linux/drivers/irqchip/irq-gic-v3.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
   4 * Author: Marc Zyngier <marc.zyngier@arm.com>
   5 */
   6
   7#define pr_fmt(fmt)     "GICv3: " fmt
   8
   9#include <linux/acpi.h>
  10#include <linux/cpu.h>
  11#include <linux/cpu_pm.h>
  12#include <linux/delay.h>
  13#include <linux/interrupt.h>
  14#include <linux/irqdomain.h>
  15#include <linux/of.h>
  16#include <linux/of_address.h>
  17#include <linux/of_irq.h>
  18#include <linux/percpu.h>
  19#include <linux/refcount.h>
  20#include <linux/slab.h>
  21
  22#include <linux/irqchip.h>
  23#include <linux/irqchip/arm-gic-common.h>
  24#include <linux/irqchip/arm-gic-v3.h>
  25#include <linux/irqchip/irq-partition-percpu.h>
  26
  27#include <asm/cputype.h>
  28#include <asm/exception.h>
  29#include <asm/smp_plat.h>
  30#include <asm/virt.h>
  31
  32#include "irq-gic-common.h"
  33
  34#define GICD_INT_NMI_PRI        (GICD_INT_DEF_PRI & ~0x80)
  35
  36#define FLAGS_WORKAROUND_GICR_WAKER_MSM8996     (1ULL << 0)
  37#define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539   (1ULL << 1)
  38
  39#define GIC_IRQ_TYPE_PARTITION  (GIC_IRQ_TYPE_LPI + 1)
  40
  41struct redist_region {
  42        void __iomem            *redist_base;
  43        phys_addr_t             phys_base;
  44        bool                    single_redist;
  45};
  46
  47struct gic_chip_data {
  48        struct fwnode_handle    *fwnode;
  49        void __iomem            *dist_base;
  50        struct redist_region    *redist_regions;
  51        struct rdists           rdists;
  52        struct irq_domain       *domain;
  53        u64                     redist_stride;
  54        u32                     nr_redist_regions;
  55        u64                     flags;
  56        bool                    has_rss;
  57        unsigned int            ppi_nr;
  58        struct partition_desc   **ppi_descs;
  59};
  60
  61static struct gic_chip_data gic_data __read_mostly;
  62static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
  63
  64#define GIC_ID_NR       (1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
  65#define GIC_LINE_NR     min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
  66#define GIC_ESPI_NR     GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
  67
  68/*
  69 * The behaviours of RPR and PMR registers differ depending on the value of
  70 * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
  71 * distributor and redistributors depends on whether security is enabled in the
  72 * GIC.
  73 *
  74 * When security is enabled, non-secure priority values from the (re)distributor
  75 * are presented to the GIC CPUIF as follow:
  76 *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
  77 *
  78 * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
  79 * EL1 are subject to a similar operation thus matching the priorities presented
  80 * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
  81 * these values are unchanged by the GIC.
  82 *
  83 * see GICv3/GICv4 Architecture Specification (IHI0069D):
  84 * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
  85 *   priorities.
  86 * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
  87 *   interrupt.
  88 */
  89static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
  90
  91/*
  92 * Global static key controlling whether an update to PMR allowing more
  93 * interrupts requires to be propagated to the redistributor (DSB SY).
  94 * And this needs to be exported for modules to be able to enable
  95 * interrupts...
  96 */
  97DEFINE_STATIC_KEY_FALSE(gic_pmr_sync);
  98EXPORT_SYMBOL(gic_pmr_sync);
  99
 100DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
 101EXPORT_SYMBOL(gic_nonsecure_priorities);
 102
 103/*
 104 * When the Non-secure world has access to group 0 interrupts (as a
 105 * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will
 106 * return the Distributor's view of the interrupt priority.
 107 *
 108 * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority
 109 * written by software is moved to the Non-secure range by the Distributor.
 110 *
 111 * If both are true (which is when gic_nonsecure_priorities gets enabled),
 112 * we need to shift down the priority programmed by software to match it
 113 * against the value returned by ICC_RPR_EL1.
 114 */
 115#define GICD_INT_RPR_PRI(priority)                                      \
 116        ({                                                              \
 117                u32 __priority = (priority);                            \
 118                if (static_branch_unlikely(&gic_nonsecure_priorities))  \
 119                        __priority = 0x80 | (__priority >> 1);          \
 120                                                                        \
 121                __priority;                                             \
 122        })
 123
 124/* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
 125static refcount_t *ppi_nmi_refs;
 126
 127static struct gic_kvm_info gic_v3_kvm_info __initdata;
 128static DEFINE_PER_CPU(bool, has_rss);
 129
 130#define MPIDR_RS(mpidr)                 (((mpidr) & 0xF0UL) >> 4)
 131#define gic_data_rdist()                (this_cpu_ptr(gic_data.rdists.rdist))
 132#define gic_data_rdist_rd_base()        (gic_data_rdist()->rd_base)
 133#define gic_data_rdist_sgi_base()       (gic_data_rdist_rd_base() + SZ_64K)
 134
 135/* Our default, arbitrary priority value. Linux only uses one anyway. */
 136#define DEFAULT_PMR_VALUE       0xf0
 137
 138enum gic_intid_range {
 139        SGI_RANGE,
 140        PPI_RANGE,
 141        SPI_RANGE,
 142        EPPI_RANGE,
 143        ESPI_RANGE,
 144        LPI_RANGE,
 145        __INVALID_RANGE__
 146};
 147
 148static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
 149{
 150        switch (hwirq) {
 151        case 0 ... 15:
 152                return SGI_RANGE;
 153        case 16 ... 31:
 154                return PPI_RANGE;
 155        case 32 ... 1019:
 156                return SPI_RANGE;
 157        case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
 158                return EPPI_RANGE;
 159        case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
 160                return ESPI_RANGE;
 161        case 8192 ... GENMASK(23, 0):
 162                return LPI_RANGE;
 163        default:
 164                return __INVALID_RANGE__;
 165        }
 166}
 167
 168static enum gic_intid_range get_intid_range(struct irq_data *d)
 169{
 170        return __get_intid_range(d->hwirq);
 171}
 172
 173static inline unsigned int gic_irq(struct irq_data *d)
 174{
 175        return d->hwirq;
 176}
 177
 178static inline bool gic_irq_in_rdist(struct irq_data *d)
 179{
 180        switch (get_intid_range(d)) {
 181        case SGI_RANGE:
 182        case PPI_RANGE:
 183        case EPPI_RANGE:
 184                return true;
 185        default:
 186                return false;
 187        }
 188}
 189
 190static inline void __iomem *gic_dist_base(struct irq_data *d)
 191{
 192        switch (get_intid_range(d)) {
 193        case SGI_RANGE:
 194        case PPI_RANGE:
 195        case EPPI_RANGE:
 196                /* SGI+PPI -> SGI_base for this CPU */
 197                return gic_data_rdist_sgi_base();
 198
 199        case SPI_RANGE:
 200        case ESPI_RANGE:
 201                /* SPI -> dist_base */
 202                return gic_data.dist_base;
 203
 204        default:
 205                return NULL;
 206        }
 207}
 208
 209static void gic_do_wait_for_rwp(void __iomem *base)
 210{
 211        u32 count = 1000000;    /* 1s! */
 212
 213        while (readl_relaxed(base + GICD_CTLR) & GICD_CTLR_RWP) {
 214                count--;
 215                if (!count) {
 216                        pr_err_ratelimited("RWP timeout, gone fishing\n");
 217                        return;
 218                }
 219                cpu_relax();
 220                udelay(1);
 221        }
 222}
 223
 224/* Wait for completion of a distributor change */
 225static void gic_dist_wait_for_rwp(void)
 226{
 227        gic_do_wait_for_rwp(gic_data.dist_base);
 228}
 229
 230/* Wait for completion of a redistributor change */
 231static void gic_redist_wait_for_rwp(void)
 232{
 233        gic_do_wait_for_rwp(gic_data_rdist_rd_base());
 234}
 235
 236#ifdef CONFIG_ARM64
 237
 238static u64 __maybe_unused gic_read_iar(void)
 239{
 240        if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
 241                return gic_read_iar_cavium_thunderx();
 242        else
 243                return gic_read_iar_common();
 244}
 245#endif
 246
 247static void gic_enable_redist(bool enable)
 248{
 249        void __iomem *rbase;
 250        u32 count = 1000000;    /* 1s! */
 251        u32 val;
 252
 253        if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
 254                return;
 255
 256        rbase = gic_data_rdist_rd_base();
 257
 258        val = readl_relaxed(rbase + GICR_WAKER);
 259        if (enable)
 260                /* Wake up this CPU redistributor */
 261                val &= ~GICR_WAKER_ProcessorSleep;
 262        else
 263                val |= GICR_WAKER_ProcessorSleep;
 264        writel_relaxed(val, rbase + GICR_WAKER);
 265
 266        if (!enable) {          /* Check that GICR_WAKER is writeable */
 267                val = readl_relaxed(rbase + GICR_WAKER);
 268                if (!(val & GICR_WAKER_ProcessorSleep))
 269                        return; /* No PM support in this redistributor */
 270        }
 271
 272        while (--count) {
 273                val = readl_relaxed(rbase + GICR_WAKER);
 274                if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
 275                        break;
 276                cpu_relax();
 277                udelay(1);
 278        }
 279        if (!count)
 280                pr_err_ratelimited("redistributor failed to %s...\n",
 281                                   enable ? "wakeup" : "sleep");
 282}
 283
 284/*
 285 * Routines to disable, enable, EOI and route interrupts
 286 */
 287static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
 288{
 289        switch (get_intid_range(d)) {
 290        case SGI_RANGE:
 291        case PPI_RANGE:
 292        case SPI_RANGE:
 293                *index = d->hwirq;
 294                return offset;
 295        case EPPI_RANGE:
 296                /*
 297                 * Contrary to the ESPI range, the EPPI range is contiguous
 298                 * to the PPI range in the registers, so let's adjust the
 299                 * displacement accordingly. Consistency is overrated.
 300                 */
 301                *index = d->hwirq - EPPI_BASE_INTID + 32;
 302                return offset;
 303        case ESPI_RANGE:
 304                *index = d->hwirq - ESPI_BASE_INTID;
 305                switch (offset) {
 306                case GICD_ISENABLER:
 307                        return GICD_ISENABLERnE;
 308                case GICD_ICENABLER:
 309                        return GICD_ICENABLERnE;
 310                case GICD_ISPENDR:
 311                        return GICD_ISPENDRnE;
 312                case GICD_ICPENDR:
 313                        return GICD_ICPENDRnE;
 314                case GICD_ISACTIVER:
 315                        return GICD_ISACTIVERnE;
 316                case GICD_ICACTIVER:
 317                        return GICD_ICACTIVERnE;
 318                case GICD_IPRIORITYR:
 319                        return GICD_IPRIORITYRnE;
 320                case GICD_ICFGR:
 321                        return GICD_ICFGRnE;
 322                case GICD_IROUTER:
 323                        return GICD_IROUTERnE;
 324                default:
 325                        break;
 326                }
 327                break;
 328        default:
 329                break;
 330        }
 331
 332        WARN_ON(1);
 333        *index = d->hwirq;
 334        return offset;
 335}
 336
 337static int gic_peek_irq(struct irq_data *d, u32 offset)
 338{
 339        void __iomem *base;
 340        u32 index, mask;
 341
 342        offset = convert_offset_index(d, offset, &index);
 343        mask = 1 << (index % 32);
 344
 345        if (gic_irq_in_rdist(d))
 346                base = gic_data_rdist_sgi_base();
 347        else
 348                base = gic_data.dist_base;
 349
 350        return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
 351}
 352
 353static void gic_poke_irq(struct irq_data *d, u32 offset)
 354{
 355        void (*rwp_wait)(void);
 356        void __iomem *base;
 357        u32 index, mask;
 358
 359        offset = convert_offset_index(d, offset, &index);
 360        mask = 1 << (index % 32);
 361
 362        if (gic_irq_in_rdist(d)) {
 363                base = gic_data_rdist_sgi_base();
 364                rwp_wait = gic_redist_wait_for_rwp;
 365        } else {
 366                base = gic_data.dist_base;
 367                rwp_wait = gic_dist_wait_for_rwp;
 368        }
 369
 370        writel_relaxed(mask, base + offset + (index / 32) * 4);
 371        rwp_wait();
 372}
 373
 374static void gic_mask_irq(struct irq_data *d)
 375{
 376        gic_poke_irq(d, GICD_ICENABLER);
 377}
 378
 379static void gic_eoimode1_mask_irq(struct irq_data *d)
 380{
 381        gic_mask_irq(d);
 382        /*
 383         * When masking a forwarded interrupt, make sure it is
 384         * deactivated as well.
 385         *
 386         * This ensures that an interrupt that is getting
 387         * disabled/masked will not get "stuck", because there is
 388         * noone to deactivate it (guest is being terminated).
 389         */
 390        if (irqd_is_forwarded_to_vcpu(d))
 391                gic_poke_irq(d, GICD_ICACTIVER);
 392}
 393
 394static void gic_unmask_irq(struct irq_data *d)
 395{
 396        gic_poke_irq(d, GICD_ISENABLER);
 397}
 398
 399static inline bool gic_supports_nmi(void)
 400{
 401        return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
 402               static_branch_likely(&supports_pseudo_nmis);
 403}
 404
 405static int gic_irq_set_irqchip_state(struct irq_data *d,
 406                                     enum irqchip_irq_state which, bool val)
 407{
 408        u32 reg;
 409
 410        if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
 411                return -EINVAL;
 412
 413        switch (which) {
 414        case IRQCHIP_STATE_PENDING:
 415                reg = val ? GICD_ISPENDR : GICD_ICPENDR;
 416                break;
 417
 418        case IRQCHIP_STATE_ACTIVE:
 419                reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
 420                break;
 421
 422        case IRQCHIP_STATE_MASKED:
 423                reg = val ? GICD_ICENABLER : GICD_ISENABLER;
 424                break;
 425
 426        default:
 427                return -EINVAL;
 428        }
 429
 430        gic_poke_irq(d, reg);
 431        return 0;
 432}
 433
 434static int gic_irq_get_irqchip_state(struct irq_data *d,
 435                                     enum irqchip_irq_state which, bool *val)
 436{
 437        if (d->hwirq >= 8192) /* PPI/SPI only */
 438                return -EINVAL;
 439
 440        switch (which) {
 441        case IRQCHIP_STATE_PENDING:
 442                *val = gic_peek_irq(d, GICD_ISPENDR);
 443                break;
 444
 445        case IRQCHIP_STATE_ACTIVE:
 446                *val = gic_peek_irq(d, GICD_ISACTIVER);
 447                break;
 448
 449        case IRQCHIP_STATE_MASKED:
 450                *val = !gic_peek_irq(d, GICD_ISENABLER);
 451                break;
 452
 453        default:
 454                return -EINVAL;
 455        }
 456
 457        return 0;
 458}
 459
 460static void gic_irq_set_prio(struct irq_data *d, u8 prio)
 461{
 462        void __iomem *base = gic_dist_base(d);
 463        u32 offset, index;
 464
 465        offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
 466
 467        writeb_relaxed(prio, base + offset + index);
 468}
 469
 470static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
 471{
 472        switch (__get_intid_range(hwirq)) {
 473        case PPI_RANGE:
 474                return hwirq - 16;
 475        case EPPI_RANGE:
 476                return hwirq - EPPI_BASE_INTID + 16;
 477        default:
 478                unreachable();
 479        }
 480}
 481
 482static u32 gic_get_ppi_index(struct irq_data *d)
 483{
 484        return __gic_get_ppi_index(d->hwirq);
 485}
 486
 487static int gic_irq_nmi_setup(struct irq_data *d)
 488{
 489        struct irq_desc *desc = irq_to_desc(d->irq);
 490
 491        if (!gic_supports_nmi())
 492                return -EINVAL;
 493
 494        if (gic_peek_irq(d, GICD_ISENABLER)) {
 495                pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
 496                return -EINVAL;
 497        }
 498
 499        /*
 500         * A secondary irq_chip should be in charge of LPI request,
 501         * it should not be possible to get there
 502         */
 503        if (WARN_ON(gic_irq(d) >= 8192))
 504                return -EINVAL;
 505
 506        /* desc lock should already be held */
 507        if (gic_irq_in_rdist(d)) {
 508                u32 idx = gic_get_ppi_index(d);
 509
 510                /* Setting up PPI as NMI, only switch handler for first NMI */
 511                if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
 512                        refcount_set(&ppi_nmi_refs[idx], 1);
 513                        desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
 514                }
 515        } else {
 516                desc->handle_irq = handle_fasteoi_nmi;
 517        }
 518
 519        gic_irq_set_prio(d, GICD_INT_NMI_PRI);
 520
 521        return 0;
 522}
 523
 524static void gic_irq_nmi_teardown(struct irq_data *d)
 525{
 526        struct irq_desc *desc = irq_to_desc(d->irq);
 527
 528        if (WARN_ON(!gic_supports_nmi()))
 529                return;
 530
 531        if (gic_peek_irq(d, GICD_ISENABLER)) {
 532                pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
 533                return;
 534        }
 535
 536        /*
 537         * A secondary irq_chip should be in charge of LPI request,
 538         * it should not be possible to get there
 539         */
 540        if (WARN_ON(gic_irq(d) >= 8192))
 541                return;
 542
 543        /* desc lock should already be held */
 544        if (gic_irq_in_rdist(d)) {
 545                u32 idx = gic_get_ppi_index(d);
 546
 547                /* Tearing down NMI, only switch handler for last NMI */
 548                if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
 549                        desc->handle_irq = handle_percpu_devid_irq;
 550        } else {
 551                desc->handle_irq = handle_fasteoi_irq;
 552        }
 553
 554        gic_irq_set_prio(d, GICD_INT_DEF_PRI);
 555}
 556
 557static void gic_eoi_irq(struct irq_data *d)
 558{
 559        gic_write_eoir(gic_irq(d));
 560}
 561
 562static void gic_eoimode1_eoi_irq(struct irq_data *d)
 563{
 564        /*
 565         * No need to deactivate an LPI, or an interrupt that
 566         * is is getting forwarded to a vcpu.
 567         */
 568        if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
 569                return;
 570        gic_write_dir(gic_irq(d));
 571}
 572
 573static int gic_set_type(struct irq_data *d, unsigned int type)
 574{
 575        enum gic_intid_range range;
 576        unsigned int irq = gic_irq(d);
 577        void (*rwp_wait)(void);
 578        void __iomem *base;
 579        u32 offset, index;
 580        int ret;
 581
 582        range = get_intid_range(d);
 583
 584        /* Interrupt configuration for SGIs can't be changed */
 585        if (range == SGI_RANGE)
 586                return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
 587
 588        /* SPIs have restrictions on the supported types */
 589        if ((range == SPI_RANGE || range == ESPI_RANGE) &&
 590            type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
 591                return -EINVAL;
 592
 593        if (gic_irq_in_rdist(d)) {
 594                base = gic_data_rdist_sgi_base();
 595                rwp_wait = gic_redist_wait_for_rwp;
 596        } else {
 597                base = gic_data.dist_base;
 598                rwp_wait = gic_dist_wait_for_rwp;
 599        }
 600
 601        offset = convert_offset_index(d, GICD_ICFGR, &index);
 602
 603        ret = gic_configure_irq(index, type, base + offset, rwp_wait);
 604        if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
 605                /* Misconfigured PPIs are usually not fatal */
 606                pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
 607                ret = 0;
 608        }
 609
 610        return ret;
 611}
 612
 613static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
 614{
 615        if (get_intid_range(d) == SGI_RANGE)
 616                return -EINVAL;
 617
 618        if (vcpu)
 619                irqd_set_forwarded_to_vcpu(d);
 620        else
 621                irqd_clr_forwarded_to_vcpu(d);
 622        return 0;
 623}
 624
 625static u64 gic_mpidr_to_affinity(unsigned long mpidr)
 626{
 627        u64 aff;
 628
 629        aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
 630               MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
 631               MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
 632               MPIDR_AFFINITY_LEVEL(mpidr, 0));
 633
 634        return aff;
 635}
 636
 637static void gic_deactivate_unhandled(u32 irqnr)
 638{
 639        if (static_branch_likely(&supports_deactivate_key)) {
 640                if (irqnr < 8192)
 641                        gic_write_dir(irqnr);
 642        } else {
 643                gic_write_eoir(irqnr);
 644        }
 645}
 646
 647static inline void gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
 648{
 649        bool irqs_enabled = interrupts_enabled(regs);
 650        int err;
 651
 652        if (irqs_enabled)
 653                nmi_enter();
 654
 655        if (static_branch_likely(&supports_deactivate_key))
 656                gic_write_eoir(irqnr);
 657        /*
 658         * Leave the PSR.I bit set to prevent other NMIs to be
 659         * received while handling this one.
 660         * PSR.I will be restored when we ERET to the
 661         * interrupted context.
 662         */
 663        err = generic_handle_domain_nmi(gic_data.domain, irqnr);
 664        if (err)
 665                gic_deactivate_unhandled(irqnr);
 666
 667        if (irqs_enabled)
 668                nmi_exit();
 669}
 670
 671static u32 do_read_iar(struct pt_regs *regs)
 672{
 673        u32 iar;
 674
 675        if (gic_supports_nmi() && unlikely(!interrupts_enabled(regs))) {
 676                u64 pmr;
 677
 678                /*
 679                 * We were in a context with IRQs disabled. However, the
 680                 * entry code has set PMR to a value that allows any
 681                 * interrupt to be acknowledged, and not just NMIs. This can
 682                 * lead to surprising effects if the NMI has been retired in
 683                 * the meantime, and that there is an IRQ pending. The IRQ
 684                 * would then be taken in NMI context, something that nobody
 685                 * wants to debug twice.
 686                 *
 687                 * Until we sort this, drop PMR again to a level that will
 688                 * actually only allow NMIs before reading IAR, and then
 689                 * restore it to what it was.
 690                 */
 691                pmr = gic_read_pmr();
 692                gic_pmr_mask_irqs();
 693                isb();
 694
 695                iar = gic_read_iar();
 696
 697                gic_write_pmr(pmr);
 698        } else {
 699                iar = gic_read_iar();
 700        }
 701
 702        return iar;
 703}
 704
 705static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
 706{
 707        u32 irqnr;
 708
 709        irqnr = do_read_iar(regs);
 710
 711        /* Check for special IDs first */
 712        if ((irqnr >= 1020 && irqnr <= 1023))
 713                return;
 714
 715        if (gic_supports_nmi() &&
 716            unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI))) {
 717                gic_handle_nmi(irqnr, regs);
 718                return;
 719        }
 720
 721        if (gic_prio_masking_enabled()) {
 722                gic_pmr_mask_irqs();
 723                gic_arch_enable_irqs();
 724        }
 725
 726        if (static_branch_likely(&supports_deactivate_key))
 727                gic_write_eoir(irqnr);
 728        else
 729                isb();
 730
 731        if (generic_handle_domain_irq(gic_data.domain, irqnr)) {
 732                WARN_ONCE(true, "Unexpected interrupt received!\n");
 733                gic_deactivate_unhandled(irqnr);
 734        }
 735}
 736
 737static u32 gic_get_pribits(void)
 738{
 739        u32 pribits;
 740
 741        pribits = gic_read_ctlr();
 742        pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
 743        pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
 744        pribits++;
 745
 746        return pribits;
 747}
 748
 749static bool gic_has_group0(void)
 750{
 751        u32 val;
 752        u32 old_pmr;
 753
 754        old_pmr = gic_read_pmr();
 755
 756        /*
 757         * Let's find out if Group0 is under control of EL3 or not by
 758         * setting the highest possible, non-zero priority in PMR.
 759         *
 760         * If SCR_EL3.FIQ is set, the priority gets shifted down in
 761         * order for the CPU interface to set bit 7, and keep the
 762         * actual priority in the non-secure range. In the process, it
 763         * looses the least significant bit and the actual priority
 764         * becomes 0x80. Reading it back returns 0, indicating that
 765         * we're don't have access to Group0.
 766         */
 767        gic_write_pmr(BIT(8 - gic_get_pribits()));
 768        val = gic_read_pmr();
 769
 770        gic_write_pmr(old_pmr);
 771
 772        return val != 0;
 773}
 774
 775static void __init gic_dist_init(void)
 776{
 777        unsigned int i;
 778        u64 affinity;
 779        void __iomem *base = gic_data.dist_base;
 780        u32 val;
 781
 782        /* Disable the distributor */
 783        writel_relaxed(0, base + GICD_CTLR);
 784        gic_dist_wait_for_rwp();
 785
 786        /*
 787         * Configure SPIs as non-secure Group-1. This will only matter
 788         * if the GIC only has a single security state. This will not
 789         * do the right thing if the kernel is running in secure mode,
 790         * but that's not the intended use case anyway.
 791         */
 792        for (i = 32; i < GIC_LINE_NR; i += 32)
 793                writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
 794
 795        /* Extended SPI range, not handled by the GICv2/GICv3 common code */
 796        for (i = 0; i < GIC_ESPI_NR; i += 32) {
 797                writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
 798                writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
 799        }
 800
 801        for (i = 0; i < GIC_ESPI_NR; i += 32)
 802                writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
 803
 804        for (i = 0; i < GIC_ESPI_NR; i += 16)
 805                writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
 806
 807        for (i = 0; i < GIC_ESPI_NR; i += 4)
 808                writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
 809
 810        /* Now do the common stuff, and wait for the distributor to drain */
 811        gic_dist_config(base, GIC_LINE_NR, gic_dist_wait_for_rwp);
 812
 813        val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
 814        if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
 815                pr_info("Enabling SGIs without active state\n");
 816                val |= GICD_CTLR_nASSGIreq;
 817        }
 818
 819        /* Enable distributor with ARE, Group1 */
 820        writel_relaxed(val, base + GICD_CTLR);
 821
 822        /*
 823         * Set all global interrupts to the boot CPU only. ARE must be
 824         * enabled.
 825         */
 826        affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id()));
 827        for (i = 32; i < GIC_LINE_NR; i++)
 828                gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
 829
 830        for (i = 0; i < GIC_ESPI_NR; i++)
 831                gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
 832}
 833
 834static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
 835{
 836        int ret = -ENODEV;
 837        int i;
 838
 839        for (i = 0; i < gic_data.nr_redist_regions; i++) {
 840                void __iomem *ptr = gic_data.redist_regions[i].redist_base;
 841                u64 typer;
 842                u32 reg;
 843
 844                reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
 845                if (reg != GIC_PIDR2_ARCH_GICv3 &&
 846                    reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
 847                        pr_warn("No redistributor present @%p\n", ptr);
 848                        break;
 849                }
 850
 851                do {
 852                        typer = gic_read_typer(ptr + GICR_TYPER);
 853                        ret = fn(gic_data.redist_regions + i, ptr);
 854                        if (!ret)
 855                                return 0;
 856
 857                        if (gic_data.redist_regions[i].single_redist)
 858                                break;
 859
 860                        if (gic_data.redist_stride) {
 861                                ptr += gic_data.redist_stride;
 862                        } else {
 863                                ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
 864                                if (typer & GICR_TYPER_VLPIS)
 865                                        ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
 866                        }
 867                } while (!(typer & GICR_TYPER_LAST));
 868        }
 869
 870        return ret ? -ENODEV : 0;
 871}
 872
 873static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
 874{
 875        unsigned long mpidr = cpu_logical_map(smp_processor_id());
 876        u64 typer;
 877        u32 aff;
 878
 879        /*
 880         * Convert affinity to a 32bit value that can be matched to
 881         * GICR_TYPER bits [63:32].
 882         */
 883        aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
 884               MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
 885               MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
 886               MPIDR_AFFINITY_LEVEL(mpidr, 0));
 887
 888        typer = gic_read_typer(ptr + GICR_TYPER);
 889        if ((typer >> 32) == aff) {
 890                u64 offset = ptr - region->redist_base;
 891                raw_spin_lock_init(&gic_data_rdist()->rd_lock);
 892                gic_data_rdist_rd_base() = ptr;
 893                gic_data_rdist()->phys_base = region->phys_base + offset;
 894
 895                pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
 896                        smp_processor_id(), mpidr,
 897                        (int)(region - gic_data.redist_regions),
 898                        &gic_data_rdist()->phys_base);
 899                return 0;
 900        }
 901
 902        /* Try next one */
 903        return 1;
 904}
 905
 906static int gic_populate_rdist(void)
 907{
 908        if (gic_iterate_rdists(__gic_populate_rdist) == 0)
 909                return 0;
 910
 911        /* We couldn't even deal with ourselves... */
 912        WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
 913             smp_processor_id(),
 914             (unsigned long)cpu_logical_map(smp_processor_id()));
 915        return -ENODEV;
 916}
 917
 918static int __gic_update_rdist_properties(struct redist_region *region,
 919                                         void __iomem *ptr)
 920{
 921        u64 typer = gic_read_typer(ptr + GICR_TYPER);
 922
 923        gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
 924
 925        /* RVPEID implies some form of DirectLPI, no matter what the doc says... :-/ */
 926        gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
 927        gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
 928                                           gic_data.rdists.has_rvpeid);
 929        gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
 930
 931        /* Detect non-sensical configurations */
 932        if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
 933                gic_data.rdists.has_direct_lpi = false;
 934                gic_data.rdists.has_vlpis = false;
 935                gic_data.rdists.has_rvpeid = false;
 936        }
 937
 938        gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
 939
 940        return 1;
 941}
 942
 943static void gic_update_rdist_properties(void)
 944{
 945        gic_data.ppi_nr = UINT_MAX;
 946        gic_iterate_rdists(__gic_update_rdist_properties);
 947        if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
 948                gic_data.ppi_nr = 0;
 949        pr_info("%d PPIs implemented\n", gic_data.ppi_nr);
 950        if (gic_data.rdists.has_vlpis)
 951                pr_info("GICv4 features: %s%s%s\n",
 952                        gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
 953                        gic_data.rdists.has_rvpeid ? "RVPEID " : "",
 954                        gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
 955}
 956
 957/* Check whether it's single security state view */
 958static inline bool gic_dist_security_disabled(void)
 959{
 960        return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
 961}
 962
 963static void gic_cpu_sys_reg_init(void)
 964{
 965        int i, cpu = smp_processor_id();
 966        u64 mpidr = cpu_logical_map(cpu);
 967        u64 need_rss = MPIDR_RS(mpidr);
 968        bool group0;
 969        u32 pribits;
 970
 971        /*
 972         * Need to check that the SRE bit has actually been set. If
 973         * not, it means that SRE is disabled at EL2. We're going to
 974         * die painfully, and there is nothing we can do about it.
 975         *
 976         * Kindly inform the luser.
 977         */
 978        if (!gic_enable_sre())
 979                pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
 980
 981        pribits = gic_get_pribits();
 982
 983        group0 = gic_has_group0();
 984
 985        /* Set priority mask register */
 986        if (!gic_prio_masking_enabled()) {
 987                write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
 988        } else if (gic_supports_nmi()) {
 989                /*
 990                 * Mismatch configuration with boot CPU, the system is likely
 991                 * to die as interrupt masking will not work properly on all
 992                 * CPUs
 993                 *
 994                 * The boot CPU calls this function before enabling NMI support,
 995                 * and as a result we'll never see this warning in the boot path
 996                 * for that CPU.
 997                 */
 998                if (static_branch_unlikely(&gic_nonsecure_priorities))
 999                        WARN_ON(!group0 || gic_dist_security_disabled());
1000                else
1001                        WARN_ON(group0 && !gic_dist_security_disabled());
1002        }
1003
1004        /*
1005         * Some firmwares hand over to the kernel with the BPR changed from
1006         * its reset value (and with a value large enough to prevent
1007         * any pre-emptive interrupts from working at all). Writing a zero
1008         * to BPR restores is reset value.
1009         */
1010        gic_write_bpr1(0);
1011
1012        if (static_branch_likely(&supports_deactivate_key)) {
1013                /* EOI drops priority only (mode 1) */
1014                gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1015        } else {
1016                /* EOI deactivates interrupt too (mode 0) */
1017                gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1018        }
1019
1020        /* Always whack Group0 before Group1 */
1021        if (group0) {
1022                switch(pribits) {
1023                case 8:
1024                case 7:
1025                        write_gicreg(0, ICC_AP0R3_EL1);
1026                        write_gicreg(0, ICC_AP0R2_EL1);
1027                        fallthrough;
1028                case 6:
1029                        write_gicreg(0, ICC_AP0R1_EL1);
1030                        fallthrough;
1031                case 5:
1032                case 4:
1033                        write_gicreg(0, ICC_AP0R0_EL1);
1034                }
1035
1036                isb();
1037        }
1038
1039        switch(pribits) {
1040        case 8:
1041        case 7:
1042                write_gicreg(0, ICC_AP1R3_EL1);
1043                write_gicreg(0, ICC_AP1R2_EL1);
1044                fallthrough;
1045        case 6:
1046                write_gicreg(0, ICC_AP1R1_EL1);
1047                fallthrough;
1048        case 5:
1049        case 4:
1050                write_gicreg(0, ICC_AP1R0_EL1);
1051        }
1052
1053        isb();
1054
1055        /* ... and let's hit the road... */
1056        gic_write_grpen1(1);
1057
1058        /* Keep the RSS capability status in per_cpu variable */
1059        per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1060
1061        /* Check all the CPUs have capable of sending SGIs to other CPUs */
1062        for_each_online_cpu(i) {
1063                bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1064
1065                need_rss |= MPIDR_RS(cpu_logical_map(i));
1066                if (need_rss && (!have_rss))
1067                        pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1068                                cpu, (unsigned long)mpidr,
1069                                i, (unsigned long)cpu_logical_map(i));
1070        }
1071
1072        /**
1073         * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1074         * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1075         * UNPREDICTABLE choice of :
1076         *   - The write is ignored.
1077         *   - The RS field is treated as 0.
1078         */
1079        if (need_rss && (!gic_data.has_rss))
1080                pr_crit_once("RSS is required but GICD doesn't support it\n");
1081}
1082
1083static bool gicv3_nolpi;
1084
1085static int __init gicv3_nolpi_cfg(char *buf)
1086{
1087        return strtobool(buf, &gicv3_nolpi);
1088}
1089early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1090
1091static int gic_dist_supports_lpis(void)
1092{
1093        return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1094                !!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1095                !gicv3_nolpi);
1096}
1097
1098static void gic_cpu_init(void)
1099{
1100        void __iomem *rbase;
1101        int i;
1102
1103        /* Register ourselves with the rest of the world */
1104        if (gic_populate_rdist())
1105                return;
1106
1107        gic_enable_redist(true);
1108
1109        WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1110             !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1111             "Distributor has extended ranges, but CPU%d doesn't\n",
1112             smp_processor_id());
1113
1114        rbase = gic_data_rdist_sgi_base();
1115
1116        /* Configure SGIs/PPIs as non-secure Group-1 */
1117        for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
1118                writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1119
1120        gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
1121
1122        /* initialise system registers */
1123        gic_cpu_sys_reg_init();
1124}
1125
1126#ifdef CONFIG_SMP
1127
1128#define MPIDR_TO_SGI_RS(mpidr)  (MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1129#define MPIDR_TO_SGI_CLUSTER_ID(mpidr)  ((mpidr) & ~0xFUL)
1130
1131static int gic_starting_cpu(unsigned int cpu)
1132{
1133        gic_cpu_init();
1134
1135        if (gic_dist_supports_lpis())
1136                its_cpu_init();
1137
1138        return 0;
1139}
1140
1141static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1142                                   unsigned long cluster_id)
1143{
1144        int next_cpu, cpu = *base_cpu;
1145        unsigned long mpidr = cpu_logical_map(cpu);
1146        u16 tlist = 0;
1147
1148        while (cpu < nr_cpu_ids) {
1149                tlist |= 1 << (mpidr & 0xf);
1150
1151                next_cpu = cpumask_next(cpu, mask);
1152                if (next_cpu >= nr_cpu_ids)
1153                        goto out;
1154                cpu = next_cpu;
1155
1156                mpidr = cpu_logical_map(cpu);
1157
1158                if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1159                        cpu--;
1160                        goto out;
1161                }
1162        }
1163out:
1164        *base_cpu = cpu;
1165        return tlist;
1166}
1167
1168#define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1169        (MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1170                << ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1171
1172static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1173{
1174        u64 val;
1175
1176        val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)     |
1177               MPIDR_TO_SGI_AFFINITY(cluster_id, 2)     |
1178               irq << ICC_SGI1R_SGI_ID_SHIFT            |
1179               MPIDR_TO_SGI_AFFINITY(cluster_id, 1)     |
1180               MPIDR_TO_SGI_RS(cluster_id)              |
1181               tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1182
1183        pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1184        gic_write_sgi1r(val);
1185}
1186
1187static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1188{
1189        int cpu;
1190
1191        if (WARN_ON(d->hwirq >= 16))
1192                return;
1193
1194        /*
1195         * Ensure that stores to Normal memory are visible to the
1196         * other CPUs before issuing the IPI.
1197         */
1198        wmb();
1199
1200        for_each_cpu(cpu, mask) {
1201                u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu));
1202                u16 tlist;
1203
1204                tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1205                gic_send_sgi(cluster_id, tlist, d->hwirq);
1206        }
1207
1208        /* Force the above writes to ICC_SGI1R_EL1 to be executed */
1209        isb();
1210}
1211
1212static void __init gic_smp_init(void)
1213{
1214        struct irq_fwspec sgi_fwspec = {
1215                .fwnode         = gic_data.fwnode,
1216                .param_count    = 1,
1217        };
1218        int base_sgi;
1219
1220        cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1221                                  "irqchip/arm/gicv3:starting",
1222                                  gic_starting_cpu, NULL);
1223
1224        /* Register all 8 non-secure SGIs */
1225        base_sgi = __irq_domain_alloc_irqs(gic_data.domain, -1, 8,
1226                                           NUMA_NO_NODE, &sgi_fwspec,
1227                                           false, NULL);
1228        if (WARN_ON(base_sgi <= 0))
1229                return;
1230
1231        set_smp_ipi_range(base_sgi, 8);
1232}
1233
1234static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1235                            bool force)
1236{
1237        unsigned int cpu;
1238        u32 offset, index;
1239        void __iomem *reg;
1240        int enabled;
1241        u64 val;
1242
1243        if (force)
1244                cpu = cpumask_first(mask_val);
1245        else
1246                cpu = cpumask_any_and(mask_val, cpu_online_mask);
1247
1248        if (cpu >= nr_cpu_ids)
1249                return -EINVAL;
1250
1251        if (gic_irq_in_rdist(d))
1252                return -EINVAL;
1253
1254        /* If interrupt was enabled, disable it first */
1255        enabled = gic_peek_irq(d, GICD_ISENABLER);
1256        if (enabled)
1257                gic_mask_irq(d);
1258
1259        offset = convert_offset_index(d, GICD_IROUTER, &index);
1260        reg = gic_dist_base(d) + offset + (index * 8);
1261        val = gic_mpidr_to_affinity(cpu_logical_map(cpu));
1262
1263        gic_write_irouter(val, reg);
1264
1265        /*
1266         * If the interrupt was enabled, enabled it again. Otherwise,
1267         * just wait for the distributor to have digested our changes.
1268         */
1269        if (enabled)
1270                gic_unmask_irq(d);
1271        else
1272                gic_dist_wait_for_rwp();
1273
1274        irq_data_update_effective_affinity(d, cpumask_of(cpu));
1275
1276        return IRQ_SET_MASK_OK_DONE;
1277}
1278#else
1279#define gic_set_affinity        NULL
1280#define gic_ipi_send_mask       NULL
1281#define gic_smp_init()          do { } while(0)
1282#endif
1283
1284static int gic_retrigger(struct irq_data *data)
1285{
1286        return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1287}
1288
1289#ifdef CONFIG_CPU_PM
1290static int gic_cpu_pm_notifier(struct notifier_block *self,
1291                               unsigned long cmd, void *v)
1292{
1293        if (cmd == CPU_PM_EXIT) {
1294                if (gic_dist_security_disabled())
1295                        gic_enable_redist(true);
1296                gic_cpu_sys_reg_init();
1297        } else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1298                gic_write_grpen1(0);
1299                gic_enable_redist(false);
1300        }
1301        return NOTIFY_OK;
1302}
1303
1304static struct notifier_block gic_cpu_pm_notifier_block = {
1305        .notifier_call = gic_cpu_pm_notifier,
1306};
1307
1308static void gic_cpu_pm_init(void)
1309{
1310        cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1311}
1312
1313#else
1314static inline void gic_cpu_pm_init(void) { }
1315#endif /* CONFIG_CPU_PM */
1316
1317static struct irq_chip gic_chip = {
1318        .name                   = "GICv3",
1319        .irq_mask               = gic_mask_irq,
1320        .irq_unmask             = gic_unmask_irq,
1321        .irq_eoi                = gic_eoi_irq,
1322        .irq_set_type           = gic_set_type,
1323        .irq_set_affinity       = gic_set_affinity,
1324        .irq_retrigger          = gic_retrigger,
1325        .irq_get_irqchip_state  = gic_irq_get_irqchip_state,
1326        .irq_set_irqchip_state  = gic_irq_set_irqchip_state,
1327        .irq_nmi_setup          = gic_irq_nmi_setup,
1328        .irq_nmi_teardown       = gic_irq_nmi_teardown,
1329        .ipi_send_mask          = gic_ipi_send_mask,
1330        .flags                  = IRQCHIP_SET_TYPE_MASKED |
1331                                  IRQCHIP_SKIP_SET_WAKE |
1332                                  IRQCHIP_MASK_ON_SUSPEND,
1333};
1334
1335static struct irq_chip gic_eoimode1_chip = {
1336        .name                   = "GICv3",
1337        .irq_mask               = gic_eoimode1_mask_irq,
1338        .irq_unmask             = gic_unmask_irq,
1339        .irq_eoi                = gic_eoimode1_eoi_irq,
1340        .irq_set_type           = gic_set_type,
1341        .irq_set_affinity       = gic_set_affinity,
1342        .irq_retrigger          = gic_retrigger,
1343        .irq_get_irqchip_state  = gic_irq_get_irqchip_state,
1344        .irq_set_irqchip_state  = gic_irq_set_irqchip_state,
1345        .irq_set_vcpu_affinity  = gic_irq_set_vcpu_affinity,
1346        .irq_nmi_setup          = gic_irq_nmi_setup,
1347        .irq_nmi_teardown       = gic_irq_nmi_teardown,
1348        .ipi_send_mask          = gic_ipi_send_mask,
1349        .flags                  = IRQCHIP_SET_TYPE_MASKED |
1350                                  IRQCHIP_SKIP_SET_WAKE |
1351                                  IRQCHIP_MASK_ON_SUSPEND,
1352};
1353
1354static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1355                              irq_hw_number_t hw)
1356{
1357        struct irq_chip *chip = &gic_chip;
1358        struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1359
1360        if (static_branch_likely(&supports_deactivate_key))
1361                chip = &gic_eoimode1_chip;
1362
1363        switch (__get_intid_range(hw)) {
1364        case SGI_RANGE:
1365        case PPI_RANGE:
1366        case EPPI_RANGE:
1367                irq_set_percpu_devid(irq);
1368                irq_domain_set_info(d, irq, hw, chip, d->host_data,
1369                                    handle_percpu_devid_irq, NULL, NULL);
1370                break;
1371
1372        case SPI_RANGE:
1373        case ESPI_RANGE:
1374                irq_domain_set_info(d, irq, hw, chip, d->host_data,
1375                                    handle_fasteoi_irq, NULL, NULL);
1376                irq_set_probe(irq);
1377                irqd_set_single_target(irqd);
1378                break;
1379
1380        case LPI_RANGE:
1381                if (!gic_dist_supports_lpis())
1382                        return -EPERM;
1383                irq_domain_set_info(d, irq, hw, chip, d->host_data,
1384                                    handle_fasteoi_irq, NULL, NULL);
1385                break;
1386
1387        default:
1388                return -EPERM;
1389        }
1390
1391        /* Prevents SW retriggers which mess up the ACK/EOI ordering */
1392        irqd_set_handle_enforce_irqctx(irqd);
1393        return 0;
1394}
1395
1396static int gic_irq_domain_translate(struct irq_domain *d,
1397                                    struct irq_fwspec *fwspec,
1398                                    unsigned long *hwirq,
1399                                    unsigned int *type)
1400{
1401        if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1402                *hwirq = fwspec->param[0];
1403                *type = IRQ_TYPE_EDGE_RISING;
1404                return 0;
1405        }
1406
1407        if (is_of_node(fwspec->fwnode)) {
1408                if (fwspec->param_count < 3)
1409                        return -EINVAL;
1410
1411                switch (fwspec->param[0]) {
1412                case 0:                 /* SPI */
1413                        *hwirq = fwspec->param[1] + 32;
1414                        break;
1415                case 1:                 /* PPI */
1416                        *hwirq = fwspec->param[1] + 16;
1417                        break;
1418                case 2:                 /* ESPI */
1419                        *hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1420                        break;
1421                case 3:                 /* EPPI */
1422                        *hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1423                        break;
1424                case GIC_IRQ_TYPE_LPI:  /* LPI */
1425                        *hwirq = fwspec->param[1];
1426                        break;
1427                case GIC_IRQ_TYPE_PARTITION:
1428                        *hwirq = fwspec->param[1];
1429                        if (fwspec->param[1] >= 16)
1430                                *hwirq += EPPI_BASE_INTID - 16;
1431                        else
1432                                *hwirq += 16;
1433                        break;
1434                default:
1435                        return -EINVAL;
1436                }
1437
1438                *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1439
1440                /*
1441                 * Make it clear that broken DTs are... broken.
1442                 * Partitioned PPIs are an unfortunate exception.
1443                 */
1444                WARN_ON(*type == IRQ_TYPE_NONE &&
1445                        fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1446                return 0;
1447        }
1448
1449        if (is_fwnode_irqchip(fwspec->fwnode)) {
1450                if(fwspec->param_count != 2)
1451                        return -EINVAL;
1452
1453                *hwirq = fwspec->param[0];
1454                *type = fwspec->param[1];
1455
1456                WARN_ON(*type == IRQ_TYPE_NONE);
1457                return 0;
1458        }
1459
1460        return -EINVAL;
1461}
1462
1463static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1464                                unsigned int nr_irqs, void *arg)
1465{
1466        int i, ret;
1467        irq_hw_number_t hwirq;
1468        unsigned int type = IRQ_TYPE_NONE;
1469        struct irq_fwspec *fwspec = arg;
1470
1471        ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1472        if (ret)
1473                return ret;
1474
1475        for (i = 0; i < nr_irqs; i++) {
1476                ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1477                if (ret)
1478                        return ret;
1479        }
1480
1481        return 0;
1482}
1483
1484static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1485                                unsigned int nr_irqs)
1486{
1487        int i;
1488
1489        for (i = 0; i < nr_irqs; i++) {
1490                struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1491                irq_set_handler(virq + i, NULL);
1492                irq_domain_reset_irq_data(d);
1493        }
1494}
1495
1496static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
1497                                      irq_hw_number_t hwirq)
1498{
1499        enum gic_intid_range range;
1500
1501        if (!gic_data.ppi_descs)
1502                return false;
1503
1504        if (!is_of_node(fwspec->fwnode))
1505                return false;
1506
1507        if (fwspec->param_count < 4 || !fwspec->param[3])
1508                return false;
1509
1510        range = __get_intid_range(hwirq);
1511        if (range != PPI_RANGE && range != EPPI_RANGE)
1512                return false;
1513
1514        return true;
1515}
1516
1517static int gic_irq_domain_select(struct irq_domain *d,
1518                                 struct irq_fwspec *fwspec,
1519                                 enum irq_domain_bus_token bus_token)
1520{
1521        unsigned int type, ret, ppi_idx;
1522        irq_hw_number_t hwirq;
1523
1524        /* Not for us */
1525        if (fwspec->fwnode != d->fwnode)
1526                return 0;
1527
1528        /* If this is not DT, then we have a single domain */
1529        if (!is_of_node(fwspec->fwnode))
1530                return 1;
1531
1532        ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
1533        if (WARN_ON_ONCE(ret))
1534                return 0;
1535
1536        if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
1537                return d == gic_data.domain;
1538
1539        /*
1540         * If this is a PPI and we have a 4th (non-null) parameter,
1541         * then we need to match the partition domain.
1542         */
1543        ppi_idx = __gic_get_ppi_index(hwirq);
1544        return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
1545}
1546
1547static const struct irq_domain_ops gic_irq_domain_ops = {
1548        .translate = gic_irq_domain_translate,
1549        .alloc = gic_irq_domain_alloc,
1550        .free = gic_irq_domain_free,
1551        .select = gic_irq_domain_select,
1552};
1553
1554static int partition_domain_translate(struct irq_domain *d,
1555                                      struct irq_fwspec *fwspec,
1556                                      unsigned long *hwirq,
1557                                      unsigned int *type)
1558{
1559        unsigned long ppi_intid;
1560        struct device_node *np;
1561        unsigned int ppi_idx;
1562        int ret;
1563
1564        if (!gic_data.ppi_descs)
1565                return -ENOMEM;
1566
1567        np = of_find_node_by_phandle(fwspec->param[3]);
1568        if (WARN_ON(!np))
1569                return -EINVAL;
1570
1571        ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
1572        if (WARN_ON_ONCE(ret))
1573                return 0;
1574
1575        ppi_idx = __gic_get_ppi_index(ppi_intid);
1576        ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
1577                                     of_node_to_fwnode(np));
1578        if (ret < 0)
1579                return ret;
1580
1581        *hwirq = ret;
1582        *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1583
1584        return 0;
1585}
1586
1587static const struct irq_domain_ops partition_domain_ops = {
1588        .translate = partition_domain_translate,
1589        .select = gic_irq_domain_select,
1590};
1591
1592static bool gic_enable_quirk_msm8996(void *data)
1593{
1594        struct gic_chip_data *d = data;
1595
1596        d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1597
1598        return true;
1599}
1600
1601static bool gic_enable_quirk_cavium_38539(void *data)
1602{
1603        struct gic_chip_data *d = data;
1604
1605        d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1606
1607        return true;
1608}
1609
1610static bool gic_enable_quirk_hip06_07(void *data)
1611{
1612        struct gic_chip_data *d = data;
1613
1614        /*
1615         * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1616         * not being an actual ARM implementation). The saving grace is
1617         * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1618         * HIP07 doesn't even have a proper IIDR, and still pretends to
1619         * have ESPI. In both cases, put them right.
1620         */
1621        if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1622                /* Zero both ESPI and the RES0 field next to it... */
1623                d->rdists.gicd_typer &= ~GENMASK(9, 8);
1624                return true;
1625        }
1626
1627        return false;
1628}
1629
1630static const struct gic_quirk gic_quirks[] = {
1631        {
1632                .desc   = "GICv3: Qualcomm MSM8996 broken firmware",
1633                .compatible = "qcom,msm8996-gic-v3",
1634                .init   = gic_enable_quirk_msm8996,
1635        },
1636        {
1637                .desc   = "GICv3: HIP06 erratum 161010803",
1638                .iidr   = 0x0204043b,
1639                .mask   = 0xffffffff,
1640                .init   = gic_enable_quirk_hip06_07,
1641        },
1642        {
1643                .desc   = "GICv3: HIP07 erratum 161010803",
1644                .iidr   = 0x00000000,
1645                .mask   = 0xffffffff,
1646                .init   = gic_enable_quirk_hip06_07,
1647        },
1648        {
1649                /*
1650                 * Reserved register accesses generate a Synchronous
1651                 * External Abort. This erratum applies to:
1652                 * - ThunderX: CN88xx
1653                 * - OCTEON TX: CN83xx, CN81xx
1654                 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1655                 */
1656                .desc   = "GICv3: Cavium erratum 38539",
1657                .iidr   = 0xa000034c,
1658                .mask   = 0xe8f00fff,
1659                .init   = gic_enable_quirk_cavium_38539,
1660        },
1661        {
1662        }
1663};
1664
1665static void gic_enable_nmi_support(void)
1666{
1667        int i;
1668
1669        if (!gic_prio_masking_enabled())
1670                return;
1671
1672        ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
1673        if (!ppi_nmi_refs)
1674                return;
1675
1676        for (i = 0; i < gic_data.ppi_nr; i++)
1677                refcount_set(&ppi_nmi_refs[i], 0);
1678
1679        /*
1680         * Linux itself doesn't use 1:N distribution, so has no need to
1681         * set PMHE. The only reason to have it set is if EL3 requires it
1682         * (and we can't change it).
1683         */
1684        if (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK)
1685                static_branch_enable(&gic_pmr_sync);
1686
1687        pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1688                static_branch_unlikely(&gic_pmr_sync) ? "forced" : "relaxed");
1689
1690        /*
1691         * How priority values are used by the GIC depends on two things:
1692         * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
1693         * and if Group 0 interrupts can be delivered to Linux in the non-secure
1694         * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
1695         * the ICC_PMR_EL1 register and the priority that software assigns to
1696         * interrupts:
1697         *
1698         * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
1699         * -----------------------------------------------------------
1700         *      1       |      -      |  unchanged  |    unchanged
1701         * -----------------------------------------------------------
1702         *      0       |      1      |  non-secure |    non-secure
1703         * -----------------------------------------------------------
1704         *      0       |      0      |  unchanged  |    non-secure
1705         *
1706         * where non-secure means that the value is right-shifted by one and the
1707         * MSB bit set, to make it fit in the non-secure priority range.
1708         *
1709         * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
1710         * are both either modified or unchanged, we can use the same set of
1711         * priorities.
1712         *
1713         * In the last case, where only the interrupt priorities are modified to
1714         * be in the non-secure range, we use a different PMR value to mask IRQs
1715         * and the rest of the values that we use remain unchanged.
1716         */
1717        if (gic_has_group0() && !gic_dist_security_disabled())
1718                static_branch_enable(&gic_nonsecure_priorities);
1719
1720        static_branch_enable(&supports_pseudo_nmis);
1721
1722        if (static_branch_likely(&supports_deactivate_key))
1723                gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1724        else
1725                gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1726}
1727
1728static int __init gic_init_bases(void __iomem *dist_base,
1729                                 struct redist_region *rdist_regs,
1730                                 u32 nr_redist_regions,
1731                                 u64 redist_stride,
1732                                 struct fwnode_handle *handle)
1733{
1734        u32 typer;
1735        int err;
1736
1737        if (!is_hyp_mode_available())
1738                static_branch_disable(&supports_deactivate_key);
1739
1740        if (static_branch_likely(&supports_deactivate_key))
1741                pr_info("GIC: Using split EOI/Deactivate mode\n");
1742
1743        gic_data.fwnode = handle;
1744        gic_data.dist_base = dist_base;
1745        gic_data.redist_regions = rdist_regs;
1746        gic_data.nr_redist_regions = nr_redist_regions;
1747        gic_data.redist_stride = redist_stride;
1748
1749        /*
1750         * Find out how many interrupts are supported.
1751         */
1752        typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
1753        gic_data.rdists.gicd_typer = typer;
1754
1755        gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
1756                          gic_quirks, &gic_data);
1757
1758        pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
1759        pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
1760
1761        /*
1762         * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
1763         * architecture spec (which says that reserved registers are RES0).
1764         */
1765        if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
1766                gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
1767
1768        gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
1769                                                 &gic_data);
1770        gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
1771        gic_data.rdists.has_rvpeid = true;
1772        gic_data.rdists.has_vlpis = true;
1773        gic_data.rdists.has_direct_lpi = true;
1774        gic_data.rdists.has_vpend_valid_dirty = true;
1775
1776        if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
1777                err = -ENOMEM;
1778                goto out_free;
1779        }
1780
1781        irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
1782
1783        gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
1784        pr_info("Distributor has %sRange Selector support\n",
1785                gic_data.has_rss ? "" : "no ");
1786
1787        if (typer & GICD_TYPER_MBIS) {
1788                err = mbi_init(handle, gic_data.domain);
1789                if (err)
1790                        pr_err("Failed to initialize MBIs\n");
1791        }
1792
1793        set_handle_irq(gic_handle_irq);
1794
1795        gic_update_rdist_properties();
1796
1797        gic_dist_init();
1798        gic_cpu_init();
1799        gic_smp_init();
1800        gic_cpu_pm_init();
1801
1802        if (gic_dist_supports_lpis()) {
1803                its_init(handle, &gic_data.rdists, gic_data.domain);
1804                its_cpu_init();
1805        } else {
1806                if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1807                        gicv2m_init(handle, gic_data.domain);
1808        }
1809
1810        gic_enable_nmi_support();
1811
1812        return 0;
1813
1814out_free:
1815        if (gic_data.domain)
1816                irq_domain_remove(gic_data.domain);
1817        free_percpu(gic_data.rdists.rdist);
1818        return err;
1819}
1820
1821static int __init gic_validate_dist_version(void __iomem *dist_base)
1822{
1823        u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
1824
1825        if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
1826                return -ENODEV;
1827
1828        return 0;
1829}
1830
1831/* Create all possible partitions at boot time */
1832static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
1833{
1834        struct device_node *parts_node, *child_part;
1835        int part_idx = 0, i;
1836        int nr_parts;
1837        struct partition_affinity *parts;
1838
1839        parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
1840        if (!parts_node)
1841                return;
1842
1843        gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
1844        if (!gic_data.ppi_descs)
1845                return;
1846
1847        nr_parts = of_get_child_count(parts_node);
1848
1849        if (!nr_parts)
1850                goto out_put_node;
1851
1852        parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
1853        if (WARN_ON(!parts))
1854                goto out_put_node;
1855
1856        for_each_child_of_node(parts_node, child_part) {
1857                struct partition_affinity *part;
1858                int n;
1859
1860                part = &parts[part_idx];
1861
1862                part->partition_id = of_node_to_fwnode(child_part);
1863
1864                pr_info("GIC: PPI partition %pOFn[%d] { ",
1865                        child_part, part_idx);
1866
1867                n = of_property_count_elems_of_size(child_part, "affinity",
1868                                                    sizeof(u32));
1869                WARN_ON(n <= 0);
1870
1871                for (i = 0; i < n; i++) {
1872                        int err, cpu;
1873                        u32 cpu_phandle;
1874                        struct device_node *cpu_node;
1875
1876                        err = of_property_read_u32_index(child_part, "affinity",
1877                                                         i, &cpu_phandle);
1878                        if (WARN_ON(err))
1879                                continue;
1880
1881                        cpu_node = of_find_node_by_phandle(cpu_phandle);
1882                        if (WARN_ON(!cpu_node))
1883                                continue;
1884
1885                        cpu = of_cpu_node_to_id(cpu_node);
1886                        if (WARN_ON(cpu < 0))
1887                                continue;
1888
1889                        pr_cont("%pOF[%d] ", cpu_node, cpu);
1890
1891                        cpumask_set_cpu(cpu, &part->mask);
1892                }
1893
1894                pr_cont("}\n");
1895                part_idx++;
1896        }
1897
1898        for (i = 0; i < gic_data.ppi_nr; i++) {
1899                unsigned int irq;
1900                struct partition_desc *desc;
1901                struct irq_fwspec ppi_fwspec = {
1902                        .fwnode         = gic_data.fwnode,
1903                        .param_count    = 3,
1904                        .param          = {
1905                                [0]     = GIC_IRQ_TYPE_PARTITION,
1906                                [1]     = i,
1907                                [2]     = IRQ_TYPE_NONE,
1908                        },
1909                };
1910
1911                irq = irq_create_fwspec_mapping(&ppi_fwspec);
1912                if (WARN_ON(!irq))
1913                        continue;
1914                desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
1915                                             irq, &partition_domain_ops);
1916                if (WARN_ON(!desc))
1917                        continue;
1918
1919                gic_data.ppi_descs[i] = desc;
1920        }
1921
1922out_put_node:
1923        of_node_put(parts_node);
1924}
1925
1926static void __init gic_of_setup_kvm_info(struct device_node *node)
1927{
1928        int ret;
1929        struct resource r;
1930        u32 gicv_idx;
1931
1932        gic_v3_kvm_info.type = GIC_V3;
1933
1934        gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
1935        if (!gic_v3_kvm_info.maint_irq)
1936                return;
1937
1938        if (of_property_read_u32(node, "#redistributor-regions",
1939                                 &gicv_idx))
1940                gicv_idx = 1;
1941
1942        gicv_idx += 3;  /* Also skip GICD, GICC, GICH */
1943        ret = of_address_to_resource(node, gicv_idx, &r);
1944        if (!ret)
1945                gic_v3_kvm_info.vcpu = r;
1946
1947        gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
1948        gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
1949        vgic_set_kvm_info(&gic_v3_kvm_info);
1950}
1951
1952static int __init gic_of_init(struct device_node *node, struct device_node *parent)
1953{
1954        void __iomem *dist_base;
1955        struct redist_region *rdist_regs;
1956        u64 redist_stride;
1957        u32 nr_redist_regions;
1958        int err, i;
1959
1960        dist_base = of_iomap(node, 0);
1961        if (!dist_base) {
1962                pr_err("%pOF: unable to map gic dist registers\n", node);
1963                return -ENXIO;
1964        }
1965
1966        err = gic_validate_dist_version(dist_base);
1967        if (err) {
1968                pr_err("%pOF: no distributor detected, giving up\n", node);
1969                goto out_unmap_dist;
1970        }
1971
1972        if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
1973                nr_redist_regions = 1;
1974
1975        rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
1976                             GFP_KERNEL);
1977        if (!rdist_regs) {
1978                err = -ENOMEM;
1979                goto out_unmap_dist;
1980        }
1981
1982        for (i = 0; i < nr_redist_regions; i++) {
1983                struct resource res;
1984                int ret;
1985
1986                ret = of_address_to_resource(node, 1 + i, &res);
1987                rdist_regs[i].redist_base = of_iomap(node, 1 + i);
1988                if (ret || !rdist_regs[i].redist_base) {
1989                        pr_err("%pOF: couldn't map region %d\n", node, i);
1990                        err = -ENODEV;
1991                        goto out_unmap_rdist;
1992                }
1993                rdist_regs[i].phys_base = res.start;
1994        }
1995
1996        if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
1997                redist_stride = 0;
1998
1999        gic_enable_of_quirks(node, gic_quirks, &gic_data);
2000
2001        err = gic_init_bases(dist_base, rdist_regs, nr_redist_regions,
2002                             redist_stride, &node->fwnode);
2003        if (err)
2004                goto out_unmap_rdist;
2005
2006        gic_populate_ppi_partitions(node);
2007
2008        if (static_branch_likely(&supports_deactivate_key))
2009                gic_of_setup_kvm_info(node);
2010        return 0;
2011
2012out_unmap_rdist:
2013        for (i = 0; i < nr_redist_regions; i++)
2014                if (rdist_regs[i].redist_base)
2015                        iounmap(rdist_regs[i].redist_base);
2016        kfree(rdist_regs);
2017out_unmap_dist:
2018        iounmap(dist_base);
2019        return err;
2020}
2021
2022IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2023
2024#ifdef CONFIG_ACPI
2025static struct
2026{
2027        void __iomem *dist_base;
2028        struct redist_region *redist_regs;
2029        u32 nr_redist_regions;
2030        bool single_redist;
2031        int enabled_rdists;
2032        u32 maint_irq;
2033        int maint_irq_mode;
2034        phys_addr_t vcpu_base;
2035} acpi_data __initdata;
2036
2037static void __init
2038gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2039{
2040        static int count = 0;
2041
2042        acpi_data.redist_regs[count].phys_base = phys_base;
2043        acpi_data.redist_regs[count].redist_base = redist_base;
2044        acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2045        count++;
2046}
2047
2048static int __init
2049gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2050                           const unsigned long end)
2051{
2052        struct acpi_madt_generic_redistributor *redist =
2053                        (struct acpi_madt_generic_redistributor *)header;
2054        void __iomem *redist_base;
2055
2056        redist_base = ioremap(redist->base_address, redist->length);
2057        if (!redist_base) {
2058                pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2059                return -ENOMEM;
2060        }
2061
2062        gic_acpi_register_redist(redist->base_address, redist_base);
2063        return 0;
2064}
2065
2066static int __init
2067gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2068                         const unsigned long end)
2069{
2070        struct acpi_madt_generic_interrupt *gicc =
2071                                (struct acpi_madt_generic_interrupt *)header;
2072        u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2073        u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2074        void __iomem *redist_base;
2075
2076        /* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
2077        if (!(gicc->flags & ACPI_MADT_ENABLED))
2078                return 0;
2079
2080        redist_base = ioremap(gicc->gicr_base_address, size);
2081        if (!redist_base)
2082                return -ENOMEM;
2083
2084        gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2085        return 0;
2086}
2087
2088static int __init gic_acpi_collect_gicr_base(void)
2089{
2090        acpi_tbl_entry_handler redist_parser;
2091        enum acpi_madt_type type;
2092
2093        if (acpi_data.single_redist) {
2094                type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2095                redist_parser = gic_acpi_parse_madt_gicc;
2096        } else {
2097                type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2098                redist_parser = gic_acpi_parse_madt_redist;
2099        }
2100
2101        /* Collect redistributor base addresses in GICR entries */
2102        if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2103                return 0;
2104
2105        pr_info("No valid GICR entries exist\n");
2106        return -ENODEV;
2107}
2108
2109static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2110                                  const unsigned long end)
2111{
2112        /* Subtable presence means that redist exists, that's it */
2113        return 0;
2114}
2115
2116static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2117                                      const unsigned long end)
2118{
2119        struct acpi_madt_generic_interrupt *gicc =
2120                                (struct acpi_madt_generic_interrupt *)header;
2121
2122        /*
2123         * If GICC is enabled and has valid gicr base address, then it means
2124         * GICR base is presented via GICC
2125         */
2126        if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) {
2127                acpi_data.enabled_rdists++;
2128                return 0;
2129        }
2130
2131        /*
2132         * It's perfectly valid firmware can pass disabled GICC entry, driver
2133         * should not treat as errors, skip the entry instead of probe fail.
2134         */
2135        if (!(gicc->flags & ACPI_MADT_ENABLED))
2136                return 0;
2137
2138        return -ENODEV;
2139}
2140
2141static int __init gic_acpi_count_gicr_regions(void)
2142{
2143        int count;
2144
2145        /*
2146         * Count how many redistributor regions we have. It is not allowed
2147         * to mix redistributor description, GICR and GICC subtables have to be
2148         * mutually exclusive.
2149         */
2150        count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2151                                      gic_acpi_match_gicr, 0);
2152        if (count > 0) {
2153                acpi_data.single_redist = false;
2154                return count;
2155        }
2156
2157        count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2158                                      gic_acpi_match_gicc, 0);
2159        if (count > 0) {
2160                acpi_data.single_redist = true;
2161                count = acpi_data.enabled_rdists;
2162        }
2163
2164        return count;
2165}
2166
2167static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2168                                           struct acpi_probe_entry *ape)
2169{
2170        struct acpi_madt_generic_distributor *dist;
2171        int count;
2172
2173        dist = (struct acpi_madt_generic_distributor *)header;
2174        if (dist->version != ape->driver_data)
2175                return false;
2176
2177        /* We need to do that exercise anyway, the sooner the better */
2178        count = gic_acpi_count_gicr_regions();
2179        if (count <= 0)
2180                return false;
2181
2182        acpi_data.nr_redist_regions = count;
2183        return true;
2184}
2185
2186static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2187                                                const unsigned long end)
2188{
2189        struct acpi_madt_generic_interrupt *gicc =
2190                (struct acpi_madt_generic_interrupt *)header;
2191        int maint_irq_mode;
2192        static int first_madt = true;
2193
2194        /* Skip unusable CPUs */
2195        if (!(gicc->flags & ACPI_MADT_ENABLED))
2196                return 0;
2197
2198        maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2199                ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2200
2201        if (first_madt) {
2202                first_madt = false;
2203
2204                acpi_data.maint_irq = gicc->vgic_interrupt;
2205                acpi_data.maint_irq_mode = maint_irq_mode;
2206                acpi_data.vcpu_base = gicc->gicv_base_address;
2207
2208                return 0;
2209        }
2210
2211        /*
2212         * The maintenance interrupt and GICV should be the same for every CPU
2213         */
2214        if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2215            (acpi_data.maint_irq_mode != maint_irq_mode) ||
2216            (acpi_data.vcpu_base != gicc->gicv_base_address))
2217                return -EINVAL;
2218
2219        return 0;
2220}
2221
2222static bool __init gic_acpi_collect_virt_info(void)
2223{
2224        int count;
2225
2226        count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2227                                      gic_acpi_parse_virt_madt_gicc, 0);
2228
2229        return (count > 0);
2230}
2231
2232#define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2233#define ACPI_GICV2_VCTRL_MEM_SIZE       (SZ_4K)
2234#define ACPI_GICV2_VCPU_MEM_SIZE        (SZ_8K)
2235
2236static void __init gic_acpi_setup_kvm_info(void)
2237{
2238        int irq;
2239
2240        if (!gic_acpi_collect_virt_info()) {
2241                pr_warn("Unable to get hardware information used for virtualization\n");
2242                return;
2243        }
2244
2245        gic_v3_kvm_info.type = GIC_V3;
2246
2247        irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2248                                acpi_data.maint_irq_mode,
2249                                ACPI_ACTIVE_HIGH);
2250        if (irq <= 0)
2251                return;
2252
2253        gic_v3_kvm_info.maint_irq = irq;
2254
2255        if (acpi_data.vcpu_base) {
2256                struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2257
2258                vcpu->flags = IORESOURCE_MEM;
2259                vcpu->start = acpi_data.vcpu_base;
2260                vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2261        }
2262
2263        gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2264        gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2265        vgic_set_kvm_info(&gic_v3_kvm_info);
2266}
2267
2268static int __init
2269gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2270{
2271        struct acpi_madt_generic_distributor *dist;
2272        struct fwnode_handle *domain_handle;
2273        size_t size;
2274        int i, err;
2275
2276        /* Get distributor base address */
2277        dist = (struct acpi_madt_generic_distributor *)header;
2278        acpi_data.dist_base = ioremap(dist->base_address,
2279                                      ACPI_GICV3_DIST_MEM_SIZE);
2280        if (!acpi_data.dist_base) {
2281                pr_err("Unable to map GICD registers\n");
2282                return -ENOMEM;
2283        }
2284
2285        err = gic_validate_dist_version(acpi_data.dist_base);
2286        if (err) {
2287                pr_err("No distributor detected at @%p, giving up\n",
2288                       acpi_data.dist_base);
2289                goto out_dist_unmap;
2290        }
2291
2292        size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2293        acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2294        if (!acpi_data.redist_regs) {
2295                err = -ENOMEM;
2296                goto out_dist_unmap;
2297        }
2298
2299        err = gic_acpi_collect_gicr_base();
2300        if (err)
2301                goto out_redist_unmap;
2302
2303        domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2304        if (!domain_handle) {
2305                err = -ENOMEM;
2306                goto out_redist_unmap;
2307        }
2308
2309        err = gic_init_bases(acpi_data.dist_base, acpi_data.redist_regs,
2310                             acpi_data.nr_redist_regions, 0, domain_handle);
2311        if (err)
2312                goto out_fwhandle_free;
2313
2314        acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
2315
2316        if (static_branch_likely(&supports_deactivate_key))
2317                gic_acpi_setup_kvm_info();
2318
2319        return 0;
2320
2321out_fwhandle_free:
2322        irq_domain_free_fwnode(domain_handle);
2323out_redist_unmap:
2324        for (i = 0; i < acpi_data.nr_redist_regions; i++)
2325                if (acpi_data.redist_regs[i].redist_base)
2326                        iounmap(acpi_data.redist_regs[i].redist_base);
2327        kfree(acpi_data.redist_regs);
2328out_dist_unmap:
2329        iounmap(acpi_data.dist_base);
2330        return err;
2331}
2332IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2333                     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2334                     gic_acpi_init);
2335IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2336                     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2337                     gic_acpi_init);
2338IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2339                     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2340                     gic_acpi_init);
2341#endif
2342