1/* 2 * Copyright 2015 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: AMD 23 * 24 */ 25#include "dm_services.h" 26#include "bw_fixed.h" 27 28 29#define MIN_I64 \ 30 (int64_t)(-(1LL << 63)) 31 32#define MAX_I64 \ 33 (int64_t)((1ULL << 63) - 1) 34 35#define FRACTIONAL_PART_MASK \ 36 ((1ULL << BW_FIXED_BITS_PER_FRACTIONAL_PART) - 1) 37 38#define GET_FRACTIONAL_PART(x) \ 39 (FRACTIONAL_PART_MASK & (x)) 40 41static uint64_t abs_i64(int64_t arg) 42{ 43 if (arg >= 0) 44 return (uint64_t)(arg); 45 else 46 return (uint64_t)(-arg); 47} 48 49struct bw_fixed bw_int_to_fixed_nonconst(int64_t value) 50{ 51 struct bw_fixed res; 52 ASSERT(value < BW_FIXED_MAX_I32 && value > BW_FIXED_MIN_I32); 53 res.value = value << BW_FIXED_BITS_PER_FRACTIONAL_PART; 54 return res; 55} 56 57struct bw_fixed bw_frc_to_fixed(int64_t numerator, int64_t denominator) 58{ 59 struct bw_fixed res; 60 bool arg1_negative = numerator < 0; 61 bool arg2_negative = denominator < 0; 62 uint64_t arg1_value; 63 uint64_t arg2_value; 64 uint64_t remainder; 65 66 /* determine integer part */ 67 uint64_t res_value; 68 69 ASSERT(denominator != 0); 70 71 arg1_value = abs_i64(numerator); 72 arg2_value = abs_i64(denominator); 73 res_value = div64_u64_rem(arg1_value, arg2_value, &remainder); 74 75 ASSERT(res_value <= BW_FIXED_MAX_I32); 76 77 /* determine fractional part */ 78 { 79 uint32_t i = BW_FIXED_BITS_PER_FRACTIONAL_PART; 80 81 do 82 { 83 remainder <<= 1; 84 85 res_value <<= 1; 86 87 if (remainder >= arg2_value) 88 { 89 res_value |= 1; 90 remainder -= arg2_value; 91 } 92 } while (--i != 0); 93 } 94 95 /* round up LSB */ 96 { 97 uint64_t summand = (remainder << 1) >= arg2_value; 98 99 ASSERT(res_value <= MAX_I64 - summand); 100 101 res_value += summand; 102 } 103 104 res.value = (int64_t)(res_value); 105 106 if (arg1_negative ^ arg2_negative) 107 res.value = -res.value; 108 return res; 109} 110 111struct bw_fixed bw_floor2( 112 const struct bw_fixed arg, 113 const struct bw_fixed significance) 114{ 115 struct bw_fixed result; 116 int64_t multiplicand; 117 118 multiplicand = div64_s64(arg.value, abs_i64(significance.value)); 119 result.value = abs_i64(significance.value) * multiplicand; 120 ASSERT(abs_i64(result.value) <= abs_i64(arg.value)); 121 return result; 122} 123 124struct bw_fixed bw_ceil2( 125 const struct bw_fixed arg, 126 const struct bw_fixed significance) 127{ 128 struct bw_fixed result; 129 int64_t multiplicand; 130 131 multiplicand = div64_s64(arg.value, abs_i64(significance.value)); 132 result.value = abs_i64(significance.value) * multiplicand; 133 if (abs_i64(result.value) < abs_i64(arg.value)) { 134 if (arg.value < 0) 135 result.value -= abs_i64(significance.value); 136 else 137 result.value += abs_i64(significance.value); 138 } 139 return result; 140} 141 142struct bw_fixed bw_mul(const struct bw_fixed arg1, const struct bw_fixed arg2) 143{ 144 struct bw_fixed res; 145 146 bool arg1_negative = arg1.value < 0; 147 bool arg2_negative = arg2.value < 0; 148 149 uint64_t arg1_value = abs_i64(arg1.value); 150 uint64_t arg2_value = abs_i64(arg2.value); 151 152 uint64_t arg1_int = BW_FIXED_GET_INTEGER_PART(arg1_value); 153 uint64_t arg2_int = BW_FIXED_GET_INTEGER_PART(arg2_value); 154 155 uint64_t arg1_fra = GET_FRACTIONAL_PART(arg1_value); 156 uint64_t arg2_fra = GET_FRACTIONAL_PART(arg2_value); 157 158 uint64_t tmp; 159 160 res.value = arg1_int * arg2_int; 161 162 ASSERT(res.value <= BW_FIXED_MAX_I32); 163 164 res.value <<= BW_FIXED_BITS_PER_FRACTIONAL_PART; 165 166 tmp = arg1_int * arg2_fra; 167 168 ASSERT(tmp <= (uint64_t)(MAX_I64 - res.value)); 169 170 res.value += tmp; 171 172 tmp = arg2_int * arg1_fra; 173 174 ASSERT(tmp <= (uint64_t)(MAX_I64 - res.value)); 175 176 res.value += tmp; 177 178 tmp = arg1_fra * arg2_fra; 179 180 tmp = (tmp >> BW_FIXED_BITS_PER_FRACTIONAL_PART) + 181 (tmp >= (uint64_t)(bw_frc_to_fixed(1, 2).value)); 182 183 ASSERT(tmp <= (uint64_t)(MAX_I64 - res.value)); 184 185 res.value += tmp; 186 187 if (arg1_negative ^ arg2_negative) 188 res.value = -res.value; 189 return res; 190} 191 192