linux/drivers/gpu/drm/i915/intel_pm.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2012 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
  25 *
  26 */
  27
  28#include <linux/module.h>
  29#include <linux/pm_runtime.h>
  30
  31#include <drm/drm_atomic_helper.h>
  32#include <drm/drm_fourcc.h>
  33#include <drm/drm_plane_helper.h>
  34
  35#include "display/intel_atomic.h"
  36#include "display/intel_atomic_plane.h"
  37#include "display/intel_bw.h"
  38#include "display/intel_de.h"
  39#include "display/intel_display_types.h"
  40#include "display/intel_fbc.h"
  41#include "display/intel_sprite.h"
  42#include "display/skl_universal_plane.h"
  43
  44#include "gt/intel_llc.h"
  45
  46#include "i915_drv.h"
  47#include "i915_fixed.h"
  48#include "i915_irq.h"
  49#include "i915_trace.h"
  50#include "intel_pcode.h"
  51#include "intel_pm.h"
  52#include "vlv_sideband.h"
  53#include "../../../platform/x86/intel_ips.h"
  54
  55/* Stores plane specific WM parameters */
  56struct skl_wm_params {
  57        bool x_tiled, y_tiled;
  58        bool rc_surface;
  59        bool is_planar;
  60        u32 width;
  61        u8 cpp;
  62        u32 plane_pixel_rate;
  63        u32 y_min_scanlines;
  64        u32 plane_bytes_per_line;
  65        uint_fixed_16_16_t plane_blocks_per_line;
  66        uint_fixed_16_16_t y_tile_minimum;
  67        u32 linetime_us;
  68        u32 dbuf_block_size;
  69};
  70
  71/* used in computing the new watermarks state */
  72struct intel_wm_config {
  73        unsigned int num_pipes_active;
  74        bool sprites_enabled;
  75        bool sprites_scaled;
  76};
  77
  78static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
  79{
  80        enum pipe pipe;
  81
  82        if (HAS_LLC(dev_priv)) {
  83                /*
  84                 * WaCompressedResourceDisplayNewHashMode:skl,kbl
  85                 * Display WA #0390: skl,kbl
  86                 *
  87                 * Must match Sampler, Pixel Back End, and Media. See
  88                 * WaCompressedResourceSamplerPbeMediaNewHashMode.
  89                 */
  90                intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
  91                           intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) |
  92                           SKL_DE_COMPRESSED_HASH_MODE);
  93        }
  94
  95        for_each_pipe(dev_priv, pipe) {
  96                /*
  97                 * "Plane N strech max must be programmed to 11b (x1)
  98                 *  when Async flips are enabled on that plane."
  99                 */
 100                if (!IS_GEMINILAKE(dev_priv) && intel_vtd_active())
 101                        intel_uncore_rmw(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe),
 102                                         SKL_PLANE1_STRETCH_MAX_MASK, SKL_PLANE1_STRETCH_MAX_X1);
 103        }
 104
 105        /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
 106        intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
 107                   intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
 108
 109        /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
 110        intel_uncore_write(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
 111                   intel_uncore_read(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
 112
 113        /*
 114         * WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl
 115         * Display WA #0859: skl,bxt,kbl,glk,cfl
 116         */
 117        intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
 118                   DISP_FBC_MEMORY_WAKE);
 119}
 120
 121static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
 122{
 123        gen9_init_clock_gating(dev_priv);
 124
 125        /* WaDisableSDEUnitClockGating:bxt */
 126        intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
 127                   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
 128
 129        /*
 130         * FIXME:
 131         * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
 132         */
 133        intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
 134                   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
 135
 136        /*
 137         * Wa: Backlight PWM may stop in the asserted state, causing backlight
 138         * to stay fully on.
 139         */
 140        intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) |
 141                   PWM1_GATING_DIS | PWM2_GATING_DIS);
 142
 143        /*
 144         * Lower the display internal timeout.
 145         * This is needed to avoid any hard hangs when DSI port PLL
 146         * is off and a MMIO access is attempted by any privilege
 147         * application, using batch buffers or any other means.
 148         */
 149        intel_uncore_write(&dev_priv->uncore, RM_TIMEOUT, MMIO_TIMEOUT_US(950));
 150
 151        /*
 152         * WaFbcTurnOffFbcWatermark:bxt
 153         * Display WA #0562: bxt
 154         */
 155        intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
 156                   DISP_FBC_WM_DIS);
 157
 158        /*
 159         * WaFbcHighMemBwCorruptionAvoidance:bxt
 160         * Display WA #0883: bxt
 161         */
 162        intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
 163                   ILK_DPFC_DISABLE_DUMMY0);
 164}
 165
 166static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
 167{
 168        gen9_init_clock_gating(dev_priv);
 169
 170        /*
 171         * WaDisablePWMClockGating:glk
 172         * Backlight PWM may stop in the asserted state, causing backlight
 173         * to stay fully on.
 174         */
 175        intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) |
 176                   PWM1_GATING_DIS | PWM2_GATING_DIS);
 177}
 178
 179static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
 180{
 181        u32 tmp;
 182
 183        tmp = intel_uncore_read(&dev_priv->uncore, CLKCFG);
 184
 185        switch (tmp & CLKCFG_FSB_MASK) {
 186        case CLKCFG_FSB_533:
 187                dev_priv->fsb_freq = 533; /* 133*4 */
 188                break;
 189        case CLKCFG_FSB_800:
 190                dev_priv->fsb_freq = 800; /* 200*4 */
 191                break;
 192        case CLKCFG_FSB_667:
 193                dev_priv->fsb_freq =  667; /* 167*4 */
 194                break;
 195        case CLKCFG_FSB_400:
 196                dev_priv->fsb_freq = 400; /* 100*4 */
 197                break;
 198        }
 199
 200        switch (tmp & CLKCFG_MEM_MASK) {
 201        case CLKCFG_MEM_533:
 202                dev_priv->mem_freq = 533;
 203                break;
 204        case CLKCFG_MEM_667:
 205                dev_priv->mem_freq = 667;
 206                break;
 207        case CLKCFG_MEM_800:
 208                dev_priv->mem_freq = 800;
 209                break;
 210        }
 211
 212        /* detect pineview DDR3 setting */
 213        tmp = intel_uncore_read(&dev_priv->uncore, CSHRDDR3CTL);
 214        dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
 215}
 216
 217static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
 218{
 219        u16 ddrpll, csipll;
 220
 221        ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
 222        csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
 223
 224        switch (ddrpll & 0xff) {
 225        case 0xc:
 226                dev_priv->mem_freq = 800;
 227                break;
 228        case 0x10:
 229                dev_priv->mem_freq = 1066;
 230                break;
 231        case 0x14:
 232                dev_priv->mem_freq = 1333;
 233                break;
 234        case 0x18:
 235                dev_priv->mem_freq = 1600;
 236                break;
 237        default:
 238                drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
 239                        ddrpll & 0xff);
 240                dev_priv->mem_freq = 0;
 241                break;
 242        }
 243
 244        switch (csipll & 0x3ff) {
 245        case 0x00c:
 246                dev_priv->fsb_freq = 3200;
 247                break;
 248        case 0x00e:
 249                dev_priv->fsb_freq = 3733;
 250                break;
 251        case 0x010:
 252                dev_priv->fsb_freq = 4266;
 253                break;
 254        case 0x012:
 255                dev_priv->fsb_freq = 4800;
 256                break;
 257        case 0x014:
 258                dev_priv->fsb_freq = 5333;
 259                break;
 260        case 0x016:
 261                dev_priv->fsb_freq = 5866;
 262                break;
 263        case 0x018:
 264                dev_priv->fsb_freq = 6400;
 265                break;
 266        default:
 267                drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
 268                        csipll & 0x3ff);
 269                dev_priv->fsb_freq = 0;
 270                break;
 271        }
 272}
 273
 274static const struct cxsr_latency cxsr_latency_table[] = {
 275        {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
 276        {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
 277        {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
 278        {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
 279        {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
 280
 281        {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
 282        {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
 283        {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
 284        {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
 285        {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
 286
 287        {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
 288        {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
 289        {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
 290        {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
 291        {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
 292
 293        {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
 294        {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
 295        {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
 296        {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
 297        {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
 298
 299        {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
 300        {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
 301        {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
 302        {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
 303        {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
 304
 305        {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
 306        {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
 307        {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
 308        {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
 309        {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
 310};
 311
 312static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
 313                                                         bool is_ddr3,
 314                                                         int fsb,
 315                                                         int mem)
 316{
 317        const struct cxsr_latency *latency;
 318        int i;
 319
 320        if (fsb == 0 || mem == 0)
 321                return NULL;
 322
 323        for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
 324                latency = &cxsr_latency_table[i];
 325                if (is_desktop == latency->is_desktop &&
 326                    is_ddr3 == latency->is_ddr3 &&
 327                    fsb == latency->fsb_freq && mem == latency->mem_freq)
 328                        return latency;
 329        }
 330
 331        DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 332
 333        return NULL;
 334}
 335
 336static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
 337{
 338        u32 val;
 339
 340        vlv_punit_get(dev_priv);
 341
 342        val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
 343        if (enable)
 344                val &= ~FORCE_DDR_HIGH_FREQ;
 345        else
 346                val |= FORCE_DDR_HIGH_FREQ;
 347        val &= ~FORCE_DDR_LOW_FREQ;
 348        val |= FORCE_DDR_FREQ_REQ_ACK;
 349        vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
 350
 351        if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
 352                      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
 353                drm_err(&dev_priv->drm,
 354                        "timed out waiting for Punit DDR DVFS request\n");
 355
 356        vlv_punit_put(dev_priv);
 357}
 358
 359static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
 360{
 361        u32 val;
 362
 363        vlv_punit_get(dev_priv);
 364
 365        val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
 366        if (enable)
 367                val |= DSP_MAXFIFO_PM5_ENABLE;
 368        else
 369                val &= ~DSP_MAXFIFO_PM5_ENABLE;
 370        vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
 371
 372        vlv_punit_put(dev_priv);
 373}
 374
 375#define FW_WM(value, plane) \
 376        (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
 377
 378static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
 379{
 380        bool was_enabled;
 381        u32 val;
 382
 383        if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
 384                was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
 385                intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
 386                intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF_VLV);
 387        } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
 388                was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
 389                intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
 390                intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
 391        } else if (IS_PINEVIEW(dev_priv)) {
 392                val = intel_uncore_read(&dev_priv->uncore, DSPFW3);
 393                was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
 394                if (enable)
 395                        val |= PINEVIEW_SELF_REFRESH_EN;
 396                else
 397                        val &= ~PINEVIEW_SELF_REFRESH_EN;
 398                intel_uncore_write(&dev_priv->uncore, DSPFW3, val);
 399                intel_uncore_posting_read(&dev_priv->uncore, DSPFW3);
 400        } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
 401                was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
 402                val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
 403                               _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
 404                intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, val);
 405                intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
 406        } else if (IS_I915GM(dev_priv)) {
 407                /*
 408                 * FIXME can't find a bit like this for 915G, and
 409                 * and yet it does have the related watermark in
 410                 * FW_BLC_SELF. What's going on?
 411                 */
 412                was_enabled = intel_uncore_read(&dev_priv->uncore, INSTPM) & INSTPM_SELF_EN;
 413                val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
 414                               _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
 415                intel_uncore_write(&dev_priv->uncore, INSTPM, val);
 416                intel_uncore_posting_read(&dev_priv->uncore, INSTPM);
 417        } else {
 418                return false;
 419        }
 420
 421        trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
 422
 423        drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
 424                    enableddisabled(enable),
 425                    enableddisabled(was_enabled));
 426
 427        return was_enabled;
 428}
 429
 430/**
 431 * intel_set_memory_cxsr - Configure CxSR state
 432 * @dev_priv: i915 device
 433 * @enable: Allow vs. disallow CxSR
 434 *
 435 * Allow or disallow the system to enter a special CxSR
 436 * (C-state self refresh) state. What typically happens in CxSR mode
 437 * is that several display FIFOs may get combined into a single larger
 438 * FIFO for a particular plane (so called max FIFO mode) to allow the
 439 * system to defer memory fetches longer, and the memory will enter
 440 * self refresh.
 441 *
 442 * Note that enabling CxSR does not guarantee that the system enter
 443 * this special mode, nor does it guarantee that the system stays
 444 * in that mode once entered. So this just allows/disallows the system
 445 * to autonomously utilize the CxSR mode. Other factors such as core
 446 * C-states will affect when/if the system actually enters/exits the
 447 * CxSR mode.
 448 *
 449 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 450 * and the system is free to enter/exit memory self refresh at any time
 451 * even when the use of CxSR has been disallowed.
 452 *
 453 * While the system is actually in the CxSR/max FIFO mode, some plane
 454 * control registers will not get latched on vblank. Thus in order to
 455 * guarantee the system will respond to changes in the plane registers
 456 * we must always disallow CxSR prior to making changes to those registers.
 457 * Unfortunately the system will re-evaluate the CxSR conditions at
 458 * frame start which happens after vblank start (which is when the plane
 459 * registers would get latched), so we can't proceed with the plane update
 460 * during the same frame where we disallowed CxSR.
 461 *
 462 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 463 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 464 * the hardware w.r.t. HPLL SR when writing to plane registers.
 465 * Disallowing just CxSR is sufficient.
 466 */
 467bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
 468{
 469        bool ret;
 470
 471        mutex_lock(&dev_priv->wm.wm_mutex);
 472        ret = _intel_set_memory_cxsr(dev_priv, enable);
 473        if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
 474                dev_priv->wm.vlv.cxsr = enable;
 475        else if (IS_G4X(dev_priv))
 476                dev_priv->wm.g4x.cxsr = enable;
 477        mutex_unlock(&dev_priv->wm.wm_mutex);
 478
 479        return ret;
 480}
 481
 482/*
 483 * Latency for FIFO fetches is dependent on several factors:
 484 *   - memory configuration (speed, channels)
 485 *   - chipset
 486 *   - current MCH state
 487 * It can be fairly high in some situations, so here we assume a fairly
 488 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 489 * set this value too high, the FIFO will fetch frequently to stay full)
 490 * and power consumption (set it too low to save power and we might see
 491 * FIFO underruns and display "flicker").
 492 *
 493 * A value of 5us seems to be a good balance; safe for very low end
 494 * platforms but not overly aggressive on lower latency configs.
 495 */
 496static const int pessimal_latency_ns = 5000;
 497
 498#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
 499        ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
 500
 501static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
 502{
 503        struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 504        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 505        struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
 506        enum pipe pipe = crtc->pipe;
 507        int sprite0_start, sprite1_start;
 508        u32 dsparb, dsparb2, dsparb3;
 509
 510        switch (pipe) {
 511        case PIPE_A:
 512                dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
 513                dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
 514                sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
 515                sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
 516                break;
 517        case PIPE_B:
 518                dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
 519                dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
 520                sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
 521                sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
 522                break;
 523        case PIPE_C:
 524                dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
 525                dsparb3 = intel_uncore_read(&dev_priv->uncore, DSPARB3);
 526                sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
 527                sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
 528                break;
 529        default:
 530                MISSING_CASE(pipe);
 531                return;
 532        }
 533
 534        fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
 535        fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
 536        fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
 537        fifo_state->plane[PLANE_CURSOR] = 63;
 538}
 539
 540static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
 541                              enum i9xx_plane_id i9xx_plane)
 542{
 543        u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
 544        int size;
 545
 546        size = dsparb & 0x7f;
 547        if (i9xx_plane == PLANE_B)
 548                size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
 549
 550        drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
 551                    dsparb, plane_name(i9xx_plane), size);
 552
 553        return size;
 554}
 555
 556static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
 557                              enum i9xx_plane_id i9xx_plane)
 558{
 559        u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
 560        int size;
 561
 562        size = dsparb & 0x1ff;
 563        if (i9xx_plane == PLANE_B)
 564                size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
 565        size >>= 1; /* Convert to cachelines */
 566
 567        drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
 568                    dsparb, plane_name(i9xx_plane), size);
 569
 570        return size;
 571}
 572
 573static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
 574                              enum i9xx_plane_id i9xx_plane)
 575{
 576        u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
 577        int size;
 578
 579        size = dsparb & 0x7f;
 580        size >>= 2; /* Convert to cachelines */
 581
 582        drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
 583                    dsparb, plane_name(i9xx_plane), size);
 584
 585        return size;
 586}
 587
 588/* Pineview has different values for various configs */
 589static const struct intel_watermark_params pnv_display_wm = {
 590        .fifo_size = PINEVIEW_DISPLAY_FIFO,
 591        .max_wm = PINEVIEW_MAX_WM,
 592        .default_wm = PINEVIEW_DFT_WM,
 593        .guard_size = PINEVIEW_GUARD_WM,
 594        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 595};
 596
 597static const struct intel_watermark_params pnv_display_hplloff_wm = {
 598        .fifo_size = PINEVIEW_DISPLAY_FIFO,
 599        .max_wm = PINEVIEW_MAX_WM,
 600        .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
 601        .guard_size = PINEVIEW_GUARD_WM,
 602        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 603};
 604
 605static const struct intel_watermark_params pnv_cursor_wm = {
 606        .fifo_size = PINEVIEW_CURSOR_FIFO,
 607        .max_wm = PINEVIEW_CURSOR_MAX_WM,
 608        .default_wm = PINEVIEW_CURSOR_DFT_WM,
 609        .guard_size = PINEVIEW_CURSOR_GUARD_WM,
 610        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 611};
 612
 613static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
 614        .fifo_size = PINEVIEW_CURSOR_FIFO,
 615        .max_wm = PINEVIEW_CURSOR_MAX_WM,
 616        .default_wm = PINEVIEW_CURSOR_DFT_WM,
 617        .guard_size = PINEVIEW_CURSOR_GUARD_WM,
 618        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 619};
 620
 621static const struct intel_watermark_params i965_cursor_wm_info = {
 622        .fifo_size = I965_CURSOR_FIFO,
 623        .max_wm = I965_CURSOR_MAX_WM,
 624        .default_wm = I965_CURSOR_DFT_WM,
 625        .guard_size = 2,
 626        .cacheline_size = I915_FIFO_LINE_SIZE,
 627};
 628
 629static const struct intel_watermark_params i945_wm_info = {
 630        .fifo_size = I945_FIFO_SIZE,
 631        .max_wm = I915_MAX_WM,
 632        .default_wm = 1,
 633        .guard_size = 2,
 634        .cacheline_size = I915_FIFO_LINE_SIZE,
 635};
 636
 637static const struct intel_watermark_params i915_wm_info = {
 638        .fifo_size = I915_FIFO_SIZE,
 639        .max_wm = I915_MAX_WM,
 640        .default_wm = 1,
 641        .guard_size = 2,
 642        .cacheline_size = I915_FIFO_LINE_SIZE,
 643};
 644
 645static const struct intel_watermark_params i830_a_wm_info = {
 646        .fifo_size = I855GM_FIFO_SIZE,
 647        .max_wm = I915_MAX_WM,
 648        .default_wm = 1,
 649        .guard_size = 2,
 650        .cacheline_size = I830_FIFO_LINE_SIZE,
 651};
 652
 653static const struct intel_watermark_params i830_bc_wm_info = {
 654        .fifo_size = I855GM_FIFO_SIZE,
 655        .max_wm = I915_MAX_WM/2,
 656        .default_wm = 1,
 657        .guard_size = 2,
 658        .cacheline_size = I830_FIFO_LINE_SIZE,
 659};
 660
 661static const struct intel_watermark_params i845_wm_info = {
 662        .fifo_size = I830_FIFO_SIZE,
 663        .max_wm = I915_MAX_WM,
 664        .default_wm = 1,
 665        .guard_size = 2,
 666        .cacheline_size = I830_FIFO_LINE_SIZE,
 667};
 668
 669/**
 670 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 671 * @pixel_rate: Pipe pixel rate in kHz
 672 * @cpp: Plane bytes per pixel
 673 * @latency: Memory wakeup latency in 0.1us units
 674 *
 675 * Compute the watermark using the method 1 or "small buffer"
 676 * formula. The caller may additonally add extra cachelines
 677 * to account for TLB misses and clock crossings.
 678 *
 679 * This method is concerned with the short term drain rate
 680 * of the FIFO, ie. it does not account for blanking periods
 681 * which would effectively reduce the average drain rate across
 682 * a longer period. The name "small" refers to the fact the
 683 * FIFO is relatively small compared to the amount of data
 684 * fetched.
 685 *
 686 * The FIFO level vs. time graph might look something like:
 687 *
 688 *   |\   |\
 689 *   | \  | \
 690 * __---__---__ (- plane active, _ blanking)
 691 * -> time
 692 *
 693 * or perhaps like this:
 694 *
 695 *   |\|\  |\|\
 696 * __----__----__ (- plane active, _ blanking)
 697 * -> time
 698 *
 699 * Returns:
 700 * The watermark in bytes
 701 */
 702static unsigned int intel_wm_method1(unsigned int pixel_rate,
 703                                     unsigned int cpp,
 704                                     unsigned int latency)
 705{
 706        u64 ret;
 707
 708        ret = mul_u32_u32(pixel_rate, cpp * latency);
 709        ret = DIV_ROUND_UP_ULL(ret, 10000);
 710
 711        return ret;
 712}
 713
 714/**
 715 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 716 * @pixel_rate: Pipe pixel rate in kHz
 717 * @htotal: Pipe horizontal total
 718 * @width: Plane width in pixels
 719 * @cpp: Plane bytes per pixel
 720 * @latency: Memory wakeup latency in 0.1us units
 721 *
 722 * Compute the watermark using the method 2 or "large buffer"
 723 * formula. The caller may additonally add extra cachelines
 724 * to account for TLB misses and clock crossings.
 725 *
 726 * This method is concerned with the long term drain rate
 727 * of the FIFO, ie. it does account for blanking periods
 728 * which effectively reduce the average drain rate across
 729 * a longer period. The name "large" refers to the fact the
 730 * FIFO is relatively large compared to the amount of data
 731 * fetched.
 732 *
 733 * The FIFO level vs. time graph might look something like:
 734 *
 735 *    |\___       |\___
 736 *    |    \___   |    \___
 737 *    |        \  |        \
 738 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 739 * -> time
 740 *
 741 * Returns:
 742 * The watermark in bytes
 743 */
 744static unsigned int intel_wm_method2(unsigned int pixel_rate,
 745                                     unsigned int htotal,
 746                                     unsigned int width,
 747                                     unsigned int cpp,
 748                                     unsigned int latency)
 749{
 750        unsigned int ret;
 751
 752        /*
 753         * FIXME remove once all users are computing
 754         * watermarks in the correct place.
 755         */
 756        if (WARN_ON_ONCE(htotal == 0))
 757                htotal = 1;
 758
 759        ret = (latency * pixel_rate) / (htotal * 10000);
 760        ret = (ret + 1) * width * cpp;
 761
 762        return ret;
 763}
 764
 765/**
 766 * intel_calculate_wm - calculate watermark level
 767 * @pixel_rate: pixel clock
 768 * @wm: chip FIFO params
 769 * @fifo_size: size of the FIFO buffer
 770 * @cpp: bytes per pixel
 771 * @latency_ns: memory latency for the platform
 772 *
 773 * Calculate the watermark level (the level at which the display plane will
 774 * start fetching from memory again).  Each chip has a different display
 775 * FIFO size and allocation, so the caller needs to figure that out and pass
 776 * in the correct intel_watermark_params structure.
 777 *
 778 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 779 * on the pixel size.  When it reaches the watermark level, it'll start
 780 * fetching FIFO line sized based chunks from memory until the FIFO fills
 781 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 782 * will occur, and a display engine hang could result.
 783 */
 784static unsigned int intel_calculate_wm(int pixel_rate,
 785                                       const struct intel_watermark_params *wm,
 786                                       int fifo_size, int cpp,
 787                                       unsigned int latency_ns)
 788{
 789        int entries, wm_size;
 790
 791        /*
 792         * Note: we need to make sure we don't overflow for various clock &
 793         * latency values.
 794         * clocks go from a few thousand to several hundred thousand.
 795         * latency is usually a few thousand
 796         */
 797        entries = intel_wm_method1(pixel_rate, cpp,
 798                                   latency_ns / 100);
 799        entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
 800                wm->guard_size;
 801        DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
 802
 803        wm_size = fifo_size - entries;
 804        DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
 805
 806        /* Don't promote wm_size to unsigned... */
 807        if (wm_size > wm->max_wm)
 808                wm_size = wm->max_wm;
 809        if (wm_size <= 0)
 810                wm_size = wm->default_wm;
 811
 812        /*
 813         * Bspec seems to indicate that the value shouldn't be lower than
 814         * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
 815         * Lets go for 8 which is the burst size since certain platforms
 816         * already use a hardcoded 8 (which is what the spec says should be
 817         * done).
 818         */
 819        if (wm_size <= 8)
 820                wm_size = 8;
 821
 822        return wm_size;
 823}
 824
 825static bool is_disabling(int old, int new, int threshold)
 826{
 827        return old >= threshold && new < threshold;
 828}
 829
 830static bool is_enabling(int old, int new, int threshold)
 831{
 832        return old < threshold && new >= threshold;
 833}
 834
 835static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
 836{
 837        return dev_priv->wm.max_level + 1;
 838}
 839
 840static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
 841                                   const struct intel_plane_state *plane_state)
 842{
 843        struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
 844
 845        /* FIXME check the 'enable' instead */
 846        if (!crtc_state->hw.active)
 847                return false;
 848
 849        /*
 850         * Treat cursor with fb as always visible since cursor updates
 851         * can happen faster than the vrefresh rate, and the current
 852         * watermark code doesn't handle that correctly. Cursor updates
 853         * which set/clear the fb or change the cursor size are going
 854         * to get throttled by intel_legacy_cursor_update() to work
 855         * around this problem with the watermark code.
 856         */
 857        if (plane->id == PLANE_CURSOR)
 858                return plane_state->hw.fb != NULL;
 859        else
 860                return plane_state->uapi.visible;
 861}
 862
 863static bool intel_crtc_active(struct intel_crtc *crtc)
 864{
 865        /* Be paranoid as we can arrive here with only partial
 866         * state retrieved from the hardware during setup.
 867         *
 868         * We can ditch the adjusted_mode.crtc_clock check as soon
 869         * as Haswell has gained clock readout/fastboot support.
 870         *
 871         * We can ditch the crtc->primary->state->fb check as soon as we can
 872         * properly reconstruct framebuffers.
 873         *
 874         * FIXME: The intel_crtc->active here should be switched to
 875         * crtc->state->active once we have proper CRTC states wired up
 876         * for atomic.
 877         */
 878        return crtc->active && crtc->base.primary->state->fb &&
 879                crtc->config->hw.adjusted_mode.crtc_clock;
 880}
 881
 882static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
 883{
 884        struct intel_crtc *crtc, *enabled = NULL;
 885
 886        for_each_intel_crtc(&dev_priv->drm, crtc) {
 887                if (intel_crtc_active(crtc)) {
 888                        if (enabled)
 889                                return NULL;
 890                        enabled = crtc;
 891                }
 892        }
 893
 894        return enabled;
 895}
 896
 897static void pnv_update_wm(struct drm_i915_private *dev_priv)
 898{
 899        struct intel_crtc *crtc;
 900        const struct cxsr_latency *latency;
 901        u32 reg;
 902        unsigned int wm;
 903
 904        latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
 905                                         dev_priv->is_ddr3,
 906                                         dev_priv->fsb_freq,
 907                                         dev_priv->mem_freq);
 908        if (!latency) {
 909                drm_dbg_kms(&dev_priv->drm,
 910                            "Unknown FSB/MEM found, disable CxSR\n");
 911                intel_set_memory_cxsr(dev_priv, false);
 912                return;
 913        }
 914
 915        crtc = single_enabled_crtc(dev_priv);
 916        if (crtc) {
 917                const struct drm_display_mode *pipe_mode =
 918                        &crtc->config->hw.pipe_mode;
 919                const struct drm_framebuffer *fb =
 920                        crtc->base.primary->state->fb;
 921                int cpp = fb->format->cpp[0];
 922                int clock = pipe_mode->crtc_clock;
 923
 924                /* Display SR */
 925                wm = intel_calculate_wm(clock, &pnv_display_wm,
 926                                        pnv_display_wm.fifo_size,
 927                                        cpp, latency->display_sr);
 928                reg = intel_uncore_read(&dev_priv->uncore, DSPFW1);
 929                reg &= ~DSPFW_SR_MASK;
 930                reg |= FW_WM(wm, SR);
 931                intel_uncore_write(&dev_priv->uncore, DSPFW1, reg);
 932                drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
 933
 934                /* cursor SR */
 935                wm = intel_calculate_wm(clock, &pnv_cursor_wm,
 936                                        pnv_display_wm.fifo_size,
 937                                        4, latency->cursor_sr);
 938                reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
 939                reg &= ~DSPFW_CURSOR_SR_MASK;
 940                reg |= FW_WM(wm, CURSOR_SR);
 941                intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
 942
 943                /* Display HPLL off SR */
 944                wm = intel_calculate_wm(clock, &pnv_display_hplloff_wm,
 945                                        pnv_display_hplloff_wm.fifo_size,
 946                                        cpp, latency->display_hpll_disable);
 947                reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
 948                reg &= ~DSPFW_HPLL_SR_MASK;
 949                reg |= FW_WM(wm, HPLL_SR);
 950                intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
 951
 952                /* cursor HPLL off SR */
 953                wm = intel_calculate_wm(clock, &pnv_cursor_hplloff_wm,
 954                                        pnv_display_hplloff_wm.fifo_size,
 955                                        4, latency->cursor_hpll_disable);
 956                reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
 957                reg &= ~DSPFW_HPLL_CURSOR_MASK;
 958                reg |= FW_WM(wm, HPLL_CURSOR);
 959                intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
 960                drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
 961
 962                intel_set_memory_cxsr(dev_priv, true);
 963        } else {
 964                intel_set_memory_cxsr(dev_priv, false);
 965        }
 966}
 967
 968/*
 969 * Documentation says:
 970 * "If the line size is small, the TLB fetches can get in the way of the
 971 *  data fetches, causing some lag in the pixel data return which is not
 972 *  accounted for in the above formulas. The following adjustment only
 973 *  needs to be applied if eight whole lines fit in the buffer at once.
 974 *  The WM is adjusted upwards by the difference between the FIFO size
 975 *  and the size of 8 whole lines. This adjustment is always performed
 976 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 977 */
 978static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
 979{
 980        int tlb_miss = fifo_size * 64 - width * cpp * 8;
 981
 982        return max(0, tlb_miss);
 983}
 984
 985static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
 986                                const struct g4x_wm_values *wm)
 987{
 988        enum pipe pipe;
 989
 990        for_each_pipe(dev_priv, pipe)
 991                trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
 992
 993        intel_uncore_write(&dev_priv->uncore, DSPFW1,
 994                   FW_WM(wm->sr.plane, SR) |
 995                   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
 996                   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
 997                   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
 998        intel_uncore_write(&dev_priv->uncore, DSPFW2,
 999                   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
1000                   FW_WM(wm->sr.fbc, FBC_SR) |
1001                   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
1002                   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
1003                   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1004                   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1005        intel_uncore_write(&dev_priv->uncore, DSPFW3,
1006                   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
1007                   FW_WM(wm->sr.cursor, CURSOR_SR) |
1008                   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
1009                   FW_WM(wm->hpll.plane, HPLL_SR));
1010
1011        intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
1012}
1013
1014#define FW_WM_VLV(value, plane) \
1015        (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
1016
1017static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
1018                                const struct vlv_wm_values *wm)
1019{
1020        enum pipe pipe;
1021
1022        for_each_pipe(dev_priv, pipe) {
1023                trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
1024
1025                intel_uncore_write(&dev_priv->uncore, VLV_DDL(pipe),
1026                           (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
1027                           (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
1028                           (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
1029                           (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
1030        }
1031
1032        /*
1033         * Zero the (unused) WM1 watermarks, and also clear all the
1034         * high order bits so that there are no out of bounds values
1035         * present in the registers during the reprogramming.
1036         */
1037        intel_uncore_write(&dev_priv->uncore, DSPHOWM, 0);
1038        intel_uncore_write(&dev_priv->uncore, DSPHOWM1, 0);
1039        intel_uncore_write(&dev_priv->uncore, DSPFW4, 0);
1040        intel_uncore_write(&dev_priv->uncore, DSPFW5, 0);
1041        intel_uncore_write(&dev_priv->uncore, DSPFW6, 0);
1042
1043        intel_uncore_write(&dev_priv->uncore, DSPFW1,
1044                   FW_WM(wm->sr.plane, SR) |
1045                   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
1046                   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
1047                   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1048        intel_uncore_write(&dev_priv->uncore, DSPFW2,
1049                   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
1050                   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1051                   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1052        intel_uncore_write(&dev_priv->uncore, DSPFW3,
1053                   FW_WM(wm->sr.cursor, CURSOR_SR));
1054
1055        if (IS_CHERRYVIEW(dev_priv)) {
1056                intel_uncore_write(&dev_priv->uncore, DSPFW7_CHV,
1057                           FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1058                           FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1059                intel_uncore_write(&dev_priv->uncore, DSPFW8_CHV,
1060                           FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1061                           FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1062                intel_uncore_write(&dev_priv->uncore, DSPFW9_CHV,
1063                           FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1064                           FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1065                intel_uncore_write(&dev_priv->uncore, DSPHOWM,
1066                           FW_WM(wm->sr.plane >> 9, SR_HI) |
1067                           FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1068                           FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1069                           FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1070                           FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1071                           FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1072                           FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1073                           FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1074                           FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1075                           FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1076        } else {
1077                intel_uncore_write(&dev_priv->uncore, DSPFW7,
1078                           FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1079                           FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1080                intel_uncore_write(&dev_priv->uncore, DSPHOWM,
1081                           FW_WM(wm->sr.plane >> 9, SR_HI) |
1082                           FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1083                           FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1084                           FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1085                           FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1086                           FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1087                           FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1088        }
1089
1090        intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
1091}
1092
1093#undef FW_WM_VLV
1094
1095static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1096{
1097        /* all latencies in usec */
1098        dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1099        dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1100        dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1101
1102        dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1103}
1104
1105static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1106{
1107        /*
1108         * DSPCNTR[13] supposedly controls whether the
1109         * primary plane can use the FIFO space otherwise
1110         * reserved for the sprite plane. It's not 100% clear
1111         * what the actual FIFO size is, but it looks like we
1112         * can happily set both primary and sprite watermarks
1113         * up to 127 cachelines. So that would seem to mean
1114         * that either DSPCNTR[13] doesn't do anything, or that
1115         * the total FIFO is >= 256 cachelines in size. Either
1116         * way, we don't seem to have to worry about this
1117         * repartitioning as the maximum watermark value the
1118         * register can hold for each plane is lower than the
1119         * minimum FIFO size.
1120         */
1121        switch (plane_id) {
1122        case PLANE_CURSOR:
1123                return 63;
1124        case PLANE_PRIMARY:
1125                return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1126        case PLANE_SPRITE0:
1127                return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1128        default:
1129                MISSING_CASE(plane_id);
1130                return 0;
1131        }
1132}
1133
1134static int g4x_fbc_fifo_size(int level)
1135{
1136        switch (level) {
1137        case G4X_WM_LEVEL_SR:
1138                return 7;
1139        case G4X_WM_LEVEL_HPLL:
1140                return 15;
1141        default:
1142                MISSING_CASE(level);
1143                return 0;
1144        }
1145}
1146
1147static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1148                          const struct intel_plane_state *plane_state,
1149                          int level)
1150{
1151        struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1152        struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1153        const struct drm_display_mode *pipe_mode =
1154                &crtc_state->hw.pipe_mode;
1155        unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1156        unsigned int clock, htotal, cpp, width, wm;
1157
1158        if (latency == 0)
1159                return USHRT_MAX;
1160
1161        if (!intel_wm_plane_visible(crtc_state, plane_state))
1162                return 0;
1163
1164        cpp = plane_state->hw.fb->format->cpp[0];
1165
1166        /*
1167         * WaUse32BppForSRWM:ctg,elk
1168         *
1169         * The spec fails to list this restriction for the
1170         * HPLL watermark, which seems a little strange.
1171         * Let's use 32bpp for the HPLL watermark as well.
1172         */
1173        if (plane->id == PLANE_PRIMARY &&
1174            level != G4X_WM_LEVEL_NORMAL)
1175                cpp = max(cpp, 4u);
1176
1177        clock = pipe_mode->crtc_clock;
1178        htotal = pipe_mode->crtc_htotal;
1179
1180        width = drm_rect_width(&plane_state->uapi.dst);
1181
1182        if (plane->id == PLANE_CURSOR) {
1183                wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1184        } else if (plane->id == PLANE_PRIMARY &&
1185                   level == G4X_WM_LEVEL_NORMAL) {
1186                wm = intel_wm_method1(clock, cpp, latency);
1187        } else {
1188                unsigned int small, large;
1189
1190                small = intel_wm_method1(clock, cpp, latency);
1191                large = intel_wm_method2(clock, htotal, width, cpp, latency);
1192
1193                wm = min(small, large);
1194        }
1195
1196        wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1197                              width, cpp);
1198
1199        wm = DIV_ROUND_UP(wm, 64) + 2;
1200
1201        return min_t(unsigned int, wm, USHRT_MAX);
1202}
1203
1204static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1205                                 int level, enum plane_id plane_id, u16 value)
1206{
1207        struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1208        bool dirty = false;
1209
1210        for (; level < intel_wm_num_levels(dev_priv); level++) {
1211                struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1212
1213                dirty |= raw->plane[plane_id] != value;
1214                raw->plane[plane_id] = value;
1215        }
1216
1217        return dirty;
1218}
1219
1220static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1221                               int level, u16 value)
1222{
1223        struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1224        bool dirty = false;
1225
1226        /* NORMAL level doesn't have an FBC watermark */
1227        level = max(level, G4X_WM_LEVEL_SR);
1228
1229        for (; level < intel_wm_num_levels(dev_priv); level++) {
1230                struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1231
1232                dirty |= raw->fbc != value;
1233                raw->fbc = value;
1234        }
1235
1236        return dirty;
1237}
1238
1239static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
1240                              const struct intel_plane_state *plane_state,
1241                              u32 pri_val);
1242
1243static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1244                                     const struct intel_plane_state *plane_state)
1245{
1246        struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1247        struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1248        int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1249        enum plane_id plane_id = plane->id;
1250        bool dirty = false;
1251        int level;
1252
1253        if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1254                dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1255                if (plane_id == PLANE_PRIMARY)
1256                        dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1257                goto out;
1258        }
1259
1260        for (level = 0; level < num_levels; level++) {
1261                struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1262                int wm, max_wm;
1263
1264                wm = g4x_compute_wm(crtc_state, plane_state, level);
1265                max_wm = g4x_plane_fifo_size(plane_id, level);
1266
1267                if (wm > max_wm)
1268                        break;
1269
1270                dirty |= raw->plane[plane_id] != wm;
1271                raw->plane[plane_id] = wm;
1272
1273                if (plane_id != PLANE_PRIMARY ||
1274                    level == G4X_WM_LEVEL_NORMAL)
1275                        continue;
1276
1277                wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1278                                        raw->plane[plane_id]);
1279                max_wm = g4x_fbc_fifo_size(level);
1280
1281                /*
1282                 * FBC wm is not mandatory as we
1283                 * can always just disable its use.
1284                 */
1285                if (wm > max_wm)
1286                        wm = USHRT_MAX;
1287
1288                dirty |= raw->fbc != wm;
1289                raw->fbc = wm;
1290        }
1291
1292        /* mark watermarks as invalid */
1293        dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1294
1295        if (plane_id == PLANE_PRIMARY)
1296                dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1297
1298 out:
1299        if (dirty) {
1300                drm_dbg_kms(&dev_priv->drm,
1301                            "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1302                            plane->base.name,
1303                            crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1304                            crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1305                            crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1306
1307                if (plane_id == PLANE_PRIMARY)
1308                        drm_dbg_kms(&dev_priv->drm,
1309                                    "FBC watermarks: SR=%d, HPLL=%d\n",
1310                                    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1311                                    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1312        }
1313
1314        return dirty;
1315}
1316
1317static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1318                                      enum plane_id plane_id, int level)
1319{
1320        const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1321
1322        return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1323}
1324
1325static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1326                                     int level)
1327{
1328        struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1329
1330        if (level > dev_priv->wm.max_level)
1331                return false;
1332
1333        return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1334                g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1335                g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1336}
1337
1338/* mark all levels starting from 'level' as invalid */
1339static void g4x_invalidate_wms(struct intel_crtc *crtc,
1340                               struct g4x_wm_state *wm_state, int level)
1341{
1342        if (level <= G4X_WM_LEVEL_NORMAL) {
1343                enum plane_id plane_id;
1344
1345                for_each_plane_id_on_crtc(crtc, plane_id)
1346                        wm_state->wm.plane[plane_id] = USHRT_MAX;
1347        }
1348
1349        if (level <= G4X_WM_LEVEL_SR) {
1350                wm_state->cxsr = false;
1351                wm_state->sr.cursor = USHRT_MAX;
1352                wm_state->sr.plane = USHRT_MAX;
1353                wm_state->sr.fbc = USHRT_MAX;
1354        }
1355
1356        if (level <= G4X_WM_LEVEL_HPLL) {
1357                wm_state->hpll_en = false;
1358                wm_state->hpll.cursor = USHRT_MAX;
1359                wm_state->hpll.plane = USHRT_MAX;
1360                wm_state->hpll.fbc = USHRT_MAX;
1361        }
1362}
1363
1364static bool g4x_compute_fbc_en(const struct g4x_wm_state *wm_state,
1365                               int level)
1366{
1367        if (level < G4X_WM_LEVEL_SR)
1368                return false;
1369
1370        if (level >= G4X_WM_LEVEL_SR &&
1371            wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1372                return false;
1373
1374        if (level >= G4X_WM_LEVEL_HPLL &&
1375            wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1376                return false;
1377
1378        return true;
1379}
1380
1381static int g4x_compute_pipe_wm(struct intel_atomic_state *state,
1382                               struct intel_crtc *crtc)
1383{
1384        struct intel_crtc_state *crtc_state =
1385                intel_atomic_get_new_crtc_state(state, crtc);
1386        struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1387        u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1388        const struct g4x_pipe_wm *raw;
1389        const struct intel_plane_state *old_plane_state;
1390        const struct intel_plane_state *new_plane_state;
1391        struct intel_plane *plane;
1392        enum plane_id plane_id;
1393        int i, level;
1394        unsigned int dirty = 0;
1395
1396        for_each_oldnew_intel_plane_in_state(state, plane,
1397                                             old_plane_state,
1398                                             new_plane_state, i) {
1399                if (new_plane_state->hw.crtc != &crtc->base &&
1400                    old_plane_state->hw.crtc != &crtc->base)
1401                        continue;
1402
1403                if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1404                        dirty |= BIT(plane->id);
1405        }
1406
1407        if (!dirty)
1408                return 0;
1409
1410        level = G4X_WM_LEVEL_NORMAL;
1411        if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1412                goto out;
1413
1414        raw = &crtc_state->wm.g4x.raw[level];
1415        for_each_plane_id_on_crtc(crtc, plane_id)
1416                wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1417
1418        level = G4X_WM_LEVEL_SR;
1419        if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1420                goto out;
1421
1422        raw = &crtc_state->wm.g4x.raw[level];
1423        wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1424        wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1425        wm_state->sr.fbc = raw->fbc;
1426
1427        wm_state->cxsr = active_planes == BIT(PLANE_PRIMARY);
1428
1429        level = G4X_WM_LEVEL_HPLL;
1430        if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1431                goto out;
1432
1433        raw = &crtc_state->wm.g4x.raw[level];
1434        wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1435        wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1436        wm_state->hpll.fbc = raw->fbc;
1437
1438        wm_state->hpll_en = wm_state->cxsr;
1439
1440        level++;
1441
1442 out:
1443        if (level == G4X_WM_LEVEL_NORMAL)
1444                return -EINVAL;
1445
1446        /* invalidate the higher levels */
1447        g4x_invalidate_wms(crtc, wm_state, level);
1448
1449        /*
1450         * Determine if the FBC watermark(s) can be used. IF
1451         * this isn't the case we prefer to disable the FBC
1452         * watermark(s) rather than disable the SR/HPLL
1453         * level(s) entirely. 'level-1' is the highest valid
1454         * level here.
1455         */
1456        wm_state->fbc_en = g4x_compute_fbc_en(wm_state, level - 1);
1457
1458        return 0;
1459}
1460
1461static int g4x_compute_intermediate_wm(struct intel_atomic_state *state,
1462                                       struct intel_crtc *crtc)
1463{
1464        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1465        struct intel_crtc_state *new_crtc_state =
1466                intel_atomic_get_new_crtc_state(state, crtc);
1467        const struct intel_crtc_state *old_crtc_state =
1468                intel_atomic_get_old_crtc_state(state, crtc);
1469        struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1470        const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1471        const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1472        enum plane_id plane_id;
1473
1474        if (!new_crtc_state->hw.active ||
1475            drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1476                *intermediate = *optimal;
1477
1478                intermediate->cxsr = false;
1479                intermediate->hpll_en = false;
1480                goto out;
1481        }
1482
1483        intermediate->cxsr = optimal->cxsr && active->cxsr &&
1484                !new_crtc_state->disable_cxsr;
1485        intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1486                !new_crtc_state->disable_cxsr;
1487        intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1488
1489        for_each_plane_id_on_crtc(crtc, plane_id) {
1490                intermediate->wm.plane[plane_id] =
1491                        max(optimal->wm.plane[plane_id],
1492                            active->wm.plane[plane_id]);
1493
1494                drm_WARN_ON(&dev_priv->drm, intermediate->wm.plane[plane_id] >
1495                            g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1496        }
1497
1498        intermediate->sr.plane = max(optimal->sr.plane,
1499                                     active->sr.plane);
1500        intermediate->sr.cursor = max(optimal->sr.cursor,
1501                                      active->sr.cursor);
1502        intermediate->sr.fbc = max(optimal->sr.fbc,
1503                                   active->sr.fbc);
1504
1505        intermediate->hpll.plane = max(optimal->hpll.plane,
1506                                       active->hpll.plane);
1507        intermediate->hpll.cursor = max(optimal->hpll.cursor,
1508                                        active->hpll.cursor);
1509        intermediate->hpll.fbc = max(optimal->hpll.fbc,
1510                                     active->hpll.fbc);
1511
1512        drm_WARN_ON(&dev_priv->drm,
1513                    (intermediate->sr.plane >
1514                     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1515                     intermediate->sr.cursor >
1516                     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1517                    intermediate->cxsr);
1518        drm_WARN_ON(&dev_priv->drm,
1519                    (intermediate->sr.plane >
1520                     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1521                     intermediate->sr.cursor >
1522                     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1523                    intermediate->hpll_en);
1524
1525        drm_WARN_ON(&dev_priv->drm,
1526                    intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1527                    intermediate->fbc_en && intermediate->cxsr);
1528        drm_WARN_ON(&dev_priv->drm,
1529                    intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1530                    intermediate->fbc_en && intermediate->hpll_en);
1531
1532out:
1533        /*
1534         * If our intermediate WM are identical to the final WM, then we can
1535         * omit the post-vblank programming; only update if it's different.
1536         */
1537        if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1538                new_crtc_state->wm.need_postvbl_update = true;
1539
1540        return 0;
1541}
1542
1543static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1544                         struct g4x_wm_values *wm)
1545{
1546        struct intel_crtc *crtc;
1547        int num_active_pipes = 0;
1548
1549        wm->cxsr = true;
1550        wm->hpll_en = true;
1551        wm->fbc_en = true;
1552
1553        for_each_intel_crtc(&dev_priv->drm, crtc) {
1554                const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1555
1556                if (!crtc->active)
1557                        continue;
1558
1559                if (!wm_state->cxsr)
1560                        wm->cxsr = false;
1561                if (!wm_state->hpll_en)
1562                        wm->hpll_en = false;
1563                if (!wm_state->fbc_en)
1564                        wm->fbc_en = false;
1565
1566                num_active_pipes++;
1567        }
1568
1569        if (num_active_pipes != 1) {
1570                wm->cxsr = false;
1571                wm->hpll_en = false;
1572                wm->fbc_en = false;
1573        }
1574
1575        for_each_intel_crtc(&dev_priv->drm, crtc) {
1576                const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1577                enum pipe pipe = crtc->pipe;
1578
1579                wm->pipe[pipe] = wm_state->wm;
1580                if (crtc->active && wm->cxsr)
1581                        wm->sr = wm_state->sr;
1582                if (crtc->active && wm->hpll_en)
1583                        wm->hpll = wm_state->hpll;
1584        }
1585}
1586
1587static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1588{
1589        struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1590        struct g4x_wm_values new_wm = {};
1591
1592        g4x_merge_wm(dev_priv, &new_wm);
1593
1594        if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1595                return;
1596
1597        if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1598                _intel_set_memory_cxsr(dev_priv, false);
1599
1600        g4x_write_wm_values(dev_priv, &new_wm);
1601
1602        if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1603                _intel_set_memory_cxsr(dev_priv, true);
1604
1605        *old_wm = new_wm;
1606}
1607
1608static void g4x_initial_watermarks(struct intel_atomic_state *state,
1609                                   struct intel_crtc *crtc)
1610{
1611        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1612        const struct intel_crtc_state *crtc_state =
1613                intel_atomic_get_new_crtc_state(state, crtc);
1614
1615        mutex_lock(&dev_priv->wm.wm_mutex);
1616        crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1617        g4x_program_watermarks(dev_priv);
1618        mutex_unlock(&dev_priv->wm.wm_mutex);
1619}
1620
1621static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1622                                    struct intel_crtc *crtc)
1623{
1624        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1625        const struct intel_crtc_state *crtc_state =
1626                intel_atomic_get_new_crtc_state(state, crtc);
1627
1628        if (!crtc_state->wm.need_postvbl_update)
1629                return;
1630
1631        mutex_lock(&dev_priv->wm.wm_mutex);
1632        crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1633        g4x_program_watermarks(dev_priv);
1634        mutex_unlock(&dev_priv->wm.wm_mutex);
1635}
1636
1637/* latency must be in 0.1us units. */
1638static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1639                                   unsigned int htotal,
1640                                   unsigned int width,
1641                                   unsigned int cpp,
1642                                   unsigned int latency)
1643{
1644        unsigned int ret;
1645
1646        ret = intel_wm_method2(pixel_rate, htotal,
1647                               width, cpp, latency);
1648        ret = DIV_ROUND_UP(ret, 64);
1649
1650        return ret;
1651}
1652
1653static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1654{
1655        /* all latencies in usec */
1656        dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1657
1658        dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1659
1660        if (IS_CHERRYVIEW(dev_priv)) {
1661                dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1662                dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1663
1664                dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1665        }
1666}
1667
1668static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1669                                const struct intel_plane_state *plane_state,
1670                                int level)
1671{
1672        struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1673        struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1674        const struct drm_display_mode *pipe_mode =
1675                &crtc_state->hw.pipe_mode;
1676        unsigned int clock, htotal, cpp, width, wm;
1677
1678        if (dev_priv->wm.pri_latency[level] == 0)
1679                return USHRT_MAX;
1680
1681        if (!intel_wm_plane_visible(crtc_state, plane_state))
1682                return 0;
1683
1684        cpp = plane_state->hw.fb->format->cpp[0];
1685        clock = pipe_mode->crtc_clock;
1686        htotal = pipe_mode->crtc_htotal;
1687        width = crtc_state->pipe_src_w;
1688
1689        if (plane->id == PLANE_CURSOR) {
1690                /*
1691                 * FIXME the formula gives values that are
1692                 * too big for the cursor FIFO, and hence we
1693                 * would never be able to use cursors. For
1694                 * now just hardcode the watermark.
1695                 */
1696                wm = 63;
1697        } else {
1698                wm = vlv_wm_method2(clock, htotal, width, cpp,
1699                                    dev_priv->wm.pri_latency[level] * 10);
1700        }
1701
1702        return min_t(unsigned int, wm, USHRT_MAX);
1703}
1704
1705static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1706{
1707        return (active_planes & (BIT(PLANE_SPRITE0) |
1708                                 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1709}
1710
1711static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1712{
1713        struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1714        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1715        const struct g4x_pipe_wm *raw =
1716                &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1717        struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1718        u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1719        int num_active_planes = hweight8(active_planes);
1720        const int fifo_size = 511;
1721        int fifo_extra, fifo_left = fifo_size;
1722        int sprite0_fifo_extra = 0;
1723        unsigned int total_rate;
1724        enum plane_id plane_id;
1725
1726        /*
1727         * When enabling sprite0 after sprite1 has already been enabled
1728         * we tend to get an underrun unless sprite0 already has some
1729         * FIFO space allcoated. Hence we always allocate at least one
1730         * cacheline for sprite0 whenever sprite1 is enabled.
1731         *
1732         * All other plane enable sequences appear immune to this problem.
1733         */
1734        if (vlv_need_sprite0_fifo_workaround(active_planes))
1735                sprite0_fifo_extra = 1;
1736
1737        total_rate = raw->plane[PLANE_PRIMARY] +
1738                raw->plane[PLANE_SPRITE0] +
1739                raw->plane[PLANE_SPRITE1] +
1740                sprite0_fifo_extra;
1741
1742        if (total_rate > fifo_size)
1743                return -EINVAL;
1744
1745        if (total_rate == 0)
1746                total_rate = 1;
1747
1748        for_each_plane_id_on_crtc(crtc, plane_id) {
1749                unsigned int rate;
1750
1751                if ((active_planes & BIT(plane_id)) == 0) {
1752                        fifo_state->plane[plane_id] = 0;
1753                        continue;
1754                }
1755
1756                rate = raw->plane[plane_id];
1757                fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1758                fifo_left -= fifo_state->plane[plane_id];
1759        }
1760
1761        fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1762        fifo_left -= sprite0_fifo_extra;
1763
1764        fifo_state->plane[PLANE_CURSOR] = 63;
1765
1766        fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1767
1768        /* spread the remainder evenly */
1769        for_each_plane_id_on_crtc(crtc, plane_id) {
1770                int plane_extra;
1771
1772                if (fifo_left == 0)
1773                        break;
1774
1775                if ((active_planes & BIT(plane_id)) == 0)
1776                        continue;
1777
1778                plane_extra = min(fifo_extra, fifo_left);
1779                fifo_state->plane[plane_id] += plane_extra;
1780                fifo_left -= plane_extra;
1781        }
1782
1783        drm_WARN_ON(&dev_priv->drm, active_planes != 0 && fifo_left != 0);
1784
1785        /* give it all to the first plane if none are active */
1786        if (active_planes == 0) {
1787                drm_WARN_ON(&dev_priv->drm, fifo_left != fifo_size);
1788                fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1789        }
1790
1791        return 0;
1792}
1793
1794/* mark all levels starting from 'level' as invalid */
1795static void vlv_invalidate_wms(struct intel_crtc *crtc,
1796                               struct vlv_wm_state *wm_state, int level)
1797{
1798        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1799
1800        for (; level < intel_wm_num_levels(dev_priv); level++) {
1801                enum plane_id plane_id;
1802
1803                for_each_plane_id_on_crtc(crtc, plane_id)
1804                        wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1805
1806                wm_state->sr[level].cursor = USHRT_MAX;
1807                wm_state->sr[level].plane = USHRT_MAX;
1808        }
1809}
1810
1811static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1812{
1813        if (wm > fifo_size)
1814                return USHRT_MAX;
1815        else
1816                return fifo_size - wm;
1817}
1818
1819/*
1820 * Starting from 'level' set all higher
1821 * levels to 'value' in the "raw" watermarks.
1822 */
1823static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1824                                 int level, enum plane_id plane_id, u16 value)
1825{
1826        struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1827        int num_levels = intel_wm_num_levels(dev_priv);
1828        bool dirty = false;
1829
1830        for (; level < num_levels; level++) {
1831                struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1832
1833                dirty |= raw->plane[plane_id] != value;
1834                raw->plane[plane_id] = value;
1835        }
1836
1837        return dirty;
1838}
1839
1840static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1841                                     const struct intel_plane_state *plane_state)
1842{
1843        struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1844        struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1845        enum plane_id plane_id = plane->id;
1846        int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1847        int level;
1848        bool dirty = false;
1849
1850        if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1851                dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1852                goto out;
1853        }
1854
1855        for (level = 0; level < num_levels; level++) {
1856                struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1857                int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1858                int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1859
1860                if (wm > max_wm)
1861                        break;
1862
1863                dirty |= raw->plane[plane_id] != wm;
1864                raw->plane[plane_id] = wm;
1865        }
1866
1867        /* mark all higher levels as invalid */
1868        dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1869
1870out:
1871        if (dirty)
1872                drm_dbg_kms(&dev_priv->drm,
1873                            "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1874                            plane->base.name,
1875                            crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1876                            crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1877                            crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1878
1879        return dirty;
1880}
1881
1882static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1883                                      enum plane_id plane_id, int level)
1884{
1885        const struct g4x_pipe_wm *raw =
1886                &crtc_state->wm.vlv.raw[level];
1887        const struct vlv_fifo_state *fifo_state =
1888                &crtc_state->wm.vlv.fifo_state;
1889
1890        return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1891}
1892
1893static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1894{
1895        return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1896                vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1897                vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1898                vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1899}
1900
1901static int vlv_compute_pipe_wm(struct intel_atomic_state *state,
1902                               struct intel_crtc *crtc)
1903{
1904        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1905        struct intel_crtc_state *crtc_state =
1906                intel_atomic_get_new_crtc_state(state, crtc);
1907        struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1908        const struct vlv_fifo_state *fifo_state =
1909                &crtc_state->wm.vlv.fifo_state;
1910        u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1911        int num_active_planes = hweight8(active_planes);
1912        bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1913        const struct intel_plane_state *old_plane_state;
1914        const struct intel_plane_state *new_plane_state;
1915        struct intel_plane *plane;
1916        enum plane_id plane_id;
1917        int level, ret, i;
1918        unsigned int dirty = 0;
1919
1920        for_each_oldnew_intel_plane_in_state(state, plane,
1921                                             old_plane_state,
1922                                             new_plane_state, i) {
1923                if (new_plane_state->hw.crtc != &crtc->base &&
1924                    old_plane_state->hw.crtc != &crtc->base)
1925                        continue;
1926
1927                if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1928                        dirty |= BIT(plane->id);
1929        }
1930
1931        /*
1932         * DSPARB registers may have been reset due to the
1933         * power well being turned off. Make sure we restore
1934         * them to a consistent state even if no primary/sprite
1935         * planes are initially active.
1936         */
1937        if (needs_modeset)
1938                crtc_state->fifo_changed = true;
1939
1940        if (!dirty)
1941                return 0;
1942
1943        /* cursor changes don't warrant a FIFO recompute */
1944        if (dirty & ~BIT(PLANE_CURSOR)) {
1945                const struct intel_crtc_state *old_crtc_state =
1946                        intel_atomic_get_old_crtc_state(state, crtc);
1947                const struct vlv_fifo_state *old_fifo_state =
1948                        &old_crtc_state->wm.vlv.fifo_state;
1949
1950                ret = vlv_compute_fifo(crtc_state);
1951                if (ret)
1952                        return ret;
1953
1954                if (needs_modeset ||
1955                    memcmp(old_fifo_state, fifo_state,
1956                           sizeof(*fifo_state)) != 0)
1957                        crtc_state->fifo_changed = true;
1958        }
1959
1960        /* initially allow all levels */
1961        wm_state->num_levels = intel_wm_num_levels(dev_priv);
1962        /*
1963         * Note that enabling cxsr with no primary/sprite planes
1964         * enabled can wedge the pipe. Hence we only allow cxsr
1965         * with exactly one enabled primary/sprite plane.
1966         */
1967        wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1968
1969        for (level = 0; level < wm_state->num_levels; level++) {
1970                const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1971                const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1972
1973                if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1974                        break;
1975
1976                for_each_plane_id_on_crtc(crtc, plane_id) {
1977                        wm_state->wm[level].plane[plane_id] =
1978                                vlv_invert_wm_value(raw->plane[plane_id],
1979                                                    fifo_state->plane[plane_id]);
1980                }
1981
1982                wm_state->sr[level].plane =
1983                        vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1984                                                 raw->plane[PLANE_SPRITE0],
1985                                                 raw->plane[PLANE_SPRITE1]),
1986                                            sr_fifo_size);
1987
1988                wm_state->sr[level].cursor =
1989                        vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1990                                            63);
1991        }
1992
1993        if (level == 0)
1994                return -EINVAL;
1995
1996        /* limit to only levels we can actually handle */
1997        wm_state->num_levels = level;
1998
1999        /* invalidate the higher levels */
2000        vlv_invalidate_wms(crtc, wm_state, level);
2001
2002        return 0;
2003}
2004
2005#define VLV_FIFO(plane, value) \
2006        (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
2007
2008static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
2009                                   struct intel_crtc *crtc)
2010{
2011        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2012        struct intel_uncore *uncore = &dev_priv->uncore;
2013        const struct intel_crtc_state *crtc_state =
2014                intel_atomic_get_new_crtc_state(state, crtc);
2015        const struct vlv_fifo_state *fifo_state =
2016                &crtc_state->wm.vlv.fifo_state;
2017        int sprite0_start, sprite1_start, fifo_size;
2018        u32 dsparb, dsparb2, dsparb3;
2019
2020        if (!crtc_state->fifo_changed)
2021                return;
2022
2023        sprite0_start = fifo_state->plane[PLANE_PRIMARY];
2024        sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
2025        fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
2026
2027        drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
2028        drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
2029
2030        trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
2031
2032        /*
2033         * uncore.lock serves a double purpose here. It allows us to
2034         * use the less expensive I915_{READ,WRITE}_FW() functions, and
2035         * it protects the DSPARB registers from getting clobbered by
2036         * parallel updates from multiple pipes.
2037         *
2038         * intel_pipe_update_start() has already disabled interrupts
2039         * for us, so a plain spin_lock() is sufficient here.
2040         */
2041        spin_lock(&uncore->lock);
2042
2043        switch (crtc->pipe) {
2044        case PIPE_A:
2045                dsparb = intel_uncore_read_fw(uncore, DSPARB);
2046                dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2047
2048                dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
2049                            VLV_FIFO(SPRITEB, 0xff));
2050                dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
2051                           VLV_FIFO(SPRITEB, sprite1_start));
2052
2053                dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
2054                             VLV_FIFO(SPRITEB_HI, 0x1));
2055                dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
2056                           VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
2057
2058                intel_uncore_write_fw(uncore, DSPARB, dsparb);
2059                intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2060                break;
2061        case PIPE_B:
2062                dsparb = intel_uncore_read_fw(uncore, DSPARB);
2063                dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2064
2065                dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
2066                            VLV_FIFO(SPRITED, 0xff));
2067                dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
2068                           VLV_FIFO(SPRITED, sprite1_start));
2069
2070                dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
2071                             VLV_FIFO(SPRITED_HI, 0xff));
2072                dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2073                           VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2074
2075                intel_uncore_write_fw(uncore, DSPARB, dsparb);
2076                intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2077                break;
2078        case PIPE_C:
2079                dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
2080                dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2081
2082                dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2083                             VLV_FIFO(SPRITEF, 0xff));
2084                dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2085                            VLV_FIFO(SPRITEF, sprite1_start));
2086
2087                dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2088                             VLV_FIFO(SPRITEF_HI, 0xff));
2089                dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2090                           VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2091
2092                intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
2093                intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2094                break;
2095        default:
2096                break;
2097        }
2098
2099        intel_uncore_posting_read_fw(uncore, DSPARB);
2100
2101        spin_unlock(&uncore->lock);
2102}
2103
2104#undef VLV_FIFO
2105
2106static int vlv_compute_intermediate_wm(struct intel_atomic_state *state,
2107                                       struct intel_crtc *crtc)
2108{
2109        struct intel_crtc_state *new_crtc_state =
2110                intel_atomic_get_new_crtc_state(state, crtc);
2111        const struct intel_crtc_state *old_crtc_state =
2112                intel_atomic_get_old_crtc_state(state, crtc);
2113        struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2114        const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2115        const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2116        int level;
2117
2118        if (!new_crtc_state->hw.active ||
2119            drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2120                *intermediate = *optimal;
2121
2122                intermediate->cxsr = false;
2123                goto out;
2124        }
2125
2126        intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2127        intermediate->cxsr = optimal->cxsr && active->cxsr &&
2128                !new_crtc_state->disable_cxsr;
2129
2130        for (level = 0; level < intermediate->num_levels; level++) {
2131                enum plane_id plane_id;
2132
2133                for_each_plane_id_on_crtc(crtc, plane_id) {
2134                        intermediate->wm[level].plane[plane_id] =
2135                                min(optimal->wm[level].plane[plane_id],
2136                                    active->wm[level].plane[plane_id]);
2137                }
2138
2139                intermediate->sr[level].plane = min(optimal->sr[level].plane,
2140                                                    active->sr[level].plane);
2141                intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2142                                                     active->sr[level].cursor);
2143        }
2144
2145        vlv_invalidate_wms(crtc, intermediate, level);
2146
2147out:
2148        /*
2149         * If our intermediate WM are identical to the final WM, then we can
2150         * omit the post-vblank programming; only update if it's different.
2151         */
2152        if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2153                new_crtc_state->wm.need_postvbl_update = true;
2154
2155        return 0;
2156}
2157
2158static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2159                         struct vlv_wm_values *wm)
2160{
2161        struct intel_crtc *crtc;
2162        int num_active_pipes = 0;
2163
2164        wm->level = dev_priv->wm.max_level;
2165        wm->cxsr = true;
2166
2167        for_each_intel_crtc(&dev_priv->drm, crtc) {
2168                const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2169
2170                if (!crtc->active)
2171                        continue;
2172
2173                if (!wm_state->cxsr)
2174                        wm->cxsr = false;
2175
2176                num_active_pipes++;
2177                wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2178        }
2179
2180        if (num_active_pipes != 1)
2181                wm->cxsr = false;
2182
2183        if (num_active_pipes > 1)
2184                wm->level = VLV_WM_LEVEL_PM2;
2185
2186        for_each_intel_crtc(&dev_priv->drm, crtc) {
2187                const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2188                enum pipe pipe = crtc->pipe;
2189
2190                wm->pipe[pipe] = wm_state->wm[wm->level];
2191                if (crtc->active && wm->cxsr)
2192                        wm->sr = wm_state->sr[wm->level];
2193
2194                wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2195                wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2196                wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2197                wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2198        }
2199}
2200
2201static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2202{
2203        struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2204        struct vlv_wm_values new_wm = {};
2205
2206        vlv_merge_wm(dev_priv, &new_wm);
2207
2208        if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2209                return;
2210
2211        if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2212                chv_set_memory_dvfs(dev_priv, false);
2213
2214        if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2215                chv_set_memory_pm5(dev_priv, false);
2216
2217        if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2218                _intel_set_memory_cxsr(dev_priv, false);
2219
2220        vlv_write_wm_values(dev_priv, &new_wm);
2221
2222        if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2223                _intel_set_memory_cxsr(dev_priv, true);
2224
2225        if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2226                chv_set_memory_pm5(dev_priv, true);
2227
2228        if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2229                chv_set_memory_dvfs(dev_priv, true);
2230
2231        *old_wm = new_wm;
2232}
2233
2234static void vlv_initial_watermarks(struct intel_atomic_state *state,
2235                                   struct intel_crtc *crtc)
2236{
2237        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2238        const struct intel_crtc_state *crtc_state =
2239                intel_atomic_get_new_crtc_state(state, crtc);
2240
2241        mutex_lock(&dev_priv->wm.wm_mutex);
2242        crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2243        vlv_program_watermarks(dev_priv);
2244        mutex_unlock(&dev_priv->wm.wm_mutex);
2245}
2246
2247static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2248                                    struct intel_crtc *crtc)
2249{
2250        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2251        const struct intel_crtc_state *crtc_state =
2252                intel_atomic_get_new_crtc_state(state, crtc);
2253
2254        if (!crtc_state->wm.need_postvbl_update)
2255                return;
2256
2257        mutex_lock(&dev_priv->wm.wm_mutex);
2258        crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2259        vlv_program_watermarks(dev_priv);
2260        mutex_unlock(&dev_priv->wm.wm_mutex);
2261}
2262
2263static void i965_update_wm(struct drm_i915_private *dev_priv)
2264{
2265        struct intel_crtc *crtc;
2266        int srwm = 1;
2267        int cursor_sr = 16;
2268        bool cxsr_enabled;
2269
2270        /* Calc sr entries for one plane configs */
2271        crtc = single_enabled_crtc(dev_priv);
2272        if (crtc) {
2273                /* self-refresh has much higher latency */
2274                static const int sr_latency_ns = 12000;
2275                const struct drm_display_mode *pipe_mode =
2276                        &crtc->config->hw.pipe_mode;
2277                const struct drm_framebuffer *fb =
2278                        crtc->base.primary->state->fb;
2279                int clock = pipe_mode->crtc_clock;
2280                int htotal = pipe_mode->crtc_htotal;
2281                int hdisplay = crtc->config->pipe_src_w;
2282                int cpp = fb->format->cpp[0];
2283                int entries;
2284
2285                entries = intel_wm_method2(clock, htotal,
2286                                           hdisplay, cpp, sr_latency_ns / 100);
2287                entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2288                srwm = I965_FIFO_SIZE - entries;
2289                if (srwm < 0)
2290                        srwm = 1;
2291                srwm &= 0x1ff;
2292                drm_dbg_kms(&dev_priv->drm,
2293                            "self-refresh entries: %d, wm: %d\n",
2294                            entries, srwm);
2295
2296                entries = intel_wm_method2(clock, htotal,
2297                                           crtc->base.cursor->state->crtc_w, 4,
2298                                           sr_latency_ns / 100);
2299                entries = DIV_ROUND_UP(entries,
2300                                       i965_cursor_wm_info.cacheline_size) +
2301                        i965_cursor_wm_info.guard_size;
2302
2303                cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2304                if (cursor_sr > i965_cursor_wm_info.max_wm)
2305                        cursor_sr = i965_cursor_wm_info.max_wm;
2306
2307                drm_dbg_kms(&dev_priv->drm,
2308                            "self-refresh watermark: display plane %d "
2309                            "cursor %d\n", srwm, cursor_sr);
2310
2311                cxsr_enabled = true;
2312        } else {
2313                cxsr_enabled = false;
2314                /* Turn off self refresh if both pipes are enabled */
2315                intel_set_memory_cxsr(dev_priv, false);
2316        }
2317
2318        drm_dbg_kms(&dev_priv->drm,
2319                    "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2320                    srwm);
2321
2322        /* 965 has limitations... */
2323        intel_uncore_write(&dev_priv->uncore, DSPFW1, FW_WM(srwm, SR) |
2324                   FW_WM(8, CURSORB) |
2325                   FW_WM(8, PLANEB) |
2326                   FW_WM(8, PLANEA));
2327        intel_uncore_write(&dev_priv->uncore, DSPFW2, FW_WM(8, CURSORA) |
2328                   FW_WM(8, PLANEC_OLD));
2329        /* update cursor SR watermark */
2330        intel_uncore_write(&dev_priv->uncore, DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2331
2332        if (cxsr_enabled)
2333                intel_set_memory_cxsr(dev_priv, true);
2334}
2335
2336#undef FW_WM
2337
2338static void i9xx_update_wm(struct drm_i915_private *dev_priv)
2339{
2340        const struct intel_watermark_params *wm_info;
2341        u32 fwater_lo;
2342        u32 fwater_hi;
2343        int cwm, srwm = 1;
2344        int fifo_size;
2345        int planea_wm, planeb_wm;
2346        struct intel_crtc *crtc, *enabled = NULL;
2347
2348        if (IS_I945GM(dev_priv))
2349                wm_info = &i945_wm_info;
2350        else if (DISPLAY_VER(dev_priv) != 2)
2351                wm_info = &i915_wm_info;
2352        else
2353                wm_info = &i830_a_wm_info;
2354
2355        if (DISPLAY_VER(dev_priv) == 2)
2356                fifo_size = i830_get_fifo_size(dev_priv, PLANE_A);
2357        else
2358                fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_A);
2359        crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2360        if (intel_crtc_active(crtc)) {
2361                const struct drm_display_mode *pipe_mode =
2362                        &crtc->config->hw.pipe_mode;
2363                const struct drm_framebuffer *fb =
2364                        crtc->base.primary->state->fb;
2365                int cpp;
2366
2367                if (DISPLAY_VER(dev_priv) == 2)
2368                        cpp = 4;
2369                else
2370                        cpp = fb->format->cpp[0];
2371
2372                planea_wm = intel_calculate_wm(pipe_mode->crtc_clock,
2373                                               wm_info, fifo_size, cpp,
2374                                               pessimal_latency_ns);
2375                enabled = crtc;
2376        } else {
2377                planea_wm = fifo_size - wm_info->guard_size;
2378                if (planea_wm > (long)wm_info->max_wm)
2379                        planea_wm = wm_info->max_wm;
2380        }
2381
2382        if (DISPLAY_VER(dev_priv) == 2)
2383                wm_info = &i830_bc_wm_info;
2384
2385        if (DISPLAY_VER(dev_priv) == 2)
2386                fifo_size = i830_get_fifo_size(dev_priv, PLANE_B);
2387        else
2388                fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_B);
2389        crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2390        if (intel_crtc_active(crtc)) {
2391                const struct drm_display_mode *pipe_mode =
2392                        &crtc->config->hw.pipe_mode;
2393                const struct drm_framebuffer *fb =
2394                        crtc->base.primary->state->fb;
2395                int cpp;
2396
2397                if (DISPLAY_VER(dev_priv) == 2)
2398                        cpp = 4;
2399                else
2400                        cpp = fb->format->cpp[0];
2401
2402                planeb_wm = intel_calculate_wm(pipe_mode->crtc_clock,
2403                                               wm_info, fifo_size, cpp,
2404                                               pessimal_latency_ns);
2405                if (enabled == NULL)
2406                        enabled = crtc;
2407                else
2408                        enabled = NULL;
2409        } else {
2410                planeb_wm = fifo_size - wm_info->guard_size;
2411                if (planeb_wm > (long)wm_info->max_wm)
2412                        planeb_wm = wm_info->max_wm;
2413        }
2414
2415        drm_dbg_kms(&dev_priv->drm,
2416                    "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2417
2418        if (IS_I915GM(dev_priv) && enabled) {
2419                struct drm_i915_gem_object *obj;
2420
2421                obj = intel_fb_obj(enabled->base.primary->state->fb);
2422
2423                /* self-refresh seems busted with untiled */
2424                if (!i915_gem_object_is_tiled(obj))
2425                        enabled = NULL;
2426        }
2427
2428        /*
2429         * Overlay gets an aggressive default since video jitter is bad.
2430         */
2431        cwm = 2;
2432
2433        /* Play safe and disable self-refresh before adjusting watermarks. */
2434        intel_set_memory_cxsr(dev_priv, false);
2435
2436        /* Calc sr entries for one plane configs */
2437        if (HAS_FW_BLC(dev_priv) && enabled) {
2438                /* self-refresh has much higher latency */
2439                static const int sr_latency_ns = 6000;
2440                const struct drm_display_mode *pipe_mode =
2441                        &enabled->config->hw.pipe_mode;
2442                const struct drm_framebuffer *fb =
2443                        enabled->base.primary->state->fb;
2444                int clock = pipe_mode->crtc_clock;
2445                int htotal = pipe_mode->crtc_htotal;
2446                int hdisplay = enabled->config->pipe_src_w;
2447                int cpp;
2448                int entries;
2449
2450                if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2451                        cpp = 4;
2452                else
2453                        cpp = fb->format->cpp[0];
2454
2455                entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2456                                           sr_latency_ns / 100);
2457                entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2458                drm_dbg_kms(&dev_priv->drm,
2459                            "self-refresh entries: %d\n", entries);
2460                srwm = wm_info->fifo_size - entries;
2461                if (srwm < 0)
2462                        srwm = 1;
2463
2464                if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2465                        intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF,
2466                                   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2467                else
2468                        intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, srwm & 0x3f);
2469        }
2470
2471        drm_dbg_kms(&dev_priv->drm,
2472                    "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2473                     planea_wm, planeb_wm, cwm, srwm);
2474
2475        fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2476        fwater_hi = (cwm & 0x1f);
2477
2478        /* Set request length to 8 cachelines per fetch */
2479        fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2480        fwater_hi = fwater_hi | (1 << 8);
2481
2482        intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
2483        intel_uncore_write(&dev_priv->uncore, FW_BLC2, fwater_hi);
2484
2485        if (enabled)
2486                intel_set_memory_cxsr(dev_priv, true);
2487}
2488
2489static void i845_update_wm(struct drm_i915_private *dev_priv)
2490{
2491        struct intel_crtc *crtc;
2492        const struct drm_display_mode *pipe_mode;
2493        u32 fwater_lo;
2494        int planea_wm;
2495
2496        crtc = single_enabled_crtc(dev_priv);
2497        if (crtc == NULL)
2498                return;
2499
2500        pipe_mode = &crtc->config->hw.pipe_mode;
2501        planea_wm = intel_calculate_wm(pipe_mode->crtc_clock,
2502                                       &i845_wm_info,
2503                                       i845_get_fifo_size(dev_priv, PLANE_A),
2504                                       4, pessimal_latency_ns);
2505        fwater_lo = intel_uncore_read(&dev_priv->uncore, FW_BLC) & ~0xfff;
2506        fwater_lo |= (3<<8) | planea_wm;
2507
2508        drm_dbg_kms(&dev_priv->drm,
2509                    "Setting FIFO watermarks - A: %d\n", planea_wm);
2510
2511        intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
2512}
2513
2514/* latency must be in 0.1us units. */
2515static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2516                                   unsigned int cpp,
2517                                   unsigned int latency)
2518{
2519        unsigned int ret;
2520
2521        ret = intel_wm_method1(pixel_rate, cpp, latency);
2522        ret = DIV_ROUND_UP(ret, 64) + 2;
2523
2524        return ret;
2525}
2526
2527/* latency must be in 0.1us units. */
2528static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2529                                   unsigned int htotal,
2530                                   unsigned int width,
2531                                   unsigned int cpp,
2532                                   unsigned int latency)
2533{
2534        unsigned int ret;
2535
2536        ret = intel_wm_method2(pixel_rate, htotal,
2537                               width, cpp, latency);
2538        ret = DIV_ROUND_UP(ret, 64) + 2;
2539
2540        return ret;
2541}
2542
2543static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2544{
2545        /*
2546         * Neither of these should be possible since this function shouldn't be
2547         * called if the CRTC is off or the plane is invisible.  But let's be
2548         * extra paranoid to avoid a potential divide-by-zero if we screw up
2549         * elsewhere in the driver.
2550         */
2551        if (WARN_ON(!cpp))
2552                return 0;
2553        if (WARN_ON(!horiz_pixels))
2554                return 0;
2555
2556        return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2557}
2558
2559struct ilk_wm_maximums {
2560        u16 pri;
2561        u16 spr;
2562        u16 cur;
2563        u16 fbc;
2564};
2565
2566/*
2567 * For both WM_PIPE and WM_LP.
2568 * mem_value must be in 0.1us units.
2569 */
2570static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
2571                              const struct intel_plane_state *plane_state,
2572                              u32 mem_value, bool is_lp)
2573{
2574        u32 method1, method2;
2575        int cpp;
2576
2577        if (mem_value == 0)
2578                return U32_MAX;
2579
2580        if (!intel_wm_plane_visible(crtc_state, plane_state))
2581                return 0;
2582
2583        cpp = plane_state->hw.fb->format->cpp[0];
2584
2585        method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2586
2587        if (!is_lp)
2588                return method1;
2589
2590        method2 = ilk_wm_method2(crtc_state->pixel_rate,
2591                                 crtc_state->hw.pipe_mode.crtc_htotal,
2592                                 drm_rect_width(&plane_state->uapi.dst),
2593                                 cpp, mem_value);
2594
2595        return min(method1, method2);
2596}
2597
2598/*
2599 * For both WM_PIPE and WM_LP.
2600 * mem_value must be in 0.1us units.
2601 */
2602static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
2603                              const struct intel_plane_state *plane_state,
2604                              u32 mem_value)
2605{
2606        u32 method1, method2;
2607        int cpp;
2608
2609        if (mem_value == 0)
2610                return U32_MAX;
2611
2612        if (!intel_wm_plane_visible(crtc_state, plane_state))
2613                return 0;
2614
2615        cpp = plane_state->hw.fb->format->cpp[0];
2616
2617        method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2618        method2 = ilk_wm_method2(crtc_state->pixel_rate,
2619                                 crtc_state->hw.pipe_mode.crtc_htotal,
2620                                 drm_rect_width(&plane_state->uapi.dst),
2621                                 cpp, mem_value);
2622        return min(method1, method2);
2623}
2624
2625/*
2626 * For both WM_PIPE and WM_LP.
2627 * mem_value must be in 0.1us units.
2628 */
2629static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
2630                              const struct intel_plane_state *plane_state,
2631                              u32 mem_value)
2632{
2633        int cpp;
2634
2635        if (mem_value == 0)
2636                return U32_MAX;
2637
2638        if (!intel_wm_plane_visible(crtc_state, plane_state))
2639                return 0;
2640
2641        cpp = plane_state->hw.fb->format->cpp[0];
2642
2643        return ilk_wm_method2(crtc_state->pixel_rate,
2644                              crtc_state->hw.pipe_mode.crtc_htotal,
2645                              drm_rect_width(&plane_state->uapi.dst),
2646                              cpp, mem_value);
2647}
2648
2649/* Only for WM_LP. */
2650static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
2651                              const struct intel_plane_state *plane_state,
2652                              u32 pri_val)
2653{
2654        int cpp;
2655
2656        if (!intel_wm_plane_visible(crtc_state, plane_state))
2657                return 0;
2658
2659        cpp = plane_state->hw.fb->format->cpp[0];
2660
2661        return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst),
2662                          cpp);
2663}
2664
2665static unsigned int
2666ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2667{
2668        if (DISPLAY_VER(dev_priv) >= 8)
2669                return 3072;
2670        else if (DISPLAY_VER(dev_priv) >= 7)
2671                return 768;
2672        else
2673                return 512;
2674}
2675
2676static unsigned int
2677ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2678                     int level, bool is_sprite)
2679{
2680        if (DISPLAY_VER(dev_priv) >= 8)
2681                /* BDW primary/sprite plane watermarks */
2682                return level == 0 ? 255 : 2047;
2683        else if (DISPLAY_VER(dev_priv) >= 7)
2684                /* IVB/HSW primary/sprite plane watermarks */
2685                return level == 0 ? 127 : 1023;
2686        else if (!is_sprite)
2687                /* ILK/SNB primary plane watermarks */
2688                return level == 0 ? 127 : 511;
2689        else
2690                /* ILK/SNB sprite plane watermarks */
2691                return level == 0 ? 63 : 255;
2692}
2693
2694static unsigned int
2695ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2696{
2697        if (DISPLAY_VER(dev_priv) >= 7)
2698                return level == 0 ? 63 : 255;
2699        else
2700                return level == 0 ? 31 : 63;
2701}
2702
2703static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2704{
2705        if (DISPLAY_VER(dev_priv) >= 8)
2706                return 31;
2707        else
2708                return 15;
2709}
2710
2711/* Calculate the maximum primary/sprite plane watermark */
2712static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2713                                     int level,
2714                                     const struct intel_wm_config *config,
2715                                     enum intel_ddb_partitioning ddb_partitioning,
2716                                     bool is_sprite)
2717{
2718        unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2719
2720        /* if sprites aren't enabled, sprites get nothing */
2721        if (is_sprite && !config->sprites_enabled)
2722                return 0;
2723
2724        /* HSW allows LP1+ watermarks even with multiple pipes */
2725        if (level == 0 || config->num_pipes_active > 1) {
2726                fifo_size /= INTEL_NUM_PIPES(dev_priv);
2727
2728                /*
2729                 * For some reason the non self refresh
2730                 * FIFO size is only half of the self
2731                 * refresh FIFO size on ILK/SNB.
2732                 */
2733                if (DISPLAY_VER(dev_priv) <= 6)
2734                        fifo_size /= 2;
2735        }
2736
2737        if (config->sprites_enabled) {
2738                /* level 0 is always calculated with 1:1 split */
2739                if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2740                        if (is_sprite)
2741                                fifo_size *= 5;
2742                        fifo_size /= 6;
2743                } else {
2744                        fifo_size /= 2;
2745                }
2746        }
2747
2748        /* clamp to max that the registers can hold */
2749        return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2750}
2751
2752/* Calculate the maximum cursor plane watermark */
2753static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2754                                      int level,
2755                                      const struct intel_wm_config *config)
2756{
2757        /* HSW LP1+ watermarks w/ multiple pipes */
2758        if (level > 0 && config->num_pipes_active > 1)
2759                return 64;
2760
2761        /* otherwise just report max that registers can hold */
2762        return ilk_cursor_wm_reg_max(dev_priv, level);
2763}
2764
2765static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2766                                    int level,
2767                                    const struct intel_wm_config *config,
2768                                    enum intel_ddb_partitioning ddb_partitioning,
2769                                    struct ilk_wm_maximums *max)
2770{
2771        max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
2772        max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
2773        max->cur = ilk_cursor_wm_max(dev_priv, level, config);
2774        max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2775}
2776
2777static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2778                                        int level,
2779                                        struct ilk_wm_maximums *max)
2780{
2781        max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2782        max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2783        max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2784        max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2785}
2786
2787static bool ilk_validate_wm_level(int level,
2788                                  const struct ilk_wm_maximums *max,
2789                                  struct intel_wm_level *result)
2790{
2791        bool ret;
2792
2793        /* already determined to be invalid? */
2794        if (!result->enable)
2795                return false;
2796
2797        result->enable = result->pri_val <= max->pri &&
2798                         result->spr_val <= max->spr &&
2799                         result->cur_val <= max->cur;
2800
2801        ret = result->enable;
2802
2803        /*
2804         * HACK until we can pre-compute everything,
2805         * and thus fail gracefully if LP0 watermarks
2806         * are exceeded...
2807         */
2808        if (level == 0 && !result->enable) {
2809                if (result->pri_val > max->pri)
2810                        DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2811                                      level, result->pri_val, max->pri);
2812                if (result->spr_val > max->spr)
2813                        DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2814                                      level, result->spr_val, max->spr);
2815                if (result->cur_val > max->cur)
2816                        DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2817                                      level, result->cur_val, max->cur);
2818
2819                result->pri_val = min_t(u32, result->pri_val, max->pri);
2820                result->spr_val = min_t(u32, result->spr_val, max->spr);
2821                result->cur_val = min_t(u32, result->cur_val, max->cur);
2822                result->enable = true;
2823        }
2824
2825        return ret;
2826}
2827
2828static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2829                                 const struct intel_crtc *crtc,
2830                                 int level,
2831                                 struct intel_crtc_state *crtc_state,
2832                                 const struct intel_plane_state *pristate,
2833                                 const struct intel_plane_state *sprstate,
2834                                 const struct intel_plane_state *curstate,
2835                                 struct intel_wm_level *result)
2836{
2837        u16 pri_latency = dev_priv->wm.pri_latency[level];
2838        u16 spr_latency = dev_priv->wm.spr_latency[level];
2839        u16 cur_latency = dev_priv->wm.cur_latency[level];
2840
2841        /* WM1+ latency values stored in 0.5us units */
2842        if (level > 0) {
2843                pri_latency *= 5;
2844                spr_latency *= 5;
2845                cur_latency *= 5;
2846        }
2847
2848        if (pristate) {
2849                result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2850                                                     pri_latency, level);
2851                result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2852        }
2853
2854        if (sprstate)
2855                result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2856
2857        if (curstate)
2858                result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2859
2860        result->enable = true;
2861}
2862
2863static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2864                                  u16 wm[8])
2865{
2866        struct intel_uncore *uncore = &dev_priv->uncore;
2867
2868        if (DISPLAY_VER(dev_priv) >= 9) {
2869                u32 val;
2870                int ret, i;
2871                int level, max_level = ilk_wm_max_level(dev_priv);
2872                int mult = IS_DG2(dev_priv) ? 2 : 1;
2873
2874                /* read the first set of memory latencies[0:3] */
2875                val = 0; /* data0 to be programmed to 0 for first set */
2876                ret = sandybridge_pcode_read(dev_priv,
2877                                             GEN9_PCODE_READ_MEM_LATENCY,
2878                                             &val, NULL);
2879
2880                if (ret) {
2881                        drm_err(&dev_priv->drm,
2882                                "SKL Mailbox read error = %d\n", ret);
2883                        return;
2884                }
2885
2886                wm[0] = (val & GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
2887                wm[1] = ((val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2888                                GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
2889                wm[2] = ((val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2890                                GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
2891                wm[3] = ((val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2892                                GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
2893
2894                /* read the second set of memory latencies[4:7] */
2895                val = 1; /* data0 to be programmed to 1 for second set */
2896                ret = sandybridge_pcode_read(dev_priv,
2897                                             GEN9_PCODE_READ_MEM_LATENCY,
2898                                             &val, NULL);
2899                if (ret) {
2900                        drm_err(&dev_priv->drm,
2901                                "SKL Mailbox read error = %d\n", ret);
2902                        return;
2903                }
2904
2905                wm[4] = (val & GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
2906                wm[5] = ((val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2907                                GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
2908                wm[6] = ((val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2909                                GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
2910                wm[7] = ((val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2911                                GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
2912
2913                /*
2914                 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2915                 * need to be disabled. We make sure to sanitize the values out
2916                 * of the punit to satisfy this requirement.
2917                 */
2918                for (level = 1; level <= max_level; level++) {
2919                        if (wm[level] == 0) {
2920                                for (i = level + 1; i <= max_level; i++)
2921                                        wm[i] = 0;
2922
2923                                max_level = level - 1;
2924
2925                                break;
2926                        }
2927                }
2928
2929                /*
2930                 * WaWmMemoryReadLatency
2931                 *
2932                 * punit doesn't take into account the read latency so we need
2933                 * to add proper adjustement to each valid level we retrieve
2934                 * from the punit when level 0 response data is 0us.
2935                 */
2936                if (wm[0] == 0) {
2937                        u8 adjust = DISPLAY_VER(dev_priv) >= 12 ? 3 : 2;
2938
2939                        for (level = 0; level <= max_level; level++)
2940                                wm[level] += adjust;
2941                }
2942
2943                /*
2944                 * WA Level-0 adjustment for 16GB DIMMs: SKL+
2945                 * If we could not get dimm info enable this WA to prevent from
2946                 * any underrun. If not able to get Dimm info assume 16GB dimm
2947                 * to avoid any underrun.
2948                 */
2949                if (dev_priv->dram_info.wm_lv_0_adjust_needed)
2950                        wm[0] += 1;
2951        } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2952                u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2953
2954                wm[0] = (sskpd >> 56) & 0xFF;
2955                if (wm[0] == 0)
2956                        wm[0] = sskpd & 0xF;
2957                wm[1] = (sskpd >> 4) & 0xFF;
2958                wm[2] = (sskpd >> 12) & 0xFF;
2959                wm[3] = (sskpd >> 20) & 0x1FF;
2960                wm[4] = (sskpd >> 32) & 0x1FF;
2961        } else if (DISPLAY_VER(dev_priv) >= 6) {
2962                u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2963
2964                wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2965                wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2966                wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2967                wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2968        } else if (DISPLAY_VER(dev_priv) >= 5) {
2969                u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2970
2971                /* ILK primary LP0 latency is 700 ns */
2972                wm[0] = 7;
2973                wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2974                wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2975        } else {
2976                MISSING_CASE(INTEL_DEVID(dev_priv));
2977        }
2978}
2979
2980static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2981                                       u16 wm[5])
2982{
2983        /* ILK sprite LP0 latency is 1300 ns */
2984        if (DISPLAY_VER(dev_priv) == 5)
2985                wm[0] = 13;
2986}
2987
2988static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2989                                       u16 wm[5])
2990{
2991        /* ILK cursor LP0 latency is 1300 ns */
2992        if (DISPLAY_VER(dev_priv) == 5)
2993                wm[0] = 13;
2994}
2995
2996int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2997{
2998        /* how many WM levels are we expecting */
2999        if (HAS_HW_SAGV_WM(dev_priv))
3000                return 5;
3001        else if (DISPLAY_VER(dev_priv) >= 9)
3002                return 7;
3003        else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3004                return 4;
3005        else if (DISPLAY_VER(dev_priv) >= 6)
3006                return 3;
3007        else
3008                return 2;
3009}
3010
3011static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
3012                                   const char *name,
3013                                   const u16 wm[])
3014{
3015        int level, max_level = ilk_wm_max_level(dev_priv);
3016
3017        for (level = 0; level <= max_level; level++) {
3018                unsigned int latency = wm[level];
3019
3020                if (latency == 0) {
3021                        drm_dbg_kms(&dev_priv->drm,
3022                                    "%s WM%d latency not provided\n",
3023                                    name, level);
3024                        continue;
3025                }
3026
3027                /*
3028                 * - latencies are in us on gen9.
3029                 * - before then, WM1+ latency values are in 0.5us units
3030                 */
3031                if (DISPLAY_VER(dev_priv) >= 9)
3032                        latency *= 10;
3033                else if (level > 0)
3034                        latency *= 5;
3035
3036                drm_dbg_kms(&dev_priv->drm,
3037                            "%s WM%d latency %u (%u.%u usec)\n", name, level,
3038                            wm[level], latency / 10, latency % 10);
3039        }
3040}
3041
3042static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
3043                                    u16 wm[5], u16 min)
3044{
3045        int level, max_level = ilk_wm_max_level(dev_priv);
3046
3047        if (wm[0] >= min)
3048                return false;
3049
3050        wm[0] = max(wm[0], min);
3051        for (level = 1; level <= max_level; level++)
3052                wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
3053
3054        return true;
3055}
3056
3057static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3058{
3059        bool changed;
3060
3061        /*
3062         * The BIOS provided WM memory latency values are often
3063         * inadequate for high resolution displays. Adjust them.
3064         */
3065        changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
3066                ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
3067                ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
3068
3069        if (!changed)
3070                return;
3071
3072        drm_dbg_kms(&dev_priv->drm,
3073                    "WM latency values increased to avoid potential underruns\n");
3074        intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3075        intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3076        intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3077}
3078
3079static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
3080{
3081        /*
3082         * On some SNB machines (Thinkpad X220 Tablet at least)
3083         * LP3 usage can cause vblank interrupts to be lost.
3084         * The DEIIR bit will go high but it looks like the CPU
3085         * never gets interrupted.
3086         *
3087         * It's not clear whether other interrupt source could
3088         * be affected or if this is somehow limited to vblank
3089         * interrupts only. To play it safe we disable LP3
3090         * watermarks entirely.
3091         */
3092        if (dev_priv->wm.pri_latency[3] == 0 &&
3093            dev_priv->wm.spr_latency[3] == 0 &&
3094            dev_priv->wm.cur_latency[3] == 0)
3095                return;
3096
3097        dev_priv->wm.pri_latency[3] = 0;
3098        dev_priv->wm.spr_latency[3] = 0;
3099        dev_priv->wm.cur_latency[3] = 0;
3100
3101        drm_dbg_kms(&dev_priv->drm,
3102                    "LP3 watermarks disabled due to potential for lost interrupts\n");
3103        intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3104        intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3105        intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3106}
3107
3108static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3109{
3110        intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3111
3112        memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3113               sizeof(dev_priv->wm.pri_latency));
3114        memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3115               sizeof(dev_priv->wm.pri_latency));
3116
3117        intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3118        intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3119
3120        intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3121        intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3122        intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3123
3124        if (DISPLAY_VER(dev_priv) == 6) {
3125                snb_wm_latency_quirk(dev_priv);
3126                snb_wm_lp3_irq_quirk(dev_priv);
3127        }
3128}
3129
3130static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3131{
3132        intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3133        intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3134}
3135
3136static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3137                                 struct intel_pipe_wm *pipe_wm)
3138{
3139        /* LP0 watermark maximums depend on this pipe alone */
3140        const struct intel_wm_config config = {
3141                .num_pipes_active = 1,
3142                .sprites_enabled = pipe_wm->sprites_enabled,
3143                .sprites_scaled = pipe_wm->sprites_scaled,
3144        };
3145        struct ilk_wm_maximums max;
3146
3147        /* LP0 watermarks always use 1/2 DDB partitioning */
3148        ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3149
3150        /* At least LP0 must be valid */
3151        if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3152                drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
3153                return false;
3154        }
3155
3156        return true;
3157}
3158
3159/* Compute new watermarks for the pipe */
3160static int ilk_compute_pipe_wm(struct intel_atomic_state *state,
3161                               struct intel_crtc *crtc)
3162{
3163        struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3164        struct intel_crtc_state *crtc_state =
3165                intel_atomic_get_new_crtc_state(state, crtc);
3166        struct intel_pipe_wm *pipe_wm;
3167        struct intel_plane *plane;
3168        const struct intel_plane_state *plane_state;
3169        const struct intel_plane_state *pristate = NULL;
3170        const struct intel_plane_state *sprstate = NULL;
3171        const struct intel_plane_state *curstate = NULL;
3172        int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3173        struct ilk_wm_maximums max;
3174
3175        pipe_wm = &crtc_state->wm.ilk.optimal;
3176
3177        intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
3178                if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
3179                        pristate = plane_state;
3180                else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
3181                        sprstate = plane_state;
3182                else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
3183                        curstate = plane_state;
3184        }
3185
3186        pipe_wm->pipe_enabled = crtc_state->hw.active;
3187        if (sprstate) {
3188                pipe_wm->sprites_enabled = sprstate->uapi.visible;
3189                pipe_wm->sprites_scaled = sprstate->uapi.visible &&
3190                        (drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 ||
3191                         drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16);
3192        }
3193
3194        usable_level = max_level;
3195
3196        /* ILK/SNB: LP2+ watermarks only w/o sprites */
3197        if (DISPLAY_VER(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3198                usable_level = 1;
3199
3200        /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3201        if (pipe_wm->sprites_scaled)
3202                usable_level = 0;
3203
3204        memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3205        ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
3206                             pristate, sprstate, curstate, &pipe_wm->wm[0]);
3207
3208        if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3209                return -EINVAL;
3210
3211        ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3212
3213        for (level = 1; level <= usable_level; level++) {
3214                struct intel_wm_level *wm = &pipe_wm->wm[level];
3215
3216                ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
3217                                     pristate, sprstate, curstate, wm);
3218
3219                /*
3220                 * Disable any watermark level that exceeds the
3221                 * register maximums since such watermarks are
3222                 * always invalid.
3223                 */
3224                if (!ilk_validate_wm_level(level, &max, wm)) {
3225                        memset(wm, 0, sizeof(*wm));
3226                        break;
3227                }
3228        }
3229
3230        return 0;
3231}
3232
3233/*
3234 * Build a set of 'intermediate' watermark values that satisfy both the old
3235 * state and the new state.  These can be programmed to the hardware
3236 * immediately.
3237 */
3238static int ilk_compute_intermediate_wm(struct intel_atomic_state *state,
3239                                       struct intel_crtc *crtc)
3240{
3241        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3242        struct intel_crtc_state *new_crtc_state =
3243                intel_atomic_get_new_crtc_state(state, crtc);
3244        const struct intel_crtc_state *old_crtc_state =
3245                intel_atomic_get_old_crtc_state(state, crtc);
3246        struct intel_pipe_wm *a = &new_crtc_state->wm.ilk.intermediate;
3247        const struct intel_pipe_wm *b = &old_crtc_state->wm.ilk.optimal;
3248        int level, max_level = ilk_wm_max_level(dev_priv);
3249
3250        /*
3251         * Start with the final, target watermarks, then combine with the
3252         * currently active watermarks to get values that are safe both before
3253         * and after the vblank.
3254         */
3255        *a = new_crtc_state->wm.ilk.optimal;
3256        if (!new_crtc_state->hw.active ||
3257            drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) ||
3258            state->skip_intermediate_wm)
3259                return 0;
3260
3261        a->pipe_enabled |= b->pipe_enabled;
3262        a->sprites_enabled |= b->sprites_enabled;
3263        a->sprites_scaled |= b->sprites_scaled;
3264
3265        for (level = 0; level <= max_level; level++) {
3266                struct intel_wm_level *a_wm = &a->wm[level];
3267                const struct intel_wm_level *b_wm = &b->wm[level];
3268
3269                a_wm->enable &= b_wm->enable;
3270                a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3271                a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3272                a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3273                a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3274        }
3275
3276        /*
3277         * We need to make sure that these merged watermark values are
3278         * actually a valid configuration themselves.  If they're not,
3279         * there's no safe way to transition from the old state to
3280         * the new state, so we need to fail the atomic transaction.
3281         */
3282        if (!ilk_validate_pipe_wm(dev_priv, a))
3283                return -EINVAL;
3284
3285        /*
3286         * If our intermediate WM are identical to the final WM, then we can
3287         * omit the post-vblank programming; only update if it's different.
3288         */
3289        if (memcmp(a, &new_crtc_state->wm.ilk.optimal, sizeof(*a)) != 0)
3290                new_crtc_state->wm.need_postvbl_update = true;
3291
3292        return 0;
3293}
3294
3295/*
3296 * Merge the watermarks from all active pipes for a specific level.
3297 */
3298static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3299                               int level,
3300                               struct intel_wm_level *ret_wm)
3301{
3302        const struct intel_crtc *crtc;
3303
3304        ret_wm->enable = true;
3305
3306        for_each_intel_crtc(&dev_priv->drm, crtc) {
3307                const struct intel_pipe_wm *active = &crtc->wm.active.ilk;
3308                const struct intel_wm_level *wm = &active->wm[level];
3309
3310                if (!active->pipe_enabled)
3311                        continue;
3312
3313                /*
3314                 * The watermark values may have been used in the past,
3315                 * so we must maintain them in the registers for some
3316                 * time even if the level is now disabled.
3317                 */
3318                if (!wm->enable)
3319                        ret_wm->enable = false;
3320
3321                ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3322                ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3323                ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3324                ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3325        }
3326}
3327
3328/*
3329 * Merge all low power watermarks for all active pipes.
3330 */
3331static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3332                         const struct intel_wm_config *config,
3333                         const struct ilk_wm_maximums *max,
3334                         struct intel_pipe_wm *merged)
3335{
3336        int level, max_level = ilk_wm_max_level(dev_priv);
3337        int last_enabled_level = max_level;
3338
3339        /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3340        if ((DISPLAY_VER(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3341            config->num_pipes_active > 1)
3342                last_enabled_level = 0;
3343
3344        /* ILK: FBC WM must be disabled always */
3345        merged->fbc_wm_enabled = DISPLAY_VER(dev_priv) >= 6;
3346
3347        /* merge each WM1+ level */
3348        for (level = 1; level <= max_level; level++) {
3349                struct intel_wm_level *wm = &merged->wm[level];
3350
3351                ilk_merge_wm_level(dev_priv, level, wm);
3352
3353                if (level > last_enabled_level)
3354                        wm->enable = false;
3355                else if (!ilk_validate_wm_level(level, max, wm))
3356                        /* make sure all following levels get disabled */
3357                        last_enabled_level = level - 1;
3358
3359                /*
3360                 * The spec says it is preferred to disable
3361                 * FBC WMs instead of disabling a WM level.
3362                 */
3363                if (wm->fbc_val > max->fbc) {
3364                        if (wm->enable)
3365                                merged->fbc_wm_enabled = false;
3366                        wm->fbc_val = 0;
3367                }
3368        }
3369
3370        /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3371        /*
3372         * FIXME this is racy. FBC might get enabled later.
3373         * What we should check here is whether FBC can be
3374         * enabled sometime later.
3375         */
3376        if (DISPLAY_VER(dev_priv) == 5 && !merged->fbc_wm_enabled &&
3377            intel_fbc_is_active(dev_priv)) {
3378                for (level = 2; level <= max_level; level++) {
3379                        struct intel_wm_level *wm = &merged->wm[level];
3380
3381                        wm->enable = false;
3382                }
3383        }
3384}
3385
3386static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3387{
3388        /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3389        return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3390}
3391
3392/* The value we need to program into the WM_LPx latency field */
3393static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
3394                                      int level)
3395{
3396        if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3397                return 2 * level;
3398        else
3399                return dev_priv->wm.pri_latency[level];
3400}
3401
3402static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3403                                   const struct intel_pipe_wm *merged,
3404                                   enum intel_ddb_partitioning partitioning,
3405                                   struct ilk_wm_values *results)
3406{
3407        struct intel_crtc *crtc;
3408        int level, wm_lp;
3409
3410        results->enable_fbc_wm = merged->fbc_wm_enabled;
3411        results->partitioning = partitioning;
3412
3413        /* LP1+ register values */
3414        for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3415                const struct intel_wm_level *r;
3416
3417                level = ilk_wm_lp_to_level(wm_lp, merged);
3418
3419                r = &merged->wm[level];
3420
3421                /*
3422                 * Maintain the watermark values even if the level is
3423                 * disabled. Doing otherwise could cause underruns.
3424                 */
3425                results->wm_lp[wm_lp - 1] =
3426                        (ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3427                        (r->pri_val << WM1_LP_SR_SHIFT) |
3428                        r->cur_val;
3429
3430                if (r->enable)
3431                        results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3432
3433                if (DISPLAY_VER(dev_priv) >= 8)
3434                        results->wm_lp[wm_lp - 1] |=
3435                                r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3436                else
3437                        results->wm_lp[wm_lp - 1] |=
3438                                r->fbc_val << WM1_LP_FBC_SHIFT;
3439
3440                /*
3441                 * Always set WM1S_LP_EN when spr_val != 0, even if the
3442                 * level is disabled. Doing otherwise could cause underruns.
3443                 */
3444                if (DISPLAY_VER(dev_priv) <= 6 && r->spr_val) {
3445                        drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3446                        results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3447                } else
3448                        results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3449        }
3450
3451        /* LP0 register values */
3452        for_each_intel_crtc(&dev_priv->drm, crtc) {
3453                enum pipe pipe = crtc->pipe;
3454                const struct intel_pipe_wm *pipe_wm = &crtc->wm.active.ilk;
3455                const struct intel_wm_level *r = &pipe_wm->wm[0];
3456
3457                if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3458                        continue;
3459
3460                results->wm_pipe[pipe] =
3461                        (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3462                        (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3463                        r->cur_val;
3464        }
3465}
3466
3467/* Find the result with the highest level enabled. Check for enable_fbc_wm in
3468 * case both are at the same level. Prefer r1 in case they're the same. */
3469static struct intel_pipe_wm *
3470ilk_find_best_result(struct drm_i915_private *dev_priv,
3471                     struct intel_pipe_wm *r1,
3472                     struct intel_pipe_wm *r2)
3473{
3474        int level, max_level = ilk_wm_max_level(dev_priv);
3475        int level1 = 0, level2 = 0;
3476
3477        for (level = 1; level <= max_level; level++) {
3478                if (r1->wm[level].enable)
3479                        level1 = level;
3480                if (r2->wm[level].enable)
3481                        level2 = level;
3482        }
3483
3484        if (level1 == level2) {
3485                if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3486                        return r2;
3487                else
3488                        return r1;
3489        } else if (level1 > level2) {
3490                return r1;
3491        } else {
3492                return r2;
3493        }
3494}
3495
3496/* dirty bits used to track which watermarks need changes */
3497#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3498#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3499#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3500#define WM_DIRTY_FBC (1 << 24)
3501#define WM_DIRTY_DDB (1 << 25)
3502
3503static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3504                                         const struct ilk_wm_values *old,
3505                                         const struct ilk_wm_values *new)
3506{
3507        unsigned int dirty = 0;
3508        enum pipe pipe;
3509        int wm_lp;
3510
3511        for_each_pipe(dev_priv, pipe) {
3512                if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3513                        dirty |= WM_DIRTY_PIPE(pipe);
3514                        /* Must disable LP1+ watermarks too */
3515                        dirty |= WM_DIRTY_LP_ALL;
3516                }
3517        }
3518
3519        if (old->enable_fbc_wm != new->enable_fbc_wm) {
3520                dirty |= WM_DIRTY_FBC;
3521                /* Must disable LP1+ watermarks too */
3522                dirty |= WM_DIRTY_LP_ALL;
3523        }
3524
3525        if (old->partitioning != new->partitioning) {
3526                dirty |= WM_DIRTY_DDB;
3527                /* Must disable LP1+ watermarks too */
3528                dirty |= WM_DIRTY_LP_ALL;
3529        }
3530
3531        /* LP1+ watermarks already deemed dirty, no need to continue */
3532        if (dirty & WM_DIRTY_LP_ALL)
3533                return dirty;
3534
3535        /* Find the lowest numbered LP1+ watermark in need of an update... */
3536        for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3537                if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3538                    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3539                        break;
3540        }
3541
3542        /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3543        for (; wm_lp <= 3; wm_lp++)
3544                dirty |= WM_DIRTY_LP(wm_lp);
3545
3546        return dirty;
3547}
3548
3549static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3550                               unsigned int dirty)
3551{
3552        struct ilk_wm_values *previous = &dev_priv->wm.hw;
3553        bool changed = false;
3554
3555        if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3556                previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3557                intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, previous->wm_lp[2]);
3558                changed = true;
3559        }
3560        if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3561                previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3562                intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, previous->wm_lp[1]);
3563                changed = true;
3564        }
3565        if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3566                previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3567                intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, previous->wm_lp[0]);
3568                changed = true;
3569        }
3570
3571        /*
3572         * Don't touch WM1S_LP_EN here.
3573         * Doing so could cause underruns.
3574         */
3575
3576        return changed;
3577}
3578
3579/*
3580 * The spec says we shouldn't write when we don't need, because every write
3581 * causes WMs to be re-evaluated, expending some power.
3582 */
3583static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3584                                struct ilk_wm_values *results)
3585{
3586        struct ilk_wm_values *previous = &dev_priv->wm.hw;
3587        unsigned int dirty;
3588        u32 val;
3589
3590        dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3591        if (!dirty)
3592                return;
3593
3594        _ilk_disable_lp_wm(dev_priv, dirty);
3595
3596        if (dirty & WM_DIRTY_PIPE(PIPE_A))
3597                intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_A), results->wm_pipe[0]);
3598        if (dirty & WM_DIRTY_PIPE(PIPE_B))
3599                intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_B), results->wm_pipe[1]);
3600        if (dirty & WM_DIRTY_PIPE(PIPE_C))
3601                intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_C), results->wm_pipe[2]);
3602
3603        if (dirty & WM_DIRTY_DDB) {
3604                if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3605                        val = intel_uncore_read(&dev_priv->uncore, WM_MISC);
3606                        if (results->partitioning == INTEL_DDB_PART_1_2)
3607                                val &= ~WM_MISC_DATA_PARTITION_5_6;
3608                        else
3609                                val |= WM_MISC_DATA_PARTITION_5_6;
3610                        intel_uncore_write(&dev_priv->uncore, WM_MISC, val);
3611                } else {
3612                        val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2);
3613                        if (results->partitioning == INTEL_DDB_PART_1_2)
3614                                val &= ~DISP_DATA_PARTITION_5_6;
3615                        else
3616                                val |= DISP_DATA_PARTITION_5_6;
3617                        intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL2, val);
3618                }
3619        }
3620
3621        if (dirty & WM_DIRTY_FBC) {
3622                val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL);
3623                if (results->enable_fbc_wm)
3624                        val &= ~DISP_FBC_WM_DIS;
3625                else
3626                        val |= DISP_FBC_WM_DIS;
3627                intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, val);
3628        }
3629
3630        if (dirty & WM_DIRTY_LP(1) &&
3631            previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3632                intel_uncore_write(&dev_priv->uncore, WM1S_LP_ILK, results->wm_lp_spr[0]);
3633
3634        if (DISPLAY_VER(dev_priv) >= 7) {
3635                if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3636                        intel_uncore_write(&dev_priv->uncore, WM2S_LP_IVB, results->wm_lp_spr[1]);
3637                if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3638                        intel_uncore_write(&dev_priv->uncore, WM3S_LP_IVB, results->wm_lp_spr[2]);
3639        }
3640
3641        if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3642                intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, results->wm_lp[0]);
3643        if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3644                intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, results->wm_lp[1]);
3645        if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3646                intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, results->wm_lp[2]);
3647
3648        dev_priv->wm.hw = *results;
3649}
3650
3651bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3652{
3653        return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3654}
3655
3656u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv)
3657{
3658        u8 enabled_slices = 0;
3659        enum dbuf_slice slice;
3660
3661        for_each_dbuf_slice(dev_priv, slice) {
3662                if (intel_uncore_read(&dev_priv->uncore,
3663                                      DBUF_CTL_S(slice)) & DBUF_POWER_STATE)
3664                        enabled_slices |= BIT(slice);
3665        }
3666
3667        return enabled_slices;
3668}
3669
3670/*
3671 * FIXME: We still don't have the proper code detect if we need to apply the WA,
3672 * so assume we'll always need it in order to avoid underruns.
3673 */
3674static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3675{
3676        return DISPLAY_VER(dev_priv) == 9;
3677}
3678
3679static bool
3680intel_has_sagv(struct drm_i915_private *dev_priv)
3681{
3682        return DISPLAY_VER(dev_priv) >= 9 && !IS_LP(dev_priv) &&
3683                dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3684}
3685
3686static void
3687skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
3688{
3689        if (DISPLAY_VER(dev_priv) >= 12) {
3690                u32 val = 0;
3691                int ret;
3692
3693                ret = sandybridge_pcode_read(dev_priv,
3694                                             GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
3695                                             &val, NULL);
3696                if (!ret) {
3697                        dev_priv->sagv_block_time_us = val;
3698                        return;
3699                }
3700
3701                drm_dbg(&dev_priv->drm, "Couldn't read SAGV block time!\n");
3702        } else if (DISPLAY_VER(dev_priv) == 11) {
3703                dev_priv->sagv_block_time_us = 10;
3704                return;
3705        } else if (DISPLAY_VER(dev_priv) == 10) {
3706                dev_priv->sagv_block_time_us = 20;
3707                return;
3708        } else if (DISPLAY_VER(dev_priv) == 9) {
3709                dev_priv->sagv_block_time_us = 30;
3710                return;
3711        } else {
3712                MISSING_CASE(DISPLAY_VER(dev_priv));
3713        }
3714
3715        /* Default to an unusable block time */
3716        dev_priv->sagv_block_time_us = -1;
3717}
3718
3719/*
3720 * SAGV dynamically adjusts the system agent voltage and clock frequencies
3721 * depending on power and performance requirements. The display engine access
3722 * to system memory is blocked during the adjustment time. Because of the
3723 * blocking time, having this enabled can cause full system hangs and/or pipe
3724 * underruns if we don't meet all of the following requirements:
3725 *
3726 *  - <= 1 pipe enabled
3727 *  - All planes can enable watermarks for latencies >= SAGV engine block time
3728 *  - We're not using an interlaced display configuration
3729 */
3730static int
3731intel_enable_sagv(struct drm_i915_private *dev_priv)
3732{
3733        int ret;
3734
3735        if (!intel_has_sagv(dev_priv))
3736                return 0;
3737
3738        if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3739                return 0;
3740
3741        drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n");
3742        ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3743                                      GEN9_SAGV_ENABLE);
3744
3745        /* We don't need to wait for SAGV when enabling */
3746
3747        /*
3748         * Some skl systems, pre-release machines in particular,
3749         * don't actually have SAGV.
3750         */
3751        if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3752                drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3753                dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3754                return 0;
3755        } else if (ret < 0) {
3756                drm_err(&dev_priv->drm, "Failed to enable SAGV\n");
3757                return ret;
3758        }
3759
3760        dev_priv->sagv_status = I915_SAGV_ENABLED;
3761        return 0;
3762}
3763
3764static int
3765intel_disable_sagv(struct drm_i915_private *dev_priv)
3766{
3767        int ret;
3768
3769        if (!intel_has_sagv(dev_priv))
3770                return 0;
3771
3772        if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3773                return 0;
3774
3775        drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n");
3776        /* bspec says to keep retrying for at least 1 ms */
3777        ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3778                                GEN9_SAGV_DISABLE,
3779                                GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3780                                1);
3781        /*
3782         * Some skl systems, pre-release machines in particular,
3783         * don't actually have SAGV.
3784         */
3785        if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3786                drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3787                dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3788                return 0;
3789        } else if (ret < 0) {
3790                drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret);
3791                return ret;
3792        }
3793
3794        dev_priv->sagv_status = I915_SAGV_DISABLED;
3795        return 0;
3796}
3797
3798void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
3799{
3800        struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3801        const struct intel_bw_state *new_bw_state;
3802        const struct intel_bw_state *old_bw_state;
3803        u32 new_mask = 0;
3804
3805        /*
3806         * Just return if we can't control SAGV or don't have it.
3807         * This is different from situation when we have SAGV but just can't
3808         * afford it due to DBuf limitation - in case if SAGV is completely
3809         * disabled in a BIOS, we are not even allowed to send a PCode request,
3810         * as it will throw an error. So have to check it here.
3811         */
3812        if (!intel_has_sagv(dev_priv))
3813                return;
3814
3815        new_bw_state = intel_atomic_get_new_bw_state(state);
3816        if (!new_bw_state)
3817                return;
3818
3819        if (DISPLAY_VER(dev_priv) < 11 && !intel_can_enable_sagv(dev_priv, new_bw_state)) {
3820                intel_disable_sagv(dev_priv);
3821                return;
3822        }
3823
3824        old_bw_state = intel_atomic_get_old_bw_state(state);
3825        /*
3826         * Nothing to mask
3827         */
3828        if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
3829                return;
3830
3831        new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
3832
3833        /*
3834         * If new mask is zero - means there is nothing to mask,
3835         * we can only unmask, which should be done in unmask.
3836         */
3837        if (!new_mask)
3838                return;
3839
3840        /*
3841         * Restrict required qgv points before updating the configuration.
3842         * According to BSpec we can't mask and unmask qgv points at the same
3843         * time. Also masking should be done before updating the configuration
3844         * and unmasking afterwards.
3845         */
3846        icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3847}
3848
3849void intel_sagv_post_plane_update(struct intel_atomic_state *state)
3850{
3851        struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3852        const struct intel_bw_state *new_bw_state;
3853        const struct intel_bw_state *old_bw_state;
3854        u32 new_mask = 0;
3855
3856        /*
3857         * Just return if we can't control SAGV or don't have it.
3858         * This is different from situation when we have SAGV but just can't
3859         * afford it due to DBuf limitation - in case if SAGV is completely
3860         * disabled in a BIOS, we are not even allowed to send a PCode request,
3861         * as it will throw an error. So have to check it here.
3862         */
3863        if (!intel_has_sagv(dev_priv))
3864                return;
3865
3866        new_bw_state = intel_atomic_get_new_bw_state(state);
3867        if (!new_bw_state)
3868                return;
3869
3870        if (DISPLAY_VER(dev_priv) < 11 && intel_can_enable_sagv(dev_priv, new_bw_state)) {
3871                intel_enable_sagv(dev_priv);
3872                return;
3873        }
3874
3875        old_bw_state = intel_atomic_get_old_bw_state(state);
3876        /*
3877         * Nothing to unmask
3878         */
3879        if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
3880                return;
3881
3882        new_mask = new_bw_state->qgv_points_mask;
3883
3884        /*
3885         * Allow required qgv points after updating the configuration.
3886         * According to BSpec we can't mask and unmask qgv points at the same
3887         * time. Also masking should be done before updating the configuration
3888         * and unmasking afterwards.
3889         */
3890        icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3891}
3892
3893static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3894{
3895        struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3896        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3897        enum plane_id plane_id;
3898        int max_level = INT_MAX;
3899
3900        if (!intel_has_sagv(dev_priv))
3901                return false;
3902
3903        if (!crtc_state->hw.active)
3904                return true;
3905
3906        if (crtc_state->hw.pipe_mode.flags & DRM_MODE_FLAG_INTERLACE)
3907                return false;
3908
3909        for_each_plane_id_on_crtc(crtc, plane_id) {
3910                const struct skl_plane_wm *wm =
3911                        &crtc_state->wm.skl.optimal.planes[plane_id];
3912                int level;
3913
3914                /* Skip this plane if it's not enabled */
3915                if (!wm->wm[0].enable)
3916                        continue;
3917
3918                /* Find the highest enabled wm level for this plane */
3919                for (level = ilk_wm_max_level(dev_priv);
3920                     !wm->wm[level].enable; --level)
3921                     { }
3922
3923                /* Highest common enabled wm level for all planes */
3924                max_level = min(level, max_level);
3925        }
3926
3927        /* No enabled planes? */
3928        if (max_level == INT_MAX)
3929                return true;
3930
3931        for_each_plane_id_on_crtc(crtc, plane_id) {
3932                const struct skl_plane_wm *wm =
3933                        &crtc_state->wm.skl.optimal.planes[plane_id];
3934
3935                /*
3936                 * All enabled planes must have enabled a common wm level that
3937                 * can tolerate memory latencies higher than sagv_block_time_us
3938                 */
3939                if (wm->wm[0].enable && !wm->wm[max_level].can_sagv)
3940                        return false;
3941        }
3942
3943        return true;
3944}
3945
3946static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3947{
3948        struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3949        enum plane_id plane_id;
3950
3951        if (!crtc_state->hw.active)
3952                return true;
3953
3954        for_each_plane_id_on_crtc(crtc, plane_id) {
3955                const struct skl_plane_wm *wm =
3956                        &crtc_state->wm.skl.optimal.planes[plane_id];
3957
3958                if (wm->wm[0].enable && !wm->sagv.wm0.enable)
3959                        return false;
3960        }
3961
3962        return true;
3963}
3964
3965static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3966{
3967        struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3968        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3969
3970        if (DISPLAY_VER(dev_priv) >= 12)
3971                return tgl_crtc_can_enable_sagv(crtc_state);
3972        else
3973                return skl_crtc_can_enable_sagv(crtc_state);
3974}
3975
3976bool intel_can_enable_sagv(struct drm_i915_private *dev_priv,
3977                           const struct intel_bw_state *bw_state)
3978{
3979        if (DISPLAY_VER(dev_priv) < 11 &&
3980            bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
3981                return false;
3982
3983        return bw_state->pipe_sagv_reject == 0;
3984}
3985
3986static int intel_compute_sagv_mask(struct intel_atomic_state *state)
3987{
3988        struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3989        int ret;
3990        struct intel_crtc *crtc;
3991        struct intel_crtc_state *new_crtc_state;
3992        struct intel_bw_state *new_bw_state = NULL;
3993        const struct intel_bw_state *old_bw_state = NULL;
3994        int i;
3995
3996        for_each_new_intel_crtc_in_state(state, crtc,
3997                                         new_crtc_state, i) {
3998                new_bw_state = intel_atomic_get_bw_state(state);
3999                if (IS_ERR(new_bw_state))
4000                        return PTR_ERR(new_bw_state);
4001
4002                old_bw_state = intel_atomic_get_old_bw_state(state);
4003
4004                if (intel_crtc_can_enable_sagv(new_crtc_state))
4005                        new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
4006                else
4007                        new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
4008        }
4009
4010        if (!new_bw_state)
4011                return 0;
4012
4013        new_bw_state->active_pipes =
4014                intel_calc_active_pipes(state, old_bw_state->active_pipes);
4015
4016        if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
4017                ret = intel_atomic_lock_global_state(&new_bw_state->base);
4018                if (ret)
4019                        return ret;
4020        }
4021
4022        for_each_new_intel_crtc_in_state(state, crtc,
4023                                         new_crtc_state, i) {
4024                struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;
4025
4026                /*
4027                 * We store use_sagv_wm in the crtc state rather than relying on
4028                 * that bw state since we have no convenient way to get at the
4029                 * latter from the plane commit hooks (especially in the legacy
4030                 * cursor case)
4031                 */
4032                pipe_wm->use_sagv_wm = !HAS_HW_SAGV_WM(dev_priv) &&
4033                        DISPLAY_VER(dev_priv) >= 12 &&
4034                        intel_can_enable_sagv(dev_priv, new_bw_state);
4035        }
4036
4037        if (intel_can_enable_sagv(dev_priv, new_bw_state) !=
4038            intel_can_enable_sagv(dev_priv, old_bw_state)) {
4039                ret = intel_atomic_serialize_global_state(&new_bw_state->base);
4040                if (ret)
4041                        return ret;
4042        } else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
4043                ret = intel_atomic_lock_global_state(&new_bw_state->base);
4044                if (ret)
4045                        return ret;
4046        }
4047
4048        return 0;
4049}
4050
4051static int intel_dbuf_slice_size(struct drm_i915_private *dev_priv)
4052{
4053        return INTEL_INFO(dev_priv)->dbuf.size /
4054                hweight8(INTEL_INFO(dev_priv)->dbuf.slice_mask);
4055}
4056
4057static void
4058skl_ddb_entry_for_slices(struct drm_i915_private *dev_priv, u8 slice_mask,
4059                         struct skl_ddb_entry *ddb)
4060{
4061        int slice_size = intel_dbuf_slice_size(dev_priv);
4062
4063        if (!slice_mask) {
4064                ddb->start = 0;
4065                ddb->end = 0;
4066                return;
4067        }
4068
4069        ddb->start = (ffs(slice_mask) - 1) * slice_size;
4070        ddb->end = fls(slice_mask) * slice_size;
4071
4072        WARN_ON(ddb->start >= ddb->end);
4073        WARN_ON(ddb->end > INTEL_INFO(dev_priv)->dbuf.size);
4074}
4075
4076static unsigned int mbus_ddb_offset(struct drm_i915_private *i915, u8 slice_mask)
4077{
4078        struct skl_ddb_entry ddb;
4079
4080        if (slice_mask & (BIT(DBUF_S1) | BIT(DBUF_S2)))
4081                slice_mask = BIT(DBUF_S1);
4082        else if (slice_mask & (BIT(DBUF_S3) | BIT(DBUF_S4)))
4083                slice_mask = BIT(DBUF_S3);
4084
4085        skl_ddb_entry_for_slices(i915, slice_mask, &ddb);
4086
4087        return ddb.start;
4088}
4089
4090u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *dev_priv,
4091                            const struct skl_ddb_entry *entry)
4092{
4093        int slice_size = intel_dbuf_slice_size(dev_priv);
4094        enum dbuf_slice start_slice, end_slice;
4095        u8 slice_mask = 0;
4096
4097        if (!skl_ddb_entry_size(entry))
4098                return 0;
4099
4100        start_slice = entry->start / slice_size;
4101        end_slice = (entry->end - 1) / slice_size;
4102
4103        /*
4104         * Per plane DDB entry can in a really worst case be on multiple slices
4105         * but single entry is anyway contigious.
4106         */
4107        while (start_slice <= end_slice) {
4108                slice_mask |= BIT(start_slice);
4109                start_slice++;
4110        }
4111
4112        return slice_mask;
4113}
4114
4115static unsigned int intel_crtc_ddb_weight(const struct intel_crtc_state *crtc_state)
4116{
4117        const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
4118        int hdisplay, vdisplay;
4119
4120        if (!crtc_state->hw.active)
4121                return 0;
4122
4123        /*
4124         * Watermark/ddb requirement highly depends upon width of the
4125         * framebuffer, So instead of allocating DDB equally among pipes
4126         * distribute DDB based on resolution/width of the display.
4127         */
4128        drm_mode_get_hv_timing(pipe_mode, &hdisplay, &vdisplay);
4129
4130        return hdisplay;
4131}
4132
4133static void intel_crtc_dbuf_weights(const struct intel_dbuf_state *dbuf_state,
4134                                    enum pipe for_pipe,
4135                                    unsigned int *weight_start,
4136                                    unsigned int *weight_end,
4137                                    unsigned int *weight_total)
4138{
4139        struct drm_i915_private *dev_priv =
4140                to_i915(dbuf_state->base.state->base.dev);
4141        enum pipe pipe;
4142
4143        *weight_start = 0;
4144        *weight_end = 0;
4145        *weight_total = 0;
4146
4147        for_each_pipe(dev_priv, pipe) {
4148                int weight = dbuf_state->weight[pipe];
4149
4150                /*
4151                 * Do not account pipes using other slice sets
4152                 * luckily as of current BSpec slice sets do not partially
4153                 * intersect(pipes share either same one slice or same slice set
4154                 * i.e no partial intersection), so it is enough to check for
4155                 * equality for now.
4156                 */
4157                if (dbuf_state->slices[pipe] != dbuf_state->slices[for_pipe])
4158                        continue;
4159
4160                *weight_total += weight;
4161                if (pipe < for_pipe) {
4162                        *weight_start += weight;
4163                        *weight_end += weight;
4164                } else if (pipe == for_pipe) {
4165                        *weight_end += weight;
4166                }
4167        }
4168}
4169
4170static int
4171skl_crtc_allocate_ddb(struct intel_atomic_state *state, struct intel_crtc *crtc)
4172{
4173        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4174        unsigned int weight_total, weight_start, weight_end;
4175        const struct intel_dbuf_state *old_dbuf_state =
4176                intel_atomic_get_old_dbuf_state(state);
4177        struct intel_dbuf_state *new_dbuf_state =
4178                intel_atomic_get_new_dbuf_state(state);
4179        struct intel_crtc_state *crtc_state;
4180        struct skl_ddb_entry ddb_slices;
4181        enum pipe pipe = crtc->pipe;
4182        unsigned int mbus_offset = 0;
4183        u32 ddb_range_size;
4184        u32 dbuf_slice_mask;
4185        u32 start, end;
4186        int ret;
4187
4188        if (new_dbuf_state->weight[pipe] == 0) {
4189                new_dbuf_state->ddb[pipe].start = 0;
4190                new_dbuf_state->ddb[pipe].end = 0;
4191                goto out;
4192        }
4193
4194        dbuf_slice_mask = new_dbuf_state->slices[pipe];
4195
4196        skl_ddb_entry_for_slices(dev_priv, dbuf_slice_mask, &ddb_slices);
4197        mbus_offset = mbus_ddb_offset(dev_priv, dbuf_slice_mask);
4198        ddb_range_size = skl_ddb_entry_size(&ddb_slices);
4199
4200        intel_crtc_dbuf_weights(new_dbuf_state, pipe,
4201                                &weight_start, &weight_end, &weight_total);
4202
4203        start = ddb_range_size * weight_start / weight_total;
4204        end = ddb_range_size * weight_end / weight_total;
4205
4206        new_dbuf_state->ddb[pipe].start = ddb_slices.start - mbus_offset + start;
4207        new_dbuf_state->ddb[pipe].end = ddb_slices.start - mbus_offset + end;
4208out:
4209        if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe] &&
4210            skl_ddb_entry_equal(&old_dbuf_state->ddb[pipe],
4211                                &new_dbuf_state->ddb[pipe]))
4212                return 0;
4213
4214        ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
4215        if (ret)
4216                return ret;
4217
4218        crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
4219        if (IS_ERR(crtc_state))
4220                return PTR_ERR(crtc_state);
4221
4222        /*
4223         * Used for checking overlaps, so we need absolute
4224         * offsets instead of MBUS relative offsets.
4225         */
4226        crtc_state->wm.skl.ddb.start = mbus_offset + new_dbuf_state->ddb[pipe].start;
4227        crtc_state->wm.skl.ddb.end = mbus_offset + new_dbuf_state->ddb[pipe].end;
4228
4229        drm_dbg_kms(&dev_priv->drm,
4230                    "[CRTC:%d:%s] dbuf slices 0x%x -> 0x%x, ddb (%d - %d) -> (%d - %d), active pipes 0x%x -> 0x%x\n",
4231                    crtc->base.base.id, crtc->base.name,
4232                    old_dbuf_state->slices[pipe], new_dbuf_state->slices[pipe],
4233                    old_dbuf_state->ddb[pipe].start, old_dbuf_state->ddb[pipe].end,
4234                    new_dbuf_state->ddb[pipe].start, new_dbuf_state->ddb[pipe].end,
4235                    old_dbuf_state->active_pipes, new_dbuf_state->active_pipes);
4236
4237        return 0;
4238}
4239
4240static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
4241                                 int width, const struct drm_format_info *format,
4242                                 u64 modifier, unsigned int rotation,
4243                                 u32 plane_pixel_rate, struct skl_wm_params *wp,
4244                                 int color_plane);
4245static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4246                                 int level,
4247                                 unsigned int latency,
4248                                 const struct skl_wm_params *wp,
4249                                 const struct skl_wm_level *result_prev,
4250                                 struct skl_wm_level *result /* out */);
4251
4252static unsigned int
4253skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
4254                      int num_active)
4255{
4256        struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4257        int level, max_level = ilk_wm_max_level(dev_priv);
4258        struct skl_wm_level wm = {};
4259        int ret, min_ddb_alloc = 0;
4260        struct skl_wm_params wp;
4261
4262        ret = skl_compute_wm_params(crtc_state, 256,
4263                                    drm_format_info(DRM_FORMAT_ARGB8888),
4264                                    DRM_FORMAT_MOD_LINEAR,
4265                                    DRM_MODE_ROTATE_0,
4266                                    crtc_state->pixel_rate, &wp, 0);
4267        drm_WARN_ON(&dev_priv->drm, ret);
4268
4269        for (level = 0; level <= max_level; level++) {
4270                unsigned int latency = dev_priv->wm.skl_latency[level];
4271
4272                skl_compute_plane_wm(crtc_state, level, latency, &wp, &wm, &wm);
4273                if (wm.min_ddb_alloc == U16_MAX)
4274                        break;
4275
4276                min_ddb_alloc = wm.min_ddb_alloc;
4277        }
4278
4279        return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
4280}
4281
4282static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
4283                                       struct skl_ddb_entry *entry, u32 reg)
4284{
4285        entry->start = reg & DDB_ENTRY_MASK;
4286        entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
4287
4288        if (entry->end)
4289                entry->end += 1;
4290}
4291
4292static void
4293skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
4294                           const enum pipe pipe,
4295                           const enum plane_id plane_id,
4296                           struct skl_ddb_entry *ddb_y,
4297                           struct skl_ddb_entry *ddb_uv)
4298{
4299        u32 val, val2;
4300        u32 fourcc = 0;
4301
4302        /* Cursor doesn't support NV12/planar, so no extra calculation needed */
4303        if (plane_id == PLANE_CURSOR) {
4304                val = intel_uncore_read(&dev_priv->uncore, CUR_BUF_CFG(pipe));
4305                skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4306                return;
4307        }
4308
4309        val = intel_uncore_read(&dev_priv->uncore, PLANE_CTL(pipe, plane_id));
4310
4311        /* No DDB allocated for disabled planes */
4312        if (val & PLANE_CTL_ENABLE)
4313                fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
4314                                              val & PLANE_CTL_ORDER_RGBX,
4315                                              val & PLANE_CTL_ALPHA_MASK);
4316
4317        if (DISPLAY_VER(dev_priv) >= 11) {
4318                val = intel_uncore_read(&dev_priv->uncore, PLANE_BUF_CFG(pipe, plane_id));
4319                skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4320        } else {
4321                val = intel_uncore_read(&dev_priv->uncore, PLANE_BUF_CFG(pipe, plane_id));
4322                val2 = intel_uncore_read(&dev_priv->uncore, PLANE_NV12_BUF_CFG(pipe, plane_id));
4323
4324                if (fourcc &&
4325                    drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4326                        swap(val, val2);
4327
4328                skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4329                skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4330        }
4331}
4332
4333void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
4334                               struct skl_ddb_entry *ddb_y,
4335                               struct skl_ddb_entry *ddb_uv)
4336{
4337        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4338        enum intel_display_power_domain power_domain;
4339        enum pipe pipe = crtc->pipe;
4340        intel_wakeref_t wakeref;
4341        enum plane_id plane_id;
4342
4343        power_domain = POWER_DOMAIN_PIPE(pipe);
4344        wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4345        if (!wakeref)
4346                return;
4347
4348        for_each_plane_id_on_crtc(crtc, plane_id)
4349                skl_ddb_get_hw_plane_state(dev_priv, pipe,
4350                                           plane_id,
4351                                           &ddb_y[plane_id],
4352                                           &ddb_uv[plane_id]);
4353
4354        intel_display_power_put(dev_priv, power_domain, wakeref);
4355}
4356
4357/*
4358 * Determines the downscale amount of a plane for the purposes of watermark calculations.
4359 * The bspec defines downscale amount as:
4360 *
4361 * """
4362 * Horizontal down scale amount = maximum[1, Horizontal source size /
4363 *                                           Horizontal destination size]
4364 * Vertical down scale amount = maximum[1, Vertical source size /
4365 *                                         Vertical destination size]
4366 * Total down scale amount = Horizontal down scale amount *
4367 *                           Vertical down scale amount
4368 * """
4369 *
4370 * Return value is provided in 16.16 fixed point form to retain fractional part.
4371 * Caller should take care of dividing & rounding off the value.
4372 */
4373static uint_fixed_16_16_t
4374skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
4375                           const struct intel_plane_state *plane_state)
4376{
4377        struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4378        u32 src_w, src_h, dst_w, dst_h;
4379        uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4380        uint_fixed_16_16_t downscale_h, downscale_w;
4381
4382        if (drm_WARN_ON(&dev_priv->drm,
4383                        !intel_wm_plane_visible(crtc_state, plane_state)))
4384                return u32_to_fixed16(0);
4385
4386        /*
4387         * Src coordinates are already rotated by 270 degrees for
4388         * the 90/270 degree plane rotation cases (to match the
4389         * GTT mapping), hence no need to account for rotation here.
4390         *
4391         * n.b., src is 16.16 fixed point, dst is whole integer.
4392         */
4393        src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4394        src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
4395        dst_w = drm_rect_width(&plane_state->uapi.dst);
4396        dst_h = drm_rect_height(&plane_state->uapi.dst);
4397
4398        fp_w_ratio = div_fixed16(src_w, dst_w);
4399        fp_h_ratio = div_fixed16(src_h, dst_h);
4400        downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4401        downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4402
4403        return mul_fixed16(downscale_w, downscale_h);
4404}
4405
4406struct dbuf_slice_conf_entry {
4407        u8 active_pipes;
4408        u8 dbuf_mask[I915_MAX_PIPES];
4409        bool join_mbus;
4410};
4411
4412/*
4413 * Table taken from Bspec 12716
4414 * Pipes do have some preferred DBuf slice affinity,
4415 * plus there are some hardcoded requirements on how
4416 * those should be distributed for multipipe scenarios.
4417 * For more DBuf slices algorithm can get even more messy
4418 * and less readable, so decided to use a table almost
4419 * as is from BSpec itself - that way it is at least easier
4420 * to compare, change and check.
4421 */
4422static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
4423/* Autogenerated with igt/tools/intel_dbuf_map tool: */
4424{
4425        {
4426                .active_pipes = BIT(PIPE_A),
4427                .dbuf_mask = {
4428                        [PIPE_A] = BIT(DBUF_S1),
4429                },
4430        },
4431        {
4432                .active_pipes = BIT(PIPE_B),
4433                .dbuf_mask = {
4434                        [PIPE_B] = BIT(DBUF_S1),
4435                },
4436        },
4437        {
4438                .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4439                .dbuf_mask = {
4440                        [PIPE_A] = BIT(DBUF_S1),
4441                        [PIPE_B] = BIT(DBUF_S2),
4442                },
4443        },
4444        {
4445                .active_pipes = BIT(PIPE_C),
4446                .dbuf_mask = {
4447                        [PIPE_C] = BIT(DBUF_S2),
4448                },
4449        },
4450        {
4451                .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4452                .dbuf_mask = {
4453                        [PIPE_A] = BIT(DBUF_S1),
4454                        [PIPE_C] = BIT(DBUF_S2),
4455                },
4456        },
4457        {
4458                .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4459                .dbuf_mask = {
4460                        [PIPE_B] = BIT(DBUF_S1),
4461                        [PIPE_C] = BIT(DBUF_S2),
4462                },
4463        },
4464        {
4465                .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4466                .dbuf_mask = {
4467                        [PIPE_A] = BIT(DBUF_S1),
4468                        [PIPE_B] = BIT(DBUF_S1),
4469                        [PIPE_C] = BIT(DBUF_S2),
4470                },
4471        },
4472        {}
4473};
4474
4475/*
4476 * Table taken from Bspec 49255
4477 * Pipes do have some preferred DBuf slice affinity,
4478 * plus there are some hardcoded requirements on how
4479 * those should be distributed for multipipe scenarios.
4480 * For more DBuf slices algorithm can get even more messy
4481 * and less readable, so decided to use a table almost
4482 * as is from BSpec itself - that way it is at least easier
4483 * to compare, change and check.
4484 */
4485static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
4486/* Autogenerated with igt/tools/intel_dbuf_map tool: */
4487{
4488        {
4489                .active_pipes = BIT(PIPE_A),
4490                .dbuf_mask = {
4491                        [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4492                },
4493        },
4494        {
4495                .active_pipes = BIT(PIPE_B),
4496                .dbuf_mask = {
4497                        [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4498                },
4499        },
4500        {
4501                .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4502                .dbuf_mask = {
4503                        [PIPE_A] = BIT(DBUF_S2),
4504                        [PIPE_B] = BIT(DBUF_S1),
4505                },
4506        },
4507        {
4508                .active_pipes = BIT(PIPE_C),
4509                .dbuf_mask = {
4510                        [PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
4511                },
4512        },
4513        {
4514                .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4515                .dbuf_mask = {
4516                        [PIPE_A] = BIT(DBUF_S1),
4517                        [PIPE_C] = BIT(DBUF_S2),
4518                },
4519        },
4520        {
4521                .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4522                .dbuf_mask = {
4523                        [PIPE_B] = BIT(DBUF_S1),
4524                        [PIPE_C] = BIT(DBUF_S2),
4525                },
4526        },
4527        {
4528                .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4529                .dbuf_mask = {
4530                        [PIPE_A] = BIT(DBUF_S1),
4531                        [PIPE_B] = BIT(DBUF_S1),
4532                        [PIPE_C] = BIT(DBUF_S2),
4533                },
4534        },
4535        {
4536                .active_pipes = BIT(PIPE_D),
4537                .dbuf_mask = {
4538                        [PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
4539                },
4540        },
4541        {
4542                .active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
4543                .dbuf_mask = {
4544                        [PIPE_A] = BIT(DBUF_S1),
4545                        [PIPE_D] = BIT(DBUF_S2),
4546                },
4547        },
4548        {
4549                .active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
4550                .dbuf_mask = {
4551                        [PIPE_B] = BIT(DBUF_S1),
4552                        [PIPE_D] = BIT(DBUF_S2),
4553                },
4554        },
4555        {
4556                .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
4557                .dbuf_mask = {
4558                        [PIPE_A] = BIT(DBUF_S1),
4559                        [PIPE_B] = BIT(DBUF_S1),
4560                        [PIPE_D] = BIT(DBUF_S2),
4561                },
4562        },
4563        {
4564                .active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
4565                .dbuf_mask = {
4566                        [PIPE_C] = BIT(DBUF_S1),
4567                        [PIPE_D] = BIT(DBUF_S2),
4568                },
4569        },
4570        {
4571                .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
4572                .dbuf_mask = {
4573                        [PIPE_A] = BIT(DBUF_S1),
4574                        [PIPE_C] = BIT(DBUF_S2),
4575                        [PIPE_D] = BIT(DBUF_S2),
4576                },
4577        },
4578        {
4579                .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4580                .dbuf_mask = {
4581                        [PIPE_B] = BIT(DBUF_S1),
4582                        [PIPE_C] = BIT(DBUF_S2),
4583                        [PIPE_D] = BIT(DBUF_S2),
4584                },
4585        },
4586        {
4587                .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4588                .dbuf_mask = {
4589                        [PIPE_A] = BIT(DBUF_S1),
4590                        [PIPE_B] = BIT(DBUF_S1),
4591                        [PIPE_C] = BIT(DBUF_S2),
4592                        [PIPE_D] = BIT(DBUF_S2),
4593                },
4594        },
4595        {}
4596};
4597
4598static const struct dbuf_slice_conf_entry dg2_allowed_dbufs[] = {
4599        {
4600                .active_pipes = BIT(PIPE_A),
4601                .dbuf_mask = {
4602                        [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4603                },
4604        },
4605        {
4606                .active_pipes = BIT(PIPE_B),
4607                .dbuf_mask = {
4608                        [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4609                },
4610        },
4611        {
4612                .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4613                .dbuf_mask = {
4614                        [PIPE_A] = BIT(DBUF_S1),
4615                        [PIPE_B] = BIT(DBUF_S2),
4616                },
4617        },
4618        {
4619                .active_pipes = BIT(PIPE_C),
4620                .dbuf_mask = {
4621                        [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4622                },
4623        },
4624        {
4625                .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4626                .dbuf_mask = {
4627                        [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4628                        [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4629                },
4630        },
4631        {
4632                .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4633                .dbuf_mask = {
4634                        [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4635                        [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4636                },
4637        },
4638        {
4639                .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4640                .dbuf_mask = {
4641                        [PIPE_A] = BIT(DBUF_S1),
4642                        [PIPE_B] = BIT(DBUF_S2),
4643                        [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4644                },
4645        },
4646        {
4647                .active_pipes = BIT(PIPE_D),
4648                .dbuf_mask = {
4649                        [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
4650                },
4651        },
4652        {
4653                .active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
4654                .dbuf_mask = {
4655                        [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4656                        [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
4657                },
4658        },
4659        {
4660                .active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
4661                .dbuf_mask = {
4662                        [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4663                        [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
4664                },
4665        },
4666        {
4667                .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
4668                .dbuf_mask = {
4669                        [PIPE_A] = BIT(DBUF_S1),
4670                        [PIPE_B] = BIT(DBUF_S2),
4671                        [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
4672                },
4673        },
4674        {
4675                .active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
4676                .dbuf_mask = {
4677                        [PIPE_C] = BIT(DBUF_S3),
4678                        [PIPE_D] = BIT(DBUF_S4),
4679                },
4680        },
4681        {
4682                .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
4683                .dbuf_mask = {
4684                        [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4685                        [PIPE_C] = BIT(DBUF_S3),
4686                        [PIPE_D] = BIT(DBUF_S4),
4687                },
4688        },
4689        {
4690                .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4691                .dbuf_mask = {
4692                        [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4693                        [PIPE_C] = BIT(DBUF_S3),
4694                        [PIPE_D] = BIT(DBUF_S4),
4695                },
4696        },
4697        {
4698                .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4699                .dbuf_mask = {
4700                        [PIPE_A] = BIT(DBUF_S1),
4701                        [PIPE_B] = BIT(DBUF_S2),
4702                        [PIPE_C] = BIT(DBUF_S3),
4703                        [PIPE_D] = BIT(DBUF_S4),
4704                },
4705        },
4706        {}
4707};
4708
4709static const struct dbuf_slice_conf_entry adlp_allowed_dbufs[] = {
4710        {
4711                .active_pipes = BIT(PIPE_A),
4712                .dbuf_mask = {
4713                        [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
4714                },
4715                .join_mbus = true,
4716        },
4717        {
4718                .active_pipes = BIT(PIPE_B),
4719                .dbuf_mask = {
4720                        [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
4721                },
4722                .join_mbus = true,
4723        },
4724        {
4725                .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4726                .dbuf_mask = {
4727                        [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4728                        [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4729                },
4730        },
4731        {
4732                .active_pipes = BIT(PIPE_C),
4733                .dbuf_mask = {
4734                        [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4735                },
4736        },
4737        {
4738                .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4739                .dbuf_mask = {
4740                        [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4741                        [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4742                },
4743        },
4744        {
4745                .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4746                .dbuf_mask = {
4747                        [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4748                        [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4749                },
4750        },
4751        {
4752                .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4753                .dbuf_mask = {
4754                        [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4755                        [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4756                        [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4757                },
4758        },
4759        {
4760                .active_pipes = BIT(PIPE_D),
4761                .dbuf_mask = {
4762                        [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4763                },
4764        },
4765        {
4766                .active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
4767                .dbuf_mask = {
4768                        [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4769                        [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4770                },
4771        },
4772        {
4773                .active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
4774                .dbuf_mask = {
4775                        [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4776                        [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4777                },
4778        },
4779        {
4780                .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
4781                .dbuf_mask = {
4782                        [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4783                        [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4784                        [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4785                },
4786        },
4787        {
4788                .active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
4789                .dbuf_mask = {
4790                        [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4791                        [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4792                },
4793        },
4794        {
4795                .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
4796                .dbuf_mask = {
4797                        [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4798                        [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4799                        [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4800                },
4801        },
4802        {
4803                .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4804                .dbuf_mask = {
4805                        [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4806                        [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4807                        [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4808                },
4809        },
4810        {
4811                .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4812                .dbuf_mask = {
4813                        [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4814                        [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4815                        [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4816                        [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4817                },
4818        },
4819        {}
4820
4821};
4822
4823static bool check_mbus_joined(u8 active_pipes,
4824                              const struct dbuf_slice_conf_entry *dbuf_slices)
4825{
4826        int i;
4827
4828        for (i = 0; i < dbuf_slices[i].active_pipes; i++) {
4829                if (dbuf_slices[i].active_pipes == active_pipes)
4830                        return dbuf_slices[i].join_mbus;
4831        }
4832        return false;
4833}
4834
4835static bool adlp_check_mbus_joined(u8 active_pipes)
4836{
4837        return check_mbus_joined(active_pipes, adlp_allowed_dbufs);
4838}
4839
4840static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes,
4841                              const struct dbuf_slice_conf_entry *dbuf_slices)
4842{
4843        int i;
4844
4845        for (i = 0; i < dbuf_slices[i].active_pipes; i++) {
4846                if (dbuf_slices[i].active_pipes == active_pipes)
4847                        return dbuf_slices[i].dbuf_mask[pipe];
4848        }
4849        return 0;
4850}
4851
4852/*
4853 * This function finds an entry with same enabled pipe configuration and
4854 * returns correspondent DBuf slice mask as stated in BSpec for particular
4855 * platform.
4856 */
4857static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4858{
4859        /*
4860         * FIXME: For ICL this is still a bit unclear as prev BSpec revision
4861         * required calculating "pipe ratio" in order to determine
4862         * if one or two slices can be used for single pipe configurations
4863         * as additional constraint to the existing table.
4864         * However based on recent info, it should be not "pipe ratio"
4865         * but rather ratio between pixel_rate and cdclk with additional
4866         * constants, so for now we are using only table until this is
4867         * clarified. Also this is the reason why crtc_state param is
4868         * still here - we will need it once those additional constraints
4869         * pop up.
4870         */
4871        return compute_dbuf_slices(pipe, active_pipes, icl_allowed_dbufs);
4872}
4873
4874static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4875{
4876        return compute_dbuf_slices(pipe, active_pipes, tgl_allowed_dbufs);
4877}
4878
4879static u32 adlp_compute_dbuf_slices(enum pipe pipe, u32 active_pipes)
4880{
4881        return compute_dbuf_slices(pipe, active_pipes, adlp_allowed_dbufs);
4882}
4883
4884static u32 dg2_compute_dbuf_slices(enum pipe pipe, u32 active_pipes)
4885{
4886        return compute_dbuf_slices(pipe, active_pipes, dg2_allowed_dbufs);
4887}
4888
4889static u8 skl_compute_dbuf_slices(struct intel_crtc *crtc, u8 active_pipes)
4890{
4891        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4892        enum pipe pipe = crtc->pipe;
4893
4894        if (IS_DG2(dev_priv))
4895                return dg2_compute_dbuf_slices(pipe, active_pipes);
4896        else if (IS_ALDERLAKE_P(dev_priv))
4897                return adlp_compute_dbuf_slices(pipe, active_pipes);
4898        else if (DISPLAY_VER(dev_priv) == 12)
4899                return tgl_compute_dbuf_slices(pipe, active_pipes);
4900        else if (DISPLAY_VER(dev_priv) == 11)
4901                return icl_compute_dbuf_slices(pipe, active_pipes);
4902        /*
4903         * For anything else just return one slice yet.
4904         * Should be extended for other platforms.
4905         */
4906        return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0;
4907}
4908
4909static u64
4910skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
4911                             const struct intel_plane_state *plane_state,
4912                             int color_plane)
4913{
4914        struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4915        const struct drm_framebuffer *fb = plane_state->hw.fb;
4916        u32 data_rate;
4917        u32 width = 0, height = 0;
4918        uint_fixed_16_16_t down_scale_amount;
4919        u64 rate;
4920
4921        if (!plane_state->uapi.visible)
4922                return 0;
4923
4924        if (plane->id == PLANE_CURSOR)
4925                return 0;
4926
4927        if (color_plane == 1 &&
4928            !intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
4929                return 0;
4930
4931        /*
4932         * Src coordinates are already rotated by 270 degrees for
4933         * the 90/270 degree plane rotation cases (to match the
4934         * GTT mapping), hence no need to account for rotation here.
4935         */
4936        width = drm_rect_width(&plane_state->uapi.src) >> 16;
4937        height = drm_rect_height(&plane_state->uapi.src) >> 16;
4938
4939        /* UV plane does 1/2 pixel sub-sampling */
4940        if (color_plane == 1) {
4941                width /= 2;
4942                height /= 2;
4943        }
4944
4945        data_rate = width * height;
4946
4947        down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4948
4949        rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4950
4951        rate *= fb->format->cpp[color_plane];
4952        return rate;
4953}
4954
4955static u64
4956skl_get_total_relative_data_rate(struct intel_atomic_state *state,
4957                                 struct intel_crtc *crtc)
4958{
4959        struct intel_crtc_state *crtc_state =
4960                intel_atomic_get_new_crtc_state(state, crtc);
4961        const struct intel_plane_state *plane_state;
4962        struct intel_plane *plane;
4963        u64 total_data_rate = 0;
4964        enum plane_id plane_id;
4965        int i;
4966
4967        /* Calculate and cache data rate for each plane */
4968        for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
4969                if (plane->pipe != crtc->pipe)
4970                        continue;
4971
4972                plane_id = plane->id;
4973
4974                /* packed/y */
4975                crtc_state->plane_data_rate[plane_id] =
4976                        skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4977
4978                /* uv-plane */
4979                crtc_state->uv_plane_data_rate[plane_id] =
4980                        skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4981        }
4982
4983        for_each_plane_id_on_crtc(crtc, plane_id) {
4984                total_data_rate += crtc_state->plane_data_rate[plane_id];
4985                total_data_rate += crtc_state->uv_plane_data_rate[plane_id];
4986        }
4987
4988        return total_data_rate;
4989}
4990
4991static u64
4992icl_get_total_relative_data_rate(struct intel_atomic_state *state,
4993                                 struct intel_crtc *crtc)
4994{
4995        struct intel_crtc_state *crtc_state =
4996                intel_atomic_get_new_crtc_state(state, crtc);
4997        const struct intel_plane_state *plane_state;
4998        struct intel_plane *plane;
4999        u64 total_data_rate = 0;
5000        enum plane_id plane_id;
5001        int i;
5002
5003        /* Calculate and cache data rate for each plane */
5004        for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
5005                if (plane->pipe != crtc->pipe)
5006                        continue;
5007
5008                plane_id = plane->id;
5009
5010                if (!plane_state->planar_linked_plane) {
5011                        crtc_state->plane_data_rate[plane_id] =
5012                                skl_plane_relative_data_rate(crtc_state, plane_state, 0);
5013                } else {
5014                        enum plane_id y_plane_id;
5015
5016                        /*
5017                         * The slave plane might not iterate in
5018                         * intel_atomic_crtc_state_for_each_plane_state(),
5019                         * and needs the master plane state which may be
5020                         * NULL if we try get_new_plane_state(), so we
5021                         * always calculate from the master.
5022                         */
5023                        if (plane_state->planar_slave)
5024                                continue;
5025
5026                        /* Y plane rate is calculated on the slave */
5027                        y_plane_id = plane_state->planar_linked_plane->id;
5028                        crtc_state->plane_data_rate[y_plane_id] =
5029                                skl_plane_relative_data_rate(crtc_state, plane_state, 0);
5030
5031                        crtc_state->plane_data_rate[plane_id] =
5032                                skl_plane_relative_data_rate(crtc_state, plane_state, 1);
5033                }
5034        }
5035
5036        for_each_plane_id_on_crtc(crtc, plane_id)
5037                total_data_rate += crtc_state->plane_data_rate[plane_id];
5038
5039        return total_data_rate;
5040}
5041
5042const struct skl_wm_level *
5043skl_plane_wm_level(const struct skl_pipe_wm *pipe_wm,
5044                   enum plane_id plane_id,
5045                   int level)
5046{
5047        const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
5048
5049        if (level == 0 && pipe_wm->use_sagv_wm)
5050                return &wm->sagv.wm0;
5051
5052        return &wm->wm[level];
5053}
5054
5055const struct skl_wm_level *
5056skl_plane_trans_wm(const struct skl_pipe_wm *pipe_wm,
5057                   enum plane_id plane_id)
5058{
5059        const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
5060
5061        if (pipe_wm->use_sagv_wm)
5062                return &wm->sagv.trans_wm;
5063
5064        return &wm->trans_wm;
5065}
5066
5067/*
5068 * We only disable the watermarks for each plane if
5069 * they exceed the ddb allocation of said plane. This
5070 * is done so that we don't end up touching cursor
5071 * watermarks needlessly when some other plane reduces
5072 * our max possible watermark level.
5073 *
5074 * Bspec has this to say about the PLANE_WM enable bit:
5075 * "All the watermarks at this level for all enabled
5076 *  planes must be enabled before the level will be used."
5077 * So this is actually safe to do.
5078 */
5079static void
5080skl_check_wm_level(struct skl_wm_level *wm, u64 total)
5081{
5082        if (wm->min_ddb_alloc > total)
5083                memset(wm, 0, sizeof(*wm));
5084}
5085
5086static void
5087skl_check_nv12_wm_level(struct skl_wm_level *wm, struct skl_wm_level *uv_wm,
5088                        u64 total, u64 uv_total)
5089{
5090        if (wm->min_ddb_alloc > total ||
5091            uv_wm->min_ddb_alloc > uv_total) {
5092                memset(wm, 0, sizeof(*wm));
5093                memset(uv_wm, 0, sizeof(*uv_wm));
5094        }
5095}
5096
5097static int
5098skl_allocate_plane_ddb(struct intel_atomic_state *state,
5099                       struct intel_crtc *crtc)
5100{
5101        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5102        struct intel_crtc_state *crtc_state =
5103                intel_atomic_get_new_crtc_state(state, crtc);
5104        const struct intel_dbuf_state *dbuf_state =
5105                intel_atomic_get_new_dbuf_state(state);
5106        const struct skl_ddb_entry *alloc = &dbuf_state->ddb[crtc->pipe];
5107        int num_active = hweight8(dbuf_state->active_pipes);
5108        u16 alloc_size, start = 0;
5109        u16 total[I915_MAX_PLANES] = {};
5110        u16 uv_total[I915_MAX_PLANES] = {};
5111        u64 total_data_rate;
5112        enum plane_id plane_id;
5113        u32 blocks;
5114        int level;
5115
5116        /* Clear the partitioning for disabled planes. */
5117        memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
5118        memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
5119
5120        if (!crtc_state->hw.active)
5121                return 0;
5122
5123        if (DISPLAY_VER(dev_priv) >= 11)
5124                total_data_rate =
5125                        icl_get_total_relative_data_rate(state, crtc);
5126        else
5127                total_data_rate =
5128                        skl_get_total_relative_data_rate(state, crtc);
5129
5130        alloc_size = skl_ddb_entry_size(alloc);
5131        if (alloc_size == 0)
5132                return 0;
5133
5134        /* Allocate fixed number of blocks for cursor. */
5135        total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
5136        alloc_size -= total[PLANE_CURSOR];
5137        crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
5138                alloc->end - total[PLANE_CURSOR];
5139        crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
5140
5141        if (total_data_rate == 0)
5142                return 0;
5143
5144        /*
5145         * Find the highest watermark level for which we can satisfy the block
5146         * requirement of active planes.
5147         */
5148        for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
5149                blocks = 0;
5150                for_each_plane_id_on_crtc(crtc, plane_id) {
5151                        const struct skl_plane_wm *wm =
5152                                &crtc_state->wm.skl.optimal.planes[plane_id];
5153
5154                        if (plane_id == PLANE_CURSOR) {
5155                                if (wm->wm[level].min_ddb_alloc > total[PLANE_CURSOR]) {
5156                                        drm_WARN_ON(&dev_priv->drm,
5157                                                    wm->wm[level].min_ddb_alloc != U16_MAX);
5158                                        blocks = U32_MAX;
5159                                        break;
5160                                }
5161                                continue;
5162                        }
5163
5164                        blocks += wm->wm[level].min_ddb_alloc;
5165                        blocks += wm->uv_wm[level].min_ddb_alloc;
5166                }
5167
5168                if (blocks <= alloc_size) {
5169                        alloc_size -= blocks;
5170                        break;
5171                }
5172        }
5173
5174        if (level < 0) {
5175                drm_dbg_kms(&dev_priv->drm,
5176                            "Requested display configuration exceeds system DDB limitations");
5177                drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n",
5178                            blocks, alloc_size);
5179                return -EINVAL;
5180        }
5181
5182        /*
5183         * Grant each plane the blocks it requires at the highest achievable
5184         * watermark level, plus an extra share of the leftover blocks
5185         * proportional to its relative data rate.
5186         */
5187        for_each_plane_id_on_crtc(crtc, plane_id) {
5188                const struct skl_plane_wm *wm =
5189                        &crtc_state->wm.skl.optimal.planes[plane_id];
5190                u64 rate;
5191                u16 extra;
5192
5193                if (plane_id == PLANE_CURSOR)
5194                        continue;
5195
5196                /*
5197                 * We've accounted for all active planes; remaining planes are
5198                 * all disabled.
5199                 */
5200                if (total_data_rate == 0)
5201                        break;
5202
5203                rate = crtc_state->plane_data_rate[plane_id];
5204                extra = min_t(u16, alloc_size,
5205                              DIV64_U64_ROUND_UP(alloc_size * rate,
5206                                                 total_data_rate));
5207                total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
5208                alloc_size -= extra;
5209                total_data_rate -= rate;
5210
5211                if (total_data_rate == 0)
5212                        break;
5213
5214                rate = crtc_state->uv_plane_data_rate[plane_id];
5215                extra = min_t(u16, alloc_size,
5216                              DIV64_U64_ROUND_UP(alloc_size * rate,
5217                                                 total_data_rate));
5218                uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
5219                alloc_size -= extra;
5220                total_data_rate -= rate;
5221        }
5222        drm_WARN_ON(&dev_priv->drm, alloc_size != 0 || total_data_rate != 0);
5223
5224        /* Set the actual DDB start/end points for each plane */
5225        start = alloc->start;
5226        for_each_plane_id_on_crtc(crtc, plane_id) {
5227                struct skl_ddb_entry *plane_alloc =
5228                        &crtc_state->wm.skl.plane_ddb_y[plane_id];
5229                struct skl_ddb_entry *uv_plane_alloc =
5230                        &crtc_state->wm.skl.plane_ddb_uv[plane_id];
5231
5232                if (plane_id == PLANE_CURSOR)
5233                        continue;
5234
5235                /* Gen11+ uses a separate plane for UV watermarks */
5236                drm_WARN_ON(&dev_priv->drm,
5237                            DISPLAY_VER(dev_priv) >= 11 && uv_total[plane_id]);
5238
5239                /* Leave disabled planes at (0,0) */
5240                if (total[plane_id]) {
5241                        plane_alloc->start = start;
5242                        start += total[plane_id];
5243                        plane_alloc->end = start;
5244                }
5245
5246                if (uv_total[plane_id]) {
5247                        uv_plane_alloc->start = start;
5248                        start += uv_total[plane_id];
5249                        uv_plane_alloc->end = start;
5250                }
5251        }
5252
5253        /*
5254         * When we calculated watermark values we didn't know how high
5255         * of a level we'd actually be able to hit, so we just marked
5256         * all levels as "enabled."  Go back now and disable the ones
5257         * that aren't actually possible.
5258         */
5259        for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
5260                for_each_plane_id_on_crtc(crtc, plane_id) {
5261                        struct skl_plane_wm *wm =
5262                                &crtc_state->wm.skl.optimal.planes[plane_id];
5263
5264                        skl_check_nv12_wm_level(&wm->wm[level], &wm->uv_wm[level],
5265                                                total[plane_id], uv_total[plane_id]);
5266
5267                        /*
5268                         * Wa_1408961008:icl, ehl
5269                         * Underruns with WM1+ disabled
5270                         */
5271                        if (DISPLAY_VER(dev_priv) == 11 &&
5272                            level == 1 && wm->wm[0].enable) {
5273                                wm->wm[level].blocks = wm->wm[0].blocks;
5274                                wm->wm[level].lines = wm->wm[0].lines;
5275                                wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
5276                        }
5277                }
5278        }
5279
5280        /*
5281         * Go back and disable the transition and SAGV watermarks
5282         * if it turns out we don't have enough DDB blocks for them.
5283         */
5284        for_each_plane_id_on_crtc(crtc, plane_id) {
5285                struct skl_plane_wm *wm =
5286                        &crtc_state->wm.skl.optimal.planes[plane_id];
5287
5288                skl_check_wm_level(&wm->trans_wm, total[plane_id]);
5289                skl_check_wm_level(&wm->sagv.wm0, total[plane_id]);
5290                skl_check_wm_level(&wm->sagv.trans_wm, total[plane_id]);
5291        }
5292
5293        return 0;
5294}
5295
5296/*
5297 * The max latency should be 257 (max the punit can code is 255 and we add 2us
5298 * for the read latency) and cpp should always be <= 8, so that
5299 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
5300 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
5301*/
5302static uint_fixed_16_16_t
5303skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
5304               u8 cpp, u32 latency, u32 dbuf_block_size)
5305{
5306        u32 wm_intermediate_val;
5307        uint_fixed_16_16_t ret;
5308
5309        if (latency == 0)
5310                return FP_16_16_MAX;
5311
5312        wm_intermediate_val = latency * pixel_rate * cpp;
5313        ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
5314
5315        if (DISPLAY_VER(dev_priv) >= 10)
5316                ret = add_fixed16_u32(ret, 1);
5317
5318        return ret;
5319}
5320
5321static uint_fixed_16_16_t
5322skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
5323               uint_fixed_16_16_t plane_blocks_per_line)
5324{
5325        u32 wm_intermediate_val;
5326        uint_fixed_16_16_t ret;
5327
5328        if (latency == 0)
5329                return FP_16_16_MAX;
5330
5331        wm_intermediate_val = latency * pixel_rate;
5332        wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
5333                                           pipe_htotal * 1000);
5334        ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
5335        return ret;
5336}
5337
5338static uint_fixed_16_16_t
5339intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
5340{
5341        struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5342        u32 pixel_rate;
5343        u32 crtc_htotal;
5344        uint_fixed_16_16_t linetime_us;
5345
5346        if (!crtc_state->hw.active)
5347                return u32_to_fixed16(0);
5348
5349        pixel_rate = crtc_state->pixel_rate;
5350
5351        if (drm_WARN_ON(&dev_priv->drm, pixel_rate == 0))
5352                return u32_to_fixed16(0);
5353
5354        crtc_htotal = crtc_state->hw.pipe_mode.crtc_htotal;
5355        linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
5356
5357        return linetime_us;
5358}
5359
5360static int
5361skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
5362                      int width, const struct drm_format_info *format,
5363                      u64 modifier, unsigned int rotation,
5364                      u32 plane_pixel_rate, struct skl_wm_params *wp,
5365                      int color_plane)
5366{
5367        struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5368        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5369        u32 interm_pbpl;
5370
5371        /* only planar format has two planes */
5372        if (color_plane == 1 &&
5373            !intel_format_info_is_yuv_semiplanar(format, modifier)) {
5374                drm_dbg_kms(&dev_priv->drm,
5375                            "Non planar format have single plane\n");
5376                return -EINVAL;
5377        }
5378
5379        wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
5380                      modifier == I915_FORMAT_MOD_Yf_TILED ||
5381                      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
5382                      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
5383        wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
5384        wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
5385                         modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
5386        wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
5387
5388        wp->width = width;
5389        if (color_plane == 1 && wp->is_planar)
5390                wp->width /= 2;
5391
5392        wp->cpp = format->cpp[color_plane];
5393        wp->plane_pixel_rate = plane_pixel_rate;
5394
5395        if (DISPLAY_VER(dev_priv) >= 11 &&
5396            modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
5397                wp->dbuf_block_size = 256;
5398        else
5399                wp->dbuf_block_size = 512;
5400
5401        if (drm_rotation_90_or_270(rotation)) {
5402                switch (wp->cpp) {
5403                case 1:
5404                        wp->y_min_scanlines = 16;
5405                        break;
5406                case 2:
5407                        wp->y_min_scanlines = 8;
5408                        break;
5409                case 4:
5410                        wp->y_min_scanlines = 4;
5411                        break;
5412                default:
5413                        MISSING_CASE(wp->cpp);
5414                        return -EINVAL;
5415                }
5416        } else {
5417                wp->y_min_scanlines = 4;
5418        }
5419
5420        if (skl_needs_memory_bw_wa(dev_priv))
5421                wp->y_min_scanlines *= 2;
5422
5423        wp->plane_bytes_per_line = wp->width * wp->cpp;
5424        if (wp->y_tiled) {
5425                interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
5426                                           wp->y_min_scanlines,
5427                                           wp->dbuf_block_size);
5428
5429                if (DISPLAY_VER(dev_priv) >= 10)
5430                        interm_pbpl++;
5431
5432                wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
5433                                                        wp->y_min_scanlines);
5434        } else {
5435                interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
5436                                           wp->dbuf_block_size);
5437
5438                if (!wp->x_tiled || DISPLAY_VER(dev_priv) >= 10)
5439                        interm_pbpl++;
5440
5441                wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
5442        }
5443
5444        wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
5445                                             wp->plane_blocks_per_line);
5446
5447        wp->linetime_us = fixed16_to_u32_round_up(
5448                                        intel_get_linetime_us(crtc_state));
5449
5450        return 0;
5451}
5452
5453static int
5454skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
5455                            const struct intel_plane_state *plane_state,
5456                            struct skl_wm_params *wp, int color_plane)
5457{
5458        const struct drm_framebuffer *fb = plane_state->hw.fb;
5459        int width;
5460
5461        /*
5462         * Src coordinates are already rotated by 270 degrees for
5463         * the 90/270 degree plane rotation cases (to match the
5464         * GTT mapping), hence no need to account for rotation here.
5465         */
5466        width = drm_rect_width(&plane_state->uapi.src) >> 16;
5467
5468        return skl_compute_wm_params(crtc_state, width,
5469                                     fb->format, fb->modifier,
5470                                     plane_state->hw.rotation,
5471                                     intel_plane_pixel_rate(crtc_state, plane_state),
5472                                     wp, color_plane);
5473}
5474
5475static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
5476{
5477        if (DISPLAY_VER(dev_priv) >= 10)
5478                return true;
5479
5480        /* The number of lines are ignored for the level 0 watermark. */
5481        return level > 0;
5482}
5483
5484static int skl_wm_max_lines(struct drm_i915_private *dev_priv)
5485{
5486        if (DISPLAY_VER(dev_priv) >= 13)
5487                return 255;
5488        else
5489                return 31;
5490}
5491
5492static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
5493                                 int level,
5494                                 unsigned int latency,
5495                                 const struct skl_wm_params *wp,
5496                                 const struct skl_wm_level *result_prev,
5497                                 struct skl_wm_level *result /* out */)
5498{
5499        struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5500        uint_fixed_16_16_t method1, method2;
5501        uint_fixed_16_16_t selected_result;
5502        u32 blocks, lines, min_ddb_alloc = 0;
5503
5504        if (latency == 0) {
5505                /* reject it */
5506                result->min_ddb_alloc = U16_MAX;
5507                return;
5508        }
5509
5510        /*
5511         * WaIncreaseLatencyIPCEnabled: kbl,cfl
5512         * Display WA #1141: kbl,cfl
5513         */
5514        if ((IS_KABYLAKE(dev_priv) ||
5515             IS_COFFEELAKE(dev_priv) ||
5516             IS_COMETLAKE(dev_priv)) &&
5517            dev_priv->ipc_enabled)
5518                latency += 4;
5519
5520        if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
5521                latency += 15;
5522
5523        method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
5524                                 wp->cpp, latency, wp->dbuf_block_size);
5525        method2 = skl_wm_method2(wp->plane_pixel_rate,
5526                                 crtc_state->hw.pipe_mode.crtc_htotal,
5527                                 latency,
5528                                 wp->plane_blocks_per_line);
5529
5530        if (wp->y_tiled) {
5531                selected_result = max_fixed16(method2, wp->y_tile_minimum);
5532        } else {
5533                if ((wp->cpp * crtc_state->hw.pipe_mode.crtc_htotal /
5534                     wp->dbuf_block_size < 1) &&
5535                     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
5536                        selected_result = method2;
5537                } else if (latency >= wp->linetime_us) {
5538                        if (DISPLAY_VER(dev_priv) == 9)
5539                                selected_result = min_fixed16(method1, method2);
5540                        else
5541                                selected_result = method2;
5542                } else {
5543                        selected_result = method1;
5544                }
5545        }
5546
5547        blocks = fixed16_to_u32_round_up(selected_result) + 1;
5548        lines = div_round_up_fixed16(selected_result,
5549                                     wp->plane_blocks_per_line);
5550
5551        if (DISPLAY_VER(dev_priv) == 9) {
5552                /* Display WA #1125: skl,bxt,kbl */
5553                if (level == 0 && wp->rc_surface)
5554                        blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
5555
5556                /* Display WA #1126: skl,bxt,kbl */
5557                if (level >= 1 && level <= 7) {
5558                        if (wp->y_tiled) {
5559                                blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
5560                                lines += wp->y_min_scanlines;
5561                        } else {
5562                                blocks++;
5563                        }
5564
5565                        /*
5566                         * Make sure result blocks for higher latency levels are
5567                         * atleast as high as level below the current level.
5568                         * Assumption in DDB algorithm optimization for special
5569                         * cases. Also covers Display WA #1125 for RC.
5570                         */
5571                        if (result_prev->blocks > blocks)
5572                                blocks = result_prev->blocks;
5573                }
5574        }
5575
5576        if (DISPLAY_VER(dev_priv) >= 11) {
5577                if (wp->y_tiled) {
5578                        int extra_lines;
5579
5580                        if (lines % wp->y_min_scanlines == 0)
5581                                extra_lines = wp->y_min_scanlines;
5582                        else
5583                                extra_lines = wp->y_min_scanlines * 2 -
5584                                        lines % wp->y_min_scanlines;
5585
5586                        min_ddb_alloc = mul_round_up_u32_fixed16(lines + extra_lines,
5587                                                                 wp->plane_blocks_per_line);
5588                } else {
5589                        min_ddb_alloc = blocks + DIV_ROUND_UP(blocks, 10);
5590                }
5591        }
5592
5593        if (!skl_wm_has_lines(dev_priv, level))
5594                lines = 0;
5595
5596        if (lines > skl_wm_max_lines(dev_priv)) {
5597                /* reject it */
5598                result->min_ddb_alloc = U16_MAX;
5599                return;
5600        }
5601
5602        /*
5603         * If lines is valid, assume we can use this watermark level
5604         * for now.  We'll come back and disable it after we calculate the
5605         * DDB allocation if it turns out we don't actually have enough
5606         * blocks to satisfy it.
5607         */
5608        result->blocks = blocks;
5609        result->lines = lines;
5610        /* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
5611        result->min_ddb_alloc = max(min_ddb_alloc, blocks) + 1;
5612        result->enable = true;
5613
5614        if (DISPLAY_VER(dev_priv) < 12)
5615                result->can_sagv = latency >= dev_priv->sagv_block_time_us;
5616}
5617
5618static void
5619skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
5620                      const struct skl_wm_params *wm_params,
5621                      struct skl_wm_level *levels)
5622{
5623        struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5624        int level, max_level = ilk_wm_max_level(dev_priv);
5625        struct skl_wm_level *result_prev = &levels[0];
5626
5627        for (level = 0; level <= max_level; level++) {
5628                struct skl_wm_level *result = &levels[level];
5629                unsigned int latency = dev_priv->wm.skl_latency[level];
5630
5631                skl_compute_plane_wm(crtc_state, level, latency,
5632                                     wm_params, result_prev, result);
5633
5634                result_prev = result;
5635        }
5636}
5637
5638static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state,
5639                                const struct skl_wm_params *wm_params,
5640                                struct skl_plane_wm *plane_wm)
5641{
5642        struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5643        struct skl_wm_level *sagv_wm = &plane_wm->sagv.wm0;
5644        struct skl_wm_level *levels = plane_wm->wm;
5645        unsigned int latency = dev_priv->wm.skl_latency[0] + dev_priv->sagv_block_time_us;
5646
5647        skl_compute_plane_wm(crtc_state, 0, latency,
5648                             wm_params, &levels[0],
5649                             sagv_wm);
5650}
5651
5652static void skl_compute_transition_wm(struct drm_i915_private *dev_priv,
5653                                      struct skl_wm_level *trans_wm,
5654                                      const struct skl_wm_level *wm0,
5655                                      const struct skl_wm_params *wp)
5656{
5657        u16 trans_min, trans_amount, trans_y_tile_min;
5658        u16 wm0_blocks, trans_offset, blocks;
5659
5660        /* Transition WM don't make any sense if ipc is disabled */
5661        if (!dev_priv->ipc_enabled)
5662                return;
5663
5664        /*
5665         * WaDisableTWM:skl,kbl,cfl,bxt
5666         * Transition WM are not recommended by HW team for GEN9
5667         */
5668        if (DISPLAY_VER(dev_priv) == 9)
5669                return;
5670
5671        if (DISPLAY_VER(dev_priv) >= 11)
5672                trans_min = 4;
5673        else
5674                trans_min = 14;
5675
5676        /* Display WA #1140: glk,cnl */
5677        if (DISPLAY_VER(dev_priv) == 10)
5678                trans_amount = 0;
5679        else
5680                trans_amount = 10; /* This is configurable amount */
5681
5682        trans_offset = trans_min + trans_amount;
5683
5684        /*
5685         * The spec asks for Selected Result Blocks for wm0 (the real value),
5686         * not Result Blocks (the integer value). Pay attention to the capital
5687         * letters. The value wm_l0->blocks is actually Result Blocks, but
5688         * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
5689         * and since we later will have to get the ceiling of the sum in the
5690         * transition watermarks calculation, we can just pretend Selected
5691         * Result Blocks is Result Blocks minus 1 and it should work for the
5692         * current platforms.
5693         */
5694        wm0_blocks = wm0->blocks - 1;
5695
5696        if (wp->y_tiled) {
5697                trans_y_tile_min =
5698                        (u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
5699                blocks = max(wm0_blocks, trans_y_tile_min) + trans_offset;
5700        } else {
5701                blocks = wm0_blocks + trans_offset;
5702        }
5703        blocks++;
5704
5705        /*
5706         * Just assume we can enable the transition watermark.  After
5707         * computing the DDB we'll come back and disable it if that
5708         * assumption turns out to be false.
5709         */
5710        trans_wm->blocks = blocks;
5711        trans_wm->min_ddb_alloc = max_t(u16, wm0->min_ddb_alloc, blocks + 1);
5712        trans_wm->enable = true;
5713}
5714
5715static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
5716                                     const struct intel_plane_state *plane_state,
5717                                     enum plane_id plane_id, int color_plane)
5718{
5719        struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5720        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5721        struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5722        struct skl_wm_params wm_params;
5723        int ret;
5724
5725        ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5726                                          &wm_params, color_plane);
5727        if (ret)
5728                return ret;
5729
5730        skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5731
5732        skl_compute_transition_wm(dev_priv, &wm->trans_wm,
5733                                  &wm->wm[0], &wm_params);
5734
5735        if (DISPLAY_VER(dev_priv) >= 12) {
5736                tgl_compute_sagv_wm(crtc_state, &wm_params, wm);
5737
5738                skl_compute_transition_wm(dev_priv, &wm->sagv.trans_wm,
5739                                          &wm->sagv.wm0, &wm_params);
5740        }
5741
5742        return 0;
5743}
5744
5745static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5746                                 const struct intel_plane_state *plane_state,
5747                                 enum plane_id plane_id)
5748{
5749        struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5750        struct skl_wm_params wm_params;
5751        int ret;
5752
5753        wm->is_planar = true;
5754
5755        /* uv plane watermarks must also be validated for NV12/Planar */
5756        ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5757                                          &wm_params, 1);
5758        if (ret)
5759                return ret;
5760
5761        skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5762
5763        return 0;
5764}
5765
5766static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5767                              const struct intel_plane_state *plane_state)
5768{
5769        struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5770        enum plane_id plane_id = plane->id;
5771        struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5772        const struct drm_framebuffer *fb = plane_state->hw.fb;
5773        int ret;
5774
5775        memset(wm, 0, sizeof(*wm));
5776
5777        if (!intel_wm_plane_visible(crtc_state, plane_state))
5778                return 0;
5779
5780        ret = skl_build_plane_wm_single(crtc_state, plane_state,
5781                                        plane_id, 0);
5782        if (ret)
5783                return ret;
5784
5785        if (fb->format->is_yuv && fb->format->num_planes > 1) {
5786                ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5787                                            plane_id);
5788                if (ret)
5789                        return ret;
5790        }
5791
5792        return 0;
5793}
5794
5795static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5796                              const struct intel_plane_state *plane_state)
5797{
5798        struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5799        struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5800        enum plane_id plane_id = plane->id;
5801        struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5802        int ret;
5803
5804        /* Watermarks calculated in master */
5805        if (plane_state->planar_slave)
5806                return 0;
5807
5808        memset(wm, 0, sizeof(*wm));
5809
5810        if (plane_state->planar_linked_plane) {
5811                const struct drm_framebuffer *fb = plane_state->hw.fb;
5812                enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
5813
5814                drm_WARN_ON(&dev_priv->drm,
5815                            !intel_wm_plane_visible(crtc_state, plane_state));
5816                drm_WARN_ON(&dev_priv->drm, !fb->format->is_yuv ||
5817                            fb->format->num_planes == 1);
5818
5819                ret = skl_build_plane_wm_single(crtc_state, plane_state,
5820                                                y_plane_id, 0);
5821                if (ret)
5822                        return ret;
5823
5824                ret = skl_build_plane_wm_single(crtc_state, plane_state,
5825                                                plane_id, 1);
5826                if (ret)
5827                        return ret;
5828        } else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5829                ret = skl_build_plane_wm_single(crtc_state, plane_state,
5830                                                plane_id, 0);
5831                if (ret)
5832                        return ret;
5833        }
5834
5835        return 0;
5836}
5837
5838static int skl_build_pipe_wm(struct intel_atomic_state *state,
5839                             struct intel_crtc *crtc)
5840{
5841        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5842        struct intel_crtc_state *crtc_state =
5843                intel_atomic_get_new_crtc_state(state, crtc);
5844        const struct intel_plane_state *plane_state;
5845        struct intel_plane *plane;
5846        int ret, i;
5847
5848        for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
5849                /*
5850                 * FIXME should perhaps check {old,new}_plane_crtc->hw.crtc
5851                 * instead but we don't populate that correctly for NV12 Y
5852                 * planes so for now hack this.
5853                 */
5854                if (plane->pipe != crtc->pipe)
5855                        continue;
5856
5857                if (DISPLAY_VER(dev_priv) >= 11)
5858                        ret = icl_build_plane_wm(crtc_state, plane_state);
5859                else
5860                        ret = skl_build_plane_wm(crtc_state, plane_state);
5861                if (ret)
5862                        return ret;
5863        }
5864
5865        crtc_state->wm.skl.optimal = crtc_state->wm.skl.raw;
5866
5867        return 0;
5868}
5869
5870static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
5871                                i915_reg_t reg,
5872                                const struct skl_ddb_entry *entry)
5873{
5874        if (entry->end)
5875                intel_de_write_fw(dev_priv, reg,
5876                                  (entry->end - 1) << 16 | entry->start);
5877        else
5878                intel_de_write_fw(dev_priv, reg, 0);
5879}
5880
5881static void skl_write_wm_level(struct drm_i915_private *dev_priv,
5882                               i915_reg_t reg,
5883                               const struct skl_wm_level *level)
5884{
5885        u32 val = 0;
5886
5887        if (level->enable)
5888                val |= PLANE_WM_EN;
5889        if (level->ignore_lines)
5890                val |= PLANE_WM_IGNORE_LINES;
5891        val |= level->blocks;
5892        val |= REG_FIELD_PREP(PLANE_WM_LINES_MASK, level->lines);
5893
5894        intel_de_write_fw(dev_priv, reg, val);
5895}
5896
5897void skl_write_plane_wm(struct intel_plane *plane,
5898                        const struct intel_crtc_state *crtc_state)
5899{
5900        struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5901        int level, max_level = ilk_wm_max_level(dev_priv);
5902        enum plane_id plane_id = plane->id;
5903        enum pipe pipe = plane->pipe;
5904        const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5905        const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
5906        const struct skl_ddb_entry *ddb_y =
5907                &crtc_state->wm.skl.plane_ddb_y[plane_id];
5908        const struct skl_ddb_entry *ddb_uv =
5909                &crtc_state->wm.skl.plane_ddb_uv[plane_id];
5910
5911        for (level = 0; level <= max_level; level++)
5912                skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5913                                   skl_plane_wm_level(pipe_wm, plane_id, level));
5914
5915        skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5916                           skl_plane_trans_wm(pipe_wm, plane_id));
5917
5918        if (HAS_HW_SAGV_WM(dev_priv)) {
5919                skl_write_wm_level(dev_priv, PLANE_WM_SAGV(pipe, plane_id),
5920                                   &wm->sagv.wm0);
5921                skl_write_wm_level(dev_priv, PLANE_WM_SAGV_TRANS(pipe, plane_id),
5922                                   &wm->sagv.trans_wm);
5923        }
5924
5925        if (DISPLAY_VER(dev_priv) >= 11) {
5926                skl_ddb_entry_write(dev_priv,
5927                                    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5928                return;
5929        }
5930
5931        if (wm->is_planar)
5932                swap(ddb_y, ddb_uv);
5933
5934        skl_ddb_entry_write(dev_priv,
5935                            PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5936        skl_ddb_entry_write(dev_priv,
5937                            PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5938}
5939
5940void skl_write_cursor_wm(struct intel_plane *plane,
5941                         const struct intel_crtc_state *crtc_state)
5942{
5943        struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5944        int level, max_level = ilk_wm_max_level(dev_priv);
5945        enum plane_id plane_id = plane->id;
5946        enum pipe pipe = plane->pipe;
5947        const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5948        const struct skl_ddb_entry *ddb =
5949                &crtc_state->wm.skl.plane_ddb_y[plane_id];
5950
5951        for (level = 0; level <= max_level; level++)
5952                skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5953                                   skl_plane_wm_level(pipe_wm, plane_id, level));
5954
5955        skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe),
5956                           skl_plane_trans_wm(pipe_wm, plane_id));
5957
5958        if (HAS_HW_SAGV_WM(dev_priv)) {
5959                const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
5960
5961                skl_write_wm_level(dev_priv, CUR_WM_SAGV(pipe),
5962                                   &wm->sagv.wm0);
5963                skl_write_wm_level(dev_priv, CUR_WM_SAGV_TRANS(pipe),
5964                                   &wm->sagv.trans_wm);
5965        }
5966
5967        skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5968}
5969
5970bool skl_wm_level_equals(const struct skl_wm_level *l1,
5971                         const struct skl_wm_level *l2)
5972{
5973        return l1->enable == l2->enable &&
5974                l1->ignore_lines == l2->ignore_lines &&
5975                l1->lines == l2->lines &&
5976                l1->blocks == l2->blocks;
5977}
5978
5979static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
5980                                const struct skl_plane_wm *wm1,
5981                                const struct skl_plane_wm *wm2)
5982{
5983        int level, max_level = ilk_wm_max_level(dev_priv);
5984
5985        for (level = 0; level <= max_level; level++) {
5986                /*
5987                 * We don't check uv_wm as the hardware doesn't actually
5988                 * use it. It only gets used for calculating the required
5989                 * ddb allocation.
5990                 */
5991                if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
5992                        return false;
5993        }
5994
5995        return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm) &&
5996                skl_wm_level_equals(&wm1->sagv.wm0, &wm2->sagv.wm0) &&
5997                skl_wm_level_equals(&wm1->sagv.trans_wm, &wm2->sagv.trans_wm);
5998}
5999
6000static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
6001                                    const struct skl_ddb_entry *b)
6002{
6003        return a->start < b->end && b->start < a->end;
6004}
6005
6006static void skl_ddb_entry_union(struct skl_ddb_entry *a,
6007                                const struct skl_ddb_entry *b)
6008{
6009        if (a->end && b->end) {
6010                a->start = min(a->start, b->start);
6011                a->end = max(a->end, b->end);
6012        } else if (b->end) {
6013                a->start = b->start;
6014                a->end = b->end;
6015        }
6016}
6017
6018bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
6019                                 const struct skl_ddb_entry *entries,
6020                                 int num_entries, int ignore_idx)
6021{
6022        int i;
6023
6024        for (i = 0; i < num_entries; i++) {
6025                if (i != ignore_idx &&
6026                    skl_ddb_entries_overlap(ddb, &entries[i]))
6027                        return true;
6028        }
6029
6030        return false;
6031}
6032
6033static int
6034skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
6035                            struct intel_crtc_state *new_crtc_state)
6036{
6037        struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
6038        struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
6039        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6040        struct intel_plane *plane;
6041
6042        for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
6043                struct intel_plane_state *plane_state;
6044                enum plane_id plane_id = plane->id;
6045
6046                if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
6047                                        &new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
6048                    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
6049                                        &new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
6050                        continue;
6051
6052                plane_state = intel_atomic_get_plane_state(state, plane);
6053                if (IS_ERR(plane_state))
6054                        return PTR_ERR(plane_state);
6055
6056                new_crtc_state->update_planes |= BIT(plane_id);
6057        }
6058
6059        return 0;
6060}
6061
6062static u8 intel_dbuf_enabled_slices(const struct intel_dbuf_state *dbuf_state)
6063{
6064        struct drm_i915_private *dev_priv = to_i915(dbuf_state->base.state->base.dev);
6065        u8 enabled_slices;
6066        enum pipe pipe;
6067
6068        /*
6069         * FIXME: For now we always enable slice S1 as per
6070         * the Bspec display initialization sequence.
6071         */
6072        enabled_slices = BIT(DBUF_S1);
6073
6074        for_each_pipe(dev_priv, pipe)
6075                enabled_slices |= dbuf_state->slices[pipe];
6076
6077        return enabled_slices;
6078}
6079
6080static int
6081skl_compute_ddb(struct intel_atomic_state *state)
6082{
6083        struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6084        const struct intel_dbuf_state *old_dbuf_state;
6085        struct intel_dbuf_state *new_dbuf_state = NULL;
6086        const struct intel_crtc_state *old_crtc_state;
6087        struct intel_crtc_state *new_crtc_state;
6088        struct intel_crtc *crtc;
6089        int ret, i;
6090
6091        for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
6092                new_dbuf_state = intel_atomic_get_dbuf_state(state);
6093                if (IS_ERR(new_dbuf_state))
6094                        return PTR_ERR(new_dbuf_state);
6095
6096                old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
6097                break;
6098        }
6099
6100        if (!new_dbuf_state)
6101                return 0;
6102
6103        new_dbuf_state->active_pipes =
6104                intel_calc_active_pipes(state, old_dbuf_state->active_pipes);
6105
6106        if (old_dbuf_state->active_pipes != new_dbuf_state->active_pipes) {
6107                ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
6108                if (ret)
6109                        return ret;
6110        }
6111
6112        for_each_intel_crtc(&dev_priv->drm, crtc) {
6113                enum pipe pipe = crtc->pipe;
6114
6115                new_dbuf_state->slices[pipe] =
6116                        skl_compute_dbuf_slices(crtc, new_dbuf_state->active_pipes);
6117
6118                if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe])
6119                        continue;
6120
6121                ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
6122                if (ret)
6123                        return ret;
6124        }
6125
6126        new_dbuf_state->enabled_slices = intel_dbuf_enabled_slices(new_dbuf_state);
6127
6128        if (IS_ALDERLAKE_P(dev_priv))
6129                new_dbuf_state->joined_mbus = adlp_check_mbus_joined(new_dbuf_state->active_pipes);
6130
6131        if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices ||
6132            old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
6133                ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
6134                if (ret)
6135                        return ret;
6136
6137                if (old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
6138                        /* TODO: Implement vblank synchronized MBUS joining changes */
6139                        ret = intel_modeset_all_pipes(state);
6140                        if (ret)
6141                                return ret;
6142                }
6143
6144                drm_dbg_kms(&dev_priv->drm,
6145                            "Enabled dbuf slices 0x%x -> 0x%x (total dbuf slices 0x%x), mbus joined? %s->%s\n",
6146                            old_dbuf_state->enabled_slices,
6147                            new_dbuf_state->enabled_slices,
6148                            INTEL_INFO(dev_priv)->dbuf.slice_mask,
6149                            yesno(old_dbuf_state->joined_mbus),
6150                            yesno(new_dbuf_state->joined_mbus));
6151        }
6152
6153        for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
6154                enum pipe pipe = crtc->pipe;
6155
6156                new_dbuf_state->weight[pipe] = intel_crtc_ddb_weight(new_crtc_state);
6157
6158                if (old_dbuf_state->weight[pipe] == new_dbuf_state->weight[pipe])
6159                        continue;
6160
6161                ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
6162                if (ret)
6163                        return ret;
6164        }
6165
6166        for_each_intel_crtc(&dev_priv->drm, crtc) {
6167                ret = skl_crtc_allocate_ddb(state, crtc);
6168                if (ret)
6169                        return ret;
6170        }
6171
6172        for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
6173                                            new_crtc_state, i) {
6174                ret = skl_allocate_plane_ddb(state, crtc);
6175                if (ret)
6176                        return ret;
6177
6178                ret = skl_ddb_add_affected_planes(old_crtc_state,
6179                                                  new_crtc_state);
6180                if (ret)
6181                        return ret;
6182        }
6183
6184        return 0;
6185}
6186
6187static char enast(bool enable)
6188{
6189        return enable ? '*' : ' ';
6190}
6191
6192static void
6193skl_print_wm_changes(struct intel_atomic_state *state)
6194{
6195        struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6196        const struct intel_crtc_state *old_crtc_state;
6197        const struct intel_crtc_state *new_crtc_state;
6198        struct intel_plane *plane;
6199        struct intel_crtc *crtc;
6200        int i;
6201
6202        if (!drm_debug_enabled(DRM_UT_KMS))
6203                return;
6204
6205        for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
6206                                            new_crtc_state, i) {
6207                const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
6208
6209                old_pipe_wm = &old_crtc_state->wm.skl.optimal;
6210                new_pipe_wm = &new_crtc_state->wm.skl.optimal;
6211
6212                for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
6213                        enum plane_id plane_id = plane->id;
6214                        const struct skl_ddb_entry *old, *new;
6215
6216                        old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
6217                        new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
6218
6219                        if (skl_ddb_entry_equal(old, new))
6220                                continue;
6221
6222                        drm_dbg_kms(&dev_priv->drm,
6223                                    "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
6224                                    plane->base.base.id, plane->base.name,
6225                                    old->start, old->end, new->start, new->end,
6226                                    skl_ddb_entry_size(old), skl_ddb_entry_size(new));
6227                }
6228
6229                for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
6230                        enum plane_id plane_id = plane->id;
6231                        const struct skl_plane_wm *old_wm, *new_wm;
6232
6233                        old_wm = &old_pipe_wm->planes[plane_id];
6234                        new_wm = &new_pipe_wm->planes[plane_id];
6235
6236                        if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
6237                                continue;
6238
6239                        drm_dbg_kms(&dev_priv->drm,
6240                                    "[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm"
6241                                    " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm\n",
6242                                    plane->base.base.id, plane->base.name,
6243                                    enast(old_wm->wm[0].enable), enast(old_wm->wm[1].enable),
6244                                    enast(old_wm->wm[2].enable), enast(old_wm->wm[3].enable),
6245                                    enast(old_wm->wm[4].enable), enast(old_wm->wm[5].enable),
6246                                    enast(old_wm->wm[6].enable), enast(old_wm->wm[7].enable),
6247                                    enast(old_wm->trans_wm.enable),
6248                                    enast(old_wm->sagv.wm0.enable),
6249                                    enast(old_wm->sagv.trans_wm.enable),
6250                                    enast(new_wm->wm[0].enable), enast(new_wm->wm[1].enable),
6251                                    enast(new_wm->wm[2].enable), enast(new_wm->wm[3].enable),
6252                                    enast(new_wm->wm[4].enable), enast(new_wm->wm[5].enable),
6253                                    enast(new_wm->wm[6].enable), enast(new_wm->wm[7].enable),
6254                                    enast(new_wm->trans_wm.enable),
6255                                    enast(new_wm->sagv.wm0.enable),
6256                                    enast(new_wm->sagv.trans_wm.enable));
6257
6258                        drm_dbg_kms(&dev_priv->drm,
6259                                    "[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d"
6260                                      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d\n",
6261                                    plane->base.base.id, plane->base.name,
6262                                    enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].lines,
6263                                    enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].lines,
6264                                    enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].lines,
6265                                    enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].lines,
6266                                    enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].lines,
6267                                    enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].lines,
6268                                    enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].lines,
6269                                    enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].lines,
6270                                    enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.lines,
6271                                    enast(old_wm->sagv.wm0.ignore_lines), old_wm->sagv.wm0.lines,
6272                                    enast(old_wm->sagv.trans_wm.ignore_lines), old_wm->sagv.trans_wm.lines,
6273                                    enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].lines,
6274                                    enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].lines,
6275                                    enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].lines,
6276                                    enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].lines,
6277                                    enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].lines,
6278                                    enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].lines,
6279                                    enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].lines,
6280                                    enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].lines,
6281                                    enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.lines,
6282                                    enast(new_wm->sagv.wm0.ignore_lines), new_wm->sagv.wm0.lines,
6283                                    enast(new_wm->sagv.trans_wm.ignore_lines), new_wm->sagv.trans_wm.lines);
6284
6285                        drm_dbg_kms(&dev_priv->drm,
6286                                    "[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
6287                                    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
6288                                    plane->base.base.id, plane->base.name,
6289                                    old_wm->wm[0].blocks, old_wm->wm[1].blocks,
6290                                    old_wm->wm[2].blocks, old_wm->wm[3].blocks,
6291                                    old_wm->wm[4].blocks, old_wm->wm[5].blocks,
6292                                    old_wm->wm[6].blocks, old_wm->wm[7].blocks,
6293                                    old_wm->trans_wm.blocks,
6294                                    old_wm->sagv.wm0.blocks,
6295                                    old_wm->sagv.trans_wm.blocks,
6296                                    new_wm->wm[0].blocks, new_wm->wm[1].blocks,
6297                                    new_wm->wm[2].blocks, new_wm->wm[3].blocks,
6298                                    new_wm->wm[4].blocks, new_wm->wm[5].blocks,
6299                                    new_wm->wm[6].blocks, new_wm->wm[7].blocks,
6300                                    new_wm->trans_wm.blocks,
6301                                    new_wm->sagv.wm0.blocks,
6302                                    new_wm->sagv.trans_wm.blocks);
6303
6304                        drm_dbg_kms(&dev_priv->drm,
6305                                    "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
6306                                    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
6307                                    plane->base.base.id, plane->base.name,
6308                                    old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
6309                                    old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
6310                                    old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
6311                                    old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
6312                                    old_wm->trans_wm.min_ddb_alloc,
6313                                    old_wm->sagv.wm0.min_ddb_alloc,
6314                                    old_wm->sagv.trans_wm.min_ddb_alloc,
6315                                    new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
6316                                    new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
6317                                    new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
6318                                    new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
6319                                    new_wm->trans_wm.min_ddb_alloc,
6320                                    new_wm->sagv.wm0.min_ddb_alloc,
6321                                    new_wm->sagv.trans_wm.min_ddb_alloc);
6322                }
6323        }
6324}
6325
6326static bool skl_plane_selected_wm_equals(struct intel_plane *plane,
6327                                         const struct skl_pipe_wm *old_pipe_wm,
6328                                         const struct skl_pipe_wm *new_pipe_wm)
6329{
6330        struct drm_i915_private *i915 = to_i915(plane->base.dev);
6331        int level, max_level = ilk_wm_max_level(i915);
6332
6333        for (level = 0; level <= max_level; level++) {
6334                /*
6335                 * We don't check uv_wm as the hardware doesn't actually
6336                 * use it. It only gets used for calculating the required
6337                 * ddb allocation.
6338                 */
6339                if (!skl_wm_level_equals(skl_plane_wm_level(old_pipe_wm, plane->id, level),
6340                                         skl_plane_wm_level(new_pipe_wm, plane->id, level)))
6341                        return false;
6342        }
6343
6344        if (HAS_HW_SAGV_WM(i915)) {
6345                const struct skl_plane_wm *old_wm = &old_pipe_wm->planes[plane->id];
6346                const struct skl_plane_wm *new_wm = &new_pipe_wm->planes[plane->id];
6347
6348                if (!skl_wm_level_equals(&old_wm->sagv.wm0, &new_wm->sagv.wm0) ||
6349                    !skl_wm_level_equals(&old_wm->sagv.trans_wm, &new_wm->sagv.trans_wm))
6350                        return false;
6351        }
6352
6353        return skl_wm_level_equals(skl_plane_trans_wm(old_pipe_wm, plane->id),
6354                                   skl_plane_trans_wm(new_pipe_wm, plane->id));
6355}
6356
6357/*
6358 * To make sure the cursor watermark registers are always consistent
6359 * with our computed state the following scenario needs special
6360 * treatment:
6361 *
6362 * 1. enable cursor
6363 * 2. move cursor entirely offscreen
6364 * 3. disable cursor
6365 *
6366 * Step 2. does call .disable_plane() but does not zero the watermarks
6367 * (since we consider an offscreen cursor still active for the purposes
6368 * of watermarks). Step 3. would not normally call .disable_plane()
6369 * because the actual plane visibility isn't changing, and we don't
6370 * deallocate the cursor ddb until the pipe gets disabled. So we must
6371 * force step 3. to call .disable_plane() to update the watermark
6372 * registers properly.
6373 *
6374 * Other planes do not suffer from this issues as their watermarks are
6375 * calculated based on the actual plane visibility. The only time this
6376 * can trigger for the other planes is during the initial readout as the
6377 * default value of the watermarks registers is not zero.
6378 */
6379static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
6380                                      struct intel_crtc *crtc)
6381{
6382        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6383        const struct intel_crtc_state *old_crtc_state =
6384                intel_atomic_get_old_crtc_state(state, crtc);
6385        struct intel_crtc_state *new_crtc_state =
6386                intel_atomic_get_new_crtc_state(state, crtc);
6387        struct intel_plane *plane;
6388
6389        for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
6390                struct intel_plane_state *plane_state;
6391                enum plane_id plane_id = plane->id;
6392
6393                /*
6394                 * Force a full wm update for every plane on modeset.
6395                 * Required because the reset value of the wm registers
6396                 * is non-zero, whereas we want all disabled planes to
6397                 * have zero watermarks. So if we turn off the relevant
6398                 * power well the hardware state will go out of sync
6399                 * with the software state.
6400                 */
6401                if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
6402                    skl_plane_selected_wm_equals(plane,
6403                                                 &old_crtc_state->wm.skl.optimal,
6404                                                 &new_crtc_state->wm.skl.optimal))
6405                        continue;
6406
6407                plane_state = intel_atomic_get_plane_state(state, plane);
6408                if (IS_ERR(plane_state))
6409                        return PTR_ERR(plane_state);
6410
6411                new_crtc_state->update_planes |= BIT(plane_id);
6412        }
6413
6414        return 0;
6415}
6416
6417static int
6418skl_compute_wm(struct intel_atomic_state *state)
6419{
6420        struct intel_crtc *crtc;
6421        struct intel_crtc_state *new_crtc_state;
6422        int ret, i;
6423
6424        for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
6425                ret = skl_build_pipe_wm(state, crtc);
6426                if (ret)
6427                        return ret;
6428        }
6429
6430        ret = skl_compute_ddb(state);
6431        if (ret)
6432                return ret;
6433
6434        ret = intel_compute_sagv_mask(state);
6435        if (ret)
6436                return ret;
6437
6438        /*
6439         * skl_compute_ddb() will have adjusted the final watermarks
6440         * based on how much ddb is available. Now we can actually
6441         * check if the final watermarks changed.
6442         */
6443        for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
6444                ret = skl_wm_add_affected_planes(state, crtc);
6445                if (ret)
6446                        return ret;
6447        }
6448
6449        skl_print_wm_changes(state);
6450
6451        return 0;
6452}
6453
6454static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
6455                                  struct intel_wm_config *config)
6456{
6457        struct intel_crtc *crtc;
6458
6459        /* Compute the currently _active_ config */
6460        for_each_intel_crtc(&dev_priv->drm, crtc) {
6461                const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
6462
6463                if (!wm->pipe_enabled)
6464                        continue;
6465
6466                config->sprites_enabled |= wm->sprites_enabled;
6467                config->sprites_scaled |= wm->sprites_scaled;
6468                config->num_pipes_active++;
6469        }
6470}
6471
6472static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
6473{
6474        struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
6475        struct ilk_wm_maximums max;
6476        struct intel_wm_config config = {};
6477        struct ilk_wm_values results = {};
6478        enum intel_ddb_partitioning partitioning;
6479
6480        ilk_compute_wm_config(dev_priv, &config);
6481
6482        ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
6483        ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
6484
6485        /* 5/6 split only in single pipe config on IVB+ */
6486        if (DISPLAY_VER(dev_priv) >= 7 &&
6487            config.num_pipes_active == 1 && config.sprites_enabled) {
6488                ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
6489                ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
6490
6491                best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
6492        } else {
6493                best_lp_wm = &lp_wm_1_2;
6494        }
6495
6496        partitioning = (best_lp_wm == &lp_wm_1_2) ?
6497                       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
6498
6499        ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
6500
6501        ilk_write_wm_values(dev_priv, &results);
6502}
6503
6504static void ilk_initial_watermarks(struct intel_atomic_state *state,
6505                                   struct intel_crtc *crtc)
6506{
6507        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6508        const struct intel_crtc_state *crtc_state =
6509                intel_atomic_get_new_crtc_state(state, crtc);
6510
6511        mutex_lock(&dev_priv->wm.wm_mutex);
6512        crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
6513        ilk_program_watermarks(dev_priv);
6514        mutex_unlock(&dev_priv->wm.wm_mutex);
6515}
6516
6517static void ilk_optimize_watermarks(struct intel_atomic_state *state,
6518                                    struct intel_crtc *crtc)
6519{
6520        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6521        const struct intel_crtc_state *crtc_state =
6522                intel_atomic_get_new_crtc_state(state, crtc);
6523
6524        if (!crtc_state->wm.need_postvbl_update)
6525                return;
6526
6527        mutex_lock(&dev_priv->wm.wm_mutex);
6528        crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
6529        ilk_program_watermarks(dev_priv);
6530        mutex_unlock(&dev_priv->wm.wm_mutex);
6531}
6532
6533static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
6534{
6535        level->enable = val & PLANE_WM_EN;
6536        level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
6537        level->blocks = val & PLANE_WM_BLOCKS_MASK;
6538        level->lines = REG_FIELD_GET(PLANE_WM_LINES_MASK, val);
6539}
6540
6541void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
6542                              struct skl_pipe_wm *out)
6543{
6544        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6545        enum pipe pipe = crtc->pipe;
6546        int level, max_level;
6547        enum plane_id plane_id;
6548        u32 val;
6549
6550        max_level = ilk_wm_max_level(dev_priv);
6551
6552        for_each_plane_id_on_crtc(crtc, plane_id) {
6553                struct skl_plane_wm *wm = &out->planes[plane_id];
6554
6555                for (level = 0; level <= max_level; level++) {
6556                        if (plane_id != PLANE_CURSOR)
6557                                val = intel_uncore_read(&dev_priv->uncore, PLANE_WM(pipe, plane_id, level));
6558                        else
6559                                val = intel_uncore_read(&dev_priv->uncore, CUR_WM(pipe, level));
6560
6561                        skl_wm_level_from_reg_val(val, &wm->wm[level]);
6562                }
6563
6564                if (plane_id != PLANE_CURSOR)
6565                        val = intel_uncore_read(&dev_priv->uncore, PLANE_WM_TRANS(pipe, plane_id));
6566                else
6567                        val = intel_uncore_read(&dev_priv->uncore, CUR_WM_TRANS(pipe));
6568
6569                skl_wm_level_from_reg_val(val, &wm->trans_wm);
6570
6571                if (HAS_HW_SAGV_WM(dev_priv)) {
6572                        if (plane_id != PLANE_CURSOR)
6573                                val = intel_uncore_read(&dev_priv->uncore,
6574                                                        PLANE_WM_SAGV(pipe, plane_id));
6575                        else
6576                                val = intel_uncore_read(&dev_priv->uncore,
6577                                                        CUR_WM_SAGV(pipe));
6578
6579                        skl_wm_level_from_reg_val(val, &wm->sagv.wm0);
6580
6581                        if (plane_id != PLANE_CURSOR)
6582                                val = intel_uncore_read(&dev_priv->uncore,
6583                                                        PLANE_WM_SAGV_TRANS(pipe, plane_id));
6584                        else
6585                                val = intel_uncore_read(&dev_priv->uncore,
6586                                                        CUR_WM_SAGV_TRANS(pipe));
6587
6588                        skl_wm_level_from_reg_val(val, &wm->sagv.trans_wm);
6589                } else if (DISPLAY_VER(dev_priv) >= 12) {
6590                        wm->sagv.wm0 = wm->wm[0];
6591                        wm->sagv.trans_wm = wm->trans_wm;
6592                }
6593        }
6594}
6595
6596void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
6597{
6598        struct intel_dbuf_state *dbuf_state =
6599                to_intel_dbuf_state(dev_priv->dbuf.obj.state);
6600        struct intel_crtc *crtc;
6601
6602        if (IS_ALDERLAKE_P(dev_priv))
6603                dbuf_state->joined_mbus = intel_de_read(dev_priv, MBUS_CTL) & MBUS_JOIN;
6604
6605        for_each_intel_crtc(&dev_priv->drm, crtc) {
6606                struct intel_crtc_state *crtc_state =
6607                        to_intel_crtc_state(crtc->base.state);
6608                enum pipe pipe = crtc->pipe;
6609                unsigned int mbus_offset;
6610                enum plane_id plane_id;
6611
6612                skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
6613                crtc_state->wm.skl.raw = crtc_state->wm.skl.optimal;
6614
6615                memset(&dbuf_state->ddb[pipe], 0, sizeof(dbuf_state->ddb[pipe]));
6616
6617                for_each_plane_id_on_crtc(crtc, plane_id) {
6618                        struct skl_ddb_entry *ddb_y =
6619                                &crtc_state->wm.skl.plane_ddb_y[plane_id];
6620                        struct skl_ddb_entry *ddb_uv =
6621                                &crtc_state->wm.skl.plane_ddb_uv[plane_id];
6622
6623                        skl_ddb_get_hw_plane_state(dev_priv, crtc->pipe,
6624                                                   plane_id, ddb_y, ddb_uv);
6625
6626                        skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_y);
6627                        skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_uv);
6628                }
6629
6630                dbuf_state->slices[pipe] =
6631                        skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes);
6632
6633                dbuf_state->weight[pipe] = intel_crtc_ddb_weight(crtc_state);
6634
6635                /*
6636                 * Used for checking overlaps, so we need absolute
6637                 * offsets instead of MBUS relative offsets.
6638                 */
6639                mbus_offset = mbus_ddb_offset(dev_priv, dbuf_state->slices[pipe]);
6640                crtc_state->wm.skl.ddb.start = mbus_offset + dbuf_state->ddb[pipe].start;
6641                crtc_state->wm.skl.ddb.end = mbus_offset + dbuf_state->ddb[pipe].end;
6642
6643                drm_dbg_kms(&dev_priv->drm,
6644                            "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x, mbus joined: %s\n",
6645                            crtc->base.base.id, crtc->base.name,
6646                            dbuf_state->slices[pipe], dbuf_state->ddb[pipe].start,
6647                            dbuf_state->ddb[pipe].end, dbuf_state->active_pipes,
6648                            yesno(dbuf_state->joined_mbus));
6649        }
6650
6651        dbuf_state->enabled_slices = dev_priv->dbuf.enabled_slices;
6652}
6653
6654static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
6655{
6656        struct drm_device *dev = crtc->base.dev;
6657        struct drm_i915_private *dev_priv = to_i915(dev);
6658        struct ilk_wm_values *hw = &dev_priv->wm.hw;
6659        struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
6660        struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
6661        enum pipe pipe = crtc->pipe;
6662
6663        hw->wm_pipe[pipe] = intel_uncore_read(&dev_priv->uncore, WM0_PIPE_ILK(pipe));
6664
6665        memset(active, 0, sizeof(*active));
6666
6667        active->pipe_enabled = crtc->active;
6668
6669        if (active->pipe_enabled) {
6670                u32 tmp = hw->wm_pipe[pipe];
6671
6672                /*
6673                 * For active pipes LP0 watermark is marked as
6674                 * enabled, and LP1+ watermaks as disabled since
6675                 * we can't really reverse compute them in case
6676                 * multiple pipes are active.
6677                 */
6678                active->wm[0].enable = true;
6679                active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
6680                active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
6681                active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
6682        } else {
6683                int level, max_level = ilk_wm_max_level(dev_priv);
6684
6685                /*
6686                 * For inactive pipes, all watermark levels
6687                 * should be marked as enabled but zeroed,
6688                 * which is what we'd compute them to.
6689                 */
6690                for (level = 0; level <= max_level; level++)
6691                        active->wm[level].enable = true;
6692        }
6693
6694        crtc->wm.active.ilk = *active;
6695}
6696
6697#define _FW_WM(value, plane) \
6698        (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
6699#define _FW_WM_VLV(value, plane) \
6700        (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
6701
6702static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
6703                               struct g4x_wm_values *wm)
6704{
6705        u32 tmp;
6706
6707        tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
6708        wm->sr.plane = _FW_WM(tmp, SR);
6709        wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
6710        wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
6711        wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
6712
6713        tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
6714        wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
6715        wm->sr.fbc = _FW_WM(tmp, FBC_SR);
6716        wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
6717        wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
6718        wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
6719        wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
6720
6721        tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
6722        wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
6723        wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
6724        wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
6725        wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
6726}
6727
6728static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
6729                               struct vlv_wm_values *wm)
6730{
6731        enum pipe pipe;
6732        u32 tmp;
6733
6734        for_each_pipe(dev_priv, pipe) {
6735                tmp = intel_uncore_read(&dev_priv->uncore, VLV_DDL(pipe));
6736
6737                wm->ddl[pipe].plane[PLANE_PRIMARY] =
6738                        (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6739                wm->ddl[pipe].plane[PLANE_CURSOR] =
6740                        (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6741                wm->ddl[pipe].plane[PLANE_SPRITE0] =
6742                        (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6743                wm->ddl[pipe].plane[PLANE_SPRITE1] =
6744                        (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6745        }
6746
6747        tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
6748        wm->sr.plane = _FW_WM(tmp, SR);
6749        wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
6750        wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
6751        wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
6752
6753        tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
6754        wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
6755        wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
6756        wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
6757
6758        tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
6759        wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
6760
6761        if (IS_CHERRYVIEW(dev_priv)) {
6762                tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7_CHV);
6763                wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
6764                wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6765
6766                tmp = intel_uncore_read(&dev_priv->uncore, DSPFW8_CHV);
6767                wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
6768                wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
6769
6770                tmp = intel_uncore_read(&dev_priv->uncore, DSPFW9_CHV);
6771                wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
6772                wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
6773
6774                tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
6775                wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6776                wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
6777                wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
6778                wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
6779                wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
6780                wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
6781                wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
6782                wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
6783                wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
6784                wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6785        } else {
6786                tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7);
6787                wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
6788                wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6789
6790                tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
6791                wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6792                wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
6793                wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
6794                wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
6795                wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
6796                wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
6797                wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6798        }
6799}
6800
6801#undef _FW_WM
6802#undef _FW_WM_VLV
6803
6804void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
6805{
6806        struct g4x_wm_values *wm = &dev_priv->wm.g4x;
6807        struct intel_crtc *crtc;
6808
6809        g4x_read_wm_values(dev_priv, wm);
6810
6811        wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
6812
6813        for_each_intel_crtc(&dev_priv->drm, crtc) {
6814                struct intel_crtc_state *crtc_state =
6815                        to_intel_crtc_state(crtc->base.state);
6816                struct g4x_wm_state *active = &crtc->wm.active.g4x;
6817                struct g4x_pipe_wm *raw;
6818                enum pipe pipe = crtc->pipe;
6819                enum plane_id plane_id;
6820                int level, max_level;
6821
6822                active->cxsr = wm->cxsr;
6823                active->hpll_en = wm->hpll_en;
6824                active->fbc_en = wm->fbc_en;
6825
6826                active->sr = wm->sr;
6827                active->hpll = wm->hpll;
6828
6829                for_each_plane_id_on_crtc(crtc, plane_id) {
6830                        active->wm.plane[plane_id] =
6831                                wm->pipe[pipe].plane[plane_id];
6832                }
6833
6834                if (wm->cxsr && wm->hpll_en)
6835                        max_level = G4X_WM_LEVEL_HPLL;
6836                else if (wm->cxsr)
6837                        max_level = G4X_WM_LEVEL_SR;
6838                else
6839                        max_level = G4X_WM_LEVEL_NORMAL;
6840
6841                level = G4X_WM_LEVEL_NORMAL;
6842                raw = &crtc_state->wm.g4x.raw[level];
6843                for_each_plane_id_on_crtc(crtc, plane_id)
6844                        raw->plane[plane_id] = active->wm.plane[plane_id];
6845
6846                level = G4X_WM_LEVEL_SR;
6847                if (level > max_level)
6848                        goto out;
6849
6850                raw = &crtc_state->wm.g4x.raw[level];
6851                raw->plane[PLANE_PRIMARY] = active->sr.plane;
6852                raw->plane[PLANE_CURSOR] = active->sr.cursor;
6853                raw->plane[PLANE_SPRITE0] = 0;
6854                raw->fbc = active->sr.fbc;
6855
6856                level = G4X_WM_LEVEL_HPLL;
6857                if (level > max_level)
6858                        goto out;
6859
6860                raw = &crtc_state->wm.g4x.raw[level];
6861                raw->plane[PLANE_PRIMARY] = active->hpll.plane;
6862                raw->plane[PLANE_CURSOR] = active->hpll.cursor;
6863                raw->plane[PLANE_SPRITE0] = 0;
6864                raw->fbc = active->hpll.fbc;
6865
6866                level++;
6867        out:
6868                for_each_plane_id_on_crtc(crtc, plane_id)
6869                        g4x_raw_plane_wm_set(crtc_state, level,
6870                                             plane_id, USHRT_MAX);
6871                g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
6872
6873                crtc_state->wm.g4x.optimal = *active;
6874                crtc_state->wm.g4x.intermediate = *active;
6875
6876                drm_dbg_kms(&dev_priv->drm,
6877                            "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
6878                            pipe_name(pipe),
6879                            wm->pipe[pipe].plane[PLANE_PRIMARY],
6880                            wm->pipe[pipe].plane[PLANE_CURSOR],
6881                            wm->pipe[pipe].plane[PLANE_SPRITE0]);
6882        }
6883
6884        drm_dbg_kms(&dev_priv->drm,
6885                    "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
6886                    wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
6887        drm_dbg_kms(&dev_priv->drm,
6888                    "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
6889                    wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
6890        drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
6891                    yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6892}
6893
6894void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
6895{
6896        struct intel_plane *plane;
6897        struct intel_crtc *crtc;
6898
6899        mutex_lock(&dev_priv->wm.wm_mutex);
6900
6901        for_each_intel_plane(&dev_priv->drm, plane) {
6902                struct intel_crtc *crtc =
6903                        intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6904                struct intel_crtc_state *crtc_state =
6905                        to_intel_crtc_state(crtc->base.state);
6906                struct intel_plane_state *plane_state =
6907                        to_intel_plane_state(plane->base.state);
6908                struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
6909                enum plane_id plane_id = plane->id;
6910                int level;
6911
6912                if (plane_state->uapi.visible)
6913                        continue;
6914
6915                for (level = 0; level < 3; level++) {
6916                        struct g4x_pipe_wm *raw =
6917                                &crtc_state->wm.g4x.raw[level];
6918
6919                        raw->plane[plane_id] = 0;
6920                        wm_state->wm.plane[plane_id] = 0;
6921                }
6922
6923                if (plane_id == PLANE_PRIMARY) {
6924                        for (level = 0; level < 3; level++) {
6925                                struct g4x_pipe_wm *raw =
6926                                        &crtc_state->wm.g4x.raw[level];
6927                                raw->fbc = 0;
6928                        }
6929
6930                        wm_state->sr.fbc = 0;
6931                        wm_state->hpll.fbc = 0;
6932                        wm_state->fbc_en = false;
6933                }
6934        }
6935
6936        for_each_intel_crtc(&dev_priv->drm, crtc) {
6937                struct intel_crtc_state *crtc_state =
6938                        to_intel_crtc_state(crtc->base.state);
6939
6940                crtc_state->wm.g4x.intermediate =
6941                        crtc_state->wm.g4x.optimal;
6942                crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
6943        }
6944
6945        g4x_program_watermarks(dev_priv);
6946
6947        mutex_unlock(&dev_priv->wm.wm_mutex);
6948}
6949
6950void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6951{
6952        struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6953        struct intel_crtc *crtc;
6954        u32 val;
6955
6956        vlv_read_wm_values(dev_priv, wm);
6957
6958        wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
6959        wm->level = VLV_WM_LEVEL_PM2;
6960
6961        if (IS_CHERRYVIEW(dev_priv)) {
6962                vlv_punit_get(dev_priv);
6963
6964                val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6965                if (val & DSP_MAXFIFO_PM5_ENABLE)
6966                        wm->level = VLV_WM_LEVEL_PM5;
6967
6968                /*
6969                 * If DDR DVFS is disabled in the BIOS, Punit
6970                 * will never ack the request. So if that happens
6971                 * assume we don't have to enable/disable DDR DVFS
6972                 * dynamically. To test that just set the REQ_ACK
6973                 * bit to poke the Punit, but don't change the
6974                 * HIGH/LOW bits so that we don't actually change
6975                 * the current state.
6976                 */
6977                val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6978                val |= FORCE_DDR_FREQ_REQ_ACK;
6979                vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
6980
6981                if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
6982                              FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6983                        drm_dbg_kms(&dev_priv->drm,
6984                                    "Punit not acking DDR DVFS request, "
6985                                    "assuming DDR DVFS is disabled\n");
6986                        dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
6987                } else {
6988                        val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6989                        if ((val & FORCE_DDR_HIGH_FREQ) == 0)
6990                                wm->level = VLV_WM_LEVEL_DDR_DVFS;
6991                }
6992
6993                vlv_punit_put(dev_priv);
6994        }
6995
6996        for_each_intel_crtc(&dev_priv->drm, crtc) {
6997                struct intel_crtc_state *crtc_state =
6998                        to_intel_crtc_state(crtc->base.state);
6999                struct vlv_wm_state *active = &crtc->wm.active.vlv;
7000                const struct vlv_fifo_state *fifo_state =
7001                        &crtc_state->wm.vlv.fifo_state;
7002                enum pipe pipe = crtc->pipe;
7003                enum plane_id plane_id;
7004                int level;
7005
7006                vlv_get_fifo_size(crtc_state);
7007
7008                active->num_levels = wm->level + 1;
7009                active->cxsr = wm->cxsr;
7010
7011                for (level = 0; level < active->num_levels; level++) {
7012                        struct g4x_pipe_wm *raw =
7013                                &crtc_state->wm.vlv.raw[level];
7014
7015                        active->sr[level].plane = wm->sr.plane;
7016                        active->sr[level].cursor = wm->sr.cursor;
7017
7018                        for_each_plane_id_on_crtc(crtc, plane_id) {
7019                                active->wm[level].plane[plane_id] =
7020                                        wm->pipe[pipe].plane[plane_id];
7021
7022                                raw->plane[plane_id] =
7023                                        vlv_invert_wm_value(active->wm[level].plane[plane_id],
7024                                                            fifo_state->plane[plane_id]);
7025                        }
7026                }
7027
7028                for_each_plane_id_on_crtc(crtc, plane_id)
7029                        vlv_raw_plane_wm_set(crtc_state, level,
7030                                             plane_id, USHRT_MAX);
7031                vlv_invalidate_wms(crtc, active, level);
7032
7033                crtc_state->wm.vlv.optimal = *active;
7034                crtc_state->wm.vlv.intermediate = *active;
7035
7036                drm_dbg_kms(&dev_priv->drm,
7037                            "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
7038                            pipe_name(pipe),
7039                            wm->pipe[pipe].plane[PLANE_PRIMARY],
7040                            wm->pipe[pipe].plane[PLANE_CURSOR],
7041                            wm->pipe[pipe].plane[PLANE_SPRITE0],
7042                            wm->pipe[pipe].plane[PLANE_SPRITE1]);
7043        }
7044
7045        drm_dbg_kms(&dev_priv->drm,
7046                    "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
7047                    wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
7048}
7049
7050void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
7051{
7052        struct intel_plane *plane;
7053        struct intel_crtc *crtc;
7054
7055        mutex_lock(&dev_priv->wm.wm_mutex);
7056
7057        for_each_intel_plane(&dev_priv->drm, plane) {
7058                struct intel_crtc *crtc =
7059                        intel_get_crtc_for_pipe(dev_priv, plane->pipe);
7060                struct intel_crtc_state *crtc_state =
7061                        to_intel_crtc_state(crtc->base.state);
7062                struct intel_plane_state *plane_state =
7063                        to_intel_plane_state(plane->base.state);
7064                struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
7065                const struct vlv_fifo_state *fifo_state =
7066                        &crtc_state->wm.vlv.fifo_state;
7067                enum plane_id plane_id = plane->id;
7068                int level;
7069
7070                if (plane_state->uapi.visible)
7071                        continue;
7072
7073                for (level = 0; level < wm_state->num_levels; level++) {
7074                        struct g4x_pipe_wm *raw =
7075                                &crtc_state->wm.vlv.raw[level];
7076
7077                        raw->plane[plane_id] = 0;
7078
7079                        wm_state->wm[level].plane[plane_id] =
7080                                vlv_invert_wm_value(raw->plane[plane_id],
7081                                                    fifo_state->plane[plane_id]);
7082                }
7083        }
7084
7085        for_each_intel_crtc(&dev_priv->drm, crtc) {
7086                struct intel_crtc_state *crtc_state =
7087                        to_intel_crtc_state(crtc->base.state);
7088
7089                crtc_state->wm.vlv.intermediate =
7090                        crtc_state->wm.vlv.optimal;
7091                crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
7092        }
7093
7094        vlv_program_watermarks(dev_priv);
7095
7096        mutex_unlock(&dev_priv->wm.wm_mutex);
7097}
7098
7099/*
7100 * FIXME should probably kill this and improve
7101 * the real watermark readout/sanitation instead
7102 */
7103static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
7104{
7105        intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK) & ~WM1_LP_SR_EN);
7106        intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK) & ~WM1_LP_SR_EN);
7107        intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK) & ~WM1_LP_SR_EN);
7108
7109        /*
7110         * Don't touch WM1S_LP_EN here.
7111         * Doing so could cause underruns.
7112         */
7113}
7114
7115void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
7116{
7117        struct ilk_wm_values *hw = &dev_priv->wm.hw;
7118        struct intel_crtc *crtc;
7119
7120        ilk_init_lp_watermarks(dev_priv);
7121
7122        for_each_intel_crtc(&dev_priv->drm, crtc)
7123                ilk_pipe_wm_get_hw_state(crtc);
7124
7125        hw->wm_lp[0] = intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK);
7126        hw->wm_lp[1] = intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK);
7127        hw->wm_lp[2] = intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK);
7128
7129        hw->wm_lp_spr[0] = intel_uncore_read(&dev_priv->uncore, WM1S_LP_ILK);
7130        if (DISPLAY_VER(dev_priv) >= 7) {
7131                hw->wm_lp_spr[1] = intel_uncore_read(&dev_priv->uncore, WM2S_LP_IVB);
7132                hw->wm_lp_spr[2] = intel_uncore_read(&dev_priv->uncore, WM3S_LP_IVB);
7133        }
7134
7135        if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
7136                hw->partitioning = (intel_uncore_read(&dev_priv->uncore, WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
7137                        INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
7138        else if (IS_IVYBRIDGE(dev_priv))
7139                hw->partitioning = (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
7140                        INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
7141
7142        hw->enable_fbc_wm =
7143                !(intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) & DISP_FBC_WM_DIS);
7144}
7145
7146void intel_enable_ipc(struct drm_i915_private *dev_priv)
7147{
7148        u32 val;
7149
7150        if (!HAS_IPC(dev_priv))
7151                return;
7152
7153        val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2);
7154
7155        if (dev_priv->ipc_enabled)
7156                val |= DISP_IPC_ENABLE;
7157        else
7158                val &= ~DISP_IPC_ENABLE;
7159
7160        intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL2, val);
7161}
7162
7163static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
7164{
7165        /* Display WA #0477 WaDisableIPC: skl */
7166        if (IS_SKYLAKE(dev_priv))
7167                return false;
7168
7169        /* Display WA #1141: SKL:all KBL:all CFL */
7170        if (IS_KABYLAKE(dev_priv) ||
7171            IS_COFFEELAKE(dev_priv) ||
7172            IS_COMETLAKE(dev_priv))
7173                return dev_priv->dram_info.symmetric_memory;
7174
7175        return true;
7176}
7177
7178void intel_init_ipc(struct drm_i915_private *dev_priv)
7179{
7180        if (!HAS_IPC(dev_priv))
7181                return;
7182
7183        dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
7184
7185        intel_enable_ipc(dev_priv);
7186}
7187
7188static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
7189{
7190        /*
7191         * On Ibex Peak and Cougar Point, we need to disable clock
7192         * gating for the panel power sequencer or it will fail to
7193         * start up when no ports are active.
7194         */
7195        intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7196}
7197
7198static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
7199{
7200        enum pipe pipe;
7201
7202        for_each_pipe(dev_priv, pipe) {
7203                intel_uncore_write(&dev_priv->uncore, DSPCNTR(pipe),
7204                           intel_uncore_read(&dev_priv->uncore, DSPCNTR(pipe)) |
7205                           DISPPLANE_TRICKLE_FEED_DISABLE);
7206
7207                intel_uncore_write(&dev_priv->uncore, DSPSURF(pipe), intel_uncore_read(&dev_priv->uncore, DSPSURF(pipe)));
7208                intel_uncore_posting_read(&dev_priv->uncore, DSPSURF(pipe));
7209        }
7210}
7211
7212static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
7213{
7214        u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7215
7216        /*
7217         * Required for FBC
7218         * WaFbcDisableDpfcClockGating:ilk
7219         */
7220        dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
7221                   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
7222                   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
7223
7224        intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS0,
7225                   MARIUNIT_CLOCK_GATE_DISABLE |
7226                   SVSMUNIT_CLOCK_GATE_DISABLE);
7227        intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS1,
7228                   VFMUNIT_CLOCK_GATE_DISABLE);
7229
7230        /*
7231         * According to the spec the following bits should be set in
7232         * order to enable memory self-refresh
7233         * The bit 22/21 of 0x42004
7234         * The bit 5 of 0x42020
7235         * The bit 15 of 0x45000
7236         */
7237        intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7238                   (intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7239                    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7240        dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
7241        intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL,
7242                   (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7243                    DISP_FBC_WM_DIS));
7244
7245        /*
7246         * Based on the document from hardware guys the following bits
7247         * should be set unconditionally in order to enable FBC.
7248         * The bit 22 of 0x42000
7249         * The bit 22 of 0x42004
7250         * The bit 7,8,9 of 0x42020.
7251         */
7252        if (IS_IRONLAKE_M(dev_priv)) {
7253                /* WaFbcAsynchFlipDisableFbcQueue:ilk */
7254                intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
7255                           intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
7256                           ILK_FBCQ_DIS);
7257                intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7258                           intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7259                           ILK_DPARB_GATE);
7260        }
7261
7262        intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate);
7263
7264        intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7265                   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7266                   ILK_ELPIN_409_SELECT);
7267
7268        g4x_disable_trickle_feed(dev_priv);
7269
7270        ibx_init_clock_gating(dev_priv);
7271}
7272
7273static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
7274{
7275        enum pipe pipe;
7276        u32 val;
7277
7278        /*
7279         * On Ibex Peak and Cougar Point, we need to disable clock
7280         * gating for the panel power sequencer or it will fail to
7281         * start up when no ports are active.
7282         */
7283        intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
7284                   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
7285                   PCH_CPUNIT_CLOCK_GATE_DISABLE);
7286        intel_uncore_write(&dev_priv->uncore, SOUTH_CHICKEN2, intel_uncore_read(&dev_priv->uncore, SOUTH_CHICKEN2) |
7287                   DPLS_EDP_PPS_FIX_DIS);
7288        /* The below fixes the weird display corruption, a few pixels shifted
7289         * downward, on (only) LVDS of some HP laptops with IVY.
7290         */
7291        for_each_pipe(dev_priv, pipe) {
7292                val = intel_uncore_read(&dev_priv->uncore, TRANS_CHICKEN2(pipe));
7293                val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
7294                val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7295                if (dev_priv->vbt.fdi_rx_polarity_inverted)
7296                        val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7297                val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
7298                val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7299                intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN2(pipe), val);
7300        }
7301        /* WADP0ClockGatingDisable */
7302        for_each_pipe(dev_priv, pipe) {
7303                intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN1(pipe),
7304                           TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7305        }
7306}
7307
7308static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
7309{
7310        u32 tmp;
7311
7312        tmp = intel_uncore_read(&dev_priv->uncore, MCH_SSKPD);
7313        if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
7314                drm_dbg_kms(&dev_priv->drm,
7315                            "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
7316                            tmp);
7317}
7318
7319static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7320{
7321        u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7322
7323        intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate);
7324
7325        intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7326                   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7327                   ILK_ELPIN_409_SELECT);
7328
7329        intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1,
7330                   intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
7331                   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
7332                   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7333
7334        /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
7335         * gating disable must be set.  Failure to set it results in
7336         * flickering pixels due to Z write ordering failures after
7337         * some amount of runtime in the Mesa "fire" demo, and Unigine
7338         * Sanctuary and Tropics, and apparently anything else with
7339         * alpha test or pixel discard.
7340         *
7341         * According to the spec, bit 11 (RCCUNIT) must also be set,
7342         * but we didn't debug actual testcases to find it out.
7343         *
7344         * WaDisableRCCUnitClockGating:snb
7345         * WaDisableRCPBUnitClockGating:snb
7346         */
7347        intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
7348                   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
7349                   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
7350
7351        /*
7352         * According to the spec the following bits should be
7353         * set in order to enable memory self-refresh and fbc:
7354         * The bit21 and bit22 of 0x42000
7355         * The bit21 and bit22 of 0x42004
7356         * The bit5 and bit7 of 0x42020
7357         * The bit14 of 0x70180
7358         * The bit14 of 0x71180
7359         *
7360         * WaFbcAsynchFlipDisableFbcQueue:snb
7361         */
7362        intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
7363                   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
7364                   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7365        intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7366                   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7367                   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7368        intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D,
7369                   intel_uncore_read(&dev_priv->uncore, ILK_DSPCLK_GATE_D) |
7370                   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
7371                   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7372
7373        g4x_disable_trickle_feed(dev_priv);
7374
7375        cpt_init_clock_gating(dev_priv);
7376
7377        gen6_check_mch_setup(dev_priv);
7378}
7379
7380static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7381{
7382        /*
7383         * TODO: this bit should only be enabled when really needed, then
7384         * disabled when not needed anymore in order to save power.
7385         */
7386        if (HAS_PCH_LPT_LP(dev_priv))
7387                intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D,
7388                           intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D) |
7389                           PCH_LP_PARTITION_LEVEL_DISABLE);
7390
7391        /* WADPOClockGatingDisable:hsw */
7392        intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN1(PIPE_A),
7393                   intel_uncore_read(&dev_priv->uncore, TRANS_CHICKEN1(PIPE_A)) |
7394                   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7395}
7396
7397static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7398{
7399        if (HAS_PCH_LPT_LP(dev_priv)) {
7400                u32 val = intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D);
7401
7402                val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7403                intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, val);
7404        }
7405}
7406
7407static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
7408                                   int general_prio_credits,
7409                                   int high_prio_credits)
7410{
7411        u32 misccpctl;
7412        u32 val;
7413
7414        /* WaTempDisableDOPClkGating:bdw */
7415        misccpctl = intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL);
7416        intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7417
7418        val = intel_uncore_read(&dev_priv->uncore, GEN8_L3SQCREG1);
7419        val &= ~L3_PRIO_CREDITS_MASK;
7420        val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
7421        val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
7422        intel_uncore_write(&dev_priv->uncore, GEN8_L3SQCREG1, val);
7423
7424        /*
7425         * Wait at least 100 clocks before re-enabling clock gating.
7426         * See the definition of L3SQCREG1 in BSpec.
7427         */
7428        intel_uncore_posting_read(&dev_priv->uncore, GEN8_L3SQCREG1);
7429        udelay(1);
7430        intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl);
7431}
7432
7433static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
7434{
7435        /* Wa_1409120013:icl,ehl */
7436        intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN,
7437                   ILK_DPFC_CHICKEN_COMP_DUMMY_PIXEL);
7438
7439        /*Wa_14010594013:icl, ehl */
7440        intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
7441                         0, ICL_DELAY_PMRSP);
7442}
7443
7444static void gen12lp_init_clock_gating(struct drm_i915_private *dev_priv)
7445{
7446        /* Wa_1409120013:tgl,rkl,adl-s,dg1 */
7447        if (IS_TIGERLAKE(dev_priv) || IS_ROCKETLAKE(dev_priv) ||
7448            IS_ALDERLAKE_S(dev_priv) || IS_DG1(dev_priv))
7449                intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN,
7450                                   ILK_DPFC_CHICKEN_COMP_DUMMY_PIXEL);
7451
7452        /* Wa_1409825376:tgl (pre-prod)*/
7453        if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0))
7454                intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_3) |
7455                           TGL_VRH_GATING_DIS);
7456
7457        /* Wa_14013723622:tgl,rkl,dg1,adl-s */
7458        if (DISPLAY_VER(dev_priv) == 12)
7459                intel_uncore_rmw(&dev_priv->uncore, CLKREQ_POLICY,
7460                                 CLKREQ_POLICY_MEM_UP_OVRD, 0);
7461}
7462
7463static void adlp_init_clock_gating(struct drm_i915_private *dev_priv)
7464{
7465        gen12lp_init_clock_gating(dev_priv);
7466
7467        /* Wa_22011091694:adlp */
7468        intel_de_rmw(dev_priv, GEN9_CLKGATE_DIS_5, 0, DPCE_GATING_DIS);
7469}
7470
7471static void dg1_init_clock_gating(struct drm_i915_private *dev_priv)
7472{
7473        gen12lp_init_clock_gating(dev_priv);
7474
7475        /* Wa_1409836686:dg1[a0] */
7476        if (IS_DG1_GT_STEP(dev_priv, STEP_A0, STEP_B0))
7477                intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_3) |
7478                           DPT_GATING_DIS);
7479}
7480
7481static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
7482{
7483        if (!HAS_PCH_CNP(dev_priv))
7484                return;
7485
7486        /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
7487        intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D) |
7488                   CNP_PWM_CGE_GATING_DISABLE);
7489}
7490
7491static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
7492{
7493        cnp_init_clock_gating(dev_priv);
7494        gen9_init_clock_gating(dev_priv);
7495
7496        /* WAC6entrylatency:cfl */
7497        intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
7498                   FBC_LLC_FULLY_OPEN);
7499
7500        /*
7501         * WaFbcTurnOffFbcWatermark:cfl
7502         * Display WA #0562: cfl
7503         */
7504        intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7505                   DISP_FBC_WM_DIS);
7506
7507        /*
7508         * WaFbcNukeOnHostModify:cfl
7509         * Display WA #0873: cfl
7510         */
7511        intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7512                   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7513}
7514
7515static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
7516{
7517        gen9_init_clock_gating(dev_priv);
7518
7519        /* WAC6entrylatency:kbl */
7520        intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
7521                   FBC_LLC_FULLY_OPEN);
7522
7523        /* WaDisableSDEUnitClockGating:kbl */
7524        if (IS_KBL_GT_STEP(dev_priv, 0, STEP_C0))
7525                intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
7526                           GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7527
7528        /* WaDisableGamClockGating:kbl */
7529        if (IS_KBL_GT_STEP(dev_priv, 0, STEP_C0))
7530                intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
7531                           GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7532
7533        /*
7534         * WaFbcTurnOffFbcWatermark:kbl
7535         * Display WA #0562: kbl
7536         */
7537        intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7538                   DISP_FBC_WM_DIS);
7539
7540        /*
7541         * WaFbcNukeOnHostModify:kbl
7542         * Display WA #0873: kbl
7543         */
7544        intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7545                   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7546}
7547
7548static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
7549{
7550        gen9_init_clock_gating(dev_priv);
7551
7552        /* WaDisableDopClockGating:skl */
7553        intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL) &
7554                   ~GEN7_DOP_CLOCK_GATE_ENABLE);
7555
7556        /* WAC6entrylatency:skl */
7557        intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
7558                   FBC_LLC_FULLY_OPEN);
7559
7560        /*
7561         * WaFbcTurnOffFbcWatermark:skl
7562         * Display WA #0562: skl
7563         */
7564        intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7565                   DISP_FBC_WM_DIS);
7566
7567        /*
7568         * WaFbcNukeOnHostModify:skl
7569         * Display WA #0873: skl
7570         */
7571        intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7572                   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7573
7574        /*
7575         * WaFbcHighMemBwCorruptionAvoidance:skl
7576         * Display WA #0883: skl
7577         */
7578        intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7579                   ILK_DPFC_DISABLE_DUMMY0);
7580}
7581
7582static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
7583{
7584        enum pipe pipe;
7585
7586        /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
7587        intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A),
7588                   intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A)) |
7589                   HSW_FBCQ_DIS);
7590
7591        /* WaSwitchSolVfFArbitrationPriority:bdw */
7592        intel_uncore_write(&dev_priv->uncore, GAM_ECOCHK, intel_uncore_read(&dev_priv->uncore, GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7593
7594        /* WaPsrDPAMaskVBlankInSRD:bdw */
7595        intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
7596                   intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7597
7598        for_each_pipe(dev_priv, pipe) {
7599                /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7600                intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe),
7601                           intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe)) |
7602                           BDW_DPRS_MASK_VBLANK_SRD);
7603        }
7604
7605        /* WaVSRefCountFullforceMissDisable:bdw */
7606        /* WaDSRefCountFullforceMissDisable:bdw */
7607        intel_uncore_write(&dev_priv->uncore, GEN7_FF_THREAD_MODE,
7608                   intel_uncore_read(&dev_priv->uncore, GEN7_FF_THREAD_MODE) &
7609                   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7610
7611        intel_uncore_write(&dev_priv->uncore, GEN6_RC_SLEEP_PSMI_CONTROL,
7612                   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7613
7614        /* WaDisableSDEUnitClockGating:bdw */
7615        intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
7616                   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7617
7618        /* WaProgramL3SqcReg1Default:bdw */
7619        gen8_set_l3sqc_credits(dev_priv, 30, 2);
7620
7621        /* WaKVMNotificationOnConfigChange:bdw */
7622        intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR2_1, intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR2_1)
7623                   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7624
7625        lpt_init_clock_gating(dev_priv);
7626
7627        /* WaDisableDopClockGating:bdw
7628         *
7629         * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
7630         * clock gating.
7631         */
7632        intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1,
7633                   intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
7634}
7635
7636static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
7637{
7638        /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
7639        intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A),
7640                   intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A)) |
7641                   HSW_FBCQ_DIS);
7642
7643        /* This is required by WaCatErrorRejectionIssue:hsw */
7644        intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7645                   intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7646                   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7647
7648        /* WaSwitchSolVfFArbitrationPriority:hsw */
7649        intel_uncore_write(&dev_priv->uncore, GAM_ECOCHK, intel_uncore_read(&dev_priv->uncore, GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7650
7651        lpt_init_clock_gating(dev_priv);
7652}
7653
7654static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
7655{
7656        u32 snpcr;
7657
7658        intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7659
7660        /* WaFbcAsynchFlipDisableFbcQueue:ivb */
7661        intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
7662                   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
7663                   ILK_FBCQ_DIS);
7664
7665        /* WaDisableBackToBackFlipFix:ivb */
7666        intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3,
7667                   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7668                   CHICKEN3_DGMG_DONE_FIX_DISABLE);
7669
7670        if (IS_IVB_GT1(dev_priv))
7671                intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
7672                           _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7673        else {
7674                /* must write both registers */
7675                intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
7676                           _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7677                intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2_GT2,
7678                           _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7679        }
7680
7681        /*
7682         * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7683         * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7684         */
7685        intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
7686                   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7687
7688        /* This is required by WaCatErrorRejectionIssue:ivb */
7689        intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7690                        intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7691                        GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7692
7693        g4x_disable_trickle_feed(dev_priv);
7694
7695        snpcr = intel_uncore_read(&dev_priv->uncore, GEN6_MBCUNIT_SNPCR);
7696        snpcr &= ~GEN6_MBC_SNPCR_MASK;
7697        snpcr |= GEN6_MBC_SNPCR_MED;
7698        intel_uncore_write(&dev_priv->uncore, GEN6_MBCUNIT_SNPCR, snpcr);
7699
7700        if (!HAS_PCH_NOP(dev_priv))
7701                cpt_init_clock_gating(dev_priv);
7702
7703        gen6_check_mch_setup(dev_priv);
7704}
7705
7706static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
7707{
7708        /* WaDisableBackToBackFlipFix:vlv */
7709        intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3,
7710                   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7711                   CHICKEN3_DGMG_DONE_FIX_DISABLE);
7712
7713        /* WaDisableDopClockGating:vlv */
7714        intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
7715                   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7716
7717        /* This is required by WaCatErrorRejectionIssue:vlv */
7718        intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7719                   intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7720                   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7721
7722        /*
7723         * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7724         * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7725         */
7726        intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
7727                   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7728
7729        /* WaDisableL3Bank2xClockGate:vlv
7730         * Disabling L3 clock gating- MMIO 940c[25] = 1
7731         * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7732        intel_uncore_write(&dev_priv->uncore, GEN7_UCGCTL4,
7733                   intel_uncore_read(&dev_priv->uncore, GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7734
7735        /*
7736         * WaDisableVLVClockGating_VBIIssue:vlv
7737         * Disable clock gating on th GCFG unit to prevent a delay
7738         * in the reporting of vblank events.
7739         */
7740        intel_uncore_write(&dev_priv->uncore, VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7741}
7742
7743static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
7744{
7745        /* WaVSRefCountFullforceMissDisable:chv */
7746        /* WaDSRefCountFullforceMissDisable:chv */
7747        intel_uncore_write(&dev_priv->uncore, GEN7_FF_THREAD_MODE,
7748                   intel_uncore_read(&dev_priv->uncore, GEN7_FF_THREAD_MODE) &
7749                   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7750
7751        /* WaDisableSemaphoreAndSyncFlipWait:chv */
7752        intel_uncore_write(&dev_priv->uncore, GEN6_RC_SLEEP_PSMI_CONTROL,
7753                   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7754
7755        /* WaDisableCSUnitClockGating:chv */
7756        intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
7757                   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7758
7759        /* WaDisableSDEUnitClockGating:chv */
7760        intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
7761                   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7762
7763        /*
7764         * WaProgramL3SqcReg1Default:chv
7765         * See gfxspecs/Related Documents/Performance Guide/
7766         * LSQC Setting Recommendations.
7767         */
7768        gen8_set_l3sqc_credits(dev_priv, 38, 2);
7769}
7770
7771static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7772{
7773        u32 dspclk_gate;
7774
7775        intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, 0);
7776        intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7777                   GS_UNIT_CLOCK_GATE_DISABLE |
7778                   CL_UNIT_CLOCK_GATE_DISABLE);
7779        intel_uncore_write(&dev_priv->uncore, RAMCLK_GATE_D, 0);
7780        dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7781                OVRUNIT_CLOCK_GATE_DISABLE |
7782                OVCUNIT_CLOCK_GATE_DISABLE;
7783        if (IS_GM45(dev_priv))
7784                dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7785        intel_uncore_write(&dev_priv->uncore, DSPCLK_GATE_D, dspclk_gate);
7786
7787        g4x_disable_trickle_feed(dev_priv);
7788}
7789
7790static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
7791{
7792        struct intel_uncore *uncore = &dev_priv->uncore;
7793
7794        intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7795        intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
7796        intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
7797        intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
7798        intel_uncore_write16(uncore, DEUC, 0);
7799        intel_uncore_write(uncore,
7800                           MI_ARB_STATE,
7801                           _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7802}
7803
7804static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7805{
7806        intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7807                   I965_RCC_CLOCK_GATE_DISABLE |
7808                   I965_RCPB_CLOCK_GATE_DISABLE |
7809                   I965_ISC_CLOCK_GATE_DISABLE |
7810                   I965_FBC_CLOCK_GATE_DISABLE);
7811        intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, 0);
7812        intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE,
7813                   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7814}
7815
7816static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7817{
7818        u32 dstate = intel_uncore_read(&dev_priv->uncore, D_STATE);
7819
7820        dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7821                DSTATE_DOT_CLOCK_GATING;
7822        intel_uncore_write(&dev_priv->uncore, D_STATE, dstate);
7823
7824        if (IS_PINEVIEW(dev_priv))
7825                intel_uncore_write(&dev_priv->uncore, ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7826
7827        /* IIR "flip pending" means done if this bit is set */
7828        intel_uncore_write(&dev_priv->uncore, ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7829
7830        /* interrupts should cause a wake up from C3 */
7831        intel_uncore_write(&dev_priv->uncore, INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7832
7833        /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7834        intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7835
7836        intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE,
7837                   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7838}
7839
7840static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7841{
7842        intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7843
7844        /* interrupts should cause a wake up from C3 */
7845        intel_uncore_write(&dev_priv->uncore, MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7846                   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7847
7848        intel_uncore_write(&dev_priv->uncore, MEM_MODE,
7849                   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7850
7851        /*
7852         * Have FBC ignore 3D activity since we use software
7853         * render tracking, and otherwise a pure 3D workload
7854         * (even if it just renders a single frame and then does
7855         * abosultely nothing) would not allow FBC to recompress
7856         * until a 2D blit occurs.
7857         */
7858        intel_uncore_write(&dev_priv->uncore, SCPD0,
7859                   _MASKED_BIT_ENABLE(SCPD_FBC_IGNORE_3D));
7860}
7861
7862static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7863{
7864        intel_uncore_write(&dev_priv->uncore, MEM_MODE,
7865                   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7866                   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7867}
7868
7869void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7870{
7871        dev_priv->clock_gating_funcs->init_clock_gating(dev_priv);
7872}
7873
7874void intel_suspend_hw(struct drm_i915_private *dev_priv)
7875{
7876        if (HAS_PCH_LPT(dev_priv))
7877                lpt_suspend_hw(dev_priv);
7878}
7879
7880static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7881{
7882        drm_dbg_kms(&dev_priv->drm,
7883                    "No clock gating settings or workarounds applied.\n");
7884}
7885
7886#define CG_FUNCS(platform)                                              \
7887static const struct drm_i915_clock_gating_funcs platform##_clock_gating_funcs = { \
7888        .init_clock_gating = platform##_init_clock_gating,              \
7889}
7890
7891CG_FUNCS(adlp);
7892CG_FUNCS(dg1);
7893CG_FUNCS(gen12lp);
7894CG_FUNCS(icl);
7895CG_FUNCS(cfl);
7896CG_FUNCS(skl);
7897CG_FUNCS(kbl);
7898CG_FUNCS(bxt);
7899CG_FUNCS(glk);
7900CG_FUNCS(bdw);
7901CG_FUNCS(chv);
7902CG_FUNCS(hsw);
7903CG_FUNCS(ivb);
7904CG_FUNCS(vlv);
7905CG_FUNCS(gen6);
7906CG_FUNCS(ilk);
7907CG_FUNCS(g4x);
7908CG_FUNCS(i965gm);
7909CG_FUNCS(i965g);
7910CG_FUNCS(gen3);
7911CG_FUNCS(i85x);
7912CG_FUNCS(i830);
7913CG_FUNCS(nop);
7914#undef CG_FUNCS
7915
7916/**
7917 * intel_init_clock_gating_hooks - setup the clock gating hooks
7918 * @dev_priv: device private
7919 *
7920 * Setup the hooks that configure which clocks of a given platform can be
7921 * gated and also apply various GT and display specific workarounds for these
7922 * platforms. Note that some GT specific workarounds are applied separately
7923 * when GPU contexts or batchbuffers start their execution.
7924 */
7925void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7926{
7927        if (IS_ALDERLAKE_P(dev_priv))
7928                dev_priv->clock_gating_funcs = &adlp_clock_gating_funcs;
7929        else if (IS_DG1(dev_priv))
7930                dev_priv->clock_gating_funcs = &dg1_clock_gating_funcs;
7931        else if (GRAPHICS_VER(dev_priv) == 12)
7932                dev_priv->clock_gating_funcs = &gen12lp_clock_gating_funcs;
7933        else if (GRAPHICS_VER(dev_priv) == 11)
7934                dev_priv->clock_gating_funcs = &icl_clock_gating_funcs;
7935        else if (IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv))
7936                dev_priv->clock_gating_funcs = &cfl_clock_gating_funcs;
7937        else if (IS_SKYLAKE(dev_priv))
7938                dev_priv->clock_gating_funcs = &skl_clock_gating_funcs;
7939        else if (IS_KABYLAKE(dev_priv))
7940                dev_priv->clock_gating_funcs = &kbl_clock_gating_funcs;
7941        else if (IS_BROXTON(dev_priv))
7942                dev_priv->clock_gating_funcs = &bxt_clock_gating_funcs;
7943        else if (IS_GEMINILAKE(dev_priv))
7944                dev_priv->clock_gating_funcs = &glk_clock_gating_funcs;
7945        else if (IS_BROADWELL(dev_priv))
7946                dev_priv->clock_gating_funcs = &bdw_clock_gating_funcs;
7947        else if (IS_CHERRYVIEW(dev_priv))
7948                dev_priv->clock_gating_funcs = &chv_clock_gating_funcs;
7949        else if (IS_HASWELL(dev_priv))
7950                dev_priv->clock_gating_funcs = &hsw_clock_gating_funcs;
7951        else if (IS_IVYBRIDGE(dev_priv))
7952                dev_priv->clock_gating_funcs = &ivb_clock_gating_funcs;
7953        else if (IS_VALLEYVIEW(dev_priv))
7954                dev_priv->clock_gating_funcs = &vlv_clock_gating_funcs;
7955        else if (GRAPHICS_VER(dev_priv) == 6)
7956                dev_priv->clock_gating_funcs = &gen6_clock_gating_funcs;
7957        else if (GRAPHICS_VER(dev_priv) == 5)
7958                dev_priv->clock_gating_funcs = &ilk_clock_gating_funcs;
7959        else if (IS_G4X(dev_priv))
7960                dev_priv->clock_gating_funcs = &g4x_clock_gating_funcs;
7961        else if (IS_I965GM(dev_priv))
7962                dev_priv->clock_gating_funcs = &i965gm_clock_gating_funcs;
7963        else if (IS_I965G(dev_priv))
7964                dev_priv->clock_gating_funcs = &i965g_clock_gating_funcs;
7965        else if (GRAPHICS_VER(dev_priv) == 3)
7966                dev_priv->clock_gating_funcs = &gen3_clock_gating_funcs;
7967        else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7968                dev_priv->clock_gating_funcs = &i85x_clock_gating_funcs;
7969        else if (GRAPHICS_VER(dev_priv) == 2)
7970                dev_priv->clock_gating_funcs = &i830_clock_gating_funcs;
7971        else {
7972                MISSING_CASE(INTEL_DEVID(dev_priv));
7973                dev_priv->clock_gating_funcs = &nop_clock_gating_funcs;
7974        }
7975}
7976
7977static const struct drm_i915_wm_disp_funcs skl_wm_funcs = {
7978        .compute_global_watermarks = skl_compute_wm,
7979};
7980
7981static const struct drm_i915_wm_disp_funcs ilk_wm_funcs = {
7982        .compute_pipe_wm = ilk_compute_pipe_wm,
7983        .compute_intermediate_wm = ilk_compute_intermediate_wm,
7984        .initial_watermarks = ilk_initial_watermarks,
7985        .optimize_watermarks = ilk_optimize_watermarks,
7986};
7987
7988static const struct drm_i915_wm_disp_funcs vlv_wm_funcs = {
7989        .compute_pipe_wm = vlv_compute_pipe_wm,
7990        .compute_intermediate_wm = vlv_compute_intermediate_wm,
7991        .initial_watermarks = vlv_initial_watermarks,
7992        .optimize_watermarks = vlv_optimize_watermarks,
7993        .atomic_update_watermarks = vlv_atomic_update_fifo,
7994};
7995
7996static const struct drm_i915_wm_disp_funcs g4x_wm_funcs = {
7997        .compute_pipe_wm = g4x_compute_pipe_wm,
7998        .compute_intermediate_wm = g4x_compute_intermediate_wm,
7999        .initial_watermarks = g4x_initial_watermarks,
8000        .optimize_watermarks = g4x_optimize_watermarks,
8001};
8002
8003static const struct drm_i915_wm_disp_funcs pnv_wm_funcs = {
8004        .update_wm = pnv_update_wm,
8005};
8006
8007static const struct drm_i915_wm_disp_funcs i965_wm_funcs = {
8008        .update_wm = i965_update_wm,
8009};
8010
8011static const struct drm_i915_wm_disp_funcs i9xx_wm_funcs = {
8012        .update_wm = i9xx_update_wm,
8013};
8014
8015static const struct drm_i915_wm_disp_funcs i845_wm_funcs = {
8016        .update_wm = i845_update_wm,
8017};
8018
8019static const struct drm_i915_wm_disp_funcs nop_funcs = {
8020};
8021
8022/* Set up chip specific power management-related functions */
8023void intel_init_pm(struct drm_i915_private *dev_priv)
8024{
8025        /* For cxsr */
8026        if (IS_PINEVIEW(dev_priv))
8027                pnv_get_mem_freq(dev_priv);
8028        else if (GRAPHICS_VER(dev_priv) == 5)
8029                ilk_get_mem_freq(dev_priv);
8030
8031        if (intel_has_sagv(dev_priv))
8032                skl_setup_sagv_block_time(dev_priv);
8033
8034        /* For FIFO watermark updates */
8035        if (DISPLAY_VER(dev_priv) >= 9) {
8036                skl_setup_wm_latency(dev_priv);
8037                dev_priv->wm_disp = &skl_wm_funcs;
8038        } else if (HAS_PCH_SPLIT(dev_priv)) {
8039                ilk_setup_wm_latency(dev_priv);
8040
8041                if ((DISPLAY_VER(dev_priv) == 5 && dev_priv->wm.pri_latency[1] &&
8042                     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
8043                    (DISPLAY_VER(dev_priv) != 5 && dev_priv->wm.pri_latency[0] &&
8044                     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
8045                        dev_priv->wm_disp = &ilk_wm_funcs;
8046                } else {
8047                        drm_dbg_kms(&dev_priv->drm,
8048                                    "Failed to read display plane latency. "
8049                                    "Disable CxSR\n");
8050                        dev_priv->wm_disp = &nop_funcs;
8051                }
8052        } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8053                vlv_setup_wm_latency(dev_priv);
8054                dev_priv->wm_disp = &vlv_wm_funcs;
8055        } else if (IS_G4X(dev_priv)) {
8056                g4x_setup_wm_latency(dev_priv);
8057                dev_priv->wm_disp = &g4x_wm_funcs;
8058        } else if (IS_PINEVIEW(dev_priv)) {
8059                if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
8060                                            dev_priv->is_ddr3,
8061                                            dev_priv->fsb_freq,
8062                                            dev_priv->mem_freq)) {
8063                        drm_info(&dev_priv->drm,
8064                                 "failed to find known CxSR latency "
8065                                 "(found ddr%s fsb freq %d, mem freq %d), "
8066                                 "disabling CxSR\n",
8067                                 (dev_priv->is_ddr3 == 1) ? "3" : "2",
8068                                 dev_priv->fsb_freq, dev_priv->mem_freq);
8069                        /* Disable CxSR and never update its watermark again */
8070                        intel_set_memory_cxsr(dev_priv, false);
8071                        dev_priv->wm_disp = &nop_funcs;
8072                } else
8073                        dev_priv->wm_disp = &pnv_wm_funcs;
8074        } else if (DISPLAY_VER(dev_priv) == 4) {
8075                dev_priv->wm_disp = &i965_wm_funcs;
8076        } else if (DISPLAY_VER(dev_priv) == 3) {
8077                dev_priv->wm_disp = &i9xx_wm_funcs;
8078        } else if (DISPLAY_VER(dev_priv) == 2) {
8079                if (INTEL_NUM_PIPES(dev_priv) == 1)
8080                        dev_priv->wm_disp = &i845_wm_funcs;
8081                else
8082                        dev_priv->wm_disp = &i9xx_wm_funcs;
8083        } else {
8084                drm_err(&dev_priv->drm,
8085                        "unexpected fall-through in %s\n", __func__);
8086                dev_priv->wm_disp = &nop_funcs;
8087        }
8088}
8089
8090void intel_pm_setup(struct drm_i915_private *dev_priv)
8091{
8092        dev_priv->runtime_pm.suspended = false;
8093        atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
8094}
8095
8096static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj)
8097{
8098        struct intel_dbuf_state *dbuf_state;
8099
8100        dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL);
8101        if (!dbuf_state)
8102                return NULL;
8103
8104        return &dbuf_state->base;
8105}
8106
8107static void intel_dbuf_destroy_state(struct intel_global_obj *obj,
8108                                     struct intel_global_state *state)
8109{
8110        kfree(state);
8111}
8112
8113static const struct intel_global_state_funcs intel_dbuf_funcs = {
8114        .atomic_duplicate_state = intel_dbuf_duplicate_state,
8115        .atomic_destroy_state = intel_dbuf_destroy_state,
8116};
8117
8118struct intel_dbuf_state *
8119intel_atomic_get_dbuf_state(struct intel_atomic_state *state)
8120{
8121        struct drm_i915_private *dev_priv = to_i915(state->base.dev);
8122        struct intel_global_state *dbuf_state;
8123
8124        dbuf_state = intel_atomic_get_global_obj_state(state, &dev_priv->dbuf.obj);
8125        if (IS_ERR(dbuf_state))
8126                return ERR_CAST(dbuf_state);
8127
8128        return to_intel_dbuf_state(dbuf_state);
8129}
8130
8131int intel_dbuf_init(struct drm_i915_private *dev_priv)
8132{
8133        struct intel_dbuf_state *dbuf_state;
8134
8135        dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL);
8136        if (!dbuf_state)
8137                return -ENOMEM;
8138
8139        intel_atomic_global_obj_init(dev_priv, &dev_priv->dbuf.obj,
8140                                     &dbuf_state->base, &intel_dbuf_funcs);
8141
8142        return 0;
8143}
8144
8145/*
8146 * Configure MBUS_CTL and all DBUF_CTL_S of each slice to join_mbus state before
8147 * update the request state of all DBUS slices.
8148 */
8149static void update_mbus_pre_enable(struct intel_atomic_state *state)
8150{
8151        struct drm_i915_private *dev_priv = to_i915(state->base.dev);
8152        u32 mbus_ctl, dbuf_min_tracker_val;
8153        enum dbuf_slice slice;
8154        const struct intel_dbuf_state *dbuf_state =
8155                intel_atomic_get_new_dbuf_state(state);
8156
8157        if (!IS_ALDERLAKE_P(dev_priv))
8158                return;
8159
8160        /*
8161         * TODO: Implement vblank synchronized MBUS joining changes.
8162         * Must be properly coordinated with dbuf reprogramming.
8163         */
8164        if (dbuf_state->joined_mbus) {
8165                mbus_ctl = MBUS_HASHING_MODE_1x4 | MBUS_JOIN |
8166                        MBUS_JOIN_PIPE_SELECT_NONE;
8167                dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(3);
8168        } else {
8169                mbus_ctl = MBUS_HASHING_MODE_2x2 |
8170                        MBUS_JOIN_PIPE_SELECT_NONE;
8171                dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(1);
8172        }
8173
8174        intel_de_rmw(dev_priv, MBUS_CTL,
8175                     MBUS_HASHING_MODE_MASK | MBUS_JOIN |
8176                     MBUS_JOIN_PIPE_SELECT_MASK, mbus_ctl);
8177
8178        for_each_dbuf_slice(dev_priv, slice)
8179                intel_de_rmw(dev_priv, DBUF_CTL_S(slice),
8180                             DBUF_MIN_TRACKER_STATE_SERVICE_MASK,
8181                             dbuf_min_tracker_val);
8182}
8183
8184void intel_dbuf_pre_plane_update(struct intel_atomic_state *state)
8185{
8186        struct drm_i915_private *dev_priv = to_i915(state->base.dev);
8187        const struct intel_dbuf_state *new_dbuf_state =
8188                intel_atomic_get_new_dbuf_state(state);
8189        const struct intel_dbuf_state *old_dbuf_state =
8190                intel_atomic_get_old_dbuf_state(state);
8191
8192        if (!new_dbuf_state ||
8193            ((new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
8194            && (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus)))
8195                return;
8196
8197        WARN_ON(!new_dbuf_state->base.changed);
8198
8199        update_mbus_pre_enable(state);
8200        gen9_dbuf_slices_update(dev_priv,
8201                                old_dbuf_state->enabled_slices |
8202                                new_dbuf_state->enabled_slices);
8203}
8204
8205void intel_dbuf_post_plane_update(struct intel_atomic_state *state)
8206{
8207        struct drm_i915_private *dev_priv = to_i915(state->base.dev);
8208        const struct intel_dbuf_state *new_dbuf_state =
8209                intel_atomic_get_new_dbuf_state(state);
8210        const struct intel_dbuf_state *old_dbuf_state =
8211                intel_atomic_get_old_dbuf_state(state);
8212
8213        if (!new_dbuf_state ||
8214            ((new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
8215            && (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus)))
8216                return;
8217
8218        WARN_ON(!new_dbuf_state->base.changed);
8219
8220        gen9_dbuf_slices_update(dev_priv,
8221                                new_dbuf_state->enabled_slices);
8222}
8223