linux/drivers/ata/libata-core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  libata-core.c - helper library for ATA
   4 *
   5 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
   6 *  Copyright 2003-2004 Jeff Garzik
   7 *
   8 *  libata documentation is available via 'make {ps|pdf}docs',
   9 *  as Documentation/driver-api/libata.rst
  10 *
  11 *  Hardware documentation available from http://www.t13.org/ and
  12 *  http://www.sata-io.org/
  13 *
  14 *  Standards documents from:
  15 *      http://www.t13.org (ATA standards, PCI DMA IDE spec)
  16 *      http://www.t10.org (SCSI MMC - for ATAPI MMC)
  17 *      http://www.sata-io.org (SATA)
  18 *      http://www.compactflash.org (CF)
  19 *      http://www.qic.org (QIC157 - Tape and DSC)
  20 *      http://www.ce-ata.org (CE-ATA: not supported)
  21 *
  22 * libata is essentially a library of internal helper functions for
  23 * low-level ATA host controller drivers.  As such, the API/ABI is
  24 * likely to change as new drivers are added and updated.
  25 * Do not depend on ABI/API stability.
  26 */
  27
  28#include <linux/kernel.h>
  29#include <linux/module.h>
  30#include <linux/pci.h>
  31#include <linux/init.h>
  32#include <linux/list.h>
  33#include <linux/mm.h>
  34#include <linux/spinlock.h>
  35#include <linux/blkdev.h>
  36#include <linux/delay.h>
  37#include <linux/timer.h>
  38#include <linux/time.h>
  39#include <linux/interrupt.h>
  40#include <linux/completion.h>
  41#include <linux/suspend.h>
  42#include <linux/workqueue.h>
  43#include <linux/scatterlist.h>
  44#include <linux/io.h>
  45#include <linux/log2.h>
  46#include <linux/slab.h>
  47#include <linux/glob.h>
  48#include <scsi/scsi.h>
  49#include <scsi/scsi_cmnd.h>
  50#include <scsi/scsi_host.h>
  51#include <linux/libata.h>
  52#include <asm/byteorder.h>
  53#include <asm/unaligned.h>
  54#include <linux/cdrom.h>
  55#include <linux/ratelimit.h>
  56#include <linux/leds.h>
  57#include <linux/pm_runtime.h>
  58#include <linux/platform_device.h>
  59#include <asm/setup.h>
  60
  61#define CREATE_TRACE_POINTS
  62#include <trace/events/libata.h>
  63
  64#include "libata.h"
  65#include "libata-transport.h"
  66
  67const struct ata_port_operations ata_base_port_ops = {
  68        .prereset               = ata_std_prereset,
  69        .postreset              = ata_std_postreset,
  70        .error_handler          = ata_std_error_handler,
  71        .sched_eh               = ata_std_sched_eh,
  72        .end_eh                 = ata_std_end_eh,
  73};
  74
  75const struct ata_port_operations sata_port_ops = {
  76        .inherits               = &ata_base_port_ops,
  77
  78        .qc_defer               = ata_std_qc_defer,
  79        .hardreset              = sata_std_hardreset,
  80};
  81EXPORT_SYMBOL_GPL(sata_port_ops);
  82
  83static unsigned int ata_dev_init_params(struct ata_device *dev,
  84                                        u16 heads, u16 sectors);
  85static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
  86static void ata_dev_xfermask(struct ata_device *dev);
  87static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
  88
  89atomic_t ata_print_id = ATOMIC_INIT(0);
  90
  91#ifdef CONFIG_ATA_FORCE
  92struct ata_force_param {
  93        const char      *name;
  94        u8              cbl;
  95        u8              spd_limit;
  96        unsigned long   xfer_mask;
  97        unsigned int    horkage_on;
  98        unsigned int    horkage_off;
  99        u16             lflags;
 100};
 101
 102struct ata_force_ent {
 103        int                     port;
 104        int                     device;
 105        struct ata_force_param  param;
 106};
 107
 108static struct ata_force_ent *ata_force_tbl;
 109static int ata_force_tbl_size;
 110
 111static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
 112/* param_buf is thrown away after initialization, disallow read */
 113module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
 114MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
 115#endif
 116
 117static int atapi_enabled = 1;
 118module_param(atapi_enabled, int, 0444);
 119MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
 120
 121static int atapi_dmadir = 0;
 122module_param(atapi_dmadir, int, 0444);
 123MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
 124
 125int atapi_passthru16 = 1;
 126module_param(atapi_passthru16, int, 0444);
 127MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
 128
 129int libata_fua = 0;
 130module_param_named(fua, libata_fua, int, 0444);
 131MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
 132
 133static int ata_ignore_hpa;
 134module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
 135MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
 136
 137static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
 138module_param_named(dma, libata_dma_mask, int, 0444);
 139MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
 140
 141static int ata_probe_timeout;
 142module_param(ata_probe_timeout, int, 0444);
 143MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 144
 145int libata_noacpi = 0;
 146module_param_named(noacpi, libata_noacpi, int, 0444);
 147MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
 148
 149int libata_allow_tpm = 0;
 150module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
 151MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
 152
 153static int atapi_an;
 154module_param(atapi_an, int, 0444);
 155MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
 156
 157MODULE_AUTHOR("Jeff Garzik");
 158MODULE_DESCRIPTION("Library module for ATA devices");
 159MODULE_LICENSE("GPL");
 160MODULE_VERSION(DRV_VERSION);
 161
 162static inline bool ata_dev_print_info(struct ata_device *dev)
 163{
 164        struct ata_eh_context *ehc = &dev->link->eh_context;
 165
 166        return ehc->i.flags & ATA_EHI_PRINTINFO;
 167}
 168
 169static bool ata_sstatus_online(u32 sstatus)
 170{
 171        return (sstatus & 0xf) == 0x3;
 172}
 173
 174/**
 175 *      ata_link_next - link iteration helper
 176 *      @link: the previous link, NULL to start
 177 *      @ap: ATA port containing links to iterate
 178 *      @mode: iteration mode, one of ATA_LITER_*
 179 *
 180 *      LOCKING:
 181 *      Host lock or EH context.
 182 *
 183 *      RETURNS:
 184 *      Pointer to the next link.
 185 */
 186struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
 187                               enum ata_link_iter_mode mode)
 188{
 189        BUG_ON(mode != ATA_LITER_EDGE &&
 190               mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
 191
 192        /* NULL link indicates start of iteration */
 193        if (!link)
 194                switch (mode) {
 195                case ATA_LITER_EDGE:
 196                case ATA_LITER_PMP_FIRST:
 197                        if (sata_pmp_attached(ap))
 198                                return ap->pmp_link;
 199                        fallthrough;
 200                case ATA_LITER_HOST_FIRST:
 201                        return &ap->link;
 202                }
 203
 204        /* we just iterated over the host link, what's next? */
 205        if (link == &ap->link)
 206                switch (mode) {
 207                case ATA_LITER_HOST_FIRST:
 208                        if (sata_pmp_attached(ap))
 209                                return ap->pmp_link;
 210                        fallthrough;
 211                case ATA_LITER_PMP_FIRST:
 212                        if (unlikely(ap->slave_link))
 213                                return ap->slave_link;
 214                        fallthrough;
 215                case ATA_LITER_EDGE:
 216                        return NULL;
 217                }
 218
 219        /* slave_link excludes PMP */
 220        if (unlikely(link == ap->slave_link))
 221                return NULL;
 222
 223        /* we were over a PMP link */
 224        if (++link < ap->pmp_link + ap->nr_pmp_links)
 225                return link;
 226
 227        if (mode == ATA_LITER_PMP_FIRST)
 228                return &ap->link;
 229
 230        return NULL;
 231}
 232EXPORT_SYMBOL_GPL(ata_link_next);
 233
 234/**
 235 *      ata_dev_next - device iteration helper
 236 *      @dev: the previous device, NULL to start
 237 *      @link: ATA link containing devices to iterate
 238 *      @mode: iteration mode, one of ATA_DITER_*
 239 *
 240 *      LOCKING:
 241 *      Host lock or EH context.
 242 *
 243 *      RETURNS:
 244 *      Pointer to the next device.
 245 */
 246struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
 247                                enum ata_dev_iter_mode mode)
 248{
 249        BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
 250               mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
 251
 252        /* NULL dev indicates start of iteration */
 253        if (!dev)
 254                switch (mode) {
 255                case ATA_DITER_ENABLED:
 256                case ATA_DITER_ALL:
 257                        dev = link->device;
 258                        goto check;
 259                case ATA_DITER_ENABLED_REVERSE:
 260                case ATA_DITER_ALL_REVERSE:
 261                        dev = link->device + ata_link_max_devices(link) - 1;
 262                        goto check;
 263                }
 264
 265 next:
 266        /* move to the next one */
 267        switch (mode) {
 268        case ATA_DITER_ENABLED:
 269        case ATA_DITER_ALL:
 270                if (++dev < link->device + ata_link_max_devices(link))
 271                        goto check;
 272                return NULL;
 273        case ATA_DITER_ENABLED_REVERSE:
 274        case ATA_DITER_ALL_REVERSE:
 275                if (--dev >= link->device)
 276                        goto check;
 277                return NULL;
 278        }
 279
 280 check:
 281        if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
 282            !ata_dev_enabled(dev))
 283                goto next;
 284        return dev;
 285}
 286EXPORT_SYMBOL_GPL(ata_dev_next);
 287
 288/**
 289 *      ata_dev_phys_link - find physical link for a device
 290 *      @dev: ATA device to look up physical link for
 291 *
 292 *      Look up physical link which @dev is attached to.  Note that
 293 *      this is different from @dev->link only when @dev is on slave
 294 *      link.  For all other cases, it's the same as @dev->link.
 295 *
 296 *      LOCKING:
 297 *      Don't care.
 298 *
 299 *      RETURNS:
 300 *      Pointer to the found physical link.
 301 */
 302struct ata_link *ata_dev_phys_link(struct ata_device *dev)
 303{
 304        struct ata_port *ap = dev->link->ap;
 305
 306        if (!ap->slave_link)
 307                return dev->link;
 308        if (!dev->devno)
 309                return &ap->link;
 310        return ap->slave_link;
 311}
 312
 313#ifdef CONFIG_ATA_FORCE
 314/**
 315 *      ata_force_cbl - force cable type according to libata.force
 316 *      @ap: ATA port of interest
 317 *
 318 *      Force cable type according to libata.force and whine about it.
 319 *      The last entry which has matching port number is used, so it
 320 *      can be specified as part of device force parameters.  For
 321 *      example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
 322 *      same effect.
 323 *
 324 *      LOCKING:
 325 *      EH context.
 326 */
 327void ata_force_cbl(struct ata_port *ap)
 328{
 329        int i;
 330
 331        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 332                const struct ata_force_ent *fe = &ata_force_tbl[i];
 333
 334                if (fe->port != -1 && fe->port != ap->print_id)
 335                        continue;
 336
 337                if (fe->param.cbl == ATA_CBL_NONE)
 338                        continue;
 339
 340                ap->cbl = fe->param.cbl;
 341                ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
 342                return;
 343        }
 344}
 345
 346/**
 347 *      ata_force_link_limits - force link limits according to libata.force
 348 *      @link: ATA link of interest
 349 *
 350 *      Force link flags and SATA spd limit according to libata.force
 351 *      and whine about it.  When only the port part is specified
 352 *      (e.g. 1:), the limit applies to all links connected to both
 353 *      the host link and all fan-out ports connected via PMP.  If the
 354 *      device part is specified as 0 (e.g. 1.00:), it specifies the
 355 *      first fan-out link not the host link.  Device number 15 always
 356 *      points to the host link whether PMP is attached or not.  If the
 357 *      controller has slave link, device number 16 points to it.
 358 *
 359 *      LOCKING:
 360 *      EH context.
 361 */
 362static void ata_force_link_limits(struct ata_link *link)
 363{
 364        bool did_spd = false;
 365        int linkno = link->pmp;
 366        int i;
 367
 368        if (ata_is_host_link(link))
 369                linkno += 15;
 370
 371        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 372                const struct ata_force_ent *fe = &ata_force_tbl[i];
 373
 374                if (fe->port != -1 && fe->port != link->ap->print_id)
 375                        continue;
 376
 377                if (fe->device != -1 && fe->device != linkno)
 378                        continue;
 379
 380                /* only honor the first spd limit */
 381                if (!did_spd && fe->param.spd_limit) {
 382                        link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
 383                        ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
 384                                        fe->param.name);
 385                        did_spd = true;
 386                }
 387
 388                /* let lflags stack */
 389                if (fe->param.lflags) {
 390                        link->flags |= fe->param.lflags;
 391                        ata_link_notice(link,
 392                                        "FORCE: link flag 0x%x forced -> 0x%x\n",
 393                                        fe->param.lflags, link->flags);
 394                }
 395        }
 396}
 397
 398/**
 399 *      ata_force_xfermask - force xfermask according to libata.force
 400 *      @dev: ATA device of interest
 401 *
 402 *      Force xfer_mask according to libata.force and whine about it.
 403 *      For consistency with link selection, device number 15 selects
 404 *      the first device connected to the host link.
 405 *
 406 *      LOCKING:
 407 *      EH context.
 408 */
 409static void ata_force_xfermask(struct ata_device *dev)
 410{
 411        int devno = dev->link->pmp + dev->devno;
 412        int alt_devno = devno;
 413        int i;
 414
 415        /* allow n.15/16 for devices attached to host port */
 416        if (ata_is_host_link(dev->link))
 417                alt_devno += 15;
 418
 419        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 420                const struct ata_force_ent *fe = &ata_force_tbl[i];
 421                unsigned long pio_mask, mwdma_mask, udma_mask;
 422
 423                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 424                        continue;
 425
 426                if (fe->device != -1 && fe->device != devno &&
 427                    fe->device != alt_devno)
 428                        continue;
 429
 430                if (!fe->param.xfer_mask)
 431                        continue;
 432
 433                ata_unpack_xfermask(fe->param.xfer_mask,
 434                                    &pio_mask, &mwdma_mask, &udma_mask);
 435                if (udma_mask)
 436                        dev->udma_mask = udma_mask;
 437                else if (mwdma_mask) {
 438                        dev->udma_mask = 0;
 439                        dev->mwdma_mask = mwdma_mask;
 440                } else {
 441                        dev->udma_mask = 0;
 442                        dev->mwdma_mask = 0;
 443                        dev->pio_mask = pio_mask;
 444                }
 445
 446                ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
 447                               fe->param.name);
 448                return;
 449        }
 450}
 451
 452/**
 453 *      ata_force_horkage - force horkage according to libata.force
 454 *      @dev: ATA device of interest
 455 *
 456 *      Force horkage according to libata.force and whine about it.
 457 *      For consistency with link selection, device number 15 selects
 458 *      the first device connected to the host link.
 459 *
 460 *      LOCKING:
 461 *      EH context.
 462 */
 463static void ata_force_horkage(struct ata_device *dev)
 464{
 465        int devno = dev->link->pmp + dev->devno;
 466        int alt_devno = devno;
 467        int i;
 468
 469        /* allow n.15/16 for devices attached to host port */
 470        if (ata_is_host_link(dev->link))
 471                alt_devno += 15;
 472
 473        for (i = 0; i < ata_force_tbl_size; i++) {
 474                const struct ata_force_ent *fe = &ata_force_tbl[i];
 475
 476                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 477                        continue;
 478
 479                if (fe->device != -1 && fe->device != devno &&
 480                    fe->device != alt_devno)
 481                        continue;
 482
 483                if (!(~dev->horkage & fe->param.horkage_on) &&
 484                    !(dev->horkage & fe->param.horkage_off))
 485                        continue;
 486
 487                dev->horkage |= fe->param.horkage_on;
 488                dev->horkage &= ~fe->param.horkage_off;
 489
 490                ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
 491                               fe->param.name);
 492        }
 493}
 494#else
 495static inline void ata_force_link_limits(struct ata_link *link) { }
 496static inline void ata_force_xfermask(struct ata_device *dev) { }
 497static inline void ata_force_horkage(struct ata_device *dev) { }
 498#endif
 499
 500/**
 501 *      atapi_cmd_type - Determine ATAPI command type from SCSI opcode
 502 *      @opcode: SCSI opcode
 503 *
 504 *      Determine ATAPI command type from @opcode.
 505 *
 506 *      LOCKING:
 507 *      None.
 508 *
 509 *      RETURNS:
 510 *      ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
 511 */
 512int atapi_cmd_type(u8 opcode)
 513{
 514        switch (opcode) {
 515        case GPCMD_READ_10:
 516        case GPCMD_READ_12:
 517                return ATAPI_READ;
 518
 519        case GPCMD_WRITE_10:
 520        case GPCMD_WRITE_12:
 521        case GPCMD_WRITE_AND_VERIFY_10:
 522                return ATAPI_WRITE;
 523
 524        case GPCMD_READ_CD:
 525        case GPCMD_READ_CD_MSF:
 526                return ATAPI_READ_CD;
 527
 528        case ATA_16:
 529        case ATA_12:
 530                if (atapi_passthru16)
 531                        return ATAPI_PASS_THRU;
 532                fallthrough;
 533        default:
 534                return ATAPI_MISC;
 535        }
 536}
 537EXPORT_SYMBOL_GPL(atapi_cmd_type);
 538
 539static const u8 ata_rw_cmds[] = {
 540        /* pio multi */
 541        ATA_CMD_READ_MULTI,
 542        ATA_CMD_WRITE_MULTI,
 543        ATA_CMD_READ_MULTI_EXT,
 544        ATA_CMD_WRITE_MULTI_EXT,
 545        0,
 546        0,
 547        0,
 548        ATA_CMD_WRITE_MULTI_FUA_EXT,
 549        /* pio */
 550        ATA_CMD_PIO_READ,
 551        ATA_CMD_PIO_WRITE,
 552        ATA_CMD_PIO_READ_EXT,
 553        ATA_CMD_PIO_WRITE_EXT,
 554        0,
 555        0,
 556        0,
 557        0,
 558        /* dma */
 559        ATA_CMD_READ,
 560        ATA_CMD_WRITE,
 561        ATA_CMD_READ_EXT,
 562        ATA_CMD_WRITE_EXT,
 563        0,
 564        0,
 565        0,
 566        ATA_CMD_WRITE_FUA_EXT
 567};
 568
 569/**
 570 *      ata_rwcmd_protocol - set taskfile r/w commands and protocol
 571 *      @tf: command to examine and configure
 572 *      @dev: device tf belongs to
 573 *
 574 *      Examine the device configuration and tf->flags to calculate
 575 *      the proper read/write commands and protocol to use.
 576 *
 577 *      LOCKING:
 578 *      caller.
 579 */
 580static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
 581{
 582        u8 cmd;
 583
 584        int index, fua, lba48, write;
 585
 586        fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 587        lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 588        write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 589
 590        if (dev->flags & ATA_DFLAG_PIO) {
 591                tf->protocol = ATA_PROT_PIO;
 592                index = dev->multi_count ? 0 : 8;
 593        } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
 594                /* Unable to use DMA due to host limitation */
 595                tf->protocol = ATA_PROT_PIO;
 596                index = dev->multi_count ? 0 : 8;
 597        } else {
 598                tf->protocol = ATA_PROT_DMA;
 599                index = 16;
 600        }
 601
 602        cmd = ata_rw_cmds[index + fua + lba48 + write];
 603        if (cmd) {
 604                tf->command = cmd;
 605                return 0;
 606        }
 607        return -1;
 608}
 609
 610/**
 611 *      ata_tf_read_block - Read block address from ATA taskfile
 612 *      @tf: ATA taskfile of interest
 613 *      @dev: ATA device @tf belongs to
 614 *
 615 *      LOCKING:
 616 *      None.
 617 *
 618 *      Read block address from @tf.  This function can handle all
 619 *      three address formats - LBA, LBA48 and CHS.  tf->protocol and
 620 *      flags select the address format to use.
 621 *
 622 *      RETURNS:
 623 *      Block address read from @tf.
 624 */
 625u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
 626{
 627        u64 block = 0;
 628
 629        if (tf->flags & ATA_TFLAG_LBA) {
 630                if (tf->flags & ATA_TFLAG_LBA48) {
 631                        block |= (u64)tf->hob_lbah << 40;
 632                        block |= (u64)tf->hob_lbam << 32;
 633                        block |= (u64)tf->hob_lbal << 24;
 634                } else
 635                        block |= (tf->device & 0xf) << 24;
 636
 637                block |= tf->lbah << 16;
 638                block |= tf->lbam << 8;
 639                block |= tf->lbal;
 640        } else {
 641                u32 cyl, head, sect;
 642
 643                cyl = tf->lbam | (tf->lbah << 8);
 644                head = tf->device & 0xf;
 645                sect = tf->lbal;
 646
 647                if (!sect) {
 648                        ata_dev_warn(dev,
 649                                     "device reported invalid CHS sector 0\n");
 650                        return U64_MAX;
 651                }
 652
 653                block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
 654        }
 655
 656        return block;
 657}
 658
 659/**
 660 *      ata_build_rw_tf - Build ATA taskfile for given read/write request
 661 *      @tf: Target ATA taskfile
 662 *      @dev: ATA device @tf belongs to
 663 *      @block: Block address
 664 *      @n_block: Number of blocks
 665 *      @tf_flags: RW/FUA etc...
 666 *      @tag: tag
 667 *      @class: IO priority class
 668 *
 669 *      LOCKING:
 670 *      None.
 671 *
 672 *      Build ATA taskfile @tf for read/write request described by
 673 *      @block, @n_block, @tf_flags and @tag on @dev.
 674 *
 675 *      RETURNS:
 676 *
 677 *      0 on success, -ERANGE if the request is too large for @dev,
 678 *      -EINVAL if the request is invalid.
 679 */
 680int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
 681                    u64 block, u32 n_block, unsigned int tf_flags,
 682                    unsigned int tag, int class)
 683{
 684        tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 685        tf->flags |= tf_flags;
 686
 687        if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
 688                /* yay, NCQ */
 689                if (!lba_48_ok(block, n_block))
 690                        return -ERANGE;
 691
 692                tf->protocol = ATA_PROT_NCQ;
 693                tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
 694
 695                if (tf->flags & ATA_TFLAG_WRITE)
 696                        tf->command = ATA_CMD_FPDMA_WRITE;
 697                else
 698                        tf->command = ATA_CMD_FPDMA_READ;
 699
 700                tf->nsect = tag << 3;
 701                tf->hob_feature = (n_block >> 8) & 0xff;
 702                tf->feature = n_block & 0xff;
 703
 704                tf->hob_lbah = (block >> 40) & 0xff;
 705                tf->hob_lbam = (block >> 32) & 0xff;
 706                tf->hob_lbal = (block >> 24) & 0xff;
 707                tf->lbah = (block >> 16) & 0xff;
 708                tf->lbam = (block >> 8) & 0xff;
 709                tf->lbal = block & 0xff;
 710
 711                tf->device = ATA_LBA;
 712                if (tf->flags & ATA_TFLAG_FUA)
 713                        tf->device |= 1 << 7;
 714
 715                if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE &&
 716                    class == IOPRIO_CLASS_RT)
 717                        tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
 718        } else if (dev->flags & ATA_DFLAG_LBA) {
 719                tf->flags |= ATA_TFLAG_LBA;
 720
 721                if (lba_28_ok(block, n_block)) {
 722                        /* use LBA28 */
 723                        tf->device |= (block >> 24) & 0xf;
 724                } else if (lba_48_ok(block, n_block)) {
 725                        if (!(dev->flags & ATA_DFLAG_LBA48))
 726                                return -ERANGE;
 727
 728                        /* use LBA48 */
 729                        tf->flags |= ATA_TFLAG_LBA48;
 730
 731                        tf->hob_nsect = (n_block >> 8) & 0xff;
 732
 733                        tf->hob_lbah = (block >> 40) & 0xff;
 734                        tf->hob_lbam = (block >> 32) & 0xff;
 735                        tf->hob_lbal = (block >> 24) & 0xff;
 736                } else
 737                        /* request too large even for LBA48 */
 738                        return -ERANGE;
 739
 740                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 741                        return -EINVAL;
 742
 743                tf->nsect = n_block & 0xff;
 744
 745                tf->lbah = (block >> 16) & 0xff;
 746                tf->lbam = (block >> 8) & 0xff;
 747                tf->lbal = block & 0xff;
 748
 749                tf->device |= ATA_LBA;
 750        } else {
 751                /* CHS */
 752                u32 sect, head, cyl, track;
 753
 754                /* The request -may- be too large for CHS addressing. */
 755                if (!lba_28_ok(block, n_block))
 756                        return -ERANGE;
 757
 758                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 759                        return -EINVAL;
 760
 761                /* Convert LBA to CHS */
 762                track = (u32)block / dev->sectors;
 763                cyl   = track / dev->heads;
 764                head  = track % dev->heads;
 765                sect  = (u32)block % dev->sectors + 1;
 766
 767                DPRINTK("block %u track %u cyl %u head %u sect %u\n",
 768                        (u32)block, track, cyl, head, sect);
 769
 770                /* Check whether the converted CHS can fit.
 771                   Cylinder: 0-65535
 772                   Head: 0-15
 773                   Sector: 1-255*/
 774                if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
 775                        return -ERANGE;
 776
 777                tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
 778                tf->lbal = sect;
 779                tf->lbam = cyl;
 780                tf->lbah = cyl >> 8;
 781                tf->device |= head;
 782        }
 783
 784        return 0;
 785}
 786
 787/**
 788 *      ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 789 *      @pio_mask: pio_mask
 790 *      @mwdma_mask: mwdma_mask
 791 *      @udma_mask: udma_mask
 792 *
 793 *      Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 794 *      unsigned int xfer_mask.
 795 *
 796 *      LOCKING:
 797 *      None.
 798 *
 799 *      RETURNS:
 800 *      Packed xfer_mask.
 801 */
 802unsigned long ata_pack_xfermask(unsigned long pio_mask,
 803                                unsigned long mwdma_mask,
 804                                unsigned long udma_mask)
 805{
 806        return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 807                ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 808                ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 809}
 810EXPORT_SYMBOL_GPL(ata_pack_xfermask);
 811
 812/**
 813 *      ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 814 *      @xfer_mask: xfer_mask to unpack
 815 *      @pio_mask: resulting pio_mask
 816 *      @mwdma_mask: resulting mwdma_mask
 817 *      @udma_mask: resulting udma_mask
 818 *
 819 *      Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 820 *      Any NULL destination masks will be ignored.
 821 */
 822void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
 823                         unsigned long *mwdma_mask, unsigned long *udma_mask)
 824{
 825        if (pio_mask)
 826                *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 827        if (mwdma_mask)
 828                *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 829        if (udma_mask)
 830                *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 831}
 832
 833static const struct ata_xfer_ent {
 834        int shift, bits;
 835        u8 base;
 836} ata_xfer_tbl[] = {
 837        { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
 838        { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
 839        { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
 840        { -1, },
 841};
 842
 843/**
 844 *      ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 845 *      @xfer_mask: xfer_mask of interest
 846 *
 847 *      Return matching XFER_* value for @xfer_mask.  Only the highest
 848 *      bit of @xfer_mask is considered.
 849 *
 850 *      LOCKING:
 851 *      None.
 852 *
 853 *      RETURNS:
 854 *      Matching XFER_* value, 0xff if no match found.
 855 */
 856u8 ata_xfer_mask2mode(unsigned long xfer_mask)
 857{
 858        int highbit = fls(xfer_mask) - 1;
 859        const struct ata_xfer_ent *ent;
 860
 861        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 862                if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 863                        return ent->base + highbit - ent->shift;
 864        return 0xff;
 865}
 866EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
 867
 868/**
 869 *      ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 870 *      @xfer_mode: XFER_* of interest
 871 *
 872 *      Return matching xfer_mask for @xfer_mode.
 873 *
 874 *      LOCKING:
 875 *      None.
 876 *
 877 *      RETURNS:
 878 *      Matching xfer_mask, 0 if no match found.
 879 */
 880unsigned long ata_xfer_mode2mask(u8 xfer_mode)
 881{
 882        const struct ata_xfer_ent *ent;
 883
 884        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 885                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 886                        return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
 887                                & ~((1 << ent->shift) - 1);
 888        return 0;
 889}
 890EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
 891
 892/**
 893 *      ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 894 *      @xfer_mode: XFER_* of interest
 895 *
 896 *      Return matching xfer_shift for @xfer_mode.
 897 *
 898 *      LOCKING:
 899 *      None.
 900 *
 901 *      RETURNS:
 902 *      Matching xfer_shift, -1 if no match found.
 903 */
 904int ata_xfer_mode2shift(unsigned long xfer_mode)
 905{
 906        const struct ata_xfer_ent *ent;
 907
 908        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 909                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 910                        return ent->shift;
 911        return -1;
 912}
 913EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
 914
 915/**
 916 *      ata_mode_string - convert xfer_mask to string
 917 *      @xfer_mask: mask of bits supported; only highest bit counts.
 918 *
 919 *      Determine string which represents the highest speed
 920 *      (highest bit in @modemask).
 921 *
 922 *      LOCKING:
 923 *      None.
 924 *
 925 *      RETURNS:
 926 *      Constant C string representing highest speed listed in
 927 *      @mode_mask, or the constant C string "<n/a>".
 928 */
 929const char *ata_mode_string(unsigned long xfer_mask)
 930{
 931        static const char * const xfer_mode_str[] = {
 932                "PIO0",
 933                "PIO1",
 934                "PIO2",
 935                "PIO3",
 936                "PIO4",
 937                "PIO5",
 938                "PIO6",
 939                "MWDMA0",
 940                "MWDMA1",
 941                "MWDMA2",
 942                "MWDMA3",
 943                "MWDMA4",
 944                "UDMA/16",
 945                "UDMA/25",
 946                "UDMA/33",
 947                "UDMA/44",
 948                "UDMA/66",
 949                "UDMA/100",
 950                "UDMA/133",
 951                "UDMA7",
 952        };
 953        int highbit;
 954
 955        highbit = fls(xfer_mask) - 1;
 956        if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
 957                return xfer_mode_str[highbit];
 958        return "<n/a>";
 959}
 960EXPORT_SYMBOL_GPL(ata_mode_string);
 961
 962const char *sata_spd_string(unsigned int spd)
 963{
 964        static const char * const spd_str[] = {
 965                "1.5 Gbps",
 966                "3.0 Gbps",
 967                "6.0 Gbps",
 968        };
 969
 970        if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
 971                return "<unknown>";
 972        return spd_str[spd - 1];
 973}
 974
 975/**
 976 *      ata_dev_classify - determine device type based on ATA-spec signature
 977 *      @tf: ATA taskfile register set for device to be identified
 978 *
 979 *      Determine from taskfile register contents whether a device is
 980 *      ATA or ATAPI, as per "Signature and persistence" section
 981 *      of ATA/PI spec (volume 1, sect 5.14).
 982 *
 983 *      LOCKING:
 984 *      None.
 985 *
 986 *      RETURNS:
 987 *      Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
 988 *      %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
 989 */
 990unsigned int ata_dev_classify(const struct ata_taskfile *tf)
 991{
 992        /* Apple's open source Darwin code hints that some devices only
 993         * put a proper signature into the LBA mid/high registers,
 994         * So, we only check those.  It's sufficient for uniqueness.
 995         *
 996         * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
 997         * signatures for ATA and ATAPI devices attached on SerialATA,
 998         * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
 999         * spec has never mentioned about using different signatures
1000         * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1001         * Multiplier specification began to use 0x69/0x96 to identify
1002         * port multpliers and 0x3c/0xc3 to identify SEMB device.
1003         * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1004         * 0x69/0x96 shortly and described them as reserved for
1005         * SerialATA.
1006         *
1007         * We follow the current spec and consider that 0x69/0x96
1008         * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1009         * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1010         * SEMB signature.  This is worked around in
1011         * ata_dev_read_id().
1012         */
1013        if ((tf->lbam == 0) && (tf->lbah == 0)) {
1014                DPRINTK("found ATA device by sig\n");
1015                return ATA_DEV_ATA;
1016        }
1017
1018        if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1019                DPRINTK("found ATAPI device by sig\n");
1020                return ATA_DEV_ATAPI;
1021        }
1022
1023        if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1024                DPRINTK("found PMP device by sig\n");
1025                return ATA_DEV_PMP;
1026        }
1027
1028        if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1029                DPRINTK("found SEMB device by sig (could be ATA device)\n");
1030                return ATA_DEV_SEMB;
1031        }
1032
1033        if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1034                DPRINTK("found ZAC device by sig\n");
1035                return ATA_DEV_ZAC;
1036        }
1037
1038        DPRINTK("unknown device\n");
1039        return ATA_DEV_UNKNOWN;
1040}
1041EXPORT_SYMBOL_GPL(ata_dev_classify);
1042
1043/**
1044 *      ata_id_string - Convert IDENTIFY DEVICE page into string
1045 *      @id: IDENTIFY DEVICE results we will examine
1046 *      @s: string into which data is output
1047 *      @ofs: offset into identify device page
1048 *      @len: length of string to return. must be an even number.
1049 *
1050 *      The strings in the IDENTIFY DEVICE page are broken up into
1051 *      16-bit chunks.  Run through the string, and output each
1052 *      8-bit chunk linearly, regardless of platform.
1053 *
1054 *      LOCKING:
1055 *      caller.
1056 */
1057
1058void ata_id_string(const u16 *id, unsigned char *s,
1059                   unsigned int ofs, unsigned int len)
1060{
1061        unsigned int c;
1062
1063        BUG_ON(len & 1);
1064
1065        while (len > 0) {
1066                c = id[ofs] >> 8;
1067                *s = c;
1068                s++;
1069
1070                c = id[ofs] & 0xff;
1071                *s = c;
1072                s++;
1073
1074                ofs++;
1075                len -= 2;
1076        }
1077}
1078EXPORT_SYMBOL_GPL(ata_id_string);
1079
1080/**
1081 *      ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1082 *      @id: IDENTIFY DEVICE results we will examine
1083 *      @s: string into which data is output
1084 *      @ofs: offset into identify device page
1085 *      @len: length of string to return. must be an odd number.
1086 *
1087 *      This function is identical to ata_id_string except that it
1088 *      trims trailing spaces and terminates the resulting string with
1089 *      null.  @len must be actual maximum length (even number) + 1.
1090 *
1091 *      LOCKING:
1092 *      caller.
1093 */
1094void ata_id_c_string(const u16 *id, unsigned char *s,
1095                     unsigned int ofs, unsigned int len)
1096{
1097        unsigned char *p;
1098
1099        ata_id_string(id, s, ofs, len - 1);
1100
1101        p = s + strnlen(s, len - 1);
1102        while (p > s && p[-1] == ' ')
1103                p--;
1104        *p = '\0';
1105}
1106EXPORT_SYMBOL_GPL(ata_id_c_string);
1107
1108static u64 ata_id_n_sectors(const u16 *id)
1109{
1110        if (ata_id_has_lba(id)) {
1111                if (ata_id_has_lba48(id))
1112                        return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1113                else
1114                        return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1115        } else {
1116                if (ata_id_current_chs_valid(id))
1117                        return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1118                               id[ATA_ID_CUR_SECTORS];
1119                else
1120                        return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1121                               id[ATA_ID_SECTORS];
1122        }
1123}
1124
1125u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1126{
1127        u64 sectors = 0;
1128
1129        sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1130        sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1131        sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1132        sectors |= (tf->lbah & 0xff) << 16;
1133        sectors |= (tf->lbam & 0xff) << 8;
1134        sectors |= (tf->lbal & 0xff);
1135
1136        return sectors;
1137}
1138
1139u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1140{
1141        u64 sectors = 0;
1142
1143        sectors |= (tf->device & 0x0f) << 24;
1144        sectors |= (tf->lbah & 0xff) << 16;
1145        sectors |= (tf->lbam & 0xff) << 8;
1146        sectors |= (tf->lbal & 0xff);
1147
1148        return sectors;
1149}
1150
1151/**
1152 *      ata_read_native_max_address - Read native max address
1153 *      @dev: target device
1154 *      @max_sectors: out parameter for the result native max address
1155 *
1156 *      Perform an LBA48 or LBA28 native size query upon the device in
1157 *      question.
1158 *
1159 *      RETURNS:
1160 *      0 on success, -EACCES if command is aborted by the drive.
1161 *      -EIO on other errors.
1162 */
1163static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1164{
1165        unsigned int err_mask;
1166        struct ata_taskfile tf;
1167        int lba48 = ata_id_has_lba48(dev->id);
1168
1169        ata_tf_init(dev, &tf);
1170
1171        /* always clear all address registers */
1172        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1173
1174        if (lba48) {
1175                tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1176                tf.flags |= ATA_TFLAG_LBA48;
1177        } else
1178                tf.command = ATA_CMD_READ_NATIVE_MAX;
1179
1180        tf.protocol = ATA_PROT_NODATA;
1181        tf.device |= ATA_LBA;
1182
1183        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1184        if (err_mask) {
1185                ata_dev_warn(dev,
1186                             "failed to read native max address (err_mask=0x%x)\n",
1187                             err_mask);
1188                if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1189                        return -EACCES;
1190                return -EIO;
1191        }
1192
1193        if (lba48)
1194                *max_sectors = ata_tf_to_lba48(&tf) + 1;
1195        else
1196                *max_sectors = ata_tf_to_lba(&tf) + 1;
1197        if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1198                (*max_sectors)--;
1199        return 0;
1200}
1201
1202/**
1203 *      ata_set_max_sectors - Set max sectors
1204 *      @dev: target device
1205 *      @new_sectors: new max sectors value to set for the device
1206 *
1207 *      Set max sectors of @dev to @new_sectors.
1208 *
1209 *      RETURNS:
1210 *      0 on success, -EACCES if command is aborted or denied (due to
1211 *      previous non-volatile SET_MAX) by the drive.  -EIO on other
1212 *      errors.
1213 */
1214static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1215{
1216        unsigned int err_mask;
1217        struct ata_taskfile tf;
1218        int lba48 = ata_id_has_lba48(dev->id);
1219
1220        new_sectors--;
1221
1222        ata_tf_init(dev, &tf);
1223
1224        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1225
1226        if (lba48) {
1227                tf.command = ATA_CMD_SET_MAX_EXT;
1228                tf.flags |= ATA_TFLAG_LBA48;
1229
1230                tf.hob_lbal = (new_sectors >> 24) & 0xff;
1231                tf.hob_lbam = (new_sectors >> 32) & 0xff;
1232                tf.hob_lbah = (new_sectors >> 40) & 0xff;
1233        } else {
1234                tf.command = ATA_CMD_SET_MAX;
1235
1236                tf.device |= (new_sectors >> 24) & 0xf;
1237        }
1238
1239        tf.protocol = ATA_PROT_NODATA;
1240        tf.device |= ATA_LBA;
1241
1242        tf.lbal = (new_sectors >> 0) & 0xff;
1243        tf.lbam = (new_sectors >> 8) & 0xff;
1244        tf.lbah = (new_sectors >> 16) & 0xff;
1245
1246        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1247        if (err_mask) {
1248                ata_dev_warn(dev,
1249                             "failed to set max address (err_mask=0x%x)\n",
1250                             err_mask);
1251                if (err_mask == AC_ERR_DEV &&
1252                    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1253                        return -EACCES;
1254                return -EIO;
1255        }
1256
1257        return 0;
1258}
1259
1260/**
1261 *      ata_hpa_resize          -       Resize a device with an HPA set
1262 *      @dev: Device to resize
1263 *
1264 *      Read the size of an LBA28 or LBA48 disk with HPA features and resize
1265 *      it if required to the full size of the media. The caller must check
1266 *      the drive has the HPA feature set enabled.
1267 *
1268 *      RETURNS:
1269 *      0 on success, -errno on failure.
1270 */
1271static int ata_hpa_resize(struct ata_device *dev)
1272{
1273        bool print_info = ata_dev_print_info(dev);
1274        bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1275        u64 sectors = ata_id_n_sectors(dev->id);
1276        u64 native_sectors;
1277        int rc;
1278
1279        /* do we need to do it? */
1280        if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1281            !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1282            (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1283                return 0;
1284
1285        /* read native max address */
1286        rc = ata_read_native_max_address(dev, &native_sectors);
1287        if (rc) {
1288                /* If device aborted the command or HPA isn't going to
1289                 * be unlocked, skip HPA resizing.
1290                 */
1291                if (rc == -EACCES || !unlock_hpa) {
1292                        ata_dev_warn(dev,
1293                                     "HPA support seems broken, skipping HPA handling\n");
1294                        dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1295
1296                        /* we can continue if device aborted the command */
1297                        if (rc == -EACCES)
1298                                rc = 0;
1299                }
1300
1301                return rc;
1302        }
1303        dev->n_native_sectors = native_sectors;
1304
1305        /* nothing to do? */
1306        if (native_sectors <= sectors || !unlock_hpa) {
1307                if (!print_info || native_sectors == sectors)
1308                        return 0;
1309
1310                if (native_sectors > sectors)
1311                        ata_dev_info(dev,
1312                                "HPA detected: current %llu, native %llu\n",
1313                                (unsigned long long)sectors,
1314                                (unsigned long long)native_sectors);
1315                else if (native_sectors < sectors)
1316                        ata_dev_warn(dev,
1317                                "native sectors (%llu) is smaller than sectors (%llu)\n",
1318                                (unsigned long long)native_sectors,
1319                                (unsigned long long)sectors);
1320                return 0;
1321        }
1322
1323        /* let's unlock HPA */
1324        rc = ata_set_max_sectors(dev, native_sectors);
1325        if (rc == -EACCES) {
1326                /* if device aborted the command, skip HPA resizing */
1327                ata_dev_warn(dev,
1328                             "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1329                             (unsigned long long)sectors,
1330                             (unsigned long long)native_sectors);
1331                dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1332                return 0;
1333        } else if (rc)
1334                return rc;
1335
1336        /* re-read IDENTIFY data */
1337        rc = ata_dev_reread_id(dev, 0);
1338        if (rc) {
1339                ata_dev_err(dev,
1340                            "failed to re-read IDENTIFY data after HPA resizing\n");
1341                return rc;
1342        }
1343
1344        if (print_info) {
1345                u64 new_sectors = ata_id_n_sectors(dev->id);
1346                ata_dev_info(dev,
1347                        "HPA unlocked: %llu -> %llu, native %llu\n",
1348                        (unsigned long long)sectors,
1349                        (unsigned long long)new_sectors,
1350                        (unsigned long long)native_sectors);
1351        }
1352
1353        return 0;
1354}
1355
1356/**
1357 *      ata_dump_id - IDENTIFY DEVICE info debugging output
1358 *      @id: IDENTIFY DEVICE page to dump
1359 *
1360 *      Dump selected 16-bit words from the given IDENTIFY DEVICE
1361 *      page.
1362 *
1363 *      LOCKING:
1364 *      caller.
1365 */
1366
1367static inline void ata_dump_id(const u16 *id)
1368{
1369        DPRINTK("49==0x%04x  "
1370                "53==0x%04x  "
1371                "63==0x%04x  "
1372                "64==0x%04x  "
1373                "75==0x%04x  \n",
1374                id[49],
1375                id[53],
1376                id[63],
1377                id[64],
1378                id[75]);
1379        DPRINTK("80==0x%04x  "
1380                "81==0x%04x  "
1381                "82==0x%04x  "
1382                "83==0x%04x  "
1383                "84==0x%04x  \n",
1384                id[80],
1385                id[81],
1386                id[82],
1387                id[83],
1388                id[84]);
1389        DPRINTK("88==0x%04x  "
1390                "93==0x%04x\n",
1391                id[88],
1392                id[93]);
1393}
1394
1395/**
1396 *      ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1397 *      @id: IDENTIFY data to compute xfer mask from
1398 *
1399 *      Compute the xfermask for this device. This is not as trivial
1400 *      as it seems if we must consider early devices correctly.
1401 *
1402 *      FIXME: pre IDE drive timing (do we care ?).
1403 *
1404 *      LOCKING:
1405 *      None.
1406 *
1407 *      RETURNS:
1408 *      Computed xfermask
1409 */
1410unsigned long ata_id_xfermask(const u16 *id)
1411{
1412        unsigned long pio_mask, mwdma_mask, udma_mask;
1413
1414        /* Usual case. Word 53 indicates word 64 is valid */
1415        if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1416                pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1417                pio_mask <<= 3;
1418                pio_mask |= 0x7;
1419        } else {
1420                /* If word 64 isn't valid then Word 51 high byte holds
1421                 * the PIO timing number for the maximum. Turn it into
1422                 * a mask.
1423                 */
1424                u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1425                if (mode < 5)   /* Valid PIO range */
1426                        pio_mask = (2 << mode) - 1;
1427                else
1428                        pio_mask = 1;
1429
1430                /* But wait.. there's more. Design your standards by
1431                 * committee and you too can get a free iordy field to
1432                 * process. However its the speeds not the modes that
1433                 * are supported... Note drivers using the timing API
1434                 * will get this right anyway
1435                 */
1436        }
1437
1438        mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1439
1440        if (ata_id_is_cfa(id)) {
1441                /*
1442                 *      Process compact flash extended modes
1443                 */
1444                int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1445                int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1446
1447                if (pio)
1448                        pio_mask |= (1 << 5);
1449                if (pio > 1)
1450                        pio_mask |= (1 << 6);
1451                if (dma)
1452                        mwdma_mask |= (1 << 3);
1453                if (dma > 1)
1454                        mwdma_mask |= (1 << 4);
1455        }
1456
1457        udma_mask = 0;
1458        if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1459                udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1460
1461        return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1462}
1463EXPORT_SYMBOL_GPL(ata_id_xfermask);
1464
1465static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1466{
1467        struct completion *waiting = qc->private_data;
1468
1469        complete(waiting);
1470}
1471
1472/**
1473 *      ata_exec_internal_sg - execute libata internal command
1474 *      @dev: Device to which the command is sent
1475 *      @tf: Taskfile registers for the command and the result
1476 *      @cdb: CDB for packet command
1477 *      @dma_dir: Data transfer direction of the command
1478 *      @sgl: sg list for the data buffer of the command
1479 *      @n_elem: Number of sg entries
1480 *      @timeout: Timeout in msecs (0 for default)
1481 *
1482 *      Executes libata internal command with timeout.  @tf contains
1483 *      command on entry and result on return.  Timeout and error
1484 *      conditions are reported via return value.  No recovery action
1485 *      is taken after a command times out.  It's caller's duty to
1486 *      clean up after timeout.
1487 *
1488 *      LOCKING:
1489 *      None.  Should be called with kernel context, might sleep.
1490 *
1491 *      RETURNS:
1492 *      Zero on success, AC_ERR_* mask on failure
1493 */
1494unsigned ata_exec_internal_sg(struct ata_device *dev,
1495                              struct ata_taskfile *tf, const u8 *cdb,
1496                              int dma_dir, struct scatterlist *sgl,
1497                              unsigned int n_elem, unsigned long timeout)
1498{
1499        struct ata_link *link = dev->link;
1500        struct ata_port *ap = link->ap;
1501        u8 command = tf->command;
1502        int auto_timeout = 0;
1503        struct ata_queued_cmd *qc;
1504        unsigned int preempted_tag;
1505        u32 preempted_sactive;
1506        u64 preempted_qc_active;
1507        int preempted_nr_active_links;
1508        DECLARE_COMPLETION_ONSTACK(wait);
1509        unsigned long flags;
1510        unsigned int err_mask;
1511        int rc;
1512
1513        spin_lock_irqsave(ap->lock, flags);
1514
1515        /* no internal command while frozen */
1516        if (ap->pflags & ATA_PFLAG_FROZEN) {
1517                spin_unlock_irqrestore(ap->lock, flags);
1518                return AC_ERR_SYSTEM;
1519        }
1520
1521        /* initialize internal qc */
1522        qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1523
1524        qc->tag = ATA_TAG_INTERNAL;
1525        qc->hw_tag = 0;
1526        qc->scsicmd = NULL;
1527        qc->ap = ap;
1528        qc->dev = dev;
1529        ata_qc_reinit(qc);
1530
1531        preempted_tag = link->active_tag;
1532        preempted_sactive = link->sactive;
1533        preempted_qc_active = ap->qc_active;
1534        preempted_nr_active_links = ap->nr_active_links;
1535        link->active_tag = ATA_TAG_POISON;
1536        link->sactive = 0;
1537        ap->qc_active = 0;
1538        ap->nr_active_links = 0;
1539
1540        /* prepare & issue qc */
1541        qc->tf = *tf;
1542        if (cdb)
1543                memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1544
1545        /* some SATA bridges need us to indicate data xfer direction */
1546        if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1547            dma_dir == DMA_FROM_DEVICE)
1548                qc->tf.feature |= ATAPI_DMADIR;
1549
1550        qc->flags |= ATA_QCFLAG_RESULT_TF;
1551        qc->dma_dir = dma_dir;
1552        if (dma_dir != DMA_NONE) {
1553                unsigned int i, buflen = 0;
1554                struct scatterlist *sg;
1555
1556                for_each_sg(sgl, sg, n_elem, i)
1557                        buflen += sg->length;
1558
1559                ata_sg_init(qc, sgl, n_elem);
1560                qc->nbytes = buflen;
1561        }
1562
1563        qc->private_data = &wait;
1564        qc->complete_fn = ata_qc_complete_internal;
1565
1566        ata_qc_issue(qc);
1567
1568        spin_unlock_irqrestore(ap->lock, flags);
1569
1570        if (!timeout) {
1571                if (ata_probe_timeout)
1572                        timeout = ata_probe_timeout * 1000;
1573                else {
1574                        timeout = ata_internal_cmd_timeout(dev, command);
1575                        auto_timeout = 1;
1576                }
1577        }
1578
1579        if (ap->ops->error_handler)
1580                ata_eh_release(ap);
1581
1582        rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1583
1584        if (ap->ops->error_handler)
1585                ata_eh_acquire(ap);
1586
1587        ata_sff_flush_pio_task(ap);
1588
1589        if (!rc) {
1590                spin_lock_irqsave(ap->lock, flags);
1591
1592                /* We're racing with irq here.  If we lose, the
1593                 * following test prevents us from completing the qc
1594                 * twice.  If we win, the port is frozen and will be
1595                 * cleaned up by ->post_internal_cmd().
1596                 */
1597                if (qc->flags & ATA_QCFLAG_ACTIVE) {
1598                        qc->err_mask |= AC_ERR_TIMEOUT;
1599
1600                        if (ap->ops->error_handler)
1601                                ata_port_freeze(ap);
1602                        else
1603                                ata_qc_complete(qc);
1604
1605                        if (ata_msg_warn(ap))
1606                                ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1607                                             command);
1608                }
1609
1610                spin_unlock_irqrestore(ap->lock, flags);
1611        }
1612
1613        /* do post_internal_cmd */
1614        if (ap->ops->post_internal_cmd)
1615                ap->ops->post_internal_cmd(qc);
1616
1617        /* perform minimal error analysis */
1618        if (qc->flags & ATA_QCFLAG_FAILED) {
1619                if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1620                        qc->err_mask |= AC_ERR_DEV;
1621
1622                if (!qc->err_mask)
1623                        qc->err_mask |= AC_ERR_OTHER;
1624
1625                if (qc->err_mask & ~AC_ERR_OTHER)
1626                        qc->err_mask &= ~AC_ERR_OTHER;
1627        } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1628                qc->result_tf.command |= ATA_SENSE;
1629        }
1630
1631        /* finish up */
1632        spin_lock_irqsave(ap->lock, flags);
1633
1634        *tf = qc->result_tf;
1635        err_mask = qc->err_mask;
1636
1637        ata_qc_free(qc);
1638        link->active_tag = preempted_tag;
1639        link->sactive = preempted_sactive;
1640        ap->qc_active = preempted_qc_active;
1641        ap->nr_active_links = preempted_nr_active_links;
1642
1643        spin_unlock_irqrestore(ap->lock, flags);
1644
1645        if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1646                ata_internal_cmd_timed_out(dev, command);
1647
1648        return err_mask;
1649}
1650
1651/**
1652 *      ata_exec_internal - execute libata internal command
1653 *      @dev: Device to which the command is sent
1654 *      @tf: Taskfile registers for the command and the result
1655 *      @cdb: CDB for packet command
1656 *      @dma_dir: Data transfer direction of the command
1657 *      @buf: Data buffer of the command
1658 *      @buflen: Length of data buffer
1659 *      @timeout: Timeout in msecs (0 for default)
1660 *
1661 *      Wrapper around ata_exec_internal_sg() which takes simple
1662 *      buffer instead of sg list.
1663 *
1664 *      LOCKING:
1665 *      None.  Should be called with kernel context, might sleep.
1666 *
1667 *      RETURNS:
1668 *      Zero on success, AC_ERR_* mask on failure
1669 */
1670unsigned ata_exec_internal(struct ata_device *dev,
1671                           struct ata_taskfile *tf, const u8 *cdb,
1672                           int dma_dir, void *buf, unsigned int buflen,
1673                           unsigned long timeout)
1674{
1675        struct scatterlist *psg = NULL, sg;
1676        unsigned int n_elem = 0;
1677
1678        if (dma_dir != DMA_NONE) {
1679                WARN_ON(!buf);
1680                sg_init_one(&sg, buf, buflen);
1681                psg = &sg;
1682                n_elem++;
1683        }
1684
1685        return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1686                                    timeout);
1687}
1688
1689/**
1690 *      ata_pio_need_iordy      -       check if iordy needed
1691 *      @adev: ATA device
1692 *
1693 *      Check if the current speed of the device requires IORDY. Used
1694 *      by various controllers for chip configuration.
1695 */
1696unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1697{
1698        /* Don't set IORDY if we're preparing for reset.  IORDY may
1699         * lead to controller lock up on certain controllers if the
1700         * port is not occupied.  See bko#11703 for details.
1701         */
1702        if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1703                return 0;
1704        /* Controller doesn't support IORDY.  Probably a pointless
1705         * check as the caller should know this.
1706         */
1707        if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1708                return 0;
1709        /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1710        if (ata_id_is_cfa(adev->id)
1711            && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1712                return 0;
1713        /* PIO3 and higher it is mandatory */
1714        if (adev->pio_mode > XFER_PIO_2)
1715                return 1;
1716        /* We turn it on when possible */
1717        if (ata_id_has_iordy(adev->id))
1718                return 1;
1719        return 0;
1720}
1721EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1722
1723/**
1724 *      ata_pio_mask_no_iordy   -       Return the non IORDY mask
1725 *      @adev: ATA device
1726 *
1727 *      Compute the highest mode possible if we are not using iordy. Return
1728 *      -1 if no iordy mode is available.
1729 */
1730static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1731{
1732        /* If we have no drive specific rule, then PIO 2 is non IORDY */
1733        if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1734                u16 pio = adev->id[ATA_ID_EIDE_PIO];
1735                /* Is the speed faster than the drive allows non IORDY ? */
1736                if (pio) {
1737                        /* This is cycle times not frequency - watch the logic! */
1738                        if (pio > 240)  /* PIO2 is 240nS per cycle */
1739                                return 3 << ATA_SHIFT_PIO;
1740                        return 7 << ATA_SHIFT_PIO;
1741                }
1742        }
1743        return 3 << ATA_SHIFT_PIO;
1744}
1745
1746/**
1747 *      ata_do_dev_read_id              -       default ID read method
1748 *      @dev: device
1749 *      @tf: proposed taskfile
1750 *      @id: data buffer
1751 *
1752 *      Issue the identify taskfile and hand back the buffer containing
1753 *      identify data. For some RAID controllers and for pre ATA devices
1754 *      this function is wrapped or replaced by the driver
1755 */
1756unsigned int ata_do_dev_read_id(struct ata_device *dev,
1757                                        struct ata_taskfile *tf, u16 *id)
1758{
1759        return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1760                                     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1761}
1762EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1763
1764/**
1765 *      ata_dev_read_id - Read ID data from the specified device
1766 *      @dev: target device
1767 *      @p_class: pointer to class of the target device (may be changed)
1768 *      @flags: ATA_READID_* flags
1769 *      @id: buffer to read IDENTIFY data into
1770 *
1771 *      Read ID data from the specified device.  ATA_CMD_ID_ATA is
1772 *      performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1773 *      devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1774 *      for pre-ATA4 drives.
1775 *
1776 *      FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1777 *      now we abort if we hit that case.
1778 *
1779 *      LOCKING:
1780 *      Kernel thread context (may sleep)
1781 *
1782 *      RETURNS:
1783 *      0 on success, -errno otherwise.
1784 */
1785int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1786                    unsigned int flags, u16 *id)
1787{
1788        struct ata_port *ap = dev->link->ap;
1789        unsigned int class = *p_class;
1790        struct ata_taskfile tf;
1791        unsigned int err_mask = 0;
1792        const char *reason;
1793        bool is_semb = class == ATA_DEV_SEMB;
1794        int may_fallback = 1, tried_spinup = 0;
1795        int rc;
1796
1797        if (ata_msg_ctl(ap))
1798                ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1799
1800retry:
1801        ata_tf_init(dev, &tf);
1802
1803        switch (class) {
1804        case ATA_DEV_SEMB:
1805                class = ATA_DEV_ATA;    /* some hard drives report SEMB sig */
1806                fallthrough;
1807        case ATA_DEV_ATA:
1808        case ATA_DEV_ZAC:
1809                tf.command = ATA_CMD_ID_ATA;
1810                break;
1811        case ATA_DEV_ATAPI:
1812                tf.command = ATA_CMD_ID_ATAPI;
1813                break;
1814        default:
1815                rc = -ENODEV;
1816                reason = "unsupported class";
1817                goto err_out;
1818        }
1819
1820        tf.protocol = ATA_PROT_PIO;
1821
1822        /* Some devices choke if TF registers contain garbage.  Make
1823         * sure those are properly initialized.
1824         */
1825        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1826
1827        /* Device presence detection is unreliable on some
1828         * controllers.  Always poll IDENTIFY if available.
1829         */
1830        tf.flags |= ATA_TFLAG_POLLING;
1831
1832        if (ap->ops->read_id)
1833                err_mask = ap->ops->read_id(dev, &tf, id);
1834        else
1835                err_mask = ata_do_dev_read_id(dev, &tf, id);
1836
1837        if (err_mask) {
1838                if (err_mask & AC_ERR_NODEV_HINT) {
1839                        ata_dev_dbg(dev, "NODEV after polling detection\n");
1840                        return -ENOENT;
1841                }
1842
1843                if (is_semb) {
1844                        ata_dev_info(dev,
1845                     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1846                        /* SEMB is not supported yet */
1847                        *p_class = ATA_DEV_SEMB_UNSUP;
1848                        return 0;
1849                }
1850
1851                if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1852                        /* Device or controller might have reported
1853                         * the wrong device class.  Give a shot at the
1854                         * other IDENTIFY if the current one is
1855                         * aborted by the device.
1856                         */
1857                        if (may_fallback) {
1858                                may_fallback = 0;
1859
1860                                if (class == ATA_DEV_ATA)
1861                                        class = ATA_DEV_ATAPI;
1862                                else
1863                                        class = ATA_DEV_ATA;
1864                                goto retry;
1865                        }
1866
1867                        /* Control reaches here iff the device aborted
1868                         * both flavors of IDENTIFYs which happens
1869                         * sometimes with phantom devices.
1870                         */
1871                        ata_dev_dbg(dev,
1872                                    "both IDENTIFYs aborted, assuming NODEV\n");
1873                        return -ENOENT;
1874                }
1875
1876                rc = -EIO;
1877                reason = "I/O error";
1878                goto err_out;
1879        }
1880
1881        if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1882                ata_dev_dbg(dev, "dumping IDENTIFY data, "
1883                            "class=%d may_fallback=%d tried_spinup=%d\n",
1884                            class, may_fallback, tried_spinup);
1885                print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1886                               16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1887        }
1888
1889        /* Falling back doesn't make sense if ID data was read
1890         * successfully at least once.
1891         */
1892        may_fallback = 0;
1893
1894        swap_buf_le16(id, ATA_ID_WORDS);
1895
1896        /* sanity check */
1897        rc = -EINVAL;
1898        reason = "device reports invalid type";
1899
1900        if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1901                if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1902                        goto err_out;
1903                if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1904                                                        ata_id_is_ata(id)) {
1905                        ata_dev_dbg(dev,
1906                                "host indicates ignore ATA devices, ignored\n");
1907                        return -ENOENT;
1908                }
1909        } else {
1910                if (ata_id_is_ata(id))
1911                        goto err_out;
1912        }
1913
1914        if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1915                tried_spinup = 1;
1916                /*
1917                 * Drive powered-up in standby mode, and requires a specific
1918                 * SET_FEATURES spin-up subcommand before it will accept
1919                 * anything other than the original IDENTIFY command.
1920                 */
1921                err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1922                if (err_mask && id[2] != 0x738c) {
1923                        rc = -EIO;
1924                        reason = "SPINUP failed";
1925                        goto err_out;
1926                }
1927                /*
1928                 * If the drive initially returned incomplete IDENTIFY info,
1929                 * we now must reissue the IDENTIFY command.
1930                 */
1931                if (id[2] == 0x37c8)
1932                        goto retry;
1933        }
1934
1935        if ((flags & ATA_READID_POSTRESET) &&
1936            (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1937                /*
1938                 * The exact sequence expected by certain pre-ATA4 drives is:
1939                 * SRST RESET
1940                 * IDENTIFY (optional in early ATA)
1941                 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1942                 * anything else..
1943                 * Some drives were very specific about that exact sequence.
1944                 *
1945                 * Note that ATA4 says lba is mandatory so the second check
1946                 * should never trigger.
1947                 */
1948                if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1949                        err_mask = ata_dev_init_params(dev, id[3], id[6]);
1950                        if (err_mask) {
1951                                rc = -EIO;
1952                                reason = "INIT_DEV_PARAMS failed";
1953                                goto err_out;
1954                        }
1955
1956                        /* current CHS translation info (id[53-58]) might be
1957                         * changed. reread the identify device info.
1958                         */
1959                        flags &= ~ATA_READID_POSTRESET;
1960                        goto retry;
1961                }
1962        }
1963
1964        *p_class = class;
1965
1966        return 0;
1967
1968 err_out:
1969        if (ata_msg_warn(ap))
1970                ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1971                             reason, err_mask);
1972        return rc;
1973}
1974
1975/**
1976 *      ata_read_log_page - read a specific log page
1977 *      @dev: target device
1978 *      @log: log to read
1979 *      @page: page to read
1980 *      @buf: buffer to store read page
1981 *      @sectors: number of sectors to read
1982 *
1983 *      Read log page using READ_LOG_EXT command.
1984 *
1985 *      LOCKING:
1986 *      Kernel thread context (may sleep).
1987 *
1988 *      RETURNS:
1989 *      0 on success, AC_ERR_* mask otherwise.
1990 */
1991unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
1992                               u8 page, void *buf, unsigned int sectors)
1993{
1994        unsigned long ap_flags = dev->link->ap->flags;
1995        struct ata_taskfile tf;
1996        unsigned int err_mask;
1997        bool dma = false;
1998
1999        DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2000
2001        /*
2002         * Return error without actually issuing the command on controllers
2003         * which e.g. lockup on a read log page.
2004         */
2005        if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2006                return AC_ERR_DEV;
2007
2008retry:
2009        ata_tf_init(dev, &tf);
2010        if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2011            !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2012                tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2013                tf.protocol = ATA_PROT_DMA;
2014                dma = true;
2015        } else {
2016                tf.command = ATA_CMD_READ_LOG_EXT;
2017                tf.protocol = ATA_PROT_PIO;
2018                dma = false;
2019        }
2020        tf.lbal = log;
2021        tf.lbam = page;
2022        tf.nsect = sectors;
2023        tf.hob_nsect = sectors >> 8;
2024        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2025
2026        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2027                                     buf, sectors * ATA_SECT_SIZE, 0);
2028
2029        if (err_mask) {
2030                if (dma) {
2031                        dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2032                        goto retry;
2033                }
2034                ata_dev_err(dev,
2035                            "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2036                            (unsigned int)log, (unsigned int)page, err_mask);
2037        }
2038
2039        return err_mask;
2040}
2041
2042static bool ata_log_supported(struct ata_device *dev, u8 log)
2043{
2044        struct ata_port *ap = dev->link->ap;
2045
2046        if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2047                return false;
2048        return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2049}
2050
2051static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2052{
2053        struct ata_port *ap = dev->link->ap;
2054        unsigned int err, i;
2055
2056        if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG)
2057                return false;
2058
2059        if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2060                /*
2061                 * IDENTIFY DEVICE data log is defined as mandatory starting
2062                 * with ACS-3 (ATA version 10). Warn about the missing log
2063                 * for drives which implement this ATA level or above.
2064                 */
2065                if (ata_id_major_version(dev->id) >= 10)
2066                        ata_dev_warn(dev,
2067                                "ATA Identify Device Log not supported\n");
2068                dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG;
2069                return false;
2070        }
2071
2072        /*
2073         * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2074         * supported.
2075         */
2076        err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2077                                1);
2078        if (err)
2079                return false;
2080
2081        for (i = 0; i < ap->sector_buf[8]; i++) {
2082                if (ap->sector_buf[9 + i] == page)
2083                        return true;
2084        }
2085
2086        return false;
2087}
2088
2089static int ata_do_link_spd_horkage(struct ata_device *dev)
2090{
2091        struct ata_link *plink = ata_dev_phys_link(dev);
2092        u32 target, target_limit;
2093
2094        if (!sata_scr_valid(plink))
2095                return 0;
2096
2097        if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2098                target = 1;
2099        else
2100                return 0;
2101
2102        target_limit = (1 << target) - 1;
2103
2104        /* if already on stricter limit, no need to push further */
2105        if (plink->sata_spd_limit <= target_limit)
2106                return 0;
2107
2108        plink->sata_spd_limit = target_limit;
2109
2110        /* Request another EH round by returning -EAGAIN if link is
2111         * going faster than the target speed.  Forward progress is
2112         * guaranteed by setting sata_spd_limit to target_limit above.
2113         */
2114        if (plink->sata_spd > target) {
2115                ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2116                             sata_spd_string(target));
2117                return -EAGAIN;
2118        }
2119        return 0;
2120}
2121
2122static inline u8 ata_dev_knobble(struct ata_device *dev)
2123{
2124        struct ata_port *ap = dev->link->ap;
2125
2126        if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2127                return 0;
2128
2129        return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2130}
2131
2132static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2133{
2134        struct ata_port *ap = dev->link->ap;
2135        unsigned int err_mask;
2136
2137        if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2138                ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2139                return;
2140        }
2141        err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2142                                     0, ap->sector_buf, 1);
2143        if (!err_mask) {
2144                u8 *cmds = dev->ncq_send_recv_cmds;
2145
2146                dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2147                memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2148
2149                if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2150                        ata_dev_dbg(dev, "disabling queued TRIM support\n");
2151                        cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2152                                ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2153                }
2154        }
2155}
2156
2157static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2158{
2159        struct ata_port *ap = dev->link->ap;
2160        unsigned int err_mask;
2161
2162        if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2163                ata_dev_warn(dev,
2164                             "NCQ Send/Recv Log not supported\n");
2165                return;
2166        }
2167        err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2168                                     0, ap->sector_buf, 1);
2169        if (!err_mask) {
2170                u8 *cmds = dev->ncq_non_data_cmds;
2171
2172                memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2173        }
2174}
2175
2176static void ata_dev_config_ncq_prio(struct ata_device *dev)
2177{
2178        struct ata_port *ap = dev->link->ap;
2179        unsigned int err_mask;
2180
2181        if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2182                return;
2183
2184        err_mask = ata_read_log_page(dev,
2185                                     ATA_LOG_IDENTIFY_DEVICE,
2186                                     ATA_LOG_SATA_SETTINGS,
2187                                     ap->sector_buf,
2188                                     1);
2189        if (err_mask)
2190                goto not_supported;
2191
2192        if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2193                goto not_supported;
2194
2195        dev->flags |= ATA_DFLAG_NCQ_PRIO;
2196
2197        return;
2198
2199not_supported:
2200        dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLE;
2201        dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2202}
2203
2204static bool ata_dev_check_adapter(struct ata_device *dev,
2205                                  unsigned short vendor_id)
2206{
2207        struct pci_dev *pcidev = NULL;
2208        struct device *parent_dev = NULL;
2209
2210        for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2211             parent_dev = parent_dev->parent) {
2212                if (dev_is_pci(parent_dev)) {
2213                        pcidev = to_pci_dev(parent_dev);
2214                        if (pcidev->vendor == vendor_id)
2215                                return true;
2216                        break;
2217                }
2218        }
2219
2220        return false;
2221}
2222
2223static int ata_dev_config_ncq(struct ata_device *dev,
2224                               char *desc, size_t desc_sz)
2225{
2226        struct ata_port *ap = dev->link->ap;
2227        int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2228        unsigned int err_mask;
2229        char *aa_desc = "";
2230
2231        if (!ata_id_has_ncq(dev->id)) {
2232                desc[0] = '\0';
2233                return 0;
2234        }
2235        if (!IS_ENABLED(CONFIG_SATA_HOST))
2236                return 0;
2237        if (dev->horkage & ATA_HORKAGE_NONCQ) {
2238                snprintf(desc, desc_sz, "NCQ (not used)");
2239                return 0;
2240        }
2241
2242        if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2243            ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2244                snprintf(desc, desc_sz, "NCQ (not used)");
2245                return 0;
2246        }
2247
2248        if (ap->flags & ATA_FLAG_NCQ) {
2249                hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2250                dev->flags |= ATA_DFLAG_NCQ;
2251        }
2252
2253        if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2254                (ap->flags & ATA_FLAG_FPDMA_AA) &&
2255                ata_id_has_fpdma_aa(dev->id)) {
2256                err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2257                        SATA_FPDMA_AA);
2258                if (err_mask) {
2259                        ata_dev_err(dev,
2260                                    "failed to enable AA (error_mask=0x%x)\n",
2261                                    err_mask);
2262                        if (err_mask != AC_ERR_DEV) {
2263                                dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2264                                return -EIO;
2265                        }
2266                } else
2267                        aa_desc = ", AA";
2268        }
2269
2270        if (hdepth >= ddepth)
2271                snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2272        else
2273                snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2274                        ddepth, aa_desc);
2275
2276        if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2277                if (ata_id_has_ncq_send_and_recv(dev->id))
2278                        ata_dev_config_ncq_send_recv(dev);
2279                if (ata_id_has_ncq_non_data(dev->id))
2280                        ata_dev_config_ncq_non_data(dev);
2281                if (ata_id_has_ncq_prio(dev->id))
2282                        ata_dev_config_ncq_prio(dev);
2283        }
2284
2285        return 0;
2286}
2287
2288static void ata_dev_config_sense_reporting(struct ata_device *dev)
2289{
2290        unsigned int err_mask;
2291
2292        if (!ata_id_has_sense_reporting(dev->id))
2293                return;
2294
2295        if (ata_id_sense_reporting_enabled(dev->id))
2296                return;
2297
2298        err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2299        if (err_mask) {
2300                ata_dev_dbg(dev,
2301                            "failed to enable Sense Data Reporting, Emask 0x%x\n",
2302                            err_mask);
2303        }
2304}
2305
2306static void ata_dev_config_zac(struct ata_device *dev)
2307{
2308        struct ata_port *ap = dev->link->ap;
2309        unsigned int err_mask;
2310        u8 *identify_buf = ap->sector_buf;
2311
2312        dev->zac_zones_optimal_open = U32_MAX;
2313        dev->zac_zones_optimal_nonseq = U32_MAX;
2314        dev->zac_zones_max_open = U32_MAX;
2315
2316        /*
2317         * Always set the 'ZAC' flag for Host-managed devices.
2318         */
2319        if (dev->class == ATA_DEV_ZAC)
2320                dev->flags |= ATA_DFLAG_ZAC;
2321        else if (ata_id_zoned_cap(dev->id) == 0x01)
2322                /*
2323                 * Check for host-aware devices.
2324                 */
2325                dev->flags |= ATA_DFLAG_ZAC;
2326
2327        if (!(dev->flags & ATA_DFLAG_ZAC))
2328                return;
2329
2330        if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2331                ata_dev_warn(dev,
2332                             "ATA Zoned Information Log not supported\n");
2333                return;
2334        }
2335
2336        /*
2337         * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2338         */
2339        err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2340                                     ATA_LOG_ZONED_INFORMATION,
2341                                     identify_buf, 1);
2342        if (!err_mask) {
2343                u64 zoned_cap, opt_open, opt_nonseq, max_open;
2344
2345                zoned_cap = get_unaligned_le64(&identify_buf[8]);
2346                if ((zoned_cap >> 63))
2347                        dev->zac_zoned_cap = (zoned_cap & 1);
2348                opt_open = get_unaligned_le64(&identify_buf[24]);
2349                if ((opt_open >> 63))
2350                        dev->zac_zones_optimal_open = (u32)opt_open;
2351                opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2352                if ((opt_nonseq >> 63))
2353                        dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2354                max_open = get_unaligned_le64(&identify_buf[40]);
2355                if ((max_open >> 63))
2356                        dev->zac_zones_max_open = (u32)max_open;
2357        }
2358}
2359
2360static void ata_dev_config_trusted(struct ata_device *dev)
2361{
2362        struct ata_port *ap = dev->link->ap;
2363        u64 trusted_cap;
2364        unsigned int err;
2365
2366        if (!ata_id_has_trusted(dev->id))
2367                return;
2368
2369        if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2370                ata_dev_warn(dev,
2371                             "Security Log not supported\n");
2372                return;
2373        }
2374
2375        err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2376                        ap->sector_buf, 1);
2377        if (err)
2378                return;
2379
2380        trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2381        if (!(trusted_cap & (1ULL << 63))) {
2382                ata_dev_dbg(dev,
2383                            "Trusted Computing capability qword not valid!\n");
2384                return;
2385        }
2386
2387        if (trusted_cap & (1 << 0))
2388                dev->flags |= ATA_DFLAG_TRUSTED;
2389}
2390
2391static int ata_dev_config_lba(struct ata_device *dev)
2392{
2393        struct ata_port *ap = dev->link->ap;
2394        const u16 *id = dev->id;
2395        const char *lba_desc;
2396        char ncq_desc[24];
2397        int ret;
2398
2399        dev->flags |= ATA_DFLAG_LBA;
2400
2401        if (ata_id_has_lba48(id)) {
2402                lba_desc = "LBA48";
2403                dev->flags |= ATA_DFLAG_LBA48;
2404                if (dev->n_sectors >= (1UL << 28) &&
2405                    ata_id_has_flush_ext(id))
2406                        dev->flags |= ATA_DFLAG_FLUSH_EXT;
2407        } else {
2408                lba_desc = "LBA";
2409        }
2410
2411        /* config NCQ */
2412        ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2413
2414        /* print device info to dmesg */
2415        if (ata_msg_drv(ap) && ata_dev_print_info(dev))
2416                ata_dev_info(dev,
2417                             "%llu sectors, multi %u: %s %s\n",
2418                             (unsigned long long)dev->n_sectors,
2419                             dev->multi_count, lba_desc, ncq_desc);
2420
2421        return ret;
2422}
2423
2424static void ata_dev_config_chs(struct ata_device *dev)
2425{
2426        struct ata_port *ap = dev->link->ap;
2427        const u16 *id = dev->id;
2428
2429        if (ata_id_current_chs_valid(id)) {
2430                /* Current CHS translation is valid. */
2431                dev->cylinders = id[54];
2432                dev->heads     = id[55];
2433                dev->sectors   = id[56];
2434        } else {
2435                /* Default translation */
2436                dev->cylinders  = id[1];
2437                dev->heads      = id[3];
2438                dev->sectors    = id[6];
2439        }
2440
2441        /* print device info to dmesg */
2442        if (ata_msg_drv(ap) && ata_dev_print_info(dev))
2443                ata_dev_info(dev,
2444                             "%llu sectors, multi %u, CHS %u/%u/%u\n",
2445                             (unsigned long long)dev->n_sectors,
2446                             dev->multi_count, dev->cylinders,
2447                             dev->heads, dev->sectors);
2448}
2449
2450static void ata_dev_config_devslp(struct ata_device *dev)
2451{
2452        u8 *sata_setting = dev->link->ap->sector_buf;
2453        unsigned int err_mask;
2454        int i, j;
2455
2456        /*
2457         * Check device sleep capability. Get DevSlp timing variables
2458         * from SATA Settings page of Identify Device Data Log.
2459         */
2460        if (!ata_id_has_devslp(dev->id) ||
2461            !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2462                return;
2463
2464        err_mask = ata_read_log_page(dev,
2465                                     ATA_LOG_IDENTIFY_DEVICE,
2466                                     ATA_LOG_SATA_SETTINGS,
2467                                     sata_setting, 1);
2468        if (err_mask)
2469                return;
2470
2471        dev->flags |= ATA_DFLAG_DEVSLP;
2472        for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2473                j = ATA_LOG_DEVSLP_OFFSET + i;
2474                dev->devslp_timing[i] = sata_setting[j];
2475        }
2476}
2477
2478static void ata_dev_config_cpr(struct ata_device *dev)
2479{
2480        unsigned int err_mask;
2481        size_t buf_len;
2482        int i, nr_cpr = 0;
2483        struct ata_cpr_log *cpr_log = NULL;
2484        u8 *desc, *buf = NULL;
2485
2486        if (!ata_identify_page_supported(dev,
2487                                 ATA_LOG_CONCURRENT_POSITIONING_RANGES))
2488                goto out;
2489
2490        /*
2491         * Read IDENTIFY DEVICE data log, page 0x47
2492         * (concurrent positioning ranges). We can have at most 255 32B range
2493         * descriptors plus a 64B header.
2494         */
2495        buf_len = (64 + 255 * 32 + 511) & ~511;
2496        buf = kzalloc(buf_len, GFP_KERNEL);
2497        if (!buf)
2498                goto out;
2499
2500        err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2501                                     ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2502                                     buf, buf_len >> 9);
2503        if (err_mask)
2504                goto out;
2505
2506        nr_cpr = buf[0];
2507        if (!nr_cpr)
2508                goto out;
2509
2510        cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2511        if (!cpr_log)
2512                goto out;
2513
2514        cpr_log->nr_cpr = nr_cpr;
2515        desc = &buf[64];
2516        for (i = 0; i < nr_cpr; i++, desc += 32) {
2517                cpr_log->cpr[i].num = desc[0];
2518                cpr_log->cpr[i].num_storage_elements = desc[1];
2519                cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2520                cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2521        }
2522
2523out:
2524        swap(dev->cpr_log, cpr_log);
2525        kfree(cpr_log);
2526        kfree(buf);
2527}
2528
2529static void ata_dev_print_features(struct ata_device *dev)
2530{
2531        if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2532                return;
2533
2534        ata_dev_info(dev,
2535                     "Features:%s%s%s%s%s%s\n",
2536                     dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2537                     dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2538                     dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2539                     dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2540                     dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2541                     dev->cpr_log ? " CPR" : "");
2542}
2543
2544/**
2545 *      ata_dev_configure - Configure the specified ATA/ATAPI device
2546 *      @dev: Target device to configure
2547 *
2548 *      Configure @dev according to @dev->id.  Generic and low-level
2549 *      driver specific fixups are also applied.
2550 *
2551 *      LOCKING:
2552 *      Kernel thread context (may sleep)
2553 *
2554 *      RETURNS:
2555 *      0 on success, -errno otherwise
2556 */
2557int ata_dev_configure(struct ata_device *dev)
2558{
2559        struct ata_port *ap = dev->link->ap;
2560        bool print_info = ata_dev_print_info(dev);
2561        const u16 *id = dev->id;
2562        unsigned long xfer_mask;
2563        unsigned int err_mask;
2564        char revbuf[7];         /* XYZ-99\0 */
2565        char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2566        char modelbuf[ATA_ID_PROD_LEN+1];
2567        int rc;
2568
2569        if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2570                ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2571                return 0;
2572        }
2573
2574        if (ata_msg_probe(ap))
2575                ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2576
2577        /* set horkage */
2578        dev->horkage |= ata_dev_blacklisted(dev);
2579        ata_force_horkage(dev);
2580
2581        if (dev->horkage & ATA_HORKAGE_DISABLE) {
2582                ata_dev_info(dev, "unsupported device, disabling\n");
2583                ata_dev_disable(dev);
2584                return 0;
2585        }
2586
2587        if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2588            dev->class == ATA_DEV_ATAPI) {
2589                ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2590                             atapi_enabled ? "not supported with this driver"
2591                             : "disabled");
2592                ata_dev_disable(dev);
2593                return 0;
2594        }
2595
2596        rc = ata_do_link_spd_horkage(dev);
2597        if (rc)
2598                return rc;
2599
2600        /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2601        if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2602            (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2603                dev->horkage |= ATA_HORKAGE_NOLPM;
2604
2605        if (ap->flags & ATA_FLAG_NO_LPM)
2606                dev->horkage |= ATA_HORKAGE_NOLPM;
2607
2608        if (dev->horkage & ATA_HORKAGE_NOLPM) {
2609                ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2610                dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2611        }
2612
2613        /* let ACPI work its magic */
2614        rc = ata_acpi_on_devcfg(dev);
2615        if (rc)
2616                return rc;
2617
2618        /* massage HPA, do it early as it might change IDENTIFY data */
2619        rc = ata_hpa_resize(dev);
2620        if (rc)
2621                return rc;
2622
2623        /* print device capabilities */
2624        if (ata_msg_probe(ap))
2625                ata_dev_dbg(dev,
2626                            "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2627                            "85:%04x 86:%04x 87:%04x 88:%04x\n",
2628                            __func__,
2629                            id[49], id[82], id[83], id[84],
2630                            id[85], id[86], id[87], id[88]);
2631
2632        /* initialize to-be-configured parameters */
2633        dev->flags &= ~ATA_DFLAG_CFG_MASK;
2634        dev->max_sectors = 0;
2635        dev->cdb_len = 0;
2636        dev->n_sectors = 0;
2637        dev->cylinders = 0;
2638        dev->heads = 0;
2639        dev->sectors = 0;
2640        dev->multi_count = 0;
2641
2642        /*
2643         * common ATA, ATAPI feature tests
2644         */
2645
2646        /* find max transfer mode; for printk only */
2647        xfer_mask = ata_id_xfermask(id);
2648
2649        if (ata_msg_probe(ap))
2650                ata_dump_id(id);
2651
2652        /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2653        ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2654                        sizeof(fwrevbuf));
2655
2656        ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2657                        sizeof(modelbuf));
2658
2659        /* ATA-specific feature tests */
2660        if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2661                if (ata_id_is_cfa(id)) {
2662                        /* CPRM may make this media unusable */
2663                        if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2664                                ata_dev_warn(dev,
2665        "supports DRM functions and may not be fully accessible\n");
2666                        snprintf(revbuf, 7, "CFA");
2667                } else {
2668                        snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2669                        /* Warn the user if the device has TPM extensions */
2670                        if (ata_id_has_tpm(id))
2671                                ata_dev_warn(dev,
2672        "supports DRM functions and may not be fully accessible\n");
2673                }
2674
2675                dev->n_sectors = ata_id_n_sectors(id);
2676
2677                /* get current R/W Multiple count setting */
2678                if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2679                        unsigned int max = dev->id[47] & 0xff;
2680                        unsigned int cnt = dev->id[59] & 0xff;
2681                        /* only recognize/allow powers of two here */
2682                        if (is_power_of_2(max) && is_power_of_2(cnt))
2683                                if (cnt <= max)
2684                                        dev->multi_count = cnt;
2685                }
2686
2687                /* print device info to dmesg */
2688                if (ata_msg_drv(ap) && print_info)
2689                        ata_dev_info(dev, "%s: %s, %s, max %s\n",
2690                                     revbuf, modelbuf, fwrevbuf,
2691                                     ata_mode_string(xfer_mask));
2692
2693                if (ata_id_has_lba(id)) {
2694                        rc = ata_dev_config_lba(dev);
2695                        if (rc)
2696                                return rc;
2697                } else {
2698                        ata_dev_config_chs(dev);
2699                }
2700
2701                ata_dev_config_devslp(dev);
2702                ata_dev_config_sense_reporting(dev);
2703                ata_dev_config_zac(dev);
2704                ata_dev_config_trusted(dev);
2705                ata_dev_config_cpr(dev);
2706                dev->cdb_len = 32;
2707
2708                if (ata_msg_drv(ap) && print_info)
2709                        ata_dev_print_features(dev);
2710        }
2711
2712        /* ATAPI-specific feature tests */
2713        else if (dev->class == ATA_DEV_ATAPI) {
2714                const char *cdb_intr_string = "";
2715                const char *atapi_an_string = "";
2716                const char *dma_dir_string = "";
2717                u32 sntf;
2718
2719                rc = atapi_cdb_len(id);
2720                if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2721                        if (ata_msg_warn(ap))
2722                                ata_dev_warn(dev, "unsupported CDB len\n");
2723                        rc = -EINVAL;
2724                        goto err_out_nosup;
2725                }
2726                dev->cdb_len = (unsigned int) rc;
2727
2728                /* Enable ATAPI AN if both the host and device have
2729                 * the support.  If PMP is attached, SNTF is required
2730                 * to enable ATAPI AN to discern between PHY status
2731                 * changed notifications and ATAPI ANs.
2732                 */
2733                if (atapi_an &&
2734                    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2735                    (!sata_pmp_attached(ap) ||
2736                     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2737                        /* issue SET feature command to turn this on */
2738                        err_mask = ata_dev_set_feature(dev,
2739                                        SETFEATURES_SATA_ENABLE, SATA_AN);
2740                        if (err_mask)
2741                                ata_dev_err(dev,
2742                                            "failed to enable ATAPI AN (err_mask=0x%x)\n",
2743                                            err_mask);
2744                        else {
2745                                dev->flags |= ATA_DFLAG_AN;
2746                                atapi_an_string = ", ATAPI AN";
2747                        }
2748                }
2749
2750                if (ata_id_cdb_intr(dev->id)) {
2751                        dev->flags |= ATA_DFLAG_CDB_INTR;
2752                        cdb_intr_string = ", CDB intr";
2753                }
2754
2755                if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2756                        dev->flags |= ATA_DFLAG_DMADIR;
2757                        dma_dir_string = ", DMADIR";
2758                }
2759
2760                if (ata_id_has_da(dev->id)) {
2761                        dev->flags |= ATA_DFLAG_DA;
2762                        zpodd_init(dev);
2763                }
2764
2765                /* print device info to dmesg */
2766                if (ata_msg_drv(ap) && print_info)
2767                        ata_dev_info(dev,
2768                                     "ATAPI: %s, %s, max %s%s%s%s\n",
2769                                     modelbuf, fwrevbuf,
2770                                     ata_mode_string(xfer_mask),
2771                                     cdb_intr_string, atapi_an_string,
2772                                     dma_dir_string);
2773        }
2774
2775        /* determine max_sectors */
2776        dev->max_sectors = ATA_MAX_SECTORS;
2777        if (dev->flags & ATA_DFLAG_LBA48)
2778                dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2779
2780        /* Limit PATA drive on SATA cable bridge transfers to udma5,
2781           200 sectors */
2782        if (ata_dev_knobble(dev)) {
2783                if (ata_msg_drv(ap) && print_info)
2784                        ata_dev_info(dev, "applying bridge limits\n");
2785                dev->udma_mask &= ATA_UDMA5;
2786                dev->max_sectors = ATA_MAX_SECTORS;
2787        }
2788
2789        if ((dev->class == ATA_DEV_ATAPI) &&
2790            (atapi_command_packet_set(id) == TYPE_TAPE)) {
2791                dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2792                dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2793        }
2794
2795        if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2796                dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2797                                         dev->max_sectors);
2798
2799        if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2800                dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2801                                         dev->max_sectors);
2802
2803        if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2804                dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2805
2806        if (ap->ops->dev_config)
2807                ap->ops->dev_config(dev);
2808
2809        if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2810                /* Let the user know. We don't want to disallow opens for
2811                   rescue purposes, or in case the vendor is just a blithering
2812                   idiot. Do this after the dev_config call as some controllers
2813                   with buggy firmware may want to avoid reporting false device
2814                   bugs */
2815
2816                if (print_info) {
2817                        ata_dev_warn(dev,
2818"Drive reports diagnostics failure. This may indicate a drive\n");
2819                        ata_dev_warn(dev,
2820"fault or invalid emulation. Contact drive vendor for information.\n");
2821                }
2822        }
2823
2824        if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2825                ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2826                ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2827        }
2828
2829        return 0;
2830
2831err_out_nosup:
2832        if (ata_msg_probe(ap))
2833                ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2834        return rc;
2835}
2836
2837/**
2838 *      ata_cable_40wire        -       return 40 wire cable type
2839 *      @ap: port
2840 *
2841 *      Helper method for drivers which want to hardwire 40 wire cable
2842 *      detection.
2843 */
2844
2845int ata_cable_40wire(struct ata_port *ap)
2846{
2847        return ATA_CBL_PATA40;
2848}
2849EXPORT_SYMBOL_GPL(ata_cable_40wire);
2850
2851/**
2852 *      ata_cable_80wire        -       return 80 wire cable type
2853 *      @ap: port
2854 *
2855 *      Helper method for drivers which want to hardwire 80 wire cable
2856 *      detection.
2857 */
2858
2859int ata_cable_80wire(struct ata_port *ap)
2860{
2861        return ATA_CBL_PATA80;
2862}
2863EXPORT_SYMBOL_GPL(ata_cable_80wire);
2864
2865/**
2866 *      ata_cable_unknown       -       return unknown PATA cable.
2867 *      @ap: port
2868 *
2869 *      Helper method for drivers which have no PATA cable detection.
2870 */
2871
2872int ata_cable_unknown(struct ata_port *ap)
2873{
2874        return ATA_CBL_PATA_UNK;
2875}
2876EXPORT_SYMBOL_GPL(ata_cable_unknown);
2877
2878/**
2879 *      ata_cable_ignore        -       return ignored PATA cable.
2880 *      @ap: port
2881 *
2882 *      Helper method for drivers which don't use cable type to limit
2883 *      transfer mode.
2884 */
2885int ata_cable_ignore(struct ata_port *ap)
2886{
2887        return ATA_CBL_PATA_IGN;
2888}
2889EXPORT_SYMBOL_GPL(ata_cable_ignore);
2890
2891/**
2892 *      ata_cable_sata  -       return SATA cable type
2893 *      @ap: port
2894 *
2895 *      Helper method for drivers which have SATA cables
2896 */
2897
2898int ata_cable_sata(struct ata_port *ap)
2899{
2900        return ATA_CBL_SATA;
2901}
2902EXPORT_SYMBOL_GPL(ata_cable_sata);
2903
2904/**
2905 *      ata_bus_probe - Reset and probe ATA bus
2906 *      @ap: Bus to probe
2907 *
2908 *      Master ATA bus probing function.  Initiates a hardware-dependent
2909 *      bus reset, then attempts to identify any devices found on
2910 *      the bus.
2911 *
2912 *      LOCKING:
2913 *      PCI/etc. bus probe sem.
2914 *
2915 *      RETURNS:
2916 *      Zero on success, negative errno otherwise.
2917 */
2918
2919int ata_bus_probe(struct ata_port *ap)
2920{
2921        unsigned int classes[ATA_MAX_DEVICES];
2922        int tries[ATA_MAX_DEVICES];
2923        int rc;
2924        struct ata_device *dev;
2925
2926        ata_for_each_dev(dev, &ap->link, ALL)
2927                tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2928
2929 retry:
2930        ata_for_each_dev(dev, &ap->link, ALL) {
2931                /* If we issue an SRST then an ATA drive (not ATAPI)
2932                 * may change configuration and be in PIO0 timing. If
2933                 * we do a hard reset (or are coming from power on)
2934                 * this is true for ATA or ATAPI. Until we've set a
2935                 * suitable controller mode we should not touch the
2936                 * bus as we may be talking too fast.
2937                 */
2938                dev->pio_mode = XFER_PIO_0;
2939                dev->dma_mode = 0xff;
2940
2941                /* If the controller has a pio mode setup function
2942                 * then use it to set the chipset to rights. Don't
2943                 * touch the DMA setup as that will be dealt with when
2944                 * configuring devices.
2945                 */
2946                if (ap->ops->set_piomode)
2947                        ap->ops->set_piomode(ap, dev);
2948        }
2949
2950        /* reset and determine device classes */
2951        ap->ops->phy_reset(ap);
2952
2953        ata_for_each_dev(dev, &ap->link, ALL) {
2954                if (dev->class != ATA_DEV_UNKNOWN)
2955                        classes[dev->devno] = dev->class;
2956                else
2957                        classes[dev->devno] = ATA_DEV_NONE;
2958
2959                dev->class = ATA_DEV_UNKNOWN;
2960        }
2961
2962        /* read IDENTIFY page and configure devices. We have to do the identify
2963           specific sequence bass-ackwards so that PDIAG- is released by
2964           the slave device */
2965
2966        ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2967                if (tries[dev->devno])
2968                        dev->class = classes[dev->devno];
2969
2970                if (!ata_dev_enabled(dev))
2971                        continue;
2972
2973                rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2974                                     dev->id);
2975                if (rc)
2976                        goto fail;
2977        }
2978
2979        /* Now ask for the cable type as PDIAG- should have been released */
2980        if (ap->ops->cable_detect)
2981                ap->cbl = ap->ops->cable_detect(ap);
2982
2983        /* We may have SATA bridge glue hiding here irrespective of
2984         * the reported cable types and sensed types.  When SATA
2985         * drives indicate we have a bridge, we don't know which end
2986         * of the link the bridge is which is a problem.
2987         */
2988        ata_for_each_dev(dev, &ap->link, ENABLED)
2989                if (ata_id_is_sata(dev->id))
2990                        ap->cbl = ATA_CBL_SATA;
2991
2992        /* After the identify sequence we can now set up the devices. We do
2993           this in the normal order so that the user doesn't get confused */
2994
2995        ata_for_each_dev(dev, &ap->link, ENABLED) {
2996                ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2997                rc = ata_dev_configure(dev);
2998                ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2999                if (rc)
3000                        goto fail;
3001        }
3002
3003        /* configure transfer mode */
3004        rc = ata_set_mode(&ap->link, &dev);
3005        if (rc)
3006                goto fail;
3007
3008        ata_for_each_dev(dev, &ap->link, ENABLED)
3009                return 0;
3010
3011        return -ENODEV;
3012
3013 fail:
3014        tries[dev->devno]--;
3015
3016        switch (rc) {
3017        case -EINVAL:
3018                /* eeek, something went very wrong, give up */
3019                tries[dev->devno] = 0;
3020                break;
3021
3022        case -ENODEV:
3023                /* give it just one more chance */
3024                tries[dev->devno] = min(tries[dev->devno], 1);
3025                fallthrough;
3026        case -EIO:
3027                if (tries[dev->devno] == 1) {
3028                        /* This is the last chance, better to slow
3029                         * down than lose it.
3030                         */
3031                        sata_down_spd_limit(&ap->link, 0);
3032                        ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
3033                }
3034        }
3035
3036        if (!tries[dev->devno])
3037                ata_dev_disable(dev);
3038
3039        goto retry;
3040}
3041
3042/**
3043 *      sata_print_link_status - Print SATA link status
3044 *      @link: SATA link to printk link status about
3045 *
3046 *      This function prints link speed and status of a SATA link.
3047 *
3048 *      LOCKING:
3049 *      None.
3050 */
3051static void sata_print_link_status(struct ata_link *link)
3052{
3053        u32 sstatus, scontrol, tmp;
3054
3055        if (sata_scr_read(link, SCR_STATUS, &sstatus))
3056                return;
3057        sata_scr_read(link, SCR_CONTROL, &scontrol);
3058
3059        if (ata_phys_link_online(link)) {
3060                tmp = (sstatus >> 4) & 0xf;
3061                ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3062                              sata_spd_string(tmp), sstatus, scontrol);
3063        } else {
3064                ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3065                              sstatus, scontrol);
3066        }
3067}
3068
3069/**
3070 *      ata_dev_pair            -       return other device on cable
3071 *      @adev: device
3072 *
3073 *      Obtain the other device on the same cable, or if none is
3074 *      present NULL is returned
3075 */
3076
3077struct ata_device *ata_dev_pair(struct ata_device *adev)
3078{
3079        struct ata_link *link = adev->link;
3080        struct ata_device *pair = &link->device[1 - adev->devno];
3081        if (!ata_dev_enabled(pair))
3082                return NULL;
3083        return pair;
3084}
3085EXPORT_SYMBOL_GPL(ata_dev_pair);
3086
3087/**
3088 *      sata_down_spd_limit - adjust SATA spd limit downward
3089 *      @link: Link to adjust SATA spd limit for
3090 *      @spd_limit: Additional limit
3091 *
3092 *      Adjust SATA spd limit of @link downward.  Note that this
3093 *      function only adjusts the limit.  The change must be applied
3094 *      using sata_set_spd().
3095 *
3096 *      If @spd_limit is non-zero, the speed is limited to equal to or
3097 *      lower than @spd_limit if such speed is supported.  If
3098 *      @spd_limit is slower than any supported speed, only the lowest
3099 *      supported speed is allowed.
3100 *
3101 *      LOCKING:
3102 *      Inherited from caller.
3103 *
3104 *      RETURNS:
3105 *      0 on success, negative errno on failure
3106 */
3107int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3108{
3109        u32 sstatus, spd, mask;
3110        int rc, bit;
3111
3112        if (!sata_scr_valid(link))
3113                return -EOPNOTSUPP;
3114
3115        /* If SCR can be read, use it to determine the current SPD.
3116         * If not, use cached value in link->sata_spd.
3117         */
3118        rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3119        if (rc == 0 && ata_sstatus_online(sstatus))
3120                spd = (sstatus >> 4) & 0xf;
3121        else
3122                spd = link->sata_spd;
3123
3124        mask = link->sata_spd_limit;
3125        if (mask <= 1)
3126                return -EINVAL;
3127
3128        /* unconditionally mask off the highest bit */
3129        bit = fls(mask) - 1;
3130        mask &= ~(1 << bit);
3131
3132        /*
3133         * Mask off all speeds higher than or equal to the current one.  At
3134         * this point, if current SPD is not available and we previously
3135         * recorded the link speed from SStatus, the driver has already
3136         * masked off the highest bit so mask should already be 1 or 0.
3137         * Otherwise, we should not force 1.5Gbps on a link where we have
3138         * not previously recorded speed from SStatus.  Just return in this
3139         * case.
3140         */
3141        if (spd > 1)
3142                mask &= (1 << (spd - 1)) - 1;
3143        else
3144                return -EINVAL;
3145
3146        /* were we already at the bottom? */
3147        if (!mask)
3148                return -EINVAL;
3149
3150        if (spd_limit) {
3151                if (mask & ((1 << spd_limit) - 1))
3152                        mask &= (1 << spd_limit) - 1;
3153                else {
3154                        bit = ffs(mask) - 1;
3155                        mask = 1 << bit;
3156                }
3157        }
3158
3159        link->sata_spd_limit = mask;
3160
3161        ata_link_warn(link, "limiting SATA link speed to %s\n",
3162                      sata_spd_string(fls(mask)));
3163
3164        return 0;
3165}
3166
3167#ifdef CONFIG_ATA_ACPI
3168/**
3169 *      ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3170 *      @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3171 *      @cycle: cycle duration in ns
3172 *
3173 *      Return matching xfer mode for @cycle.  The returned mode is of
3174 *      the transfer type specified by @xfer_shift.  If @cycle is too
3175 *      slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3176 *      than the fastest known mode, the fasted mode is returned.
3177 *
3178 *      LOCKING:
3179 *      None.
3180 *
3181 *      RETURNS:
3182 *      Matching xfer_mode, 0xff if no match found.
3183 */
3184u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3185{
3186        u8 base_mode = 0xff, last_mode = 0xff;
3187        const struct ata_xfer_ent *ent;
3188        const struct ata_timing *t;
3189
3190        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3191                if (ent->shift == xfer_shift)
3192                        base_mode = ent->base;
3193
3194        for (t = ata_timing_find_mode(base_mode);
3195             t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3196                unsigned short this_cycle;
3197
3198                switch (xfer_shift) {
3199                case ATA_SHIFT_PIO:
3200                case ATA_SHIFT_MWDMA:
3201                        this_cycle = t->cycle;
3202                        break;
3203                case ATA_SHIFT_UDMA:
3204                        this_cycle = t->udma;
3205                        break;
3206                default:
3207                        return 0xff;
3208                }
3209
3210                if (cycle > this_cycle)
3211                        break;
3212
3213                last_mode = t->mode;
3214        }
3215
3216        return last_mode;
3217}
3218#endif
3219
3220/**
3221 *      ata_down_xfermask_limit - adjust dev xfer masks downward
3222 *      @dev: Device to adjust xfer masks
3223 *      @sel: ATA_DNXFER_* selector
3224 *
3225 *      Adjust xfer masks of @dev downward.  Note that this function
3226 *      does not apply the change.  Invoking ata_set_mode() afterwards
3227 *      will apply the limit.
3228 *
3229 *      LOCKING:
3230 *      Inherited from caller.
3231 *
3232 *      RETURNS:
3233 *      0 on success, negative errno on failure
3234 */
3235int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3236{
3237        char buf[32];
3238        unsigned long orig_mask, xfer_mask;
3239        unsigned long pio_mask, mwdma_mask, udma_mask;
3240        int quiet, highbit;
3241
3242        quiet = !!(sel & ATA_DNXFER_QUIET);
3243        sel &= ~ATA_DNXFER_QUIET;
3244
3245        xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3246                                                  dev->mwdma_mask,
3247                                                  dev->udma_mask);
3248        ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3249
3250        switch (sel) {
3251        case ATA_DNXFER_PIO:
3252                highbit = fls(pio_mask) - 1;
3253                pio_mask &= ~(1 << highbit);
3254                break;
3255
3256        case ATA_DNXFER_DMA:
3257                if (udma_mask) {
3258                        highbit = fls(udma_mask) - 1;
3259                        udma_mask &= ~(1 << highbit);
3260                        if (!udma_mask)
3261                                return -ENOENT;
3262                } else if (mwdma_mask) {
3263                        highbit = fls(mwdma_mask) - 1;
3264                        mwdma_mask &= ~(1 << highbit);
3265                        if (!mwdma_mask)
3266                                return -ENOENT;
3267                }
3268                break;
3269
3270        case ATA_DNXFER_40C:
3271                udma_mask &= ATA_UDMA_MASK_40C;
3272                break;
3273
3274        case ATA_DNXFER_FORCE_PIO0:
3275                pio_mask &= 1;
3276                fallthrough;
3277        case ATA_DNXFER_FORCE_PIO:
3278                mwdma_mask = 0;
3279                udma_mask = 0;
3280                break;
3281
3282        default:
3283                BUG();
3284        }
3285
3286        xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3287
3288        if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3289                return -ENOENT;
3290
3291        if (!quiet) {
3292                if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3293                        snprintf(buf, sizeof(buf), "%s:%s",
3294                                 ata_mode_string(xfer_mask),
3295                                 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3296                else
3297                        snprintf(buf, sizeof(buf), "%s",
3298                                 ata_mode_string(xfer_mask));
3299
3300                ata_dev_warn(dev, "limiting speed to %s\n", buf);
3301        }
3302
3303        ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3304                            &dev->udma_mask);
3305
3306        return 0;
3307}
3308
3309static int ata_dev_set_mode(struct ata_device *dev)
3310{
3311        struct ata_port *ap = dev->link->ap;
3312        struct ata_eh_context *ehc = &dev->link->eh_context;
3313        const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3314        const char *dev_err_whine = "";
3315        int ign_dev_err = 0;
3316        unsigned int err_mask = 0;
3317        int rc;
3318
3319        dev->flags &= ~ATA_DFLAG_PIO;
3320        if (dev->xfer_shift == ATA_SHIFT_PIO)
3321                dev->flags |= ATA_DFLAG_PIO;
3322
3323        if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3324                dev_err_whine = " (SET_XFERMODE skipped)";
3325        else {
3326                if (nosetxfer)
3327                        ata_dev_warn(dev,
3328                                     "NOSETXFER but PATA detected - can't "
3329                                     "skip SETXFER, might malfunction\n");
3330                err_mask = ata_dev_set_xfermode(dev);
3331        }
3332
3333        if (err_mask & ~AC_ERR_DEV)
3334                goto fail;
3335
3336        /* revalidate */
3337        ehc->i.flags |= ATA_EHI_POST_SETMODE;
3338        rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3339        ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3340        if (rc)
3341                return rc;
3342
3343        if (dev->xfer_shift == ATA_SHIFT_PIO) {
3344                /* Old CFA may refuse this command, which is just fine */
3345                if (ata_id_is_cfa(dev->id))
3346                        ign_dev_err = 1;
3347                /* Catch several broken garbage emulations plus some pre
3348                   ATA devices */
3349                if (ata_id_major_version(dev->id) == 0 &&
3350                                        dev->pio_mode <= XFER_PIO_2)
3351                        ign_dev_err = 1;
3352                /* Some very old devices and some bad newer ones fail
3353                   any kind of SET_XFERMODE request but support PIO0-2
3354                   timings and no IORDY */
3355                if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3356                        ign_dev_err = 1;
3357        }
3358        /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3359           Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3360        if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3361            dev->dma_mode == XFER_MW_DMA_0 &&
3362            (dev->id[63] >> 8) & 1)
3363                ign_dev_err = 1;
3364
3365        /* if the device is actually configured correctly, ignore dev err */
3366        if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3367                ign_dev_err = 1;
3368
3369        if (err_mask & AC_ERR_DEV) {
3370                if (!ign_dev_err)
3371                        goto fail;
3372                else
3373                        dev_err_whine = " (device error ignored)";
3374        }
3375
3376        DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3377                dev->xfer_shift, (int)dev->xfer_mode);
3378
3379        if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3380            ehc->i.flags & ATA_EHI_DID_HARDRESET)
3381                ata_dev_info(dev, "configured for %s%s\n",
3382                             ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3383                             dev_err_whine);
3384
3385        return 0;
3386
3387 fail:
3388        ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3389        return -EIO;
3390}
3391
3392/**
3393 *      ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3394 *      @link: link on which timings will be programmed
3395 *      @r_failed_dev: out parameter for failed device
3396 *
3397 *      Standard implementation of the function used to tune and set
3398 *      ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3399 *      ata_dev_set_mode() fails, pointer to the failing device is
3400 *      returned in @r_failed_dev.
3401 *
3402 *      LOCKING:
3403 *      PCI/etc. bus probe sem.
3404 *
3405 *      RETURNS:
3406 *      0 on success, negative errno otherwise
3407 */
3408
3409int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3410{
3411        struct ata_port *ap = link->ap;
3412        struct ata_device *dev;
3413        int rc = 0, used_dma = 0, found = 0;
3414
3415        /* step 1: calculate xfer_mask */
3416        ata_for_each_dev(dev, link, ENABLED) {
3417                unsigned long pio_mask, dma_mask;
3418                unsigned int mode_mask;
3419
3420                mode_mask = ATA_DMA_MASK_ATA;
3421                if (dev->class == ATA_DEV_ATAPI)
3422                        mode_mask = ATA_DMA_MASK_ATAPI;
3423                else if (ata_id_is_cfa(dev->id))
3424                        mode_mask = ATA_DMA_MASK_CFA;
3425
3426                ata_dev_xfermask(dev);
3427                ata_force_xfermask(dev);
3428
3429                pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3430
3431                if (libata_dma_mask & mode_mask)
3432                        dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3433                                                     dev->udma_mask);
3434                else
3435                        dma_mask = 0;
3436
3437                dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3438                dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3439
3440                found = 1;
3441                if (ata_dma_enabled(dev))
3442                        used_dma = 1;
3443        }
3444        if (!found)
3445                goto out;
3446
3447        /* step 2: always set host PIO timings */
3448        ata_for_each_dev(dev, link, ENABLED) {
3449                if (dev->pio_mode == 0xff) {
3450                        ata_dev_warn(dev, "no PIO support\n");
3451                        rc = -EINVAL;
3452                        goto out;
3453                }
3454
3455                dev->xfer_mode = dev->pio_mode;
3456                dev->xfer_shift = ATA_SHIFT_PIO;
3457                if (ap->ops->set_piomode)
3458                        ap->ops->set_piomode(ap, dev);
3459        }
3460
3461        /* step 3: set host DMA timings */
3462        ata_for_each_dev(dev, link, ENABLED) {
3463                if (!ata_dma_enabled(dev))
3464                        continue;
3465
3466                dev->xfer_mode = dev->dma_mode;
3467                dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3468                if (ap->ops->set_dmamode)
3469                        ap->ops->set_dmamode(ap, dev);
3470        }
3471
3472        /* step 4: update devices' xfer mode */
3473        ata_for_each_dev(dev, link, ENABLED) {
3474                rc = ata_dev_set_mode(dev);
3475                if (rc)
3476                        goto out;
3477        }
3478
3479        /* Record simplex status. If we selected DMA then the other
3480         * host channels are not permitted to do so.
3481         */
3482        if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3483                ap->host->simplex_claimed = ap;
3484
3485 out:
3486        if (rc)
3487                *r_failed_dev = dev;
3488        return rc;
3489}
3490EXPORT_SYMBOL_GPL(ata_do_set_mode);
3491
3492/**
3493 *      ata_wait_ready - wait for link to become ready
3494 *      @link: link to be waited on
3495 *      @deadline: deadline jiffies for the operation
3496 *      @check_ready: callback to check link readiness
3497 *
3498 *      Wait for @link to become ready.  @check_ready should return
3499 *      positive number if @link is ready, 0 if it isn't, -ENODEV if
3500 *      link doesn't seem to be occupied, other errno for other error
3501 *      conditions.
3502 *
3503 *      Transient -ENODEV conditions are allowed for
3504 *      ATA_TMOUT_FF_WAIT.
3505 *
3506 *      LOCKING:
3507 *      EH context.
3508 *
3509 *      RETURNS:
3510 *      0 if @link is ready before @deadline; otherwise, -errno.
3511 */
3512int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3513                   int (*check_ready)(struct ata_link *link))
3514{
3515        unsigned long start = jiffies;
3516        unsigned long nodev_deadline;
3517        int warned = 0;
3518
3519        /* choose which 0xff timeout to use, read comment in libata.h */
3520        if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3521                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3522        else
3523                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3524
3525        /* Slave readiness can't be tested separately from master.  On
3526         * M/S emulation configuration, this function should be called
3527         * only on the master and it will handle both master and slave.
3528         */
3529        WARN_ON(link == link->ap->slave_link);
3530
3531        if (time_after(nodev_deadline, deadline))
3532                nodev_deadline = deadline;
3533
3534        while (1) {
3535                unsigned long now = jiffies;
3536                int ready, tmp;
3537
3538                ready = tmp = check_ready(link);
3539                if (ready > 0)
3540                        return 0;
3541
3542                /*
3543                 * -ENODEV could be transient.  Ignore -ENODEV if link
3544                 * is online.  Also, some SATA devices take a long
3545                 * time to clear 0xff after reset.  Wait for
3546                 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3547                 * offline.
3548                 *
3549                 * Note that some PATA controllers (pata_ali) explode
3550                 * if status register is read more than once when
3551                 * there's no device attached.
3552                 */
3553                if (ready == -ENODEV) {
3554                        if (ata_link_online(link))
3555                                ready = 0;
3556                        else if ((link->ap->flags & ATA_FLAG_SATA) &&
3557                                 !ata_link_offline(link) &&
3558                                 time_before(now, nodev_deadline))
3559                                ready = 0;
3560                }
3561
3562                if (ready)
3563                        return ready;
3564                if (time_after(now, deadline))
3565                        return -EBUSY;
3566
3567                if (!warned && time_after(now, start + 5 * HZ) &&
3568                    (deadline - now > 3 * HZ)) {
3569                        ata_link_warn(link,
3570                                "link is slow to respond, please be patient "
3571                                "(ready=%d)\n", tmp);
3572                        warned = 1;
3573                }
3574
3575                ata_msleep(link->ap, 50);
3576        }
3577}
3578
3579/**
3580 *      ata_wait_after_reset - wait for link to become ready after reset
3581 *      @link: link to be waited on
3582 *      @deadline: deadline jiffies for the operation
3583 *      @check_ready: callback to check link readiness
3584 *
3585 *      Wait for @link to become ready after reset.
3586 *
3587 *      LOCKING:
3588 *      EH context.
3589 *
3590 *      RETURNS:
3591 *      0 if @link is ready before @deadline; otherwise, -errno.
3592 */
3593int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3594                                int (*check_ready)(struct ata_link *link))
3595{
3596        ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3597
3598        return ata_wait_ready(link, deadline, check_ready);
3599}
3600EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3601
3602/**
3603 *      ata_std_prereset - prepare for reset
3604 *      @link: ATA link to be reset
3605 *      @deadline: deadline jiffies for the operation
3606 *
3607 *      @link is about to be reset.  Initialize it.  Failure from
3608 *      prereset makes libata abort whole reset sequence and give up
3609 *      that port, so prereset should be best-effort.  It does its
3610 *      best to prepare for reset sequence but if things go wrong, it
3611 *      should just whine, not fail.
3612 *
3613 *      LOCKING:
3614 *      Kernel thread context (may sleep)
3615 *
3616 *      RETURNS:
3617 *      0 on success, -errno otherwise.
3618 */
3619int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3620{
3621        struct ata_port *ap = link->ap;
3622        struct ata_eh_context *ehc = &link->eh_context;
3623        const unsigned long *timing = sata_ehc_deb_timing(ehc);
3624        int rc;
3625
3626        /* if we're about to do hardreset, nothing more to do */
3627        if (ehc->i.action & ATA_EH_HARDRESET)
3628                return 0;
3629
3630        /* if SATA, resume link */
3631        if (ap->flags & ATA_FLAG_SATA) {
3632                rc = sata_link_resume(link, timing, deadline);
3633                /* whine about phy resume failure but proceed */
3634                if (rc && rc != -EOPNOTSUPP)
3635                        ata_link_warn(link,
3636                                      "failed to resume link for reset (errno=%d)\n",
3637                                      rc);
3638        }
3639
3640        /* no point in trying softreset on offline link */
3641        if (ata_phys_link_offline(link))
3642                ehc->i.action &= ~ATA_EH_SOFTRESET;
3643
3644        return 0;
3645}
3646EXPORT_SYMBOL_GPL(ata_std_prereset);
3647
3648/**
3649 *      sata_std_hardreset - COMRESET w/o waiting or classification
3650 *      @link: link to reset
3651 *      @class: resulting class of attached device
3652 *      @deadline: deadline jiffies for the operation
3653 *
3654 *      Standard SATA COMRESET w/o waiting or classification.
3655 *
3656 *      LOCKING:
3657 *      Kernel thread context (may sleep)
3658 *
3659 *      RETURNS:
3660 *      0 if link offline, -EAGAIN if link online, -errno on errors.
3661 */
3662int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3663                       unsigned long deadline)
3664{
3665        const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3666        bool online;
3667        int rc;
3668
3669        /* do hardreset */
3670        rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3671        return online ? -EAGAIN : rc;
3672}
3673EXPORT_SYMBOL_GPL(sata_std_hardreset);
3674
3675/**
3676 *      ata_std_postreset - standard postreset callback
3677 *      @link: the target ata_link
3678 *      @classes: classes of attached devices
3679 *
3680 *      This function is invoked after a successful reset.  Note that
3681 *      the device might have been reset more than once using
3682 *      different reset methods before postreset is invoked.
3683 *
3684 *      LOCKING:
3685 *      Kernel thread context (may sleep)
3686 */
3687void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3688{
3689        u32 serror;
3690
3691        DPRINTK("ENTER\n");
3692
3693        /* reset complete, clear SError */
3694        if (!sata_scr_read(link, SCR_ERROR, &serror))
3695                sata_scr_write(link, SCR_ERROR, serror);
3696
3697        /* print link status */
3698        sata_print_link_status(link);
3699
3700        DPRINTK("EXIT\n");
3701}
3702EXPORT_SYMBOL_GPL(ata_std_postreset);
3703
3704/**
3705 *      ata_dev_same_device - Determine whether new ID matches configured device
3706 *      @dev: device to compare against
3707 *      @new_class: class of the new device
3708 *      @new_id: IDENTIFY page of the new device
3709 *
3710 *      Compare @new_class and @new_id against @dev and determine
3711 *      whether @dev is the device indicated by @new_class and
3712 *      @new_id.
3713 *
3714 *      LOCKING:
3715 *      None.
3716 *
3717 *      RETURNS:
3718 *      1 if @dev matches @new_class and @new_id, 0 otherwise.
3719 */
3720static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3721                               const u16 *new_id)
3722{
3723        const u16 *old_id = dev->id;
3724        unsigned char model[2][ATA_ID_PROD_LEN + 1];
3725        unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3726
3727        if (dev->class != new_class) {
3728                ata_dev_info(dev, "class mismatch %d != %d\n",
3729                             dev->class, new_class);
3730                return 0;
3731        }
3732
3733        ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3734        ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3735        ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3736        ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3737
3738        if (strcmp(model[0], model[1])) {
3739                ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3740                             model[0], model[1]);
3741                return 0;
3742        }
3743
3744        if (strcmp(serial[0], serial[1])) {
3745                ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3746                             serial[0], serial[1]);
3747                return 0;
3748        }
3749
3750        return 1;
3751}
3752
3753/**
3754 *      ata_dev_reread_id - Re-read IDENTIFY data
3755 *      @dev: target ATA device
3756 *      @readid_flags: read ID flags
3757 *
3758 *      Re-read IDENTIFY page and make sure @dev is still attached to
3759 *      the port.
3760 *
3761 *      LOCKING:
3762 *      Kernel thread context (may sleep)
3763 *
3764 *      RETURNS:
3765 *      0 on success, negative errno otherwise
3766 */
3767int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3768{
3769        unsigned int class = dev->class;
3770        u16 *id = (void *)dev->link->ap->sector_buf;
3771        int rc;
3772
3773        /* read ID data */
3774        rc = ata_dev_read_id(dev, &class, readid_flags, id);
3775        if (rc)
3776                return rc;
3777
3778        /* is the device still there? */
3779        if (!ata_dev_same_device(dev, class, id))
3780                return -ENODEV;
3781
3782        memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3783        return 0;
3784}
3785
3786/**
3787 *      ata_dev_revalidate - Revalidate ATA device
3788 *      @dev: device to revalidate
3789 *      @new_class: new class code
3790 *      @readid_flags: read ID flags
3791 *
3792 *      Re-read IDENTIFY page, make sure @dev is still attached to the
3793 *      port and reconfigure it according to the new IDENTIFY page.
3794 *
3795 *      LOCKING:
3796 *      Kernel thread context (may sleep)
3797 *
3798 *      RETURNS:
3799 *      0 on success, negative errno otherwise
3800 */
3801int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3802                       unsigned int readid_flags)
3803{
3804        u64 n_sectors = dev->n_sectors;
3805        u64 n_native_sectors = dev->n_native_sectors;
3806        int rc;
3807
3808        if (!ata_dev_enabled(dev))
3809                return -ENODEV;
3810
3811        /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3812        if (ata_class_enabled(new_class) &&
3813            new_class != ATA_DEV_ATA &&
3814            new_class != ATA_DEV_ATAPI &&
3815            new_class != ATA_DEV_ZAC &&
3816            new_class != ATA_DEV_SEMB) {
3817                ata_dev_info(dev, "class mismatch %u != %u\n",
3818                             dev->class, new_class);
3819                rc = -ENODEV;
3820                goto fail;
3821        }
3822
3823        /* re-read ID */
3824        rc = ata_dev_reread_id(dev, readid_flags);
3825        if (rc)
3826                goto fail;
3827
3828        /* configure device according to the new ID */
3829        rc = ata_dev_configure(dev);
3830        if (rc)
3831                goto fail;
3832
3833        /* verify n_sectors hasn't changed */
3834        if (dev->class != ATA_DEV_ATA || !n_sectors ||
3835            dev->n_sectors == n_sectors)
3836                return 0;
3837
3838        /* n_sectors has changed */
3839        ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3840                     (unsigned long long)n_sectors,
3841                     (unsigned long long)dev->n_sectors);
3842
3843        /*
3844         * Something could have caused HPA to be unlocked
3845         * involuntarily.  If n_native_sectors hasn't changed and the
3846         * new size matches it, keep the device.
3847         */
3848        if (dev->n_native_sectors == n_native_sectors &&
3849            dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3850                ata_dev_warn(dev,
3851                             "new n_sectors matches native, probably "
3852                             "late HPA unlock, n_sectors updated\n");
3853                /* use the larger n_sectors */
3854                return 0;
3855        }
3856
3857        /*
3858         * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3859         * unlocking HPA in those cases.
3860         *
3861         * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3862         */
3863        if (dev->n_native_sectors == n_native_sectors &&
3864            dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3865            !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3866                ata_dev_warn(dev,
3867                             "old n_sectors matches native, probably "
3868                             "late HPA lock, will try to unlock HPA\n");
3869                /* try unlocking HPA */
3870                dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3871                rc = -EIO;
3872        } else
3873                rc = -ENODEV;
3874
3875        /* restore original n_[native_]sectors and fail */
3876        dev->n_native_sectors = n_native_sectors;
3877        dev->n_sectors = n_sectors;
3878 fail:
3879        ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3880        return rc;
3881}
3882
3883struct ata_blacklist_entry {
3884        const char *model_num;
3885        const char *model_rev;
3886        unsigned long horkage;
3887};
3888
3889static const struct ata_blacklist_entry ata_device_blacklist [] = {
3890        /* Devices with DMA related problems under Linux */
3891        { "WDC AC11000H",       NULL,           ATA_HORKAGE_NODMA },
3892        { "WDC AC22100H",       NULL,           ATA_HORKAGE_NODMA },
3893        { "WDC AC32500H",       NULL,           ATA_HORKAGE_NODMA },
3894        { "WDC AC33100H",       NULL,           ATA_HORKAGE_NODMA },
3895        { "WDC AC31600H",       NULL,           ATA_HORKAGE_NODMA },
3896        { "WDC AC32100H",       "24.09P07",     ATA_HORKAGE_NODMA },
3897        { "WDC AC23200L",       "21.10N21",     ATA_HORKAGE_NODMA },
3898        { "Compaq CRD-8241B",   NULL,           ATA_HORKAGE_NODMA },
3899        { "CRD-8400B",          NULL,           ATA_HORKAGE_NODMA },
3900        { "CRD-848[02]B",       NULL,           ATA_HORKAGE_NODMA },
3901        { "CRD-84",             NULL,           ATA_HORKAGE_NODMA },
3902        { "SanDisk SDP3B",      NULL,           ATA_HORKAGE_NODMA },
3903        { "SanDisk SDP3B-64",   NULL,           ATA_HORKAGE_NODMA },
3904        { "SANYO CD-ROM CRD",   NULL,           ATA_HORKAGE_NODMA },
3905        { "HITACHI CDR-8",      NULL,           ATA_HORKAGE_NODMA },
3906        { "HITACHI CDR-8[34]35",NULL,           ATA_HORKAGE_NODMA },
3907        { "Toshiba CD-ROM XM-6202B", NULL,      ATA_HORKAGE_NODMA },
3908        { "TOSHIBA CD-ROM XM-1702BC", NULL,     ATA_HORKAGE_NODMA },
3909        { "CD-532E-A",          NULL,           ATA_HORKAGE_NODMA },
3910        { "E-IDE CD-ROM CR-840",NULL,           ATA_HORKAGE_NODMA },
3911        { "CD-ROM Drive/F5A",   NULL,           ATA_HORKAGE_NODMA },
3912        { "WPI CDD-820",        NULL,           ATA_HORKAGE_NODMA },
3913        { "SAMSUNG CD-ROM SC-148C", NULL,       ATA_HORKAGE_NODMA },
3914        { "SAMSUNG CD-ROM SC",  NULL,           ATA_HORKAGE_NODMA },
3915        { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3916        { "_NEC DV5800A",       NULL,           ATA_HORKAGE_NODMA },
3917        { "SAMSUNG CD-ROM SN-124", "N001",      ATA_HORKAGE_NODMA },
3918        { "Seagate STT20000A", NULL,            ATA_HORKAGE_NODMA },
3919        { " 2GB ATA Flash Disk", "ADMA428M",    ATA_HORKAGE_NODMA },
3920        { "VRFDFC22048UCHC-TE*", NULL,          ATA_HORKAGE_NODMA },
3921        /* Odd clown on sil3726/4726 PMPs */
3922        { "Config  Disk",       NULL,           ATA_HORKAGE_DISABLE },
3923        /* Similar story with ASMedia 1092 */
3924        { "ASMT109x- Config",   NULL,           ATA_HORKAGE_DISABLE },
3925
3926        /* Weird ATAPI devices */
3927        { "TORiSAN DVD-ROM DRD-N216", NULL,     ATA_HORKAGE_MAX_SEC_128 },
3928        { "QUANTUM DAT    DAT72-000", NULL,     ATA_HORKAGE_ATAPI_MOD16_DMA },
3929        { "Slimtype DVD A  DS8A8SH", NULL,      ATA_HORKAGE_MAX_SEC_LBA48 },
3930        { "Slimtype DVD A  DS8A9SH", NULL,      ATA_HORKAGE_MAX_SEC_LBA48 },
3931
3932        /*
3933         * Causes silent data corruption with higher max sects.
3934         * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3935         */
3936        { "ST380013AS",         "3.20",         ATA_HORKAGE_MAX_SEC_1024 },
3937
3938        /*
3939         * These devices time out with higher max sects.
3940         * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3941         */
3942        { "LITEON CX1-JB*-HP",  NULL,           ATA_HORKAGE_MAX_SEC_1024 },
3943        { "LITEON EP1-*",       NULL,           ATA_HORKAGE_MAX_SEC_1024 },
3944
3945        /* Devices we expect to fail diagnostics */
3946
3947        /* Devices where NCQ should be avoided */
3948        /* NCQ is slow */
3949        { "WDC WD740ADFD-00",   NULL,           ATA_HORKAGE_NONCQ },
3950        { "WDC WD740ADFD-00NLR1", NULL,         ATA_HORKAGE_NONCQ, },
3951        /* http://thread.gmane.org/gmane.linux.ide/14907 */
3952        { "FUJITSU MHT2060BH",  NULL,           ATA_HORKAGE_NONCQ },
3953        /* NCQ is broken */
3954        { "Maxtor *",           "BANC*",        ATA_HORKAGE_NONCQ },
3955        { "Maxtor 7V300F0",     "VA111630",     ATA_HORKAGE_NONCQ },
3956        { "ST380817AS",         "3.42",         ATA_HORKAGE_NONCQ },
3957        { "ST3160023AS",        "3.42",         ATA_HORKAGE_NONCQ },
3958        { "OCZ CORE_SSD",       "02.10104",     ATA_HORKAGE_NONCQ },
3959
3960        /* Seagate NCQ + FLUSH CACHE firmware bug */
3961        { "ST31500341AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
3962                                                ATA_HORKAGE_FIRMWARE_WARN },
3963
3964        { "ST31000333AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
3965                                                ATA_HORKAGE_FIRMWARE_WARN },
3966
3967        { "ST3640[36]23AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
3968                                                ATA_HORKAGE_FIRMWARE_WARN },
3969
3970        { "ST3320[68]13AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
3971                                                ATA_HORKAGE_FIRMWARE_WARN },
3972
3973        /* drives which fail FPDMA_AA activation (some may freeze afterwards)
3974           the ST disks also have LPM issues */
3975        { "ST1000LM024 HN-M101MBB", NULL,       ATA_HORKAGE_BROKEN_FPDMA_AA |
3976                                                ATA_HORKAGE_NOLPM, },
3977        { "VB0250EAVER",        "HPG7",         ATA_HORKAGE_BROKEN_FPDMA_AA },
3978
3979        /* Blacklist entries taken from Silicon Image 3124/3132
3980           Windows driver .inf file - also several Linux problem reports */
3981        { "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
3982        { "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
3983        { "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
3984
3985        /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
3986        { "C300-CTFDDAC128MAG", "0001",         ATA_HORKAGE_NONCQ, },
3987
3988        /* Sandisk SD7/8/9s lock up hard on large trims */
3989        { "SanDisk SD[789]*",   NULL,           ATA_HORKAGE_MAX_TRIM_128M, },
3990
3991        /* devices which puke on READ_NATIVE_MAX */
3992        { "HDS724040KLSA80",    "KFAOA20N",     ATA_HORKAGE_BROKEN_HPA, },
3993        { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3994        { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3995        { "MAXTOR 6L080L4",     "A93.0500",     ATA_HORKAGE_BROKEN_HPA },
3996
3997        /* this one allows HPA unlocking but fails IOs on the area */
3998        { "OCZ-VERTEX",             "1.30",     ATA_HORKAGE_BROKEN_HPA },
3999
4000        /* Devices which report 1 sector over size HPA */
4001        { "ST340823A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4002        { "ST320413A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4003        { "ST310211A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4004
4005        /* Devices which get the IVB wrong */
4006        { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4007        /* Maybe we should just blacklist TSSTcorp... */
4008        { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4009
4010        /* Devices that do not need bridging limits applied */
4011        { "MTRON MSP-SATA*",            NULL,   ATA_HORKAGE_BRIDGE_OK, },
4012        { "BUFFALO HD-QSU2/R5",         NULL,   ATA_HORKAGE_BRIDGE_OK, },
4013
4014        /* Devices which aren't very happy with higher link speeds */
4015        { "WD My Book",                 NULL,   ATA_HORKAGE_1_5_GBPS, },
4016        { "Seagate FreeAgent GoFlex",   NULL,   ATA_HORKAGE_1_5_GBPS, },
4017
4018        /*
4019         * Devices which choke on SETXFER.  Applies only if both the
4020         * device and controller are SATA.
4021         */
4022        { "PIONEER DVD-RW  DVRTD08",    NULL,   ATA_HORKAGE_NOSETXFER },
4023        { "PIONEER DVD-RW  DVRTD08A",   NULL,   ATA_HORKAGE_NOSETXFER },
4024        { "PIONEER DVD-RW  DVR-215",    NULL,   ATA_HORKAGE_NOSETXFER },
4025        { "PIONEER DVD-RW  DVR-212D",   NULL,   ATA_HORKAGE_NOSETXFER },
4026        { "PIONEER DVD-RW  DVR-216D",   NULL,   ATA_HORKAGE_NOSETXFER },
4027
4028        /* Crucial BX100 SSD 500GB has broken LPM support */
4029        { "CT500BX100SSD1",             NULL,   ATA_HORKAGE_NOLPM },
4030
4031        /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4032        { "Crucial_CT512MX100*",        "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4033                                                ATA_HORKAGE_ZERO_AFTER_TRIM |
4034                                                ATA_HORKAGE_NOLPM, },
4035        /* 512GB MX100 with newer firmware has only LPM issues */
4036        { "Crucial_CT512MX100*",        NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM |
4037                                                ATA_HORKAGE_NOLPM, },
4038
4039        /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4040        { "Crucial_CT480M500*",         NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
4041                                                ATA_HORKAGE_ZERO_AFTER_TRIM |
4042                                                ATA_HORKAGE_NOLPM, },
4043        { "Crucial_CT960M500*",         NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
4044                                                ATA_HORKAGE_ZERO_AFTER_TRIM |
4045                                                ATA_HORKAGE_NOLPM, },
4046
4047        /* These specific Samsung models/firmware-revs do not handle LPM well */
4048        { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
4049        { "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM, },
4050        { "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_HORKAGE_NOLPM, },
4051        { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, },
4052
4053        /* devices that don't properly handle queued TRIM commands */
4054        { "Micron_M500IT_*",            "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4055                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
4056        { "Micron_M500_*",              NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
4057                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
4058        { "Crucial_CT*M500*",           NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
4059                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
4060        { "Micron_M5[15]0_*",           "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4061                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
4062        { "Crucial_CT*M550*",           "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4063                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
4064        { "Crucial_CT*MX100*",          "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4065                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
4066        { "Samsung SSD 840*",           NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
4067                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
4068        { "Samsung SSD 850*",           NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
4069                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
4070        { "Samsung SSD 860*",           NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
4071                                                ATA_HORKAGE_ZERO_AFTER_TRIM |
4072                                                ATA_HORKAGE_NO_NCQ_ON_ATI, },
4073        { "Samsung SSD 870*",           NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
4074                                                ATA_HORKAGE_ZERO_AFTER_TRIM |
4075                                                ATA_HORKAGE_NO_NCQ_ON_ATI, },
4076        { "FCCT*M500*",                 NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
4077                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
4078
4079        /* devices that don't properly handle TRIM commands */
4080        { "SuperSSpeed S238*",          NULL,   ATA_HORKAGE_NOTRIM, },
4081
4082        /*
4083         * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4084         * (Return Zero After Trim) flags in the ATA Command Set are
4085         * unreliable in the sense that they only define what happens if
4086         * the device successfully executed the DSM TRIM command. TRIM
4087         * is only advisory, however, and the device is free to silently
4088         * ignore all or parts of the request.
4089         *
4090         * Whitelist drives that are known to reliably return zeroes
4091         * after TRIM.
4092         */
4093
4094        /*
4095         * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4096         * that model before whitelisting all other intel SSDs.
4097         */
4098        { "INTEL*SSDSC2MH*",            NULL,   0, },
4099
4100        { "Micron*",                    NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4101        { "Crucial*",                   NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4102        { "INTEL*SSD*",                 NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4103        { "SSD*INTEL*",                 NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4104        { "Samsung*SSD*",               NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4105        { "SAMSUNG*SSD*",               NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4106        { "SAMSUNG*MZ7KM*",             NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4107        { "ST[1248][0248]0[FH]*",       NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4108
4109        /*
4110         * Some WD SATA-I drives spin up and down erratically when the link
4111         * is put into the slumber mode.  We don't have full list of the
4112         * affected devices.  Disable LPM if the device matches one of the
4113         * known prefixes and is SATA-1.  As a side effect LPM partial is
4114         * lost too.
4115         *
4116         * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4117         */
4118        { "WDC WD800JD-*",              NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4119        { "WDC WD1200JD-*",             NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4120        { "WDC WD1600JD-*",             NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4121        { "WDC WD2000JD-*",             NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4122        { "WDC WD2500JD-*",             NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4123        { "WDC WD3000JD-*",             NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4124        { "WDC WD3200JD-*",             NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4125
4126        /* End Marker */
4127        { }
4128};
4129
4130static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4131{
4132        unsigned char model_num[ATA_ID_PROD_LEN + 1];
4133        unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4134        const struct ata_blacklist_entry *ad = ata_device_blacklist;
4135
4136        ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4137        ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4138
4139        while (ad->model_num) {
4140                if (glob_match(ad->model_num, model_num)) {
4141                        if (ad->model_rev == NULL)
4142                                return ad->horkage;
4143                        if (glob_match(ad->model_rev, model_rev))
4144                                return ad->horkage;
4145                }
4146                ad++;
4147        }
4148        return 0;
4149}
4150
4151static int ata_dma_blacklisted(const struct ata_device *dev)
4152{
4153        /* We don't support polling DMA.
4154         * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4155         * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4156         */
4157        if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4158            (dev->flags & ATA_DFLAG_CDB_INTR))
4159                return 1;
4160        return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4161}
4162
4163/**
4164 *      ata_is_40wire           -       check drive side detection
4165 *      @dev: device
4166 *
4167 *      Perform drive side detection decoding, allowing for device vendors
4168 *      who can't follow the documentation.
4169 */
4170
4171static int ata_is_40wire(struct ata_device *dev)
4172{
4173        if (dev->horkage & ATA_HORKAGE_IVB)
4174                return ata_drive_40wire_relaxed(dev->id);
4175        return ata_drive_40wire(dev->id);
4176}
4177
4178/**
4179 *      cable_is_40wire         -       40/80/SATA decider
4180 *      @ap: port to consider
4181 *
4182 *      This function encapsulates the policy for speed management
4183 *      in one place. At the moment we don't cache the result but
4184 *      there is a good case for setting ap->cbl to the result when
4185 *      we are called with unknown cables (and figuring out if it
4186 *      impacts hotplug at all).
4187 *
4188 *      Return 1 if the cable appears to be 40 wire.
4189 */
4190
4191static int cable_is_40wire(struct ata_port *ap)
4192{
4193        struct ata_link *link;
4194        struct ata_device *dev;
4195
4196        /* If the controller thinks we are 40 wire, we are. */
4197        if (ap->cbl == ATA_CBL_PATA40)
4198                return 1;
4199
4200        /* If the controller thinks we are 80 wire, we are. */
4201        if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4202                return 0;
4203
4204        /* If the system is known to be 40 wire short cable (eg
4205         * laptop), then we allow 80 wire modes even if the drive
4206         * isn't sure.
4207         */
4208        if (ap->cbl == ATA_CBL_PATA40_SHORT)
4209                return 0;
4210
4211        /* If the controller doesn't know, we scan.
4212         *
4213         * Note: We look for all 40 wire detects at this point.  Any
4214         *       80 wire detect is taken to be 80 wire cable because
4215         * - in many setups only the one drive (slave if present) will
4216         *   give a valid detect
4217         * - if you have a non detect capable drive you don't want it
4218         *   to colour the choice
4219         */
4220        ata_for_each_link(link, ap, EDGE) {
4221                ata_for_each_dev(dev, link, ENABLED) {
4222                        if (!ata_is_40wire(dev))
4223                                return 0;
4224                }
4225        }
4226        return 1;
4227}
4228
4229/**
4230 *      ata_dev_xfermask - Compute supported xfermask of the given device
4231 *      @dev: Device to compute xfermask for
4232 *
4233 *      Compute supported xfermask of @dev and store it in
4234 *      dev->*_mask.  This function is responsible for applying all
4235 *      known limits including host controller limits, device
4236 *      blacklist, etc...
4237 *
4238 *      LOCKING:
4239 *      None.
4240 */
4241static void ata_dev_xfermask(struct ata_device *dev)
4242{
4243        struct ata_link *link = dev->link;
4244        struct ata_port *ap = link->ap;
4245        struct ata_host *host = ap->host;
4246        unsigned long xfer_mask;
4247
4248        /* controller modes available */
4249        xfer_mask = ata_pack_xfermask(ap->pio_mask,
4250                                      ap->mwdma_mask, ap->udma_mask);
4251
4252        /* drive modes available */
4253        xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4254                                       dev->mwdma_mask, dev->udma_mask);
4255        xfer_mask &= ata_id_xfermask(dev->id);
4256
4257        /*
4258         *      CFA Advanced TrueIDE timings are not allowed on a shared
4259         *      cable
4260         */
4261        if (ata_dev_pair(dev)) {
4262                /* No PIO5 or PIO6 */
4263                xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4264                /* No MWDMA3 or MWDMA 4 */
4265                xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4266        }
4267
4268        if (ata_dma_blacklisted(dev)) {
4269                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4270                ata_dev_warn(dev,
4271                             "device is on DMA blacklist, disabling DMA\n");
4272        }
4273
4274        if ((host->flags & ATA_HOST_SIMPLEX) &&
4275            host->simplex_claimed && host->simplex_claimed != ap) {
4276                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4277                ata_dev_warn(dev,
4278                             "simplex DMA is claimed by other device, disabling DMA\n");
4279        }
4280
4281        if (ap->flags & ATA_FLAG_NO_IORDY)
4282                xfer_mask &= ata_pio_mask_no_iordy(dev);
4283
4284        if (ap->ops->mode_filter)
4285                xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4286
4287        /* Apply cable rule here.  Don't apply it early because when
4288         * we handle hot plug the cable type can itself change.
4289         * Check this last so that we know if the transfer rate was
4290         * solely limited by the cable.
4291         * Unknown or 80 wire cables reported host side are checked
4292         * drive side as well. Cases where we know a 40wire cable
4293         * is used safely for 80 are not checked here.
4294         */
4295        if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4296                /* UDMA/44 or higher would be available */
4297                if (cable_is_40wire(ap)) {
4298                        ata_dev_warn(dev,
4299                                     "limited to UDMA/33 due to 40-wire cable\n");
4300                        xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4301                }
4302
4303        ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4304                            &dev->mwdma_mask, &dev->udma_mask);
4305}
4306
4307/**
4308 *      ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4309 *      @dev: Device to which command will be sent
4310 *
4311 *      Issue SET FEATURES - XFER MODE command to device @dev
4312 *      on port @ap.
4313 *
4314 *      LOCKING:
4315 *      PCI/etc. bus probe sem.
4316 *
4317 *      RETURNS:
4318 *      0 on success, AC_ERR_* mask otherwise.
4319 */
4320
4321static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4322{
4323        struct ata_taskfile tf;
4324        unsigned int err_mask;
4325
4326        /* set up set-features taskfile */
4327        DPRINTK("set features - xfer mode\n");
4328
4329        /* Some controllers and ATAPI devices show flaky interrupt
4330         * behavior after setting xfer mode.  Use polling instead.
4331         */
4332        ata_tf_init(dev, &tf);
4333        tf.command = ATA_CMD_SET_FEATURES;
4334        tf.feature = SETFEATURES_XFER;
4335        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4336        tf.protocol = ATA_PROT_NODATA;
4337        /* If we are using IORDY we must send the mode setting command */
4338        if (ata_pio_need_iordy(dev))
4339                tf.nsect = dev->xfer_mode;
4340        /* If the device has IORDY and the controller does not - turn it off */
4341        else if (ata_id_has_iordy(dev->id))
4342                tf.nsect = 0x01;
4343        else /* In the ancient relic department - skip all of this */
4344                return 0;
4345
4346        /* On some disks, this command causes spin-up, so we need longer timeout */
4347        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4348
4349        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4350        return err_mask;
4351}
4352
4353/**
4354 *      ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4355 *      @dev: Device to which command will be sent
4356 *      @enable: Whether to enable or disable the feature
4357 *      @feature: The sector count represents the feature to set
4358 *
4359 *      Issue SET FEATURES - SATA FEATURES command to device @dev
4360 *      on port @ap with sector count
4361 *
4362 *      LOCKING:
4363 *      PCI/etc. bus probe sem.
4364 *
4365 *      RETURNS:
4366 *      0 on success, AC_ERR_* mask otherwise.
4367 */
4368unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4369{
4370        struct ata_taskfile tf;
4371        unsigned int err_mask;
4372        unsigned long timeout = 0;
4373
4374        /* set up set-features taskfile */
4375        DPRINTK("set features - SATA features\n");
4376
4377        ata_tf_init(dev, &tf);
4378        tf.command = ATA_CMD_SET_FEATURES;
4379        tf.feature = enable;
4380        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4381        tf.protocol = ATA_PROT_NODATA;
4382        tf.nsect = feature;
4383
4384        if (enable == SETFEATURES_SPINUP)
4385                timeout = ata_probe_timeout ?
4386                          ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4387        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4388
4389        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4390        return err_mask;
4391}
4392EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4393
4394/**
4395 *      ata_dev_init_params - Issue INIT DEV PARAMS command
4396 *      @dev: Device to which command will be sent
4397 *      @heads: Number of heads (taskfile parameter)
4398 *      @sectors: Number of sectors (taskfile parameter)
4399 *
4400 *      LOCKING:
4401 *      Kernel thread context (may sleep)
4402 *
4403 *      RETURNS:
4404 *      0 on success, AC_ERR_* mask otherwise.
4405 */
4406static unsigned int ata_dev_init_params(struct ata_device *dev,
4407                                        u16 heads, u16 sectors)
4408{
4409        struct ata_taskfile tf;
4410        unsigned int err_mask;
4411
4412        /* Number of sectors per track 1-255. Number of heads 1-16 */
4413        if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4414                return AC_ERR_INVALID;
4415
4416        /* set up init dev params taskfile */
4417        DPRINTK("init dev params \n");
4418
4419        ata_tf_init(dev, &tf);
4420        tf.command = ATA_CMD_INIT_DEV_PARAMS;
4421        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4422        tf.protocol = ATA_PROT_NODATA;
4423        tf.nsect = sectors;
4424        tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4425
4426        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4427        /* A clean abort indicates an original or just out of spec drive
4428           and we should continue as we issue the setup based on the
4429           drive reported working geometry */
4430        if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4431                err_mask = 0;
4432
4433        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4434        return err_mask;
4435}
4436
4437/**
4438 *      atapi_check_dma - Check whether ATAPI DMA can be supported
4439 *      @qc: Metadata associated with taskfile to check
4440 *
4441 *      Allow low-level driver to filter ATA PACKET commands, returning
4442 *      a status indicating whether or not it is OK to use DMA for the
4443 *      supplied PACKET command.
4444 *
4445 *      LOCKING:
4446 *      spin_lock_irqsave(host lock)
4447 *
4448 *      RETURNS: 0 when ATAPI DMA can be used
4449 *               nonzero otherwise
4450 */
4451int atapi_check_dma(struct ata_queued_cmd *qc)
4452{
4453        struct ata_port *ap = qc->ap;
4454
4455        /* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4456         * few ATAPI devices choke on such DMA requests.
4457         */
4458        if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4459            unlikely(qc->nbytes & 15))
4460                return 1;
4461
4462        if (ap->ops->check_atapi_dma)
4463                return ap->ops->check_atapi_dma(qc);
4464
4465        return 0;
4466}
4467
4468/**
4469 *      ata_std_qc_defer - Check whether a qc needs to be deferred
4470 *      @qc: ATA command in question
4471 *
4472 *      Non-NCQ commands cannot run with any other command, NCQ or
4473 *      not.  As upper layer only knows the queue depth, we are
4474 *      responsible for maintaining exclusion.  This function checks
4475 *      whether a new command @qc can be issued.
4476 *
4477 *      LOCKING:
4478 *      spin_lock_irqsave(host lock)
4479 *
4480 *      RETURNS:
4481 *      ATA_DEFER_* if deferring is needed, 0 otherwise.
4482 */
4483int ata_std_qc_defer(struct ata_queued_cmd *qc)
4484{
4485        struct ata_link *link = qc->dev->link;
4486
4487        if (ata_is_ncq(qc->tf.protocol)) {
4488                if (!ata_tag_valid(link->active_tag))
4489                        return 0;
4490        } else {
4491                if (!ata_tag_valid(link->active_tag) && !link->sactive)
4492                        return 0;
4493        }
4494
4495        return ATA_DEFER_LINK;
4496}
4497EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4498
4499enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4500{
4501        return AC_ERR_OK;
4502}
4503EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4504
4505/**
4506 *      ata_sg_init - Associate command with scatter-gather table.
4507 *      @qc: Command to be associated
4508 *      @sg: Scatter-gather table.
4509 *      @n_elem: Number of elements in s/g table.
4510 *
4511 *      Initialize the data-related elements of queued_cmd @qc
4512 *      to point to a scatter-gather table @sg, containing @n_elem
4513 *      elements.
4514 *
4515 *      LOCKING:
4516 *      spin_lock_irqsave(host lock)
4517 */
4518void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4519                 unsigned int n_elem)
4520{
4521        qc->sg = sg;
4522        qc->n_elem = n_elem;
4523        qc->cursg = qc->sg;
4524}
4525
4526#ifdef CONFIG_HAS_DMA
4527
4528/**
4529 *      ata_sg_clean - Unmap DMA memory associated with command
4530 *      @qc: Command containing DMA memory to be released
4531 *
4532 *      Unmap all mapped DMA memory associated with this command.
4533 *
4534 *      LOCKING:
4535 *      spin_lock_irqsave(host lock)
4536 */
4537static void ata_sg_clean(struct ata_queued_cmd *qc)
4538{
4539        struct ata_port *ap = qc->ap;
4540        struct scatterlist *sg = qc->sg;
4541        int dir = qc->dma_dir;
4542
4543        WARN_ON_ONCE(sg == NULL);
4544
4545        VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4546
4547        if (qc->n_elem)
4548                dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4549
4550        qc->flags &= ~ATA_QCFLAG_DMAMAP;
4551        qc->sg = NULL;
4552}
4553
4554/**
4555 *      ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4556 *      @qc: Command with scatter-gather table to be mapped.
4557 *
4558 *      DMA-map the scatter-gather table associated with queued_cmd @qc.
4559 *
4560 *      LOCKING:
4561 *      spin_lock_irqsave(host lock)
4562 *
4563 *      RETURNS:
4564 *      Zero on success, negative on error.
4565 *
4566 */
4567static int ata_sg_setup(struct ata_queued_cmd *qc)
4568{
4569        struct ata_port *ap = qc->ap;
4570        unsigned int n_elem;
4571
4572        VPRINTK("ENTER, ata%u\n", ap->print_id);
4573
4574        n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4575        if (n_elem < 1)
4576                return -1;
4577
4578        VPRINTK("%d sg elements mapped\n", n_elem);
4579        qc->orig_n_elem = qc->n_elem;
4580        qc->n_elem = n_elem;
4581        qc->flags |= ATA_QCFLAG_DMAMAP;
4582
4583        return 0;
4584}
4585
4586#else /* !CONFIG_HAS_DMA */
4587
4588static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4589static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4590
4591#endif /* !CONFIG_HAS_DMA */
4592
4593/**
4594 *      swap_buf_le16 - swap halves of 16-bit words in place
4595 *      @buf:  Buffer to swap
4596 *      @buf_words:  Number of 16-bit words in buffer.
4597 *
4598 *      Swap halves of 16-bit words if needed to convert from
4599 *      little-endian byte order to native cpu byte order, or
4600 *      vice-versa.
4601 *
4602 *      LOCKING:
4603 *      Inherited from caller.
4604 */
4605void swap_buf_le16(u16 *buf, unsigned int buf_words)
4606{
4607#ifdef __BIG_ENDIAN
4608        unsigned int i;
4609
4610        for (i = 0; i < buf_words; i++)
4611                buf[i] = le16_to_cpu(buf[i]);
4612#endif /* __BIG_ENDIAN */
4613}
4614
4615/**
4616 *      ata_qc_new_init - Request an available ATA command, and initialize it
4617 *      @dev: Device from whom we request an available command structure
4618 *      @tag: tag
4619 *
4620 *      LOCKING:
4621 *      None.
4622 */
4623
4624struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4625{
4626        struct ata_port *ap = dev->link->ap;
4627        struct ata_queued_cmd *qc;
4628
4629        /* no command while frozen */
4630        if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4631                return NULL;
4632
4633        /* libsas case */
4634        if (ap->flags & ATA_FLAG_SAS_HOST) {
4635                tag = ata_sas_allocate_tag(ap);
4636                if (tag < 0)
4637                        return NULL;
4638        }
4639
4640        qc = __ata_qc_from_tag(ap, tag);
4641        qc->tag = qc->hw_tag = tag;
4642        qc->scsicmd = NULL;
4643        qc->ap = ap;
4644        qc->dev = dev;
4645
4646        ata_qc_reinit(qc);
4647
4648        return qc;
4649}
4650
4651/**
4652 *      ata_qc_free - free unused ata_queued_cmd
4653 *      @qc: Command to complete
4654 *
4655 *      Designed to free unused ata_queued_cmd object
4656 *      in case something prevents using it.
4657 *
4658 *      LOCKING:
4659 *      spin_lock_irqsave(host lock)
4660 */
4661void ata_qc_free(struct ata_queued_cmd *qc)
4662{
4663        struct ata_port *ap;
4664        unsigned int tag;
4665
4666        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4667        ap = qc->ap;
4668
4669        qc->flags = 0;
4670        tag = qc->tag;
4671        if (ata_tag_valid(tag)) {
4672                qc->tag = ATA_TAG_POISON;
4673                if (ap->flags & ATA_FLAG_SAS_HOST)
4674                        ata_sas_free_tag(tag, ap);
4675        }
4676}
4677
4678void __ata_qc_complete(struct ata_queued_cmd *qc)
4679{
4680        struct ata_port *ap;
4681        struct ata_link *link;
4682
4683        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4684        WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4685        ap = qc->ap;
4686        link = qc->dev->link;
4687
4688        if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4689                ata_sg_clean(qc);
4690
4691        /* command should be marked inactive atomically with qc completion */
4692        if (ata_is_ncq(qc->tf.protocol)) {
4693                link->sactive &= ~(1 << qc->hw_tag);
4694                if (!link->sactive)
4695                        ap->nr_active_links--;
4696        } else {
4697                link->active_tag = ATA_TAG_POISON;
4698                ap->nr_active_links--;
4699        }
4700
4701        /* clear exclusive status */
4702        if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4703                     ap->excl_link == link))
4704                ap->excl_link = NULL;
4705
4706        /* atapi: mark qc as inactive to prevent the interrupt handler
4707         * from completing the command twice later, before the error handler
4708         * is called. (when rc != 0 and atapi request sense is needed)
4709         */
4710        qc->flags &= ~ATA_QCFLAG_ACTIVE;
4711        ap->qc_active &= ~(1ULL << qc->tag);
4712
4713        /* call completion callback */
4714        qc->complete_fn(qc);
4715}
4716
4717static void fill_result_tf(struct ata_queued_cmd *qc)
4718{
4719        struct ata_port *ap = qc->ap;
4720
4721        qc->result_tf.flags = qc->tf.flags;
4722        ap->ops->qc_fill_rtf(qc);
4723}
4724
4725static void ata_verify_xfer(struct ata_queued_cmd *qc)
4726{
4727        struct ata_device *dev = qc->dev;
4728
4729        if (!ata_is_data(qc->tf.protocol))
4730                return;
4731
4732        if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4733                return;
4734
4735        dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4736}
4737
4738/**
4739 *      ata_qc_complete - Complete an active ATA command
4740 *      @qc: Command to complete
4741 *
4742 *      Indicate to the mid and upper layers that an ATA command has
4743 *      completed, with either an ok or not-ok status.
4744 *
4745 *      Refrain from calling this function multiple times when
4746 *      successfully completing multiple NCQ commands.
4747 *      ata_qc_complete_multiple() should be used instead, which will
4748 *      properly update IRQ expect state.
4749 *
4750 *      LOCKING:
4751 *      spin_lock_irqsave(host lock)
4752 */
4753void ata_qc_complete(struct ata_queued_cmd *qc)
4754{
4755        struct ata_port *ap = qc->ap;
4756
4757        /* Trigger the LED (if available) */
4758        ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4759
4760        /* XXX: New EH and old EH use different mechanisms to
4761         * synchronize EH with regular execution path.
4762         *
4763         * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4764         * Normal execution path is responsible for not accessing a
4765         * failed qc.  libata core enforces the rule by returning NULL
4766         * from ata_qc_from_tag() for failed qcs.
4767         *
4768         * Old EH depends on ata_qc_complete() nullifying completion
4769         * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4770         * not synchronize with interrupt handler.  Only PIO task is
4771         * taken care of.
4772         */
4773        if (ap->ops->error_handler) {
4774                struct ata_device *dev = qc->dev;
4775                struct ata_eh_info *ehi = &dev->link->eh_info;
4776
4777                if (unlikely(qc->err_mask))
4778                        qc->flags |= ATA_QCFLAG_FAILED;
4779
4780                /*
4781                 * Finish internal commands without any further processing
4782                 * and always with the result TF filled.
4783                 */
4784                if (unlikely(ata_tag_internal(qc->tag))) {
4785                        fill_result_tf(qc);
4786                        trace_ata_qc_complete_internal(qc);
4787                        __ata_qc_complete(qc);
4788                        return;
4789                }
4790
4791                /*
4792                 * Non-internal qc has failed.  Fill the result TF and
4793                 * summon EH.
4794                 */
4795                if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4796                        fill_result_tf(qc);
4797                        trace_ata_qc_complete_failed(qc);
4798                        ata_qc_schedule_eh(qc);
4799                        return;
4800                }
4801
4802                WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4803
4804                /* read result TF if requested */
4805                if (qc->flags & ATA_QCFLAG_RESULT_TF)
4806                        fill_result_tf(qc);
4807
4808                trace_ata_qc_complete_done(qc);
4809                /* Some commands need post-processing after successful
4810                 * completion.
4811                 */
4812                switch (qc->tf.command) {
4813                case ATA_CMD_SET_FEATURES:
4814                        if (qc->tf.feature != SETFEATURES_WC_ON &&
4815                            qc->tf.feature != SETFEATURES_WC_OFF &&
4816                            qc->tf.feature != SETFEATURES_RA_ON &&
4817                            qc->tf.feature != SETFEATURES_RA_OFF)
4818                                break;
4819                        fallthrough;
4820                case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4821                case ATA_CMD_SET_MULTI: /* multi_count changed */
4822                        /* revalidate device */
4823                        ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4824                        ata_port_schedule_eh(ap);
4825                        break;
4826
4827                case ATA_CMD_SLEEP:
4828                        dev->flags |= ATA_DFLAG_SLEEPING;
4829                        break;
4830                }
4831
4832                if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4833                        ata_verify_xfer(qc);
4834
4835                __ata_qc_complete(qc);
4836        } else {
4837                if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4838                        return;
4839
4840                /* read result TF if failed or requested */
4841                if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4842                        fill_result_tf(qc);
4843
4844                __ata_qc_complete(qc);
4845        }
4846}
4847EXPORT_SYMBOL_GPL(ata_qc_complete);
4848
4849/**
4850 *      ata_qc_get_active - get bitmask of active qcs
4851 *      @ap: port in question
4852 *
4853 *      LOCKING:
4854 *      spin_lock_irqsave(host lock)
4855 *
4856 *      RETURNS:
4857 *      Bitmask of active qcs
4858 */
4859u64 ata_qc_get_active(struct ata_port *ap)
4860{
4861        u64 qc_active = ap->qc_active;
4862
4863        /* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4864        if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4865                qc_active |= (1 << 0);
4866                qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4867        }
4868
4869        return qc_active;
4870}
4871EXPORT_SYMBOL_GPL(ata_qc_get_active);
4872
4873/**
4874 *      ata_qc_issue - issue taskfile to device
4875 *      @qc: command to issue to device
4876 *
4877 *      Prepare an ATA command to submission to device.
4878 *      This includes mapping the data into a DMA-able
4879 *      area, filling in the S/G table, and finally
4880 *      writing the taskfile to hardware, starting the command.
4881 *
4882 *      LOCKING:
4883 *      spin_lock_irqsave(host lock)
4884 */
4885void ata_qc_issue(struct ata_queued_cmd *qc)
4886{
4887        struct ata_port *ap = qc->ap;
4888        struct ata_link *link = qc->dev->link;
4889        u8 prot = qc->tf.protocol;
4890
4891        /* Make sure only one non-NCQ command is outstanding.  The
4892         * check is skipped for old EH because it reuses active qc to
4893         * request ATAPI sense.
4894         */
4895        WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4896
4897        if (ata_is_ncq(prot)) {
4898                WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4899
4900                if (!link->sactive)
4901                        ap->nr_active_links++;
4902                link->sactive |= 1 << qc->hw_tag;
4903        } else {
4904                WARN_ON_ONCE(link->sactive);
4905
4906                ap->nr_active_links++;
4907                link->active_tag = qc->tag;
4908        }
4909
4910        qc->flags |= ATA_QCFLAG_ACTIVE;
4911        ap->qc_active |= 1ULL << qc->tag;
4912
4913        /*
4914         * We guarantee to LLDs that they will have at least one
4915         * non-zero sg if the command is a data command.
4916         */
4917        if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4918                goto sys_err;
4919
4920        if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4921                                 (ap->flags & ATA_FLAG_PIO_DMA)))
4922                if (ata_sg_setup(qc))
4923                        goto sys_err;
4924
4925        /* if device is sleeping, schedule reset and abort the link */
4926        if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4927                link->eh_info.action |= ATA_EH_RESET;
4928                ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4929                ata_link_abort(link);
4930                return;
4931        }
4932
4933        qc->err_mask |= ap->ops->qc_prep(qc);
4934        if (unlikely(qc->err_mask))
4935                goto err;
4936        trace_ata_qc_issue(qc);
4937        qc->err_mask |= ap->ops->qc_issue(qc);
4938        if (unlikely(qc->err_mask))
4939                goto err;
4940        return;
4941
4942sys_err:
4943        qc->err_mask |= AC_ERR_SYSTEM;
4944err:
4945        ata_qc_complete(qc);
4946}
4947
4948/**
4949 *      ata_phys_link_online - test whether the given link is online
4950 *      @link: ATA link to test
4951 *
4952 *      Test whether @link is online.  Note that this function returns
4953 *      0 if online status of @link cannot be obtained, so
4954 *      ata_link_online(link) != !ata_link_offline(link).
4955 *
4956 *      LOCKING:
4957 *      None.
4958 *
4959 *      RETURNS:
4960 *      True if the port online status is available and online.
4961 */
4962bool ata_phys_link_online(struct ata_link *link)
4963{
4964        u32 sstatus;
4965
4966        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4967            ata_sstatus_online(sstatus))
4968                return true;
4969        return false;
4970}
4971
4972/**
4973 *      ata_phys_link_offline - test whether the given link is offline
4974 *      @link: ATA link to test
4975 *
4976 *      Test whether @link is offline.  Note that this function
4977 *      returns 0 if offline status of @link cannot be obtained, so
4978 *      ata_link_online(link) != !ata_link_offline(link).
4979 *
4980 *      LOCKING:
4981 *      None.
4982 *
4983 *      RETURNS:
4984 *      True if the port offline status is available and offline.
4985 */
4986bool ata_phys_link_offline(struct ata_link *link)
4987{
4988        u32 sstatus;
4989
4990        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4991            !ata_sstatus_online(sstatus))
4992                return true;
4993        return false;
4994}
4995
4996/**
4997 *      ata_link_online - test whether the given link is online
4998 *      @link: ATA link to test
4999 *
5000 *      Test whether @link is online.  This is identical to
5001 *      ata_phys_link_online() when there's no slave link.  When
5002 *      there's a slave link, this function should only be called on
5003 *      the master link and will return true if any of M/S links is
5004 *      online.
5005 *
5006 *      LOCKING:
5007 *      None.
5008 *
5009 *      RETURNS:
5010 *      True if the port online status is available and online.
5011 */
5012bool ata_link_online(struct ata_link *link)
5013{
5014        struct ata_link *slave = link->ap->slave_link;
5015
5016        WARN_ON(link == slave); /* shouldn't be called on slave link */
5017
5018        return ata_phys_link_online(link) ||
5019                (slave && ata_phys_link_online(slave));
5020}
5021EXPORT_SYMBOL_GPL(ata_link_online);
5022
5023/**
5024 *      ata_link_offline - test whether the given link is offline
5025 *      @link: ATA link to test
5026 *
5027 *      Test whether @link is offline.  This is identical to
5028 *      ata_phys_link_offline() when there's no slave link.  When
5029 *      there's a slave link, this function should only be called on
5030 *      the master link and will return true if both M/S links are
5031 *      offline.
5032 *
5033 *      LOCKING:
5034 *      None.
5035 *
5036 *      RETURNS:
5037 *      True if the port offline status is available and offline.
5038 */
5039bool ata_link_offline(struct ata_link *link)
5040{
5041        struct ata_link *slave = link->ap->slave_link;
5042
5043        WARN_ON(link == slave); /* shouldn't be called on slave link */
5044
5045        return ata_phys_link_offline(link) &&
5046                (!slave || ata_phys_link_offline(slave));
5047}
5048EXPORT_SYMBOL_GPL(ata_link_offline);
5049
5050#ifdef CONFIG_PM
5051static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5052                                unsigned int action, unsigned int ehi_flags,
5053                                bool async)
5054{
5055        struct ata_link *link;
5056        unsigned long flags;
5057
5058        /* Previous resume operation might still be in
5059         * progress.  Wait for PM_PENDING to clear.
5060         */
5061        if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5062                ata_port_wait_eh(ap);
5063                WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5064        }
5065
5066        /* request PM ops to EH */
5067        spin_lock_irqsave(ap->lock, flags);
5068
5069        ap->pm_mesg = mesg;
5070        ap->pflags |= ATA_PFLAG_PM_PENDING;
5071        ata_for_each_link(link, ap, HOST_FIRST) {
5072                link->eh_info.action |= action;
5073                link->eh_info.flags |= ehi_flags;
5074        }
5075
5076        ata_port_schedule_eh(ap);
5077
5078        spin_unlock_irqrestore(ap->lock, flags);
5079
5080        if (!async) {
5081                ata_port_wait_eh(ap);
5082                WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5083        }
5084}
5085
5086/*
5087 * On some hardware, device fails to respond after spun down for suspend.  As
5088 * the device won't be used before being resumed, we don't need to touch the
5089 * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5090 *
5091 * http://thread.gmane.org/gmane.linux.ide/46764
5092 */
5093static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5094                                                 | ATA_EHI_NO_AUTOPSY
5095                                                 | ATA_EHI_NO_RECOVERY;
5096
5097static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5098{
5099        ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5100}
5101
5102static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5103{
5104        ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5105}
5106
5107static int ata_port_pm_suspend(struct device *dev)
5108{
5109        struct ata_port *ap = to_ata_port(dev);
5110
5111        if (pm_runtime_suspended(dev))
5112                return 0;
5113
5114        ata_port_suspend(ap, PMSG_SUSPEND);
5115        return 0;
5116}
5117
5118static int ata_port_pm_freeze(struct device *dev)
5119{
5120        struct ata_port *ap = to_ata_port(dev);
5121
5122        if (pm_runtime_suspended(dev))
5123                return 0;
5124
5125        ata_port_suspend(ap, PMSG_FREEZE);
5126        return 0;
5127}
5128
5129static int ata_port_pm_poweroff(struct device *dev)
5130{
5131        ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5132        return 0;
5133}
5134
5135static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5136                                                | ATA_EHI_QUIET;
5137
5138static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5139{
5140        ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5141}
5142
5143static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5144{
5145        ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5146}
5147
5148static int ata_port_pm_resume(struct device *dev)
5149{
5150        ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5151        pm_runtime_disable(dev);
5152        pm_runtime_set_active(dev);
5153        pm_runtime_enable(dev);
5154        return 0;
5155}
5156
5157/*
5158 * For ODDs, the upper layer will poll for media change every few seconds,
5159 * which will make it enter and leave suspend state every few seconds. And
5160 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5161 * is very little and the ODD may malfunction after constantly being reset.
5162 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5163 * ODD is attached to the port.
5164 */
5165static int ata_port_runtime_idle(struct device *dev)
5166{
5167        struct ata_port *ap = to_ata_port(dev);
5168        struct ata_link *link;
5169        struct ata_device *adev;
5170
5171        ata_for_each_link(link, ap, HOST_FIRST) {
5172                ata_for_each_dev(adev, link, ENABLED)
5173                        if (adev->class == ATA_DEV_ATAPI &&
5174                            !zpodd_dev_enabled(adev))
5175                                return -EBUSY;
5176        }
5177
5178        return 0;
5179}
5180
5181static int ata_port_runtime_suspend(struct device *dev)
5182{
5183        ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5184        return 0;
5185}
5186
5187static int ata_port_runtime_resume(struct device *dev)
5188{
5189        ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5190        return 0;
5191}
5192
5193static const struct dev_pm_ops ata_port_pm_ops = {
5194        .suspend = ata_port_pm_suspend,
5195        .resume = ata_port_pm_resume,
5196        .freeze = ata_port_pm_freeze,
5197        .thaw = ata_port_pm_resume,
5198        .poweroff = ata_port_pm_poweroff,
5199        .restore = ata_port_pm_resume,
5200
5201        .runtime_suspend = ata_port_runtime_suspend,
5202        .runtime_resume = ata_port_runtime_resume,
5203        .runtime_idle = ata_port_runtime_idle,
5204};
5205
5206/* sas ports don't participate in pm runtime management of ata_ports,
5207 * and need to resume ata devices at the domain level, not the per-port
5208 * level. sas suspend/resume is async to allow parallel port recovery
5209 * since sas has multiple ata_port instances per Scsi_Host.
5210 */
5211void ata_sas_port_suspend(struct ata_port *ap)
5212{
5213        ata_port_suspend_async(ap, PMSG_SUSPEND);
5214}
5215EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5216
5217void ata_sas_port_resume(struct ata_port *ap)
5218{
5219        ata_port_resume_async(ap, PMSG_RESUME);
5220}
5221EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5222
5223/**
5224 *      ata_host_suspend - suspend host
5225 *      @host: host to suspend
5226 *      @mesg: PM message
5227 *
5228 *      Suspend @host.  Actual operation is performed by port suspend.
5229 */
5230int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5231{
5232        host->dev->power.power_state = mesg;
5233        return 0;
5234}
5235EXPORT_SYMBOL_GPL(ata_host_suspend);
5236
5237/**
5238 *      ata_host_resume - resume host
5239 *      @host: host to resume
5240 *
5241 *      Resume @host.  Actual operation is performed by port resume.
5242 */
5243void ata_host_resume(struct ata_host *host)
5244{
5245        host->dev->power.power_state = PMSG_ON;
5246}
5247EXPORT_SYMBOL_GPL(ata_host_resume);
5248#endif
5249
5250const struct device_type ata_port_type = {
5251        .name = "ata_port",
5252#ifdef CONFIG_PM
5253        .pm = &ata_port_pm_ops,
5254#endif
5255};
5256
5257/**
5258 *      ata_dev_init - Initialize an ata_device structure
5259 *      @dev: Device structure to initialize
5260 *
5261 *      Initialize @dev in preparation for probing.
5262 *
5263 *      LOCKING:
5264 *      Inherited from caller.
5265 */
5266void ata_dev_init(struct ata_device *dev)
5267{
5268        struct ata_link *link = ata_dev_phys_link(dev);
5269        struct ata_port *ap = link->ap;
5270        unsigned long flags;
5271
5272        /* SATA spd limit is bound to the attached device, reset together */
5273        link->sata_spd_limit = link->hw_sata_spd_limit;
5274        link->sata_spd = 0;
5275
5276        /* High bits of dev->flags are used to record warm plug
5277         * requests which occur asynchronously.  Synchronize using
5278         * host lock.
5279         */
5280        spin_lock_irqsave(ap->lock, flags);
5281        dev->flags &= ~ATA_DFLAG_INIT_MASK;
5282        dev->horkage = 0;
5283        spin_unlock_irqrestore(ap->lock, flags);
5284
5285        memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5286               ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5287        dev->pio_mask = UINT_MAX;
5288        dev->mwdma_mask = UINT_MAX;
5289        dev->udma_mask = UINT_MAX;
5290}
5291
5292/**
5293 *      ata_link_init - Initialize an ata_link structure
5294 *      @ap: ATA port link is attached to
5295 *      @link: Link structure to initialize
5296 *      @pmp: Port multiplier port number
5297 *
5298 *      Initialize @link.
5299 *
5300 *      LOCKING:
5301 *      Kernel thread context (may sleep)
5302 */
5303void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5304{
5305        int i;
5306
5307        /* clear everything except for devices */
5308        memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5309               ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5310
5311        link->ap = ap;
5312        link->pmp = pmp;
5313        link->active_tag = ATA_TAG_POISON;
5314        link->hw_sata_spd_limit = UINT_MAX;
5315
5316        /* can't use iterator, ap isn't initialized yet */
5317        for (i = 0; i < ATA_MAX_DEVICES; i++) {
5318                struct ata_device *dev = &link->device[i];
5319
5320                dev->link = link;
5321                dev->devno = dev - link->device;
5322#ifdef CONFIG_ATA_ACPI
5323                dev->gtf_filter = ata_acpi_gtf_filter;
5324#endif
5325                ata_dev_init(dev);
5326        }
5327}
5328
5329/**
5330 *      sata_link_init_spd - Initialize link->sata_spd_limit
5331 *      @link: Link to configure sata_spd_limit for
5332 *
5333 *      Initialize ``link->[hw_]sata_spd_limit`` to the currently
5334 *      configured value.
5335 *
5336 *      LOCKING:
5337 *      Kernel thread context (may sleep).
5338 *
5339 *      RETURNS:
5340 *      0 on success, -errno on failure.
5341 */
5342int sata_link_init_spd(struct ata_link *link)
5343{
5344        u8 spd;
5345        int rc;
5346
5347        rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5348        if (rc)
5349                return rc;
5350
5351        spd = (link->saved_scontrol >> 4) & 0xf;
5352        if (spd)
5353                link->hw_sata_spd_limit &= (1 << spd) - 1;
5354
5355        ata_force_link_limits(link);
5356
5357        link->sata_spd_limit = link->hw_sata_spd_limit;
5358
5359        return 0;
5360}
5361
5362/**
5363 *      ata_port_alloc - allocate and initialize basic ATA port resources
5364 *      @host: ATA host this allocated port belongs to
5365 *
5366 *      Allocate and initialize basic ATA port resources.
5367 *
5368 *      RETURNS:
5369 *      Allocate ATA port on success, NULL on failure.
5370 *
5371 *      LOCKING:
5372 *      Inherited from calling layer (may sleep).
5373 */
5374struct ata_port *ata_port_alloc(struct ata_host *host)
5375{
5376        struct ata_port *ap;
5377
5378        DPRINTK("ENTER\n");
5379
5380        ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5381        if (!ap)
5382                return NULL;
5383
5384        ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5385        ap->lock = &host->lock;
5386        ap->print_id = -1;
5387        ap->local_port_no = -1;
5388        ap->host = host;
5389        ap->dev = host->dev;
5390
5391#if defined(ATA_VERBOSE_DEBUG)
5392        /* turn on all debugging levels */
5393        ap->msg_enable = 0x00FF;
5394#elif defined(ATA_DEBUG)
5395        ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5396#else
5397        ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5398#endif
5399
5400        mutex_init(&ap->scsi_scan_mutex);
5401        INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5402        INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5403        INIT_LIST_HEAD(&ap->eh_done_q);
5404        init_waitqueue_head(&ap->eh_wait_q);
5405        init_completion(&ap->park_req_pending);
5406        timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5407                    TIMER_DEFERRABLE);
5408
5409        ap->cbl = ATA_CBL_NONE;
5410
5411        ata_link_init(ap, &ap->link, 0);
5412
5413#ifdef ATA_IRQ_TRAP
5414        ap->stats.unhandled_irq = 1;
5415        ap->stats.idle_irq = 1;
5416#endif
5417        ata_sff_port_init(ap);
5418
5419        return ap;
5420}
5421
5422static void ata_devres_release(struct device *gendev, void *res)
5423{
5424        struct ata_host *host = dev_get_drvdata(gendev);
5425        int i;
5426
5427        for (i = 0; i < host->n_ports; i++) {
5428                struct ata_port *ap = host->ports[i];
5429
5430                if (!ap)
5431                        continue;
5432
5433                if (ap->scsi_host)
5434                        scsi_host_put(ap->scsi_host);
5435
5436        }
5437
5438        dev_set_drvdata(gendev, NULL);
5439        ata_host_put(host);
5440}
5441
5442static void ata_host_release(struct kref *kref)
5443{
5444        struct ata_host *host = container_of(kref, struct ata_host, kref);
5445        int i;
5446
5447        for (i = 0; i < host->n_ports; i++) {
5448                struct ata_port *ap = host->ports[i];
5449
5450                kfree(ap->pmp_link);
5451                kfree(ap->slave_link);
5452                kfree(ap);
5453                host->ports[i] = NULL;
5454        }
5455        kfree(host);
5456}
5457
5458void ata_host_get(struct ata_host *host)
5459{
5460        kref_get(&host->kref);
5461}
5462
5463void ata_host_put(struct ata_host *host)
5464{
5465        kref_put(&host->kref, ata_host_release);
5466}
5467EXPORT_SYMBOL_GPL(ata_host_put);
5468
5469/**
5470 *      ata_host_alloc - allocate and init basic ATA host resources
5471 *      @dev: generic device this host is associated with
5472 *      @max_ports: maximum number of ATA ports associated with this host
5473 *
5474 *      Allocate and initialize basic ATA host resources.  LLD calls
5475 *      this function to allocate a host, initializes it fully and
5476 *      attaches it using ata_host_register().
5477 *
5478 *      @max_ports ports are allocated and host->n_ports is
5479 *      initialized to @max_ports.  The caller is allowed to decrease
5480 *      host->n_ports before calling ata_host_register().  The unused
5481 *      ports will be automatically freed on registration.
5482 *
5483 *      RETURNS:
5484 *      Allocate ATA host on success, NULL on failure.
5485 *
5486 *      LOCKING:
5487 *      Inherited from calling layer (may sleep).
5488 */
5489struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5490{
5491        struct ata_host *host;
5492        size_t sz;
5493        int i;
5494        void *dr;
5495
5496        DPRINTK("ENTER\n");
5497
5498        /* alloc a container for our list of ATA ports (buses) */
5499        sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5500        host = kzalloc(sz, GFP_KERNEL);
5501        if (!host)
5502                return NULL;
5503
5504        if (!devres_open_group(dev, NULL, GFP_KERNEL))
5505                goto err_free;
5506
5507        dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5508        if (!dr)
5509                goto err_out;
5510
5511        devres_add(dev, dr);
5512        dev_set_drvdata(dev, host);
5513
5514        spin_lock_init(&host->lock);
5515        mutex_init(&host->eh_mutex);
5516        host->dev = dev;
5517        host->n_ports = max_ports;
5518        kref_init(&host->kref);
5519
5520        /* allocate ports bound to this host */
5521        for (i = 0; i < max_ports; i++) {
5522                struct ata_port *ap;
5523
5524                ap = ata_port_alloc(host);
5525                if (!ap)
5526                        goto err_out;
5527
5528                ap->port_no = i;
5529                host->ports[i] = ap;
5530        }
5531
5532        devres_remove_group(dev, NULL);
5533        return host;
5534
5535 err_out:
5536        devres_release_group(dev, NULL);
5537 err_free:
5538        kfree(host);
5539        return NULL;
5540}
5541EXPORT_SYMBOL_GPL(ata_host_alloc);
5542
5543/**
5544 *      ata_host_alloc_pinfo - alloc host and init with port_info array
5545 *      @dev: generic device this host is associated with
5546 *      @ppi: array of ATA port_info to initialize host with
5547 *      @n_ports: number of ATA ports attached to this host
5548 *
5549 *      Allocate ATA host and initialize with info from @ppi.  If NULL
5550 *      terminated, @ppi may contain fewer entries than @n_ports.  The
5551 *      last entry will be used for the remaining ports.
5552 *
5553 *      RETURNS:
5554 *      Allocate ATA host on success, NULL on failure.
5555 *
5556 *      LOCKING:
5557 *      Inherited from calling layer (may sleep).
5558 */
5559struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5560                                      const struct ata_port_info * const * ppi,
5561                                      int n_ports)
5562{
5563        const struct ata_port_info *pi;
5564        struct ata_host *host;
5565        int i, j;
5566
5567        host = ata_host_alloc(dev, n_ports);
5568        if (!host)
5569                return NULL;
5570
5571        for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5572                struct ata_port *ap = host->ports[i];
5573
5574                if (ppi[j])
5575                        pi = ppi[j++];
5576
5577                ap->pio_mask = pi->pio_mask;
5578                ap->mwdma_mask = pi->mwdma_mask;
5579                ap->udma_mask = pi->udma_mask;
5580                ap->flags |= pi->flags;
5581                ap->link.flags |= pi->link_flags;
5582                ap->ops = pi->port_ops;
5583
5584                if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5585                        host->ops = pi->port_ops;
5586        }
5587
5588        return host;
5589}
5590EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5591
5592static void ata_host_stop(struct device *gendev, void *res)
5593{
5594        struct ata_host *host = dev_get_drvdata(gendev);
5595        int i;
5596
5597        WARN_ON(!(host->flags & ATA_HOST_STARTED));
5598
5599        for (i = 0; i < host->n_ports; i++) {
5600                struct ata_port *ap = host->ports[i];
5601
5602                if (ap->ops->port_stop)
5603                        ap->ops->port_stop(ap);
5604        }
5605
5606        if (host->ops->host_stop)
5607                host->ops->host_stop(host);
5608}
5609
5610/**
5611 *      ata_finalize_port_ops - finalize ata_port_operations
5612 *      @ops: ata_port_operations to finalize
5613 *
5614 *      An ata_port_operations can inherit from another ops and that
5615 *      ops can again inherit from another.  This can go on as many
5616 *      times as necessary as long as there is no loop in the
5617 *      inheritance chain.
5618 *
5619 *      Ops tables are finalized when the host is started.  NULL or
5620 *      unspecified entries are inherited from the closet ancestor
5621 *      which has the method and the entry is populated with it.
5622 *      After finalization, the ops table directly points to all the
5623 *      methods and ->inherits is no longer necessary and cleared.
5624 *
5625 *      Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5626 *
5627 *      LOCKING:
5628 *      None.
5629 */
5630static void ata_finalize_port_ops(struct ata_port_operations *ops)
5631{
5632        static DEFINE_SPINLOCK(lock);
5633        const struct ata_port_operations *cur;
5634        void **begin = (void **)ops;
5635        void **end = (void **)&ops->inherits;
5636        void **pp;
5637
5638        if (!ops || !ops->inherits)
5639                return;
5640
5641        spin_lock(&lock);
5642
5643        for (cur = ops->inherits; cur; cur = cur->inherits) {
5644                void **inherit = (void **)cur;
5645
5646                for (pp = begin; pp < end; pp++, inherit++)
5647                        if (!*pp)
5648                                *pp = *inherit;
5649        }
5650
5651        for (pp = begin; pp < end; pp++)
5652                if (IS_ERR(*pp))
5653                        *pp = NULL;
5654
5655        ops->inherits = NULL;
5656
5657        spin_unlock(&lock);
5658}
5659
5660/**
5661 *      ata_host_start - start and freeze ports of an ATA host
5662 *      @host: ATA host to start ports for
5663 *
5664 *      Start and then freeze ports of @host.  Started status is
5665 *      recorded in host->flags, so this function can be called
5666 *      multiple times.  Ports are guaranteed to get started only
5667 *      once.  If host->ops isn't initialized yet, its set to the
5668 *      first non-dummy port ops.
5669 *
5670 *      LOCKING:
5671 *      Inherited from calling layer (may sleep).
5672 *
5673 *      RETURNS:
5674 *      0 if all ports are started successfully, -errno otherwise.
5675 */
5676int ata_host_start(struct ata_host *host)
5677{
5678        int have_stop = 0;
5679        void *start_dr = NULL;
5680        int i, rc;
5681
5682        if (host->flags & ATA_HOST_STARTED)
5683                return 0;
5684
5685        ata_finalize_port_ops(host->ops);
5686
5687        for (i = 0; i < host->n_ports; i++) {
5688                struct ata_port *ap = host->ports[i];
5689
5690                ata_finalize_port_ops(ap->ops);
5691
5692                if (!host->ops && !ata_port_is_dummy(ap))
5693                        host->ops = ap->ops;
5694
5695                if (ap->ops->port_stop)
5696                        have_stop = 1;
5697        }
5698
5699        if (host->ops && host->ops->host_stop)
5700                have_stop = 1;
5701
5702        if (have_stop) {
5703                start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5704                if (!start_dr)
5705                        return -ENOMEM;
5706        }
5707
5708        for (i = 0; i < host->n_ports; i++) {
5709                struct ata_port *ap = host->ports[i];
5710
5711                if (ap->ops->port_start) {
5712                        rc = ap->ops->port_start(ap);
5713                        if (rc) {
5714                                if (rc != -ENODEV)
5715                                        dev_err(host->dev,
5716                                                "failed to start port %d (errno=%d)\n",
5717                                                i, rc);
5718                                goto err_out;
5719                        }
5720                }
5721                ata_eh_freeze_port(ap);
5722        }
5723
5724        if (start_dr)
5725                devres_add(host->dev, start_dr);
5726        host->flags |= ATA_HOST_STARTED;
5727        return 0;
5728
5729 err_out:
5730        while (--i >= 0) {
5731                struct ata_port *ap = host->ports[i];
5732
5733                if (ap->ops->port_stop)
5734                        ap->ops->port_stop(ap);
5735        }
5736        devres_free(start_dr);
5737        return rc;
5738}
5739EXPORT_SYMBOL_GPL(ata_host_start);
5740
5741/**
5742 *      ata_host_init - Initialize a host struct for sas (ipr, libsas)
5743 *      @host:  host to initialize
5744 *      @dev:   device host is attached to
5745 *      @ops:   port_ops
5746 *
5747 */
5748void ata_host_init(struct ata_host *host, struct device *dev,
5749                   struct ata_port_operations *ops)
5750{
5751        spin_lock_init(&host->lock);
5752        mutex_init(&host->eh_mutex);
5753        host->n_tags = ATA_MAX_QUEUE;
5754        host->dev = dev;
5755        host->ops = ops;
5756        kref_init(&host->kref);
5757}
5758EXPORT_SYMBOL_GPL(ata_host_init);
5759
5760void __ata_port_probe(struct ata_port *ap)
5761{
5762        struct ata_eh_info *ehi = &ap->link.eh_info;
5763        unsigned long flags;
5764
5765        /* kick EH for boot probing */
5766        spin_lock_irqsave(ap->lock, flags);
5767
5768        ehi->probe_mask |= ATA_ALL_DEVICES;
5769        ehi->action |= ATA_EH_RESET;
5770        ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5771
5772        ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5773        ap->pflags |= ATA_PFLAG_LOADING;
5774        ata_port_schedule_eh(ap);
5775
5776        spin_unlock_irqrestore(ap->lock, flags);
5777}
5778
5779int ata_port_probe(struct ata_port *ap)
5780{
5781        int rc = 0;
5782
5783        if (ap->ops->error_handler) {
5784                __ata_port_probe(ap);
5785                ata_port_wait_eh(ap);
5786        } else {
5787                DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5788                rc = ata_bus_probe(ap);
5789                DPRINTK("ata%u: bus probe end\n", ap->print_id);
5790        }
5791        return rc;
5792}
5793
5794
5795static void async_port_probe(void *data, async_cookie_t cookie)
5796{
5797        struct ata_port *ap = data;
5798
5799        /*
5800         * If we're not allowed to scan this host in parallel,
5801         * we need to wait until all previous scans have completed
5802         * before going further.
5803         * Jeff Garzik says this is only within a controller, so we
5804         * don't need to wait for port 0, only for later ports.
5805         */
5806        if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5807                async_synchronize_cookie(cookie);
5808
5809        (void)ata_port_probe(ap);
5810
5811        /* in order to keep device order, we need to synchronize at this point */
5812        async_synchronize_cookie(cookie);
5813
5814        ata_scsi_scan_host(ap, 1);
5815}
5816
5817/**
5818 *      ata_host_register - register initialized ATA host
5819 *      @host: ATA host to register
5820 *      @sht: template for SCSI host
5821 *
5822 *      Register initialized ATA host.  @host is allocated using
5823 *      ata_host_alloc() and fully initialized by LLD.  This function
5824 *      starts ports, registers @host with ATA and SCSI layers and
5825 *      probe registered devices.
5826 *
5827 *      LOCKING:
5828 *      Inherited from calling layer (may sleep).
5829 *
5830 *      RETURNS:
5831 *      0 on success, -errno otherwise.
5832 */
5833int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5834{
5835        int i, rc;
5836
5837        host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5838
5839        /* host must have been started */
5840        if (!(host->flags & ATA_HOST_STARTED)) {
5841                dev_err(host->dev, "BUG: trying to register unstarted host\n");
5842                WARN_ON(1);
5843                return -EINVAL;
5844        }
5845
5846        /* Blow away unused ports.  This happens when LLD can't
5847         * determine the exact number of ports to allocate at
5848         * allocation time.
5849         */
5850        for (i = host->n_ports; host->ports[i]; i++)
5851                kfree(host->ports[i]);
5852
5853        /* give ports names and add SCSI hosts */
5854        for (i = 0; i < host->n_ports; i++) {
5855                host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5856                host->ports[i]->local_port_no = i + 1;
5857        }
5858
5859        /* Create associated sysfs transport objects  */
5860        for (i = 0; i < host->n_ports; i++) {
5861                rc = ata_tport_add(host->dev,host->ports[i]);
5862                if (rc) {
5863                        goto err_tadd;
5864                }
5865        }
5866
5867        rc = ata_scsi_add_hosts(host, sht);
5868        if (rc)
5869                goto err_tadd;
5870
5871        /* set cable, sata_spd_limit and report */
5872        for (i = 0; i < host->n_ports; i++) {
5873                struct ata_port *ap = host->ports[i];
5874                unsigned long xfer_mask;
5875
5876                /* set SATA cable type if still unset */
5877                if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5878                        ap->cbl = ATA_CBL_SATA;
5879
5880                /* init sata_spd_limit to the current value */
5881                sata_link_init_spd(&ap->link);
5882                if (ap->slave_link)
5883                        sata_link_init_spd(ap->slave_link);
5884
5885                /* print per-port info to dmesg */
5886                xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5887                                              ap->udma_mask);
5888
5889                if (!ata_port_is_dummy(ap)) {
5890                        ata_port_info(ap, "%cATA max %s %s\n",
5891                                      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5892                                      ata_mode_string(xfer_mask),
5893                                      ap->link.eh_info.desc);
5894                        ata_ehi_clear_desc(&ap->link.eh_info);
5895                } else
5896                        ata_port_info(ap, "DUMMY\n");
5897        }
5898
5899        /* perform each probe asynchronously */
5900        for (i = 0; i < host->n_ports; i++) {
5901                struct ata_port *ap = host->ports[i];
5902                ap->cookie = async_schedule(async_port_probe, ap);
5903        }
5904
5905        return 0;
5906
5907 err_tadd:
5908        while (--i >= 0) {
5909                ata_tport_delete(host->ports[i]);
5910        }
5911        return rc;
5912
5913}
5914EXPORT_SYMBOL_GPL(ata_host_register);
5915
5916/**
5917 *      ata_host_activate - start host, request IRQ and register it
5918 *      @host: target ATA host
5919 *      @irq: IRQ to request
5920 *      @irq_handler: irq_handler used when requesting IRQ
5921 *      @irq_flags: irq_flags used when requesting IRQ
5922 *      @sht: scsi_host_template to use when registering the host
5923 *
5924 *      After allocating an ATA host and initializing it, most libata
5925 *      LLDs perform three steps to activate the host - start host,
5926 *      request IRQ and register it.  This helper takes necessary
5927 *      arguments and performs the three steps in one go.
5928 *
5929 *      An invalid IRQ skips the IRQ registration and expects the host to
5930 *      have set polling mode on the port. In this case, @irq_handler
5931 *      should be NULL.
5932 *
5933 *      LOCKING:
5934 *      Inherited from calling layer (may sleep).
5935 *
5936 *      RETURNS:
5937 *      0 on success, -errno otherwise.
5938 */
5939int ata_host_activate(struct ata_host *host, int irq,
5940                      irq_handler_t irq_handler, unsigned long irq_flags,
5941                      struct scsi_host_template *sht)
5942{
5943        int i, rc;
5944        char *irq_desc;
5945
5946        rc = ata_host_start(host);
5947        if (rc)
5948                return rc;
5949
5950        /* Special case for polling mode */
5951        if (!irq) {
5952                WARN_ON(irq_handler);
5953                return ata_host_register(host, sht);
5954        }
5955
5956        irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5957                                  dev_driver_string(host->dev),
5958                                  dev_name(host->dev));
5959        if (!irq_desc)
5960                return -ENOMEM;
5961
5962        rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5963                              irq_desc, host);
5964        if (rc)
5965                return rc;
5966
5967        for (i = 0; i < host->n_ports; i++)
5968                ata_port_desc(host->ports[i], "irq %d", irq);
5969
5970        rc = ata_host_register(host, sht);
5971        /* if failed, just free the IRQ and leave ports alone */
5972        if (rc)
5973                devm_free_irq(host->dev, irq, host);
5974
5975        return rc;
5976}
5977EXPORT_SYMBOL_GPL(ata_host_activate);
5978
5979/**
5980 *      ata_port_detach - Detach ATA port in preparation of device removal
5981 *      @ap: ATA port to be detached
5982 *
5983 *      Detach all ATA devices and the associated SCSI devices of @ap;
5984 *      then, remove the associated SCSI host.  @ap is guaranteed to
5985 *      be quiescent on return from this function.
5986 *
5987 *      LOCKING:
5988 *      Kernel thread context (may sleep).
5989 */
5990static void ata_port_detach(struct ata_port *ap)
5991{
5992        unsigned long flags;
5993        struct ata_link *link;
5994        struct ata_device *dev;
5995
5996        if (!ap->ops->error_handler)
5997                goto skip_eh;
5998
5999        /* tell EH we're leaving & flush EH */
6000        spin_lock_irqsave(ap->lock, flags);
6001        ap->pflags |= ATA_PFLAG_UNLOADING;
6002        ata_port_schedule_eh(ap);
6003        spin_unlock_irqrestore(ap->lock, flags);
6004
6005        /* wait till EH commits suicide */
6006        ata_port_wait_eh(ap);
6007
6008        /* it better be dead now */
6009        WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6010
6011        cancel_delayed_work_sync(&ap->hotplug_task);
6012
6013 skip_eh:
6014        /* clean up zpodd on port removal */
6015        ata_for_each_link(link, ap, HOST_FIRST) {
6016                ata_for_each_dev(dev, link, ALL) {
6017                        if (zpodd_dev_enabled(dev))
6018                                zpodd_exit(dev);
6019                }
6020        }
6021        if (ap->pmp_link) {
6022                int i;
6023                for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6024                        ata_tlink_delete(&ap->pmp_link[i]);
6025        }
6026        /* remove the associated SCSI host */
6027        scsi_remove_host(ap->scsi_host);
6028        ata_tport_delete(ap);
6029}
6030
6031/**
6032 *      ata_host_detach - Detach all ports of an ATA host
6033 *      @host: Host to detach
6034 *
6035 *      Detach all ports of @host.
6036 *
6037 *      LOCKING:
6038 *      Kernel thread context (may sleep).
6039 */
6040void ata_host_detach(struct ata_host *host)
6041{
6042        int i;
6043
6044        for (i = 0; i < host->n_ports; i++) {
6045                /* Ensure ata_port probe has completed */
6046                async_synchronize_cookie(host->ports[i]->cookie + 1);
6047                ata_port_detach(host->ports[i]);
6048        }
6049
6050        /* the host is dead now, dissociate ACPI */
6051        ata_acpi_dissociate(host);
6052}
6053EXPORT_SYMBOL_GPL(ata_host_detach);
6054
6055#ifdef CONFIG_PCI
6056
6057/**
6058 *      ata_pci_remove_one - PCI layer callback for device removal
6059 *      @pdev: PCI device that was removed
6060 *
6061 *      PCI layer indicates to libata via this hook that hot-unplug or
6062 *      module unload event has occurred.  Detach all ports.  Resource
6063 *      release is handled via devres.
6064 *
6065 *      LOCKING:
6066 *      Inherited from PCI layer (may sleep).
6067 */
6068void ata_pci_remove_one(struct pci_dev *pdev)
6069{
6070        struct ata_host *host = pci_get_drvdata(pdev);
6071
6072        ata_host_detach(host);
6073}
6074EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6075
6076void ata_pci_shutdown_one(struct pci_dev *pdev)
6077{
6078        struct ata_host *host = pci_get_drvdata(pdev);
6079        int i;
6080
6081        for (i = 0; i < host->n_ports; i++) {
6082                struct ata_port *ap = host->ports[i];
6083
6084                ap->pflags |= ATA_PFLAG_FROZEN;
6085
6086                /* Disable port interrupts */
6087                if (ap->ops->freeze)
6088                        ap->ops->freeze(ap);
6089
6090                /* Stop the port DMA engines */
6091                if (ap->ops->port_stop)
6092                        ap->ops->port_stop(ap);
6093        }
6094}
6095EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6096
6097/* move to PCI subsystem */
6098int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6099{
6100        unsigned long tmp = 0;
6101
6102        switch (bits->width) {
6103        case 1: {
6104                u8 tmp8 = 0;
6105                pci_read_config_byte(pdev, bits->reg, &tmp8);
6106                tmp = tmp8;
6107                break;
6108        }
6109        case 2: {
6110                u16 tmp16 = 0;
6111                pci_read_config_word(pdev, bits->reg, &tmp16);
6112                tmp = tmp16;
6113                break;
6114        }
6115        case 4: {
6116                u32 tmp32 = 0;
6117                pci_read_config_dword(pdev, bits->reg, &tmp32);
6118                tmp = tmp32;
6119                break;
6120        }
6121
6122        default:
6123                return -EINVAL;
6124        }
6125
6126        tmp &= bits->mask;
6127
6128        return (tmp == bits->val) ? 1 : 0;
6129}
6130EXPORT_SYMBOL_GPL(pci_test_config_bits);
6131
6132#ifdef CONFIG_PM
6133void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6134{
6135        pci_save_state(pdev);
6136        pci_disable_device(pdev);
6137
6138        if (mesg.event & PM_EVENT_SLEEP)
6139                pci_set_power_state(pdev, PCI_D3hot);
6140}
6141EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6142
6143int ata_pci_device_do_resume(struct pci_dev *pdev)
6144{
6145        int rc;
6146
6147        pci_set_power_state(pdev, PCI_D0);
6148        pci_restore_state(pdev);
6149
6150        rc = pcim_enable_device(pdev);
6151        if (rc) {
6152                dev_err(&pdev->dev,
6153                        "failed to enable device after resume (%d)\n", rc);
6154                return rc;
6155        }
6156
6157        pci_set_master(pdev);
6158        return 0;
6159}
6160EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6161
6162int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6163{
6164        struct ata_host *host = pci_get_drvdata(pdev);
6165        int rc = 0;
6166
6167        rc = ata_host_suspend(host, mesg);
6168        if (rc)
6169                return rc;
6170
6171        ata_pci_device_do_suspend(pdev, mesg);
6172
6173        return 0;
6174}
6175EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6176
6177int ata_pci_device_resume(struct pci_dev *pdev)
6178{
6179        struct ata_host *host = pci_get_drvdata(pdev);
6180        int rc;
6181
6182        rc = ata_pci_device_do_resume(pdev);
6183        if (rc == 0)
6184                ata_host_resume(host);
6185        return rc;
6186}
6187EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6188#endif /* CONFIG_PM */
6189#endif /* CONFIG_PCI */
6190
6191/**
6192 *      ata_platform_remove_one - Platform layer callback for device removal
6193 *      @pdev: Platform device that was removed
6194 *
6195 *      Platform layer indicates to libata via this hook that hot-unplug or
6196 *      module unload event has occurred.  Detach all ports.  Resource
6197 *      release is handled via devres.
6198 *
6199 *      LOCKING:
6200 *      Inherited from platform layer (may sleep).
6201 */
6202int ata_platform_remove_one(struct platform_device *pdev)
6203{
6204        struct ata_host *host = platform_get_drvdata(pdev);
6205
6206        ata_host_detach(host);
6207
6208        return 0;
6209}
6210EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6211
6212#ifdef CONFIG_ATA_FORCE
6213static int __init ata_parse_force_one(char **cur,
6214                                      struct ata_force_ent *force_ent,
6215                                      const char **reason)
6216{
6217        static const struct ata_force_param force_tbl[] __initconst = {
6218                { "40c",        .cbl            = ATA_CBL_PATA40 },
6219                { "80c",        .cbl            = ATA_CBL_PATA80 },
6220                { "short40c",   .cbl            = ATA_CBL_PATA40_SHORT },
6221                { "unk",        .cbl            = ATA_CBL_PATA_UNK },
6222                { "ign",        .cbl            = ATA_CBL_PATA_IGN },
6223                { "sata",       .cbl            = ATA_CBL_SATA },
6224                { "1.5Gbps",    .spd_limit      = 1 },
6225                { "3.0Gbps",    .spd_limit      = 2 },
6226                { "noncq",      .horkage_on     = ATA_HORKAGE_NONCQ },
6227                { "ncq",        .horkage_off    = ATA_HORKAGE_NONCQ },
6228                { "noncqtrim",  .horkage_on     = ATA_HORKAGE_NO_NCQ_TRIM },
6229                { "ncqtrim",    .horkage_off    = ATA_HORKAGE_NO_NCQ_TRIM },
6230                { "noncqati",   .horkage_on     = ATA_HORKAGE_NO_NCQ_ON_ATI },
6231                { "ncqati",     .horkage_off    = ATA_HORKAGE_NO_NCQ_ON_ATI },
6232                { "dump_id",    .horkage_on     = ATA_HORKAGE_DUMP_ID },
6233                { "pio0",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 0) },
6234                { "pio1",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 1) },
6235                { "pio2",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 2) },
6236                { "pio3",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 3) },
6237                { "pio4",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 4) },
6238                { "pio5",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 5) },
6239                { "pio6",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 6) },
6240                { "mwdma0",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 0) },
6241                { "mwdma1",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 1) },
6242                { "mwdma2",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 2) },
6243                { "mwdma3",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 3) },
6244                { "mwdma4",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 4) },
6245                { "udma0",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 0) },
6246                { "udma16",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 0) },
6247                { "udma/16",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 0) },
6248                { "udma1",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 1) },
6249                { "udma25",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 1) },
6250                { "udma/25",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 1) },
6251                { "udma2",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 2) },
6252                { "udma33",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 2) },
6253                { "udma/33",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 2) },
6254                { "udma3",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 3) },
6255                { "udma44",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 3) },
6256                { "udma/44",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 3) },
6257                { "udma4",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 4) },
6258                { "udma66",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 4) },
6259                { "udma/66",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 4) },
6260                { "udma5",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 5) },
6261                { "udma100",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 5) },
6262                { "udma/100",   .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 5) },
6263                { "udma6",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 6) },
6264                { "udma133",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 6) },
6265                { "udma/133",   .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 6) },
6266                { "udma7",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 7) },
6267                { "nohrst",     .lflags         = ATA_LFLAG_NO_HRST },
6268                { "nosrst",     .lflags         = ATA_LFLAG_NO_SRST },
6269                { "norst",      .lflags         = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6270                { "rstonce",    .lflags         = ATA_LFLAG_RST_ONCE },
6271                { "atapi_dmadir", .horkage_on   = ATA_HORKAGE_ATAPI_DMADIR },
6272                { "disable",    .horkage_on     = ATA_HORKAGE_DISABLE },
6273        };
6274        char *start = *cur, *p = *cur;
6275        char *id, *val, *endp;
6276        const struct ata_force_param *match_fp = NULL;
6277        int nr_matches = 0, i;
6278
6279        /* find where this param ends and update *cur */
6280        while (*p != '\0' && *p != ',')
6281                p++;
6282
6283        if (*p == '\0')
6284                *cur = p;
6285        else
6286                *cur = p + 1;
6287
6288        *p = '\0';
6289
6290        /* parse */
6291        p = strchr(start, ':');
6292        if (!p) {
6293                val = strstrip(start);
6294                goto parse_val;
6295        }
6296        *p = '\0';
6297
6298        id = strstrip(start);
6299        val = strstrip(p + 1);
6300
6301        /* parse id */
6302        p = strchr(id, '.');
6303        if (p) {
6304                *p++ = '\0';
6305                force_ent->device = simple_strtoul(p, &endp, 10);
6306                if (p == endp || *endp != '\0') {
6307                        *reason = "invalid device";
6308                        return -EINVAL;
6309                }
6310        }
6311
6312        force_ent->port = simple_strtoul(id, &endp, 10);
6313        if (id == endp || *endp != '\0') {
6314                *reason = "invalid port/link";
6315                return -EINVAL;
6316        }
6317
6318 parse_val:
6319        /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6320        for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6321                const struct ata_force_param *fp = &force_tbl[i];
6322
6323                if (strncasecmp(val, fp->name, strlen(val)))
6324                        continue;
6325
6326                nr_matches++;
6327                match_fp = fp;
6328
6329                if (strcasecmp(val, fp->name) == 0) {
6330                        nr_matches = 1;
6331                        break;
6332                }
6333        }
6334
6335        if (!nr_matches) {
6336                *reason = "unknown value";
6337                return -EINVAL;
6338        }
6339        if (nr_matches > 1) {
6340                *reason = "ambiguous value";
6341                return -EINVAL;
6342        }
6343
6344        force_ent->param = *match_fp;
6345
6346        return 0;
6347}
6348
6349static void __init ata_parse_force_param(void)
6350{
6351        int idx = 0, size = 1;
6352        int last_port = -1, last_device = -1;
6353        char *p, *cur, *next;
6354
6355        /* calculate maximum number of params and allocate force_tbl */
6356        for (p = ata_force_param_buf; *p; p++)
6357                if (*p == ',')
6358                        size++;
6359
6360        ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6361        if (!ata_force_tbl) {
6362                printk(KERN_WARNING "ata: failed to extend force table, "
6363                       "libata.force ignored\n");
6364                return;
6365        }
6366
6367        /* parse and populate the table */
6368        for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6369                const char *reason = "";
6370                struct ata_force_ent te = { .port = -1, .device = -1 };
6371
6372                next = cur;
6373                if (ata_parse_force_one(&next, &te, &reason)) {
6374                        printk(KERN_WARNING "ata: failed to parse force "
6375                               "parameter \"%s\" (%s)\n",
6376                               cur, reason);
6377                        continue;
6378                }
6379
6380                if (te.port == -1) {
6381                        te.port = last_port;
6382                        te.device = last_device;
6383                }
6384
6385                ata_force_tbl[idx++] = te;
6386
6387                last_port = te.port;
6388                last_device = te.device;
6389        }
6390
6391        ata_force_tbl_size = idx;
6392}
6393
6394static void ata_free_force_param(void)
6395{
6396        kfree(ata_force_tbl);
6397}
6398#else
6399static inline void ata_parse_force_param(void) { }
6400static inline void ata_free_force_param(void) { }
6401#endif
6402
6403static int __init ata_init(void)
6404{
6405        int rc;
6406
6407        ata_parse_force_param();
6408
6409        rc = ata_sff_init();
6410        if (rc) {
6411                ata_free_force_param();
6412                return rc;
6413        }
6414
6415        libata_transport_init();
6416        ata_scsi_transport_template = ata_attach_transport();
6417        if (!ata_scsi_transport_template) {
6418                ata_sff_exit();
6419                rc = -ENOMEM;
6420                goto err_out;
6421        }
6422
6423        printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6424        return 0;
6425
6426err_out:
6427        return rc;
6428}
6429
6430static void __exit ata_exit(void)
6431{
6432        ata_release_transport(ata_scsi_transport_template);
6433        libata_transport_exit();
6434        ata_sff_exit();
6435        ata_free_force_param();
6436}
6437
6438subsys_initcall(ata_init);
6439module_exit(ata_exit);
6440
6441static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6442
6443int ata_ratelimit(void)
6444{
6445        return __ratelimit(&ratelimit);
6446}
6447EXPORT_SYMBOL_GPL(ata_ratelimit);
6448
6449/**
6450 *      ata_msleep - ATA EH owner aware msleep
6451 *      @ap: ATA port to attribute the sleep to
6452 *      @msecs: duration to sleep in milliseconds
6453 *
6454 *      Sleeps @msecs.  If the current task is owner of @ap's EH, the
6455 *      ownership is released before going to sleep and reacquired
6456 *      after the sleep is complete.  IOW, other ports sharing the
6457 *      @ap->host will be allowed to own the EH while this task is
6458 *      sleeping.
6459 *
6460 *      LOCKING:
6461 *      Might sleep.
6462 */
6463void ata_msleep(struct ata_port *ap, unsigned int msecs)
6464{
6465        bool owns_eh = ap && ap->host->eh_owner == current;
6466
6467        if (owns_eh)
6468                ata_eh_release(ap);
6469
6470        if (msecs < 20) {
6471                unsigned long usecs = msecs * USEC_PER_MSEC;
6472                usleep_range(usecs, usecs + 50);
6473        } else {
6474                msleep(msecs);
6475        }
6476
6477        if (owns_eh)
6478                ata_eh_acquire(ap);
6479}
6480EXPORT_SYMBOL_GPL(ata_msleep);
6481
6482/**
6483 *      ata_wait_register - wait until register value changes
6484 *      @ap: ATA port to wait register for, can be NULL
6485 *      @reg: IO-mapped register
6486 *      @mask: Mask to apply to read register value
6487 *      @val: Wait condition
6488 *      @interval: polling interval in milliseconds
6489 *      @timeout: timeout in milliseconds
6490 *
6491 *      Waiting for some bits of register to change is a common
6492 *      operation for ATA controllers.  This function reads 32bit LE
6493 *      IO-mapped register @reg and tests for the following condition.
6494 *
6495 *      (*@reg & mask) != val
6496 *
6497 *      If the condition is met, it returns; otherwise, the process is
6498 *      repeated after @interval_msec until timeout.
6499 *
6500 *      LOCKING:
6501 *      Kernel thread context (may sleep)
6502 *
6503 *      RETURNS:
6504 *      The final register value.
6505 */
6506u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6507                      unsigned long interval, unsigned long timeout)
6508{
6509        unsigned long deadline;
6510        u32 tmp;
6511
6512        tmp = ioread32(reg);
6513
6514        /* Calculate timeout _after_ the first read to make sure
6515         * preceding writes reach the controller before starting to
6516         * eat away the timeout.
6517         */
6518        deadline = ata_deadline(jiffies, timeout);
6519
6520        while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6521                ata_msleep(ap, interval);
6522                tmp = ioread32(reg);
6523        }
6524
6525        return tmp;
6526}
6527EXPORT_SYMBOL_GPL(ata_wait_register);
6528
6529/*
6530 * Dummy port_ops
6531 */
6532static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6533{
6534        return AC_ERR_SYSTEM;
6535}
6536
6537static void ata_dummy_error_handler(struct ata_port *ap)
6538{
6539        /* truly dummy */
6540}
6541
6542struct ata_port_operations ata_dummy_port_ops = {
6543        .qc_prep                = ata_noop_qc_prep,
6544        .qc_issue               = ata_dummy_qc_issue,
6545        .error_handler          = ata_dummy_error_handler,
6546        .sched_eh               = ata_std_sched_eh,
6547        .end_eh                 = ata_std_end_eh,
6548};
6549EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6550
6551const struct ata_port_info ata_dummy_port_info = {
6552        .port_ops               = &ata_dummy_port_ops,
6553};
6554EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6555
6556/*
6557 * Utility print functions
6558 */
6559void ata_port_printk(const struct ata_port *ap, const char *level,
6560                     const char *fmt, ...)
6561{
6562        struct va_format vaf;
6563        va_list args;
6564
6565        va_start(args, fmt);
6566
6567        vaf.fmt = fmt;
6568        vaf.va = &args;
6569
6570        printk("%sata%u: %pV", level, ap->print_id, &vaf);
6571
6572        va_end(args);
6573}
6574EXPORT_SYMBOL(ata_port_printk);
6575
6576void ata_link_printk(const struct ata_link *link, const char *level,
6577                     const char *fmt, ...)
6578{
6579        struct va_format vaf;
6580        va_list args;
6581
6582        va_start(args, fmt);
6583
6584        vaf.fmt = fmt;
6585        vaf.va = &args;
6586
6587        if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6588                printk("%sata%u.%02u: %pV",
6589                       level, link->ap->print_id, link->pmp, &vaf);
6590        else
6591                printk("%sata%u: %pV",
6592                       level, link->ap->print_id, &vaf);
6593
6594        va_end(args);
6595}
6596EXPORT_SYMBOL(ata_link_printk);
6597
6598void ata_dev_printk(const struct ata_device *dev, const char *level,
6599                    const char *fmt, ...)
6600{
6601        struct va_format vaf;
6602        va_list args;
6603
6604        va_start(args, fmt);
6605
6606        vaf.fmt = fmt;
6607        vaf.va = &args;
6608
6609        printk("%sata%u.%02u: %pV",
6610               level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6611               &vaf);
6612
6613        va_end(args);
6614}
6615EXPORT_SYMBOL(ata_dev_printk);
6616
6617void ata_print_version(const struct device *dev, const char *version)
6618{
6619        dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6620}
6621EXPORT_SYMBOL(ata_print_version);
6622