linux/drivers/firmware/efi/libstub/efi-stub.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * EFI stub implementation that is shared by arm and arm64 architectures.
   4 * This should be #included by the EFI stub implementation files.
   5 *
   6 * Copyright (C) 2013,2014 Linaro Limited
   7 *     Roy Franz <roy.franz@linaro.org
   8 * Copyright (C) 2013 Red Hat, Inc.
   9 *     Mark Salter <msalter@redhat.com>
  10 */
  11
  12#include <linux/efi.h>
  13#include <linux/libfdt.h>
  14#include <asm/efi.h>
  15
  16#include "efistub.h"
  17
  18/*
  19 * This is the base address at which to start allocating virtual memory ranges
  20 * for UEFI Runtime Services.
  21 *
  22 * For ARM/ARM64:
  23 * This is in the low TTBR0 range so that we can use
  24 * any allocation we choose, and eliminate the risk of a conflict after kexec.
  25 * The value chosen is the largest non-zero power of 2 suitable for this purpose
  26 * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
  27 * be mapped efficiently.
  28 * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
  29 * map everything below 1 GB. (512 MB is a reasonable upper bound for the
  30 * entire footprint of the UEFI runtime services memory regions)
  31 *
  32 * For RISC-V:
  33 * There is no specific reason for which, this address (512MB) can't be used
  34 * EFI runtime virtual address for RISC-V. It also helps to use EFI runtime
  35 * services on both RV32/RV64. Keep the same runtime virtual address for RISC-V
  36 * as well to minimize the code churn.
  37 */
  38#define EFI_RT_VIRTUAL_BASE     SZ_512M
  39#define EFI_RT_VIRTUAL_SIZE     SZ_512M
  40
  41#ifdef CONFIG_ARM64
  42# define EFI_RT_VIRTUAL_LIMIT   DEFAULT_MAP_WINDOW_64
  43#else
  44# define EFI_RT_VIRTUAL_LIMIT   TASK_SIZE
  45#endif
  46
  47static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
  48static bool flat_va_mapping;
  49
  50const efi_system_table_t *efi_system_table;
  51
  52static struct screen_info *setup_graphics(void)
  53{
  54        efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
  55        efi_status_t status;
  56        unsigned long size;
  57        void **gop_handle = NULL;
  58        struct screen_info *si = NULL;
  59
  60        size = 0;
  61        status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
  62                             &gop_proto, NULL, &size, gop_handle);
  63        if (status == EFI_BUFFER_TOO_SMALL) {
  64                si = alloc_screen_info();
  65                if (!si)
  66                        return NULL;
  67                status = efi_setup_gop(si, &gop_proto, size);
  68                if (status != EFI_SUCCESS) {
  69                        free_screen_info(si);
  70                        return NULL;
  71                }
  72        }
  73        return si;
  74}
  75
  76static void install_memreserve_table(void)
  77{
  78        struct linux_efi_memreserve *rsv;
  79        efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID;
  80        efi_status_t status;
  81
  82        status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv),
  83                             (void **)&rsv);
  84        if (status != EFI_SUCCESS) {
  85                efi_err("Failed to allocate memreserve entry!\n");
  86                return;
  87        }
  88
  89        rsv->next = 0;
  90        rsv->size = 0;
  91        atomic_set(&rsv->count, 0);
  92
  93        status = efi_bs_call(install_configuration_table,
  94                             &memreserve_table_guid, rsv);
  95        if (status != EFI_SUCCESS)
  96                efi_err("Failed to install memreserve config table!\n");
  97}
  98
  99static u32 get_supported_rt_services(void)
 100{
 101        const efi_rt_properties_table_t *rt_prop_table;
 102        u32 supported = EFI_RT_SUPPORTED_ALL;
 103
 104        rt_prop_table = get_efi_config_table(EFI_RT_PROPERTIES_TABLE_GUID);
 105        if (rt_prop_table)
 106                supported &= rt_prop_table->runtime_services_supported;
 107
 108        return supported;
 109}
 110
 111/*
 112 * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
 113 * that is described in the PE/COFF header.  Most of the code is the same
 114 * for both archictectures, with the arch-specific code provided in the
 115 * handle_kernel_image() function.
 116 */
 117efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
 118                                   efi_system_table_t *sys_table_arg)
 119{
 120        efi_loaded_image_t *image;
 121        efi_status_t status;
 122        unsigned long image_addr;
 123        unsigned long image_size = 0;
 124        /* addr/point and size pairs for memory management*/
 125        unsigned long initrd_addr = 0;
 126        unsigned long initrd_size = 0;
 127        unsigned long fdt_addr = 0;  /* Original DTB */
 128        unsigned long fdt_size = 0;
 129        char *cmdline_ptr = NULL;
 130        int cmdline_size = 0;
 131        efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
 132        unsigned long reserve_addr = 0;
 133        unsigned long reserve_size = 0;
 134        enum efi_secureboot_mode secure_boot;
 135        struct screen_info *si;
 136        efi_properties_table_t *prop_tbl;
 137        unsigned long max_addr;
 138
 139        efi_system_table = sys_table_arg;
 140
 141        /* Check if we were booted by the EFI firmware */
 142        if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
 143                status = EFI_INVALID_PARAMETER;
 144                goto fail;
 145        }
 146
 147        status = check_platform_features();
 148        if (status != EFI_SUCCESS)
 149                goto fail;
 150
 151        /*
 152         * Get a handle to the loaded image protocol.  This is used to get
 153         * information about the running image, such as size and the command
 154         * line.
 155         */
 156        status = efi_system_table->boottime->handle_protocol(handle,
 157                                        &loaded_image_proto, (void *)&image);
 158        if (status != EFI_SUCCESS) {
 159                efi_err("Failed to get loaded image protocol\n");
 160                goto fail;
 161        }
 162
 163        /*
 164         * Get the command line from EFI, using the LOADED_IMAGE
 165         * protocol. We are going to copy the command line into the
 166         * device tree, so this can be allocated anywhere.
 167         */
 168        cmdline_ptr = efi_convert_cmdline(image, &cmdline_size);
 169        if (!cmdline_ptr) {
 170                efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n");
 171                status = EFI_OUT_OF_RESOURCES;
 172                goto fail;
 173        }
 174
 175        if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
 176            IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
 177            cmdline_size == 0) {
 178                status = efi_parse_options(CONFIG_CMDLINE);
 179                if (status != EFI_SUCCESS) {
 180                        efi_err("Failed to parse options\n");
 181                        goto fail_free_cmdline;
 182                }
 183        }
 184
 185        if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0) {
 186                status = efi_parse_options(cmdline_ptr);
 187                if (status != EFI_SUCCESS) {
 188                        efi_err("Failed to parse options\n");
 189                        goto fail_free_cmdline;
 190                }
 191        }
 192
 193        efi_info("Booting Linux Kernel...\n");
 194
 195        si = setup_graphics();
 196
 197        status = handle_kernel_image(&image_addr, &image_size,
 198                                     &reserve_addr,
 199                                     &reserve_size,
 200                                     image);
 201        if (status != EFI_SUCCESS) {
 202                efi_err("Failed to relocate kernel\n");
 203                goto fail_free_screeninfo;
 204        }
 205
 206        efi_retrieve_tpm2_eventlog();
 207
 208        /* Ask the firmware to clear memory on unclean shutdown */
 209        efi_enable_reset_attack_mitigation();
 210
 211        secure_boot = efi_get_secureboot();
 212
 213        /*
 214         * Unauthenticated device tree data is a security hazard, so ignore
 215         * 'dtb=' unless UEFI Secure Boot is disabled.  We assume that secure
 216         * boot is enabled if we can't determine its state.
 217         */
 218        if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
 219             secure_boot != efi_secureboot_mode_disabled) {
 220                if (strstr(cmdline_ptr, "dtb="))
 221                        efi_err("Ignoring DTB from command line.\n");
 222        } else {
 223                status = efi_load_dtb(image, &fdt_addr, &fdt_size);
 224
 225                if (status != EFI_SUCCESS) {
 226                        efi_err("Failed to load device tree!\n");
 227                        goto fail_free_image;
 228                }
 229        }
 230
 231        if (fdt_addr) {
 232                efi_info("Using DTB from command line\n");
 233        } else {
 234                /* Look for a device tree configuration table entry. */
 235                fdt_addr = (uintptr_t)get_fdt(&fdt_size);
 236                if (fdt_addr)
 237                        efi_info("Using DTB from configuration table\n");
 238        }
 239
 240        if (!fdt_addr)
 241                efi_info("Generating empty DTB\n");
 242
 243        if (!efi_noinitrd) {
 244                max_addr = efi_get_max_initrd_addr(image_addr);
 245                status = efi_load_initrd(image, &initrd_addr, &initrd_size,
 246                                         ULONG_MAX, max_addr);
 247                if (status != EFI_SUCCESS)
 248                        efi_err("Failed to load initrd!\n");
 249        }
 250
 251        efi_random_get_seed();
 252
 253        /*
 254         * If the NX PE data feature is enabled in the properties table, we
 255         * should take care not to create a virtual mapping that changes the
 256         * relative placement of runtime services code and data regions, as
 257         * they may belong to the same PE/COFF executable image in memory.
 258         * The easiest way to achieve that is to simply use a 1:1 mapping.
 259         */
 260        prop_tbl = get_efi_config_table(EFI_PROPERTIES_TABLE_GUID);
 261        flat_va_mapping = prop_tbl &&
 262                          (prop_tbl->memory_protection_attribute &
 263                           EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA);
 264
 265        /* force efi_novamap if SetVirtualAddressMap() is unsupported */
 266        efi_novamap |= !(get_supported_rt_services() &
 267                         EFI_RT_SUPPORTED_SET_VIRTUAL_ADDRESS_MAP);
 268
 269        /* hibernation expects the runtime regions to stay in the same place */
 270        if (!IS_ENABLED(CONFIG_HIBERNATION) && !efi_nokaslr && !flat_va_mapping) {
 271                /*
 272                 * Randomize the base of the UEFI runtime services region.
 273                 * Preserve the 2 MB alignment of the region by taking a
 274                 * shift of 21 bit positions into account when scaling
 275                 * the headroom value using a 32-bit random value.
 276                 */
 277                static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
 278                                            EFI_RT_VIRTUAL_BASE -
 279                                            EFI_RT_VIRTUAL_SIZE;
 280                u32 rnd;
 281
 282                status = efi_get_random_bytes(sizeof(rnd), (u8 *)&rnd);
 283                if (status == EFI_SUCCESS) {
 284                        virtmap_base = EFI_RT_VIRTUAL_BASE +
 285                                       (((headroom >> 21) * rnd) >> (32 - 21));
 286                }
 287        }
 288
 289        install_memreserve_table();
 290
 291        status = allocate_new_fdt_and_exit_boot(handle, &fdt_addr,
 292                                                initrd_addr, initrd_size,
 293                                                cmdline_ptr, fdt_addr, fdt_size);
 294        if (status != EFI_SUCCESS)
 295                goto fail_free_initrd;
 296
 297        if (IS_ENABLED(CONFIG_ARM))
 298                efi_handle_post_ebs_state();
 299
 300        efi_enter_kernel(image_addr, fdt_addr, fdt_totalsize((void *)fdt_addr));
 301        /* not reached */
 302
 303fail_free_initrd:
 304        efi_err("Failed to update FDT and exit boot services\n");
 305
 306        efi_free(initrd_size, initrd_addr);
 307        efi_free(fdt_size, fdt_addr);
 308
 309fail_free_image:
 310        efi_free(image_size, image_addr);
 311        efi_free(reserve_size, reserve_addr);
 312fail_free_screeninfo:
 313        free_screen_info(si);
 314fail_free_cmdline:
 315        efi_bs_call(free_pool, cmdline_ptr);
 316fail:
 317        return status;
 318}
 319
 320/*
 321 * efi_get_virtmap() - create a virtual mapping for the EFI memory map
 322 *
 323 * This function populates the virt_addr fields of all memory region descriptors
 324 * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
 325 * are also copied to @runtime_map, and their total count is returned in @count.
 326 */
 327void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
 328                     unsigned long desc_size, efi_memory_desc_t *runtime_map,
 329                     int *count)
 330{
 331        u64 efi_virt_base = virtmap_base;
 332        efi_memory_desc_t *in, *out = runtime_map;
 333        int l;
 334
 335        for (l = 0; l < map_size; l += desc_size) {
 336                u64 paddr, size;
 337
 338                in = (void *)memory_map + l;
 339                if (!(in->attribute & EFI_MEMORY_RUNTIME))
 340                        continue;
 341
 342                paddr = in->phys_addr;
 343                size = in->num_pages * EFI_PAGE_SIZE;
 344
 345                in->virt_addr = in->phys_addr;
 346                if (efi_novamap) {
 347                        continue;
 348                }
 349
 350                /*
 351                 * Make the mapping compatible with 64k pages: this allows
 352                 * a 4k page size kernel to kexec a 64k page size kernel and
 353                 * vice versa.
 354                 */
 355                if (!flat_va_mapping) {
 356
 357                        paddr = round_down(in->phys_addr, SZ_64K);
 358                        size += in->phys_addr - paddr;
 359
 360                        /*
 361                         * Avoid wasting memory on PTEs by choosing a virtual
 362                         * base that is compatible with section mappings if this
 363                         * region has the appropriate size and physical
 364                         * alignment. (Sections are 2 MB on 4k granule kernels)
 365                         */
 366                        if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
 367                                efi_virt_base = round_up(efi_virt_base, SZ_2M);
 368                        else
 369                                efi_virt_base = round_up(efi_virt_base, SZ_64K);
 370
 371                        in->virt_addr += efi_virt_base - paddr;
 372                        efi_virt_base += size;
 373                }
 374
 375                memcpy(out, in, desc_size);
 376                out = (void *)out + desc_size;
 377                ++*count;
 378        }
 379}
 380