linux/drivers/gpu/drm/i915/gt/uc/intel_guc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: MIT
   2/*
   3 * Copyright © 2014-2019 Intel Corporation
   4 */
   5
   6#include "gem/i915_gem_lmem.h"
   7#include "gt/intel_gt.h"
   8#include "gt/intel_gt_irq.h"
   9#include "gt/intel_gt_pm_irq.h"
  10#include "intel_guc.h"
  11#include "intel_guc_slpc.h"
  12#include "intel_guc_ads.h"
  13#include "intel_guc_submission.h"
  14#include "i915_drv.h"
  15
  16/**
  17 * DOC: GuC
  18 *
  19 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
  20 * designed to offload some of the functionality usually performed by the host
  21 * driver; currently the main operations it can take care of are:
  22 *
  23 * - Authentication of the HuC, which is required to fully enable HuC usage.
  24 * - Low latency graphics context scheduling (a.k.a. GuC submission).
  25 * - GT Power management.
  26 *
  27 * The enable_guc module parameter can be used to select which of those
  28 * operations to enable within GuC. Note that not all the operations are
  29 * supported on all gen9+ platforms.
  30 *
  31 * Enabling the GuC is not mandatory and therefore the firmware is only loaded
  32 * if at least one of the operations is selected. However, not loading the GuC
  33 * might result in the loss of some features that do require the GuC (currently
  34 * just the HuC, but more are expected to land in the future).
  35 */
  36
  37void intel_guc_notify(struct intel_guc *guc)
  38{
  39        struct intel_gt *gt = guc_to_gt(guc);
  40
  41        /*
  42         * On Gen11+, the value written to the register is passes as a payload
  43         * to the FW. However, the FW currently treats all values the same way
  44         * (H2G interrupt), so we can just write the value that the HW expects
  45         * on older gens.
  46         */
  47        intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER);
  48}
  49
  50static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
  51{
  52        GEM_BUG_ON(!guc->send_regs.base);
  53        GEM_BUG_ON(!guc->send_regs.count);
  54        GEM_BUG_ON(i >= guc->send_regs.count);
  55
  56        return _MMIO(guc->send_regs.base + 4 * i);
  57}
  58
  59void intel_guc_init_send_regs(struct intel_guc *guc)
  60{
  61        struct intel_gt *gt = guc_to_gt(guc);
  62        enum forcewake_domains fw_domains = 0;
  63        unsigned int i;
  64
  65        GEM_BUG_ON(!guc->send_regs.base);
  66        GEM_BUG_ON(!guc->send_regs.count);
  67
  68        for (i = 0; i < guc->send_regs.count; i++) {
  69                fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
  70                                        guc_send_reg(guc, i),
  71                                        FW_REG_READ | FW_REG_WRITE);
  72        }
  73        guc->send_regs.fw_domains = fw_domains;
  74}
  75
  76static void gen9_reset_guc_interrupts(struct intel_guc *guc)
  77{
  78        struct intel_gt *gt = guc_to_gt(guc);
  79
  80        assert_rpm_wakelock_held(&gt->i915->runtime_pm);
  81
  82        spin_lock_irq(&gt->irq_lock);
  83        gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
  84        spin_unlock_irq(&gt->irq_lock);
  85}
  86
  87static void gen9_enable_guc_interrupts(struct intel_guc *guc)
  88{
  89        struct intel_gt *gt = guc_to_gt(guc);
  90
  91        assert_rpm_wakelock_held(&gt->i915->runtime_pm);
  92
  93        spin_lock_irq(&gt->irq_lock);
  94        WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
  95                     gt->pm_guc_events);
  96        gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
  97        spin_unlock_irq(&gt->irq_lock);
  98}
  99
 100static void gen9_disable_guc_interrupts(struct intel_guc *guc)
 101{
 102        struct intel_gt *gt = guc_to_gt(guc);
 103
 104        assert_rpm_wakelock_held(&gt->i915->runtime_pm);
 105
 106        spin_lock_irq(&gt->irq_lock);
 107
 108        gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
 109
 110        spin_unlock_irq(&gt->irq_lock);
 111        intel_synchronize_irq(gt->i915);
 112
 113        gen9_reset_guc_interrupts(guc);
 114}
 115
 116static void gen11_reset_guc_interrupts(struct intel_guc *guc)
 117{
 118        struct intel_gt *gt = guc_to_gt(guc);
 119
 120        spin_lock_irq(&gt->irq_lock);
 121        gen11_gt_reset_one_iir(gt, 0, GEN11_GUC);
 122        spin_unlock_irq(&gt->irq_lock);
 123}
 124
 125static void gen11_enable_guc_interrupts(struct intel_guc *guc)
 126{
 127        struct intel_gt *gt = guc_to_gt(guc);
 128        u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
 129
 130        spin_lock_irq(&gt->irq_lock);
 131        WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC));
 132        intel_uncore_write(gt->uncore,
 133                           GEN11_GUC_SG_INTR_ENABLE, events);
 134        intel_uncore_write(gt->uncore,
 135                           GEN11_GUC_SG_INTR_MASK, ~events);
 136        spin_unlock_irq(&gt->irq_lock);
 137}
 138
 139static void gen11_disable_guc_interrupts(struct intel_guc *guc)
 140{
 141        struct intel_gt *gt = guc_to_gt(guc);
 142
 143        spin_lock_irq(&gt->irq_lock);
 144
 145        intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0);
 146        intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
 147
 148        spin_unlock_irq(&gt->irq_lock);
 149        intel_synchronize_irq(gt->i915);
 150
 151        gen11_reset_guc_interrupts(guc);
 152}
 153
 154void intel_guc_init_early(struct intel_guc *guc)
 155{
 156        struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
 157
 158        intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC);
 159        intel_guc_ct_init_early(&guc->ct);
 160        intel_guc_log_init_early(&guc->log);
 161        intel_guc_submission_init_early(guc);
 162        intel_guc_slpc_init_early(&guc->slpc);
 163        intel_guc_rc_init_early(guc);
 164
 165        mutex_init(&guc->send_mutex);
 166        spin_lock_init(&guc->irq_lock);
 167        if (GRAPHICS_VER(i915) >= 11) {
 168                guc->notify_reg = GEN11_GUC_HOST_INTERRUPT;
 169                guc->interrupts.reset = gen11_reset_guc_interrupts;
 170                guc->interrupts.enable = gen11_enable_guc_interrupts;
 171                guc->interrupts.disable = gen11_disable_guc_interrupts;
 172                guc->send_regs.base =
 173                        i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
 174                guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
 175
 176        } else {
 177                guc->notify_reg = GUC_SEND_INTERRUPT;
 178                guc->interrupts.reset = gen9_reset_guc_interrupts;
 179                guc->interrupts.enable = gen9_enable_guc_interrupts;
 180                guc->interrupts.disable = gen9_disable_guc_interrupts;
 181                guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
 182                guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
 183                BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
 184        }
 185}
 186
 187void intel_guc_init_late(struct intel_guc *guc)
 188{
 189        intel_guc_ads_init_late(guc);
 190}
 191
 192static u32 guc_ctl_debug_flags(struct intel_guc *guc)
 193{
 194        u32 level = intel_guc_log_get_level(&guc->log);
 195        u32 flags = 0;
 196
 197        if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
 198                flags |= GUC_LOG_DISABLED;
 199        else
 200                flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
 201                         GUC_LOG_VERBOSITY_SHIFT;
 202
 203        return flags;
 204}
 205
 206static u32 guc_ctl_feature_flags(struct intel_guc *guc)
 207{
 208        u32 flags = 0;
 209
 210        if (!intel_guc_submission_is_used(guc))
 211                flags |= GUC_CTL_DISABLE_SCHEDULER;
 212
 213        if (intel_guc_slpc_is_used(guc))
 214                flags |= GUC_CTL_ENABLE_SLPC;
 215
 216        return flags;
 217}
 218
 219static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
 220{
 221        u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT;
 222        u32 flags;
 223
 224        #if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
 225        #define UNIT SZ_1M
 226        #define FLAG GUC_LOG_ALLOC_IN_MEGABYTE
 227        #else
 228        #define UNIT SZ_4K
 229        #define FLAG 0
 230        #endif
 231
 232        BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
 233        BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT));
 234        BUILD_BUG_ON(!DEBUG_BUFFER_SIZE);
 235        BUILD_BUG_ON(!IS_ALIGNED(DEBUG_BUFFER_SIZE, UNIT));
 236
 237        BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) >
 238                        (GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
 239        BUILD_BUG_ON((DEBUG_BUFFER_SIZE / UNIT - 1) >
 240                        (GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT));
 241
 242        flags = GUC_LOG_VALID |
 243                GUC_LOG_NOTIFY_ON_HALF_FULL |
 244                FLAG |
 245                ((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
 246                ((DEBUG_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DEBUG_SHIFT) |
 247                (offset << GUC_LOG_BUF_ADDR_SHIFT);
 248
 249        #undef UNIT
 250        #undef FLAG
 251
 252        return flags;
 253}
 254
 255static u32 guc_ctl_ads_flags(struct intel_guc *guc)
 256{
 257        u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
 258        u32 flags = ads << GUC_ADS_ADDR_SHIFT;
 259
 260        return flags;
 261}
 262
 263/*
 264 * Initialise the GuC parameter block before starting the firmware
 265 * transfer. These parameters are read by the firmware on startup
 266 * and cannot be changed thereafter.
 267 */
 268static void guc_init_params(struct intel_guc *guc)
 269{
 270        u32 *params = guc->params;
 271        int i;
 272
 273        BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
 274
 275        params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
 276        params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
 277        params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
 278        params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
 279
 280        for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
 281                DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]);
 282}
 283
 284/*
 285 * Initialise the GuC parameter block before starting the firmware
 286 * transfer. These parameters are read by the firmware on startup
 287 * and cannot be changed thereafter.
 288 */
 289void intel_guc_write_params(struct intel_guc *guc)
 290{
 291        struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
 292        int i;
 293
 294        /*
 295         * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and
 296         * they are power context saved so it's ok to release forcewake
 297         * when we are done here and take it again at xfer time.
 298         */
 299        intel_uncore_forcewake_get(uncore, FORCEWAKE_GT);
 300
 301        intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
 302
 303        for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
 304                intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
 305
 306        intel_uncore_forcewake_put(uncore, FORCEWAKE_GT);
 307}
 308
 309int intel_guc_init(struct intel_guc *guc)
 310{
 311        struct intel_gt *gt = guc_to_gt(guc);
 312        int ret;
 313
 314        ret = intel_uc_fw_init(&guc->fw);
 315        if (ret)
 316                goto out;
 317
 318        ret = intel_guc_log_create(&guc->log);
 319        if (ret)
 320                goto err_fw;
 321
 322        ret = intel_guc_ads_create(guc);
 323        if (ret)
 324                goto err_log;
 325        GEM_BUG_ON(!guc->ads_vma);
 326
 327        ret = intel_guc_ct_init(&guc->ct);
 328        if (ret)
 329                goto err_ads;
 330
 331        if (intel_guc_submission_is_used(guc)) {
 332                /*
 333                 * This is stuff we need to have available at fw load time
 334                 * if we are planning to enable submission later
 335                 */
 336                ret = intel_guc_submission_init(guc);
 337                if (ret)
 338                        goto err_ct;
 339        }
 340
 341        if (intel_guc_slpc_is_used(guc)) {
 342                ret = intel_guc_slpc_init(&guc->slpc);
 343                if (ret)
 344                        goto err_submission;
 345        }
 346
 347        /* now that everything is perma-pinned, initialize the parameters */
 348        guc_init_params(guc);
 349
 350        /* We need to notify the guc whenever we change the GGTT */
 351        i915_ggtt_enable_guc(gt->ggtt);
 352
 353        intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE);
 354
 355        return 0;
 356
 357err_submission:
 358        intel_guc_submission_fini(guc);
 359err_ct:
 360        intel_guc_ct_fini(&guc->ct);
 361err_ads:
 362        intel_guc_ads_destroy(guc);
 363err_log:
 364        intel_guc_log_destroy(&guc->log);
 365err_fw:
 366        intel_uc_fw_fini(&guc->fw);
 367out:
 368        i915_probe_error(gt->i915, "failed with %d\n", ret);
 369        return ret;
 370}
 371
 372void intel_guc_fini(struct intel_guc *guc)
 373{
 374        struct intel_gt *gt = guc_to_gt(guc);
 375
 376        if (!intel_uc_fw_is_loadable(&guc->fw))
 377                return;
 378
 379        i915_ggtt_disable_guc(gt->ggtt);
 380
 381        if (intel_guc_slpc_is_used(guc))
 382                intel_guc_slpc_fini(&guc->slpc);
 383
 384        if (intel_guc_submission_is_used(guc))
 385                intel_guc_submission_fini(guc);
 386
 387        intel_guc_ct_fini(&guc->ct);
 388
 389        intel_guc_ads_destroy(guc);
 390        intel_guc_log_destroy(&guc->log);
 391        intel_uc_fw_fini(&guc->fw);
 392}
 393
 394/*
 395 * This function implements the MMIO based host to GuC interface.
 396 */
 397int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len,
 398                        u32 *response_buf, u32 response_buf_size)
 399{
 400        struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
 401        struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
 402        u32 header;
 403        int i;
 404        int ret;
 405
 406        GEM_BUG_ON(!len);
 407        GEM_BUG_ON(len > guc->send_regs.count);
 408
 409        GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST);
 410        GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST);
 411
 412        mutex_lock(&guc->send_mutex);
 413        intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
 414
 415retry:
 416        for (i = 0; i < len; i++)
 417                intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]);
 418
 419        intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
 420
 421        intel_guc_notify(guc);
 422
 423        /*
 424         * No GuC command should ever take longer than 10ms.
 425         * Fast commands should still complete in 10us.
 426         */
 427        ret = __intel_wait_for_register_fw(uncore,
 428                                           guc_send_reg(guc, 0),
 429                                           GUC_HXG_MSG_0_ORIGIN,
 430                                           FIELD_PREP(GUC_HXG_MSG_0_ORIGIN,
 431                                                      GUC_HXG_ORIGIN_GUC),
 432                                           10, 10, &header);
 433        if (unlikely(ret)) {
 434timeout:
 435                drm_err(&i915->drm, "mmio request %#x: no reply %x\n",
 436                        request[0], header);
 437                goto out;
 438        }
 439
 440        if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
 441#define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \
 442                FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \
 443                FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; })
 444
 445                ret = wait_for(done, 1000);
 446                if (unlikely(ret))
 447                        goto timeout;
 448                if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
 449                                       GUC_HXG_ORIGIN_GUC))
 450                        goto proto;
 451#undef done
 452        }
 453
 454        if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
 455                u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
 456
 457                drm_dbg(&i915->drm, "mmio request %#x: retrying, reason %u\n",
 458                        request[0], reason);
 459                goto retry;
 460        }
 461
 462        if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) {
 463                u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
 464                u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
 465
 466                drm_err(&i915->drm, "mmio request %#x: failure %x/%u\n",
 467                        request[0], error, hint);
 468                ret = -ENXIO;
 469                goto out;
 470        }
 471
 472        if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
 473proto:
 474                drm_err(&i915->drm, "mmio request %#x: unexpected reply %#x\n",
 475                        request[0], header);
 476                ret = -EPROTO;
 477                goto out;
 478        }
 479
 480        if (response_buf) {
 481                int count = min(response_buf_size, guc->send_regs.count);
 482
 483                GEM_BUG_ON(!count);
 484
 485                response_buf[0] = header;
 486
 487                for (i = 1; i < count; i++)
 488                        response_buf[i] = intel_uncore_read(uncore,
 489                                                            guc_send_reg(guc, i));
 490
 491                /* Use number of copied dwords as our return value */
 492                ret = count;
 493        } else {
 494                /* Use data from the GuC response as our return value */
 495                ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
 496        }
 497
 498out:
 499        intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
 500        mutex_unlock(&guc->send_mutex);
 501
 502        return ret;
 503}
 504
 505int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
 506                                       const u32 *payload, u32 len)
 507{
 508        u32 msg;
 509
 510        if (unlikely(!len))
 511                return -EPROTO;
 512
 513        /* Make sure to handle only enabled messages */
 514        msg = payload[0] & guc->msg_enabled_mask;
 515
 516        if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
 517                   INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED))
 518                intel_guc_log_handle_flush_event(&guc->log);
 519
 520        return 0;
 521}
 522
 523/**
 524 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
 525 * @guc: intel_guc structure
 526 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
 527 *
 528 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
 529 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
 530 * intel_huc_auth().
 531 *
 532 * Return:      non-zero code on error
 533 */
 534int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
 535{
 536        u32 action[] = {
 537                INTEL_GUC_ACTION_AUTHENTICATE_HUC,
 538                rsa_offset
 539        };
 540
 541        return intel_guc_send(guc, action, ARRAY_SIZE(action));
 542}
 543
 544/**
 545 * intel_guc_suspend() - notify GuC entering suspend state
 546 * @guc:        the guc
 547 */
 548int intel_guc_suspend(struct intel_guc *guc)
 549{
 550        int ret;
 551        u32 action[] = {
 552                INTEL_GUC_ACTION_RESET_CLIENT,
 553        };
 554
 555        if (!intel_guc_is_ready(guc))
 556                return 0;
 557
 558        if (intel_guc_submission_is_used(guc)) {
 559                /*
 560                 * This H2G MMIO command tears down the GuC in two steps. First it will
 561                 * generate a G2H CTB for every active context indicating a reset. In
 562                 * practice the i915 shouldn't ever get a G2H as suspend should only be
 563                 * called when the GPU is idle. Next, it tears down the CTBs and this
 564                 * H2G MMIO command completes.
 565                 *
 566                 * Don't abort on a failure code from the GuC. Keep going and do the
 567                 * clean up in santize() and re-initialisation on resume and hopefully
 568                 * the error here won't be problematic.
 569                 */
 570                ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0);
 571                if (ret)
 572                        DRM_ERROR("GuC suspend: RESET_CLIENT action failed with error %d!\n", ret);
 573        }
 574
 575        /* Signal that the GuC isn't running. */
 576        intel_guc_sanitize(guc);
 577
 578        return 0;
 579}
 580
 581/**
 582 * intel_guc_resume() - notify GuC resuming from suspend state
 583 * @guc:        the guc
 584 */
 585int intel_guc_resume(struct intel_guc *guc)
 586{
 587        /*
 588         * NB: This function can still be called even if GuC submission is
 589         * disabled, e.g. if GuC is enabled for HuC authentication only. Thus,
 590         * if any code is later added here, it must be support doing nothing
 591         * if submission is disabled (as per intel_guc_suspend).
 592         */
 593        return 0;
 594}
 595
 596/**
 597 * DOC: GuC Memory Management
 598 *
 599 * GuC can't allocate any memory for its own usage, so all the allocations must
 600 * be handled by the host driver. GuC accesses the memory via the GGTT, with the
 601 * exception of the top and bottom parts of the 4GB address space, which are
 602 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
 603 * or other parts of the HW. The driver must take care not to place objects that
 604 * the GuC is going to access in these reserved ranges. The layout of the GuC
 605 * address space is shown below:
 606 *
 607 * ::
 608 *
 609 *     +===========> +====================+ <== FFFF_FFFF
 610 *     ^             |      Reserved      |
 611 *     |             +====================+ <== GUC_GGTT_TOP
 612 *     |             |                    |
 613 *     |             |        DRAM        |
 614 *    GuC            |                    |
 615 *  Address    +===> +====================+ <== GuC ggtt_pin_bias
 616 *   Space     ^     |                    |
 617 *     |       |     |                    |
 618 *     |      GuC    |        GuC         |
 619 *     |     WOPCM   |       WOPCM        |
 620 *     |      Size   |                    |
 621 *     |       |     |                    |
 622 *     v       v     |                    |
 623 *     +=======+===> +====================+ <== 0000_0000
 624 *
 625 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
 626 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
 627 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
 628 */
 629
 630/**
 631 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
 632 * @guc:        the guc
 633 * @size:       size of area to allocate (both virtual space and memory)
 634 *
 635 * This is a wrapper to create an object for use with the GuC. In order to
 636 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
 637 * both some backing storage and a range inside the Global GTT. We must pin
 638 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
 639 * range is reserved inside GuC.
 640 *
 641 * Return:      A i915_vma if successful, otherwise an ERR_PTR.
 642 */
 643struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
 644{
 645        struct intel_gt *gt = guc_to_gt(guc);
 646        struct drm_i915_gem_object *obj;
 647        struct i915_vma *vma;
 648        u64 flags;
 649        int ret;
 650
 651        if (HAS_LMEM(gt->i915))
 652                obj = i915_gem_object_create_lmem(gt->i915, size,
 653                                                  I915_BO_ALLOC_CPU_CLEAR |
 654                                                  I915_BO_ALLOC_CONTIGUOUS |
 655                                                  I915_BO_ALLOC_PM_EARLY);
 656        else
 657                obj = i915_gem_object_create_shmem(gt->i915, size);
 658
 659        if (IS_ERR(obj))
 660                return ERR_CAST(obj);
 661
 662        vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
 663        if (IS_ERR(vma))
 664                goto err;
 665
 666        flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
 667        ret = i915_ggtt_pin(vma, NULL, 0, flags);
 668        if (ret) {
 669                vma = ERR_PTR(ret);
 670                goto err;
 671        }
 672
 673        return i915_vma_make_unshrinkable(vma);
 674
 675err:
 676        i915_gem_object_put(obj);
 677        return vma;
 678}
 679
 680/**
 681 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage
 682 * @guc:        the guc
 683 * @size:       size of area to allocate (both virtual space and memory)
 684 * @out_vma:    return variable for the allocated vma pointer
 685 * @out_vaddr:  return variable for the obj mapping
 686 *
 687 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated
 688 * object with I915_MAP_WB.
 689 *
 690 * Return:      0 if successful, a negative errno code otherwise.
 691 */
 692int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
 693                                   struct i915_vma **out_vma, void **out_vaddr)
 694{
 695        struct i915_vma *vma;
 696        void *vaddr;
 697
 698        vma = intel_guc_allocate_vma(guc, size);
 699        if (IS_ERR(vma))
 700                return PTR_ERR(vma);
 701
 702        vaddr = i915_gem_object_pin_map_unlocked(vma->obj,
 703                                                 i915_coherent_map_type(guc_to_gt(guc)->i915,
 704                                                                        vma->obj, true));
 705        if (IS_ERR(vaddr)) {
 706                i915_vma_unpin_and_release(&vma, 0);
 707                return PTR_ERR(vaddr);
 708        }
 709
 710        *out_vma = vma;
 711        *out_vaddr = vaddr;
 712
 713        return 0;
 714}
 715
 716/**
 717 * intel_guc_load_status - dump information about GuC load status
 718 * @guc: the GuC
 719 * @p: the &drm_printer
 720 *
 721 * Pretty printer for GuC load status.
 722 */
 723void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p)
 724{
 725        struct intel_gt *gt = guc_to_gt(guc);
 726        struct intel_uncore *uncore = gt->uncore;
 727        intel_wakeref_t wakeref;
 728
 729        if (!intel_guc_is_supported(guc)) {
 730                drm_printf(p, "GuC not supported\n");
 731                return;
 732        }
 733
 734        if (!intel_guc_is_wanted(guc)) {
 735                drm_printf(p, "GuC disabled\n");
 736                return;
 737        }
 738
 739        intel_uc_fw_dump(&guc->fw, p);
 740
 741        with_intel_runtime_pm(uncore->rpm, wakeref) {
 742                u32 status = intel_uncore_read(uncore, GUC_STATUS);
 743                u32 i;
 744
 745                drm_printf(p, "\nGuC status 0x%08x:\n", status);
 746                drm_printf(p, "\tBootrom status = 0x%x\n",
 747                           (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
 748                drm_printf(p, "\tuKernel status = 0x%x\n",
 749                           (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
 750                drm_printf(p, "\tMIA Core status = 0x%x\n",
 751                           (status & GS_MIA_MASK) >> GS_MIA_SHIFT);
 752                drm_puts(p, "\nScratch registers:\n");
 753                for (i = 0; i < 16; i++) {
 754                        drm_printf(p, "\t%2d: \t0x%x\n",
 755                                   i, intel_uncore_read(uncore, SOFT_SCRATCH(i)));
 756                }
 757        }
 758}
 759
 760void intel_guc_write_barrier(struct intel_guc *guc)
 761{
 762        struct intel_gt *gt = guc_to_gt(guc);
 763
 764        if (i915_gem_object_is_lmem(guc->ct.vma->obj)) {
 765                /*
 766                 * Ensure intel_uncore_write_fw can be used rather than
 767                 * intel_uncore_write.
 768                 */
 769                GEM_BUG_ON(guc->send_regs.fw_domains);
 770
 771                /*
 772                 * This register is used by the i915 and GuC for MMIO based
 773                 * communication. Once we are in this code CTBs are the only
 774                 * method the i915 uses to communicate with the GuC so it is
 775                 * safe to write to this register (a value of 0 is NOP for MMIO
 776                 * communication). If we ever start mixing CTBs and MMIOs a new
 777                 * register will have to be chosen. This function is also used
 778                 * to enforce ordering of a work queue item write and an update
 779                 * to the process descriptor. When a work queue is being used,
 780                 * CTBs are also the only mechanism of communication.
 781                 */
 782                intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0);
 783        } else {
 784                /* wmb() sufficient for a barrier if in smem */
 785                wmb();
 786        }
 787}
 788