linux/drivers/mtd/nand/raw/au1550nd.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 2004 Embedded Edge, LLC
   4 */
   5
   6#include <linux/delay.h>
   7#include <linux/slab.h>
   8#include <linux/module.h>
   9#include <linux/interrupt.h>
  10#include <linux/mtd/mtd.h>
  11#include <linux/mtd/rawnand.h>
  12#include <linux/mtd/partitions.h>
  13#include <linux/platform_device.h>
  14#include <asm/io.h>
  15#include <asm/mach-au1x00/au1000.h>
  16#include <asm/mach-au1x00/au1550nd.h>
  17
  18
  19struct au1550nd_ctx {
  20        struct nand_controller controller;
  21        struct nand_chip chip;
  22
  23        int cs;
  24        void __iomem *base;
  25};
  26
  27static struct au1550nd_ctx *chip_to_au_ctx(struct nand_chip *this)
  28{
  29        return container_of(this, struct au1550nd_ctx, chip);
  30}
  31
  32/**
  33 * au_write_buf -  write buffer to chip
  34 * @this:       NAND chip object
  35 * @buf:        data buffer
  36 * @len:        number of bytes to write
  37 *
  38 * write function for 8bit buswidth
  39 */
  40static void au_write_buf(struct nand_chip *this, const void *buf,
  41                         unsigned int len)
  42{
  43        struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
  44        const u8 *p = buf;
  45        int i;
  46
  47        for (i = 0; i < len; i++) {
  48                writeb(p[i], ctx->base + MEM_STNAND_DATA);
  49                wmb(); /* drain writebuffer */
  50        }
  51}
  52
  53/**
  54 * au_read_buf -  read chip data into buffer
  55 * @this:       NAND chip object
  56 * @buf:        buffer to store date
  57 * @len:        number of bytes to read
  58 *
  59 * read function for 8bit buswidth
  60 */
  61static void au_read_buf(struct nand_chip *this, void *buf,
  62                        unsigned int len)
  63{
  64        struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
  65        u8 *p = buf;
  66        int i;
  67
  68        for (i = 0; i < len; i++) {
  69                p[i] = readb(ctx->base + MEM_STNAND_DATA);
  70                wmb(); /* drain writebuffer */
  71        }
  72}
  73
  74/**
  75 * au_write_buf16 -  write buffer to chip
  76 * @this:       NAND chip object
  77 * @buf:        data buffer
  78 * @len:        number of bytes to write
  79 *
  80 * write function for 16bit buswidth
  81 */
  82static void au_write_buf16(struct nand_chip *this, const void *buf,
  83                           unsigned int len)
  84{
  85        struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
  86        const u16 *p = buf;
  87        unsigned int i;
  88
  89        len >>= 1;
  90        for (i = 0; i < len; i++) {
  91                writew(p[i], ctx->base + MEM_STNAND_DATA);
  92                wmb(); /* drain writebuffer */
  93        }
  94}
  95
  96/**
  97 * au_read_buf16 -  read chip data into buffer
  98 * @this:       NAND chip object
  99 * @buf:        buffer to store date
 100 * @len:        number of bytes to read
 101 *
 102 * read function for 16bit buswidth
 103 */
 104static void au_read_buf16(struct nand_chip *this, void *buf, unsigned int len)
 105{
 106        struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
 107        unsigned int i;
 108        u16 *p = buf;
 109
 110        len >>= 1;
 111        for (i = 0; i < len; i++) {
 112                p[i] = readw(ctx->base + MEM_STNAND_DATA);
 113                wmb(); /* drain writebuffer */
 114        }
 115}
 116
 117static int find_nand_cs(unsigned long nand_base)
 118{
 119        void __iomem *base =
 120                        (void __iomem *)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR);
 121        unsigned long addr, staddr, start, mask, end;
 122        int i;
 123
 124        for (i = 0; i < 4; i++) {
 125                addr = 0x1000 + (i * 0x10);                     /* CSx */
 126                staddr = __raw_readl(base + addr + 0x08);       /* STADDRx */
 127                /* figure out the decoded range of this CS */
 128                start = (staddr << 4) & 0xfffc0000;
 129                mask = (staddr << 18) & 0xfffc0000;
 130                end = (start | (start - 1)) & ~(start ^ mask);
 131                if ((nand_base >= start) && (nand_base < end))
 132                        return i;
 133        }
 134
 135        return -ENODEV;
 136}
 137
 138static int au1550nd_waitrdy(struct nand_chip *this, unsigned int timeout_ms)
 139{
 140        unsigned long timeout_jiffies = jiffies;
 141
 142        timeout_jiffies += msecs_to_jiffies(timeout_ms) + 1;
 143        do {
 144                if (alchemy_rdsmem(AU1000_MEM_STSTAT) & 0x1)
 145                        return 0;
 146
 147                usleep_range(10, 100);
 148        } while (time_before(jiffies, timeout_jiffies));
 149
 150        return -ETIMEDOUT;
 151}
 152
 153static int au1550nd_exec_instr(struct nand_chip *this,
 154                               const struct nand_op_instr *instr)
 155{
 156        struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
 157        unsigned int i;
 158        int ret = 0;
 159
 160        switch (instr->type) {
 161        case NAND_OP_CMD_INSTR:
 162                writeb(instr->ctx.cmd.opcode,
 163                       ctx->base + MEM_STNAND_CMD);
 164                /* Drain the writebuffer */
 165                wmb();
 166                break;
 167
 168        case NAND_OP_ADDR_INSTR:
 169                for (i = 0; i < instr->ctx.addr.naddrs; i++) {
 170                        writeb(instr->ctx.addr.addrs[i],
 171                               ctx->base + MEM_STNAND_ADDR);
 172                        /* Drain the writebuffer */
 173                        wmb();
 174                }
 175                break;
 176
 177        case NAND_OP_DATA_IN_INSTR:
 178                if ((this->options & NAND_BUSWIDTH_16) &&
 179                    !instr->ctx.data.force_8bit)
 180                        au_read_buf16(this, instr->ctx.data.buf.in,
 181                                      instr->ctx.data.len);
 182                else
 183                        au_read_buf(this, instr->ctx.data.buf.in,
 184                                    instr->ctx.data.len);
 185                break;
 186
 187        case NAND_OP_DATA_OUT_INSTR:
 188                if ((this->options & NAND_BUSWIDTH_16) &&
 189                    !instr->ctx.data.force_8bit)
 190                        au_write_buf16(this, instr->ctx.data.buf.out,
 191                                       instr->ctx.data.len);
 192                else
 193                        au_write_buf(this, instr->ctx.data.buf.out,
 194                                     instr->ctx.data.len);
 195                break;
 196
 197        case NAND_OP_WAITRDY_INSTR:
 198                ret = au1550nd_waitrdy(this, instr->ctx.waitrdy.timeout_ms);
 199                break;
 200        default:
 201                return -EINVAL;
 202        }
 203
 204        if (instr->delay_ns)
 205                ndelay(instr->delay_ns);
 206
 207        return ret;
 208}
 209
 210static int au1550nd_exec_op(struct nand_chip *this,
 211                            const struct nand_operation *op,
 212                            bool check_only)
 213{
 214        struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
 215        unsigned int i;
 216        int ret;
 217
 218        if (check_only)
 219                return 0;
 220
 221        /* assert (force assert) chip enable */
 222        alchemy_wrsmem((1 << (4 + ctx->cs)), AU1000_MEM_STNDCTL);
 223        /* Drain the writebuffer */
 224        wmb();
 225
 226        for (i = 0; i < op->ninstrs; i++) {
 227                ret = au1550nd_exec_instr(this, &op->instrs[i]);
 228                if (ret)
 229                        break;
 230        }
 231
 232        /* deassert chip enable */
 233        alchemy_wrsmem(0, AU1000_MEM_STNDCTL);
 234        /* Drain the writebuffer */
 235        wmb();
 236
 237        return ret;
 238}
 239
 240static int au1550nd_attach_chip(struct nand_chip *chip)
 241{
 242        if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
 243            chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN)
 244                chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
 245
 246        return 0;
 247}
 248
 249static const struct nand_controller_ops au1550nd_ops = {
 250        .exec_op = au1550nd_exec_op,
 251        .attach_chip = au1550nd_attach_chip,
 252};
 253
 254static int au1550nd_probe(struct platform_device *pdev)
 255{
 256        struct au1550nd_platdata *pd;
 257        struct au1550nd_ctx *ctx;
 258        struct nand_chip *this;
 259        struct mtd_info *mtd;
 260        struct resource *r;
 261        int ret, cs;
 262
 263        pd = dev_get_platdata(&pdev->dev);
 264        if (!pd) {
 265                dev_err(&pdev->dev, "missing platform data\n");
 266                return -ENODEV;
 267        }
 268
 269        ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
 270        if (!ctx)
 271                return -ENOMEM;
 272
 273        r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 274        if (!r) {
 275                dev_err(&pdev->dev, "no NAND memory resource\n");
 276                ret = -ENODEV;
 277                goto out1;
 278        }
 279        if (request_mem_region(r->start, resource_size(r), "au1550-nand")) {
 280                dev_err(&pdev->dev, "cannot claim NAND memory area\n");
 281                ret = -ENOMEM;
 282                goto out1;
 283        }
 284
 285        ctx->base = ioremap(r->start, 0x1000);
 286        if (!ctx->base) {
 287                dev_err(&pdev->dev, "cannot remap NAND memory area\n");
 288                ret = -ENODEV;
 289                goto out2;
 290        }
 291
 292        this = &ctx->chip;
 293        mtd = nand_to_mtd(this);
 294        mtd->dev.parent = &pdev->dev;
 295
 296        /* figure out which CS# r->start belongs to */
 297        cs = find_nand_cs(r->start);
 298        if (cs < 0) {
 299                dev_err(&pdev->dev, "cannot detect NAND chipselect\n");
 300                ret = -ENODEV;
 301                goto out3;
 302        }
 303        ctx->cs = cs;
 304
 305        nand_controller_init(&ctx->controller);
 306        ctx->controller.ops = &au1550nd_ops;
 307        this->controller = &ctx->controller;
 308
 309        if (pd->devwidth)
 310                this->options |= NAND_BUSWIDTH_16;
 311
 312        /*
 313         * This driver assumes that the default ECC engine should be TYPE_SOFT.
 314         * Set ->engine_type before registering the NAND devices in order to
 315         * provide a driver specific default value.
 316         */
 317        this->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
 318
 319        ret = nand_scan(this, 1);
 320        if (ret) {
 321                dev_err(&pdev->dev, "NAND scan failed with %d\n", ret);
 322                goto out3;
 323        }
 324
 325        mtd_device_register(mtd, pd->parts, pd->num_parts);
 326
 327        platform_set_drvdata(pdev, ctx);
 328
 329        return 0;
 330
 331out3:
 332        iounmap(ctx->base);
 333out2:
 334        release_mem_region(r->start, resource_size(r));
 335out1:
 336        kfree(ctx);
 337        return ret;
 338}
 339
 340static int au1550nd_remove(struct platform_device *pdev)
 341{
 342        struct au1550nd_ctx *ctx = platform_get_drvdata(pdev);
 343        struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 344        struct nand_chip *chip = &ctx->chip;
 345        int ret;
 346
 347        ret = mtd_device_unregister(nand_to_mtd(chip));
 348        WARN_ON(ret);
 349        nand_cleanup(chip);
 350        iounmap(ctx->base);
 351        release_mem_region(r->start, 0x1000);
 352        kfree(ctx);
 353        return 0;
 354}
 355
 356static struct platform_driver au1550nd_driver = {
 357        .driver = {
 358                .name   = "au1550-nand",
 359        },
 360        .probe          = au1550nd_probe,
 361        .remove         = au1550nd_remove,
 362};
 363
 364module_platform_driver(au1550nd_driver);
 365
 366MODULE_LICENSE("GPL");
 367MODULE_AUTHOR("Embedded Edge, LLC");
 368MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");
 369