linux/drivers/iio/pressure/bmp280-core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com>
   4 * Copyright (c) 2012 Bosch Sensortec GmbH
   5 * Copyright (c) 2012 Unixphere AB
   6 * Copyright (c) 2014 Intel Corporation
   7 * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org>
   8 *
   9 * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor.
  10 *
  11 * Datasheet:
  12 * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP180-DS000-121.pdf
  13 * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
  14 * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280_DS001-11.pdf
  15 */
  16
  17#define pr_fmt(fmt) "bmp280: " fmt
  18
  19#include <linux/device.h>
  20#include <linux/module.h>
  21#include <linux/regmap.h>
  22#include <linux/delay.h>
  23#include <linux/iio/iio.h>
  24#include <linux/iio/sysfs.h>
  25#include <linux/gpio/consumer.h>
  26#include <linux/regulator/consumer.h>
  27#include <linux/interrupt.h>
  28#include <linux/irq.h> /* For irq_get_irq_data() */
  29#include <linux/completion.h>
  30#include <linux/pm_runtime.h>
  31#include <linux/random.h>
  32
  33#include "bmp280.h"
  34
  35/*
  36 * These enums are used for indexing into the array of calibration
  37 * coefficients for BMP180.
  38 */
  39enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD };
  40
  41struct bmp180_calib {
  42        s16 AC1;
  43        s16 AC2;
  44        s16 AC3;
  45        u16 AC4;
  46        u16 AC5;
  47        u16 AC6;
  48        s16 B1;
  49        s16 B2;
  50        s16 MB;
  51        s16 MC;
  52        s16 MD;
  53};
  54
  55/* See datasheet Section 4.2.2. */
  56struct bmp280_calib {
  57        u16 T1;
  58        s16 T2;
  59        s16 T3;
  60        u16 P1;
  61        s16 P2;
  62        s16 P3;
  63        s16 P4;
  64        s16 P5;
  65        s16 P6;
  66        s16 P7;
  67        s16 P8;
  68        s16 P9;
  69        u8  H1;
  70        s16 H2;
  71        u8  H3;
  72        s16 H4;
  73        s16 H5;
  74        s8  H6;
  75};
  76
  77static const char *const bmp280_supply_names[] = {
  78        "vddd", "vdda"
  79};
  80
  81#define BMP280_NUM_SUPPLIES ARRAY_SIZE(bmp280_supply_names)
  82
  83struct bmp280_data {
  84        struct device *dev;
  85        struct mutex lock;
  86        struct regmap *regmap;
  87        struct completion done;
  88        bool use_eoc;
  89        const struct bmp280_chip_info *chip_info;
  90        union {
  91                struct bmp180_calib bmp180;
  92                struct bmp280_calib bmp280;
  93        } calib;
  94        struct regulator_bulk_data supplies[BMP280_NUM_SUPPLIES];
  95        unsigned int start_up_time; /* in microseconds */
  96
  97        /* log of base 2 of oversampling rate */
  98        u8 oversampling_press;
  99        u8 oversampling_temp;
 100        u8 oversampling_humid;
 101
 102        /*
 103         * Carryover value from temperature conversion, used in pressure
 104         * calculation.
 105         */
 106        s32 t_fine;
 107};
 108
 109struct bmp280_chip_info {
 110        const int *oversampling_temp_avail;
 111        int num_oversampling_temp_avail;
 112
 113        const int *oversampling_press_avail;
 114        int num_oversampling_press_avail;
 115
 116        const int *oversampling_humid_avail;
 117        int num_oversampling_humid_avail;
 118
 119        int (*chip_config)(struct bmp280_data *);
 120        int (*read_temp)(struct bmp280_data *, int *);
 121        int (*read_press)(struct bmp280_data *, int *, int *);
 122        int (*read_humid)(struct bmp280_data *, int *, int *);
 123};
 124
 125/*
 126 * These enums are used for indexing into the array of compensation
 127 * parameters for BMP280.
 128 */
 129enum { T1, T2, T3 };
 130enum { P1, P2, P3, P4, P5, P6, P7, P8, P9 };
 131
 132static const struct iio_chan_spec bmp280_channels[] = {
 133        {
 134                .type = IIO_PRESSURE,
 135                .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
 136                                      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
 137        },
 138        {
 139                .type = IIO_TEMP,
 140                .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
 141                                      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
 142        },
 143        {
 144                .type = IIO_HUMIDITYRELATIVE,
 145                .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
 146                                      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
 147        },
 148};
 149
 150static int bmp280_read_calib(struct bmp280_data *data,
 151                             struct bmp280_calib *calib,
 152                             unsigned int chip)
 153{
 154        int ret;
 155        unsigned int tmp;
 156        __le16 l16;
 157        __be16 b16;
 158        struct device *dev = data->dev;
 159        __le16 t_buf[BMP280_COMP_TEMP_REG_COUNT / 2];
 160        __le16 p_buf[BMP280_COMP_PRESS_REG_COUNT / 2];
 161
 162        /* Read temperature calibration values. */
 163        ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START,
 164                               t_buf, BMP280_COMP_TEMP_REG_COUNT);
 165        if (ret < 0) {
 166                dev_err(data->dev,
 167                        "failed to read temperature calibration parameters\n");
 168                return ret;
 169        }
 170
 171        /* Toss the temperature calibration data into the entropy pool */
 172        add_device_randomness(t_buf, sizeof(t_buf));
 173
 174        calib->T1 = le16_to_cpu(t_buf[T1]);
 175        calib->T2 = le16_to_cpu(t_buf[T2]);
 176        calib->T3 = le16_to_cpu(t_buf[T3]);
 177
 178        /* Read pressure calibration values. */
 179        ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_PRESS_START,
 180                               p_buf, BMP280_COMP_PRESS_REG_COUNT);
 181        if (ret < 0) {
 182                dev_err(data->dev,
 183                        "failed to read pressure calibration parameters\n");
 184                return ret;
 185        }
 186
 187        /* Toss the pressure calibration data into the entropy pool */
 188        add_device_randomness(p_buf, sizeof(p_buf));
 189
 190        calib->P1 = le16_to_cpu(p_buf[P1]);
 191        calib->P2 = le16_to_cpu(p_buf[P2]);
 192        calib->P3 = le16_to_cpu(p_buf[P3]);
 193        calib->P4 = le16_to_cpu(p_buf[P4]);
 194        calib->P5 = le16_to_cpu(p_buf[P5]);
 195        calib->P6 = le16_to_cpu(p_buf[P6]);
 196        calib->P7 = le16_to_cpu(p_buf[P7]);
 197        calib->P8 = le16_to_cpu(p_buf[P8]);
 198        calib->P9 = le16_to_cpu(p_buf[P9]);
 199
 200        /*
 201         * Read humidity calibration values.
 202         * Due to some odd register addressing we cannot just
 203         * do a big bulk read. Instead, we have to read each Hx
 204         * value separately and sometimes do some bit shifting...
 205         * Humidity data is only available on BME280.
 206         */
 207        if (chip != BME280_CHIP_ID)
 208                return 0;
 209
 210        ret = regmap_read(data->regmap, BMP280_REG_COMP_H1, &tmp);
 211        if (ret < 0) {
 212                dev_err(dev, "failed to read H1 comp value\n");
 213                return ret;
 214        }
 215        calib->H1 = tmp;
 216
 217        ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H2, &l16, 2);
 218        if (ret < 0) {
 219                dev_err(dev, "failed to read H2 comp value\n");
 220                return ret;
 221        }
 222        calib->H2 = sign_extend32(le16_to_cpu(l16), 15);
 223
 224        ret = regmap_read(data->regmap, BMP280_REG_COMP_H3, &tmp);
 225        if (ret < 0) {
 226                dev_err(dev, "failed to read H3 comp value\n");
 227                return ret;
 228        }
 229        calib->H3 = tmp;
 230
 231        ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H4, &b16, 2);
 232        if (ret < 0) {
 233                dev_err(dev, "failed to read H4 comp value\n");
 234                return ret;
 235        }
 236        calib->H4 = sign_extend32(((be16_to_cpu(b16) >> 4) & 0xff0) |
 237                                  (be16_to_cpu(b16) & 0xf), 11);
 238
 239        ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H5, &l16, 2);
 240        if (ret < 0) {
 241                dev_err(dev, "failed to read H5 comp value\n");
 242                return ret;
 243        }
 244        calib->H5 = sign_extend32(((le16_to_cpu(l16) >> 4) & 0xfff), 11);
 245
 246        ret = regmap_read(data->regmap, BMP280_REG_COMP_H6, &tmp);
 247        if (ret < 0) {
 248                dev_err(dev, "failed to read H6 comp value\n");
 249                return ret;
 250        }
 251        calib->H6 = sign_extend32(tmp, 7);
 252
 253        return 0;
 254}
 255/*
 256 * Returns humidity in percent, resolution is 0.01 percent. Output value of
 257 * "47445" represents 47445/1024 = 46.333 %RH.
 258 *
 259 * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula".
 260 */
 261static u32 bmp280_compensate_humidity(struct bmp280_data *data,
 262                                      s32 adc_humidity)
 263{
 264        s32 var;
 265        struct bmp280_calib *calib = &data->calib.bmp280;
 266
 267        var = ((s32)data->t_fine) - (s32)76800;
 268        var = ((((adc_humidity << 14) - (calib->H4 << 20) - (calib->H5 * var))
 269                + (s32)16384) >> 15) * (((((((var * calib->H6) >> 10)
 270                * (((var * (s32)calib->H3) >> 11) + (s32)32768)) >> 10)
 271                + (s32)2097152) * calib->H2 + 8192) >> 14);
 272        var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)calib->H1) >> 4;
 273
 274        var = clamp_val(var, 0, 419430400);
 275
 276        return var >> 12;
 277};
 278
 279/*
 280 * Returns temperature in DegC, resolution is 0.01 DegC.  Output value of
 281 * "5123" equals 51.23 DegC.  t_fine carries fine temperature as global
 282 * value.
 283 *
 284 * Taken from datasheet, Section 3.11.3, "Compensation formula".
 285 */
 286static s32 bmp280_compensate_temp(struct bmp280_data *data,
 287                                  s32 adc_temp)
 288{
 289        s32 var1, var2;
 290        struct bmp280_calib *calib = &data->calib.bmp280;
 291
 292        var1 = (((adc_temp >> 3) - ((s32)calib->T1 << 1)) *
 293                ((s32)calib->T2)) >> 11;
 294        var2 = (((((adc_temp >> 4) - ((s32)calib->T1)) *
 295                  ((adc_temp >> 4) - ((s32)calib->T1))) >> 12) *
 296                ((s32)calib->T3)) >> 14;
 297        data->t_fine = var1 + var2;
 298
 299        return (data->t_fine * 5 + 128) >> 8;
 300}
 301
 302/*
 303 * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24
 304 * integer bits and 8 fractional bits).  Output value of "24674867"
 305 * represents 24674867/256 = 96386.2 Pa = 963.862 hPa
 306 *
 307 * Taken from datasheet, Section 3.11.3, "Compensation formula".
 308 */
 309static u32 bmp280_compensate_press(struct bmp280_data *data,
 310                                   s32 adc_press)
 311{
 312        s64 var1, var2, p;
 313        struct bmp280_calib *calib = &data->calib.bmp280;
 314
 315        var1 = ((s64)data->t_fine) - 128000;
 316        var2 = var1 * var1 * (s64)calib->P6;
 317        var2 += (var1 * (s64)calib->P5) << 17;
 318        var2 += ((s64)calib->P4) << 35;
 319        var1 = ((var1 * var1 * (s64)calib->P3) >> 8) +
 320                ((var1 * (s64)calib->P2) << 12);
 321        var1 = ((((s64)1) << 47) + var1) * ((s64)calib->P1) >> 33;
 322
 323        if (var1 == 0)
 324                return 0;
 325
 326        p = ((((s64)1048576 - adc_press) << 31) - var2) * 3125;
 327        p = div64_s64(p, var1);
 328        var1 = (((s64)calib->P9) * (p >> 13) * (p >> 13)) >> 25;
 329        var2 = ((s64)(calib->P8) * p) >> 19;
 330        p = ((p + var1 + var2) >> 8) + (((s64)calib->P7) << 4);
 331
 332        return (u32)p;
 333}
 334
 335static int bmp280_read_temp(struct bmp280_data *data,
 336                            int *val)
 337{
 338        int ret;
 339        __be32 tmp = 0;
 340        s32 adc_temp, comp_temp;
 341
 342        ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB, &tmp, 3);
 343        if (ret < 0) {
 344                dev_err(data->dev, "failed to read temperature\n");
 345                return ret;
 346        }
 347
 348        adc_temp = be32_to_cpu(tmp) >> 12;
 349        if (adc_temp == BMP280_TEMP_SKIPPED) {
 350                /* reading was skipped */
 351                dev_err(data->dev, "reading temperature skipped\n");
 352                return -EIO;
 353        }
 354        comp_temp = bmp280_compensate_temp(data, adc_temp);
 355
 356        /*
 357         * val might be NULL if we're called by the read_press routine,
 358         * who only cares about the carry over t_fine value.
 359         */
 360        if (val) {
 361                *val = comp_temp * 10;
 362                return IIO_VAL_INT;
 363        }
 364
 365        return 0;
 366}
 367
 368static int bmp280_read_press(struct bmp280_data *data,
 369                             int *val, int *val2)
 370{
 371        int ret;
 372        __be32 tmp = 0;
 373        s32 adc_press;
 374        u32 comp_press;
 375
 376        /* Read and compensate temperature so we get a reading of t_fine. */
 377        ret = bmp280_read_temp(data, NULL);
 378        if (ret < 0)
 379                return ret;
 380
 381        ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB, &tmp, 3);
 382        if (ret < 0) {
 383                dev_err(data->dev, "failed to read pressure\n");
 384                return ret;
 385        }
 386
 387        adc_press = be32_to_cpu(tmp) >> 12;
 388        if (adc_press == BMP280_PRESS_SKIPPED) {
 389                /* reading was skipped */
 390                dev_err(data->dev, "reading pressure skipped\n");
 391                return -EIO;
 392        }
 393        comp_press = bmp280_compensate_press(data, adc_press);
 394
 395        *val = comp_press;
 396        *val2 = 256000;
 397
 398        return IIO_VAL_FRACTIONAL;
 399}
 400
 401static int bmp280_read_humid(struct bmp280_data *data, int *val, int *val2)
 402{
 403        __be16 tmp;
 404        int ret;
 405        s32 adc_humidity;
 406        u32 comp_humidity;
 407
 408        /* Read and compensate temperature so we get a reading of t_fine. */
 409        ret = bmp280_read_temp(data, NULL);
 410        if (ret < 0)
 411                return ret;
 412
 413        ret = regmap_bulk_read(data->regmap, BMP280_REG_HUMIDITY_MSB, &tmp, 2);
 414        if (ret < 0) {
 415                dev_err(data->dev, "failed to read humidity\n");
 416                return ret;
 417        }
 418
 419        adc_humidity = be16_to_cpu(tmp);
 420        if (adc_humidity == BMP280_HUMIDITY_SKIPPED) {
 421                /* reading was skipped */
 422                dev_err(data->dev, "reading humidity skipped\n");
 423                return -EIO;
 424        }
 425        comp_humidity = bmp280_compensate_humidity(data, adc_humidity);
 426
 427        *val = comp_humidity * 1000 / 1024;
 428
 429        return IIO_VAL_INT;
 430}
 431
 432static int bmp280_read_raw(struct iio_dev *indio_dev,
 433                           struct iio_chan_spec const *chan,
 434                           int *val, int *val2, long mask)
 435{
 436        int ret;
 437        struct bmp280_data *data = iio_priv(indio_dev);
 438
 439        pm_runtime_get_sync(data->dev);
 440        mutex_lock(&data->lock);
 441
 442        switch (mask) {
 443        case IIO_CHAN_INFO_PROCESSED:
 444                switch (chan->type) {
 445                case IIO_HUMIDITYRELATIVE:
 446                        ret = data->chip_info->read_humid(data, val, val2);
 447                        break;
 448                case IIO_PRESSURE:
 449                        ret = data->chip_info->read_press(data, val, val2);
 450                        break;
 451                case IIO_TEMP:
 452                        ret = data->chip_info->read_temp(data, val);
 453                        break;
 454                default:
 455                        ret = -EINVAL;
 456                        break;
 457                }
 458                break;
 459        case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
 460                switch (chan->type) {
 461                case IIO_HUMIDITYRELATIVE:
 462                        *val = 1 << data->oversampling_humid;
 463                        ret = IIO_VAL_INT;
 464                        break;
 465                case IIO_PRESSURE:
 466                        *val = 1 << data->oversampling_press;
 467                        ret = IIO_VAL_INT;
 468                        break;
 469                case IIO_TEMP:
 470                        *val = 1 << data->oversampling_temp;
 471                        ret = IIO_VAL_INT;
 472                        break;
 473                default:
 474                        ret = -EINVAL;
 475                        break;
 476                }
 477                break;
 478        default:
 479                ret = -EINVAL;
 480                break;
 481        }
 482
 483        mutex_unlock(&data->lock);
 484        pm_runtime_mark_last_busy(data->dev);
 485        pm_runtime_put_autosuspend(data->dev);
 486
 487        return ret;
 488}
 489
 490static int bmp280_write_oversampling_ratio_humid(struct bmp280_data *data,
 491                                               int val)
 492{
 493        int i;
 494        const int *avail = data->chip_info->oversampling_humid_avail;
 495        const int n = data->chip_info->num_oversampling_humid_avail;
 496
 497        for (i = 0; i < n; i++) {
 498                if (avail[i] == val) {
 499                        data->oversampling_humid = ilog2(val);
 500
 501                        return data->chip_info->chip_config(data);
 502                }
 503        }
 504        return -EINVAL;
 505}
 506
 507static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data,
 508                                               int val)
 509{
 510        int i;
 511        const int *avail = data->chip_info->oversampling_temp_avail;
 512        const int n = data->chip_info->num_oversampling_temp_avail;
 513
 514        for (i = 0; i < n; i++) {
 515                if (avail[i] == val) {
 516                        data->oversampling_temp = ilog2(val);
 517
 518                        return data->chip_info->chip_config(data);
 519                }
 520        }
 521        return -EINVAL;
 522}
 523
 524static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data,
 525                                               int val)
 526{
 527        int i;
 528        const int *avail = data->chip_info->oversampling_press_avail;
 529        const int n = data->chip_info->num_oversampling_press_avail;
 530
 531        for (i = 0; i < n; i++) {
 532                if (avail[i] == val) {
 533                        data->oversampling_press = ilog2(val);
 534
 535                        return data->chip_info->chip_config(data);
 536                }
 537        }
 538        return -EINVAL;
 539}
 540
 541static int bmp280_write_raw(struct iio_dev *indio_dev,
 542                            struct iio_chan_spec const *chan,
 543                            int val, int val2, long mask)
 544{
 545        int ret = 0;
 546        struct bmp280_data *data = iio_priv(indio_dev);
 547
 548        switch (mask) {
 549        case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
 550                pm_runtime_get_sync(data->dev);
 551                mutex_lock(&data->lock);
 552                switch (chan->type) {
 553                case IIO_HUMIDITYRELATIVE:
 554                        ret = bmp280_write_oversampling_ratio_humid(data, val);
 555                        break;
 556                case IIO_PRESSURE:
 557                        ret = bmp280_write_oversampling_ratio_press(data, val);
 558                        break;
 559                case IIO_TEMP:
 560                        ret = bmp280_write_oversampling_ratio_temp(data, val);
 561                        break;
 562                default:
 563                        ret = -EINVAL;
 564                        break;
 565                }
 566                mutex_unlock(&data->lock);
 567                pm_runtime_mark_last_busy(data->dev);
 568                pm_runtime_put_autosuspend(data->dev);
 569                break;
 570        default:
 571                return -EINVAL;
 572        }
 573
 574        return ret;
 575}
 576
 577static int bmp280_read_avail(struct iio_dev *indio_dev,
 578                             struct iio_chan_spec const *chan,
 579                             const int **vals, int *type, int *length,
 580                             long mask)
 581{
 582        struct bmp280_data *data = iio_priv(indio_dev);
 583
 584        switch (mask) {
 585        case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
 586                switch (chan->type) {
 587                case IIO_PRESSURE:
 588                        *vals = data->chip_info->oversampling_press_avail;
 589                        *length = data->chip_info->num_oversampling_press_avail;
 590                        break;
 591                case IIO_TEMP:
 592                        *vals = data->chip_info->oversampling_temp_avail;
 593                        *length = data->chip_info->num_oversampling_temp_avail;
 594                        break;
 595                default:
 596                        return -EINVAL;
 597                }
 598                *type = IIO_VAL_INT;
 599                return IIO_AVAIL_LIST;
 600        default:
 601                return -EINVAL;
 602        }
 603}
 604
 605static const struct iio_info bmp280_info = {
 606        .read_raw = &bmp280_read_raw,
 607        .read_avail = &bmp280_read_avail,
 608        .write_raw = &bmp280_write_raw,
 609};
 610
 611static int bmp280_chip_config(struct bmp280_data *data)
 612{
 613        int ret;
 614        u8 osrs = BMP280_OSRS_TEMP_X(data->oversampling_temp + 1) |
 615                  BMP280_OSRS_PRESS_X(data->oversampling_press + 1);
 616
 617        ret = regmap_write_bits(data->regmap, BMP280_REG_CTRL_MEAS,
 618                                 BMP280_OSRS_TEMP_MASK |
 619                                 BMP280_OSRS_PRESS_MASK |
 620                                 BMP280_MODE_MASK,
 621                                 osrs | BMP280_MODE_NORMAL);
 622        if (ret < 0) {
 623                dev_err(data->dev,
 624                        "failed to write ctrl_meas register\n");
 625                return ret;
 626        }
 627
 628        ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG,
 629                                 BMP280_FILTER_MASK,
 630                                 BMP280_FILTER_4X);
 631        if (ret < 0) {
 632                dev_err(data->dev,
 633                        "failed to write config register\n");
 634                return ret;
 635        }
 636
 637        return ret;
 638}
 639
 640static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 };
 641
 642static const struct bmp280_chip_info bmp280_chip_info = {
 643        .oversampling_temp_avail = bmp280_oversampling_avail,
 644        .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
 645
 646        .oversampling_press_avail = bmp280_oversampling_avail,
 647        .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
 648
 649        .chip_config = bmp280_chip_config,
 650        .read_temp = bmp280_read_temp,
 651        .read_press = bmp280_read_press,
 652};
 653
 654static int bme280_chip_config(struct bmp280_data *data)
 655{
 656        int ret;
 657        u8 osrs = BMP280_OSRS_HUMIDITIY_X(data->oversampling_humid + 1);
 658
 659        /*
 660         * Oversampling of humidity must be set before oversampling of
 661         * temperature/pressure is set to become effective.
 662         */
 663        ret = regmap_update_bits(data->regmap, BMP280_REG_CTRL_HUMIDITY,
 664                                  BMP280_OSRS_HUMIDITY_MASK, osrs);
 665
 666        if (ret < 0)
 667                return ret;
 668
 669        return bmp280_chip_config(data);
 670}
 671
 672static const struct bmp280_chip_info bme280_chip_info = {
 673        .oversampling_temp_avail = bmp280_oversampling_avail,
 674        .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
 675
 676        .oversampling_press_avail = bmp280_oversampling_avail,
 677        .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
 678
 679        .oversampling_humid_avail = bmp280_oversampling_avail,
 680        .num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail),
 681
 682        .chip_config = bme280_chip_config,
 683        .read_temp = bmp280_read_temp,
 684        .read_press = bmp280_read_press,
 685        .read_humid = bmp280_read_humid,
 686};
 687
 688static int bmp180_measure(struct bmp280_data *data, u8 ctrl_meas)
 689{
 690        int ret;
 691        const int conversion_time_max[] = { 4500, 7500, 13500, 25500 };
 692        unsigned int delay_us;
 693        unsigned int ctrl;
 694
 695        if (data->use_eoc)
 696                reinit_completion(&data->done);
 697
 698        ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas);
 699        if (ret)
 700                return ret;
 701
 702        if (data->use_eoc) {
 703                /*
 704                 * If we have a completion interrupt, use it, wait up to
 705                 * 100ms. The longest conversion time listed is 76.5 ms for
 706                 * advanced resolution mode.
 707                 */
 708                ret = wait_for_completion_timeout(&data->done,
 709                                                  1 + msecs_to_jiffies(100));
 710                if (!ret)
 711                        dev_err(data->dev, "timeout waiting for completion\n");
 712        } else {
 713                if (ctrl_meas == BMP180_MEAS_TEMP)
 714                        delay_us = 4500;
 715                else
 716                        delay_us =
 717                                conversion_time_max[data->oversampling_press];
 718
 719                usleep_range(delay_us, delay_us + 1000);
 720        }
 721
 722        ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl);
 723        if (ret)
 724                return ret;
 725
 726        /* The value of this bit reset to "0" after conversion is complete */
 727        if (ctrl & BMP180_MEAS_SCO)
 728                return -EIO;
 729
 730        return 0;
 731}
 732
 733static int bmp180_read_adc_temp(struct bmp280_data *data, int *val)
 734{
 735        __be16 tmp;
 736        int ret;
 737
 738        ret = bmp180_measure(data, BMP180_MEAS_TEMP);
 739        if (ret)
 740                return ret;
 741
 742        ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, &tmp, 2);
 743        if (ret)
 744                return ret;
 745
 746        *val = be16_to_cpu(tmp);
 747
 748        return 0;
 749}
 750
 751static int bmp180_read_calib(struct bmp280_data *data,
 752                             struct bmp180_calib *calib)
 753{
 754        int ret;
 755        int i;
 756        __be16 buf[BMP180_REG_CALIB_COUNT / 2];
 757
 758        ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START, buf,
 759                               sizeof(buf));
 760
 761        if (ret < 0)
 762                return ret;
 763
 764        /* None of the words has the value 0 or 0xFFFF */
 765        for (i = 0; i < ARRAY_SIZE(buf); i++) {
 766                if (buf[i] == cpu_to_be16(0) || buf[i] == cpu_to_be16(0xffff))
 767                        return -EIO;
 768        }
 769
 770        /* Toss the calibration data into the entropy pool */
 771        add_device_randomness(buf, sizeof(buf));
 772
 773        calib->AC1 = be16_to_cpu(buf[AC1]);
 774        calib->AC2 = be16_to_cpu(buf[AC2]);
 775        calib->AC3 = be16_to_cpu(buf[AC3]);
 776        calib->AC4 = be16_to_cpu(buf[AC4]);
 777        calib->AC5 = be16_to_cpu(buf[AC5]);
 778        calib->AC6 = be16_to_cpu(buf[AC6]);
 779        calib->B1 = be16_to_cpu(buf[B1]);
 780        calib->B2 = be16_to_cpu(buf[B2]);
 781        calib->MB = be16_to_cpu(buf[MB]);
 782        calib->MC = be16_to_cpu(buf[MC]);
 783        calib->MD = be16_to_cpu(buf[MD]);
 784
 785        return 0;
 786}
 787
 788/*
 789 * Returns temperature in DegC, resolution is 0.1 DegC.
 790 * t_fine carries fine temperature as global value.
 791 *
 792 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
 793 */
 794static s32 bmp180_compensate_temp(struct bmp280_data *data, s32 adc_temp)
 795{
 796        s32 x1, x2;
 797        struct bmp180_calib *calib = &data->calib.bmp180;
 798
 799        x1 = ((adc_temp - calib->AC6) * calib->AC5) >> 15;
 800        x2 = (calib->MC << 11) / (x1 + calib->MD);
 801        data->t_fine = x1 + x2;
 802
 803        return (data->t_fine + 8) >> 4;
 804}
 805
 806static int bmp180_read_temp(struct bmp280_data *data, int *val)
 807{
 808        int ret;
 809        s32 adc_temp, comp_temp;
 810
 811        ret = bmp180_read_adc_temp(data, &adc_temp);
 812        if (ret)
 813                return ret;
 814
 815        comp_temp = bmp180_compensate_temp(data, adc_temp);
 816
 817        /*
 818         * val might be NULL if we're called by the read_press routine,
 819         * who only cares about the carry over t_fine value.
 820         */
 821        if (val) {
 822                *val = comp_temp * 100;
 823                return IIO_VAL_INT;
 824        }
 825
 826        return 0;
 827}
 828
 829static int bmp180_read_adc_press(struct bmp280_data *data, int *val)
 830{
 831        int ret;
 832        __be32 tmp = 0;
 833        u8 oss = data->oversampling_press;
 834
 835        ret = bmp180_measure(data, BMP180_MEAS_PRESS_X(oss));
 836        if (ret)
 837                return ret;
 838
 839        ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, &tmp, 3);
 840        if (ret)
 841                return ret;
 842
 843        *val = (be32_to_cpu(tmp) >> 8) >> (8 - oss);
 844
 845        return 0;
 846}
 847
 848/*
 849 * Returns pressure in Pa, resolution is 1 Pa.
 850 *
 851 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
 852 */
 853static u32 bmp180_compensate_press(struct bmp280_data *data, s32 adc_press)
 854{
 855        s32 x1, x2, x3, p;
 856        s32 b3, b6;
 857        u32 b4, b7;
 858        s32 oss = data->oversampling_press;
 859        struct bmp180_calib *calib = &data->calib.bmp180;
 860
 861        b6 = data->t_fine - 4000;
 862        x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11;
 863        x2 = calib->AC2 * b6 >> 11;
 864        x3 = x1 + x2;
 865        b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4;
 866        x1 = calib->AC3 * b6 >> 13;
 867        x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16;
 868        x3 = (x1 + x2 + 2) >> 2;
 869        b4 = calib->AC4 * (u32)(x3 + 32768) >> 15;
 870        b7 = ((u32)adc_press - b3) * (50000 >> oss);
 871        if (b7 < 0x80000000)
 872                p = (b7 * 2) / b4;
 873        else
 874                p = (b7 / b4) * 2;
 875
 876        x1 = (p >> 8) * (p >> 8);
 877        x1 = (x1 * 3038) >> 16;
 878        x2 = (-7357 * p) >> 16;
 879
 880        return p + ((x1 + x2 + 3791) >> 4);
 881}
 882
 883static int bmp180_read_press(struct bmp280_data *data,
 884                             int *val, int *val2)
 885{
 886        int ret;
 887        s32 adc_press;
 888        u32 comp_press;
 889
 890        /* Read and compensate temperature so we get a reading of t_fine. */
 891        ret = bmp180_read_temp(data, NULL);
 892        if (ret)
 893                return ret;
 894
 895        ret = bmp180_read_adc_press(data, &adc_press);
 896        if (ret)
 897                return ret;
 898
 899        comp_press = bmp180_compensate_press(data, adc_press);
 900
 901        *val = comp_press;
 902        *val2 = 1000;
 903
 904        return IIO_VAL_FRACTIONAL;
 905}
 906
 907static int bmp180_chip_config(struct bmp280_data *data)
 908{
 909        return 0;
 910}
 911
 912static const int bmp180_oversampling_temp_avail[] = { 1 };
 913static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 };
 914
 915static const struct bmp280_chip_info bmp180_chip_info = {
 916        .oversampling_temp_avail = bmp180_oversampling_temp_avail,
 917        .num_oversampling_temp_avail =
 918                ARRAY_SIZE(bmp180_oversampling_temp_avail),
 919
 920        .oversampling_press_avail = bmp180_oversampling_press_avail,
 921        .num_oversampling_press_avail =
 922                ARRAY_SIZE(bmp180_oversampling_press_avail),
 923
 924        .chip_config = bmp180_chip_config,
 925        .read_temp = bmp180_read_temp,
 926        .read_press = bmp180_read_press,
 927};
 928
 929static irqreturn_t bmp085_eoc_irq(int irq, void *d)
 930{
 931        struct bmp280_data *data = d;
 932
 933        complete(&data->done);
 934
 935        return IRQ_HANDLED;
 936}
 937
 938static int bmp085_fetch_eoc_irq(struct device *dev,
 939                                const char *name,
 940                                int irq,
 941                                struct bmp280_data *data)
 942{
 943        unsigned long irq_trig;
 944        int ret;
 945
 946        irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
 947        if (irq_trig != IRQF_TRIGGER_RISING) {
 948                dev_err(dev, "non-rising trigger given for EOC interrupt, trying to enforce it\n");
 949                irq_trig = IRQF_TRIGGER_RISING;
 950        }
 951
 952        init_completion(&data->done);
 953
 954        ret = devm_request_threaded_irq(dev,
 955                        irq,
 956                        bmp085_eoc_irq,
 957                        NULL,
 958                        irq_trig,
 959                        name,
 960                        data);
 961        if (ret) {
 962                /* Bail out without IRQ but keep the driver in place */
 963                dev_err(dev, "unable to request DRDY IRQ\n");
 964                return 0;
 965        }
 966
 967        data->use_eoc = true;
 968        return 0;
 969}
 970
 971static void bmp280_pm_disable(void *data)
 972{
 973        struct device *dev = data;
 974
 975        pm_runtime_get_sync(dev);
 976        pm_runtime_put_noidle(dev);
 977        pm_runtime_disable(dev);
 978}
 979
 980static void bmp280_regulators_disable(void *data)
 981{
 982        struct regulator_bulk_data *supplies = data;
 983
 984        regulator_bulk_disable(BMP280_NUM_SUPPLIES, supplies);
 985}
 986
 987int bmp280_common_probe(struct device *dev,
 988                        struct regmap *regmap,
 989                        unsigned int chip,
 990                        const char *name,
 991                        int irq)
 992{
 993        int ret;
 994        struct iio_dev *indio_dev;
 995        struct bmp280_data *data;
 996        unsigned int chip_id;
 997        struct gpio_desc *gpiod;
 998
 999        indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1000        if (!indio_dev)
1001                return -ENOMEM;
1002
1003        data = iio_priv(indio_dev);
1004        mutex_init(&data->lock);
1005        data->dev = dev;
1006
1007        indio_dev->name = name;
1008        indio_dev->channels = bmp280_channels;
1009        indio_dev->info = &bmp280_info;
1010        indio_dev->modes = INDIO_DIRECT_MODE;
1011
1012        switch (chip) {
1013        case BMP180_CHIP_ID:
1014                indio_dev->num_channels = 2;
1015                data->chip_info = &bmp180_chip_info;
1016                data->oversampling_press = ilog2(8);
1017                data->oversampling_temp = ilog2(1);
1018                data->start_up_time = 10000;
1019                break;
1020        case BMP280_CHIP_ID:
1021                indio_dev->num_channels = 2;
1022                data->chip_info = &bmp280_chip_info;
1023                data->oversampling_press = ilog2(16);
1024                data->oversampling_temp = ilog2(2);
1025                data->start_up_time = 2000;
1026                break;
1027        case BME280_CHIP_ID:
1028                indio_dev->num_channels = 3;
1029                data->chip_info = &bme280_chip_info;
1030                data->oversampling_press = ilog2(16);
1031                data->oversampling_humid = ilog2(16);
1032                data->oversampling_temp = ilog2(2);
1033                data->start_up_time = 2000;
1034                break;
1035        default:
1036                return -EINVAL;
1037        }
1038
1039        /* Bring up regulators */
1040        regulator_bulk_set_supply_names(data->supplies,
1041                                        bmp280_supply_names,
1042                                        BMP280_NUM_SUPPLIES);
1043
1044        ret = devm_regulator_bulk_get(dev,
1045                                      BMP280_NUM_SUPPLIES, data->supplies);
1046        if (ret) {
1047                dev_err(dev, "failed to get regulators\n");
1048                return ret;
1049        }
1050
1051        ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies);
1052        if (ret) {
1053                dev_err(dev, "failed to enable regulators\n");
1054                return ret;
1055        }
1056
1057        ret = devm_add_action_or_reset(dev, bmp280_regulators_disable,
1058                                       data->supplies);
1059        if (ret)
1060                return ret;
1061
1062        /* Wait to make sure we started up properly */
1063        usleep_range(data->start_up_time, data->start_up_time + 100);
1064
1065        /* Bring chip out of reset if there is an assigned GPIO line */
1066        gpiod = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
1067        /* Deassert the signal */
1068        if (gpiod) {
1069                dev_info(dev, "release reset\n");
1070                gpiod_set_value(gpiod, 0);
1071        }
1072
1073        data->regmap = regmap;
1074        ret = regmap_read(regmap, BMP280_REG_ID, &chip_id);
1075        if (ret < 0)
1076                return ret;
1077        if (chip_id != chip) {
1078                dev_err(dev, "bad chip id: expected %x got %x\n",
1079                        chip, chip_id);
1080                return -EINVAL;
1081        }
1082
1083        ret = data->chip_info->chip_config(data);
1084        if (ret < 0)
1085                return ret;
1086
1087        dev_set_drvdata(dev, indio_dev);
1088
1089        /*
1090         * Some chips have calibration parameters "programmed into the devices'
1091         * non-volatile memory during production". Let's read them out at probe
1092         * time once. They will not change.
1093         */
1094        if (chip_id  == BMP180_CHIP_ID) {
1095                ret = bmp180_read_calib(data, &data->calib.bmp180);
1096                if (ret < 0) {
1097                        dev_err(data->dev,
1098                                "failed to read calibration coefficients\n");
1099                        return ret;
1100                }
1101        } else if (chip_id == BMP280_CHIP_ID || chip_id == BME280_CHIP_ID) {
1102                ret = bmp280_read_calib(data, &data->calib.bmp280, chip_id);
1103                if (ret < 0) {
1104                        dev_err(data->dev,
1105                                "failed to read calibration coefficients\n");
1106                        return ret;
1107                }
1108        }
1109
1110        /*
1111         * Attempt to grab an optional EOC IRQ - only the BMP085 has this
1112         * however as it happens, the BMP085 shares the chip ID of BMP180
1113         * so we look for an IRQ if we have that.
1114         */
1115        if (irq > 0 || (chip_id  == BMP180_CHIP_ID)) {
1116                ret = bmp085_fetch_eoc_irq(dev, name, irq, data);
1117                if (ret)
1118                        return ret;
1119        }
1120
1121        /* Enable runtime PM */
1122        pm_runtime_get_noresume(dev);
1123        pm_runtime_set_active(dev);
1124        pm_runtime_enable(dev);
1125        /*
1126         * Set autosuspend to two orders of magnitude larger than the
1127         * start-up time.
1128         */
1129        pm_runtime_set_autosuspend_delay(dev, data->start_up_time / 10);
1130        pm_runtime_use_autosuspend(dev);
1131        pm_runtime_put(dev);
1132
1133        ret = devm_add_action_or_reset(dev, bmp280_pm_disable, dev);
1134        if (ret)
1135                return ret;
1136
1137        return devm_iio_device_register(dev, indio_dev);
1138}
1139EXPORT_SYMBOL(bmp280_common_probe);
1140
1141#ifdef CONFIG_PM
1142static int bmp280_runtime_suspend(struct device *dev)
1143{
1144        struct iio_dev *indio_dev = dev_get_drvdata(dev);
1145        struct bmp280_data *data = iio_priv(indio_dev);
1146
1147        return regulator_bulk_disable(BMP280_NUM_SUPPLIES, data->supplies);
1148}
1149
1150static int bmp280_runtime_resume(struct device *dev)
1151{
1152        struct iio_dev *indio_dev = dev_get_drvdata(dev);
1153        struct bmp280_data *data = iio_priv(indio_dev);
1154        int ret;
1155
1156        ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies);
1157        if (ret)
1158                return ret;
1159        usleep_range(data->start_up_time, data->start_up_time + 100);
1160        return data->chip_info->chip_config(data);
1161}
1162#endif /* CONFIG_PM */
1163
1164const struct dev_pm_ops bmp280_dev_pm_ops = {
1165        SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1166                                pm_runtime_force_resume)
1167        SET_RUNTIME_PM_OPS(bmp280_runtime_suspend,
1168                           bmp280_runtime_resume, NULL)
1169};
1170EXPORT_SYMBOL(bmp280_dev_pm_ops);
1171
1172MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>");
1173MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor");
1174MODULE_LICENSE("GPL v2");
1175