC clock, then passthrough TSC as stable
2778         * to the guest.
2779         */
2780        host_tsc_clocksource = kvm_get_time_and_clockread(
2781                                        &ka->master_kernel_ns,
2782                                        &ka->master_cycle_now);
2783
2784        ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2785                                && !ka->backwards_tsc_observed
2786                                && !ka->boot_vcpu_runs_old_kvmclock;
2787
2788        if (ka->use_master_clock)
2789                atomic_set(&kvm_guest_has_master_clock, 1);
2790
2791        vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2792        trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2793                                        vcpus_matched);
2794#endif
2795}
2796
2797static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2798{
2799        kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2800}
2801
2802static void __kvm_start_pvclock_update(struct kvm *kvm)
2803{
2804        raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2805        write_seqcount_begin(&kvm->arch.pvclock_sc);
2806}
2807
2808static void kvm_start_pvclock_update(struct kvm *kvm)
2809{
2810        kvm_make_mclock_inprogress_request(kvm);
2811
2812        /* no guest entries from this point */
2813        __kvm_start_pvclock_update(kvm);
2814}
2815
2816static void kvm_end_pvclock_update(struct kvm *kvm)
2817{
2818        struct kvm_arch *ka = &kvm->arch;
2819        struct kvm_vcpu *vcpu;
2820        int i;
2821
2822        write_seqcount_end(&ka->pvclock_sc);
2823        raw_spin_unlock_irq(&ka->tsc_write_lock);
2824        kvm_for_each_vcpu(i, vcpu, kvm)
2825                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2826
2827        /* guest entries allowed */
2828        kvm_for_each_vcpu(i, vcpu, kvm)
2829                kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2830}
2831
2832static void kvm_update_masterclock(struct kvm *kvm)
2833{
2834        kvm_hv_invalidate_tsc_page(kvm);
2835        kvm_start_pvclock_update(kvm);
2836        pvclock_update_vm_gtod_copy(kvm);
2837        kvm_end_pvclock_update(kvm);
2838}
2839
2840/* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2841static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2842{
2843        struct kvm_arch *ka = &kvm->arch;
2844        struct pvclock_vcpu_time_info hv_clock;
2845
2846        /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2847        get_cpu();
2848
2849        data->flags = 0;
2850        if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2851#ifdef CONFIG_X86_64
2852                struct timespec64 ts;
2853
2854                if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2855                        data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2856                        data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2857                } else
2858#endif
2859                data->host_tsc = rdtsc();
2860
2861                data->flags |= KVM_CLOCK_TSC_STABLE;
2862                hv_clock.tsc_timestamp = ka->master_cycle_now;
2863                hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2864                kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2865                                   &hv_clock.tsc_shift,
2866                                   &hv_clock.tsc_to_system_mul);
2867                data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2868        } else {
2869                data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2870        }
2871
2872        put_cpu();
2873}
2874
2875static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2876{
2877        struct kvm_arch *ka = &kvm->arch;
2878        unsigned seq;
2879
2880        do {
2881                seq = read_seqcount_begin(&ka->pvclock_sc);
2882                __get_kvmclock(kvm, data);
2883        } while (read_seqcount_retry(&ka->pvclock_sc, seq));
2884}
2885
2886u64 get_kvmclock_ns(struct kvm *kvm)
2887{
2888        struct kvm_clock_data data;
2889
2890        get_kvmclock(kvm, &data);
2891        return data.clock;
2892}
2893
2894static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2895                                   struct gfn_to_hva_cache *cache,
2896                                   unsigned int offset)
2897{
2898        struct kvm_vcpu_arch *vcpu = &v->arch;
2899        struct pvclock_vcpu_time_info guest_hv_clock;
2900
2901        if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2902                &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2903                return;
2904
2905        /* This VCPU is paused, but it's legal for a guest to read another
2906         * VCPU's kvmclock, so we really have to follow the specification where
2907         * it says that version is odd if data is being modified, and even after
2908         * it is consistent.
2909         *
2910         * Version field updates must be kept separate.  This is because
2911         * kvm_write_guest_cached might use a "rep movs" instruction, and
2912         * writes within a string instruction are weakly ordered.  So there
2913         * are three writes overall.
2914         *
2915         * As a small optimization, only write the version field in the first
2916         * and third write.  The vcpu->pv_time cache is still valid, because the
2917         * version field is the first in the struct.
2918         */
2919        BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2920
2921        if (guest_hv_clock.version & 1)
2922                ++guest_hv_clock.version;  /* first time write, random junk */
2923
2924        vcpu->hv_clock.version = guest_hv_clock.version + 1;
2925        kvm_write_guest_offset_cached(v->kvm, cache,
2926                                      &vcpu->hv_clock, offset,
2927                                      sizeof(vcpu->hv_clock.version));
2928
2929        smp_wmb();
2930
2931        /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2932        vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2933
2934        if (vcpu->pvclock_set_guest_stopped_request) {
2935                vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2936                vcpu->pvclock_set_guest_stopped_request = false;
2937        }
2938
2939        trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2940
2941        kvm_write_guest_offset_cached(v->kvm, cache,
2942                                      &vcpu->hv_clock, offset,
2943                                      sizeof(vcpu->hv_clock));
2944
2945        smp_wmb();
2946
2947        vcpu->hv_clock.version++;
2948        kvm_write_guest_offset_cached(v->kvm, cache,
2949                                     &vcpu->hv_clock, offset,
2950                                     sizeof(vcpu->hv_clock.version));
2951}
2952
2953static int kvm_guest_time_update(struct kvm_vcpu *v)
2954{
2955        unsigned long flags, tgt_tsc_khz;
2956        unsigned seq;
2957        struct kvm_vcpu_arch *vcpu = &v->arch;
2958        struct kvm_arch *ka = &v->kvm->arch;
2959        s64 kernel_ns;
2960        u64 tsc_timestamp, host_tsc;
2961        u8 pvclock_flags;
2962        bool use_master_clock;
2963
2964        kernel_ns = 0;
2965        host_tsc = 0;
2966
2967        /*
2968         * If the host uses TSC clock, then passthrough TSC as stable
2969         * to the guest.
2970         */
2971        do {
2972                seq = read_seqcount_begin(&ka->pvclock_sc);
2973                use_master_clock = ka->use_master_clock;
2974                if (use_master_clock) {
2975                        host_tsc = ka->master_cycle_now;
2976                        kernel_ns = ka->master_kernel_ns;
2977                }
2978        } while (read_seqcount_retry(&ka->pvclock_sc, seq));
2979
2980        /* Keep irq disabled to prevent changes to the clock */
2981        local_irq_save(flags);
2982        tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2983        if (unlikely(tgt_tsc_khz == 0)) {
2984                local_irq_restore(flags);
2985                kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2986                return 1;
2987        }
2988        if (!use_master_clock) {
2989                host_tsc = rdtsc();
2990                kernel_ns = get_kvmclock_base_ns();
2991        }
2992
2993        tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2994
2995        /*
2996         * We may have to catch up the TSC to match elapsed wall clock
2997         * time for two reasons, even if kvmclock is used.
2998         *   1) CPU could have been running below the maximum TSC rate
2999         *   2) Broken TSC compensation resets the base at each VCPU
3000         *      entry to avoid unknown leaps of TSC even when running
3001         *      again on the same CPU.  This may cause apparent elapsed
3002         *      time to disappear, and the guest to stand still or run
3003         *      very slowly.
3004         */
3005        if (vcpu->tsc_catchup) {
3006                u64 tsc = compute_guest_tsc(v, kernel_ns);
3007                if (tsc > tsc_timestamp) {
3008                        adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3009                        tsc_timestamp = tsc;
3010                }
3011        }
3012
3013        local_irq_restore(flags);
3014
3015        /* With all the info we got, fill in the values */
3016
3017        if (kvm_has_tsc_control)
3018                tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
3019                                            v->arch.l1_tsc_scaling_ratio);
3020
3021        if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3022                kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3023                                   &vcpu->hv_clock.tsc_shift,
3024                                   &vcpu->hv_clock.tsc_to_system_mul);
3025                vcpu->hw_tsc_khz = tgt_tsc_khz;
3026        }
3027
3028        vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3029        vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3030        vcpu->last_guest_tsc = tsc_timestamp;
3031
3032        /* If the host uses TSC clocksource, then it is stable */
3033        pvclock_flags = 0;
3034        if (use_master_clock)
3035                pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3036
3037        vcpu->hv_clock.flags = pvclock_flags;
3038
3039        if (vcpu->pv_time_enabled)
3040                kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
3041        if (vcpu->xen.vcpu_info_set)
3042                kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
3043                                       offsetof(struct compat_vcpu_info, time));
3044        if (vcpu->xen.vcpu_time_info_set)
3045                kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
3046        if (!v->vcpu_idx)
3047                kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3048        return 0;
3049}
3050
3051/*
3052 * kvmclock updates which are isolated to a given vcpu, such as
3053 * vcpu->cpu migration, should not allow system_timestamp from
3054 * the rest of the vcpus to remain static. Otherwise ntp frequency
3055 * correction applies to one vcpu's system_timestamp but not
3056 * the others.
3057 *
3058 * So in those cases, request a kvmclock update for all vcpus.
3059 * We need to rate-limit these requests though, as they can
3060 * considerably slow guests that have a large number of vcpus.
3061 * The time for a remote vcpu to update its kvmclock is bound
3062 * by the delay we use to rate-limit the updates.
3063 */
3064
3065#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3066
3067static void kvmclock_update_fn(struct work_struct *work)
3068{
3069        int i;
3070        struct delayed_work *dwork = to_delayed_work(work);
3071        struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3072                                           kvmclock_update_work);
3073        struct kvm *kvm = container_of(ka, struct kvm, arch);
3074        struct kvm_vcpu *vcpu;
3075
3076        kvm_for_each_vcpu(i, vcpu, kvm) {
3077                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3078                kvm_vcpu_kick(vcpu);
3079        }
3080}
3081
3082static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3083{
3084        struct kvm *kvm = v->kvm;
3085
3086        kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3087        schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3088                                        KVMCLOCK_UPDATE_DELAY);
3089}
3090
3091#define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3092
3093static void kvmclock_sync_fn(struct work_struct *work)
3094{
3095        struct delayed_work *dwork = to_delayed_work(work);
3096        struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3097                                           kvmclock_sync_work);
3098        struct kvm *kvm = container_of(ka, struct kvm, arch);
3099
3100        if (!kvmclock_periodic_sync)
3101                return;
3102
3103        schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3104        schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3105                                        KVMCLOCK_SYNC_PERIOD);
3106}
3107
3108/*
3109 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3110 */
3111static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3112{
3113        /* McStatusWrEn enabled? */
3114        if (guest_cpuid_is_amd_or_hygon(vcpu))
3115                return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3116
3117        return false;
3118}
3119
3120static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3121{
3122        u64 mcg_cap = vcpu->arch.mcg_cap;
3123        unsigned bank_num = mcg_cap & 0xff;
3124        u32 msr = msr_info->index;
3125        u64 data = msr_info->data;
3126
3127        switch (msr) {
3128        case MSR_IA32_MCG_STATUS:
3129                vcpu->arch.mcg_status = data;
3130                break;
3131        case MSR_IA32_MCG_CTL:
3132                if (!(mcg_cap & MCG_CTL_P) &&
3133                    (data || !msr_info->host_initiated))
3134                        return 1;
3135                if (data != 0 && data != ~(u64)0)
3136                        return 1;
3137                vcpu->arch.mcg_ctl = data;
3138                break;
3139        default:
3140                if (msr >= MSR_IA32_MC0_CTL &&
3141                    msr < MSR_IA32_MCx_CTL(bank_num)) {
3142                        u32 offset = array_index_nospec(
3143                                msr - MSR_IA32_MC0_CTL,
3144                                MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3145
3146                        /* only 0 or all 1s can be written to IA32_MCi_CTL
3147                         * some Linux kernels though clear bit 10 in bank 4 to
3148                         * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3149                         * this to avoid an uncatched #GP in the guest
3150                         */
3151                        if ((offset & 0x3) == 0 &&
3152                            data != 0 && (data | (1 << 10)) != ~(u64)0)
3153                                return -1;
3154
3155                        /* MCi_STATUS */
3156                        if (!msr_info->host_initiated &&
3157                            (offset & 0x3) == 1 && data != 0) {
3158                                if (!can_set_mci_status(vcpu))
3159                                        return -1;
3160                        }
3161
3162                        vcpu->arch.mce_banks[offset] = data;
3163                        break;
3164                }
3165                return 1;
3166        }
3167        return 0;
3168}
3169
3170static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3171{
3172        u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3173
3174        return (vcpu->arch.apf.msr_en_val & mask) == mask;
3175}
3176
3177static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3178{
3179        gpa_t gpa = data & ~0x3f;
3180
3181        /* Bits 4:5 are reserved, Should be zero */
3182        if (data & 0x30)
3183                return 1;
3184
3185        if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3186            (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3187                return 1;
3188
3189        if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3190            (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3191                return 1;
3192
3193        if (!lapic_in_kernel(vcpu))
3194                return data ? 1 : 0;
3195
3196        vcpu->arch.apf.msr_en_val = data;
3197
3198        if (!kvm_pv_async_pf_enabled(vcpu)) {
3199                kvm_clear_async_pf_completion_queue(vcpu);
3200                kvm_async_pf_hash_reset(vcpu);
3201                return 0;
3202        }
3203
3204        if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3205                                        sizeof(u64)))
3206                return 1;
3207
3208        vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3209        vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3210
3211        kvm_async_pf_wakeup_all(vcpu);
3212
3213        return 0;
3214}
3215
3216static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3217{
3218        /* Bits 8-63 are reserved */
3219        if (data >> 8)
3220                return 1;
3221
3222        if (!lapic_in_kernel(vcpu))
3223                return 1;
3224
3225        vcpu->arch.apf.msr_int_val = data;
3226
3227        vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3228
3229        return 0;
3230}
3231
3232static void kvmclock_reset(struct kvm_vcpu *vcpu)
3233{
3234        vcpu->arch.pv_time_enabled = false;
3235        vcpu->arch.time = 0;
3236}
3237
3238static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3239{
3240        ++vcpu->stat.tlb_flush;
3241        static_call(kvm_x86_tlb_flush_all)(vcpu);
3242}
3243
3244static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3245{
3246        ++vcpu->stat.tlb_flush;
3247
3248        if (!tdp_enabled) {
3249                /*
3250                 * A TLB flush on behalf of the guest is equivalent to
3251                 * INVPCID(all), toggling CR4.PGE, etc., which requires
3252                 * a forced sync of the shadow page tables.  Ensure all the
3253                 * roots are synced and the guest TLB in hardware is clean.
3254                 */
3255                kvm_mmu_sync_roots(vcpu);
3256                kvm_mmu_sync_prev_roots(vcpu);
3257        }
3258
3259        static_call(kvm_x86_tlb_flush_guest)(vcpu);
3260}
3261
3262
3263static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3264{
3265        ++vcpu->stat.tlb_flush;
3266        static_call(kvm_x86_tlb_flush_current)(vcpu);
3267}
3268
3269/*
3270 * Service "local" TLB flush requests, which are specific to the current MMU
3271 * context.  In addition to the generic event handling in vcpu_enter_guest(),
3272 * TLB flushes that are targeted at an MMU context also need to be serviced
3273 * prior before nested VM-Enter/VM-Exit.
3274 */
3275void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3276{
3277        if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3278                kvm_vcpu_flush_tlb_current(vcpu);
3279
3280        if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3281                kvm_vcpu_flush_tlb_guest(vcpu);
3282}
3283EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3284
3285static void record_steal_time(struct kvm_vcpu *vcpu)
3286{
3287        struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3288        struct kvm_steal_time __user *st;
3289        struct kvm_memslots *slots;
3290        u64 steal;
3291        u32 version;
3292
3293        if (kvm_xen_msr_enabled(vcpu->kvm)) {
3294                kvm_xen_runstate_set_running(vcpu);
3295                return;
3296        }
3297
3298        if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3299                return;
3300
3301        if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3302                return;
3303
3304        slots = kvm_memslots(vcpu->kvm);
3305
3306        if (unlikely(slots->generation != ghc->generation ||
3307                     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3308                gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3309
3310                /* We rely on the fact that it fits in a single page. */
3311                BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3312
3313                if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3314                    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3315                        return;
3316        }
3317
3318        st = (struct kvm_steal_time __user *)ghc->hva;
3319        /*
3320         * Doing a TLB flush here, on the guest's behalf, can avoid
3321         * expensive IPIs.
3322         */
3323        if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3324                u8 st_preempted = 0;
3325                int err = -EFAULT;
3326
3327                if (!user_access_begin(st, sizeof(*st)))
3328                        return;
3329
3330                asm volatile("1: xchgb %0, %2\n"
3331                             "xor %1, %1\n"
3332                             "2:\n"
3333                             _ASM_EXTABLE_UA(1b, 2b)
3334                             : "+q" (st_preempted),
3335                               "+&r" (err),
3336                               "+m" (st->preempted));
3337                if (err)
3338                        goto out;
3339
3340                user_access_end();
3341
3342                vcpu->arch.st.preempted = 0;
3343
3344                trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3345                                       st_preempted & KVM_VCPU_FLUSH_TLB);
3346                if (st_preempted & KVM_VCPU_FLUSH_TLB)
3347                        kvm_vcpu_flush_tlb_guest(vcpu);
3348
3349                if (!user_access_begin(st, sizeof(*st)))
3350                        goto dirty;
3351        } else {
3352                if (!user_access_begin(st, sizeof(*st)))
3353                        return;
3354
3355                unsafe_put_user(0, &st->preempted, out);
3356                vcpu->arch.st.preempted = 0;
3357        }
3358
3359        unsafe_get_user(version, &st->version, out);
3360        if (version & 1)
3361                version += 1;  /* first time write, random junk */
3362
3363        version += 1;
3364        unsafe_put_user(version, &st->version, out);
3365
3366        smp_wmb();
3367
3368        unsafe_get_user(steal, &st->steal, out);
3369        steal += current->sched_info.run_delay -
3370                vcpu->arch.st.last_steal;
3371        vcpu->arch.st.last_steal = current->sched_info.run_delay;
3372        unsafe_put_user(steal, &st->steal, out);
3373
3374        version += 1;
3375        unsafe_put_user(version, &st->version, out);
3376
3377 out:
3378        user_access_end();
3379 dirty:
3380        mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3381}
3382
3383int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3384{
3385        bool pr = false;
3386        u32 msr = msr_info->index;
3387        u64 data = msr_info->data;
3388
3389        if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3390                return kvm_xen_write_hypercall_page(vcpu, data);
3391
3392        switch (msr) {
3393        case MSR_AMD64_NB_CFG:
3394        case MSR_IA32_UCODE_WRITE:
3395        case MSR_VM_HSAVE_PA:
3396        case MSR_AMD64_PATCH_LOADER:
3397        case MSR_AMD64_BU_CFG2:
3398        case MSR_AMD64_DC_CFG:
3399        case MSR_F15H_EX_CFG:
3400                break;
3401
3402        case MSR_IA32_UCODE_REV:
3403                if (msr_info->host_initiated)
3404                        vcpu->arch.microcode_version = data;
3405                break;
3406        case MSR_IA32_ARCH_CAPABILITIES:
3407                if (!msr_info->host_initiated)
3408                        return 1;
3409                vcpu->arch.arch_capabilities = data;
3410                break;
3411        case MSR_IA32_PERF_CAPABILITIES: {
3412                struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3413
3414                if (!msr_info->host_initiated)
3415                        return 1;
3416                if (kvm_get_msr_feature(&msr_ent))
3417                        return 1;
3418                if (data & ~msr_ent.data)
3419                        return 1;
3420
3421                vcpu->arch.perf_capabilities = data;
3422
3423                return 0;
3424                }
3425        case MSR_EFER:
3426                return set_efer(vcpu, msr_info);
3427        case MSR_K7_HWCR:
3428                data &= ~(u64)0x40;     /* ignore flush filter disable */
3429                data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3430                data &= ~(u64)0x8;      /* ignore TLB cache disable */
3431
3432                /* Handle McStatusWrEn */
3433                if (data == BIT_ULL(18)) {
3434                        vcpu->arch.msr_hwcr = data;
3435                } else if (data != 0) {
3436                        vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3437                                    data);
3438                        return 1;
3439                }
3440                break;
3441        case MSR_FAM10H_MMIO_CONF_BASE:
3442                if (data != 0) {
3443                        vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3444                                    "0x%llx\n", data);
3445                        return 1;
3446                }
3447                break;
3448        case 0x200 ... 0x2ff:
3449                return kvm_mtrr_set_msr(vcpu, msr, data);
3450        case MSR_IA32_APICBASE:
3451                return kvm_set_apic_base(vcpu, msr_info);
3452        case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3453                return kvm_x2apic_msr_write(vcpu, msr, data);
3454        case MSR_IA32_TSC_DEADLINE:
3455                kvm_set_lapic_tscdeadline_msr(vcpu, data);
3456                break;
3457        case MSR_IA32_TSC_ADJUST:
3458                if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3459                        if (!msr_info->host_initiated) {
3460                                s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3461                                adjust_tsc_offset_guest(vcpu, adj);
3462                                /* Before back to guest, tsc_timestamp must be adjusted
3463                                 * as well, otherwise guest's percpu pvclock time could jump.
3464                                 */
3465                                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3466                        }
3467                        vcpu->arch.ia32_tsc_adjust_msr = data;
3468                }
3469                break;
3470        case MSR_IA32_MISC_ENABLE:
3471                if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3472                    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3473                        if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3474                                return 1;
3475                        vcpu->arch.ia32_misc_enable_msr = data;
3476                        kvm_update_cpuid_runtime(vcpu);
3477                } else {
3478                        vcpu->arch.ia32_misc_enable_msr = data;
3479                }
3480                break;
3481        case MSR_IA32_SMBASE:
3482                if (!msr_info->host_initiated)
3483                        return 1;
3484                vcpu->arch.smbase = data;
3485                break;
3486        case MSR_IA32_POWER_CTL:
3487                vcpu->arch.msr_ia32_power_ctl = data;
3488                break;
3489        case MSR_IA32_TSC:
3490                if (msr_info->host_initiated) {
3491                        kvm_synchronize_tsc(vcpu, data);
3492                } else {
3493                        u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3494                        adjust_tsc_offset_guest(vcpu, adj);
3495                        vcpu->arch.ia32_tsc_adjust_msr += adj;
3496                }
3497                break;
3498        case MSR_IA32_XSS:
3499                if (!msr_info->host_initiated &&
3500                    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3501                        return 1;
3502                /*
3503                 * KVM supports exposing PT to the guest, but does not support
3504                 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3505                 * XSAVES/XRSTORS to save/restore PT MSRs.
3506                 */
3507                if (data & ~supported_xss)
3508                        return 1;
3509                vcpu->arch.ia32_xss = data;
3510                break;
3511        case MSR_SMI_COUNT:
3512                if (!msr_info->host_initiated)
3513                        return 1;
3514                vcpu->arch.smi_count = data;
3515                break;
3516        case MSR_KVM_WALL_CLOCK_NEW:
3517                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3518                        return 1;
3519
3520                vcpu->kvm->arch.wall_clock = data;
3521                kvm_write_wall_clock(vcpu->kvm, data, 0);
3522                break;
3523        case MSR_KVM_WALL_CLOCK:
3524                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3525                        return 1;
3526
3527                vcpu->kvm->arch.wall_clock = data;
3528                kvm_write_wall_clock(vcpu->kvm, data, 0);
3529                break;
3530        case MSR_KVM_SYSTEM_TIME_NEW:
3531                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3532                        return 1;
3533
3534                kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3535                break;
3536        case MSR_KVM_SYSTEM_TIME:
3537                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3538                        return 1;
3539
3540                kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3541                break;
3542        case MSR_KVM_ASYNC_PF_EN:
3543                if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3544                        return 1;
3545
3546                if (kvm_pv_enable_async_pf(vcpu, data))
3547                        return 1;
3548                break;
3549        case MSR_KVM_ASYNC_PF_INT:
3550                if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3551                        return 1;
3552
3553                if (kvm_pv_enable_async_pf_int(vcpu, data))
3554                        return 1;
3555                break;
3556        case MSR_KVM_ASYNC_PF_ACK:
3557                if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3558                        return 1;
3559                if (data & 0x1) {
3560                        vcpu->arch.apf.pageready_pending = false;
3561                        kvm_check_async_pf_completion(vcpu);
3562                }
3563                break;
3564        case MSR_KVM_STEAL_TIME:
3565                if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3566                        return 1;
3567
3568                if (unlikely(!sched_info_on()))
3569                        return 1;
3570
3571                if (data & KVM_STEAL_RESERVED_MASK)
3572                        return 1;
3573
3574                vcpu->arch.st.msr_val = data;
3575
3576                if (!(data & KVM_MSR_ENABLED))
3577                        break;
3578
3579                kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3580
3581                break;
3582        case MSR_KVM_PV_EOI_EN:
3583                if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3584                        return 1;
3585
3586                if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3587                        return 1;
3588                break;
3589
3590        case MSR_KVM_POLL_CONTROL:
3591                if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3592                        return 1;
3593
3594                /* only enable bit supported */
3595                if (data & (-1ULL << 1))
3596                        return 1;
3597
3598                vcpu->arch.msr_kvm_poll_control = data;
3599                break;
3600
3601        case MSR_IA32_MCG_CTL:
3602        case MSR_IA32_MCG_STATUS:
3603        case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3604                return set_msr_mce(vcpu, msr_info);
3605
3606        case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3607        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3608                pr = true;
3609                fallthrough;
3610        case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3611        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3612                if (kvm_pmu_is_valid_msr(vcpu, msr))
3613                        return kvm_pmu_set_msr(vcpu, msr_info);
3614
3615                if (pr || data != 0)
3616                        vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3617                                    "0x%x data 0x%llx\n", msr, data);
3618                break;
3619        case MSR_K7_CLK_CTL:
3620                /*
3621                 * Ignore all writes to this no longer documented MSR.
3622                 * Writes are only relevant for old K7 processors,
3623                 * all pre-dating SVM, but a recommended workaround from
3624                 * AMD for these chips. It is possible to specify the
3625                 * affected processor models on the command line, hence
3626                 * the need to ignore the workaround.
3627                 */
3628                break;
3629        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3630        case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3631        case HV_X64_MSR_SYNDBG_OPTIONS:
3632        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3633        case HV_X64_MSR_CRASH_CTL:
3634        case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3635        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3636        case HV_X64_MSR_TSC_EMULATION_CONTROL:
3637        case HV_X64_MSR_TSC_EMULATION_STATUS:
3638                return kvm_hv_set_msr_common(vcpu, msr, data,
3639                                             msr_info->host_initiated);
3640        case MSR_IA32_BBL_CR_CTL3:
3641                /* Drop writes to this legacy MSR -- see rdmsr
3642                 * counterpart for further detail.
3643                 */
3644                if (report_ignored_msrs)
3645                        vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3646                                msr, data);
3647                break;
3648        case MSR_AMD64_OSVW_ID_LENGTH:
3649                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3650                        return 1;
3651                vcpu->arch.osvw.length = data;
3652                break;
3653        case MSR_AMD64_OSVW_STATUS:
3654                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3655                        return 1;
3656                vcpu->arch.osvw.status = data;
3657                break;
3658        case MSR_PLATFORM_INFO:
3659                if (!msr_info->host_initiated ||
3660                    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3661                     cpuid_fault_enabled(vcpu)))
3662                        return 1;
3663                vcpu->arch.msr_platform_info = data;
3664                break;
3665        case MSR_MISC_FEATURES_ENABLES:
3666                if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3667                    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3668                     !supports_cpuid_fault(vcpu)))
3669                        return 1;
3670                vcpu->arch.msr_misc_features_enables = data;
3671                break;
3672        default:
3673                if (kvm_pmu_is_valid_msr(vcpu, msr))
3674                        return kvm_pmu_set_msr(vcpu, msr_info);
3675                return KVM_MSR_RET_INVALID;
3676        }
3677        return 0;
3678}
3679EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3680
3681static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3682{
3683        u64 data;
3684        u64 mcg_cap = vcpu->arch.mcg_cap;
3685        unsigned bank_num = mcg_cap & 0xff;
3686
3687        switch (msr) {
3688        case MSR_IA32_P5_MC_ADDR:
3689        case MSR_IA32_P5_MC_TYPE:
3690                data = 0;
3691                break;
3692        case MSR_IA32_MCG_CAP:
3693                data = vcpu->arch.mcg_cap;
3694                break;
3695        case MSR_IA32_MCG_CTL:
3696                if (!(mcg_cap & MCG_CTL_P) && !host)
3697                        return 1;
3698                data = vcpu->arch.mcg_ctl;
3699                break;
3700        case MSR_IA32_MCG_STATUS:
3701                data = vcpu->arch.mcg_status;
3702                break;
3703        default:
3704                if (msr >= MSR_IA32_MC0_CTL &&
3705                    msr < MSR_IA32_MCx_CTL(bank_num)) {
3706                        u32 offset = array_index_nospec(
3707                                msr - MSR_IA32_MC0_CTL,
3708                                MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3709
3710                        data = vcpu->arch.mce_banks[offset];
3711                        break;
3712                }
3713                return 1;
3714        }
3715        *pdata = data;
3716        return 0;
3717}
3718
3719int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3720{
3721        switch (msr_info->index) {
3722        case MSR_IA32_PLATFORM_ID:
3723        case MSR_IA32_EBL_CR_POWERON:
3724        case MSR_IA32_LASTBRANCHFROMIP:
3725        case MSR_IA32_LASTBRANCHTOIP:
3726        case MSR_IA32_LASTINTFROMIP:
3727        case MSR_IA32_LASTINTTOIP:
3728        case MSR_AMD64_SYSCFG:
3729        case MSR_K8_TSEG_ADDR:
3730        case MSR_K8_TSEG_MASK:
3731        case MSR_VM_HSAVE_PA:
3732        case MSR_K8_INT_PENDING_MSG:
3733        case MSR_AMD64_NB_CFG:
3734        case MSR_FAM10H_MMIO_CONF_BASE:
3735        case MSR_AMD64_BU_CFG2:
3736        case MSR_IA32_PERF_CTL:
3737        case MSR_AMD64_DC_CFG:
3738        case MSR_F15H_EX_CFG:
3739        /*
3740         * Intel Sandy Bridge CPUs must support the RAPL (running average power
3741         * limit) MSRs. Just return 0, as we do not want to expose the host
3742         * data here. Do not conditionalize this on CPUID, as KVM does not do
3743         * so for existing CPU-specific MSRs.
3744         */
3745        case MSR_RAPL_POWER_UNIT:
3746        case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3747        case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3748        case MSR_PKG_ENERGY_STATUS:     /* Total package */
3749        case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3750                msr_info->data = 0;
3751                break;
3752        case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3753                if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3754                        return kvm_pmu_get_msr(vcpu, msr_info);
3755                if (!msr_info->host_initiated)
3756                        return 1;
3757                msr_info->data = 0;
3758                break;
3759        case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3760        case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3761        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3762        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3763                if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3764                        return kvm_pmu_get_msr(vcpu, msr_info);
3765                msr_info->data = 0;
3766                break;
3767        case MSR_IA32_UCODE_REV:
3768                msr_info->data = vcpu->arch.microcode_version;
3769                break;
3770        case MSR_IA32_ARCH_CAPABILITIES:
3771                if (!msr_info->host_initiated &&
3772                    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3773                        return 1;
3774                msr_info->data = vcpu->arch.arch_capabilities;
3775                break;
3776        case MSR_IA32_PERF_CAPABILITIES:
3777                if (!msr_info->host_initiated &&
3778                    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3779                        return 1;
3780                msr_info->data = vcpu->arch.perf_capabilities;
3781                break;
3782        case MSR_IA32_POWER_CTL:
3783                msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3784                break;
3785        case MSR_IA32_TSC: {
3786                /*
3787                 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3788                 * even when not intercepted. AMD manual doesn't explicitly
3789                 * state this but appears to behave the same.
3790                 *
3791                 * On userspace reads and writes, however, we unconditionally
3792                 * return L1's TSC value to ensure backwards-compatible
3793                 * behavior for migration.
3794                 */
3795                u64 offset, ratio;
3796
3797                if (msr_info->host_initiated) {
3798                        offset = vcpu->arch.l1_tsc_offset;
3799                        ratio = vcpu->arch.l1_tsc_scaling_ratio;
3800                } else {
3801                        offset = vcpu->arch.tsc_offset;
3802                        ratio = vcpu->arch.tsc_scaling_ratio;
3803                }
3804
3805                msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3806                break;
3807        }
3808        case MSR_MTRRcap:
3809        case 0x200 ... 0x2ff:
3810                return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3811        case 0xcd: /* fsb frequency */
3812                msr_info->data = 3;
3813                break;
3814                /*
3815                 * MSR_EBC_FREQUENCY_ID
3816                 * Conservative value valid for even the basic CPU models.
3817                 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3818                 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3819                 * and 266MHz for model 3, or 4. Set Core Clock
3820                 * Frequency to System Bus Frequency Ratio to 1 (bits
3821                 * 31:24) even though these are only valid for CPU
3822                 * models > 2, however guests may end up dividing or
3823                 * multiplying by zero otherwise.
3824                 */
3825        case MSR_EBC_FREQUENCY_ID:
3826                msr_info->data = 1 << 24;
3827                break;
3828        case MSR_IA32_APICBASE:
3829                msr_info->data = kvm_get_apic_base(vcpu);
3830                break;
3831        case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3832                return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3833        case MSR_IA32_TSC_DEADLINE:
3834                msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3835                break;
3836        case MSR_IA32_TSC_ADJUST:
3837                msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3838                break;
3839        case MSR_IA32_MISC_ENABLE:
3840                msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3841                break;
3842        case MSR_IA32_SMBASE:
3843                if (!msr_info->host_initiated)
3844                        return 1;
3845                msr_info->data = vcpu->arch.smbase;
3846                break;
3847        case MSR_SMI_COUNT:
3848                msr_info->data = vcpu->arch.smi_count;
3849                break;
3850        case MSR_IA32_PERF_STATUS:
3851                /* TSC increment by tick */
3852                msr_info->data = 1000ULL;
3853                /* CPU multiplier */
3854                msr_info->data |= (((uint64_t)4ULL) << 40);
3855                break;
3856        case MSR_EFER:
3857                msr_info->data = vcpu->arch.efer;
3858                break;
3859        case MSR_KVM_WALL_CLOCK:
3860                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3861                        return 1;
3862
3863                msr_info->data = vcpu->kvm->arch.wall_clock;
3864                break;
3865        case MSR_KVM_WALL_CLOCK_NEW:
3866                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3867                        return 1;
3868
3869                msr_info->data = vcpu->kvm->arch.wall_clock;
3870                break;
3871        case MSR_KVM_SYSTEM_TIME:
3872                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3873                        return 1;
3874
3875                msr_info->data = vcpu->arch.time;
3876                break;
3877        case MSR_KVM_SYSTEM_TIME_NEW:
3878                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3879                        return 1;
3880
3881                msr_info->data = vcpu->arch.time;
3882                break;
3883        case MSR_KVM_ASYNC_PF_EN:
3884                if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3885                        return 1;
3886
3887                msr_info->data = vcpu->arch.apf.msr_en_val;
3888                break;
3889        case MSR_KVM_ASYNC_PF_INT:
3890                if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3891                        return 1;
3892
3893                msr_info->data = vcpu->arch.apf.msr_int_val;
3894                break;
3895        case MSR_KVM_ASYNC_PF_ACK:
3896                if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3897                        return 1;
3898
3899                msr_info->data = 0;
3900                break;
3901        case MSR_KVM_STEAL_TIME:
3902                if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3903                        return 1;
3904
3905                msr_info->data = vcpu->arch.st.msr_val;
3906                break;
3907        case MSR_KVM_PV_EOI_EN:
3908                if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3909                        return 1;
3910
3911                msr_info->data = vcpu->arch.pv_eoi.msr_val;
3912                break;
3913        case MSR_KVM_POLL_CONTROL:
3914                if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3915                        return 1;
3916
3917                msr_info->data = vcpu->arch.msr_kvm_poll_control;
3918                break;
3919        case MSR_IA32_P5_MC_ADDR:
3920        case MSR_IA32_P5_MC_TYPE:
3921        case MSR_IA32_MCG_CAP:
3922        case MSR_IA32_MCG_CTL:
3923        case MSR_IA32_MCG_STATUS:
3924        case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3925                return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3926                                   msr_info->host_initiated);
3927        case MSR_IA32_XSS:
3928                if (!msr_info->host_initiated &&
3929                    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3930                        return 1;
3931                msr_info->data = vcpu->arch.ia32_xss;
3932                break;
3933        case MSR_K7_CLK_CTL:
3934                /*
3935                 * Provide expected ramp-up count for K7. All other
3936                 * are set to zero, indicating minimum divisors for
3937                 * every field.
3938                 *
3939                 * This prevents guest kernels on AMD host with CPU
3940                 * type 6, model 8 and higher from exploding due to
3941                 * the rdmsr failing.
3942                 */
3943                msr_info->data = 0x20000000;
3944                break;
3945        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3946        case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3947        case HV_X64_MSR_SYNDBG_OPTIONS:
3948        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3949        case HV_X64_MSR_CRASH_CTL:
3950        case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3951        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3952        case HV_X64_MSR_TSC_EMULATION_CONTROL:
3953        case HV_X64_MSR_TSC_EMULATION_STATUS:
3954                return kvm_hv_get_msr_common(vcpu,
3955                                             msr_info->index, &msr_info->data,
3956                                             msr_info->host_initiated);
3957        case MSR_IA32_BBL_CR_CTL3:
3958                /* This legacy MSR exists but isn't fully documented in current
3959                 * silicon.  It is however accessed by winxp in very narrow
3960                 * scenarios where it sets bit #19, itself documented as
3961                 * a "reserved" bit.  Best effort attempt to source coherent
3962                 * read data here should the balance of the register be
3963                 * interpreted by the guest:
3964                 *
3965                 * L2 cache control register 3: 64GB range, 256KB size,
3966                 * enabled, latency 0x1, configured
3967                 */
3968                msr_info->data = 0xbe702111;
3969                break;
3970        case MSR_AMD64_OSVW_ID_LENGTH:
3971                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3972                        return 1;
3973                msr_info->data = vcpu->arch.osvw.length;
3974                break;
3975        case MSR_AMD64_OSVW_STATUS:
3976                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3977                        return 1;
3978                msr_info->data = vcpu->arch.osvw.status;
3979                break;
3980        case MSR_PLATFORM_INFO:
3981                if (!msr_info->host_initiated &&
3982                    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3983                        return 1;
3984                msr_info->data = vcpu->arch.msr_platform_info;
3985                break;
3986        case MSR_MISC_FEATURES_ENABLES:
3987                msr_info->data = vcpu->arch.msr_misc_features_enables;
3988                break;
3989        case MSR_K7_HWCR:
3990                msr_info->data = vcpu->arch.msr_hwcr;
3991                break;
3992        default:
3993                if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3994                        return kvm_pmu_get_msr(vcpu, msr_info);
3995                return KVM_MSR_RET_INVALID;
3996        }
3997        return 0;
3998}
3999EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4000
4001/*
4002 * Read or write a bunch of msrs. All parameters are kernel addresses.
4003 *
4004 * @return number of msrs set successfully.
4005 */
4006static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4007                    struct kvm_msr_entry *entries,
4008                    int (*do_msr)(struct kvm_vcpu *vcpu,
4009                                  unsigned index, u64 *data))
4010{
4011        int i;
4012
4013        for (i = 0; i < msrs->nmsrs; ++i)
4014                if (do_msr(vcpu, entries[i].index, &entries[i].data))
4015                        break;
4016
4017        return i;
4018}
4019
4020/*
4021 * Read or write a bunch of msrs. Parameters are user addresses.
4022 *
4023 * @return number of msrs set successfully.
4024 */
4025static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4026                  int (*do_msr)(struct kvm_vcpu *vcpu,
4027                                unsigned index, u64 *data),
4028                  int writeback)
4029{
4030        struct kvm_msrs msrs;
4031        struct kvm_msr_entry *entries;
4032        int r, n;
4033        unsigned size;
4034
4035        r = -EFAULT;
4036        if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4037                goto out;
4038
4039        r = -E2BIG;
4040        if (msrs.nmsrs >= MAX_IO_MSRS)
4041                goto out;
4042
4043        size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4044        entries = memdup_user(user_msrs->entries, size);
4045        if (IS_ERR(entries)) {
4046                r = PTR_ERR(entries);
4047                goto out;
4048        }
4049
4050        r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4051        if (r < 0)
4052                goto out_free;
4053
4054        r = -EFAULT;
4055        if (writeback && copy_to_user(user_msrs->entries, entries, size))
4056                goto out_free;
4057
4058        r = n;
4059
4060out_free:
4061        kfree(entries);
4062out:
4063        return r;
4064}
4065
4066static inline bool kvm_can_mwait_in_guest(void)
4067{
4068        return boot_cpu_has(X86_FEATURE_MWAIT) &&
4069                !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4070                boot_cpu_has(X86_FEATURE_ARAT);
4071}
4072
4073static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4074                                            struct kvm_cpuid2 __user *cpuid_arg)
4075{
4076        struct kvm_cpuid2 cpuid;
4077        int r;
4078
4079        r = -EFAULT;
4080        if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4081                return r;
4082
4083        r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4084        if (r)
4085                return r;
4086
4087        r = -EFAULT;
4088        if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4089                return r;
4090
4091        return 0;
4092}
4093
4094int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4095{
4096        int r = 0;
4097
4098        switch (ext) {
4099        case KVM_CAP_IRQCHIP:
4100        case KVM_CAP_HLT:
4101        case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4102        case KVM_CAP_SET_TSS_ADDR:
4103        case KVM_CAP_EXT_CPUID:
4104        case KVM_CAP_EXT_EMUL_CPUID:
4105        case KVM_CAP_CLOCKSOURCE:
4106        case KVM_CAP_PIT:
4107        case KVM_CAP_NOP_IO_DELAY:
4108        case KVM_CAP_MP_STATE:
4109        case KVM_CAP_SYNC_MMU:
4110        case KVM_CAP_USER_NMI:
4111        case KVM_CAP_REINJECT_CONTROL:
4112        case KVM_CAP_IRQ_INJECT_STATUS:
4113        case KVM_CAP_IOEVENTFD:
4114        case KVM_CAP_IOEVENTFD_NO_LENGTH:
4115        case KVM_CAP_PIT2:
4116        case KVM_CAP_PIT_STATE2:
4117        case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4118        case KVM_CAP_VCPU_EVENTS:
4119        case KVM_CAP_HYPERV:
4120        case KVM_CAP_HYPERV_VAPIC:
4121        case KVM_CAP_HYPERV_SPIN:
4122        case KVM_CAP_HYPERV_SYNIC:
4123        case KVM_CAP_HYPERV_SYNIC2:
4124        case KVM_CAP_HYPERV_VP_INDEX:
4125        case KVM_CAP_HYPERV_EVENTFD:
4126        case KVM_CAP_HYPERV_TLBFLUSH:
4127        case KVM_CAP_HYPERV_SEND_IPI:
4128        case KVM_CAP_HYPERV_CPUID:
4129        case KVM_CAP_HYPERV_ENFORCE_CPUID:
4130        case KVM_CAP_SYS_HYPERV_CPUID:
4131        case KVM_CAP_PCI_SEGMENT:
4132        case KVM_CAP_DEBUGREGS:
4133        case KVM_CAP_X86_ROBUST_SINGLESTEP:
4134        case KVM_CAP_XSAVE:
4135        case KVM_CAP_ASYNC_PF:
4136        case KVM_CAP_ASYNC_PF_INT:
4137        case KVM_CAP_GET_TSC_KHZ:
4138        case KVM_CAP_KVMCLOCK_CTRL:
4139        case KVM_CAP_READONLY_MEM:
4140        case KVM_CAP_HYPERV_TIME:
4141        case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4142        case KVM_CAP_TSC_DEADLINE_TIMER:
4143        case KVM_CAP_DISABLE_QUIRKS:
4144        case KVM_CAP_SET_BOOT_CPU_ID:
4145        case KVM_CAP_SPLIT_IRQCHIP:
4146        case KVM_CAP_IMMEDIATE_EXIT:
4147        case KVM_CAP_PMU_EVENT_FILTER:
4148        case KVM_CAP_GET_MSR_FEATURES:
4149        case KVM_CAP_MSR_PLATFORM_INFO:
4150        case KVM_CAP_EXCEPTION_PAYLOAD:
4151        case KVM_CAP_SET_GUEST_DEBUG:
4152        case KVM_CAP_LAST_CPU:
4153        case KVM_CAP_X86_USER_SPACE_MSR:
4154        case KVM_CAP_X86_MSR_FILTER:
4155        case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4156#ifdef CONFIG_X86_SGX_KVM
4157        case KVM_CAP_SGX_ATTRIBUTE:
4158#endif
4159        case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4160        case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4161        case KVM_CAP_SREGS2:
4162        case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4163        case KVM_CAP_VCPU_ATTRIBUTES:
4164                r = 1;
4165                break;
4166        case KVM_CAP_EXIT_HYPERCALL:
4167                r = KVM_EXIT_HYPERCALL_VALID_MASK;
4168                break;
4169        case KVM_CAP_SET_GUEST_DEBUG2:
4170                return KVM_GUESTDBG_VALID_MASK;
4171#ifdef CONFIG_KVM_XEN
4172        case KVM_CAP_XEN_HVM:
4173                r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4174                    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4175                    KVM_XEN_HVM_CONFIG_SHARED_INFO;
4176                if (sched_info_on())
4177                        r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4178                break;
4179#endif
4180        case KVM_CAP_SYNC_REGS:
4181                r = KVM_SYNC_X86_VALID_FIELDS;
4182                break;
4183        case KVM_CAP_ADJUST_CLOCK:
4184                r = KVM_CLOCK_VALID_FLAGS;
4185                break;
4186        case KVM_CAP_X86_DISABLE_EXITS:
4187                r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4188                      KVM_X86_DISABLE_EXITS_CSTATE;
4189                if(kvm_can_mwait_in_guest())
4190                        r |= KVM_X86_DISABLE_EXITS_MWAIT;
4191                break;
4192        case KVM_CAP_X86_SMM:
4193                /* SMBASE is usually relocated above 1M on modern chipsets,
4194                 * and SMM handlers might indeed rely on 4G segment limits,
4195                 * so do not report SMM to be available if real mode is
4196                 * emulated via vm86 mode.  Still, do not go to great lengths
4197                 * to avoid userspace's usage of the feature, because it is a
4198                 * fringe case that is not enabled except via specific settings
4199                 * of the module parameters.
4200                 */
4201                r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4202                break;
4203        case KVM_CAP_VAPIC:
4204                r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4205                break;
4206        case KVM_CAP_NR_VCPUS:
4207                r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4208                break;
4209        case KVM_CAP_MAX_VCPUS:
4210                r = KVM_MAX_VCPUS;
4211                break;
4212        case KVM_CAP_MAX_VCPU_ID:
4213                r = KVM_MAX_VCPU_IDS;
4214                break;
4215        case KVM_CAP_PV_MMU:    /* obsolete */
4216                r = 0;
4217                break;
4218        case KVM_CAP_MCE:
4219                r = KVM_MAX_MCE_BANKS;
4220                break;
4221        case KVM_CAP_XCRS:
4222                r = boot_cpu_has(X86_FEATURE_XSAVE);
4223                break;
4224        case KVM_CAP_TSC_CONTROL:
4225                r = kvm_has_tsc_control;
4226                break;
4227        case KVM_CAP_X2APIC_API:
4228                r = KVM_X2APIC_API_VALID_FLAGS;
4229                break;
4230        case KVM_CAP_NESTED_STATE:
4231                r = kvm_x86_ops.nested_ops->get_state ?
4232                        kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4233                break;
4234        case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4235                r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4236                break;
4237        case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4238                r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4239                break;
4240        case KVM_CAP_SMALLER_MAXPHYADDR:
4241                r = (int) allow_smaller_maxphyaddr;
4242                break;
4243        case KVM_CAP_STEAL_TIME:
4244                r = sched_info_on();
4245                break;
4246        case KVM_CAP_X86_BUS_LOCK_EXIT:
4247                if (kvm_has_bus_lock_exit)
4248                        r = KVM_BUS_LOCK_DETECTION_OFF |
4249                            KVM_BUS_LOCK_DETECTION_EXIT;
4250                else
4251                        r = 0;
4252                break;
4253        default:
4254                break;
4255        }
4256        return r;
4257
4258}
4259
4260long kvm_arch_dev_ioctl(struct file *filp,
4261                        unsigned int ioctl, unsigned long arg)
4262{
4263        void __user *argp = (void __user *)arg;
4264        long r;
4265
4266        switch (ioctl) {
4267        case KVM_GET_MSR_INDEX_LIST: {
4268                struct kvm_msr_list __user *user_msr_list = argp;
4269                struct kvm_msr_list msr_list;
4270                unsigned n;
4271
4272                r = -EFAULT;
4273                if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4274                        goto out;
4275                n = msr_list.nmsrs;
4276                msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4277                if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4278                        goto out;
4279                r = -E2BIG;
4280                if (n < msr_list.nmsrs)
4281                        goto out;
4282                r = -EFAULT;
4283                if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4284                                 num_msrs_to_save * sizeof(u32)))
4285                        goto out;
4286                if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4287                                 &emulated_msrs,
4288                                 num_emulated_msrs * sizeof(u32)))
4289                        goto out;
4290                r = 0;
4291                break;
4292        }
4293        case KVM_GET_SUPPORTED_CPUID:
4294        case KVM_GET_EMULATED_CPUID: {
4295                struct kvm_cpuid2 __user *cpuid_arg = argp;
4296                struct kvm_cpuid2 cpuid;
4297
4298                r = -EFAULT;
4299                if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4300                        goto out;
4301
4302                r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4303                                            ioctl);
4304                if (r)
4305                        goto out;
4306
4307                r = -EFAULT;
4308                if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4309                        goto out;
4310                r = 0;
4311                break;
4312        }
4313        case KVM_X86_GET_MCE_CAP_SUPPORTED:
4314                r = -EFAULT;
4315                if (copy_to_user(argp, &kvm_mce_cap_supported,
4316                                 sizeof(kvm_mce_cap_supported)))
4317                        goto out;
4318                r = 0;
4319                break;
4320        case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4321                struct kvm_msr_list __user *user_msr_list = argp;
4322                struct kvm_msr_list msr_list;
4323                unsigned int n;
4324
4325                r = -EFAULT;
4326                if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4327                        goto out;
4328                n = msr_list.nmsrs;
4329                msr_list.nmsrs = num_msr_based_features;
4330                if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4331                        goto out;
4332                r = -E2BIG;
4333                if (n < msr_list.nmsrs)
4334                        goto out;
4335                r = -EFAULT;
4336                if (copy_to_user(user_msr_list->indices, &msr_based_features,
4337                                 num_msr_based_features * sizeof(u32)))
4338                        goto out;
4339                r = 0;
4340                break;
4341        }
4342        case KVM_GET_MSRS:
4343                r = msr_io(NULL, argp, do_get_msr_feature, 1);
4344                break;
4345        case KVM_GET_SUPPORTED_HV_CPUID:
4346                r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4347                break;
4348        default:
4349                r = -EINVAL;
4350                break;
4351        }
4352out:
4353        return r;
4354}
4355
4356static void wbinvd_ipi(void *garbage)
4357{
4358        wbinvd();
4359}
4360
4361static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4362{
4363        return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4364}
4365
4366void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4367{
4368        /* Address WBINVD may be executed by guest */
4369        if (need_emulate_wbinvd(vcpu)) {
4370                if (static_call(kvm_x86_has_wbinvd_exit)())
4371                        cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4372                else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4373                        smp_call_function_single(vcpu->cpu,
4374                                        wbinvd_ipi, NULL, 1);
4375        }
4376
4377        static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4378
4379        /* Save host pkru register if supported */
4380        vcpu->arch.host_pkru = read_pkru();
4381
4382        /* Apply any externally detected TSC adjustments (due to suspend) */
4383        if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4384                adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4385                vcpu->arch.tsc_offset_adjustment = 0;
4386                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4387        }
4388
4389        if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4390                s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4391                                rdtsc() - vcpu->arch.last_host_tsc;
4392                if (tsc_delta < 0)
4393                        mark_tsc_unstable("KVM discovered backwards TSC");
4394
4395                if (kvm_check_tsc_unstable()) {
4396                        u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4397                                                vcpu->arch.last_guest_tsc);
4398                        kvm_vcpu_write_tsc_offset(vcpu, offset);
4399                        vcpu->arch.tsc_catchup = 1;
4400                }
4401
4402                if (kvm_lapic_hv_timer_in_use(vcpu))
4403                        kvm_lapic_restart_hv_timer(vcpu);
4404
4405                /*
4406                 * On a host with synchronized TSC, there is no need to update
4407                 * kvmclock on vcpu->cpu migration
4408                 */
4409                if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4410                        kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4411                if (vcpu->cpu != cpu)
4412                        kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4413                vcpu->cpu = cpu;
4414        }
4415
4416        kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4417}
4418
4419static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4420{
4421        struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4422        struct kvm_steal_time __user *st;
4423        struct kvm_memslots *slots;
4424        static const u8 preempted = KVM_VCPU_PREEMPTED;
4425
4426        if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4427                return;
4428
4429        if (vcpu->arch.st.preempted)
4430                return;
4431
4432        /* This happens on process exit */
4433        if (unlikely(current->mm != vcpu->kvm->mm))
4434                return;
4435
4436        slots = kvm_memslots(vcpu->kvm);
4437
4438        if (unlikely(slots->generation != ghc->generation ||
4439                     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4440                return;
4441
4442        st = (struct kvm_steal_time __user *)ghc->hva;
4443        BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4444
4445        if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4446                vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4447
4448        mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4449}
4450
4451void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4452{
4453        int idx;
4454
4455        if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4456                vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4457
4458        /*
4459         * Take the srcu lock as memslots will be accessed to check the gfn
4460         * cache generation against the memslots generation.
4461         */
4462        idx = srcu_read_lock(&vcpu->kvm->srcu);
4463        if (kvm_xen_msr_enabled(vcpu->kvm))
4464                kvm_xen_runstate_set_preempted(vcpu);
4465        else
4466                kvm_steal_time_set_preempted(vcpu);
4467        srcu_read_unlock(&vcpu->kvm->srcu, idx);
4468
4469        static_call(kvm_x86_vcpu_put)(vcpu);
4470        vcpu->arch.last_host_tsc = rdtsc();
4471}
4472
4473static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4474                                    struct kvm_lapic_state *s)
4475{
4476        static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4477
4478        return kvm_apic_get_state(vcpu, s);
4479}
4480
4481static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4482                                    struct kvm_lapic_state *s)
4483{
4484        int r;
4485
4486        r = kvm_apic_set_state(vcpu, s);
4487        if (r)
4488                return r;
4489        update_cr8_intercept(vcpu);
4490
4491        return 0;
4492}
4493
4494static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4495{
4496        /*
4497         * We can accept userspace's request for interrupt injection
4498         * as long as we have a place to store the interrupt number.
4499         * The actual injection will happen when the CPU is able to
4500         * deliver the interrupt.
4501         */
4502        if (kvm_cpu_has_extint(vcpu))
4503                return false;
4504
4505        /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4506        return (!lapic_in_kernel(vcpu) ||
4507                kvm_apic_accept_pic_intr(vcpu));
4508}
4509
4510static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4511{
4512        /*
4513         * Do not cause an interrupt window exit if an exception
4514         * is pending or an event needs reinjection; userspace
4515         * might want to inject the interrupt manually using KVM_SET_REGS
4516         * or KVM_SET_SREGS.  For that to work, we must be at an
4517         * instruction boundary and with no events half-injected.
4518         */
4519        return (kvm_arch_interrupt_allowed(vcpu) &&
4520                kvm_cpu_accept_dm_intr(vcpu) &&
4521                !kvm_event_needs_reinjection(vcpu) &&
4522                !vcpu->arch.exception.pending);
4523}
4524
4525static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4526                                    struct kvm_interrupt *irq)
4527{
4528        if (irq->irq >= KVM_NR_INTERRUPTS)
4529                return -EINVAL;
4530
4531        if (!irqchip_in_kernel(vcpu->kvm)) {
4532                kvm_queue_interrupt(vcpu, irq->irq, false);
4533                kvm_make_request(KVM_REQ_EVENT, vcpu);
4534                return 0;
4535        }
4536
4537        /*
4538         * With in-kernel LAPIC, we only use this to inject EXTINT, so
4539         * fail for in-kernel 8259.
4540         */
4541        if (pic_in_kernel(vcpu->kvm))
4542                return -ENXIO;
4543
4544        if (vcpu->arch.pending_external_vector != -1)
4545                return -EEXIST;
4546
4547        vcpu->arch.pending_external_vector = irq->irq;
4548        kvm_make_request(KVM_REQ_EVENT, vcpu);
4549        return 0;
4550}
4551
4552static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4553{
4554        kvm_inject_nmi(vcpu);
4555
4556        return 0;
4557}
4558
4559static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4560{
4561        kvm_make_request(KVM_REQ_SMI, vcpu);
4562
4563        return 0;
4564}
4565
4566static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4567                                           struct kvm_tpr_access_ctl *tac)
4568{
4569        if (tac->flags)
4570                return -EINVAL;
4571        vcpu->arch.tpr_access_reporting = !!tac->enabled;
4572        return 0;
4573}
4574
4575static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4576                                        u64 mcg_cap)
4577{
4578        int r;
4579        unsigned bank_num = mcg_cap & 0xff, bank;
4580
4581        r = -EINVAL;
4582        if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4583                goto out;
4584        if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4585                goto out;
4586        r = 0;
4587        vcpu->arch.mcg_cap = mcg_cap;
4588        /* Init IA32_MCG_CTL to all 1s */
4589        if (mcg_cap & MCG_CTL_P)
4590                vcpu->arch.mcg_ctl = ~(u64)0;
4591        /* Init IA32_MCi_CTL to all 1s */
4592        for (bank = 0; bank < bank_num; bank++)
4593                vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4594
4595        static_call(kvm_x86_setup_mce)(vcpu);
4596out:
4597        return r;
4598}
4599
4600static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4601                                      struct kvm_x86_mce *mce)
4602{
4603        u64 mcg_cap = vcpu->arch.mcg_cap;
4604        unsigned bank_num = mcg_cap & 0xff;
4605        u64 *banks = vcpu->arch.mce_banks;
4606
4607        if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4608                return -EINVAL;
4609        /*
4610         * if IA32_MCG_CTL is not all 1s, the uncorrected error
4611         * reporting is disabled
4612         */
4613        if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4614            vcpu->arch.mcg_ctl != ~(u64)0)
4615                return 0;
4616        banks += 4 * mce->bank;
4617        /*
4618         * if IA32_MCi_CTL is not all 1s, the uncorrected error
4619         * reporting is disabled for the bank
4620         */
4621        if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4622                return 0;
4623        if (mce->status & MCI_STATUS_UC) {
4624                if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4625                    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4626                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4627                        return 0;
4628                }
4629                if (banks[1] & MCI_STATUS_VAL)
4630                        mce->status |= MCI_STATUS_OVER;
4631                banks[2] = mce->addr;
4632                banks[3] = mce->misc;
4633                vcpu->arch.mcg_status = mce->mcg_status;
4634                banks[1] = mce->status;
4635                kvm_queue_exception(vcpu, MC_VECTOR);
4636        } else if (!(banks[1] & MCI_STATUS_VAL)
4637                   || !(banks[1] & MCI_STATUS_UC)) {
4638                if (banks[1] & MCI_STATUS_VAL)
4639                        mce->status |= MCI_STATUS_OVER;
4640                banks[2] = mce->addr;
4641                banks[3] = mce->misc;
4642                banks[1] = mce->status;
4643        } else
4644                banks[1] |= MCI_STATUS_OVER;
4645        return 0;
4646}
4647
4648static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4649                                               struct kvm_vcpu_events *events)
4650{
4651        process_nmi(vcpu);
4652
4653        if (kvm_check_request(KVM_REQ_SMI, vcpu))
4654                process_smi(vcpu);
4655
4656        /*
4657         * In guest mode, payload delivery should be deferred,
4658         * so that the L1 hypervisor can intercept #PF before
4659         * CR2 is modified (or intercept #DB before DR6 is
4660         * modified under nVMX). Unless the per-VM capability,
4661         * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4662         * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4663         * opportunistically defer the exception payload, deliver it if the
4664         * capability hasn't been requested before processing a
4665         * KVM_GET_VCPU_EVENTS.
4666         */
4667        if (!vcpu->kvm->arch.exception_payload_enabled &&
4668            vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4669                kvm_deliver_exception_payload(vcpu);
4670
4671        /*
4672         * The API doesn't provide the instruction length for software
4673         * exceptions, so don't report them. As long as the guest RIP
4674         * isn't advanced, we should expect to encounter the exception
4675         * again.
4676         */
4677        if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4678                events->exception.injected = 0;
4679                events->exception.pending = 0;
4680        } else {
4681                events->exception.injected = vcpu->arch.exception.injected;
4682                events->exception.pending = vcpu->arch.exception.pending;
4683                /*
4684                 * For ABI compatibility, deliberately conflate
4685                 * pending and injected exceptions when
4686                 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4687                 */
4688                if (!vcpu->kvm->arch.exception_payload_enabled)
4689                        events->exception.injected |=
4690                                vcpu->arch.exception.pending;
4691        }
4692        events->exception.nr = vcpu->arch.exception.nr;
4693        events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4694        events->exception.error_code = vcpu->arch.exception.error_code;
4695        events->exception_has_payload = vcpu->arch.exception.has_payload;
4696        events->exception_payload = vcpu->arch.exception.payload;
4697
4698        events->interrupt.injected =
4699                vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4700        events->interrupt.nr = vcpu->arch.interrupt.nr;
4701        events->interrupt.soft = 0;
4702        events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4703
4704        events->nmi.injected = vcpu->arch.nmi_injected;
4705        events->nmi.pending = vcpu->arch.nmi_pending != 0;
4706        events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4707        events->nmi.pad = 0;
4708
4709        events->sipi_vector = 0; /* never valid when reporting to user space */
4710
4711        events->smi.smm = is_smm(vcpu);
4712        events->smi.pending = vcpu->arch.smi_pending;
4713        events->smi.smm_inside_nmi =
4714                !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4715        events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4716
4717        events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4718                         | KVM_VCPUEVENT_VALID_SHADOW
4719                         | KVM_VCPUEVENT_VALID_SMM);
4720        if (vcpu->kvm->arch.exception_payload_enabled)
4721                events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4722
4723        memset(&events->reserved, 0, sizeof(events->reserved));
4724}
4725
4726static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4727
4728static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4729                                              struct kvm_vcpu_events *events)
4730{
4731        if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4732                              | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4733                              | KVM_VCPUEVENT_VALID_SHADOW
4734                              | KVM_VCPUEVENT_VALID_SMM
4735                              | KVM_VCPUEVENT_VALID_PAYLOAD))
4736                return -EINVAL;
4737
4738        if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4739                if (!vcpu->kvm->arch.exception_payload_enabled)
4740                        return -EINVAL;
4741                if (events->exception.pending)
4742                        events->exception.injected = 0;
4743                else
4744                        events->exception_has_payload = 0;
4745        } else {
4746                events->exception.pending = 0;
4747                events->exception_has_payload = 0;
4748        }
4749
4750        if ((events->exception.injected || events->exception.pending) &&
4751            (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4752                return -EINVAL;
4753
4754        /* INITs are latched while in SMM */
4755        if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4756            (events->smi.smm || events->smi.pending) &&
4757            vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4758                return -EINVAL;
4759
4760        process_nmi(vcpu);
4761        vcpu->arch.exception.injected = events->exception.injected;
4762        vcpu->arch.exception.pending = events->exception.pending;
4763        vcpu->arch.exception.nr = events->exception.nr;
4764        vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4765        vcpu->arch.exception.error_code = events->exception.error_code;
4766        vcpu->arch.exception.has_payload = events->exception_has_payload;
4767        vcpu->arch.exception.payload = events->exception_payload;
4768
4769        vcpu->arch.interrupt.injected = events->interrupt.injected;
4770        vcpu->arch.interrupt.nr = events->interrupt.nr;
4771        vcpu->arch.interrupt.soft = events->interrupt.soft;
4772        if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4773                static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4774                                                events->interrupt.shadow);
4775
4776        vcpu->arch.nmi_injected = events->nmi.injected;
4777        if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4778                vcpu->arch.nmi_pending = events->nmi.pending;
4779        static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4780
4781        if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4782            lapic_in_kernel(vcpu))
4783                vcpu->arch.apic->sipi_vector = events->sipi_vector;
4784
4785        if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4786                if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm)
4787                        kvm_smm_changed(vcpu, events->smi.smm);
4788
4789                vcpu->arch.smi_pending = events->smi.pending;
4790
4791                if (events->smi.smm) {
4792                        if (events->smi.smm_inside_nmi)
4793                                vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4794                        else
4795                                vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4796                }
4797
4798                if (lapic_in_kernel(vcpu)) {
4799                        if (events->smi.latched_init)
4800                                set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4801                        else
4802                                clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4803                }
4804        }
4805
4806        kvm_make_request(KVM_REQ_EVENT, vcpu);
4807
4808        return 0;
4809}
4810
4811static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4812                                             struct kvm_debugregs *dbgregs)
4813{
4814        unsigned long val;
4815
4816        memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4817        kvm_get_dr(vcpu, 6, &val);
4818        dbgregs->dr6 = val;
4819        dbgregs->dr7 = vcpu->arch.dr7;
4820        dbgregs->flags = 0;
4821        memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4822}
4823
4824static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4825                                            struct kvm_debugregs *dbgregs)
4826{
4827        if (dbgregs->flags)
4828                return -EINVAL;
4829
4830        if (!kvm_dr6_valid(dbgregs->dr6))
4831                return -EINVAL;
4832        if (!kvm_dr7_valid(dbgregs->dr7))
4833                return -EINVAL;
4834
4835        memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4836        kvm_update_dr0123(vcpu);
4837        vcpu->arch.dr6 = dbgregs->dr6;
4838        vcpu->arch.dr7 = dbgregs->dr7;
4839        kvm_update_dr7(vcpu);
4840
4841        return 0;
4842}
4843
4844static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4845                                         struct kvm_xsave *guest_xsave)
4846{
4847        if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
4848                return;
4849
4850        fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
4851                                       guest_xsave->region,
4852                                       sizeof(guest_xsave->region),
4853                                       vcpu->arch.pkru);
4854}
4855
4856static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4857                                        struct kvm_xsave *guest_xsave)
4858{
4859        if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
4860                return 0;
4861
4862        return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
4863                                              guest_xsave->region,
4864                                              supported_xcr0, &vcpu->arch.pkru);
4865}
4866
4867static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4868                                        struct kvm_xcrs *guest_xcrs)
4869{
4870        if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4871                guest_xcrs->nr_xcrs = 0;
4872                return;
4873        }
4874
4875        guest_xcrs->nr_xcrs = 1;
4876        guest_xcrs->flags = 0;
4877        guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4878        guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4879}
4880
4881static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4882                                       struct kvm_xcrs *guest_xcrs)
4883{
4884        int i, r = 0;
4885
4886        if (!boot_cpu_has(X86_FEATURE_XSAVE))
4887                return -EINVAL;
4888
4889        if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4890                return -EINVAL;
4891
4892        for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4893                /* Only support XCR0 currently */
4894                if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4895                        r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4896                                guest_xcrs->xcrs[i].value);
4897                        break;
4898                }
4899        if (r)
4900                r = -EINVAL;
4901        return r;
4902}
4903
4904/*
4905 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4906 * stopped by the hypervisor.  This function will be called from the host only.
4907 * EINVAL is returned when the host attempts to set the flag for a guest that
4908 * does not support pv clocks.
4909 */
4910static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4911{
4912        if (!vcpu->arch.pv_time_enabled)
4913                return -EINVAL;
4914        vcpu->arch.pvclock_set_guest_stopped_request = true;
4915        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4916        return 0;
4917}
4918
4919static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
4920                                 struct kvm_device_attr *attr)
4921{
4922        int r;
4923
4924        switch (attr->attr) {
4925        case KVM_VCPU_TSC_OFFSET:
4926                r = 0;
4927                break;
4928        default:
4929                r = -ENXIO;
4930        }
4931
4932        return r;
4933}
4934
4935static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
4936                                 struct kvm_device_attr *attr)
4937{
4938        u64 __user *uaddr = (u64 __user *)(unsigned long)attr->addr;
4939        int r;
4940
4941        if ((u64)(unsigned long)uaddr != attr->addr)
4942                return -EFAULT;
4943
4944        switch (attr->attr) {
4945        case KVM_VCPU_TSC_OFFSET:
4946                r = -EFAULT;
4947                if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
4948                        break;
4949                r = 0;
4950                break;
4951        default:
4952                r = -ENXIO;
4953        }
4954
4955        return r;
4956}
4957
4958static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
4959                                 struct kvm_device_attr *attr)
4960{
4961        u64 __user *uaddr = (u64 __user *)(unsigned long)attr->addr;
4962        struct kvm *kvm = vcpu->kvm;
4963        int r;
4964
4965        if ((u64)(unsigned long)uaddr != attr->addr)
4966                return -EFAULT;
4967
4968        switch (attr->attr) {
4969        case KVM_VCPU_TSC_OFFSET: {
4970                u64 offset, tsc, ns;
4971                unsigned long flags;
4972                bool matched;
4973
4974                r = -EFAULT;
4975                if (get_user(offset, uaddr))
4976                        break;
4977
4978                raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
4979
4980                matched = (vcpu->arch.virtual_tsc_khz &&
4981                           kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
4982                           kvm->arch.last_tsc_offset == offset);
4983
4984                tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
4985                ns = get_kvmclock_base_ns();
4986
4987                __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
4988                raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
4989
4990                r = 0;
4991                break;
4992        }
4993        default:
4994                r = -ENXIO;
4995        }
4996
4997        return r;
4998}
4999
5000static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5001                                      unsigned int ioctl,
5002                                      void __user *argp)
5003{
5004        struct kvm_device_attr attr;
5005        int r;
5006
5007        if (copy_from_user(&attr, argp, sizeof(attr)))
5008                return -EFAULT;
5009
5010        if (attr.group != KVM_VCPU_TSC_CTRL)
5011                return -ENXIO;
5012
5013        switch (ioctl) {
5014        case KVM_HAS_DEVICE_ATTR:
5015                r = kvm_arch_tsc_has_attr(vcpu, &attr);
5016                break;
5017        case KVM_GET_DEVICE_ATTR:
5018                r = kvm_arch_tsc_get_attr(vcpu, &attr);
5019                break;
5020        case KVM_SET_DEVICE_ATTR:
5021                r = kvm_arch_tsc_set_attr(vcpu, &attr);
5022                break;
5023        }
5024
5025        return r;
5026}
5027
5028static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5029                                     struct kvm_enable_cap *cap)
5030{
5031        int r;
5032        uint16_t vmcs_version;
5033        void __user *user_ptr;
5034
5035        if (cap->flags)
5036                return -EINVAL;
5037
5038        switch (cap->cap) {
5039        case KVM_CAP_HYPERV_SYNIC2:
5040                if (cap->args[0])
5041                        return -EINVAL;
5042                fallthrough;
5043
5044        case KVM_CAP_HYPERV_SYNIC:
5045                if (!irqchip_in_kernel(vcpu->kvm))
5046                        return -EINVAL;
5047                return kvm_hv_activate_synic(vcpu, cap->cap ==
5048                                             KVM_CAP_HYPERV_SYNIC2);
5049        case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5050                if (!kvm_x86_ops.nested_ops->enable_evmcs)
5051                        return -ENOTTY;
5052                r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5053                if (!r) {
5054                        user_ptr = (void __user *)(uintptr_t)cap->args[0];
5055                        if (copy_to_user(user_ptr, &vmcs_version,
5056                                         sizeof(vmcs_version)))
5057                                r = -EFAULT;
5058                }
5059                return r;
5060        case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5061                if (!kvm_x86_ops.enable_direct_tlbflush)
5062                        return -ENOTTY;
5063
5064                return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5065
5066        case KVM_CAP_HYPERV_ENFORCE_CPUID:
5067                return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5068
5069        case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5070                vcpu->arch.pv_cpuid.enforce = cap->args[0];
5071                if (vcpu->arch.pv_cpuid.enforce)
5072                        kvm_update_pv_runtime(vcpu);
5073
5074                return 0;
5075        default:
5076                return -EINVAL;
5077        }
5078}
5079
5080long kvm_arch_vcpu_ioctl(struct file *filp,
5081                         unsigned int ioctl, unsigned long arg)
5082{
5083        struct kvm_vcpu *vcpu = filp->private_data;
5084        void __user *argp = (void __user *)arg;
5085        int r;
5086        union {
5087                struct kvm_sregs2 *sregs2;
5088                struct kvm_lapic_state *lapic;
5089                struct kvm_xsave *xsave;
5090                struct kvm_xcrs *xcrs;
5091                void *buffer;
5092        } u;
5093
5094        vcpu_load(vcpu);
5095
5096        u.buffer = NULL;
5097        switch (ioctl) {
5098        case KVM_GET_LAPIC: {
5099                r = -EINVAL;
5100                if (!lapic_in_kernel(vcpu))
5101                        goto out;
5102                u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5103                                GFP_KERNEL_ACCOUNT);
5104
5105                r = -ENOMEM;
5106                if (!u.lapic)
5107                        goto out;
5108                r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5109                if (r)
5110                        goto out;
5111                r = -EFAULT;
5112                if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5113                        goto out;
5114                r = 0;
5115                break;
5116        }
5117        case KVM_SET_LAPIC: {
5118                r = -EINVAL;
5119                if (!lapic_in_kernel(vcpu))
5120                        goto out;
5121                u.lapic = memdup_user(argp, sizeof(*u.lapic));
5122                if (IS_ERR(u.lapic)) {
5123                        r = PTR_ERR(u.lapic);
5124                        goto out_nofree;
5125                }
5126
5127                r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5128                break;
5129        }
5130        case KVM_INTERRUPT: {
5131                struct kvm_interrupt irq;
5132
5133                r = -EFAULT;
5134                if (copy_from_user(&irq, argp, sizeof(irq)))
5135                        goto out;
5136                r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5137                break;
5138        }
5139        case KVM_NMI: {
5140                r = kvm_vcpu_ioctl_nmi(vcpu);
5141                break;
5142        }
5143        case KVM_SMI: {
5144                r = kvm_vcpu_ioctl_smi(vcpu);
5145                break;
5146        }
5147        case KVM_SET_CPUID: {
5148                struct kvm_cpuid __user *cpuid_arg = argp;
5149                struct kvm_cpuid cpuid;
5150
5151                /*
5152                 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
5153                 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
5154                 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
5155                 * faults due to reusing SPs/SPTEs.  In practice no sane VMM mucks with
5156                 * the core vCPU model on the fly, so fail.
5157                 */
5158                r = -EINVAL;
5159                if (vcpu->arch.last_vmentry_cpu != -1)
5160                        goto out;
5161
5162                r = -EFAULT;
5163                if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5164                        goto out;
5165                r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5166                break;
5167        }
5168        case KVM_SET_CPUID2: {
5169                struct kvm_cpuid2 __user *cpuid_arg = argp;
5170                struct kvm_cpuid2 cpuid;
5171
5172                /*
5173                 * KVM_SET_CPUID{,2} after KVM_RUN is forbidded, see the comment in
5174                 * KVM_SET_CPUID case above.
5175                 */
5176                r = -EINVAL;
5177                if (vcpu->arch.last_vmentry_cpu != -1)
5178                        goto out;
5179
5180                r = -EFAULT;
5181                if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5182                        goto out;
5183                r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5184                                              cpuid_arg->entries);
5185                break;
5186        }
5187        case KVM_GET_CPUID2: {
5188                struct kvm_cpuid2 __user *cpuid_arg = argp;
5189                struct kvm_cpuid2 cpuid;
5190
5191                r = -EFAULT;
5192                if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5193                        goto out;
5194                r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5195                                              cpuid_arg->entries);
5196                if (r)
5197                        goto out;
5198                r = -EFAULT;
5199                if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5200                        goto out;
5201                r = 0;
5202                break;
5203        }
5204        case KVM_GET_MSRS: {
5205                int idx = srcu_read_lock(&vcpu->kvm->srcu);
5206                r = msr_io(vcpu, argp, do_get_msr, 1);
5207                srcu_read_unlock(&vcpu->kvm->srcu, idx);
5208                break;
5209        }
5210        case KVM_SET_MSRS: {
5211                int idx = srcu_read_lock(&vcpu->kvm->srcu);
5212                r = msr_io(vcpu, argp, do_set_msr, 0);
5213                srcu_read_unlock(&vcpu->kvm->srcu, idx);
5214                break;
5215        }
5216        case KVM_TPR_ACCESS_REPORTING: {
5217                struct kvm_tpr_access_ctl tac;
5218
5219                r = -EFAULT;
5220                if (copy_from_user(&tac, argp, sizeof(tac)))
5221                        goto out;
5222                r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5223                if (r)
5224                        goto out;
5225                r = -EFAULT;
5226                if (copy_to_user(argp, &tac, sizeof(tac)))
5227                        goto out;
5228                r = 0;
5229                break;
5230        };
5231        case KVM_SET_VAPIC_ADDR: {
5232                struct kvm_vapic_addr va;
5233                int idx;
5234
5235                r = -EINVAL;
5236                if (!lapic_in_kernel(vcpu))
5237                        goto out;
5238                r = -EFAULT;
5239                if (copy_from_user(&va, argp, sizeof(va)))
5240                        goto out;
5241                idx = srcu_read_lock(&vcpu->kvm->srcu);
5242                r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5243                srcu_read_unlock(&vcpu->kvm->srcu, idx);
5244                break;
5245        }
5246        case KVM_X86_SETUP_MCE: {
5247                u64 mcg_cap;
5248
5249                r = -EFAULT;
5250                if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5251                        goto out;
5252                r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5253                break;
5254        }
5255        case KVM_X86_SET_MCE: {
5256                struct kvm_x86_mce mce;
5257
5258                r = -EFAULT;
5259                if (copy_from_user(&mce, argp, sizeof(mce)))
5260                        goto out;
5261                r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5262                break;
5263        }
5264        case KVM_GET_VCPU_EVENTS: {
5265                struct kvm_vcpu_events events;
5266
5267                kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5268
5269                r = -EFAULT;
5270                if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5271                        break;
5272                r = 0;
5273                break;
5274        }
5275        case KVM_SET_VCPU_EVENTS: {
5276                struct kvm_vcpu_events events;
5277
5278                r = -EFAULT;
5279                if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5280                        break;
5281
5282                r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5283                break;
5284        }
5285        case KVM_GET_DEBUGREGS: {
5286                struct kvm_debugregs dbgregs;
5287
5288                kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5289
5290                r = -EFAULT;
5291                if (copy_to_user(argp, &dbgregs,
5292                                 sizeof(struct kvm_debugregs)))
5293                        break;
5294                r = 0;
5295                break;
5296        }
5297        case KVM_SET_DEBUGREGS: {
5298                struct kvm_debugregs dbgregs;
5299
5300                r = -EFAULT;
5301                if (copy_from_user(&dbgregs, argp,
5302                                   sizeof(struct kvm_debugregs)))
5303                        break;
5304
5305                r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5306                break;
5307        }
5308        case KVM_GET_XSAVE: {
5309                u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5310                r = -ENOMEM;
5311                if (!u.xsave)
5312                        break;
5313
5314                kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5315
5316                r = -EFAULT;
5317                if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5318                        break;
5319                r = 0;
5320                break;
5321        }
5322        case KVM_SET_XSAVE: {
5323                u.xsave = memdup_user(argp, sizeof(*u.xsave));
5324                if (IS_ERR(u.xsave)) {
5325                        r = PTR_ERR(u.xsave);
5326                        goto out_nofree;
5327                }
5328
5329                r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5330                break;
5331        }
5332        case KVM_GET_XCRS: {
5333                u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5334                r = -ENOMEM;
5335                if (!u.xcrs)
5336                        break;
5337
5338                kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5339
5340                r = -EFAULT;
5341                if (copy_to_user(argp, u.xcrs,
5342                                 sizeof(struct kvm_xcrs)))
5343                        break;
5344                r = 0;
5345                break;
5346        }
5347        case KVM_SET_XCRS: {
5348                u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5349                if (IS_ERR(u.xcrs)) {
5350                        r = PTR_ERR(u.xcrs);
5351                        goto out_nofree;
5352                }
5353
5354                r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5355                break;
5356        }
5357        case KVM_SET_TSC_KHZ: {
5358                u32 user_tsc_khz;
5359
5360                r = -EINVAL;
5361                user_tsc_khz = (u32)arg;
5362
5363                if (kvm_has_tsc_control &&
5364                    user_tsc_khz >= kvm_max_guest_tsc_khz)
5365                        goto out;
5366
5367                if (user_tsc_khz == 0)
5368                        user_tsc_khz = tsc_khz;
5369
5370                if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5371                        r = 0;
5372
5373                goto out;
5374        }
5375        case KVM_GET_TSC_KHZ: {
5376                r = vcpu->arch.virtual_tsc_khz;
5377                goto out;
5378        }
5379        case KVM_KVMCLOCK_CTRL: {
5380                r = kvm_set_guest_paused(vcpu);
5381                goto out;
5382        }
5383        case KVM_ENABLE_CAP: {
5384                struct kvm_enable_cap cap;
5385
5386                r = -EFAULT;
5387                if (copy_from_user(&cap, argp, sizeof(cap)))
5388                        goto out;
5389                r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5390                break;
5391        }
5392        case KVM_GET_NESTED_STATE: {
5393                struct kvm_nested_state __user *user_kvm_nested_state = argp;
5394                u32 user_data_size;
5395
5396                r = -EINVAL;
5397                if (!kvm_x86_ops.nested_ops->get_state)
5398                        break;
5399
5400                BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5401                r = -EFAULT;
5402                if (get_user(user_data_size, &user_kvm_nested_state->size))
5403                        break;
5404
5405                r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5406                                                     user_data_size);
5407                if (r < 0)
5408                        break;
5409
5410                if (r > user_data_size) {
5411                        if (put_user(r, &user_kvm_nested_state->size))
5412                                r = -EFAULT;
5413                        else
5414                                r = -E2BIG;
5415                        break;
5416                }
5417
5418                r = 0;
5419                break;
5420        }
5421        case KVM_SET_NESTED_STATE: {
5422                struct kvm_nested_state __user *user_kvm_nested_state = argp;
5423                struct kvm_nested_state kvm_state;
5424                int idx;
5425
5426                r = -EINVAL;
5427                if (!kvm_x86_ops.nested_ops->set_state)
5428                        break;
5429
5430                r = -EFAULT;
5431                if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5432                        break;
5433
5434                r = -EINVAL;
5435                if (kvm_state.size < sizeof(kvm_state))
5436                        break;
5437
5438                if (kvm_state.flags &
5439                    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5440                      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5441                      | KVM_STATE_NESTED_GIF_SET))
5442                        break;
5443
5444                /* nested_run_pending implies guest_mode.  */
5445                if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5446                    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5447                        break;
5448
5449                idx = srcu_read_lock(&vcpu->kvm->srcu);
5450                r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5451                srcu_read_unlock(&vcpu->kvm->srcu, idx);
5452                break;
5453        }
5454        case KVM_GET_SUPPORTED_HV_CPUID:
5455                r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5456                break;
5457#ifdef CONFIG_KVM_XEN
5458        case KVM_XEN_VCPU_GET_ATTR: {
5459                struct kvm_xen_vcpu_attr xva;
5460
5461                r = -EFAULT;
5462                if (copy_from_user(&xva, argp, sizeof(xva)))
5463                        goto out;
5464                r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5465                if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5466                        r = -EFAULT;
5467                break;
5468        }
5469        case KVM_XEN_VCPU_SET_ATTR: {
5470                struct kvm_xen_vcpu_attr xva;
5471
5472                r = -EFAULT;
5473                if (copy_from_user(&xva, argp, sizeof(xva)))
5474                        goto out;
5475                r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5476                break;
5477        }
5478#endif
5479        case KVM_GET_SREGS2: {
5480                u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5481                r = -ENOMEM;
5482                if (!u.sregs2)
5483                        goto out;
5484                __get_sregs2(vcpu, u.sregs2);
5485                r = -EFAULT;
5486                if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5487                        goto out;
5488                r = 0;
5489                break;
5490        }
5491        case KVM_SET_SREGS2: {
5492                u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5493                if (IS_ERR(u.sregs2)) {
5494                        r = PTR_ERR(u.sregs2);
5495                        u.sregs2 = NULL;
5496                        goto out;
5497                }
5498                r = __set_sregs2(vcpu, u.sregs2);
5499                break;
5500        }
5501        case KVM_HAS_DEVICE_ATTR:
5502        case KVM_GET_DEVICE_ATTR:
5503        case KVM_SET_DEVICE_ATTR:
5504                r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5505                break;
5506        default:
5507                r = -EINVAL;
5508        }
5509out:
5510        kfree(u.buffer);
5511out_nofree:
5512        vcpu_put(vcpu);
5513        return r;
5514}
5515
5516vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5517{
5518        return VM_FAULT_SIGBUS;
5519}
5520
5521static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5522{
5523        int ret;
5524
5525        if (addr > (unsigned int)(-3 * PAGE_SIZE))
5526                return -EINVAL;
5527        ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5528        return ret;
5529}
5530
5531static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5532                                              u64 ident_addr)
5533{
5534        return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5535}
5536
5537static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5538                                         unsigned long kvm_nr_mmu_pages)
5539{
5540        if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5541                return -EINVAL;
5542
5543        mutex_lock(&kvm->slots_lock);
5544
5545        kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5546        kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5547
5548        mutex_unlock(&kvm->slots_lock);
5549        return 0;
5550}
5551
5552static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5553{
5554        return kvm->arch.n_max_mmu_pages;
5555}
5556
5557static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5558{
5559        struct kvm_pic *pic = kvm->arch.vpic;
5560        int r;
5561
5562        r = 0;
5563        switch (chip->chip_id) {
5564        case KVM_IRQCHIP_PIC_MASTER:
5565                memcpy(&chip->chip.pic, &pic->pics[0],
5566                        sizeof(struct kvm_pic_state));
5567                break;
5568        case KVM_IRQCHIP_PIC_SLAVE:
5569                memcpy(&chip->chip.pic, &pic->pics[1],
5570                        sizeof(struct kvm_pic_state));
5571                break;
5572        case KVM_IRQCHIP_IOAPIC:
5573                kvm_get_ioapic(kvm, &chip->chip.ioapic);
5574                break;
5575        default:
5576                r = -EINVAL;
5577                break;
5578        }
5579        return r;
5580}
5581
5582static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5583{
5584        struct kvm_pic *pic = kvm->arch.vpic;
5585        int r;
5586
5587        r = 0;
5588        switch (chip->chip_id) {
5589        case KVM_IRQCHIP_PIC_MASTER:
5590                spin_lock(&pic->lock);
5591                memcpy(&pic->pics[0], &chip->chip.pic,
5592                        sizeof(struct kvm_pic_state));
5593                spin_unlock(&pic->lock);
5594                break;
5595        case KVM_IRQCHIP_PIC_SLAVE:
5596                spin_lock(&pic->lock);
5597                memcpy(&pic->pics[1], &chip->chip.pic,
5598                        sizeof(struct kvm_pic_state));
5599                spin_unlock(&pic->lock);
5600                break;
5601        case KVM_IRQCHIP_IOAPIC:
5602                kvm_set_ioapic(kvm, &chip->chip.ioapic);
5603                break;
5604        default:
5605                r = -EINVAL;
5606                break;
5607        }
5608        kvm_pic_update_irq(pic);
5609        return r;
5610}
5611
5612static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5613{
5614        struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5615
5616        BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5617
5618        mutex_lock(&kps->lock);
5619        memcpy(ps, &kps->channels, sizeof(*ps));
5620        mutex_unlock(&kps->lock);
5621        return 0;
5622}
5623
5624static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5625{
5626        int i;
5627        struct kvm_pit *pit = kvm->arch.vpit;
5628
5629        mutex_lock(&pit->pit_state.lock);
5630        memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5631        for (i = 0; i < 3; i++)
5632                kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5633        mutex_unlock(&pit->pit_state.lock);
5634        return 0;
5635}
5636
5637static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5638{
5639        mutex_lock(&kvm->arch.vpit->pit_state.lock);
5640        memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5641                sizeof(ps->channels));
5642        ps->flags = kvm->arch.vpit->pit_state.flags;
5643        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5644        memset(&ps->reserved, 0, sizeof(ps->reserved));
5645        return 0;
5646}
5647
5648static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5649{
5650        int start = 0;
5651        int i;
5652        u32 prev_legacy, cur_legacy;
5653        struct kvm_pit *pit = kvm->arch.vpit;
5654
5655        mutex_lock(&pit->pit_state.lock);
5656        prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5657        cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5658        if (!prev_legacy && cur_legacy)
5659                start = 1;
5660        memcpy(&pit->pit_state.channels, &ps->channels,
5661               sizeof(pit->pit_state.channels));
5662        pit->pit_state.flags = ps->flags;
5663        for (i = 0; i < 3; i++)
5664                kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5665                                   start && i == 0);
5666        mutex_unlock(&pit->pit_state.lock);
5667        return 0;
5668}
5669
5670static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5671                                 struct kvm_reinject_control *control)
5672{
5673        struct kvm_pit *pit = kvm->arch.vpit;
5674
5675        /* pit->pit_state.lock was overloaded to prevent userspace from getting
5676         * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5677         * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5678         */
5679        mutex_lock(&pit->pit_state.lock);
5680        kvm_pit_set_reinject(pit, control->pit_reinject);
5681        mutex_unlock(&pit->pit_state.lock);
5682
5683        return 0;
5684}
5685
5686void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5687{
5688
5689        /*
5690         * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5691         * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5692         * on all VM-Exits, thus we only need to kick running vCPUs to force a
5693         * VM-Exit.
5694         */
5695        struct kvm_vcpu *vcpu;
5696        int i;
5697
5698        kvm_for_each_vcpu(i, vcpu, kvm)
5699                kvm_vcpu_kick(vcpu);
5700}
5701
5702int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5703                        bool line_status)
5704{
5705        if (!irqchip_in_kernel(kvm))
5706                return -ENXIO;
5707
5708        irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5709                                        irq_event->irq, irq_event->level,
5710                                        line_status);
5711        return 0;
5712}
5713
5714int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5715                            struct kvm_enable_cap *cap)
5716{
5717        int r;
5718
5719        if (cap->flags)
5720                return -EINVAL;
5721
5722        switch (cap->cap) {
5723        case KVM_CAP_DISABLE_QUIRKS:
5724                kvm->arch.disabled_quirks = cap->args[0];
5725                r = 0;
5726                break;
5727        case KVM_CAP_SPLIT_IRQCHIP: {
5728                mutex_lock(&kvm->lock);
5729                r = -EINVAL;
5730                if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5731                        goto split_irqchip_unlock;
5732                r = -EEXIST;
5733                if (irqchip_in_kernel(kvm))
5734                        goto split_irqchip_unlock;
5735                if (kvm->created_vcpus)
5736                        goto split_irqchip_unlock;
5737                r = kvm_setup_empty_irq_routing(kvm);
5738                if (r)
5739                        goto split_irqchip_unlock;
5740                /* Pairs with irqchip_in_kernel. */
5741                smp_wmb();
5742                kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5743                kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5744                kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT);
5745                r = 0;
5746split_irqchip_unlock:
5747                mutex_unlock(&kvm->lock);
5748                break;
5749        }
5750        case KVM_CAP_X2APIC_API:
5751                r = -EINVAL;
5752                if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5753                        break;
5754
5755                if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5756                        kvm->arch.x2apic_format = true;
5757                if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5758                        kvm->arch.x2apic_broadcast_quirk_disabled = true;
5759
5760                r = 0;
5761                break;
5762        case KVM_CAP_X86_DISABLE_EXITS:
5763                r = -EINVAL;
5764                if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5765                        break;
5766
5767                if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5768                        kvm_can_mwait_in_guest())
5769                        kvm->arch.mwait_in_guest = true;
5770                if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5771                        kvm->arch.hlt_in_guest = true;
5772                if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5773                        kvm->arch.pause_in_guest = true;
5774                if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5775                        kvm->arch.cstate_in_guest = true;
5776                r = 0;
5777                break;
5778        case KVM_CAP_MSR_PLATFORM_INFO:
5779                kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5780                r = 0;
5781                break;
5782        case KVM_CAP_EXCEPTION_PAYLOAD:
5783                kvm->arch.exception_payload_enabled = cap->args[0];
5784                r = 0;
5785                break;
5786        case KVM_CAP_X86_USER_SPACE_MSR:
5787                kvm->arch.user_space_msr_mask = cap->args[0];
5788                r = 0;
5789                break;
5790        case KVM_CAP_X86_BUS_LOCK_EXIT:
5791                r = -EINVAL;
5792                if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5793                        break;
5794
5795                if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5796                    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5797                        break;
5798
5799                if (kvm_has_bus_lock_exit &&
5800                    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5801                        kvm->arch.bus_lock_detection_enabled = true;
5802                r = 0;
5803                break;
5804#ifdef CONFIG_X86_SGX_KVM
5805        case KVM_CAP_SGX_ATTRIBUTE: {
5806                unsigned long allowed_attributes = 0;
5807
5808                r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5809                if (r)
5810                        break;
5811
5812                /* KVM only supports the PROVISIONKEY privileged attribute. */
5813                if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5814                    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5815                        kvm->arch.sgx_provisioning_allowed = true;
5816                else
5817                        r = -EINVAL;
5818                break;
5819        }
5820#endif
5821        case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5822                r = -EINVAL;
5823                if (kvm_x86_ops.vm_copy_enc_context_from)
5824                        r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5825                return r;
5826        case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
5827                r = -EINVAL;
5828                if (kvm_x86_ops.vm_move_enc_context_from)
5829                        r = kvm_x86_ops.vm_move_enc_context_from(
5830                                kvm, cap->args[0]);
5831                return r;
5832        case KVM_CAP_EXIT_HYPERCALL:
5833                if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5834                        r = -EINVAL;
5835                        break;
5836                }
5837                kvm->arch.hypercall_exit_enabled = cap->args[0];
5838                r = 0;
5839                break;
5840        case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
5841                r = -EINVAL;
5842                if (cap->args[0] & ~1)
5843                        break;
5844                kvm->arch.exit_on_emulation_error = cap->args[0];
5845                r = 0;
5846                break;
5847        default:
5848                r = -EINVAL;
5849                break;
5850        }
5851        return r;
5852}
5853
5854static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5855{
5856        struct kvm_x86_msr_filter *msr_filter;
5857
5858        msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5859        if (!msr_filter)
5860                return NULL;
5861
5862        msr_filter->default_allow = default_allow;
5863        return msr_filter;
5864}
5865
5866static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5867{
5868        u32 i;
5869
5870        if (!msr_filter)
5871                return;
5872
5873        for (i = 0; i < msr_filter->count; i++)
5874                kfree(msr_filter->ranges[i].bitmap);
5875
5876        kfree(msr_filter);
5877}
5878
5879static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5880                              struct kvm_msr_filter_range *user_range)
5881{
5882        unsigned long *bitmap = NULL;
5883        size_t bitmap_size;
5884
5885        if (!user_range->nmsrs)
5886                return 0;
5887
5888        if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5889                return -EINVAL;
5890
5891        if (!user_range->flags)
5892                return -EINVAL;
5893
5894        bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5895        if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5896                return -EINVAL;
5897
5898        bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5899        if (IS_ERR(bitmap))
5900                return PTR_ERR(bitmap);
5901
5902        msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5903                .flags = user_range->flags,
5904                .base = user_range->base,
5905                .nmsrs = user_range->nmsrs,
5906                .bitmap = bitmap,
5907        };
5908
5909        msr_filter->count++;
5910        return 0;
5911}
5912
5913static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5914{
5915        struct kvm_msr_filter __user *user_msr_filter = argp;
5916        struct kvm_x86_msr_filter *new_filter, *old_filter;
5917        struct kvm_msr_filter filter;
5918        bool default_allow;
5919        bool empty = true;
5920        int r = 0;
5921        u32 i;
5922
5923        if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5924                return -EFAULT;
5925
5926        for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5927                empty &= !filter.ranges[i].nmsrs;
5928
5929        default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5930        if (empty && !default_allow)
5931                return -EINVAL;
5932
5933        new_filter = kvm_alloc_msr_filter(default_allow);
5934        if (!new_filter)
5935                return -ENOMEM;
5936
5937        for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5938                r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5939                if (r) {
5940                        kvm_free_msr_filter(new_filter);
5941                        return r;
5942                }
5943        }
5944
5945        mutex_lock(&kvm->lock);
5946
5947        /* The per-VM filter is protected by kvm->lock... */
5948        old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5949
5950        rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5951        synchronize_srcu(&kvm->srcu);
5952
5953        kvm_free_msr_filter(old_filter);
5954
5955        kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5956        mutex_unlock(&kvm->lock);
5957
5958        return 0;
5959}
5960
5961#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
5962static int kvm_arch_suspend_notifier(struct kvm *kvm)
5963{
5964        struct kvm_vcpu *vcpu;
5965        int i, ret = 0;
5966
5967        mutex_lock(&kvm->lock);
5968        kvm_for_each_vcpu(i, vcpu, kvm) {
5969                if (!vcpu->arch.pv_time_enabled)
5970                        continue;
5971
5972                ret = kvm_set_guest_paused(vcpu);
5973                if (ret) {
5974                        kvm_err("Failed to pause guest VCPU%d: %d\n",
5975                                vcpu->vcpu_id, ret);
5976                        break;
5977                }
5978        }
5979        mutex_unlock(&kvm->lock);
5980
5981        return ret ? NOTIFY_BAD : NOTIFY_DONE;
5982}
5983
5984int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
5985{
5986        switch (state) {
5987        case PM_HIBERNATION_PREPARE:
5988        case PM_SUSPEND_PREPARE:
5989                return kvm_arch_suspend_notifier(kvm);
5990        }
5991
5992        return NOTIFY_DONE;
5993}
5994#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
5995
5996static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
5997{
5998        struct kvm_clock_data data = { 0 };
5999
6000        get_kvmclock(kvm, &data);
6001        if (copy_to_user(argp, &data, sizeof(data)))
6002                return -EFAULT;
6003
6004        return 0;
6005}
6006
6007static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6008{
6009        struct kvm_arch *ka = &kvm->arch;
6010        struct kvm_clock_data data;
6011        u64 now_raw_ns;
6012
6013        if (copy_from_user(&data, argp, sizeof(data)))
6014                return -EFAULT;
6015
6016        /*
6017         * Only KVM_CLOCK_REALTIME is used, but allow passing the
6018         * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6019         */
6020        if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6021                return -EINVAL;
6022
6023        kvm_hv_invalidate_tsc_page(kvm);
6024        kvm_start_pvclock_update(kvm);
6025        pvclock_update_vm_gtod_copy(kvm);
6026
6027        /*
6028         * This pairs with kvm_guest_time_update(): when masterclock is
6029         * in use, we use master_kernel_ns + kvmclock_offset to set
6030         * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6031         * is slightly ahead) here we risk going negative on unsigned
6032         * 'system_time' when 'data.clock' is very small.
6033         */
6034        if (data.flags & KVM_CLOCK_REALTIME) {
6035                u64 now_real_ns = ktime_get_real_ns();
6036
6037                /*
6038                 * Avoid stepping the kvmclock backwards.
6039                 */
6040                if (now_real_ns > data.realtime)
6041                        data.clock += now_real_ns - data.realtime;
6042        }
6043
6044        if (ka->use_master_clock)
6045                now_raw_ns = ka->master_kernel_ns;
6046        else
6047                now_raw_ns = get_kvmclock_base_ns();
6048        ka->kvmclock_offset = data.clock - now_raw_ns;
6049        kvm_end_pvclock_update(kvm);
6050        return 0;
6051}
6052
6053long kvm_arch_vm_ioctl(struct file *filp,
6054                       unsigned int ioctl, unsigned long arg)
6055{
6056        struct kvm *kvm = filp->private_data;
6057        void __user *argp = (void __user *)arg;
6058        int r = -ENOTTY;
6059        /*
6060         * This union makes it completely explicit to gcc-3.x
6061         * that these two variables' stack usage should be
6062         * combined, not added together.
6063         */
6064        union {
6065                struct kvm_pit_state ps;
6066                struct kvm_pit_state2 ps2;
6067                struct kvm_pit_config pit_config;
6068        } u;
6069
6070        switch (ioctl) {
6071        case KVM_SET_TSS_ADDR:
6072                r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6073                break;
6074        case KVM_SET_IDENTITY_MAP_ADDR: {
6075                u64 ident_addr;
6076
6077                mutex_lock(&kvm->lock);
6078                r = -EINVAL;
6079                if (kvm->created_vcpus)
6080                        goto set_identity_unlock;
6081                r = -EFAULT;
6082                if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6083                        goto set_identity_unlock;
6084                r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6085set_identity_unlock:
6086                mutex_unlock(&kvm->lock);
6087                break;
6088        }
6089        case KVM_SET_NR_MMU_PAGES:
6090                r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6091                break;
6092        case KVM_GET_NR_MMU_PAGES:
6093                r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6094                break;
6095        case KVM_CREATE_IRQCHIP: {
6096                mutex_lock(&kvm->lock);
6097
6098                r = -EEXIST;
6099                if (irqchip_in_kernel(kvm))
6100                        goto create_irqchip_unlock;
6101
6102                r = -EINVAL;
6103                if (kvm->created_vcpus)
6104                        goto create_irqchip_unlock;
6105
6106                r = kvm_pic_init(kvm);
6107                if (r)
6108                        goto create_irqchip_unlock;
6109
6110                r = kvm_ioapic_init(kvm);
6111                if (r) {
6112                        kvm_pic_destroy(kvm);
6113                        goto create_irqchip_unlock;
6114                }
6115
6116                r = kvm_setup_default_irq_routing(kvm);
6117                if (r) {
6118                        kvm_ioapic_destroy(kvm);
6119                        kvm_pic_destroy(kvm);
6120                        goto create_irqchip_unlock;
6121                }
6122                /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6123                smp_wmb();
6124                kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6125                kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT);
6126        create_irqchip_unlock:
6127                mutex_unlock(&kvm->lock);
6128                break;
6129        }
6130        case KVM_CREATE_PIT:
6131                u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6132                goto create_pit;
6133        case KVM_CREATE_PIT2:
6134                r = -EFAULT;
6135                if (copy_from_user(&u.pit_config, argp,
6136                                   sizeof(struct kvm_pit_config)))
6137                        goto out;
6138        create_pit:
6139                mutex_lock(&kvm->lock);
6140                r = -EEXIST;
6141                if (kvm->arch.vpit)
6142                        goto create_pit_unlock;
6143                r = -ENOMEM;
6144                kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6145                if (kvm->arch.vpit)
6146                        r = 0;
6147        create_pit_unlock:
6148                mutex_unlock(&kvm->lock);
6149                break;
6150        case KVM_GET_IRQCHIP: {
6151                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6152                struct kvm_irqchip *chip;
6153
6154                chip = memdup_user(argp, sizeof(*chip));
6155                if (IS_ERR(chip)) {
6156                        r = PTR_ERR(chip);
6157                        goto out;
6158                }
6159
6160                r = -ENXIO;
6161                if (!irqchip_kernel(kvm))
6162                        goto get_irqchip_out;
6163                r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6164                if (r)
6165                        goto get_irqchip_out;
6166                r = -EFAULT;
6167                if (copy_to_user(argp, chip, sizeof(*chip)))
6168                        goto get_irqchip_out;
6169                r = 0;
6170        get_irqchip_out:
6171                kfree(chip);
6172                break;
6173        }
6174        case KVM_SET_IRQCHIP: {
6175                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6176                struct kvm_irqchip *chip;
6177
6178                chip = memdup_user(argp, sizeof(*chip));
6179                if (IS_ERR(chip)) {
6180                        r = PTR_ERR(chip);
6181                        goto out;
6182                }
6183
6184                r = -ENXIO;
6185                if (!irqchip_kernel(kvm))
6186                        goto set_irqchip_out;
6187                r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6188        set_irqchip_out:
6189                kfree(chip);
6190                break;
6191        }
6192        case KVM_GET_PIT: {
6193                r = -EFAULT;
6194                if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6195                        goto out;
6196                r = -ENXIO;
6197                if (!kvm->arch.vpit)
6198                        goto out;
6199                r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6200                if (r)
6201                        goto out;
6202                r = -EFAULT;
6203                if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6204                        goto out;
6205                r = 0;
6206                break;
6207        }
6208        case KVM_SET_PIT: {
6209                r = -EFAULT;
6210                if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6211                        goto out;
6212                mutex_lock(&kvm->lock);
6213                r = -ENXIO;
6214                if (!kvm->arch.vpit)
6215                        goto set_pit_out;
6216                r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6217set_pit_out:
6218                mutex_unlock(&kvm->lock);
6219                break;
6220        }
6221        case KVM_GET_PIT2: {
6222                r = -ENXIO;
6223                if (!kvm->arch.vpit)
6224                        goto out;
6225                r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6226                if (r)
6227                        goto out;
6228                r = -EFAULT;
6229                if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6230                        goto out;
6231                r = 0;
6232                break;
6233        }
6234        case KVM_SET_PIT2: {
6235                r = -EFAULT;
6236                if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6237                        goto out;
6238                mutex_lock(&kvm->lock);
6239                r = -ENXIO;
6240                if (!kvm->arch.vpit)
6241                        goto set_pit2_out;
6242                r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6243set_pit2_out:
6244                mutex_unlock(&kvm->lock);
6245                break;
6246        }
6247        case KVM_REINJECT_CONTROL: {
6248                struct kvm_reinject_control control;
6249                r =  -EFAULT;
6250                if (copy_from_user(&control, argp, sizeof(control)))
6251                        goto out;
6252                r = -ENXIO;
6253                if (!kvm->arch.vpit)
6254                        goto out;
6255                r = kvm_vm_ioctl_reinject(kvm, &control);
6256                break;
6257        }
6258        case KVM_SET_BOOT_CPU_ID:
6259                r = 0;
6260                mutex_lock(&kvm->lock);
6261                if (kvm->created_vcpus)
6262                        r = -EBUSY;
6263                else
6264                        kvm->arch.bsp_vcpu_id = arg;
6265                mutex_unlock(&kvm->lock);
6266                break;
6267#ifdef CONFIG_KVM_XEN
6268        case KVM_XEN_HVM_CONFIG: {
6269                struct kvm_xen_hvm_config xhc;
6270                r = -EFAULT;
6271                if (copy_from_user(&xhc, argp, sizeof(xhc)))
6272                        goto out;
6273                r = kvm_xen_hvm_config(kvm, &xhc);
6274                break;
6275        }
6276        case KVM_XEN_HVM_GET_ATTR: {
6277                struct kvm_xen_hvm_attr xha;
6278
6279                r = -EFAULT;
6280                if (copy_from_user(&xha, argp, sizeof(xha)))
6281                        goto out;
6282                r = kvm_xen_hvm_get_attr(kvm, &xha);
6283                if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6284                        r = -EFAULT;
6285                break;
6286        }
6287        case KVM_XEN_HVM_SET_ATTR: {
6288                struct kvm_xen_hvm_attr xha;
6289
6290                r = -EFAULT;
6291                if (copy_from_user(&xha, argp, sizeof(xha)))
6292                        goto out;
6293                r = kvm_xen_hvm_set_attr(kvm, &xha);
6294                break;
6295        }
6296#endif
6297        case KVM_SET_CLOCK:
6298                r = kvm_vm_ioctl_set_clock(kvm, argp);
6299                break;
6300        case KVM_GET_CLOCK:
6301                r = kvm_vm_ioctl_get_clock(kvm, argp);
6302                break;
6303        case KVM_MEMORY_ENCRYPT_OP: {
6304                r = -ENOTTY;
6305                if (kvm_x86_ops.mem_enc_op)
6306                        r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6307                break;
6308        }
6309        case KVM_MEMORY_ENCRYPT_REG_REGION: {
6310                struct kvm_enc_region region;
6311
6312                r = -EFAULT;
6313                if (copy_from_user(&region, argp, sizeof(region)))
6314                        goto out;
6315
6316                r = -ENOTTY;
6317                if (kvm_x86_ops.mem_enc_reg_region)
6318                        r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
6319                break;
6320        }
6321        case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6322                struct kvm_enc_region region;
6323
6324                r = -EFAULT;
6325                if (copy_from_user(&region, argp, sizeof(region)))
6326                        goto out;
6327
6328                r = -ENOTTY;
6329                if (kvm_x86_ops.mem_enc_unreg_region)
6330                        r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
6331                break;
6332        }
6333        case KVM_HYPERV_EVENTFD: {
6334                struct kvm_hyperv_eventfd hvevfd;
6335
6336                r = -EFAULT;
6337                if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6338                        goto out;
6339                r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6340                break;
6341        }
6342        case KVM_SET_PMU_EVENT_FILTER:
6343                r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6344                break;
6345        case KVM_X86_SET_MSR_FILTER:
6346                r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6347                break;
6348        default:
6349                r = -ENOTTY;
6350        }
6351out:
6352        return r;
6353}
6354
6355static void kvm_init_msr_list(void)
6356{
6357        struct x86_pmu_capability x86_pmu;
6358        u32 dummy[2];
6359        unsigned i;
6360
6361        BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6362                         "Please update the fixed PMCs in msrs_to_saved_all[]");
6363
6364        perf_get_x86_pmu_capability(&x86_pmu);
6365
6366        num_msrs_to_save = 0;
6367        num_emulated_msrs = 0;
6368        num_msr_based_features = 0;
6369
6370        for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6371                if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6372                        continue;
6373
6374                /*
6375                 * Even MSRs that are valid in the host may not be exposed
6376                 * to the guests in some cases.
6377                 */
6378                switch (msrs_to_save_all[i]) {
6379                case MSR_IA32_BNDCFGS:
6380                        if (!kvm_mpx_supported())
6381                                continue;
6382                        break;
6383                case MSR_TSC_AUX:
6384                        if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6385                            !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6386                                continue;
6387                        break;
6388                case MSR_IA32_UMWAIT_CONTROL:
6389                        if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6390                                continue;
6391                        break;
6392                case MSR_IA32_RTIT_CTL:
6393                case MSR_IA32_RTIT_STATUS:
6394                        if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6395                                continue;
6396                        break;
6397                case MSR_IA32_RTIT_CR3_MATCH:
6398                        if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6399                            !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6400                                continue;
6401                        break;
6402                case MSR_IA32_RTIT_OUTPUT_BASE:
6403                case MSR_IA32_RTIT_OUTPUT_MASK:
6404                        if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6405                                (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6406                                 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6407                                continue;
6408                        break;
6409                case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6410                        if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6411                                msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6412                                intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6413                                continue;
6414                        break;
6415                case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6416                        if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6417                            min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6418                                continue;
6419                        break;
6420                case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6421                        if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6422                            min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6423                                continue;
6424                        break;
6425                default:
6426                        break;
6427                }
6428
6429                msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6430        }
6431
6432        for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6433                if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6434                        continue;
6435
6436                emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6437        }
6438
6439        for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6440                struct kvm_msr_entry msr;
6441
6442                msr.index = msr_based_features_all[i];
6443                if (kvm_get_msr_feature(&msr))
6444                        continue;
6445
6446                msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6447        }
6448}
6449
6450static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6451                           const void *v)
6452{
6453        int handled = 0;
6454        int n;
6455
6456        do {
6457                n = min(len, 8);
6458                if (!(lapic_in_kernel(vcpu) &&
6459                      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6460                    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6461                        break;
6462                handled += n;
6463                addr += n;
6464                len -= n;
6465                v += n;
6466        } while (len);
6467
6468        return handled;
6469}
6470
6471static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6472{
6473        int handled = 0;
6474        int n;
6475
6476        do {
6477                n = min(len, 8);
6478                if (!(lapic_in_kernel(vcpu) &&
6479                      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6480                                         addr, n, v))
6481                    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6482                        break;
6483                trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6484                handled += n;
6485                addr += n;
6486                len -= n;
6487                v += n;
6488        } while (len);
6489
6490        return handled;
6491}
6492
6493static void kvm_set_segment(struct kvm_vcpu *vcpu,
6494                        struct kvm_segment *var, int seg)
6495{
6496        static_call(kvm_x86_set_segment)(vcpu, var, seg);
6497}
6498
6499void kvm_get_segment(struct kvm_vcpu *vcpu,
6500                     struct kvm_segment *var, int seg)
6501{
6502        static_call(kvm_x86_get_segment)(vcpu, var, seg);
6503}
6504
6505gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6506                           struct x86_exception *exception)
6507{
6508        gpa_t t_gpa;
6509
6510        BUG_ON(!mmu_is_nested(vcpu));
6511
6512        /* NPT walks are always user-walks */
6513        access |= PFERR_USER_MASK;
6514        t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6515
6516        return t_gpa;
6517}
6518
6519gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6520                              struct x86_exception *exception)
6521{
6522        u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6523        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6524}
6525EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6526
6527 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6528                                struct x86_exception *exception)
6529{
6530        u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6531        access |= PFERR_FETCH_MASK;
6532        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6533}
6534
6535gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6536                               struct x86_exception *exception)
6537{
6538        u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6539        access |= PFERR_WRITE_MASK;
6540        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6541}
6542EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6543
6544/* uses this to access any guest's mapped memory without checking CPL */
6545gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6546                                struct x86_exception *exception)
6547{
6548        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6549}
6550
6551static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6552                                      struct kvm_vcpu *vcpu, u32 access,
6553                                      struct x86_exception *exception)
6554{
6555        void *data = val;
6556        int r = X86EMUL_CONTINUE;
6557
6558        while (bytes) {
6559                gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6560                                                            exception);
6561                unsigned offset = addr & (PAGE_SIZE-1);
6562                unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6563                int ret;
6564
6565                if (gpa == UNMAPPED_GVA)
6566                        return X86EMUL_PROPAGATE_FAULT;
6567                ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6568                                               offset, toread);
6569                if (ret < 0) {
6570                        r = X86EMUL_IO_NEEDED;
6571                        goto out;
6572                }
6573
6574                bytes -= toread;
6575                data += toread;
6576                addr += toread;
6577        }
6578out:
6579        return r;
6580}
6581
6582/* used for instruction fetching */
6583static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6584                                gva_t addr, void *val, unsigned int bytes,
6585                                struct x86_exception *exception)
6586{
6587        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6588        u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6589        unsigned offset;
6590        int ret;
6591
6592        /* Inline kvm_read_guest_virt_helper for speed.  */
6593        gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6594                                                    exception);
6595        if (unlikely(gpa == UNMAPPED_GVA))
6596                return X86EMUL_PROPAGATE_FAULT;
6597
6598        offset = addr & (PAGE_SIZE-1);
6599        if (WARN_ON(offset + bytes > PAGE_SIZE))
6600                bytes = (unsigned)PAGE_SIZE - offset;
6601        ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6602                                       offset, bytes);
6603        if (unlikely(ret < 0))
6604                return X86EMUL_IO_NEEDED;
6605
6606        return X86EMUL_CONTINUE;
6607}
6608
6609int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6610                               gva_t addr, void *val, unsigned int bytes,
6611                               struct x86_exception *exception)
6612{
6613        u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6614
6615        /*
6616         * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6617         * is returned, but our callers are not ready for that and they blindly
6618         * call kvm_inject_page_fault.  Ensure that they at least do not leak
6619         * uninitialized kernel stack memory into cr2 and error code.
6620         */
6621        memset(exception, 0, sizeof(*exception));
6622        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6623                                          exception);
6624}
6625EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6626
6627static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6628                             gva_t addr, void *val, unsigned int bytes,
6629                             struct x86_exception *exception, bool system)
6630{
6631        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6632        u32 access = 0;
6633
6634        if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6635                access |= PFERR_USER_MASK;
6636
6637        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6638}
6639
6640static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6641                unsigned long addr, void *val, unsigned int bytes)
6642{
6643        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6644        int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6645
6646        return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6647}
6648
6649static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6650                                      struct kvm_vcpu *vcpu, u32 access,
6651                                      struct x86_exception *exception)
6652{
6653        void *data = val;
6654        int r = X86EMUL_CONTINUE;
6655
6656        while (bytes) {
6657                gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6658                                                             access,
6659                                                             exception);
6660                unsigned offset = addr & (PAGE_SIZE-1);
6661                unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6662                int ret;
6663
6664                if (gpa == UNMAPPED_GVA)
6665                        return X86EMUL_PROPAGATE_FAULT;
6666                ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6667                if (ret < 0) {
6668                        r = X86EMUL_IO_NEEDED;
6669                        goto out;
6670                }
6671
6672                bytes -= towrite;
6673                data += towrite;
6674                addr += towrite;
6675        }
6676out:
6677        return r;
6678}
6679
6680static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6681                              unsigned int bytes, struct x86_exception *exception,
6682                              bool system)
6683{
6684        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6685        u32 access = PFERR_WRITE_MASK;
6686
6687        if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6688                access |= PFERR_USER_MASK;
6689
6690        return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6691                                           access, exception);
6692}
6693
6694int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6695                                unsigned int bytes, struct x86_exception *exception)
6696{
6697        /* kvm_write_guest_virt_system can pull in tons of pages. */
6698        vcpu->arch.l1tf_flush_l1d = true;
6699
6700        return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6701                                           PFERR_WRITE_MASK, exception);
6702}
6703EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6704
6705int handle_ud(struct kvm_vcpu *vcpu)
6706{
6707        static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6708        int emul_type = EMULTYPE_TRAP_UD;
6709        char sig[5]; /* ud2; .ascii "kvm" */
6710        struct x86_exception e;
6711
6712        if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6713                return 1;
6714
6715        if (force_emulation_prefix &&
6716            kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6717                                sig, sizeof(sig), &e) == 0 &&
6718            memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6719                kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6720                emul_type = EMULTYPE_TRAP_UD_FORCED;
6721        }
6722
6723        return kvm_emulate_instruction(vcpu, emul_type);
6724}
6725EXPORT_SYMBOL_GPL(handle_ud);
6726
6727static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6728                            gpa_t gpa, bool write)
6729{
6730        /* For APIC access vmexit */
6731        if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6732                return 1;
6733
6734        if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6735                trace_vcpu_match_mmio(gva, gpa, write, true);
6736                return 1;
6737        }
6738
6739        return 0;
6740}
6741
6742static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6743                                gpa_t *gpa, struct x86_exception *exception,
6744                                bool write)
6745{
6746        u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6747                | (write ? PFERR_WRITE_MASK : 0);
6748
6749        /*
6750         * currently PKRU is only applied to ept enabled guest so
6751         * there is no pkey in EPT page table for L1 guest or EPT
6752         * shadow page table for L2 guest.
6753         */
6754        if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6755            !permission_fault(vcpu, vcpu->arch.walk_mmu,
6756                              vcpu->arch.mmio_access, 0, access))) {
6757                *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6758                                        (gva & (PAGE_SIZE - 1));
6759                trace_vcpu_match_mmio(gva, *gpa, write, false);
6760                return 1;
6761        }
6762
6763        *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6764
6765        if (*gpa == UNMAPPED_GVA)
6766                return -1;
6767
6768        return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6769}
6770
6771int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6772                        const void *val, int bytes)
6773{
6774        int ret;
6775
6776        ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6777        if (ret < 0)
6778                return 0;
6779        kvm_page_track_write(vcpu, gpa, val, bytes);
6780        return 1;
6781}
6782
6783struct read_write_emulator_ops {
6784        int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6785                                  int bytes);
6786        int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6787                                  void *val, int bytes);
6788        int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6789                               int bytes, void *val);
6790        int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6791                                    void *val, int bytes);
6792        bool write;
6793};
6794
6795static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6796{
6797        if (vcpu->mmio_read_completed) {
6798                trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6799                               vcpu->mmio_fragments[0].gpa, val);
6800                vcpu->mmio_read_completed = 0;
6801                return 1;
6802        }
6803
6804        return 0;
6805}
6806
6807static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6808                        void *val, int bytes)
6809{
6810        return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6811}
6812
6813static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6814                         void *val, int bytes)
6815{
6816        return emulator_write_phys(vcpu, gpa, val, bytes);
6817}
6818
6819static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6820{
6821        trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6822        return vcpu_mmio_write(vcpu, gpa, bytes, val);
6823}
6824
6825static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6826                          void *val, int bytes)
6827{
6828        trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6829        return X86EMUL_IO_NEEDED;
6830}
6831
6832static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6833                           void *val, int bytes)
6834{
6835        struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6836
6837        memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6838        return X86EMUL_CONTINUE;
6839}
6840
6841static const struct read_write_emulator_ops read_emultor = {
6842        .read_write_prepare = read_prepare,
6843        .read_write_emulate = read_emulate,
6844        .read_write_mmio = vcpu_mmio_read,
6845        .read_write_exit_mmio = read_exit_mmio,
6846};
6847
6848static const struct read_write_emulator_ops write_emultor = {
6849        .read_write_emulate = write_emulate,
6850        .read_write_mmio = write_mmio,
6851        .read_write_exit_mmio = write_exit_mmio,
6852        .write = true,
6853};
6854
6855static int emulator_read_write_onepage(unsigned long addr, void *val,
6856                                       unsigned int bytes,
6857                                       struct x86_exception *exception,
6858                                       struct kvm_vcpu *vcpu,
6859                                       const struct read_write_emulator_ops *ops)
6860{
6861        gpa_t gpa;
6862        int handled, ret;
6863        bool write = ops->write;
6864        struct kvm_mmio_fragment *frag;
6865        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6866
6867        /*
6868         * If the exit was due to a NPF we may already have a GPA.
6869         * If the GPA is present, use it to avoid the GVA to GPA table walk.
6870         * Note, this cannot be used on string operations since string
6871         * operation using rep will only have the initial GPA from the NPF
6872         * occurred.
6873         */
6874        if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6875            (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6876                gpa = ctxt->gpa_val;
6877                ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6878        } else {
6879                ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6880                if (ret < 0)
6881                        return X86EMUL_PROPAGATE_FAULT;
6882        }
6883
6884        if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6885                return X86EMUL_CONTINUE;
6886
6887        /*
6888         * Is this MMIO handled locally?
6889         */
6890        handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6891        if (handled == bytes)
6892                return X86EMUL_CONTINUE;
6893
6894        gpa += handled;
6895        bytes -= handled;
6896        val += handled;
6897
6898        WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6899        frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6900        frag->gpa = gpa;
6901        frag->data = val;
6902        frag->len = bytes;
6903        return X86EMUL_CONTINUE;
6904}
6905
6906static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6907                        unsigned long addr,
6908                        void *val, unsigned int bytes,
6909                        struct x86_exception *exception,
6910                        const struct read_write_emulator_ops *ops)
6911{
6912        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6913        gpa_t gpa;
6914        int rc;
6915
6916        if (ops->read_write_prepare &&
6917                  ops->read_write_prepare(vcpu, val, bytes))
6918                return X86EMUL_CONTINUE;
6919
6920        vcpu->mmio_nr_fragments = 0;
6921
6922        /* Crossing a page boundary? */
6923        if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6924                int now;
6925
6926                now = -addr & ~PAGE_MASK;
6927                rc = emulator_read_write_onepage(addr, val, now, exception,
6928                                                 vcpu, ops);
6929
6930                if (rc != X86EMUL_CONTINUE)
6931                        return rc;
6932                addr += now;
6933                if (ctxt->mode != X86EMUL_MODE_PROT64)
6934                        addr = (u32)addr;
6935                val += now;
6936                bytes -= now;
6937        }
6938
6939        rc = emulator_read_write_onepage(addr, val, bytes, exception,
6940                                         vcpu, ops);
6941        if (rc != X86EMUL_CONTINUE)
6942                return rc;
6943
6944        if (!vcpu->mmio_nr_fragments)
6945                return rc;
6946
6947        gpa = vcpu->mmio_fragments[0].gpa;
6948
6949        vcpu->mmio_needed = 1;
6950        vcpu->mmio_cur_fragment = 0;
6951
6952        vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6953        vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6954        vcpu->run->exit_reason = KVM_EXIT_MMIO;
6955        vcpu->run->mmio.phys_addr = gpa;
6956
6957        return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6958}
6959
6960static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6961                                  unsigned long addr,
6962                                  void *val,
6963                                  unsigned int bytes,
6964                                  struct x86_exception *exception)
6965{
6966        return emulator_read_write(ctxt, addr, val, bytes,
6967                                   exception, &read_emultor);
6968}
6969
6970static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6971                            unsigned long addr,
6972                            const void *val,
6973                            unsigned int bytes,
6974                            struct x86_exception *exception)
6975{
6976        return emulator_read_write(ctxt, addr, (void *)val, bytes,
6977                                   exception, &write_emultor);
6978}
6979
6980#define CMPXCHG_TYPE(t, ptr, old, new) \
6981        (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6982
6983#ifdef CONFIG_X86_64
6984#  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6985#else
6986#  define CMPXCHG64(ptr, old, new) \
6987        (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6988#endif
6989
6990static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6991                                     unsigned long addr,
6992                                     const void *old,
6993                                     const void *new,
6994                                     unsigned int bytes,
6995                                     struct x86_exception *exception)
6996{
6997        struct kvm_host_map map;
6998        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6999        u64 page_line_mask;
7000        gpa_t gpa;
7001        char *kaddr;
7002        bool exchanged;
7003
7004        /* guests cmpxchg8b have to be emulated atomically */
7005        if (bytes > 8 || (bytes & (bytes - 1)))
7006                goto emul_write;
7007
7008        gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7009
7010        if (gpa == UNMAPPED_GVA ||
7011            (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7012                goto emul_write;
7013
7014        /*
7015         * Emulate the atomic as a straight write to avoid #AC if SLD is
7016         * enabled in the host and the access splits a cache line.
7017         */
7018        if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7019                page_line_mask = ~(cache_line_size() - 1);
7020        else
7021                page_line_mask = PAGE_MASK;
7022
7023        if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7024                goto emul_write;
7025
7026        if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
7027                goto emul_write;
7028
7029        kaddr = map.hva + offset_in_page(gpa);
7030
7031        switch (bytes) {
7032        case 1:
7033                exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
7034                break;
7035        case 2:
7036                exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
7037                break;
7038        case 4:
7039                exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
7040                break;
7041        case 8:
7042                exchanged = CMPXCHG64(kaddr, old, new);
7043                break;
7044        default:
7045                BUG();
7046        }
7047
7048        kvm_vcpu_unmap(vcpu, &map, true);
7049
7050        if (!exchanged)
7051                return X86EMUL_CMPXCHG_FAILED;
7052
7053        kvm_page_track_write(vcpu, gpa, new, bytes);
7054
7055        return X86EMUL_CONTINUE;
7056
7057emul_write:
7058        printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7059
7060        return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7061}
7062
7063static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7064{
7065        int r = 0, i;
7066
7067        for (i = 0; i < vcpu->arch.pio.count; i++) {
7068                if (vcpu->arch.pio.in)
7069                        r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7070                                            vcpu->arch.pio.size, pd);
7071                else
7072                        r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7073                                             vcpu->arch.pio.port, vcpu->arch.pio.size,
7074                                             pd);
7075                if (r)
7076                        break;
7077                pd += vcpu->arch.pio.size;
7078        }
7079        return r;
7080}
7081
7082static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7083                               unsigned short port,
7084                               unsigned int count, bool in)
7085{
7086        vcpu->arch.pio.port = port;
7087        vcpu->arch.pio.in = in;
7088        vcpu->arch.pio.count  = count;
7089        vcpu->arch.pio.size = size;
7090
7091        if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7092                return 1;
7093
7094        vcpu->run->exit_reason = KVM_EXIT_IO;
7095        vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7096        vcpu->run->io.size = size;
7097        vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7098        vcpu->run->io.count = count;
7099        vcpu->run->io.port = port;
7100
7101        return 0;
7102}
7103
7104static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7105                             unsigned short port, unsigned int count)
7106{
7107        WARN_ON(vcpu->arch.pio.count);
7108        memset(vcpu->arch.pio_data, 0, size * count);
7109        return emulator_pio_in_out(vcpu, size, port, count, true);
7110}
7111
7112static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7113{
7114        int size = vcpu->arch.pio.size;
7115        unsigned count = vcpu->arch.pio.count;
7116        memcpy(val, vcpu->arch.pio_data, size * count);
7117        trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7118        vcpu->arch.pio.count = 0;
7119}
7120
7121static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7122                           unsigned short port, void *val, unsigned int count)
7123{
7124        if (vcpu->arch.pio.count) {
7125                /*
7126                 * Complete a previous iteration that required userspace I/O.
7127                 * Note, @count isn't guaranteed to match pio.count as userspace
7128                 * can modify ECX before rerunning the vCPU.  Ignore any such
7129                 * shenanigans as KVM doesn't support modifying the rep count,
7130                 * and the emulator ensures @count doesn't overflow the buffer.
7131                 */
7132        } else {
7133                int r = __emulator_pio_in(vcpu, size, port, count);
7134                if (!r)
7135                        return r;
7136
7137                /* Results already available, fall through.  */
7138        }
7139
7140        complete_emulator_pio_in(vcpu, val);
7141        return 1;
7142}
7143
7144static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7145                                    int size, unsigned short port, void *val,
7146                                    unsigned int count)
7147{
7148        return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7149
7150}
7151
7152static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7153                            unsigned short port, const void *val,
7154                            unsigned int count)
7155{
7156        int ret;
7157
7158        memcpy(vcpu->arch.pio_data, val, size * count);
7159        trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7160        ret = emulator_pio_in_out(vcpu, size, port, count, false);
7161        if (ret)
7162                vcpu->arch.pio.count = 0;
7163
7164        return ret;
7165}
7166
7167static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7168                                     int size, unsigned short port,
7169                                     const void *val, unsigned int count)
7170{
7171        return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7172}
7173
7174static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7175{
7176        return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7177}
7178
7179static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7180{
7181        kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7182}
7183
7184static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7185{
7186        if (!need_emulate_wbinvd(vcpu))
7187                return X86EMUL_CONTINUE;
7188
7189        if (static_call(kvm_x86_has_wbinvd_exit)()) {
7190                int cpu = get_cpu();
7191
7192                cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7193                on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7194                                wbinvd_ipi, NULL, 1);
7195                put_cpu();
7196                cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7197        } else
7198                wbinvd();
7199        return X86EMUL_CONTINUE;
7200}
7201
7202int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7203{
7204        kvm_emulate_wbinvd_noskip(vcpu);
7205        return kvm_skip_emulated_instruction(vcpu);
7206}
7207EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7208
7209
7210
7211static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7212{
7213        kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7214}
7215
7216static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7217                            unsigned long *dest)
7218{
7219        kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7220}
7221
7222static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7223                           unsigned long value)
7224{
7225
7226        return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7227}
7228
7229static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7230{
7231        return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7232}
7233
7234static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7235{
7236        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7237        unsigned long value;
7238
7239        switch (cr) {
7240        case 0:
7241                value = kvm_read_cr0(vcpu);
7242                break;
7243        case 2:
7244                value = vcpu->arch.cr2;
7245                break;
7246        case 3:
7247                value = kvm_read_cr3(vcpu);
7248                break;
7249        case 4:
7250                value = kvm_read_cr4(vcpu);
7251                break;
7252        case 8:
7253                value = kvm_get_cr8(vcpu);
7254                break;
7255        default:
7256                kvm_err("%s: unexpected cr %u\n", __func__, cr);
7257                return 0;
7258        }
7259
7260        return value;
7261}
7262
7263static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7264{
7265        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7266        int res = 0;
7267
7268        switch (cr) {
7269        case 0:
7270                res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7271                break;
7272        case 2:
7273                vcpu->arch.cr2 = val;
7274                break;
7275        case 3:
7276                res = kvm_set_cr3(vcpu, val);
7277                break;
7278        case 4:
7279                res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7280                break;
7281        case 8:
7282                res = kvm_set_cr8(vcpu, val);
7283                break;
7284        default:
7285                kvm_err("%s: unexpected cr %u\n", __func__, cr);
7286                res = -1;
7287        }
7288
7289        return res;
7290}
7291
7292static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7293{
7294        return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7295}
7296
7297static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7298{
7299        static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7300}
7301
7302static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7303{
7304        static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7305}
7306
7307static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7308{
7309        static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7310}
7311
7312static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7313{
7314        static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7315}
7316
7317static unsigned long emulator_get_cached_segment_base(
7318        struct x86_emulate_ctxt *ctxt, int seg)
7319{
7320        return get_segment_base(emul_to_vcpu(ctxt), seg);
7321}
7322
7323static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7324                                 struct desc_struct *desc, u32 *base3,
7325                                 int seg)
7326{
7327        struct kvm_segment var;
7328
7329        kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7330        *selector = var.selector;
7331
7332        if (var.unusable) {
7333                memset(desc, 0, sizeof(*desc));
7334                if (base3)
7335                        *base3 = 0;
7336                return false;
7337        }
7338
7339        if (var.g)
7340                var.limit >>= 12;
7341        set_desc_limit(desc, var.limit);
7342        set_desc_base(desc, (unsigned long)var.base);
7343#ifdef CONFIG_X86_64
7344        if (base3)
7345                *base3 = var.base >> 32;
7346#endif
7347        desc->type = var.type;
7348        desc->s = var.s;
7349        desc->dpl = var.dpl;
7350        desc->p = var.present;
7351        desc->avl = var.avl;
7352        desc->l = var.l;
7353        desc->d = var.db;
7354        desc->g = var.g;
7355
7356        return true;
7357}
7358
7359static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7360                                 struct desc_struct *desc, u32 base3,
7361                                 int seg)
7362{
7363        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7364        struct kvm_segment var;
7365
7366        var.selector = selector;
7367        var.base = get_desc_base(desc);
7368#ifdef CONFIG_X86_64
7369        var.base |= ((u64)base3) << 32;
7370#endif
7371        var.limit = get_desc_limit(desc);
7372        if (desc->g)
7373                var.limit = (var.limit << 12) | 0xfff;
7374        var.type = desc->type;
7375        var.dpl = desc->dpl;
7376        var.db = desc->d;
7377        var.s = desc->s;
7378        var.l = desc->l;
7379        var.g = desc->g;
7380        var.avl = desc->avl;
7381        var.present = desc->p;
7382        var.unusable = !var.present;
7383        var.padding = 0;
7384
7385        kvm_set_segment(vcpu, &var, seg);
7386        return;
7387}
7388
7389static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7390                            u32 msr_index, u64 *pdata)
7391{
7392        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7393        int r;
7394
7395        r = kvm_get_msr(vcpu, msr_index, pdata);
7396
7397        if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
7398                /* Bounce to user space */
7399                return X86EMUL_IO_NEEDED;
7400        }
7401
7402        return r;
7403}
7404
7405static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7406                            u32 msr_index, u64 data)
7407{
7408        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7409        int r;
7410
7411        r = kvm_set_msr(vcpu, msr_index, data);
7412
7413        if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
7414                /* Bounce to user space */
7415                return X86EMUL_IO_NEEDED;
7416        }
7417
7418        return r;
7419}
7420
7421static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7422{
7423        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7424
7425        return vcpu->arch.smbase;
7426}
7427
7428static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7429{
7430        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7431
7432        vcpu->arch.smbase = smbase;
7433}
7434
7435static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7436                              u32 pmc)
7437{
7438        if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7439                return 0;
7440        return -EINVAL;
7441}
7442
7443static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7444                             u32 pmc, u64 *pdata)
7445{
7446        return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7447}
7448
7449static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7450{
7451        emul_to_vcpu(ctxt)->arch.halt_request = 1;
7452}
7453
7454static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7455                              struct x86_instruction_info *info,
7456                              enum x86_intercept_stage stage)
7457{
7458        return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7459                                            &ctxt->exception);
7460}
7461
7462static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7463                              u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7464                              bool exact_only)
7465{
7466        return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7467}
7468
7469static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7470{
7471        return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7472}
7473
7474static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7475{
7476        return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7477}
7478
7479static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7480{
7481        return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7482}
7483
7484static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7485{
7486        return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7487}
7488
7489static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7490{
7491        kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7492}
7493
7494static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7495{
7496        static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7497}
7498
7499static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7500{
7501        return emul_to_vcpu(ctxt)->arch.hflags;
7502}
7503
7504static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7505{
7506        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7507
7508        kvm_smm_changed(vcpu, false);
7509}
7510
7511static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7512                                  const char *smstate)
7513{
7514        return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7515}
7516
7517static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7518{
7519        kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7520}
7521
7522static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7523{
7524        return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7525}
7526
7527static const struct x86_emulate_ops emulate_ops = {
7528        .read_gpr            = emulator_read_gpr,
7529        .write_gpr           = emulator_write_gpr,
7530        .read_std            = emulator_read_std,
7531        .write_std           = emulator_write_std,
7532        .read_phys           = kvm_read_guest_phys_system,
7533        .fetch               = kvm_fetch_guest_virt,
7534        .read_emulated       = emulator_read_emulated,
7535        .write_emulated      = emulator_write_emulated,
7536        .cmpxchg_emulated    = emulator_cmpxchg_emulated,
7537        .invlpg              = emulator_invlpg,
7538        .pio_in_emulated     = emulator_pio_in_emulated,
7539        .pio_out_emulated    = emulator_pio_out_emulated,
7540        .get_segment         = emulator_get_segment,
7541        .set_segment         = emulator_set_segment,
7542        .get_cached_segment_base = emulator_get_cached_segment_base,
7543        .get_gdt             = emulator_get_gdt,
7544        .get_idt             = emulator_get_idt,
7545        .set_gdt             = emulator_set_gdt,
7546        .set_idt             = emulator_set_idt,
7547        .get_cr              = emulator_get_cr,
7548        .set_cr              = emulator_set_cr,
7549        .cpl                 = emulator_get_cpl,
7550        .get_dr              = emulator_get_dr,
7551        .set_dr              = emulator_set_dr,
7552        .get_smbase          = emulator_get_smbase,
7553        .set_smbase          = emulator_set_smbase,
7554        .set_msr             = emulator_set_msr,
7555        .get_msr             = emulator_get_msr,
7556        .check_pmc           = emulator_check_pmc,
7557        .read_pmc            = emulator_read_pmc,
7558        .halt                = emulator_halt,
7559        .wbinvd              = emulator_wbinvd,
7560        .fix_hypercall       = emulator_fix_hypercall,
7561        .intercept           = emulator_intercept,
7562        .get_cpuid           = emulator_get_cpuid,
7563        .guest_has_long_mode = emulator_guest_has_long_mode,
7564        .guest_has_movbe     = emulator_guest_has_movbe,
7565        .guest_has_fxsr      = emulator_guest_has_fxsr,
7566        .set_nmi_mask        = emulator_set_nmi_mask,
7567        .get_hflags          = emulator_get_hflags,
7568        .exiting_smm         = emulator_exiting_smm,
7569        .leave_smm           = emulator_leave_smm,
7570        .triple_fault        = emulator_triple_fault,
7571        .set_xcr             = emulator_set_xcr,
7572};
7573
7574static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7575{
7576        u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7577        /*
7578         * an sti; sti; sequence only disable interrupts for the first
7579         * instruction. So, if the last instruction, be it emulated or
7580         * not, left the system with the INT_STI flag enabled, it
7581         * means that the last instruction is an sti. We should not
7582         * leave the flag on in this case. The same goes for mov ss
7583         */
7584        if (int_shadow & mask)
7585                mask = 0;
7586        if (unlikely(int_shadow || mask)) {
7587                static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7588                if (!mask)
7589                        kvm_make_request(KVM_REQ_EVENT, vcpu);
7590        }
7591}
7592
7593static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7594{
7595        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7596        if (ctxt->exception.vector == PF_VECTOR)
7597                return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7598
7599        if (ctxt->exception.error_code_valid)
7600                kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7601                                      ctxt->exception.error_code);
7602        else
7603                kvm_queue_exception(vcpu, ctxt->exception.vector);
7604        return false;
7605}
7606
7607static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7608{
7609        struct x86_emulate_ctxt *ctxt;
7610
7611        ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7612        if (!ctxt) {
7613                pr_err("kvm: failed to allocate vcpu's emulator\n");
7614                return NULL;
7615        }
7616
7617        ctxt->vcpu = vcpu;
7618        ctxt->ops = &emulate_ops;
7619        vcpu->arch.emulate_ctxt = ctxt;
7620
7621        return ctxt;
7622}
7623
7624static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7625{
7626        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7627        int cs_db, cs_l;
7628
7629        static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7630
7631        ctxt->gpa_available = false;
7632        ctxt->eflags = kvm_get_rflags(vcpu);
7633        ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7634
7635        ctxt->eip = kvm_rip_read(vcpu);
7636        ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
7637                     (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
7638                     (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
7639                     cs_db                              ? X86EMUL_MODE_PROT32 :
7640                                                          X86EMUL_MODE_PROT16;
7641        BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7642        BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7643        BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7644
7645        ctxt->interruptibility = 0;
7646        ctxt->have_exception = false;
7647        ctxt->exception.vector = -1;
7648        ctxt->perm_ok = false;
7649
7650        init_decode_cache(ctxt);
7651        vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7652}
7653
7654void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7655{
7656        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7657        int ret;
7658
7659        init_emulate_ctxt(vcpu);
7660
7661        ctxt->op_bytes = 2;
7662        ctxt->ad_bytes = 2;
7663        ctxt->_eip = ctxt->eip + inc_eip;
7664        ret = emulate_int_real(ctxt, irq);
7665
7666        if (ret != X86EMUL_CONTINUE) {
7667                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7668        } else {
7669                ctxt->eip = ctxt->_eip;
7670                kvm_rip_write(vcpu, ctxt->eip);
7671                kvm_set_rflags(vcpu, ctxt->eflags);
7672        }
7673}
7674EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7675
7676static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7677                                           u8 ndata, u8 *insn_bytes, u8 insn_size)
7678{
7679        struct kvm_run *run = vcpu->run;
7680        u64 info[5];
7681        u8 info_start;
7682
7683        /*
7684         * Zero the whole array used to retrieve the exit info, as casting to
7685         * u32 for select entries will leave some chunks uninitialized.
7686         */
7687        memset(&info, 0, sizeof(info));
7688
7689        static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
7690                                           &info[2], (u32 *)&info[3],
7691                                           (u32 *)&info[4]);
7692
7693        run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7694        run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7695
7696        /*
7697         * There's currently space for 13 entries, but 5 are used for the exit
7698         * reason and info.  Restrict to 4 to reduce the maintenance burden
7699         * when expanding kvm_run.emulation_failure in the future.
7700         */
7701        if (WARN_ON_ONCE(ndata > 4))
7702                ndata = 4;
7703
7704        /* Always include the flags as a 'data' entry. */
7705        info_start = 1;
7706        run->emulation_failure.flags = 0;
7707
7708        if (insn_size) {
7709                BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
7710                              sizeof(run->emulation_failure.insn_bytes) != 16));
7711                info_start += 2;
7712                run->emulation_failure.flags |=
7713                        KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7714                run->emulation_failure.insn_size = insn_size;
7715                memset(run->emulation_failure.insn_bytes, 0x90,
7716                       sizeof(run->emulation_failure.insn_bytes));
7717                memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
7718        }
7719
7720        memcpy(&run->internal.data[info_start], info, sizeof(info));
7721        memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
7722               ndata * sizeof(data[0]));
7723
7724        run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
7725}
7726
7727static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
7728{
7729        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7730
7731        prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
7732                                       ctxt->fetch.end - ctxt->fetch.data);
7733}
7734
7735void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7736                                          u8 ndata)
7737{
7738        prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
7739}
7740EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
7741
7742void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7743{
7744        __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
7745}
7746EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
7747
7748static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7749{
7750        struct kvm *kvm = vcpu->kvm;
7751
7752        ++vcpu->stat.insn_emulation_fail;
7753        trace_kvm_emulate_insn_failed(vcpu);
7754
7755        if (emulation_type & EMULTYPE_VMWARE_GP) {
7756                kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7757                return 1;
7758        }
7759
7760        if (kvm->arch.exit_on_emulation_error ||
7761            (emulation_type & EMULTYPE_SKIP)) {
7762                prepare_emulation_ctxt_failure_exit(vcpu);
7763                return 0;
7764        }
7765
7766        kvm_queue_exception(vcpu, UD_VECTOR);
7767
7768        if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7769                prepare_emulation_ctxt_failure_exit(vcpu);
7770                return 0;
7771        }
7772
7773        return 1;
7774}
7775
7776static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7777                                  bool write_fault_to_shadow_pgtable,
7778                                  int emulation_type)
7779{
7780        gpa_t gpa = cr2_or_gpa;
7781        kvm_pfn_t pfn;
7782
7783        if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7784                return false;
7785
7786        if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7787            WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7788                return false;
7789
7790        if (!vcpu->arch.mmu->direct_map) {
7791                /*
7792                 * Write permission should be allowed since only
7793                 * write access need to be emulated.
7794                 */
7795                gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7796
7797                /*
7798                 * If the mapping is invalid in guest, let cpu retry
7799                 * it to generate fault.
7800                 */
7801                if (gpa == UNMAPPED_GVA)
7802                        return true;
7803        }
7804
7805        /*
7806         * Do not retry the unhandleable instruction if it faults on the
7807         * readonly host memory, otherwise it will goto a infinite loop:
7808         * retry instruction -> write #PF -> emulation fail -> retry
7809         * instruction -> ...
7810         */
7811        pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7812
7813        /*
7814         * If the instruction failed on the error pfn, it can not be fixed,
7815         * report the error to userspace.
7816         */
7817        if (is_error_noslot_pfn(pfn))
7818                return false;
7819
7820        kvm_release_pfn_clean(pfn);
7821
7822        /* The instructions are well-emulated on direct mmu. */
7823        if (vcpu->arch.mmu->direct_map) {
7824                unsigned int indirect_shadow_pages;
7825
7826                write_lock(&vcpu->kvm->mmu_lock);
7827                indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7828                write_unlock(&vcpu->kvm->mmu_lock);
7829
7830                if (indirect_shadow_pages)
7831                        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7832
7833                return true;
7834        }
7835
7836        /*
7837         * if emulation was due to access to shadowed page table
7838         * and it failed try to unshadow page and re-enter the
7839         * guest to let CPU execute the instruction.
7840         */
7841        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7842
7843        /*
7844         * If the access faults on its page table, it can not
7845         * be fixed by unprotecting shadow page and it should
7846         * be reported to userspace.
7847         */
7848        return !write_fault_to_shadow_pgtable;
7849}
7850
7851static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7852                              gpa_t cr2_or_gpa,  int emulation_type)
7853{
7854        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7855        unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7856
7857        last_retry_eip = vcpu->arch.last_retry_eip;
7858        last_retry_addr = vcpu->arch.last_retry_addr;
7859
7860        /*
7861         * If the emulation is caused by #PF and it is non-page_table
7862         * writing instruction, it means the VM-EXIT is caused by shadow
7863         * page protected, we can zap the shadow page and retry this
7864         * instruction directly.
7865         *
7866         * Note: if the guest uses a non-page-table modifying instruction
7867         * on the PDE that points to the instruction, then we will unmap
7868         * the instruction and go to an infinite loop. So, we cache the
7869         * last retried eip and the last fault address, if we meet the eip
7870         * and the address again, we can break out of the potential infinite
7871         * loop.
7872         */
7873        vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7874
7875        if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7876                return false;
7877
7878        if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7879            WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7880                return false;
7881
7882        if (x86_page_table_writing_insn(ctxt))
7883                return false;
7884
7885        if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7886                return false;
7887
7888        vcpu->arch.last_retry_eip = ctxt->eip;
7889        vcpu->arch.last_retry_addr = cr2_or_gpa;
7890
7891        if (!vcpu->arch.mmu->direct_map)
7892                gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7893
7894        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7895
7896        return true;
7897}
7898
7899static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7900static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7901
7902static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
7903{
7904        trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
7905
7906        if (entering_smm) {
7907                vcpu->arch.hflags |= HF_SMM_MASK;
7908        } else {
7909                vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
7910
7911                /* Process a latched INIT or SMI, if any.  */
7912                kvm_make_request(KVM_REQ_EVENT, vcpu);
7913
7914                /*
7915                 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
7916                 * on SMM exit we still need to reload them from
7917                 * guest memory
7918                 */
7919                vcpu->arch.pdptrs_from_userspace = false;
7920        }
7921
7922        kvm_mmu_reset_context(vcpu);
7923}
7924
7925static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7926                                unsigned long *db)
7927{
7928        u32 dr6 = 0;
7929        int i;
7930        u32 enable, rwlen;
7931
7932        enable = dr7;
7933        rwlen = dr7 >> 16;
7934        for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7935                if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7936                        dr6 |= (1 << i);
7937        return dr6;
7938}
7939
7940static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7941{
7942        struct kvm_run *kvm_run = vcpu->run;
7943
7944        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7945                kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7946                kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7947                kvm_run->debug.arch.exception = DB_VECTOR;
7948                kvm_run->exit_reason = KVM_EXIT_DEBUG;
7949                return 0;
7950        }
7951        kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7952        return 1;
7953}
7954
7955int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7956{
7957        unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7958        int r;
7959
7960        r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7961        if (unlikely(!r))
7962                return 0;
7963
7964        /*
7965         * rflags is the old, "raw" value of the flags.  The new value has
7966         * not been saved yet.
7967         *
7968         * This is correct even for TF set by the guest, because "the
7969         * processor will not generate this exception after the instruction
7970         * that sets the TF flag".
7971         */
7972        if (unlikely(rflags & X86_EFLAGS_TF))
7973                r = kvm_vcpu_do_singlestep(vcpu);
7974        return r;
7975}
7976EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7977
7978static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7979{
7980        if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7981            (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7982                struct kvm_run *kvm_run = vcpu->run;
7983                unsigned long eip = kvm_get_linear_rip(vcpu);
7984                u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7985                                           vcpu->arch.guest_debug_dr7,
7986                                           vcpu->arch.eff_db);
7987
7988                if (dr6 != 0) {
7989                        kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7990                        kvm_run->debug.arch.pc = eip;
7991                        kvm_run->debug.arch.exception = DB_VECTOR;
7992                        kvm_run->exit_reason = KVM_EXIT_DEBUG;
7993                        *r = 0;
7994                        return true;
7995                }
7996        }
7997
7998        if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7999            !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8000                unsigned long eip = kvm_get_linear_rip(vcpu);
8001                u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8002                                           vcpu->arch.dr7,
8003                                           vcpu->arch.db);
8004
8005                if (dr6 != 0) {
8006                        kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8007                        *r = 1;
8008                        return true;
8009                }
8010        }
8011
8012        return false;
8013}
8014
8015static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8016{
8017        switch (ctxt->opcode_len) {
8018        case 1:
8019                switch (ctxt->b) {
8020                case 0xe4:      /* IN */
8021                case 0xe5:
8022                case 0xec:
8023                case 0xed:
8024                case 0xe6:      /* OUT */
8025                case 0xe7:
8026                case 0xee:
8027                case 0xef:
8028                case 0x6c:      /* INS */
8029                case 0x6d:
8030                case 0x6e:      /* OUTS */
8031                case 0x6f:
8032                        return true;
8033                }
8034                break;
8035        case 2:
8036                switch (ctxt->b) {
8037                case 0x33:      /* RDPMC */
8038                        return true;
8039                }
8040                break;
8041        }
8042
8043        return false;
8044}
8045
8046/*
8047 * Decode to be emulated instruction. Return EMULATION_OK if success.
8048 */
8049int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8050                                    void *insn, int insn_len)
8051{
8052        int r = EMULATION_OK;
8053        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8054
8055        init_emulate_ctxt(vcpu);
8056
8057        /*
8058         * We will reenter on the same instruction since we do not set
8059         * complete_userspace_io. This does not handle watchpoints yet,
8060         * those would be handled in the emulate_ops.
8061         */
8062        if (!(emulation_type & EMULTYPE_SKIP) &&
8063            kvm_vcpu_check_breakpoint(vcpu, &r))
8064                return r;
8065
8066        r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8067
8068        trace_kvm_emulate_insn_start(vcpu);
8069        ++vcpu->stat.insn_emulation;
8070
8071        return r;
8072}
8073EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8074
8075int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8076                            int emulation_type, void *insn, int insn_len)
8077{
8078        int r;
8079        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8080        bool writeback = true;
8081        bool write_fault_to_spt;
8082
8083        if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
8084                return 1;
8085
8086        vcpu->arch.l1tf_flush_l1d = true;
8087
8088        /*
8089         * Clear write_fault_to_shadow_pgtable here to ensure it is
8090         * never reused.
8091         */
8092        write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8093        vcpu->arch.write_fault_to_shadow_pgtable = false;
8094
8095        if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8096                kvm_clear_exception_queue(vcpu);
8097
8098                r = x86_decode_emulated_instruction(vcpu, emulation_type,
8099                                                    insn, insn_len);
8100                if (r != EMULATION_OK)  {
8101                        if ((emulation_type & EMULTYPE_TRAP_UD) ||
8102                            (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8103                                kvm_queue_exception(vcpu, UD_VECTOR);
8104                                return 1;
8105                        }
8106                        if (reexecute_instruction(vcpu, cr2_or_gpa,
8107                                                  write_fault_to_spt,
8108                                                  emulation_type))
8109                                return 1;
8110                        if (ctxt->have_exception) {
8111                                /*
8112                                 * #UD should result in just EMULATION_FAILED, and trap-like
8113                                 * exception should not be encountered during decode.
8114                                 */
8115                                WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8116                                             exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8117                                inject_emulated_exception(vcpu);
8118                                return 1;
8119                        }
8120                        return handle_emulation_failure(vcpu, emulation_type);
8121                }
8122        }
8123
8124        if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8125            !is_vmware_backdoor_opcode(ctxt)) {
8126                kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8127                return 1;
8128        }
8129
8130        /*
8131         * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
8132         * for kvm_skip_emulated_instruction().  The caller is responsible for
8133         * updating interruptibility state and injecting single-step #DBs.
8134         */
8135        if (emulation_type & EMULTYPE_SKIP) {
8136                kvm_rip_write(vcpu, ctxt->_eip);
8137                if (ctxt->eflags & X86_EFLAGS_RF)
8138                        kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8139                return 1;
8140        }
8141
8142        if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8143                return 1;
8144
8145        /* this is needed for vmware backdoor interface to work since it
8146           changes registers values  during IO operation */
8147        if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8148                vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8149                emulator_invalidate_register_cache(ctxt);
8150        }
8151
8152restart:
8153        if (emulation_type & EMULTYPE_PF) {
8154                /* Save the faulting GPA (cr2) in the address field */
8155                ctxt->exception.address = cr2_or_gpa;
8156
8157                /* With shadow page tables, cr2 contains a GVA or nGPA. */
8158                if (vcpu->arch.mmu->direct_map) {
8159                        ctxt->gpa_available = true;
8160                        ctxt->gpa_val = cr2_or_gpa;
8161                }
8162        } else {
8163                /* Sanitize the address out of an abundance of paranoia. */
8164                ctxt->exception.address = 0;
8165        }
8166
8167        r = x86_emulate_insn(ctxt);
8168
8169        if (r == EMULATION_INTERCEPTED)
8170                return 1;
8171
8172        if (r == EMULATION_FAILED) {
8173                if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8174                                        emulation_type))
8175                        return 1;
8176
8177                return handle_emulation_failure(vcpu, emulation_type);
8178        }
8179
8180        if (ctxt->have_exception) {
8181                r = 1;
8182                if (inject_emulated_exception(vcpu))
8183                        return r;
8184        } else if (vcpu->arch.pio.count) {
8185                if (!vcpu->arch.pio.in) {
8186                        /* FIXME: return into emulator if single-stepping.  */
8187                        vcpu->arch.pio.count = 0;
8188                } else {
8189                        writeback = false;
8190                        vcpu->arch.complete_userspace_io = complete_emulated_pio;
8191                }
8192                r = 0;
8193        } else if (vcpu->mmio_needed) {
8194                ++vcpu->stat.mmio_exits;
8195
8196                if (!vcpu->mmio_is_write)
8197                        writeback = false;
8198                r = 0;
8199                vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8200        } else if (r == EMULATION_RESTART)
8201                goto restart;
8202        else
8203                r = 1;
8204
8205        if (writeback) {
8206                unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8207                toggle_interruptibility(vcpu, ctxt->interruptibility);
8208                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8209                if (!ctxt->have_exception ||
8210                    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8211                        kvm_rip_write(vcpu, ctxt->eip);
8212                        if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8213                                r = kvm_vcpu_do_singlestep(vcpu);
8214                        if (kvm_x86_ops.update_emulated_instruction)
8215                                static_call(kvm_x86_update_emulated_instruction)(vcpu);
8216                        __kvm_set_rflags(vcpu, ctxt->eflags);
8217                }
8218
8219                /*
8220                 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8221                 * do nothing, and it will be requested again as soon as
8222                 * the shadow expires.  But we still need to check here,
8223                 * because POPF has no interrupt shadow.
8224                 */
8225                if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8226                        kvm_make_request(KVM_REQ_EVENT, vcpu);
8227        } else
8228                vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8229
8230        return r;
8231}
8232
8233int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8234{
8235        return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8236}
8237EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8238
8239int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8240                                        void *insn, int insn_len)
8241{
8242        return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8243}
8244EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8245
8246static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8247{
8248        vcpu->arch.pio.count = 0;
8249        return 1;
8250}
8251
8252static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8253{
8254        vcpu->arch.pio.count = 0;
8255
8256        if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8257                return 1;
8258
8259        return kvm_skip_emulated_instruction(vcpu);
8260}
8261
8262static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8263                            unsigned short port)
8264{
8265        unsigned long val = kvm_rax_read(vcpu);
8266        int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8267
8268        if (ret)
8269                return ret;
8270
8271        /*
8272         * Workaround userspace that relies on old KVM behavior of %rip being
8273         * incremented prior to exiting to userspace to handle "OUT 0x7e".
8274         */
8275        if (port == 0x7e &&
8276            kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8277                vcpu->arch.complete_userspace_io =
8278                        complete_fast_pio_out_port_0x7e;
8279                kvm_skip_emulated_instruction(vcpu);
8280        } else {
8281                vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8282                vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8283        }
8284        return 0;
8285}
8286
8287static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8288{
8289        unsigned long val;
8290
8291        /* We should only ever be called with arch.pio.count equal to 1 */
8292        BUG_ON(vcpu->arch.pio.count != 1);
8293
8294        if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8295                vcpu->arch.pio.count = 0;
8296                return 1;
8297        }
8298
8299        /* For size less than 4 we merge, else we zero extend */
8300        val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8301
8302        /*
8303         * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8304         * the copy and tracing
8305         */
8306        emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8307        kvm_rax_write(vcpu, val);
8308
8309        return kvm_skip_emulated_instruction(vcpu);
8310}
8311
8312static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8313                           unsigned short port)
8314{
8315        unsigned long val;
8316        int ret;
8317
8318        /* For size less than 4 we merge, else we zero extend */
8319        val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8320
8321        ret = emulator_pio_in(vcpu, size, port, &val, 1);
8322        if (ret) {
8323                kvm_rax_write(vcpu, val);
8324                return ret;
8325        }
8326
8327        vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8328        vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8329
8330        return 0;
8331}
8332
8333int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8334{
8335        int ret;
8336
8337        if (in)
8338                ret = kvm_fast_pio_in(vcpu, size, port);
8339        else
8340                ret = kvm_fast_pio_out(vcpu, size, port);
8341        return ret && kvm_skip_emulated_instruction(vcpu);
8342}
8343EXPORT_SYMBOL_GPL(kvm_fast_pio);
8344
8345static int kvmclock_cpu_down_prep(unsigned int cpu)
8346{
8347        __this_cpu_write(cpu_tsc_khz, 0);
8348        return 0;
8349}
8350
8351static void tsc_khz_changed(void *data)
8352{
8353        struct cpufreq_freqs *freq = data;
8354        unsigned long khz = 0;
8355
8356        if (data)
8357                khz = freq->new;
8358        else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8359                khz = cpufreq_quick_get(raw_smp_processor_id());
8360        if (!khz)
8361                khz = tsc_khz;
8362        __this_cpu_write(cpu_tsc_khz, khz);
8363}
8364
8365#ifdef CONFIG_X86_64
8366static void kvm_hyperv_tsc_notifier(void)
8367{
8368        struct kvm *kvm;
8369        int cpu;
8370
8371        mutex_lock(&kvm_lock);
8372        list_for_each_entry(kvm, &vm_list, vm_list)
8373                kvm_make_mclock_inprogress_request(kvm);
8374
8375        /* no guest entries from this point */
8376        hyperv_stop_tsc_emulation();
8377
8378        /* TSC frequency always matches when on Hyper-V */
8379        for_each_present_cpu(cpu)
8380                per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8381        kvm_max_guest_tsc_khz = tsc_khz;
8382
8383        list_for_each_entry(kvm, &vm_list, vm_list) {
8384                __kvm_start_pvclock_update(kvm);
8385                pvclock_update_vm_gtod_copy(kvm);
8386                kvm_end_pvclock_update(kvm);
8387        }
8388
8389        mutex_unlock(&kvm_lock);
8390}
8391#endif
8392
8393static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8394{
8395        struct kvm *kvm;
8396        struct kvm_vcpu *vcpu;
8397        int i, send_ipi = 0;
8398
8399        /*
8400         * We allow guests to temporarily run on slowing clocks,
8401         * provided we notify them after, or to run on accelerating
8402         * clocks, provided we notify them before.  Thus time never
8403         * goes backwards.
8404         *
8405         * However, we have a problem.  We can't atomically update
8406         * the frequency of a given CPU from this function; it is
8407         * merely a notifier, which can be called from any CPU.
8408         * Changing the TSC frequency at arbitrary points in time
8409         * requires a recomputation of local variables related to
8410         * the TSC for each VCPU.  We must flag these local variables
8411         * to be updated and be sure the update takes place with the
8412         * new frequency before any guests proceed.
8413         *
8414         * Unfortunately, the combination of hotplug CPU and frequency
8415         * change creates an intractable locking scenario; the order
8416         * of when these callouts happen is undefined with respect to
8417         * CPU hotplug, and they can race with each other.  As such,
8418         * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8419         * undefined; you can actually have a CPU frequency change take
8420         * place in between the computation of X and the setting of the
8421         * variable.  To protect against this problem, all updates of
8422         * the per_cpu tsc_khz variable are done in an interrupt
8423         * protected IPI, and all callers wishing to update the value
8424         * must wait for a synchronous IPI to complete (which is trivial
8425         * if the caller is on the CPU already).  This establishes the
8426         * necessary total order on variable updates.
8427         *
8428         * Note that because a guest time update may take place
8429         * anytime after the setting of the VCPU's request bit, the
8430         * correct TSC value must be set before the request.  However,
8431         * to ensure the update actually makes it to any guest which
8432         * starts running in hardware virtualization between the set
8433         * and the acquisition of the spinlock, we must also ping the
8434         * CPU after setting the request bit.
8435         *
8436         */
8437
8438        smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8439
8440        mutex_lock(&kvm_lock);
8441        list_for_each_entry(kvm, &vm_list, vm_list) {
8442                kvm_for_each_vcpu(i, vcpu, kvm) {
8443                        if (vcpu->cpu != cpu)
8444                                continue;
8445                        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8446                        if (vcpu->cpu != raw_smp_processor_id())
8447                                send_ipi = 1;
8448                }
8449        }
8450        mutex_unlock(&kvm_lock);
8451
8452        if (freq->old < freq->new && send_ipi) {
8453                /*
8454                 * We upscale the frequency.  Must make the guest
8455                 * doesn't see old kvmclock values while running with
8456                 * the new frequency, otherwise we risk the guest sees
8457                 * time go backwards.
8458                 *
8459                 * In case we update the frequency for another cpu
8460                 * (which might be in guest context) send an interrupt
8461                 * to kick the cpu out of guest context.  Next time
8462                 * guest context is entered kvmclock will be updated,
8463                 * so the guest will not see stale values.
8464                 */
8465                smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8466        }
8467}
8468
8469static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8470                                     void *data)
8471{
8472        struct cpufreq_freqs *freq = data;
8473        int cpu;
8474
8475        if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8476                return 0;
8477        if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8478                return 0;
8479
8480        for_each_cpu(cpu, freq->policy->cpus)
8481                __kvmclock_cpufreq_notifier(freq, cpu);
8482
8483        return 0;
8484}
8485
8486static struct notifier_block kvmclock_cpufreq_notifier_block = {
8487        .notifier_call  = kvmclock_cpufreq_notifier
8488};
8489
8490static int kvmclock_cpu_online(unsigned int cpu)
8491{
8492        tsc_khz_changed(NULL);
8493        return 0;
8494}
8495
8496static void kvm_timer_init(void)
8497{
8498        max_tsc_khz = tsc_khz;
8499
8500        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8501#ifdef CONFIG_CPU_FREQ
8502                struct cpufreq_policy *policy;
8503                int cpu;
8504
8505                cpu = get_cpu();
8506                policy = cpufreq_cpu_get(cpu);
8507                if (policy) {
8508                        if (policy->cpuinfo.max_freq)
8509                                max_tsc_khz = policy->cpuinfo.max_freq;
8510                        cpufreq_cpu_put(policy);
8511                }
8512                put_cpu();
8513#endif
8514                cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8515                                          CPUFREQ_TRANSITION_NOTIFIER);
8516        }
8517
8518        cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8519                          kvmclock_cpu_online, kvmclock_cpu_down_prep);
8520}
8521
8522DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8523EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8524
8525int kvm_is_in_guest(void)
8526{
8527        return __this_cpu_read(current_vcpu) != NULL;
8528}
8529
8530static int kvm_is_user_mode(void)
8531{
8532        int user_mode = 3;
8533
8534        if (__this_cpu_read(current_vcpu))
8535                user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
8536
8537        return user_mode != 0;
8538}
8539
8540static unsigned long kvm_get_guest_ip(void)
8541{
8542        unsigned long ip = 0;
8543
8544        if (__this_cpu_read(current_vcpu))
8545                ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8546
8547        return ip;
8548}
8549
8550static void kvm_handle_intel_pt_intr(void)
8551{
8552        struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8553
8554        kvm_make_request(KVM_REQ_PMI, vcpu);
8555        __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8556                        (unsigned long *)&vcpu->arch.pmu.global_status);
8557}
8558
8559static struct perf_guest_info_callbacks kvm_guest_cbs = {
8560        .is_in_guest            = kvm_is_in_guest,
8561        .is_user_mode           = kvm_is_user_mode,
8562        .get_guest_ip           = kvm_get_guest_ip,
8563        .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
8564};
8565
8566#ifdef CONFIG_X86_64
8567static void pvclock_gtod_update_fn(struct work_struct *work)
8568{
8569        struct kvm *kvm;
8570
8571        struct kvm_vcpu *vcpu;
8572        int i;
8573
8574        mutex_lock(&kvm_lock);
8575        list_for_each_entry(kvm, &vm_list, vm_list)
8576                kvm_for_each_vcpu(i, vcpu, kvm)
8577                        kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8578        atomic_set(&kvm_guest_has_master_clock, 0);
8579        mutex_unlock(&kvm_lock);
8580}
8581
8582static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8583
8584/*
8585 * Indirection to move queue_work() out of the tk_core.seq write held
8586 * region to prevent possible deadlocks against time accessors which
8587 * are invoked with work related locks held.
8588 */
8589static void pvclock_irq_work_fn(struct irq_work *w)
8590{
8591        queue_work(system_long_wq, &pvclock_gtod_work);
8592}
8593
8594static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8595
8596/*
8597 * Notification about pvclock gtod data update.
8598 */
8599static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8600                               void *priv)
8601{
8602        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8603        struct timekeeper *tk = priv;
8604
8605        update_pvclock_gtod(tk);
8606
8607        /*
8608         * Disable master clock if host does not trust, or does not use,
8609         * TSC based clocksource. Delegate queue_work() to irq_work as
8610         * this is invoked with tk_core.seq write held.
8611         */
8612        if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8613            atomic_read(&kvm_guest_has_master_clock) != 0)
8614                irq_work_queue(&pvclock_irq_work);
8615        return 0;
8616}
8617
8618static struct notifier_block pvclock_gtod_notifier = {
8619        .notifier_call = pvclock_gtod_notify,
8620};
8621#endif
8622
8623int kvm_arch_init(void *opaque)
8624{
8625        struct kvm_x86_init_ops *ops = opaque;
8626        int r;
8627
8628        if (kvm_x86_ops.hardware_enable) {
8629                pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
8630                r = -EEXIST;
8631                goto out;
8632        }
8633
8634        if (!ops->cpu_has_kvm_support()) {
8635                pr_err_ratelimited("kvm: no hardware support for '%s'\n",
8636                                   ops->runtime_ops->name);
8637                r = -EOPNOTSUPP;
8638                goto out;
8639        }
8640        if (ops->disabled_by_bios()) {
8641                pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
8642                                   ops->runtime_ops->name);
8643                r = -EOPNOTSUPP;
8644                goto out;
8645        }
8646
8647        /*
8648         * KVM explicitly assumes that the guest has an FPU and
8649         * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8650         * vCPU's FPU state as a fxregs_state struct.
8651         */
8652        if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8653                printk(KERN_ERR "kvm: inadequate fpu\n");
8654                r = -EOPNOTSUPP;
8655                goto out;
8656        }
8657
8658        r = -ENOMEM;
8659
8660        x86_emulator_cache = kvm_alloc_emulator_cache();
8661        if (!x86_emulator_cache) {
8662                pr_err("kvm: failed to allocate cache for x86 emulator\n");
8663                goto out;
8664        }
8665
8666        user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8667        if (!user_return_msrs) {
8668                printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8669                goto out_free_x86_emulator_cache;
8670        }
8671        kvm_nr_uret_msrs = 0;
8672
8673        r = kvm_mmu_module_init();
8674        if (r)
8675                goto out_free_percpu;
8676
8677        kvm_timer_init();
8678
8679        perf_register_guest_info_callbacks(&kvm_guest_cbs);
8680
8681        if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8682                host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8683                supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8684        }
8685
8686        if (pi_inject_timer == -1)
8687                pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8688#ifdef CONFIG_X86_64
8689        pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8690
8691        if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8692                set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8693#endif
8694
8695        return 0;
8696
8697out_free_percpu:
8698        free_percpu(user_return_msrs);
8699out_free_x86_emulator_cache:
8700        kmem_cache_destroy(x86_emulator_cache);
8701out:
8702        return r;
8703}
8704
8705void kvm_arch_exit(void)
8706{
8707#ifdef CONFIG_X86_64
8708        if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8709                clear_hv_tscchange_cb();
8710#endif
8711        kvm_lapic_exit();
8712        perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8713
8714        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8715                cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8716                                            CPUFREQ_TRANSITION_NOTIFIER);
8717        cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8718#ifdef CONFIG_X86_64
8719        pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8720        irq_work_sync(&pvclock_irq_work);
8721        cancel_work_sync(&pvclock_gtod_work);
8722#endif
8723        kvm_x86_ops.hardware_enable = NULL;
8724        kvm_mmu_module_exit();
8725        free_percpu(user_return_msrs);
8726        kmem_cache_destroy(x86_emulator_cache);
8727#ifdef CONFIG_KVM_XEN
8728        static_key_deferred_flush(&kvm_xen_enabled);
8729        WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8730#endif
8731}
8732
8733static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8734{
8735        ++vcpu->stat.halt_exits;
8736        if (lapic_in_kernel(vcpu)) {
8737                vcpu->arch.mp_state = state;
8738                return 1;
8739        } else {
8740                vcpu->run->exit_reason = reason;
8741                return 0;
8742        }
8743}
8744
8745int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8746{
8747        return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8748}
8749EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8750
8751int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8752{
8753        int ret = kvm_skip_emulated_instruction(vcpu);
8754        /*
8755         * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8756         * KVM_EXIT_DEBUG here.
8757         */
8758        return kvm_vcpu_halt(vcpu) && ret;
8759}
8760EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8761
8762int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8763{
8764        int ret = kvm_skip_emulated_instruction(vcpu);
8765
8766        return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8767}
8768EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8769
8770#ifdef CONFIG_X86_64
8771static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8772                                unsigned long clock_type)
8773{
8774        struct kvm_clock_pairing clock_pairing;
8775        struct timespec64 ts;
8776        u64 cycle;
8777        int ret;
8778
8779        if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8780                return -KVM_EOPNOTSUPP;
8781
8782        if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8783                return -KVM_EOPNOTSUPP;
8784
8785        clock_pairing.sec = ts.tv_sec;
8786        clock_pairing.nsec = ts.tv_nsec;
8787        clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8788        clock_pairing.flags = 0;
8789        memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8790
8791        ret = 0;
8792        if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8793                            sizeof(struct kvm_clock_pairing)))
8794                ret = -KVM_EFAULT;
8795
8796        return ret;
8797}
8798#endif
8799
8800/*
8801 * kvm_pv_kick_cpu_op:  Kick a vcpu.
8802 *
8803 * @apicid - apicid of vcpu to be kicked.
8804 */
8805static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8806{
8807        struct kvm_lapic_irq lapic_irq;
8808
8809        lapic_irq.shorthand = APIC_DEST_NOSHORT;
8810        lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8811        lapic_irq.level = 0;
8812        lapic_irq.dest_id = apicid;
8813        lapic_irq.msi_redir_hint = false;
8814
8815        lapic_irq.delivery_mode = APIC_DM_REMRD;
8816        kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8817}
8818
8819bool kvm_apicv_activated(struct kvm *kvm)
8820{
8821        return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8822}
8823EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8824
8825static void kvm_apicv_init(struct kvm *kvm)
8826{
8827        init_rwsem(&kvm->arch.apicv_update_lock);
8828
8829        set_bit(APICV_INHIBIT_REASON_ABSENT,
8830                &kvm->arch.apicv_inhibit_reasons);
8831        if (!enable_apicv)
8832                set_bit(APICV_INHIBIT_REASON_DISABLE,
8833                        &kvm->arch.apicv_inhibit_reasons);
8834}
8835
8836static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8837{
8838        struct kvm_vcpu *target = NULL;
8839        struct kvm_apic_map *map;
8840
8841        vcpu->stat.directed_yield_attempted++;
8842
8843        if (single_task_running())
8844                goto no_yield;
8845
8846        rcu_read_lock();
8847        map = rcu_dereference(vcpu->kvm->arch.apic_map);
8848
8849        if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8850                target = map->phys_map[dest_id]->vcpu;
8851
8852        rcu_read_unlock();
8853
8854        if (!target || !READ_ONCE(target->ready))
8855                goto no_yield;
8856
8857        /* Ignore requests to yield to self */
8858        if (vcpu == target)
8859                goto no_yield;
8860
8861        if (kvm_vcpu_yield_to(target) <= 0)
8862                goto no_yield;
8863
8864        vcpu->stat.directed_yield_successful++;
8865
8866no_yield:
8867        return;
8868}
8869
8870static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
8871{
8872        u64 ret = vcpu->run->hypercall.ret;
8873
8874        if (!is_64_bit_mode(vcpu))
8875                ret = (u32)ret;
8876        kvm_rax_write(vcpu, ret);
8877        ++vcpu->stat.hypercalls;
8878        return kvm_skip_emulated_instruction(vcpu);
8879}
8880
8881int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8882{
8883        unsigned long nr, a0, a1, a2, a3, ret;
8884        int op_64_bit;
8885
8886        if (kvm_xen_hypercall_enabled(vcpu->kvm))
8887                return kvm_xen_hypercall(vcpu);
8888
8889        if (kvm_hv_hypercall_enabled(vcpu))
8890                return kvm_hv_hypercall(vcpu);
8891
8892        nr = kvm_rax_read(vcpu);
8893        a0 = kvm_rbx_read(vcpu);
8894        a1 = kvm_rcx_read(vcpu);
8895        a2 = kvm_rdx_read(vcpu);
8896        a3 = kvm_rsi_read(vcpu);
8897
8898        trace_kvm_hypercall(nr, a0, a1, a2, a3);
8899
8900        op_64_bit = is_64_bit_hypercall(vcpu);
8901        if (!op_64_bit) {
8902                nr &= 0xFFFFFFFF;
8903                a0 &= 0xFFFFFFFF;
8904                a1 &= 0xFFFFFFFF;
8905                a2 &= 0xFFFFFFFF;
8906                a3 &= 0xFFFFFFFF;
8907        }
8908
8909        if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8910                ret = -KVM_EPERM;
8911                goto out;
8912        }
8913
8914        ret = -KVM_ENOSYS;
8915
8916        switch (nr) {
8917        case KVM_HC_VAPIC_POLL_IRQ:
8918                ret = 0;
8919                break;
8920        case KVM_HC_KICK_CPU:
8921                if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8922                        break;
8923
8924                kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8925                kvm_sched_yield(vcpu, a1);
8926                ret = 0;
8927                break;
8928#ifdef CONFIG_X86_64
8929        case KVM_HC_CLOCK_PAIRING:
8930                ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8931                break;
8932#endif
8933        case KVM_HC_SEND_IPI:
8934                if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8935                        break;
8936
8937                ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8938                break;
8939        case KVM_HC_SCHED_YIELD:
8940                if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8941                        break;
8942
8943                kvm_sched_yield(vcpu, a0);
8944                ret = 0;
8945                break;
8946        case KVM_HC_MAP_GPA_RANGE: {
8947                u64 gpa = a0, npages = a1, attrs = a2;
8948
8949                ret = -KVM_ENOSYS;
8950                if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
8951                        break;
8952
8953                if (!PAGE_ALIGNED(gpa) || !npages ||
8954                    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
8955                        ret = -KVM_EINVAL;
8956                        break;
8957                }
8958
8959                vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
8960                vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
8961                vcpu->run->hypercall.args[0]  = gpa;
8962                vcpu->run->hypercall.args[1]  = npages;
8963                vcpu->run->hypercall.args[2]  = attrs;
8964                vcpu->run->hypercall.longmode = op_64_bit;
8965                vcpu->arch.complete_userspace_io = complete_hypercall_exit;
8966                return 0;
8967        }
8968        default:
8969                ret = -KVM_ENOSYS;
8970                break;
8971        }
8972out:
8973        if (!op_64_bit)
8974                ret = (u32)ret;
8975        kvm_rax_write(vcpu, ret);
8976
8977        ++vcpu->stat.hypercalls;
8978        return kvm_skip_emulated_instruction(vcpu);
8979}
8980EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8981
8982static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8983{
8984        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8985        char instruction[3];
8986        unsigned long rip = kvm_rip_read(vcpu);
8987
8988        static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8989
8990        return emulator_write_emulated(ctxt, rip, instruction, 3,
8991                &ctxt->exception);
8992}
8993
8994static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8995{
8996        return vcpu->run->request_interrupt_window &&
8997                likely(!pic_in_kernel(vcpu->kvm));
8998}
8999
9000static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9001{
9002        struct kvm_run *kvm_run = vcpu->run;
9003
9004        kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9005        kvm_run->cr8 = kvm_get_cr8(vcpu);
9006        kvm_run->apic_base = kvm_get_apic_base(vcpu);
9007
9008        /*
9009         * The call to kvm_ready_for_interrupt_injection() may end up in
9010         * kvm_xen_has_interrupt() which may require the srcu lock to be
9011         * held, to protect against changes in the vcpu_info address.
9012         */
9013        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9014        kvm_run->ready_for_interrupt_injection =
9015                pic_in_kernel(vcpu->kvm) ||
9016                kvm_vcpu_ready_for_interrupt_injection(vcpu);
9017        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9018
9019        if (is_smm(vcpu))
9020                kvm_run->flags |= KVM_RUN_X86_SMM;
9021}
9022
9023static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9024{
9025        int max_irr, tpr;
9026
9027        if (!kvm_x86_ops.update_cr8_intercept)
9028                return;
9029
9030        if (!lapic_in_kernel(vcpu))
9031                return;
9032
9033        if (vcpu->arch.apicv_active)
9034                return;
9035
9036        if (!vcpu->arch.apic->vapic_addr)
9037                max_irr = kvm_lapic_find_highest_irr(vcpu);
9038        else
9039                max_irr = -1;
9040
9041        if (max_irr != -1)
9042                max_irr >>= 4;
9043
9044        tpr = kvm_lapic_get_cr8(vcpu);
9045
9046        static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9047}
9048
9049
9050int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9051{
9052        if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9053                kvm_x86_ops.nested_ops->triple_fault(vcpu);
9054                return 1;
9055        }
9056
9057        return kvm_x86_ops.nested_ops->check_events(vcpu);
9058}
9059
9060static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9061{
9062        if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9063                vcpu->arch.exception.error_code = false;
9064        static_call(kvm_x86_queue_exception)(vcpu);
9065}
9066
9067static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9068{
9069        int r;
9070        bool can_inject = true;
9071
9072        /* try to reinject previous events if any */
9073
9074        if (vcpu->arch.exception.injected) {
9075                kvm_inject_exception(vcpu);
9076                can_inject = false;
9077        }
9078        /*
9079         * Do not inject an NMI or interrupt if there is a pending
9080         * exception.  Exceptions and interrupts are recognized at
9081         * instruction boundaries, i.e. the start of an instruction.
9082         * Trap-like exceptions, e.g. #DB, have higher priority than
9083         * NMIs and interrupts, i.e. traps are recognized before an
9084         * NMI/interrupt that's pending on the same instruction.
9085         * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9086         * priority, but are only generated (pended) during instruction
9087         * execution, i.e. a pending fault-like exception means the
9088         * fault occurred on the *previous* instruction and must be
9089         * serviced prior to recognizing any new events in order to
9090         * fully complete the previous instruction.
9091         */
9092        else if (!vcpu->arch.exception.pending) {
9093                if (vcpu->arch.nmi_injected) {
9094                        static_call(kvm_x86_set_nmi)(vcpu);
9095                        can_inject = false;
9096                } else if (vcpu->arch.interrupt.injected) {
9097                        static_call(kvm_x86_set_irq)(vcpu);
9098                        can_inject = false;
9099                }
9100        }
9101
9102        WARN_ON_ONCE(vcpu->arch.exception.injected &&
9103                     vcpu->arch.exception.pending);
9104
9105        /*
9106         * Call check_nested_events() even if we reinjected a previous event
9107         * in order for caller to determine if it should require immediate-exit
9108         * from L2 to L1 due to pending L1 events which require exit
9109         * from L2 to L1.
9110         */
9111        if (is_guest_mode(vcpu)) {
9112                r = kvm_check_nested_events(vcpu);
9113                if (r < 0)
9114                        goto out;
9115        }
9116
9117        /* try to inject new event if pending */
9118        if (vcpu->arch.exception.pending) {
9119                trace_kvm_inj_exception(vcpu->arch.exception.nr,
9120                                        vcpu->arch.exception.has_error_code,
9121                                        vcpu->arch.exception.error_code);
9122
9123                vcpu->arch.exception.pending = false;
9124                vcpu->arch.exception.injected = true;
9125
9126                if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9127                        __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9128                                             X86_EFLAGS_RF);
9129
9130                if (vcpu->arch.exception.nr == DB_VECTOR) {
9131                        kvm_deliver_exception_payload(vcpu);
9132                        if (vcpu->arch.dr7 & DR7_GD) {
9133                                vcpu->arch.dr7 &= ~DR7_GD;
9134                                kvm_update_dr7(vcpu);
9135                        }
9136                }
9137
9138                kvm_inject_exception(vcpu);
9139                can_inject = false;
9140        }
9141
9142        /* Don't inject interrupts if the user asked to avoid doing so */
9143        if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9144                return 0;
9145
9146        /*
9147         * Finally, inject interrupt events.  If an event cannot be injected
9148         * due to architectural conditions (e.g. IF=0) a window-open exit
9149         * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9150         * and can architecturally be injected, but we cannot do it right now:
9151         * an interrupt could have arrived just now and we have to inject it
9152         * as a vmexit, or there could already an event in the queue, which is
9153         * indicated by can_inject.  In that case we request an immediate exit
9154         * in order to make progress and get back here for another iteration.
9155         * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9156         */
9157        if (vcpu->arch.smi_pending) {
9158                r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9159                if (r < 0)
9160                        goto out;
9161                if (r) {
9162                        vcpu->arch.smi_pending = false;
9163                        ++vcpu->arch.smi_count;
9164                        enter_smm(vcpu);
9165                        can_inject = false;
9166                } else
9167                        static_call(kvm_x86_enable_smi_window)(vcpu);
9168        }
9169
9170        if (vcpu->arch.nmi_pending) {
9171                r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9172                if (r < 0)
9173                        goto out;
9174                if (r) {
9175                        --vcpu->arch.nmi_pending;
9176                        vcpu->arch.nmi_injected = true;
9177                        static_call(kvm_x86_set_nmi)(vcpu);
9178                        can_inject = false;
9179                        WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9180                }
9181                if (vcpu->arch.nmi_pending)
9182                        static_call(kvm_x86_enable_nmi_window)(vcpu);
9183        }
9184
9185        if (kvm_cpu_has_injectable_intr(vcpu)) {
9186                r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9187                if (r < 0)
9188                        goto out;
9189                if (r) {
9190                        kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9191                        static_call(kvm_x86_set_irq)(vcpu);
9192                        WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9193                }
9194                if (kvm_cpu_has_injectable_intr(vcpu))
9195                        static_call(kvm_x86_enable_irq_window)(vcpu);
9196        }
9197
9198        if (is_guest_mode(vcpu) &&
9199            kvm_x86_ops.nested_ops->hv_timer_pending &&
9200            kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9201                *req_immediate_exit = true;
9202
9203        WARN_ON(vcpu->arch.exception.pending);
9204        return 0;
9205
9206out:
9207        if (r == -EBUSY) {
9208                *req_immediate_exit = true;
9209                r = 0;
9210        }
9211        return r;
9212}
9213
9214static void process_nmi(struct kvm_vcpu *vcpu)
9215{
9216        unsigned limit = 2;
9217
9218        /*
9219         * x86 is limited to one NMI running, and one NMI pending after it.
9220         * If an NMI is already in progress, limit further NMIs to just one.
9221         * Otherwise, allow two (and we'll inject the first one immediately).
9222         */
9223        if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9224                limit = 1;
9225
9226        vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9227        vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9228        kvm_make_request(KVM_REQ_EVENT, vcpu);
9229}
9230
9231static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9232{
9233        u32 flags = 0;
9234        flags |= seg->g       << 23;
9235        flags |= seg->db      << 22;
9236        flags |= seg->l       << 21;
9237        flags |= seg->avl     << 20;
9238        flags |= seg->present << 15;
9239        flags |= seg->dpl     << 13;
9240        flags |= seg->s       << 12;
9241        flags |= seg->type    << 8;
9242        return flags;
9243}
9244
9245static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9246{
9247        struct kvm_segment seg;
9248        int offset;
9249
9250        kvm_get_segment(vcpu, &seg, n);
9251        put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9252
9253        if (n < 3)
9254                offset = 0x7f84 + n * 12;
9255        else
9256                offset = 0x7f2c + (n - 3) * 12;
9257
9258        put_smstate(u32, buf, offset + 8, seg.base);
9259        put_smstate(u32, buf, offset + 4, seg.limit);
9260        put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9261}
9262
9263#ifdef CONFIG_X86_64
9264static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9265{
9266        struct kvm_segment seg;
9267        int offset;
9268        u16 flags;
9269
9270        kvm_get_segment(vcpu, &seg, n);
9271        offset = 0x7e00 + n * 16;
9272
9273        flags = enter_smm_get_segment_flags(&seg) >> 8;
9274        put_smstate(u16, buf, offset, seg.selector);
9275        put_smstate(u16, buf, offset + 2, flags);
9276        put_smstate(u32, buf, offset + 4, seg.limit);
9277        put_smstate(u64, buf, offset + 8, seg.base);
9278}
9279#endif
9280
9281static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9282{
9283        struct desc_ptr dt;
9284        struct kvm_segment seg;
9285        unsigned long val;
9286        int i;
9287
9288        put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9289        put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9290        put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9291        put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9292
9293        for (i = 0; i < 8; i++)
9294                put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9295
9296        kvm_get_dr(vcpu, 6, &val);
9297        put_smstate(u32, buf, 0x7fcc, (u32)val);
9298        kvm_get_dr(vcpu, 7, &val);
9299        put_smstate(u32, buf, 0x7fc8, (u32)val);
9300
9301        kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9302        put_smstate(u32, buf, 0x7fc4, seg.selector);
9303        put_smstate(u32, buf, 0x7f64, seg.base);
9304        put_smstate(u32, buf, 0x7f60, seg.limit);
9305        put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9306
9307        kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9308        put_smstate(u32, buf, 0x7fc0, seg.selector);
9309        put_smstate(u32, buf, 0x7f80, seg.base);
9310        put_smstate(u32, buf, 0x7f7c, seg.limit);
9311        put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9312
9313        static_call(kvm_x86_get_gdt)(vcpu, &dt);
9314        put_smstate(u32, buf, 0x7f74, dt.address);
9315        put_smstate(u32, buf, 0x7f70, dt.size);
9316
9317        static_call(kvm_x86_get_idt)(vcpu, &dt);
9318        put_smstate(u32, buf, 0x7f58, dt.address);
9319        put_smstate(u32, buf, 0x7f54, dt.size);
9320
9321        for (i = 0; i < 6; i++)
9322                enter_smm_save_seg_32(vcpu, buf, i);
9323
9324        put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9325
9326        /* revision id */
9327        put_smstate(u32, buf, 0x7efc, 0x00020000);
9328        put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9329}
9330
9331#ifdef CONFIG_X86_64
9332static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9333{
9334        struct desc_ptr dt;
9335        struct kvm_segment seg;
9336        unsigned long val;
9337        int i;
9338
9339        for (i = 0; i < 16; i++)
9340                put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9341
9342        put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9343        put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9344
9345        kvm_get_dr(vcpu, 6, &val);
9346        put_smstate(u64, buf, 0x7f68, val);
9347        kvm_get_dr(vcpu, 7, &val);
9348        put_smstate(u64, buf, 0x7f60, val);
9349
9350        put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9351        put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9352        put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9353
9354        put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9355
9356        /* revision id */
9357        put_smstate(u32, buf, 0x7efc, 0x00020064);
9358
9359        put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9360
9361        kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9362        put_smstate(u16, buf, 0x7e90, seg.selector);
9363        put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9364        put_smstate(u32, buf, 0x7e94, seg.limit);
9365        put_smstate(u64, buf, 0x7e98, seg.base);
9366
9367        static_call(kvm_x86_get_idt)(vcpu, &dt);
9368        put_smstate(u32, buf, 0x7e84, dt.size);
9369        put_smstate(u64, buf, 0x7e88, dt.address);
9370
9371        kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9372        put_smstate(u16, buf, 0x7e70, seg.selector);
9373        put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9374        put_smstate(u32, buf, 0x7e74, seg.limit);
9375        put_smstate(u64, buf, 0x7e78, seg.base);
9376
9377        static_call(kvm_x86_get_gdt)(vcpu, &dt);
9378        put_smstate(u32, buf, 0x7e64, dt.size);
9379        put_smstate(u64, buf, 0x7e68, dt.address);
9380
9381        for (i = 0; i < 6; i++)
9382                enter_smm_save_seg_64(vcpu, buf, i);
9383}
9384#endif
9385
9386static void enter_smm(struct kvm_vcpu *vcpu)
9387{
9388        struct kvm_segment cs, ds;
9389        struct desc_ptr dt;
9390        unsigned long cr0;
9391        char buf[512];
9392
9393        memset(buf, 0, 512);
9394#ifdef CONFIG_X86_64
9395        if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9396                enter_smm_save_state_64(vcpu, buf);
9397        else
9398#endif
9399                enter_smm_save_state_32(vcpu, buf);
9400
9401        /*
9402         * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9403         * state (e.g. leave guest mode) after we've saved the state into the
9404         * SMM state-save area.
9405         */
9406        static_call(kvm_x86_enter_smm)(vcpu, buf);
9407
9408        kvm_smm_changed(vcpu, true);
9409        kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9410
9411        if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9412                vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9413        else
9414                static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9415
9416        kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9417        kvm_rip_write(vcpu, 0x8000);
9418
9419        cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9420        static_call(kvm_x86_set_cr0)(vcpu, cr0);
9421        vcpu->arch.cr0 = cr0;
9422
9423        static_call(kvm_x86_set_cr4)(vcpu, 0);
9424
9425        /* Undocumented: IDT limit is set to zero on entry to SMM.  */
9426        dt.address = dt.size = 0;
9427        static_call(kvm_x86_set_idt)(vcpu, &dt);
9428
9429        kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9430
9431        cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9432        cs.base = vcpu->arch.smbase;
9433
9434        ds.selector = 0;
9435        ds.base = 0;
9436
9437        cs.limit    = ds.limit = 0xffffffff;
9438        cs.type     = ds.type = 0x3;
9439        cs.dpl      = ds.dpl = 0;
9440        cs.db       = ds.db = 0;
9441        cs.s        = ds.s = 1;
9442        cs.l        = ds.l = 0;
9443        cs.g        = ds.g = 1;
9444        cs.avl      = ds.avl = 0;
9445        cs.present  = ds.present = 1;
9446        cs.unusable = ds.unusable = 0;
9447        cs.padding  = ds.padding = 0;
9448
9449        kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9450        kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9451        kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9452        kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9453        kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9454        kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9455
9456#ifdef CONFIG_X86_64
9457        if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9458                static_call(kvm_x86_set_efer)(vcpu, 0);
9459#endif
9460
9461        kvm_update_cpuid_runtime(vcpu);
9462        kvm_mmu_reset_context(vcpu);
9463}
9464
9465static void process_smi(struct kvm_vcpu *vcpu)
9466{
9467        vcpu->arch.smi_pending = true;
9468        kvm_make_request(KVM_REQ_EVENT, vcpu);
9469}
9470
9471void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9472                                       unsigned long *vcpu_bitmap)
9473{
9474        kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
9475}
9476
9477void kvm_make_scan_ioapic_request(struct kvm *kvm)
9478{
9479        kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9480}
9481
9482void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9483{
9484        bool activate;
9485
9486        if (!lapic_in_kernel(vcpu))
9487                return;
9488
9489        down_read(&vcpu->kvm->arch.apicv_update_lock);
9490
9491        activate = kvm_apicv_activated(vcpu->kvm);
9492        if (vcpu->arch.apicv_active == activate)
9493                goto out;
9494
9495        vcpu->arch.apicv_active = activate;
9496        kvm_apic_update_apicv(vcpu);
9497        static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9498
9499        /*
9500         * When APICv gets disabled, we may still have injected interrupts
9501         * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9502         * still active when the interrupt got accepted. Make sure
9503         * inject_pending_event() is called to check for that.
9504         */
9505        if (!vcpu->arch.apicv_active)
9506                kvm_make_request(KVM_REQ_EVENT, vcpu);
9507
9508out:
9509        up_read(&vcpu->kvm->arch.apicv_update_lock);
9510}
9511EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9512
9513void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9514{
9515        unsigned long old, new;
9516
9517        lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
9518
9519        if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9520            !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9521                return;
9522
9523        old = new = kvm->arch.apicv_inhibit_reasons;
9524
9525        if (activate)
9526                __clear_bit(bit, &new);
9527        else
9528                __set_bit(bit, &new);
9529
9530        if (!!old != !!new) {
9531                trace_kvm_apicv_update_request(activate, bit);
9532                /*
9533                 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
9534                 * false positives in the sanity check WARN in svm_vcpu_run().
9535                 * This task will wait for all vCPUs to ack the kick IRQ before
9536                 * updating apicv_inhibit_reasons, and all other vCPUs will
9537                 * block on acquiring apicv_update_lock so that vCPUs can't
9538                 * redo svm_vcpu_run() without seeing the new inhibit state.
9539                 *
9540                 * Note, holding apicv_update_lock and taking it in the read
9541                 * side (handling the request) also prevents other vCPUs from
9542                 * servicing the request with a stale apicv_inhibit_reasons.
9543                 */
9544                kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9545                kvm->arch.apicv_inhibit_reasons = new;
9546                if (new) {
9547                        unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9548                        kvm_zap_gfn_range(kvm, gfn, gfn+1);
9549                }
9550        } else
9551                kvm->arch.apicv_inhibit_reasons = new;
9552}
9553EXPORT_SYMBOL_GPL(__kvm_request_apicv_update);
9554
9555void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9556{
9557        down_write(&kvm->arch.apicv_update_lock);
9558        __kvm_request_apicv_update(kvm, activate, bit);
9559        up_write(&kvm->arch.apicv_update_lock);
9560}
9561EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9562
9563static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9564{
9565        if (!kvm_apic_present(vcpu))
9566                return;
9567
9568        bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9569
9570        if (irqchip_split(vcpu->kvm))
9571                kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9572        else {
9573                static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9574                if (ioapic_in_kernel(vcpu->kvm))
9575                        kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9576        }
9577
9578        if (is_guest_mode(vcpu))
9579                vcpu->arch.load_eoi_exitmap_pending = true;
9580        else
9581                kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9582}
9583
9584static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9585{
9586        u64 eoi_exit_bitmap[4];
9587
9588        if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9589                return;
9590
9591        if (to_hv_vcpu(vcpu)) {
9592                bitmap_or((ulong *)eoi_exit_bitmap,
9593                          vcpu->arch.ioapic_handled_vectors,
9594                          to_hv_synic(vcpu)->vec_bitmap, 256);
9595                static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9596                return;
9597        }
9598
9599        static_call(kvm_x86_load_eoi_exitmap)(
9600                vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9601}
9602
9603void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9604                                            unsigned long start, unsigned long end)
9605{
9606        unsigned long apic_address;
9607
9608        /*
9609         * The physical address of apic access page is stored in the VMCS.
9610         * Update it when it becomes invalid.
9611         */
9612        apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9613        if (start <= apic_address && apic_address < end)
9614                kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9615}
9616
9617void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9618{
9619        if (!lapic_in_kernel(vcpu))
9620                return;
9621
9622        if (!kvm_x86_ops.set_apic_access_page_addr)
9623                return;
9624
9625        static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9626}
9627
9628void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9629{
9630        smp_send_reschedule(vcpu->cpu);
9631}
9632EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9633
9634/*
9635 * Returns 1 to let vcpu_run() continue the guest execution loop without
9636 * exiting to the userspace.  Otherwise, the value will be returned to the
9637 * userspace.
9638 */
9639static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9640{
9641        int r;
9642        bool req_int_win =
9643                dm_request_for_irq_injection(vcpu) &&
9644                kvm_cpu_accept_dm_intr(vcpu);
9645        fastpath_t exit_fastpath;
9646
9647        bool req_immediate_exit = false;
9648
9649        /* Forbid vmenter if vcpu dirty ring is soft-full */
9650        if (unlikely(vcpu->kvm->dirty_ring_size &&
9651                     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9652                vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9653                trace_kvm_dirty_ring_exit(vcpu);
9654                r = 0;
9655                goto out;
9656        }
9657
9658        if (kvm_request_pending(vcpu)) {
9659                if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
9660                        r = -EIO;
9661                        goto out;
9662                }
9663                if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9664                        if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9665                                r = 0;
9666                                goto out;
9667                        }
9668                }
9669                if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9670                        kvm_mmu_unload(vcpu);
9671                if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9672                        __kvm_migrate_timers(vcpu);
9673                if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9674                        kvm_update_masterclock(vcpu->kvm);
9675                if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9676                        kvm_gen_kvmclock_update(vcpu);
9677                if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9678                        r = kvm_guest_time_update(vcpu);
9679                        if (unlikely(r))
9680                                goto out;
9681                }
9682                if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9683                        kvm_mmu_sync_roots(vcpu);
9684                if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9685                        kvm_mmu_load_pgd(vcpu);
9686                if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9687                        kvm_vcpu_flush_tlb_all(vcpu);
9688
9689                        /* Flushing all ASIDs flushes the current ASID... */
9690                        kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9691                }
9692                kvm_service_local_tlb_flush_requests(vcpu);
9693
9694                if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9695                        vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9696                        r = 0;
9697                        goto out;
9698                }
9699                if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9700                        if (is_guest_mode(vcpu)) {
9701                                kvm_x86_ops.nested_ops->triple_fault(vcpu);
9702                        } else {
9703                                vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9704                                vcpu->mmio_needed = 0;
9705                                r = 0;
9706                                goto out;
9707                        }
9708                }
9709                if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9710                        /* Page is swapped out. Do synthetic halt */
9711                        vcpu->arch.apf.halted = true;
9712                        r = 1;
9713                        goto out;
9714                }
9715                if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9716                        record_steal_time(vcpu);
9717                if (kvm_check_request(KVM_REQ_SMI, vcpu))
9718                        process_smi(vcpu);
9719                if (kvm_check_request(KVM_REQ_NMI, vcpu))
9720                        process_nmi(vcpu);
9721                if (kvm_check_request(KVM_REQ_PMU, vcpu))
9722                        kvm_pmu_handle_event(vcpu);
9723                if (kvm_check_request(KVM_REQ_PMI, vcpu))
9724                        kvm_pmu_deliver_pmi(vcpu);
9725                if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9726                        BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9727                        if (test_bit(vcpu->arch.pending_ioapic_eoi,
9728                                     vcpu->arch.ioapic_handled_vectors)) {
9729                                vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9730                                vcpu->run->eoi.vector =
9731                                                vcpu->arch.pending_ioapic_eoi;
9732                                r = 0;
9733                                goto out;
9734                        }
9735                }
9736                if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9737                        vcpu_scan_ioapic(vcpu);
9738                if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9739                        vcpu_load_eoi_exitmap(vcpu);
9740                if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9741                        kvm_vcpu_reload_apic_access_page(vcpu);
9742                if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9743                        vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9744                        vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9745                        r = 0;
9746                        goto out;
9747                }
9748                if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9749                        vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9750                        vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9751                        r = 0;
9752                        goto out;
9753                }
9754                if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9755                        struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9756
9757                        vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9758                        vcpu->run->hyperv = hv_vcpu->exit;
9759                        r = 0;
9760                        goto out;
9761                }
9762
9763                /*
9764                 * KVM_REQ_HV_STIMER has to be processed after
9765                 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9766                 * depend on the guest clock being up-to-date
9767                 */
9768                if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9769                        kvm_hv_process_stimers(vcpu);
9770                if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9771                        kvm_vcpu_update_apicv(vcpu);
9772                if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9773                        kvm_check_async_pf_completion(vcpu);
9774                if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9775                        static_call(kvm_x86_msr_filter_changed)(vcpu);
9776
9777                if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9778                        static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9779        }
9780
9781        if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9782            kvm_xen_has_interrupt(vcpu)) {
9783                ++vcpu->stat.req_event;
9784                r = kvm_apic_accept_events(vcpu);
9785                if (r < 0) {
9786                        r = 0;
9787                        goto out;
9788                }
9789                if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9790                        r = 1;
9791                        goto out;
9792                }
9793
9794                r = inject_pending_event(vcpu, &req_immediate_exit);
9795                if (r < 0) {
9796                        r = 0;
9797                        goto out;
9798                }
9799                if (req_int_win)
9800                        static_call(kvm_x86_enable_irq_window)(vcpu);
9801
9802                if (kvm_lapic_enabled(vcpu)) {
9803                        update_cr8_intercept(vcpu);
9804                        kvm_lapic_sync_to_vapic(vcpu);
9805                }
9806        }
9807
9808        r = kvm_mmu_reload(vcpu);
9809        if (unlikely(r)) {
9810                goto cancel_injection;
9811        }
9812
9813        preempt_disable();
9814
9815        static_call(kvm_x86_prepare_guest_switch)(vcpu);
9816
9817        /*
9818         * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
9819         * IPI are then delayed after guest entry, which ensures that they
9820         * result in virtual interrupt delivery.
9821         */
9822        local_irq_disable();
9823        vcpu->mode = IN_GUEST_MODE;
9824
9825        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9826
9827        /*
9828         * 1) We should set ->mode before checking ->requests.  Please see
9829         * the comment in kvm_vcpu_exiting_guest_mode().
9830         *
9831         * 2) For APICv, we should set ->mode before checking PID.ON. This
9832         * pairs with the memory barrier implicit in pi_test_and_set_on
9833         * (see vmx_deliver_posted_interrupt).
9834         *
9835         * 3) This also orders the write to mode from any reads to the page
9836         * tables done while the VCPU is running.  Please see the comment
9837         * in kvm_flush_remote_tlbs.
9838         */
9839        smp_mb__after_srcu_read_unlock();
9840
9841        /*
9842         * This handles the case where a posted interrupt was
9843         * notified with kvm_vcpu_kick.  Assigned devices can
9844         * use the POSTED_INTR_VECTOR even if APICv is disabled,
9845         * so do it even if APICv is disabled on this vCPU.
9846         */
9847        if (kvm_lapic_enabled(vcpu))
9848                static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9849
9850        if (kvm_vcpu_exit_request(vcpu)) {
9851                vcpu->mode = OUTSIDE_GUEST_MODE;
9852                smp_wmb();
9853                local_irq_enable();
9854                preempt_enable();
9855                vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9856                r = 1;
9857                goto cancel_injection;
9858        }
9859
9860        if (req_immediate_exit) {
9861                kvm_make_request(KVM_REQ_EVENT, vcpu);
9862                static_call(kvm_x86_request_immediate_exit)(vcpu);
9863        }
9864
9865        fpregs_assert_state_consistent();
9866        if (test_thread_flag(TIF_NEED_FPU_LOAD))
9867                switch_fpu_return();
9868
9869        if (unlikely(vcpu->arch.switch_db_regs)) {
9870                set_debugreg(0, 7);
9871                set_debugreg(vcpu->arch.eff_db[0], 0);
9872                set_debugreg(vcpu->arch.eff_db[1], 1);
9873                set_debugreg(vcpu->arch.eff_db[2], 2);
9874                set_debugreg(vcpu->arch.eff_db[3], 3);
9875        } else if (unlikely(hw_breakpoint_active())) {
9876                set_debugreg(0, 7);
9877        }
9878
9879        for (;;) {
9880                /*
9881                 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
9882                 * update must kick and wait for all vCPUs before toggling the
9883                 * per-VM state, and responsing vCPUs must wait for the update
9884                 * to complete before servicing KVM_REQ_APICV_UPDATE.
9885                 */
9886                WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu));
9887
9888                exit_fastpath = static_call(kvm_x86_run)(vcpu);
9889                if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9890                        break;
9891
9892                if (kvm_lapic_enabled(vcpu))
9893                        static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9894
9895                if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9896                        exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9897                        break;
9898                }
9899        }
9900
9901        /*
9902         * Do this here before restoring debug registers on the host.  And
9903         * since we do this before handling the vmexit, a DR access vmexit
9904         * can (a) read the correct value of the debug registers, (b) set
9905         * KVM_DEBUGREG_WONT_EXIT again.
9906         */
9907        if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9908                WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9909                static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9910                kvm_update_dr0123(vcpu);
9911                kvm_update_dr7(vcpu);
9912        }
9913
9914        /*
9915         * If the guest has used debug registers, at least dr7
9916         * will be disabled while returning to the host.
9917         * If we don't have active breakpoints in the host, we don't
9918         * care about the messed up debug address registers. But if
9919         * we have some of them active, restore the old state.
9920         */
9921        if (hw_breakpoint_active())
9922                hw_breakpoint_restore();
9923
9924        vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9925        vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9926
9927        vcpu->mode = OUTSIDE_GUEST_MODE;
9928        smp_wmb();
9929
9930        static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9931
9932        /*
9933         * Consume any pending interrupts, including the possible source of
9934         * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9935         * An instruction is required after local_irq_enable() to fully unblock
9936         * interrupts on processors that implement an interrupt shadow, the
9937         * stat.exits increment will do nicely.
9938         */
9939        kvm_before_interrupt(vcpu);
9940        local_irq_enable();
9941        ++vcpu->stat.exits;
9942        local_irq_disable();
9943        kvm_after_interrupt(vcpu);
9944
9945        /*
9946         * Wait until after servicing IRQs to account guest time so that any
9947         * ticks that occurred while running the guest are properly accounted
9948         * to the guest.  Waiting until IRQs are enabled degrades the accuracy
9949         * of accounting via context tracking, but the loss of accuracy is
9950         * acceptable for all known use cases.
9951         */
9952        vtime_account_guest_exit();
9953
9954        if (lapic_in_kernel(vcpu)) {
9955                s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9956                if (delta != S64_MIN) {
9957                        trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9958                        vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9959                }
9960        }
9961
9962        local_irq_enable();
9963        preempt_enable();
9964
9965        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9966
9967        /*
9968         * Profile KVM exit RIPs:
9969         */
9970        if (unlikely(prof_on == KVM_PROFILING)) {
9971                unsigned long rip = kvm_rip_read(vcpu);
9972                profile_hit(KVM_PROFILING, (void *)rip);
9973        }
9974
9975        if (unlikely(vcpu->arch.tsc_always_catchup))
9976                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9977
9978        if (vcpu->arch.apic_attention)
9979                kvm_lapic_sync_from_vapic(vcpu);
9980
9981        r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9982        return r;
9983
9984cancel_injection:
9985        if (req_immediate_exit)
9986                kvm_make_request(KVM_REQ_EVENT, vcpu);
9987        static_call(kvm_x86_cancel_injection)(vcpu);
9988        if (unlikely(vcpu->arch.apic_attention))
9989                kvm_lapic_sync_from_vapic(vcpu);
9990out:
9991        return r;
9992}
9993
9994static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9995{
9996        if (!kvm_arch_vcpu_runnable(vcpu) &&
9997            (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9998                srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9999                kvm_vcpu_block(vcpu);
10000                vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10001
10002                if (kvm_x86_ops.post_block)
10003                        static_call(kvm_x86_post_block)(vcpu);
10004
10005                if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10006                        return 1;
10007        }
10008
10009        if (kvm_apic_accept_events(vcpu) < 0)
10010                return 0;
10011        switch(vcpu->arch.mp_state) {
10012        case KVM_MP_STATE_HALTED:
10013        case KVM_MP_STATE_AP_RESET_HOLD:
10014                vcpu->arch.pv.pv_unhalted = false;
10015                vcpu->arch.mp_state =
10016                        KVM_MP_STATE_RUNNABLE;
10017                fallthrough;
10018        case KVM_MP_STATE_RUNNABLE:
10019                vcpu->arch.apf.halted = false;
10020                break;
10021        case KVM_MP_STATE_INIT_RECEIVED:
10022                break;
10023        default:
10024                return -EINTR;
10025        }
10026        return 1;
10027}
10028
10029static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10030{
10031        if (is_guest_mode(vcpu))
10032                kvm_check_nested_events(vcpu);
10033
10034        return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10035                !vcpu->arch.apf.halted);
10036}
10037
10038static int vcpu_run(struct kvm_vcpu *vcpu)
10039{
10040        int r;
10041        struct kvm *kvm = vcpu->kvm;
10042
10043        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10044        vcpu->arch.l1tf_flush_l1d = true;
10045
10046        for (;;) {
10047                if (kvm_vcpu_running(vcpu)) {
10048                        r = vcpu_enter_guest(vcpu);
10049                } else {
10050                        r = vcpu_block(kvm, vcpu);
10051                }
10052
10053                if (r <= 0)
10054                        break;
10055
10056                kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10057                if (kvm_cpu_has_pending_timer(vcpu))
10058                        kvm_inject_pending_timer_irqs(vcpu);
10059
10060                if (dm_request_for_irq_injection(vcpu) &&
10061                        kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10062                        r = 0;
10063                        vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10064                        ++vcpu->stat.request_irq_exits;
10065                        break;
10066                }
10067
10068                if (__xfer_to_guest_mode_work_pending()) {
10069                        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10070                        r = xfer_to_guest_mode_handle_work(vcpu);
10071                        if (r)
10072                                return r;
10073                        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10074                }
10075        }
10076
10077        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10078
10079        return r;
10080}
10081
10082static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10083{
10084        int r;
10085
10086        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10087        r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10088        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
10089        return r;
10090}
10091
10092static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10093{
10094        BUG_ON(!vcpu->arch.pio.count);
10095
10096        return complete_emulated_io(vcpu);
10097}
10098
10099/*
10100 * Implements the following, as a state machine:
10101 *
10102 * read:
10103 *   for each fragment
10104 *     for each mmio piece in the fragment
10105 *       write gpa, len
10106 *       exit
10107 *       copy data
10108 *   execute insn
10109 *
10110 * write:
10111 *   for each fragment
10112 *     for each mmio piece in the fragment
10113 *       write gpa, len
10114 *       copy data
10115 *       exit
10116 */
10117static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10118{
10119        struct kvm_run *run = vcpu->run;
10120        struct kvm_mmio_fragment *frag;
10121        unsigned len;
10122
10123        BUG_ON(!vcpu->mmio_needed);
10124
10125        /* Complete previous fragment */
10126        frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10127        len = min(8u, frag->len);
10128        if (!vcpu->mmio_is_write)
10129                memcpy(frag->data, run->mmio.data, len);
10130
10131        if (frag->len <= 8) {
10132                /* Switch to the next fragment. */
10133                frag++;
10134                vcpu->mmio_cur_fragment++;
10135        } else {
10136                /* Go forward to the next mmio piece. */
10137                frag->data += len;
10138                frag->gpa += len;
10139                frag->len -= len;
10140        }
10141
10142        if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10143                vcpu->mmio_needed = 0;
10144
10145                /* FIXME: return into emulator if single-stepping.  */
10146                if (vcpu->mmio_is_write)
10147                        return 1;
10148                vcpu->mmio_read_completed = 1;
10149                return complete_emulated_io(vcpu);
10150        }
10151
10152        run->exit_reason = KVM_EXIT_MMIO;
10153        run->mmio.phys_addr = frag->gpa;
10154        if (vcpu->mmio_is_write)
10155                memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10156        run->mmio.len = min(8u, frag->len);
10157        run->mmio.is_write = vcpu->mmio_is_write;
10158        vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10159        return 0;
10160}
10161
10162/* Swap (qemu) user FPU context for the guest FPU context. */
10163static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10164{
10165        /*
10166         * Exclude PKRU from restore as restored separately in
10167         * kvm_x86_ops.run().
10168         */
10169        fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10170        trace_kvm_fpu(1);
10171}
10172
10173/* When vcpu_run ends, restore user space FPU context. */
10174static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10175{
10176        fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10177        ++vcpu->stat.fpu_reload;
10178        trace_kvm_fpu(0);
10179}
10180
10181int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10182{
10183        struct kvm_run *kvm_run = vcpu->run;
10184        int r;
10185
10186        vcpu_load(vcpu);
10187        kvm_sigset_activate(vcpu);
10188        kvm_run->flags = 0;
10189        kvm_load_guest_fpu(vcpu);
10190
10191        if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10192                if (kvm_run->immediate_exit) {
10193                        r = -EINTR;
10194                        goto out;
10195                }
10196                kvm_vcpu_block(vcpu);
10197                if (kvm_apic_accept_events(vcpu) < 0) {
10198                        r = 0;
10199                        goto out;
10200                }
10201                kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10202                r = -EAGAIN;
10203                if (signal_pending(current)) {
10204                        r = -EINTR;
10205                        kvm_run->exit_reason = KVM_EXIT_INTR;
10206                        ++vcpu->stat.signal_exits;
10207                }
10208                goto out;
10209        }
10210
10211        if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10212            (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10213                r = -EINVAL;
10214                goto out;
10215        }
10216
10217        if (kvm_run->kvm_dirty_regs) {
10218                r = sync_regs(vcpu);
10219                if (r != 0)
10220                        goto out;
10221        }
10222
10223        /* re-sync apic's tpr */
10224        if (!lapic_in_kernel(vcpu)) {
10225                if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10226                        r = -EINVAL;
10227                        goto out;
10228                }
10229        }
10230
10231        if (unlikely(vcpu->arch.complete_userspace_io)) {
10232                int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10233                vcpu->arch.complete_userspace_io = NULL;
10234                r = cui(vcpu);
10235                if (r <= 0)
10236                        goto out;
10237        } else
10238                WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10239
10240        if (kvm_run->immediate_exit)
10241                r = -EINTR;
10242        else
10243                r = vcpu_run(vcpu);
10244
10245out:
10246        kvm_put_guest_fpu(vcpu);
10247        if (kvm_run->kvm_valid_regs)
10248                store_regs(vcpu);
10249        post_kvm_run_save(vcpu);
10250        kvm_sigset_deactivate(vcpu);
10251
10252        vcpu_put(vcpu);
10253        return r;
10254}
10255
10256static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10257{
10258        if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10259                /*
10260                 * We are here if userspace calls get_regs() in the middle of
10261                 * instruction emulation. Registers state needs to be copied
10262                 * back from emulation context to vcpu. Userspace shouldn't do
10263                 * that usually, but some bad designed PV devices (vmware
10264                 * backdoor interface) need this to work
10265                 */
10266                emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10267                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10268        }
10269        regs->rax = kvm_rax_read(vcpu);
10270        regs->rbx = kvm_rbx_read(vcpu);
10271        regs->rcx = kvm_rcx_read(vcpu);
10272        regs->rdx = kvm_rdx_read(vcpu);
10273        regs->rsi = kvm_rsi_read(vcpu);
10274        regs->rdi = kvm_rdi_read(vcpu);
10275        regs->rsp = kvm_rsp_read(vcpu);
10276        regs->rbp = kvm_rbp_read(vcpu);
10277#ifdef CONFIG_X86_64
10278        regs->r8 = kvm_r8_read(vcpu);
10279        regs->r9 = kvm_r9_read(vcpu);
10280        regs->r10 = kvm_r10_read(vcpu);
10281        regs->r11 = kvm_r11_read(vcpu);
10282        regs->r12 = kvm_r12_read(vcpu);
10283        regs->r13 = kvm_r13_read(vcpu);
10284        regs->r14 = kvm_r14_read(vcpu);
10285        regs->r15 = kvm_r15_read(vcpu);
10286#endif
10287
10288        regs->rip = kvm_rip_read(vcpu);
10289        regs->rflags = kvm_get_rflags(vcpu);
10290}
10291
10292int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10293{
10294        vcpu_load(vcpu);
10295        __get_regs(vcpu, regs);
10296        vcpu_put(vcpu);
10297        return 0;
10298}
10299
10300static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10301{
10302        vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10303        vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10304
10305        kvm_rax_write(vcpu, regs->rax);
10306        kvm_rbx_write(vcpu, regs->rbx);
10307        kvm_rcx_write(vcpu, regs->rcx);
10308        kvm_rdx_write(vcpu, regs->rdx);
10309        kvm_rsi_write(vcpu, regs->rsi);
10310        kvm_rdi_write(vcpu, regs->rdi);
10311        kvm_rsp_write(vcpu, regs->rsp);
10312        kvm_rbp_write(vcpu, regs->rbp);
10313#ifdef CONFIG_X86_64
10314        kvm_r8_write(vcpu, regs->r8);
10315        kvm_r9_write(vcpu, regs->r9);
10316        kvm_r10_write(vcpu, regs->r10);
10317        kvm_r11_write(vcpu, regs->r11);
10318        kvm_r12_write(vcpu, regs->r12);
10319        kvm_r13_write(vcpu, regs->r13);
10320        kvm_r14_write(vcpu, regs->r14);
10321        kvm_r15_write(vcpu, regs->r15);
10322#endif
10323
10324        kvm_rip_write(vcpu, regs->rip);
10325        kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10326
10327        vcpu->arch.exception.pending = false;
10328
10329        kvm_make_request(KVM_REQ_EVENT, vcpu);
10330}
10331
10332int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10333{
10334        vcpu_load(vcpu);
10335        __set_regs(vcpu, regs);
10336        vcpu_put(vcpu);
10337        return 0;
10338}
10339
10340void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10341{
10342        struct kvm_segment cs;
10343
10344        kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10345        *db = cs.db;
10346        *l = cs.l;
10347}
10348EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10349
10350static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10351{
10352        struct desc_ptr dt;
10353
10354        if (vcpu->arch.guest_state_protected)
10355                goto skip_protected_regs;
10356
10357        kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10358        kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10359        kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10360        kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10361        kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10362        kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10363
10364        kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10365        kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10366
10367        static_call(kvm_x86_get_idt)(vcpu, &dt);
10368        sregs->idt.limit = dt.size;
10369        sregs->idt.base = dt.address;
10370        static_call(kvm_x86_get_gdt)(vcpu, &dt);
10371        sregs->gdt.limit = dt.size;
10372        sregs->gdt.base = dt.address;
10373
10374        sregs->cr2 = vcpu->arch.cr2;
10375        sregs->cr3 = kvm_read_cr3(vcpu);
10376
10377skip_protected_regs:
10378        sregs->cr0 = kvm_read_cr0(vcpu);
10379        sregs->cr4 = kvm_read_cr4(vcpu);
10380        sregs->cr8 = kvm_get_cr8(vcpu);
10381        sregs->efer = vcpu->arch.efer;
10382        sregs->apic_base = kvm_get_apic_base(vcpu);
10383}
10384
10385static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10386{
10387        __get_sregs_common(vcpu, sregs);
10388
10389        if (vcpu->arch.guest_state_protected)
10390                return;
10391
10392        if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10393                set_bit(vcpu->arch.interrupt.nr,
10394                        (unsigned long *)sregs->interrupt_bitmap);
10395}
10396
10397static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10398{
10399        int i;
10400
10401        __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10402
10403        if (vcpu->arch.guest_state_protected)
10404                return;
10405
10406        if (is_pae_paging(vcpu)) {
10407                for (i = 0 ; i < 4 ; i++)
10408                        sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10409                sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10410        }
10411}
10412
10413int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10414                                  struct kvm_sregs *sregs)
10415{
10416        vcpu_load(vcpu);
10417        __get_sregs(vcpu, sregs);
10418        vcpu_put(vcpu);
10419        return 0;
10420}
10421
10422int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10423                                    struct kvm_mp_state *mp_state)
10424{
10425        int r;
10426
10427        vcpu_load(vcpu);
10428        if (kvm_mpx_supported())
10429                kvm_load_guest_fpu(vcpu);
10430
10431        r = kvm_apic_accept_events(vcpu);
10432        if (r < 0)
10433                goto out;
10434        r = 0;
10435
10436        if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10437             vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10438            vcpu->arch.pv.pv_unhalted)
10439                mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10440        else
10441                mp_state->mp_state = vcpu->arch.mp_state;
10442
10443out:
10444        if (kvm_mpx_supported())
10445                kvm_put_guest_fpu(vcpu);
10446        vcpu_put(vcpu);
10447        return r;
10448}
10449
10450int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10451                                    struct kvm_mp_state *mp_state)
10452{
10453        int ret = -EINVAL;
10454
10455        vcpu_load(vcpu);
10456
10457        if (!lapic_in_kernel(vcpu) &&
10458            mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10459                goto out;
10460
10461        /*
10462         * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10463         * INIT state; latched init should be reported using
10464         * KVM_SET_VCPU_EVENTS, so reject it here.
10465         */
10466        if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10467            (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10468             mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10469                goto out;
10470
10471        if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10472                vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10473                set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10474        } else
10475                vcpu->arch.mp_state = mp_state->mp_state;
10476        kvm_make_request(KVM_REQ_EVENT, vcpu);
10477
10478        ret = 0;
10479out:
10480        vcpu_put(vcpu);
10481        return ret;
10482}
10483
10484int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10485                    int reason, bool has_error_code, u32 error_code)
10486{
10487        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10488        int ret;
10489
10490        init_emulate_ctxt(vcpu);
10491
10492        ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10493                                   has_error_code, error_code);
10494        if (ret) {
10495                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10496                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10497                vcpu->run->internal.ndata = 0;
10498                return 0;
10499        }
10500
10501        kvm_rip_write(vcpu, ctxt->eip);
10502        kvm_set_rflags(vcpu, ctxt->eflags);
10503        return 1;
10504}
10505EXPORT_SYMBOL_GPL(kvm_task_switch);
10506
10507static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10508{
10509        if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10510                /*
10511                 * When EFER.LME and CR0.PG are set, the processor is in
10512                 * 64-bit mode (though maybe in a 32-bit code segment).
10513                 * CR4.PAE and EFER.LMA must be set.
10514                 */
10515                if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10516                        return false;
10517                if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10518                        return false;
10519        } else {
10520                /*
10521                 * Not in 64-bit mode: EFER.LMA is clear and the code
10522                 * segment cannot be 64-bit.
10523                 */
10524                if (sregs->efer & EFER_LMA || sregs->cs.l)
10525                        return false;
10526        }
10527
10528        return kvm_is_valid_cr4(vcpu, sregs->cr4);
10529}
10530
10531static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10532                int *mmu_reset_needed, bool update_pdptrs)
10533{
10534        struct msr_data apic_base_msr;
10535        int idx;
10536        struct desc_ptr dt;
10537
10538        if (!kvm_is_valid_sregs(vcpu, sregs))
10539                return -EINVAL;
10540
10541        apic_base_msr.data = sregs->apic_base;
10542        apic_base_msr.host_initiated = true;
10543        if (kvm_set_apic_base(vcpu, &apic_base_msr))
10544                return -EINVAL;
10545
10546        if (vcpu->arch.guest_state_protected)
10547                return 0;
10548
10549        dt.size = sregs->idt.limit;
10550        dt.address = sregs->idt.base;
10551        static_call(kvm_x86_set_idt)(vcpu, &dt);
10552        dt.size = sregs->gdt.limit;
10553        dt.address = sregs->gdt.base;
10554        static_call(kvm_x86_set_gdt)(vcpu, &dt);
10555
10556        vcpu->arch.cr2 = sregs->cr2;
10557        *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10558        vcpu->arch.cr3 = sregs->cr3;
10559        kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
10560
10561        kvm_set_cr8(vcpu, sregs->cr8);
10562
10563        *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10564        static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10565
10566        *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10567        static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10568        vcpu->arch.cr0 = sregs->cr0;
10569
10570        *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10571        static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10572
10573        if (update_pdptrs) {
10574                idx = srcu_read_lock(&vcpu->kvm->srcu);
10575                if (is_pae_paging(vcpu)) {
10576                        load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
10577                        *mmu_reset_needed = 1;
10578                }
10579                srcu_read_unlock(&vcpu->kvm->srcu, idx);
10580        }
10581
10582        kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10583        kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10584        kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10585        kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10586        kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10587        kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10588
10589        kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10590        kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10591
10592        update_cr8_intercept(vcpu);
10593
10594        /* Older userspace won't unhalt the vcpu on reset. */
10595        if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10596            sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10597            !is_protmode(vcpu))
10598                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10599
10600        return 0;
10601}
10602
10603static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10604{
10605        int pending_vec, max_bits;
10606        int mmu_reset_needed = 0;
10607        int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10608
10609        if (ret)
10610                return ret;
10611
10612        if (mmu_reset_needed)
10613                kvm_mmu_reset_context(vcpu);
10614
10615        max_bits = KVM_NR_INTERRUPTS;
10616        pending_vec = find_first_bit(
10617                (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10618
10619        if (pending_vec < max_bits) {
10620                kvm_queue_interrupt(vcpu, pending_vec, false);
10621                pr_debug("Set back pending irq %d\n", pending_vec);
10622                kvm_make_request(KVM_REQ_EVENT, vcpu);
10623        }
10624        return 0;
10625}
10626
10627static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10628{
10629        int mmu_reset_needed = 0;
10630        bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10631        bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10632                !(sregs2->efer & EFER_LMA);
10633        int i, ret;
10634
10635        if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10636                return -EINVAL;
10637
10638        if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10639                return -EINVAL;
10640
10641        ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10642                                 &mmu_reset_needed, !valid_pdptrs);
10643        if (ret)
10644                return ret;
10645
10646        if (valid_pdptrs) {
10647                for (i = 0; i < 4 ; i++)
10648                        kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10649
10650                kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10651                mmu_reset_needed = 1;
10652                vcpu->arch.pdptrs_from_userspace = true;
10653        }
10654        if (mmu_reset_needed)
10655                kvm_mmu_reset_context(vcpu);
10656        return 0;
10657}
10658
10659int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10660                                  struct kvm_sregs *sregs)
10661{
10662        int ret;
10663
10664        vcpu_load(vcpu);
10665        ret = __set_sregs(vcpu, sregs);
10666        vcpu_put(vcpu);
10667        return ret;
10668}
10669
10670static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
10671{
10672        bool inhibit = false;
10673        struct kvm_vcpu *vcpu;
10674        int i;
10675
10676        down_write(&kvm->arch.apicv_update_lock);
10677
10678        kvm_for_each_vcpu(i, vcpu, kvm) {
10679                if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
10680                        inhibit = true;
10681                        break;
10682                }
10683        }
10684        __kvm_request_apicv_update(kvm, !inhibit, APICV_INHIBIT_REASON_BLOCKIRQ);
10685        up_write(&kvm->arch.apicv_update_lock);
10686}
10687
10688int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10689                                        struct kvm_guest_debug *dbg)
10690{
10691        unsigned long rflags;
10692        int i, r;
10693
10694        if (vcpu->arch.guest_state_protected)
10695                return -EINVAL;
10696
10697        vcpu_load(vcpu);
10698
10699        if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10700                r = -EBUSY;
10701                if (vcpu->arch.exception.pending)
10702                        goto out;
10703                if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10704                        kvm_queue_exception(vcpu, DB_VECTOR);
10705                else
10706                        kvm_queue_exception(vcpu, BP_VECTOR);
10707        }
10708
10709        /*
10710         * Read rflags as long as potentially injected trace flags are still
10711         * filtered out.
10712         */
10713        rflags = kvm_get_rflags(vcpu);
10714
10715        vcpu->guest_debug = dbg->control;
10716        if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10717                vcpu->guest_debug = 0;
10718
10719        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10720                for (i = 0; i < KVM_NR_DB_REGS; ++i)
10721                        vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10722                vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10723        } else {
10724                for (i = 0; i < KVM_NR_DB_REGS; i++)
10725                        vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10726        }
10727        kvm_update_dr7(vcpu);
10728
10729        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10730                vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10731
10732        /*
10733         * Trigger an rflags update that will inject or remove the trace
10734         * flags.
10735         */
10736        kvm_set_rflags(vcpu, rflags);
10737
10738        static_call(kvm_x86_update_exception_bitmap)(vcpu);
10739
10740        kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
10741
10742        r = 0;
10743
10744out:
10745        vcpu_put(vcpu);
10746        return r;
10747}
10748
10749/*
10750 * Translate a guest virtual address to a guest physical address.
10751 */
10752int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10753                                    struct kvm_translation *tr)
10754{
10755        unsigned long vaddr = tr->linear_address;
10756        gpa_t gpa;
10757        int idx;
10758
10759        vcpu_load(vcpu);
10760
10761        idx = srcu_read_lock(&vcpu->kvm->srcu);
10762        gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10763        srcu_read_unlock(&vcpu->kvm->srcu, idx);
10764        tr->physical_address = gpa;
10765        tr->valid = gpa != UNMAPPED_GVA;
10766        tr->writeable = 1;
10767        tr->usermode = 0;
10768
10769        vcpu_put(vcpu);
10770        return 0;
10771}
10772
10773int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10774{
10775        struct fxregs_state *fxsave;
10776
10777        if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
10778                return 0;
10779
10780        vcpu_load(vcpu);
10781
10782        fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
10783        memcpy(fpu->fpr, fxsave->st_space, 128);
10784        fpu->fcw = fxsave->cwd;
10785        fpu->fsw = fxsave->swd;
10786        fpu->ftwx = fxsave->twd;
10787        fpu->last_opcode = fxsave->fop;
10788        fpu->last_ip = fxsave->rip;
10789        fpu->last_dp = fxsave->rdp;
10790        memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10791
10792        vcpu_put(vcpu);
10793        return 0;
10794}
10795
10796int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10797{
10798        struct fxregs_state *fxsave;
10799
10800        if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
10801                return 0;
10802
10803        vcpu_load(vcpu);
10804
10805        fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
10806
10807        memcpy(fxsave->st_space, fpu->fpr, 128);
10808        fxsave->cwd = fpu->fcw;
10809        fxsave->swd = fpu->fsw;
10810        fxsave->twd = fpu->ftwx;
10811        fxsave->fop = fpu->last_opcode;
10812        fxsave->rip = fpu->last_ip;
10813        fxsave->rdp = fpu->last_dp;
10814        memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10815
10816        vcpu_put(vcpu);
10817        return 0;
10818}
10819
10820static void store_regs(struct kvm_vcpu *vcpu)
10821{
10822        BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10823
10824        if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10825                __get_regs(vcpu, &vcpu->run->s.regs.regs);
10826
10827        if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10828                __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10829
10830        if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10831                kvm_vcpu_ioctl_x86_get_vcpu_events(
10832                                vcpu, &vcpu->run->s.regs.events);
10833}
10834
10835static int sync_regs(struct kvm_vcpu *vcpu)
10836{
10837        if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10838                __set_regs(vcpu, &vcpu->run->s.regs.regs);
10839                vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10840        }
10841        if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10842                if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10843                        return -EINVAL;
10844                vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10845        }
10846        if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10847                if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10848                                vcpu, &vcpu->run->s.regs.events))
10849                        return -EINVAL;
10850                vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10851        }
10852
10853        return 0;
10854}
10855
10856int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10857{
10858        if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10859                pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10860                             "guest TSC will not be reliable\n");
10861
10862        return 0;
10863}
10864
10865int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10866{
10867        struct page *page;
10868        int r;
10869
10870        vcpu->arch.last_vmentry_cpu = -1;
10871        vcpu->arch.regs_avail = ~0;
10872        vcpu->arch.regs_dirty = ~0;
10873
10874        if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10875                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10876        else
10877                vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10878
10879        r = kvm_mmu_create(vcpu);
10880        if (r < 0)
10881                return r;
10882
10883        if (irqchip_in_kernel(vcpu->kvm)) {
10884                r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10885                if (r < 0)
10886                        goto fail_mmu_destroy;
10887                if (kvm_apicv_activated(vcpu->kvm))
10888                        vcpu->arch.apicv_active = true;
10889        } else
10890                static_branch_inc(&kvm_has_noapic_vcpu);
10891
10892        r = -ENOMEM;
10893
10894        page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10895        if (!page)
10896                goto fail_free_lapic;
10897        vcpu->arch.pio_data = page_address(page);
10898
10899        vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10900                                       GFP_KERNEL_ACCOUNT);
10901        if (!vcpu->arch.mce_banks)
10902                goto fail_free_pio_data;
10903        vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10904
10905        if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10906                                GFP_KERNEL_ACCOUNT))
10907                goto fail_free_mce_banks;
10908
10909        if (!alloc_emulate_ctxt(vcpu))
10910                goto free_wbinvd_dirty_mask;
10911
10912        if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
10913                pr_err("kvm: failed to allocate vcpu's fpu\n");
10914                goto free_emulate_ctxt;
10915        }
10916
10917        vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10918        vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10919
10920        vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10921
10922        kvm_async_pf_hash_reset(vcpu);
10923        kvm_pmu_init(vcpu);
10924
10925        vcpu->arch.pending_external_vector = -1;
10926        vcpu->arch.preempted_in_kernel = false;
10927
10928#if IS_ENABLED(CONFIG_HYPERV)
10929        vcpu->arch.hv_root_tdp = INVALID_PAGE;
10930#endif
10931
10932        r = static_call(kvm_x86_vcpu_create)(vcpu);
10933        if (r)
10934                goto free_guest_fpu;
10935
10936        vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10937        vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10938        kvm_vcpu_mtrr_init(vcpu);
10939        vcpu_load(vcpu);
10940        kvm_set_tsc_khz(vcpu, max_tsc_khz);
10941        kvm_vcpu_reset(vcpu, false);
10942        kvm_init_mmu(vcpu);
10943        vcpu_put(vcpu);
10944        return 0;
10945
10946free_guest_fpu:
10947        fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
10948free_emulate_ctxt:
10949        kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10950free_wbinvd_dirty_mask:
10951        free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10952fail_free_mce_banks:
10953        kfree(vcpu->arch.mce_banks);
10954fail_free_pio_data:
10955        free_page((unsigned long)vcpu->arch.pio_data);
10956fail_free_lapic:
10957        kvm_free_lapic(vcpu);
10958fail_mmu_destroy:
10959        kvm_mmu_destroy(vcpu);
10960        return r;
10961}
10962
10963void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10964{
10965        struct kvm *kvm = vcpu->kvm;
10966
10967        if (mutex_lock_killable(&vcpu->mutex))
10968                return;
10969        vcpu_load(vcpu);
10970        kvm_synchronize_tsc(vcpu, 0);
10971        vcpu_put(vcpu);
10972
10973        /* poll control enabled by default */
10974        vcpu->arch.msr_kvm_poll_control = 1;
10975
10976        mutex_unlock(&vcpu->mutex);
10977
10978        if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10979                schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10980                                                KVMCLOCK_SYNC_PERIOD);
10981}
10982
10983void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10984{
10985        int idx;
10986
10987        kvmclock_reset(vcpu);
10988
10989        static_call(kvm_x86_vcpu_free)(vcpu);
10990
10991        kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10992        free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10993        fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
10994
10995        kvm_hv_vcpu_uninit(vcpu);
10996        kvm_pmu_destroy(vcpu);
10997        kfree(vcpu->arch.mce_banks);
10998        kvm_free_lapic(vcpu);
10999        idx = srcu_read_lock(&vcpu->kvm->srcu);
11000        kvm_mmu_destroy(vcpu);
11001        srcu_read_unlock(&vcpu->kvm->srcu, idx);
11002        free_page((unsigned long)vcpu->arch.pio_data);
11003        kvfree(vcpu->arch.cpuid_entries);
11004        if (!lapic_in_kernel(vcpu))
11005                static_branch_dec(&kvm_has_noapic_vcpu);
11006}
11007
11008void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11009{
11010        struct kvm_cpuid_entry2 *cpuid_0x1;
11011        unsigned long old_cr0 = kvm_read_cr0(vcpu);
11012        unsigned long new_cr0;
11013
11014        /*
11015         * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11016         * to handle side effects.  RESET emulation hits those flows and relies
11017         * on emulated/virtualized registers, including those that are loaded
11018         * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11019         * to detect improper or missing initialization.
11020         */
11021        WARN_ON_ONCE(!init_event &&
11022                     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11023
11024        kvm_lapic_reset(vcpu, init_event);
11025
11026        vcpu->arch.hflags = 0;
11027
11028        vcpu->arch.smi_pending = 0;
11029        vcpu->arch.smi_count = 0;
11030        atomic_set(&vcpu->arch.nmi_queued, 0);
11031        vcpu->arch.nmi_pending = 0;
11032        vcpu->arch.nmi_injected = false;
11033        kvm_clear_interrupt_queue(vcpu);
11034        kvm_clear_exception_queue(vcpu);
11035
11036        memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11037        kvm_update_dr0123(vcpu);
11038        vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11039        vcpu->arch.dr7 = DR7_FIXED_1;
11040        kvm_update_dr7(vcpu);
11041
11042        vcpu->arch.cr2 = 0;
11043
11044        kvm_make_request(KVM_REQ_EVENT, vcpu);
11045        vcpu->arch.apf.msr_en_val = 0;
11046        vcpu->arch.apf.msr_int_val = 0;
11047        vcpu->arch.st.msr_val = 0;
11048
11049        kvmclock_reset(vcpu);
11050
11051        kvm_clear_async_pf_completion_queue(vcpu);
11052        kvm_async_pf_hash_reset(vcpu);
11053        vcpu->arch.apf.halted = false;
11054
11055        if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11056                struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11057
11058                /*
11059                 * To avoid have the INIT path from kvm_apic_has_events() that be
11060                 * called with loaded FPU and does not let userspace fix the state.
11061                 */
11062                if (init_event)
11063                        kvm_put_guest_fpu(vcpu);
11064
11065                fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11066                fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11067
11068                if (init_event)
11069                        kvm_load_guest_fpu(vcpu);
11070        }
11071
11072        if (!init_event) {
11073                kvm_pmu_reset(vcpu);
11074                vcpu->arch.smbase = 0x30000;
11075
11076                vcpu->arch.msr_misc_features_enables = 0;
11077
11078                vcpu->arch.xcr0 = XFEATURE_MASK_FP;
11079        }
11080
11081        /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11082        memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11083        kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11084
11085        /*
11086         * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11087         * if no CPUID match is found.  Note, it's impossible to get a match at
11088         * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11089         * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11090         * on RESET.  But, go through the motions in case that's ever remedied.
11091         */
11092        cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11093        kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11094
11095        vcpu->arch.ia32_xss = 0;
11096
11097        static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11098
11099        kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11100        kvm_rip_write(vcpu, 0xfff0);
11101
11102        vcpu->arch.cr3 = 0;
11103        kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11104
11105        /*
11106         * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11107         * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11108         * (or qualify) that with a footnote stating that CD/NW are preserved.
11109         */
11110        new_cr0 = X86_CR0_ET;
11111        if (init_event)
11112                new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11113        else
11114                new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11115
11116        static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11117        static_call(kvm_x86_set_cr4)(vcpu, 0);
11118        static_call(kvm_x86_set_efer)(vcpu, 0);
11119        static_call(kvm_x86_update_exception_bitmap)(vcpu);
11120
11121        /*
11122         * Reset the MMU context if paging was enabled prior to INIT (which is
11123         * implied if CR0.PG=1 as CR0 will be '0' prior to RESET).  Unlike the
11124         * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
11125         * checked because it is unconditionally cleared on INIT and all other
11126         * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
11127         * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
11128         */
11129        if (old_cr0 & X86_CR0_PG)
11130                kvm_mmu_reset_context(vcpu);
11131
11132        /*
11133         * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11134         * APM states the TLBs are untouched by INIT, but it also states that
11135         * the TLBs are flushed on "External initialization of the processor."
11136         * Flush the guest TLB regardless of vendor, there is no meaningful
11137         * benefit in relying on the guest to flush the TLB immediately after
11138         * INIT.  A spurious TLB flush is benign and likely negligible from a
11139         * performance perspective.
11140         */
11141        if (init_event)
11142                kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11143}
11144EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11145
11146void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11147{
11148        struct kvm_segment cs;
11149
11150        kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11151        cs.selector = vector << 8;
11152        cs.base = vector << 12;
11153        kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11154        kvm_rip_write(vcpu, 0);
11155}
11156EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11157
11158int kvm_arch_hardware_enable(void)
11159{
11160        struct kvm *kvm;
11161        struct kvm_vcpu *vcpu;
11162        int i;
11163        int ret;
11164        u64 local_tsc;
11165        u64 max_tsc = 0;
11166        bool stable, backwards_tsc = false;
11167
11168        kvm_user_return_msr_cpu_online();
11169        ret = static_call(kvm_x86_hardware_enable)();
11170        if (ret != 0)
11171                return ret;
11172
11173        local_tsc = rdtsc();
11174        stable = !kvm_check_tsc_unstable();
11175        list_for_each_entry(kvm, &vm_list, vm_list) {
11176                kvm_for_each_vcpu(i, vcpu, kvm) {
11177                        if (!stable && vcpu->cpu == smp_processor_id())
11178                                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11179                        if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11180                                backwards_tsc = true;
11181                                if (vcpu->arch.last_host_tsc > max_tsc)
11182                                        max_tsc = vcpu->arch.last_host_tsc;
11183                        }
11184                }
11185        }
11186
11187        /*
11188         * Sometimes, even reliable TSCs go backwards.  This happens on
11189         * platforms that reset TSC during suspend or hibernate actions, but
11190         * maintain synchronization.  We must compensate.  Fortunately, we can
11191         * detect that condition here, which happens early in CPU bringup,
11192         * before any KVM threads can be running.  Unfortunately, we can't
11193         * bring the TSCs fully up to date with real time, as we aren't yet far
11194         * enough into CPU bringup that we know how much real time has actually
11195         * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11196         * variables that haven't been updated yet.
11197         *
11198         * So we simply find the maximum observed TSC above, then record the
11199         * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11200         * the adjustment will be applied.  Note that we accumulate
11201         * adjustments, in case multiple suspend cycles happen before some VCPU
11202         * gets a chance to run again.  In the event that no KVM threads get a
11203         * chance to run, we will miss the entire elapsed period, as we'll have
11204         * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11205         * loose cycle time.  This isn't too big a deal, since the loss will be
11206         * uniform across all VCPUs (not to mention the scenario is extremely
11207         * unlikely). It is possible that a second hibernate recovery happens
11208         * much faster than a first, causing the observed TSC here to be
11209         * smaller; this would require additional padding adjustment, which is
11210         * why we set last_host_tsc to the local tsc observed here.
11211         *
11212         * N.B. - this code below runs only on platforms with reliable TSC,
11213         * as that is the only way backwards_tsc is set above.  Also note
11214         * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11215         * have the same delta_cyc adjustment applied if backwards_tsc
11216         * is detected.  Note further, this adjustment is only done once,
11217         * as we reset last_host_tsc on all VCPUs to stop this from being
11218         * called multiple times (one for each physical CPU bringup).
11219         *
11220         * Platforms with unreliable TSCs don't have to deal with this, they
11221         * will be compensated by the logic in vcpu_load, which sets the TSC to
11222         * catchup mode.  This will catchup all VCPUs to real time, but cannot
11223         * guarantee that they stay in perfect synchronization.
11224         */
11225        if (backwards_tsc) {
11226                u64 delta_cyc = max_tsc - local_tsc;
11227                list_for_each_entry(kvm, &vm_list, vm_list) {
11228                        kvm->arch.backwards_tsc_observed = true;
11229                        kvm_for_each_vcpu(i, vcpu, kvm) {
11230                                vcpu->arch.tsc_offset_adjustment += delta_cyc;
11231                                vcpu->arch.last_host_tsc = local_tsc;
11232                                kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11233                        }
11234
11235                        /*
11236                         * We have to disable TSC offset matching.. if you were
11237                         * booting a VM while issuing an S4 host suspend....
11238                         * you may have some problem.  Solving this issue is
11239                         * left as an exercise to the reader.
11240                         */
11241                        kvm->arch.last_tsc_nsec = 0;
11242                        kvm->arch.last_tsc_write = 0;
11243                }
11244
11245        }
11246        return 0;
11247}
11248
11249void kvm_arch_hardware_disable(void)
11250{
11251        static_call(kvm_x86_hardware_disable)();
11252        drop_user_return_notifiers();
11253}
11254
11255int kvm_arch_hardware_setup(void *opaque)
11256{
11257        struct kvm_x86_init_ops *ops = opaque;
11258        int r;
11259
11260        rdmsrl_safe(MSR_EFER, &host_efer);
11261
11262        if (boot_cpu_has(X86_FEATURE_XSAVES))
11263                rdmsrl(MSR_IA32_XSS, host_xss);
11264
11265        r = ops->hardware_setup();
11266        if (r != 0)
11267                return r;
11268
11269        memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11270        kvm_ops_static_call_update();
11271
11272        if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11273                supported_xss = 0;
11274
11275#define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11276        cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11277#undef __kvm_cpu_cap_has
11278
11279        if (kvm_has_tsc_control) {
11280                /*
11281                 * Make sure the user can only configure tsc_khz values that
11282                 * fit into a signed integer.
11283                 * A min value is not calculated because it will always
11284                 * be 1 on all machines.
11285                 */
11286                u64 max = min(0x7fffffffULL,
11287                              __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11288                kvm_max_guest_tsc_khz = max;
11289
11290                kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11291        }
11292
11293        kvm_init_msr_list();
11294        return 0;
11295}
11296
11297void kvm_arch_hardware_unsetup(void)
11298{
11299        static_call(kvm_x86_hardware_unsetup)();
11300}
11301
11302int kvm_arch_check_processor_compat(void *opaque)
11303{
11304        struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11305        struct kvm_x86_init_ops *ops = opaque;
11306
11307        WARN_ON(!irqs_disabled());
11308
11309        if (__cr4_reserved_bits(cpu_has, c) !=
11310            __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11311                return -EIO;
11312
11313        return ops->check_processor_compatibility();
11314}
11315
11316bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11317{
11318        return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11319}
11320EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11321
11322bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11323{
11324        return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11325}
11326
11327__read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11328EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11329
11330void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11331{
11332        struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11333
11334        vcpu->arch.l1tf_flush_l1d = true;
11335        if (pmu->version && unlikely(pmu->event_count)) {
11336                pmu->need_cleanup = true;
11337                kvm_make_request(KVM_REQ_PMU, vcpu);
11338        }
11339        static_call(kvm_x86_sched_in)(vcpu, cpu);
11340}
11341
11342void kvm_arch_free_vm(struct kvm *kvm)
11343{
11344        kfree(to_kvm_hv(kvm)->hv_pa_pg);
11345        __kvm_arch_free_vm(kvm);
11346}
11347
11348
11349int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11350{
11351        int ret;
11352        unsigned long flags;
11353
11354        if (type)
11355                return -EINVAL;
11356
11357        ret = kvm_page_track_init(kvm);
11358        if (ret)
11359                return ret;
11360
11361        INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11362        INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11363        INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11364        INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11365        INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11366        atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11367
11368        /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11369        set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11370        /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11371        set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11372                &kvm->arch.irq_sources_bitmap);
11373
11374        raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11375        mutex_init(&kvm->arch.apic_map_lock);
11376        seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
11377        kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11378
11379        raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
11380        pvclock_update_vm_gtod_copy(kvm);
11381        raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
11382
11383        kvm->arch.guest_can_read_msr_platform_info = true;
11384
11385#if IS_ENABLED(CONFIG_HYPERV)
11386        spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11387        kvm->arch.hv_root_tdp = INVALID_PAGE;
11388#endif
11389
11390        INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11391        INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11392
11393        kvm_apicv_init(kvm);
11394        kvm_hv_init_vm(kvm);
11395        kvm_mmu_init_vm(kvm);
11396        kvm_xen_init_vm(kvm);
11397
11398        return static_call(kvm_x86_vm_init)(kvm);
11399}
11400
11401int kvm_arch_post_init_vm(struct kvm *kvm)
11402{
11403        return kvm_mmu_post_init_vm(kvm);
11404}
11405
11406static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11407{
11408        vcpu_load(vcpu);
11409        kvm_mmu_unload(vcpu);
11410        vcpu_put(vcpu);
11411}
11412
11413static void kvm_free_vcpus(struct kvm *kvm)
11414{
11415        unsigned int i;
11416        struct kvm_vcpu *vcpu;
11417
11418        /*
11419         * Unpin any mmu pages first.
11420         */
11421        kvm_for_each_vcpu(i, vcpu, kvm) {
11422                kvm_clear_async_pf_completion_queue(vcpu);
11423                kvm_unload_vcpu_mmu(vcpu);
11424        }
11425        kvm_for_each_vcpu(i, vcpu, kvm)
11426                kvm_vcpu_destroy(vcpu);
11427
11428        mutex_lock(&kvm->lock);
11429        for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
11430                kvm->vcpus[i] = NULL;
11431
11432        atomic_set(&kvm->online_vcpus, 0);
11433        mutex_unlock(&kvm->lock);
11434}
11435
11436void kvm_arch_sync_events(struct kvm *kvm)
11437{
11438        cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11439        cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11440        kvm_free_pit(kvm);
11441}
11442
11443#define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
11444
11445/**
11446 * __x86_set_memory_region: Setup KVM internal memory slot
11447 *
11448 * @kvm: the kvm pointer to the VM.
11449 * @id: the slot ID to setup.
11450 * @gpa: the GPA to install the slot (unused when @size == 0).
11451 * @size: the size of the slot. Set to zero to uninstall a slot.
11452 *
11453 * This function helps to setup a KVM internal memory slot.  Specify
11454 * @size > 0 to install a new slot, while @size == 0 to uninstall a
11455 * slot.  The return code can be one of the following:
11456 *
11457 *   HVA:           on success (uninstall will return a bogus HVA)
11458 *   -errno:        on error
11459 *
11460 * The caller should always use IS_ERR() to check the return value
11461 * before use.  Note, the KVM internal memory slots are guaranteed to
11462 * remain valid and unchanged until the VM is destroyed, i.e., the
11463 * GPA->HVA translation will not change.  However, the HVA is a user
11464 * address, i.e. its accessibility is not guaranteed, and must be
11465 * accessed via __copy_{to,from}_user().
11466 */
11467void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11468                                      u32 size)
11469{
11470        int i, r;
11471        unsigned long hva, old_npages;
11472        struct kvm_memslots *slots = kvm_memslots(kvm);
11473        struct kvm_memory_slot *slot;
11474
11475        /* Called with kvm->slots_lock held.  */
11476        if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11477                return ERR_PTR_USR(-EINVAL);
11478
11479        slot = id_to_memslot(slots, id);
11480        if (size) {
11481                if (slot && slot->npages)
11482                        return ERR_PTR_USR(-EEXIST);
11483
11484                /*
11485                 * MAP_SHARED to prevent internal slot pages from being moved
11486                 * by fork()/COW.
11487                 */
11488                hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11489                              MAP_SHARED | MAP_ANONYMOUS, 0);
11490                if (IS_ERR((void *)hva))
11491                        return (void __user *)hva;
11492        } else {
11493                if (!slot || !slot->npages)
11494                        return NULL;
11495
11496                old_npages = slot->npages;
11497                hva = slot->userspace_addr;
11498        }
11499
11500        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11501                struct kvm_userspace_memory_region m;
11502
11503                m.slot = id | (i << 16);
11504                m.flags = 0;
11505                m.guest_phys_addr = gpa;
11506                m.userspace_addr = hva;
11507                m.memory_size = size;
11508                r = __kvm_set_memory_region(kvm, &m);
11509                if (r < 0)
11510                        return ERR_PTR_USR(r);
11511        }
11512
11513        if (!size)
11514                vm_munmap(hva, old_npages * PAGE_SIZE);
11515
11516        return (void __user *)hva;
11517}
11518EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11519
11520void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11521{
11522        kvm_mmu_pre_destroy_vm(kvm);
11523}
11524
11525void kvm_arch_destroy_vm(struct kvm *kvm)
11526{
11527        if (current->mm == kvm->mm) {
11528                /*
11529                 * Free memory regions allocated on behalf of userspace,
11530                 * unless the the memory map has changed due to process exit
11531                 * or fd copying.
11532                 */
11533                mutex_lock(&kvm->slots_lock);
11534                __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11535                                        0, 0);
11536                __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11537                                        0, 0);
11538                __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11539                mutex_unlock(&kvm->slots_lock);
11540        }
11541        static_call_cond(kvm_x86_vm_destroy)(kvm);
11542        kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11543        kvm_pic_destroy(kvm);
11544        kvm_ioapic_destroy(kvm);
11545        kvm_free_vcpus(kvm);
11546        kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11547        kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11548        kvm_mmu_uninit_vm(kvm);
11549        kvm_page_track_cleanup(kvm);
11550        kvm_xen_destroy_vm(kvm);
11551        kvm_hv_destroy_vm(kvm);
11552}
11553
11554static void memslot_rmap_free(struct kvm_memory_slot *slot)
11555{
11556        int i;
11557
11558        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11559                kvfree(slot->arch.rmap[i]);
11560                slot->arch.rmap[i] = NULL;
11561        }
11562}
11563
11564void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11565{
11566        int i;
11567
11568        memslot_rmap_free(slot);
11569
11570        for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11571                kvfree(slot->arch.lpage_info[i - 1]);
11572                slot->arch.lpage_info[i - 1] = NULL;
11573        }
11574
11575        kvm_page_track_free_memslot(slot);
11576}
11577
11578int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
11579{
11580        const int sz = sizeof(*slot->arch.rmap[0]);
11581        int i;
11582
11583        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11584                int level = i + 1;
11585                int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11586
11587                if (slot->arch.rmap[i])
11588                        continue;
11589
11590                slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11591                if (!slot->arch.rmap[i]) {
11592                        memslot_rmap_free(slot);
11593                        return -ENOMEM;
11594                }
11595        }
11596
11597        return 0;
11598}
11599
11600static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11601                                      struct kvm_memory_slot *slot,
11602                                      unsigned long npages)
11603{
11604        int i, r;
11605
11606        /*
11607         * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
11608         * old arrays will be freed by __kvm_set_memory_region() if installing
11609         * the new memslot is successful.
11610         */
11611        memset(&slot->arch, 0, sizeof(slot->arch));
11612
11613        if (kvm_memslots_have_rmaps(kvm)) {
11614                r = memslot_rmap_alloc(slot, npages);
11615                if (r)
11616                        return r;
11617        }
11618
11619        for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11620                struct kvm_lpage_info *linfo;
11621                unsigned long ugfn;
11622                int lpages;
11623                int level = i + 1;
11624
11625                lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11626
11627                linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11628                if (!linfo)
11629                        goto out_free;
11630
11631                slot->arch.lpage_info[i - 1] = linfo;
11632
11633                if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11634                        linfo[0].disallow_lpage = 1;
11635                if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11636                        linfo[lpages - 1].disallow_lpage = 1;
11637                ugfn = slot->userspace_addr >> PAGE_SHIFT;
11638                /*
11639                 * If the gfn and userspace address are not aligned wrt each
11640                 * other, disable large page support for this slot.
11641                 */
11642                if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11643                        unsigned long j;
11644
11645                        for (j = 0; j < lpages; ++j)
11646                                linfo[j].disallow_lpage = 1;
11647                }
11648        }
11649
11650        if (kvm_page_track_create_memslot(kvm, slot, npages))
11651                goto out_free;
11652
11653        return 0;
11654
11655out_free:
11656        memslot_rmap_free(slot);
11657
11658        for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11659                kvfree(slot->arch.lpage_info[i - 1]);
11660                slot->arch.lpage_info[i - 1] = NULL;
11661        }
11662        return -ENOMEM;
11663}
11664
11665void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11666{
11667        struct kvm_vcpu *vcpu;
11668        int i;
11669
11670        /*
11671         * memslots->generation has been incremented.
11672         * mmio generation may have reached its maximum value.
11673         */
11674        kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11675
11676        /* Force re-initialization of steal_time cache */
11677        kvm_for_each_vcpu(i, vcpu, kvm)
11678                kvm_vcpu_kick(vcpu);
11679}
11680
11681int kvm_arch_prepare_memory_region(struct kvm *kvm,
11682                                struct kvm_memory_slot *memslot,
11683                                const struct kvm_userspace_memory_region *mem,
11684                                enum kvm_mr_change change)
11685{
11686        if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11687                return kvm_alloc_memslot_metadata(kvm, memslot,
11688                                                  mem->memory_size >> PAGE_SHIFT);
11689        return 0;
11690}
11691
11692
11693static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11694{
11695        struct kvm_arch *ka = &kvm->arch;
11696
11697        if (!kvm_x86_ops.cpu_dirty_log_size)
11698                return;
11699
11700        if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11701            (!enable && --ka->cpu_dirty_logging_count == 0))
11702                kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11703
11704        WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11705}
11706
11707static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11708                                     struct kvm_memory_slot *old,
11709                                     const struct kvm_memory_slot *new,
11710                                     enum kvm_mr_change change)
11711{
11712        bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
11713
11714        /*
11715         * Update CPU dirty logging if dirty logging is being toggled.  This
11716         * applies to all operations.
11717         */
11718        if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
11719                kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11720
11721        /*
11722         * Nothing more to do for RO slots (which can't be dirtied and can't be
11723         * made writable) or CREATE/MOVE/DELETE of a slot.
11724         *
11725         * For a memslot with dirty logging disabled:
11726         * CREATE:      No dirty mappings will already exist.
11727         * MOVE/DELETE: The old mappings will already have been cleaned up by
11728         *              kvm_arch_flush_shadow_memslot()
11729         *
11730         * For a memslot with dirty logging enabled:
11731         * CREATE:      No shadow pages exist, thus nothing to write-protect
11732         *              and no dirty bits to clear.
11733         * MOVE/DELETE: The old mappings will already have been cleaned up by
11734         *              kvm_arch_flush_shadow_memslot().
11735         */
11736        if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
11737                return;
11738
11739        /*
11740         * READONLY and non-flags changes were filtered out above, and the only
11741         * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11742         * logging isn't being toggled on or off.
11743         */
11744        if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11745                return;
11746
11747        if (!log_dirty_pages) {
11748                /*
11749                 * Dirty logging tracks sptes in 4k granularity, meaning that
11750                 * large sptes have to be split.  If live migration succeeds,
11751                 * the guest in the source machine will be destroyed and large
11752                 * sptes will be created in the destination.  However, if the
11753                 * guest continues to run in the source machine (for example if
11754                 * live migration fails), small sptes will remain around and
11755                 * cause bad performance.
11756                 *
11757                 * Scan sptes if dirty logging has been stopped, dropping those
11758                 * which can be collapsed into a single large-page spte.  Later
11759                 * page faults will create the large-page sptes.
11760                 */
11761                kvm_mmu_zap_collapsible_sptes(kvm, new);
11762        } else {
11763                /*
11764                 * Initially-all-set does not require write protecting any page,
11765                 * because they're all assumed to be dirty.
11766                 */
11767                if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11768                        return;
11769
11770                if (kvm_x86_ops.cpu_dirty_log_size) {
11771                        kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11772                        kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11773                } else {
11774                        kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11775                }
11776        }
11777}
11778
11779void kvm_arch_commit_memory_region(struct kvm *kvm,
11780                                const struct kvm_userspace_memory_region *mem,
11781                                struct kvm_memory_slot *old,
11782                                const struct kvm_memory_slot *new,
11783                                enum kvm_mr_change change)
11784{
11785        if (!kvm->arch.n_requested_mmu_pages)
11786                kvm_mmu_change_mmu_pages(kvm,
11787                                kvm_mmu_calculate_default_mmu_pages(kvm));
11788
11789        kvm_mmu_slot_apply_flags(kvm, old, new, change);
11790
11791        /* Free the arrays associated with the old memslot. */
11792        if (change == KVM_MR_MOVE)
11793                kvm_arch_free_memslot(kvm, old);
11794}
11795
11796void kvm_arch_flush_shadow_all(struct kvm *kvm)
11797{
11798        kvm_mmu_zap_all(kvm);
11799}
11800
11801void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11802                                   struct kvm_memory_slot *slot)
11803{
11804        kvm_page_track_flush_slot(kvm, slot);
11805}
11806
11807static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11808{
11809        return (is_guest_mode(vcpu) &&
11810                        kvm_x86_ops.guest_apic_has_interrupt &&
11811                        static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11812}
11813
11814static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11815{
11816        if (!list_empty_careful(&vcpu->async_pf.done))
11817                return true;
11818
11819        if (kvm_apic_has_events(vcpu))
11820                return true;
11821
11822        if (vcpu->arch.pv.pv_unhalted)
11823                return true;
11824
11825        if (vcpu->arch.exception.pending)
11826                return true;
11827
11828        if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11829            (vcpu->arch.nmi_pending &&
11830             static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11831                return true;
11832
11833        if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11834            (vcpu->arch.smi_pending &&
11835             static_call(kvm_x86_smi_allowed)(vcpu, false)))
11836                return true;
11837
11838        if (kvm_arch_interrupt_allowed(vcpu) &&
11839            (kvm_cpu_has_interrupt(vcpu) ||
11840            kvm_guest_apic_has_interrupt(vcpu)))
11841                return true;
11842
11843        if (kvm_hv_has_stimer_pending(vcpu))
11844                return true;
11845
11846        if (is_guest_mode(vcpu) &&
11847            kvm_x86_ops.nested_ops->hv_timer_pending &&
11848            kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11849                return true;
11850
11851        return false;
11852}
11853
11854int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11855{
11856        return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11857}
11858
11859bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11860{
11861        if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11862                return true;
11863
11864        return false;
11865}
11866
11867bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11868{
11869        if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11870                return true;
11871
11872        if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11873                kvm_test_request(KVM_REQ_SMI, vcpu) ||
11874                 kvm_test_request(KVM_REQ_EVENT, vcpu))
11875                return true;
11876
11877        return kvm_arch_dy_has_pending_interrupt(vcpu);
11878}
11879
11880bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11881{
11882        if (vcpu->arch.guest_state_protected)
11883                return true;
11884
11885        return vcpu->arch.preempted_in_kernel;
11886}
11887
11888int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11889{
11890        return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11891}
11892
11893int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11894{
11895        return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11896}
11897
11898unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11899{
11900        /* Can't read the RIP when guest state is protected, just return 0 */
11901        if (vcpu->arch.guest_state_protected)
11902                return 0;
11903
11904        if (is_64_bit_mode(vcpu))
11905                return kvm_rip_read(vcpu);
11906        return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11907                     kvm_rip_read(vcpu));
11908}
11909EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11910
11911bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11912{
11913        return kvm_get_linear_rip(vcpu) == linear_rip;
11914}
11915EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11916
11917unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11918{
11919        unsigned long rflags;
11920
11921        rflags = static_call(kvm_x86_get_rflags)(vcpu);
11922        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11923                rflags &= ~X86_EFLAGS_TF;
11924        return rflags;
11925}
11926EXPORT_SYMBOL_GPL(kvm_get_rflags);
11927
11928static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11929{
11930        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11931            kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11932                rflags |= X86_EFLAGS_TF;
11933        static_call(kvm_x86_set_rflags)(vcpu, rflags);
11934}
11935
11936void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11937{
11938        __kvm_set_rflags(vcpu, rflags);
11939        kvm_make_request(KVM_REQ_EVENT, vcpu);
11940}
11941EXPORT_SYMBOL_GPL(kvm_set_rflags);
11942
11943void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11944{
11945        int r;
11946
11947        if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11948              work->wakeup_all)
11949                return;
11950
11951        r = kvm_mmu_reload(vcpu);
11952        if (unlikely(r))
11953                return;
11954
11955        if (!vcpu->arch.mmu->direct_map &&
11956              work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11957                return;
11958
11959        kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11960}
11961
11962static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11963{
11964        BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11965
11966        return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11967}
11968
11969static inline u32 kvm_async_pf_next_probe(u32 key)
11970{
11971        return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11972}
11973
11974static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11975{
11976        u32 key = kvm_async_pf_hash_fn(gfn);
11977
11978        while (vcpu->arch.apf.gfns[key] != ~0)
11979                key = kvm_async_pf_next_probe(key);
11980
11981        vcpu->arch.apf.gfns[key] = gfn;
11982}
11983
11984static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11985{
11986        int i;
11987        u32 key = kvm_async_pf_hash_fn(gfn);
11988
11989        for (i = 0; i < ASYNC_PF_PER_VCPU &&
11990                     (vcpu->arch.apf.gfns[key] != gfn &&
11991                      vcpu->arch.apf.gfns[key] != ~0); i++)
11992                key = kvm_async_pf_next_probe(key);
11993
11994        return key;
11995}
11996
11997bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11998{
11999        return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12000}
12001
12002static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12003{
12004        u32 i, j, k;
12005
12006        i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12007
12008        if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12009                return;
12010
12011        while (true) {
12012                vcpu->arch.apf.gfns[i] = ~0;
12013                do {
12014                        j = kvm_async_pf_next_probe(j);
12015                        if (vcpu->arch.apf.gfns[j] == ~0)
12016                                return;
12017                        k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12018                        /*
12019                         * k lies cyclically in ]i,j]
12020                         * |    i.k.j |
12021                         * |....j i.k.| or  |.k..j i...|
12022                         */
12023                } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12024                vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12025                i = j;
12026        }
12027}
12028
12029static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12030{
12031        u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12032
12033        return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12034                                      sizeof(reason));
12035}
12036
12037static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12038{
12039        unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12040
12041        return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12042                                             &token, offset, sizeof(token));
12043}
12044
12045static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12046{
12047        unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12048        u32 val;
12049
12050        if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12051                                         &val, offset, sizeof(val)))
12052                return false;
12053
12054        return !val;
12055}
12056
12057static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12058{
12059        if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
12060                return false;
12061
12062        if (!kvm_pv_async_pf_enabled(vcpu) ||
12063            (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
12064                return false;
12065
12066        return true;
12067}
12068
12069bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12070{
12071        if (unlikely(!lapic_in_kernel(vcpu) ||
12072                     kvm_event_needs_reinjection(vcpu) ||
12073                     vcpu->arch.exception.pending))
12074                return false;
12075
12076        if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12077                return false;
12078
12079        /*
12080         * If interrupts are off we cannot even use an artificial
12081         * halt state.
12082         */
12083        return kvm_arch_interrupt_allowed(vcpu);
12084}
12085
12086bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12087                                     struct kvm_async_pf *work)
12088{
12089        struct x86_exception fault;
12090
12091        trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12092        kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12093
12094        if (kvm_can_deliver_async_pf(vcpu) &&
12095            !apf_put_user_notpresent(vcpu)) {
12096                fault.vector = PF_VECTOR;
12097                fault.error_code_valid = true;
12098                fault.error_code = 0;
12099                fault.nested_page_fault = false;
12100                fault.address = work->arch.token;
12101                fault.async_page_fault = true;
12102                kvm_inject_page_fault(vcpu, &fault);
12103                return true;
12104        } else {
12105                /*
12106                 * It is not possible to deliver a paravirtualized asynchronous
12107                 * page fault, but putting the guest in an artificial halt state
12108                 * can be beneficial nevertheless: if an interrupt arrives, we
12109                 * can deliver it timely and perhaps the guest will schedule
12110                 * another process.  When the instruction that triggered a page
12111                 * fault is retried, hopefully the page will be ready in the host.
12112                 */
12113                kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12114                return false;
12115        }
12116}
12117
12118void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12119                                 struct kvm_async_pf *work)
12120{
12121        struct kvm_lapic_irq irq = {
12122                .delivery_mode = APIC_DM_FIXED,
12123                .vector = vcpu->arch.apf.vec
12124        };
12125
12126        if (work->wakeup_all)
12127                work->arch.token = ~0; /* broadcast wakeup */
12128        else
12129                kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12130        trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12131
12132        if ((work->wakeup_all || work->notpresent_injected) &&
12133            kvm_pv_async_pf_enabled(vcpu) &&
12134            !apf_put_user_ready(vcpu, work->arch.token)) {
12135                vcpu->arch.apf.pageready_pending = true;
12136                kvm_apic_set_irq(vcpu, &irq, NULL);
12137        }
12138
12139        vcpu->arch.apf.halted = false;
12140        vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12141}
12142
12143void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12144{
12145        kvm_make_request(KVM_REQ_APF_READY, vcpu);
12146        if (!vcpu->arch.apf.pageready_pending)
12147                kvm_vcpu_kick(vcpu);
12148}
12149
12150bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12151{
12152        if (!kvm_pv_async_pf_enabled(vcpu))
12153                return true;
12154        else
12155                return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12156}
12157
12158void kvm_arch_start_assignment(struct kvm *kvm)
12159{
12160        if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12161                static_call_cond(kvm_x86_start_assignment)(kvm);
12162}
12163EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12164
12165void kvm_arch_end_assignment(struct kvm *kvm)
12166{
12167        atomic_dec(&kvm->arch.assigned_device_count);
12168}
12169EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12170
12171bool kvm_arch_has_assigned_device(struct kvm *kvm)
12172{
12173        return atomic_read(&kvm->arch.assigned_device_count);
12174}
12175EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12176
12177void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12178{
12179        atomic_inc(&kvm->arch.noncoherent_dma_count);
12180}
12181EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12182
12183void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12184{
12185        atomic_dec(&kvm->arch.noncoherent_dma_count);
12186}
12187EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12188
12189bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12190{
12191        return atomic_read(&kvm->arch.noncoherent_dma_count);
12192}
12193EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12194
12195bool kvm_arch_has_irq_bypass(void)
12196{
12197        return true;
12198}
12199
12200int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12201                                      struct irq_bypass_producer *prod)
12202{
12203        struct kvm_kernel_irqfd *irqfd =
12204                container_of(cons, struct kvm_kernel_irqfd, consumer);
12205        int ret;
12206
12207        irqfd->producer = prod;
12208        kvm_arch_start_assignment(irqfd->kvm);
12209        ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12210                                         prod->irq, irqfd->gsi, 1);
12211
12212        if (ret)
12213                kvm_arch_end_assignment(irqfd->kvm);
12214
12215        return ret;
12216}
12217
12218void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12219                                      struct irq_bypass_producer *prod)
12220{
12221        int ret;
12222        struct kvm_kernel_irqfd *irqfd =
12223                container_of(cons, struct kvm_kernel_irqfd, consumer);
12224
12225        WARN_ON(irqfd->producer != prod);
12226        irqfd->producer = NULL;
12227
12228        /*
12229         * When producer of consumer is unregistered, we change back to
12230         * remapped mode, so we can re-use the current implementation
12231         * when the irq is masked/disabled or the consumer side (KVM
12232         * int this case doesn't want to receive the interrupts.
12233        */
12234        ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12235        if (ret)
12236                printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12237                       " fails: %d\n", irqfd->consumer.token, ret);
12238
12239        kvm_arch_end_assignment(irqfd->kvm);
12240}
12241
12242int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12243                                   uint32_t guest_irq, bool set)
12244{
12245        return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12246}
12247
12248bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12249                                  struct kvm_kernel_irq_routing_entry *new)
12250{
12251        if (new->type != KVM_IRQ_ROUTING_MSI)
12252                return true;
12253
12254        return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12255}
12256
12257bool kvm_vector_hashing_enabled(void)
12258{
12259        return vector_hashing;
12260}
12261
12262bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12263{
12264        return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12265}
12266EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12267
12268
12269int kvm_spec_ctrl_test_value(u64 value)
12270{
12271        /*
12272         * test that setting IA32_SPEC_CTRL to given value
12273         * is allowed by the host processor
12274         */
12275
12276        u64 saved_value;
12277        unsigned long flags;
12278        int ret = 0;
12279
12280        local_irq_save(flags);
12281
12282        if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12283                ret = 1;
12284        else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12285                ret = 1;
12286        else
12287                wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12288
12289        local_irq_restore(flags);
12290
12291        return ret;
12292}
12293EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12294
12295void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12296{
12297        struct x86_exception fault;
12298        u32 access = error_code &
12299                (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12300
12301        if (!(error_code & PFERR_PRESENT_MASK) ||
12302            vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
12303                /*
12304                 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12305                 * tables probably do not match the TLB.  Just proceed
12306                 * with the error code that the processor gave.
12307                 */
12308                fault.vector = PF_VECTOR;
12309                fault.error_code_valid = true;
12310                fault.error_code = error_code;
12311                fault.nested_page_fault = false;
12312                fault.address = gva;
12313        }
12314        vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12315}
12316EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12317
12318/*
12319 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12320 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12321 * indicates whether exit to userspace is needed.
12322 */
12323int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12324                              struct x86_exception *e)
12325{
12326        if (r == X86EMUL_PROPAGATE_FAULT) {
12327                kvm_inject_emulated_page_fault(vcpu, e);
12328                return 1;
12329        }
12330
12331        /*
12332         * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12333         * while handling a VMX instruction KVM could've handled the request
12334         * correctly by exiting to userspace and performing I/O but there
12335         * doesn't seem to be a real use-case behind such requests, just return
12336         * KVM_EXIT_INTERNAL_ERROR for now.
12337         */
12338        kvm_prepare_emulation_failure_exit(vcpu);
12339
12340        return 0;
12341}
12342EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12343
12344int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12345{
12346        bool pcid_enabled;
12347        struct x86_exception e;
12348        struct {
12349                u64 pcid;
12350                u64 gla;
12351        } operand;
12352        int r;
12353
12354        r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12355        if (r != X86EMUL_CONTINUE)
12356                return kvm_handle_memory_failure(vcpu, r, &e);
12357
12358        if (operand.pcid >> 12 != 0) {
12359                kvm_inject_gp(vcpu, 0);
12360                return 1;
12361        }
12362
12363        pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12364
12365        switch (type) {
12366        case INVPCID_TYPE_INDIV_ADDR:
12367                if ((!pcid_enabled && (operand.pcid != 0)) ||
12368                    is_noncanonical_address(operand.gla, vcpu)) {
12369                        kvm_inject_gp(vcpu, 0);
12370                        return 1;
12371                }
12372                kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12373                return kvm_skip_emulated_instruction(vcpu);
12374
12375        case INVPCID_TYPE_SINGLE_CTXT:
12376                if (!pcid_enabled && (operand.pcid != 0)) {
12377                        kvm_inject_gp(vcpu, 0);
12378                        return 1;
12379                }
12380
12381                kvm_invalidate_pcid(vcpu, operand.pcid);
12382                return kvm_skip_emulated_instruction(vcpu);
12383
12384        case INVPCID_TYPE_ALL_NON_GLOBAL:
12385                /*
12386                 * Currently, KVM doesn't mark global entries in the shadow
12387                 * page tables, so a non-global flush just degenerates to a
12388                 * global flush. If needed, we could optimize this later by
12389                 * keeping track of global entries in shadow page tables.
12390                 */
12391
12392                fallthrough;
12393        case INVPCID_TYPE_ALL_INCL_GLOBAL:
12394                kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12395                return kvm_skip_emulated_instruction(vcpu);
12396
12397        default:
12398                kvm_inject_gp(vcpu, 0);
12399                return 1;
12400        }
12401}
12402EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12403
12404static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12405{
12406        struct kvm_run *run = vcpu->run;
12407        struct kvm_mmio_fragment *frag;
12408        unsigned int len;
12409
12410        BUG_ON(!vcpu->mmio_needed);
12411
12412        /* Complete previous fragment */
12413        frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12414        len = min(8u, frag->len);
12415        if (!vcpu->mmio_is_write)
12416                memcpy(frag->data, run->mmio.data, len);
12417
12418        if (frag->len <= 8) {
12419                /* Switch to the next fragment. */
12420                frag++;
12421                vcpu->mmio_cur_fragment++;
12422        } else {
12423                /* Go forward to the next mmio piece. */
12424                frag->data += len;
12425                frag->gpa += len;
12426                frag->len -= len;
12427        }
12428
12429        if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12430                vcpu->mmio_needed = 0;
12431
12432                // VMG change, at this point, we're always done
12433                // RIP has already been advanced
12434                return 1;
12435        }
12436
12437        // More MMIO is needed
12438        run->mmio.phys_addr = frag->gpa;
12439        run->mmio.len = min(8u, frag->len);
12440        run->mmio.is_write = vcpu->mmio_is_write;
12441        if (run->mmio.is_write)
12442                memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12443        run->exit_reason = KVM_EXIT_MMIO;
12444
12445        vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12446
12447        return 0;
12448}
12449
12450int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12451                          void *data)
12452{
12453        int handled;
12454        struct kvm_mmio_fragment *frag;
12455
12456        if (!data)
12457                return -EINVAL;
12458
12459        handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12460        if (handled == bytes)
12461                return 1;
12462
12463        bytes -= handled;
12464        gpa += handled;
12465        data += handled;
12466
12467        /*TODO: Check if need to increment number of frags */
12468        frag = vcpu->mmio_fragments;
12469        vcpu->mmio_nr_fragments = 1;
12470        frag->len = bytes;
12471        frag->gpa = gpa;
12472        frag->data = data;
12473
12474        vcpu->mmio_needed = 1;
12475        vcpu->mmio_cur_fragment = 0;
12476
12477        vcpu->run->mmio.phys_addr = gpa;
12478        vcpu->run->mmio.len = min(8u, frag->len);
12479        vcpu->run->mmio.is_write = 1;
12480        memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12481        vcpu->run->exit_reason = KVM_EXIT_MMIO;
12482
12483        vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12484
12485        return 0;
12486}
12487EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12488
12489int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12490                         void *data)
12491{
12492        int handled;
12493        struct kvm_mmio_fragment *frag;
12494
12495        if (!data)
12496                return -EINVAL;
12497
12498        handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12499        if (handled == bytes)
12500                return 1;
12501
12502        bytes -= handled;
12503        gpa += handled;
12504        data += handled;
12505
12506        /*TODO: Check if need to increment number of frags */
12507        frag = vcpu->mmio_fragments;
12508        vcpu->mmio_nr_fragments = 1;
12509        frag->len = bytes;
12510        frag->gpa = gpa;
12511        frag->data = data;
12512
12513        vcpu->mmio_needed = 1;
12514        vcpu->mmio_cur_fragment = 0;
12515
12516        vcpu->run->mmio.phys_addr = gpa;
12517        vcpu->run->mmio.len = min(8u, frag->len);
12518        vcpu->run->mmio.is_write = 0;
12519        vcpu->run->exit_reason = KVM_EXIT_MMIO;
12520
12521        vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12522
12523        return 0;
12524}
12525EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12526
12527static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12528                           unsigned int port);
12529
12530static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12531{
12532        int size = vcpu->arch.pio.size;
12533        int port = vcpu->arch.pio.port;
12534
12535        vcpu->arch.pio.count = 0;
12536        if (vcpu->arch.sev_pio_count)
12537                return kvm_sev_es_outs(vcpu, size, port);
12538        return 1;
12539}
12540
12541static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12542                           unsigned int port)
12543{
12544        for (;;) {
12545                unsigned int count =
12546                        min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12547                int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12548
12549                /* memcpy done already by emulator_pio_out.  */
12550                vcpu->arch.sev_pio_count -= count;
12551                vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12552                if (!ret)
12553                        break;
12554
12555                /* Emulation done by the kernel.  */
12556                if (!vcpu->arch.sev_pio_count)
12557                        return 1;
12558        }
12559
12560        vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12561        return 0;
12562}
12563
12564static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12565                          unsigned int port);
12566
12567static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12568{
12569        unsigned count = vcpu->arch.pio.count;
12570        complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12571        vcpu->arch.sev_pio_count -= count;
12572        vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12573}
12574
12575static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12576{
12577        int size = vcpu->arch.pio.size;
12578        int port = vcpu->arch.pio.port;
12579
12580        advance_sev_es_emulated_ins(vcpu);
12581        if (vcpu->arch.sev_pio_count)
12582                return kvm_sev_es_ins(vcpu, size, port);
12583        return 1;
12584}
12585
12586static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12587                          unsigned int port)
12588{
12589        for (;;) {
12590                unsigned int count =
12591                        min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12592                if (!__emulator_pio_in(vcpu, size, port, count))
12593                        break;
12594
12595                /* Emulation done by the kernel.  */
12596                advance_sev_es_emulated_ins(vcpu);
12597                if (!vcpu->arch.sev_pio_count)
12598                        return 1;
12599        }
12600
12601        vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12602        return 0;
12603}
12604
12605int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12606                         unsigned int port, void *data,  unsigned int count,
12607                         int in)
12608{
12609        vcpu->arch.sev_pio_data = data;
12610        vcpu->arch.sev_pio_count = count;
12611        return in ? kvm_sev_es_ins(vcpu, size, port)
12612                  : kvm_sev_es_outs(vcpu, size, port);
12613}
12614EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12615
12616EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12617EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12618EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12619EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12620EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12621EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12622EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12623EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12624EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12625EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12626EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12627EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12628EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12629EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12630EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12631EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12632EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12633EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12634EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12635EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12636EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12637EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12638EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12639EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12640EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12641EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12642EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
12643