linux/drivers/net/ethernet/natsemi/natsemi.c
<<
>>
Prefs
   1/* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
   2/*
   3        Written/copyright 1999-2001 by Donald Becker.
   4        Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
   5        Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
   6        Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
   7
   8        This software may be used and distributed according to the terms of
   9        the GNU General Public License (GPL), incorporated herein by reference.
  10        Drivers based on or derived from this code fall under the GPL and must
  11        retain the authorship, copyright and license notice.  This file is not
  12        a complete program and may only be used when the entire operating
  13        system is licensed under the GPL.  License for under other terms may be
  14        available.  Contact the original author for details.
  15
  16        The original author may be reached as becker@scyld.com, or at
  17        Scyld Computing Corporation
  18        410 Severn Ave., Suite 210
  19        Annapolis MD 21403
  20
  21        Support information and updates available at
  22        http://www.scyld.com/network/netsemi.html
  23        [link no longer provides useful info -jgarzik]
  24
  25
  26        TODO:
  27        * big endian support with CFG:BEM instead of cpu_to_le32
  28*/
  29
  30#include <linux/module.h>
  31#include <linux/kernel.h>
  32#include <linux/string.h>
  33#include <linux/timer.h>
  34#include <linux/errno.h>
  35#include <linux/ioport.h>
  36#include <linux/slab.h>
  37#include <linux/interrupt.h>
  38#include <linux/pci.h>
  39#include <linux/netdevice.h>
  40#include <linux/etherdevice.h>
  41#include <linux/skbuff.h>
  42#include <linux/init.h>
  43#include <linux/spinlock.h>
  44#include <linux/ethtool.h>
  45#include <linux/delay.h>
  46#include <linux/rtnetlink.h>
  47#include <linux/mii.h>
  48#include <linux/crc32.h>
  49#include <linux/bitops.h>
  50#include <linux/prefetch.h>
  51#include <asm/processor.h>      /* Processor type for cache alignment. */
  52#include <asm/io.h>
  53#include <asm/irq.h>
  54#include <linux/uaccess.h>
  55
  56#define DRV_NAME        "natsemi"
  57#define DRV_VERSION     "2.1"
  58#define DRV_RELDATE     "Sept 11, 2006"
  59
  60#define RX_OFFSET       2
  61
  62/* Updated to recommendations in pci-skeleton v2.03. */
  63
  64/* The user-configurable values.
  65   These may be modified when a driver module is loaded.*/
  66
  67#define NATSEMI_DEF_MSG         (NETIF_MSG_DRV          | \
  68                                 NETIF_MSG_LINK         | \
  69                                 NETIF_MSG_WOL          | \
  70                                 NETIF_MSG_RX_ERR       | \
  71                                 NETIF_MSG_TX_ERR)
  72static int debug = -1;
  73
  74static int mtu;
  75
  76/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
  77   This chip uses a 512 element hash table based on the Ethernet CRC.  */
  78static const int multicast_filter_limit = 100;
  79
  80/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  81   Setting to > 1518 effectively disables this feature. */
  82static int rx_copybreak;
  83
  84static int dspcfg_workaround = 1;
  85
  86/* Used to pass the media type, etc.
  87   Both 'options[]' and 'full_duplex[]' should exist for driver
  88   interoperability.
  89   The media type is usually passed in 'options[]'.
  90*/
  91#define MAX_UNITS 8             /* More are supported, limit only on options */
  92static int options[MAX_UNITS];
  93static int full_duplex[MAX_UNITS];
  94
  95/* Operational parameters that are set at compile time. */
  96
  97/* Keep the ring sizes a power of two for compile efficiency.
  98   The compiler will convert <unsigned>'%'<2^N> into a bit mask.
  99   Making the Tx ring too large decreases the effectiveness of channel
 100   bonding and packet priority.
 101   There are no ill effects from too-large receive rings. */
 102#define TX_RING_SIZE    16
 103#define TX_QUEUE_LEN    10 /* Limit ring entries actually used, min 4. */
 104#define RX_RING_SIZE    32
 105
 106/* Operational parameters that usually are not changed. */
 107/* Time in jiffies before concluding the transmitter is hung. */
 108#define TX_TIMEOUT  (2*HZ)
 109
 110#define NATSEMI_HW_TIMEOUT      400
 111#define NATSEMI_TIMER_FREQ      5*HZ
 112#define NATSEMI_PG0_NREGS       64
 113#define NATSEMI_RFDR_NREGS      8
 114#define NATSEMI_PG1_NREGS       4
 115#define NATSEMI_NREGS           (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
 116                                 NATSEMI_PG1_NREGS)
 117#define NATSEMI_REGS_VER        1 /* v1 added RFDR registers */
 118#define NATSEMI_REGS_SIZE       (NATSEMI_NREGS * sizeof(u32))
 119
 120/* Buffer sizes:
 121 * The nic writes 32-bit values, even if the upper bytes of
 122 * a 32-bit value are beyond the end of the buffer.
 123 */
 124#define NATSEMI_HEADERS         22      /* 2*mac,type,vlan,crc */
 125#define NATSEMI_PADDING         16      /* 2 bytes should be sufficient */
 126#define NATSEMI_LONGPKT         1518    /* limit for normal packets */
 127#define NATSEMI_RX_LIMIT        2046    /* maximum supported by hardware */
 128
 129/* These identify the driver base version and may not be removed. */
 130static const char version[] =
 131  KERN_INFO DRV_NAME " dp8381x driver, version "
 132      DRV_VERSION ", " DRV_RELDATE "\n"
 133  "  originally by Donald Becker <becker@scyld.com>\n"
 134  "  2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
 135
 136MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 137MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
 138MODULE_LICENSE("GPL");
 139
 140module_param(mtu, int, 0);
 141module_param(debug, int, 0);
 142module_param(rx_copybreak, int, 0);
 143module_param(dspcfg_workaround, int, 0);
 144module_param_array(options, int, NULL, 0);
 145module_param_array(full_duplex, int, NULL, 0);
 146MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
 147MODULE_PARM_DESC(debug, "DP8381x default debug level");
 148MODULE_PARM_DESC(rx_copybreak,
 149        "DP8381x copy breakpoint for copy-only-tiny-frames");
 150MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
 151MODULE_PARM_DESC(options,
 152        "DP8381x: Bits 0-3: media type, bit 17: full duplex");
 153MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
 154
 155/*
 156                                Theory of Operation
 157
 158I. Board Compatibility
 159
 160This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
 161It also works with other chips in in the DP83810 series.
 162
 163II. Board-specific settings
 164
 165This driver requires the PCI interrupt line to be valid.
 166It honors the EEPROM-set values.
 167
 168III. Driver operation
 169
 170IIIa. Ring buffers
 171
 172This driver uses two statically allocated fixed-size descriptor lists
 173formed into rings by a branch from the final descriptor to the beginning of
 174the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
 175The NatSemi design uses a 'next descriptor' pointer that the driver forms
 176into a list.
 177
 178IIIb/c. Transmit/Receive Structure
 179
 180This driver uses a zero-copy receive and transmit scheme.
 181The driver allocates full frame size skbuffs for the Rx ring buffers at
 182open() time and passes the skb->data field to the chip as receive data
 183buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
 184a fresh skbuff is allocated and the frame is copied to the new skbuff.
 185When the incoming frame is larger, the skbuff is passed directly up the
 186protocol stack.  Buffers consumed this way are replaced by newly allocated
 187skbuffs in a later phase of receives.
 188
 189The RX_COPYBREAK value is chosen to trade-off the memory wasted by
 190using a full-sized skbuff for small frames vs. the copying costs of larger
 191frames.  New boards are typically used in generously configured machines
 192and the underfilled buffers have negligible impact compared to the benefit of
 193a single allocation size, so the default value of zero results in never
 194copying packets.  When copying is done, the cost is usually mitigated by using
 195a combined copy/checksum routine.  Copying also preloads the cache, which is
 196most useful with small frames.
 197
 198A subtle aspect of the operation is that unaligned buffers are not permitted
 199by the hardware.  Thus the IP header at offset 14 in an ethernet frame isn't
 200longword aligned for further processing.  On copies frames are put into the
 201skbuff at an offset of "+2", 16-byte aligning the IP header.
 202
 203IIId. Synchronization
 204
 205Most operations are synchronized on the np->lock irq spinlock, except the
 206receive and transmit paths which are synchronised using a combination of
 207hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
 208
 209IVb. References
 210
 211http://www.scyld.com/expert/100mbps.html
 212http://www.scyld.com/expert/NWay.html
 213Datasheet is available from:
 214http://www.national.com/pf/DP/DP83815.html
 215
 216IVc. Errata
 217
 218None characterised.
 219*/
 220
 221
 222
 223/*
 224 * Support for fibre connections on Am79C874:
 225 * This phy needs a special setup when connected to a fibre cable.
 226 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
 227 */
 228#define PHYID_AM79C874  0x0022561b
 229
 230enum {
 231        MII_MCTRL       = 0x15,         /* mode control register */
 232        MII_FX_SEL      = 0x0001,       /* 100BASE-FX (fiber) */
 233        MII_EN_SCRM     = 0x0004,       /* enable scrambler (tp) */
 234};
 235
 236enum {
 237        NATSEMI_FLAG_IGNORE_PHY         = 0x1,
 238};
 239
 240/* array of board data directly indexed by pci_tbl[x].driver_data */
 241static struct {
 242        const char *name;
 243        unsigned long flags;
 244        unsigned int eeprom_size;
 245} natsemi_pci_info[] = {
 246        { "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
 247        { "NatSemi DP8381[56]", 0, 24 },
 248};
 249
 250static const struct pci_device_id natsemi_pci_tbl[] = {
 251        { PCI_VENDOR_ID_NS, 0x0020, 0x12d9,     0x000c,     0, 0, 0 },
 252        { PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
 253        { }     /* terminate list */
 254};
 255MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
 256
 257/* Offsets to the device registers.
 258   Unlike software-only systems, device drivers interact with complex hardware.
 259   It's not useful to define symbolic names for every register bit in the
 260   device.
 261*/
 262enum register_offsets {
 263        ChipCmd                 = 0x00,
 264        ChipConfig              = 0x04,
 265        EECtrl                  = 0x08,
 266        PCIBusCfg               = 0x0C,
 267        IntrStatus              = 0x10,
 268        IntrMask                = 0x14,
 269        IntrEnable              = 0x18,
 270        IntrHoldoff             = 0x1C, /* DP83816 only */
 271        TxRingPtr               = 0x20,
 272        TxConfig                = 0x24,
 273        RxRingPtr               = 0x30,
 274        RxConfig                = 0x34,
 275        ClkRun                  = 0x3C,
 276        WOLCmd                  = 0x40,
 277        PauseCmd                = 0x44,
 278        RxFilterAddr            = 0x48,
 279        RxFilterData            = 0x4C,
 280        BootRomAddr             = 0x50,
 281        BootRomData             = 0x54,
 282        SiliconRev              = 0x58,
 283        StatsCtrl               = 0x5C,
 284        StatsData               = 0x60,
 285        RxPktErrs               = 0x60,
 286        RxMissed                = 0x68,
 287        RxCRCErrs               = 0x64,
 288        BasicControl            = 0x80,
 289        BasicStatus             = 0x84,
 290        AnegAdv                 = 0x90,
 291        AnegPeer                = 0x94,
 292        PhyStatus               = 0xC0,
 293        MIntrCtrl               = 0xC4,
 294        MIntrStatus             = 0xC8,
 295        PhyCtrl                 = 0xE4,
 296
 297        /* These are from the spec, around page 78... on a separate table.
 298         * The meaning of these registers depend on the value of PGSEL. */
 299        PGSEL                   = 0xCC,
 300        PMDCSR                  = 0xE4,
 301        TSTDAT                  = 0xFC,
 302        DSPCFG                  = 0xF4,
 303        SDCFG                   = 0xF8
 304};
 305/* the values for the 'magic' registers above (PGSEL=1) */
 306#define PMDCSR_VAL      0x189c  /* enable preferred adaptation circuitry */
 307#define TSTDAT_VAL      0x0
 308#define DSPCFG_VAL      0x5040
 309#define SDCFG_VAL       0x008c  /* set voltage thresholds for Signal Detect */
 310#define DSPCFG_LOCK     0x20    /* coefficient lock bit in DSPCFG */
 311#define DSPCFG_COEF     0x1000  /* see coefficient (in TSTDAT) bit in DSPCFG */
 312#define TSTDAT_FIXED    0xe8    /* magic number for bad coefficients */
 313
 314/* misc PCI space registers */
 315enum pci_register_offsets {
 316        PCIPM                   = 0x44,
 317};
 318
 319enum ChipCmd_bits {
 320        ChipReset               = 0x100,
 321        RxReset                 = 0x20,
 322        TxReset                 = 0x10,
 323        RxOff                   = 0x08,
 324        RxOn                    = 0x04,
 325        TxOff                   = 0x02,
 326        TxOn                    = 0x01,
 327};
 328
 329enum ChipConfig_bits {
 330        CfgPhyDis               = 0x200,
 331        CfgPhyRst               = 0x400,
 332        CfgExtPhy               = 0x1000,
 333        CfgAnegEnable           = 0x2000,
 334        CfgAneg100              = 0x4000,
 335        CfgAnegFull             = 0x8000,
 336        CfgAnegDone             = 0x8000000,
 337        CfgFullDuplex           = 0x20000000,
 338        CfgSpeed100             = 0x40000000,
 339        CfgLink                 = 0x80000000,
 340};
 341
 342enum EECtrl_bits {
 343        EE_ShiftClk             = 0x04,
 344        EE_DataIn               = 0x01,
 345        EE_ChipSelect           = 0x08,
 346        EE_DataOut              = 0x02,
 347        MII_Data                = 0x10,
 348        MII_Write               = 0x20,
 349        MII_ShiftClk            = 0x40,
 350};
 351
 352enum PCIBusCfg_bits {
 353        EepromReload            = 0x4,
 354};
 355
 356/* Bits in the interrupt status/mask registers. */
 357enum IntrStatus_bits {
 358        IntrRxDone              = 0x0001,
 359        IntrRxIntr              = 0x0002,
 360        IntrRxErr               = 0x0004,
 361        IntrRxEarly             = 0x0008,
 362        IntrRxIdle              = 0x0010,
 363        IntrRxOverrun           = 0x0020,
 364        IntrTxDone              = 0x0040,
 365        IntrTxIntr              = 0x0080,
 366        IntrTxErr               = 0x0100,
 367        IntrTxIdle              = 0x0200,
 368        IntrTxUnderrun          = 0x0400,
 369        StatsMax                = 0x0800,
 370        SWInt                   = 0x1000,
 371        WOLPkt                  = 0x2000,
 372        LinkChange              = 0x4000,
 373        IntrHighBits            = 0x8000,
 374        RxStatusFIFOOver        = 0x10000,
 375        IntrPCIErr              = 0xf00000,
 376        RxResetDone             = 0x1000000,
 377        TxResetDone             = 0x2000000,
 378        IntrAbnormalSummary     = 0xCD20,
 379};
 380
 381/*
 382 * Default Interrupts:
 383 * Rx OK, Rx Packet Error, Rx Overrun,
 384 * Tx OK, Tx Packet Error, Tx Underrun,
 385 * MIB Service, Phy Interrupt, High Bits,
 386 * Rx Status FIFO overrun,
 387 * Received Target Abort, Received Master Abort,
 388 * Signalled System Error, Received Parity Error
 389 */
 390#define DEFAULT_INTR 0x00f1cd65
 391
 392enum TxConfig_bits {
 393        TxDrthMask              = 0x3f,
 394        TxFlthMask              = 0x3f00,
 395        TxMxdmaMask             = 0x700000,
 396        TxMxdma_512             = 0x0,
 397        TxMxdma_4               = 0x100000,
 398        TxMxdma_8               = 0x200000,
 399        TxMxdma_16              = 0x300000,
 400        TxMxdma_32              = 0x400000,
 401        TxMxdma_64              = 0x500000,
 402        TxMxdma_128             = 0x600000,
 403        TxMxdma_256             = 0x700000,
 404        TxCollRetry             = 0x800000,
 405        TxAutoPad               = 0x10000000,
 406        TxMacLoop               = 0x20000000,
 407        TxHeartIgn              = 0x40000000,
 408        TxCarrierIgn            = 0x80000000
 409};
 410
 411/*
 412 * Tx Configuration:
 413 * - 256 byte DMA burst length
 414 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
 415 * - 64 bytes initial drain threshold (i.e. begin actual transmission
 416 *   when 64 byte are in the fifo)
 417 * - on tx underruns, increase drain threshold by 64.
 418 * - at most use a drain threshold of 1472 bytes: The sum of the fill
 419 *   threshold and the drain threshold must be less than 2016 bytes.
 420 *
 421 */
 422#define TX_FLTH_VAL             ((512/32) << 8)
 423#define TX_DRTH_VAL_START       (64/32)
 424#define TX_DRTH_VAL_INC         2
 425#define TX_DRTH_VAL_LIMIT       (1472/32)
 426
 427enum RxConfig_bits {
 428        RxDrthMask              = 0x3e,
 429        RxMxdmaMask             = 0x700000,
 430        RxMxdma_512             = 0x0,
 431        RxMxdma_4               = 0x100000,
 432        RxMxdma_8               = 0x200000,
 433        RxMxdma_16              = 0x300000,
 434        RxMxdma_32              = 0x400000,
 435        RxMxdma_64              = 0x500000,
 436        RxMxdma_128             = 0x600000,
 437        RxMxdma_256             = 0x700000,
 438        RxAcceptLong            = 0x8000000,
 439        RxAcceptTx              = 0x10000000,
 440        RxAcceptRunt            = 0x40000000,
 441        RxAcceptErr             = 0x80000000
 442};
 443#define RX_DRTH_VAL             (128/8)
 444
 445enum ClkRun_bits {
 446        PMEEnable               = 0x100,
 447        PMEStatus               = 0x8000,
 448};
 449
 450enum WolCmd_bits {
 451        WakePhy                 = 0x1,
 452        WakeUnicast             = 0x2,
 453        WakeMulticast           = 0x4,
 454        WakeBroadcast           = 0x8,
 455        WakeArp                 = 0x10,
 456        WakePMatch0             = 0x20,
 457        WakePMatch1             = 0x40,
 458        WakePMatch2             = 0x80,
 459        WakePMatch3             = 0x100,
 460        WakeMagic               = 0x200,
 461        WakeMagicSecure         = 0x400,
 462        SecureHack              = 0x100000,
 463        WokePhy                 = 0x400000,
 464        WokeUnicast             = 0x800000,
 465        WokeMulticast           = 0x1000000,
 466        WokeBroadcast           = 0x2000000,
 467        WokeArp                 = 0x4000000,
 468        WokePMatch0             = 0x8000000,
 469        WokePMatch1             = 0x10000000,
 470        WokePMatch2             = 0x20000000,
 471        WokePMatch3             = 0x40000000,
 472        WokeMagic               = 0x80000000,
 473        WakeOptsSummary         = 0x7ff
 474};
 475
 476enum RxFilterAddr_bits {
 477        RFCRAddressMask         = 0x3ff,
 478        AcceptMulticast         = 0x00200000,
 479        AcceptMyPhys            = 0x08000000,
 480        AcceptAllPhys           = 0x10000000,
 481        AcceptAllMulticast      = 0x20000000,
 482        AcceptBroadcast         = 0x40000000,
 483        RxFilterEnable          = 0x80000000
 484};
 485
 486enum StatsCtrl_bits {
 487        StatsWarn               = 0x1,
 488        StatsFreeze             = 0x2,
 489        StatsClear              = 0x4,
 490        StatsStrobe             = 0x8,
 491};
 492
 493enum MIntrCtrl_bits {
 494        MICRIntEn               = 0x2,
 495};
 496
 497enum PhyCtrl_bits {
 498        PhyAddrMask             = 0x1f,
 499};
 500
 501#define PHY_ADDR_NONE           32
 502#define PHY_ADDR_INTERNAL       1
 503
 504/* values we might find in the silicon revision register */
 505#define SRR_DP83815_C   0x0302
 506#define SRR_DP83815_D   0x0403
 507#define SRR_DP83816_A4  0x0504
 508#define SRR_DP83816_A5  0x0505
 509
 510/* The Rx and Tx buffer descriptors. */
 511/* Note that using only 32 bit fields simplifies conversion to big-endian
 512   architectures. */
 513struct netdev_desc {
 514        __le32 next_desc;
 515        __le32 cmd_status;
 516        __le32 addr;
 517        __le32 software_use;
 518};
 519
 520/* Bits in network_desc.status */
 521enum desc_status_bits {
 522        DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
 523        DescNoCRC=0x10000000, DescPktOK=0x08000000,
 524        DescSizeMask=0xfff,
 525
 526        DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
 527        DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
 528        DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
 529        DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
 530
 531        DescRxAbort=0x04000000, DescRxOver=0x02000000,
 532        DescRxDest=0x01800000, DescRxLong=0x00400000,
 533        DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
 534        DescRxCRC=0x00080000, DescRxAlign=0x00040000,
 535        DescRxLoop=0x00020000, DesRxColl=0x00010000,
 536};
 537
 538struct netdev_private {
 539        /* Descriptor rings first for alignment */
 540        dma_addr_t ring_dma;
 541        struct netdev_desc *rx_ring;
 542        struct netdev_desc *tx_ring;
 543        /* The addresses of receive-in-place skbuffs */
 544        struct sk_buff *rx_skbuff[RX_RING_SIZE];
 545        dma_addr_t rx_dma[RX_RING_SIZE];
 546        /* address of a sent-in-place packet/buffer, for later free() */
 547        struct sk_buff *tx_skbuff[TX_RING_SIZE];
 548        dma_addr_t tx_dma[TX_RING_SIZE];
 549        struct net_device *dev;
 550        void __iomem *ioaddr;
 551        struct napi_struct napi;
 552        /* Media monitoring timer */
 553        struct timer_list timer;
 554        /* Frequently used values: keep some adjacent for cache effect */
 555        struct pci_dev *pci_dev;
 556        struct netdev_desc *rx_head_desc;
 557        /* Producer/consumer ring indices */
 558        unsigned int cur_rx, dirty_rx;
 559        unsigned int cur_tx, dirty_tx;
 560        /* Based on MTU+slack. */
 561        unsigned int rx_buf_sz;
 562        int oom;
 563        /* Interrupt status */
 564        u32 intr_status;
 565        /* Do not touch the nic registers */
 566        int hands_off;
 567        /* Don't pay attention to the reported link state. */
 568        int ignore_phy;
 569        /* external phy that is used: only valid if dev->if_port != PORT_TP */
 570        int mii;
 571        int phy_addr_external;
 572        unsigned int full_duplex;
 573        /* Rx filter */
 574        u32 cur_rx_mode;
 575        u32 rx_filter[16];
 576        /* FIFO and PCI burst thresholds */
 577        u32 tx_config, rx_config;
 578        /* original contents of ClkRun register */
 579        u32 SavedClkRun;
 580        /* silicon revision */
 581        u32 srr;
 582        /* expected DSPCFG value */
 583        u16 dspcfg;
 584        int dspcfg_workaround;
 585        /* parms saved in ethtool format */
 586        u16     speed;          /* The forced speed, 10Mb, 100Mb, gigabit */
 587        u8      duplex;         /* Duplex, half or full */
 588        u8      autoneg;        /* Autonegotiation enabled */
 589        /* MII transceiver section */
 590        u16 advertising;
 591        unsigned int iosize;
 592        spinlock_t lock;
 593        u32 msg_enable;
 594        /* EEPROM data */
 595        int eeprom_size;
 596};
 597
 598static void move_int_phy(struct net_device *dev, int addr);
 599static int eeprom_read(void __iomem *ioaddr, int location);
 600static int mdio_read(struct net_device *dev, int reg);
 601static void mdio_write(struct net_device *dev, int reg, u16 data);
 602static void init_phy_fixup(struct net_device *dev);
 603static int miiport_read(struct net_device *dev, int phy_id, int reg);
 604static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
 605static int find_mii(struct net_device *dev);
 606static void natsemi_reset(struct net_device *dev);
 607static void natsemi_reload_eeprom(struct net_device *dev);
 608static void natsemi_stop_rxtx(struct net_device *dev);
 609static int netdev_open(struct net_device *dev);
 610static void do_cable_magic(struct net_device *dev);
 611static void undo_cable_magic(struct net_device *dev);
 612static void check_link(struct net_device *dev);
 613static void netdev_timer(struct timer_list *t);
 614static void dump_ring(struct net_device *dev);
 615static void ns_tx_timeout(struct net_device *dev, unsigned int txqueue);
 616static int alloc_ring(struct net_device *dev);
 617static void refill_rx(struct net_device *dev);
 618static void init_ring(struct net_device *dev);
 619static void drain_tx(struct net_device *dev);
 620static void drain_ring(struct net_device *dev);
 621static void free_ring(struct net_device *dev);
 622static void reinit_ring(struct net_device *dev);
 623static void init_registers(struct net_device *dev);
 624static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
 625static irqreturn_t intr_handler(int irq, void *dev_instance);
 626static void netdev_error(struct net_device *dev, int intr_status);
 627static int natsemi_poll(struct napi_struct *napi, int budget);
 628static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
 629static void netdev_tx_done(struct net_device *dev);
 630static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
 631#ifdef CONFIG_NET_POLL_CONTROLLER
 632static void natsemi_poll_controller(struct net_device *dev);
 633#endif
 634static void __set_rx_mode(struct net_device *dev);
 635static void set_rx_mode(struct net_device *dev);
 636static void __get_stats(struct net_device *dev);
 637static struct net_device_stats *get_stats(struct net_device *dev);
 638static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 639static int netdev_set_wol(struct net_device *dev, u32 newval);
 640static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
 641static int netdev_set_sopass(struct net_device *dev, u8 *newval);
 642static int netdev_get_sopass(struct net_device *dev, u8 *data);
 643static int netdev_get_ecmd(struct net_device *dev,
 644                           struct ethtool_link_ksettings *ecmd);
 645static int netdev_set_ecmd(struct net_device *dev,
 646                           const struct ethtool_link_ksettings *ecmd);
 647static void enable_wol_mode(struct net_device *dev, int enable_intr);
 648static int netdev_close(struct net_device *dev);
 649static int netdev_get_regs(struct net_device *dev, u8 *buf);
 650static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
 651static const struct ethtool_ops ethtool_ops;
 652
 653#define NATSEMI_ATTR(_name) \
 654static ssize_t natsemi_show_##_name(struct device *dev, \
 655         struct device_attribute *attr, char *buf); \
 656         static ssize_t natsemi_set_##_name(struct device *dev, \
 657                struct device_attribute *attr, \
 658                const char *buf, size_t count); \
 659         static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
 660
 661#define NATSEMI_CREATE_FILE(_dev, _name) \
 662         device_create_file(&_dev->dev, &dev_attr_##_name)
 663#define NATSEMI_REMOVE_FILE(_dev, _name) \
 664         device_remove_file(&_dev->dev, &dev_attr_##_name)
 665
 666NATSEMI_ATTR(dspcfg_workaround);
 667
 668static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
 669                                              struct device_attribute *attr,
 670                                              char *buf)
 671{
 672        struct netdev_private *np = netdev_priv(to_net_dev(dev));
 673
 674        return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
 675}
 676
 677static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
 678                                             struct device_attribute *attr,
 679                                             const char *buf, size_t count)
 680{
 681        struct netdev_private *np = netdev_priv(to_net_dev(dev));
 682        int new_setting;
 683        unsigned long flags;
 684
 685        /* Find out the new setting */
 686        if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
 687                new_setting = 1;
 688        else if (!strncmp("off", buf, count - 1) ||
 689                 !strncmp("0", buf, count - 1))
 690                new_setting = 0;
 691        else
 692                 return count;
 693
 694        spin_lock_irqsave(&np->lock, flags);
 695
 696        np->dspcfg_workaround = new_setting;
 697
 698        spin_unlock_irqrestore(&np->lock, flags);
 699
 700        return count;
 701}
 702
 703static inline void __iomem *ns_ioaddr(struct net_device *dev)
 704{
 705        struct netdev_private *np = netdev_priv(dev);
 706
 707        return np->ioaddr;
 708}
 709
 710static inline void natsemi_irq_enable(struct net_device *dev)
 711{
 712        writel(1, ns_ioaddr(dev) + IntrEnable);
 713        readl(ns_ioaddr(dev) + IntrEnable);
 714}
 715
 716static inline void natsemi_irq_disable(struct net_device *dev)
 717{
 718        writel(0, ns_ioaddr(dev) + IntrEnable);
 719        readl(ns_ioaddr(dev) + IntrEnable);
 720}
 721
 722static void move_int_phy(struct net_device *dev, int addr)
 723{
 724        struct netdev_private *np = netdev_priv(dev);
 725        void __iomem *ioaddr = ns_ioaddr(dev);
 726        int target = 31;
 727
 728        /*
 729         * The internal phy is visible on the external mii bus. Therefore we must
 730         * move it away before we can send commands to an external phy.
 731         * There are two addresses we must avoid:
 732         * - the address on the external phy that is used for transmission.
 733         * - the address that we want to access. User space can access phys
 734         *   on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the
 735         *   phy that is used for transmission.
 736         */
 737
 738        if (target == addr)
 739                target--;
 740        if (target == np->phy_addr_external)
 741                target--;
 742        writew(target, ioaddr + PhyCtrl);
 743        readw(ioaddr + PhyCtrl);
 744        udelay(1);
 745}
 746
 747static void natsemi_init_media(struct net_device *dev)
 748{
 749        struct netdev_private *np = netdev_priv(dev);
 750        u32 tmp;
 751
 752        if (np->ignore_phy)
 753                netif_carrier_on(dev);
 754        else
 755                netif_carrier_off(dev);
 756
 757        /* get the initial settings from hardware */
 758        tmp            = mdio_read(dev, MII_BMCR);
 759        np->speed      = (tmp & BMCR_SPEED100)? SPEED_100     : SPEED_10;
 760        np->duplex     = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL   : DUPLEX_HALF;
 761        np->autoneg    = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
 762        np->advertising= mdio_read(dev, MII_ADVERTISE);
 763
 764        if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL &&
 765            netif_msg_probe(np)) {
 766                printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
 767                        "10%s %s duplex.\n",
 768                        pci_name(np->pci_dev),
 769                        (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
 770                          "enabled, advertise" : "disabled, force",
 771                        (np->advertising &
 772                          (ADVERTISE_100FULL|ADVERTISE_100HALF))?
 773                            "0" : "",
 774                        (np->advertising &
 775                          (ADVERTISE_100FULL|ADVERTISE_10FULL))?
 776                            "full" : "half");
 777        }
 778        if (netif_msg_probe(np))
 779                printk(KERN_INFO
 780                        "natsemi %s: Transceiver status %#04x advertising %#04x.\n",
 781                        pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
 782                        np->advertising);
 783
 784}
 785
 786static const struct net_device_ops natsemi_netdev_ops = {
 787        .ndo_open               = netdev_open,
 788        .ndo_stop               = netdev_close,
 789        .ndo_start_xmit         = start_tx,
 790        .ndo_get_stats          = get_stats,
 791        .ndo_set_rx_mode        = set_rx_mode,
 792        .ndo_change_mtu         = natsemi_change_mtu,
 793        .ndo_eth_ioctl          = netdev_ioctl,
 794        .ndo_tx_timeout         = ns_tx_timeout,
 795        .ndo_set_mac_address    = eth_mac_addr,
 796        .ndo_validate_addr      = eth_validate_addr,
 797#ifdef CONFIG_NET_POLL_CONTROLLER
 798        .ndo_poll_controller    = natsemi_poll_controller,
 799#endif
 800};
 801
 802static int natsemi_probe1(struct pci_dev *pdev, const struct pci_device_id *ent)
 803{
 804        struct net_device *dev;
 805        struct netdev_private *np;
 806        int i, option, irq, chip_idx = ent->driver_data;
 807        static int find_cnt = -1;
 808        resource_size_t iostart;
 809        unsigned long iosize;
 810        void __iomem *ioaddr;
 811        const int pcibar = 1; /* PCI base address register */
 812        u8 addr[ETH_ALEN];
 813        int prev_eedata;
 814        u32 tmp;
 815
 816/* when built into the kernel, we only print version if device is found */
 817#ifndef MODULE
 818        static int printed_version;
 819        if (!printed_version++)
 820                printk(version);
 821#endif
 822
 823        i = pcim_enable_device(pdev);
 824        if (i) return i;
 825
 826        /* natsemi has a non-standard PM control register
 827         * in PCI config space.  Some boards apparently need
 828         * to be brought to D0 in this manner.
 829         */
 830        pci_read_config_dword(pdev, PCIPM, &tmp);
 831        if (tmp & PCI_PM_CTRL_STATE_MASK) {
 832                /* D0 state, disable PME assertion */
 833                u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
 834                pci_write_config_dword(pdev, PCIPM, newtmp);
 835        }
 836
 837        find_cnt++;
 838        iostart = pci_resource_start(pdev, pcibar);
 839        iosize = pci_resource_len(pdev, pcibar);
 840        irq = pdev->irq;
 841
 842        pci_set_master(pdev);
 843
 844        dev = alloc_etherdev(sizeof (struct netdev_private));
 845        if (!dev)
 846                return -ENOMEM;
 847        SET_NETDEV_DEV(dev, &pdev->dev);
 848
 849        i = pci_request_regions(pdev, DRV_NAME);
 850        if (i)
 851                goto err_pci_request_regions;
 852
 853        ioaddr = ioremap(iostart, iosize);
 854        if (!ioaddr) {
 855                i = -ENOMEM;
 856                goto err_pci_request_regions;
 857        }
 858
 859        /* Work around the dropped serial bit. */
 860        prev_eedata = eeprom_read(ioaddr, 6);
 861        for (i = 0; i < 3; i++) {
 862                int eedata = eeprom_read(ioaddr, i + 7);
 863                addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
 864                addr[i*2+1] = eedata >> 7;
 865                prev_eedata = eedata;
 866        }
 867        eth_hw_addr_set(dev, addr);
 868
 869        np = netdev_priv(dev);
 870        np->ioaddr = ioaddr;
 871
 872        netif_napi_add(dev, &np->napi, natsemi_poll, 64);
 873        np->dev = dev;
 874
 875        np->pci_dev = pdev;
 876        pci_set_drvdata(pdev, dev);
 877        np->iosize = iosize;
 878        spin_lock_init(&np->lock);
 879        np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
 880        np->hands_off = 0;
 881        np->intr_status = 0;
 882        np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
 883        if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
 884                np->ignore_phy = 1;
 885        else
 886                np->ignore_phy = 0;
 887        np->dspcfg_workaround = dspcfg_workaround;
 888
 889        /* Initial port:
 890         * - If configured to ignore the PHY set up for external.
 891         * - If the nic was configured to use an external phy and if find_mii
 892         *   finds a phy: use external port, first phy that replies.
 893         * - Otherwise: internal port.
 894         * Note that the phy address for the internal phy doesn't matter:
 895         * The address would be used to access a phy over the mii bus, but
 896         * the internal phy is accessed through mapped registers.
 897         */
 898        if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
 899                dev->if_port = PORT_MII;
 900        else
 901                dev->if_port = PORT_TP;
 902        /* Reset the chip to erase previous misconfiguration. */
 903        natsemi_reload_eeprom(dev);
 904        natsemi_reset(dev);
 905
 906        if (dev->if_port != PORT_TP) {
 907                np->phy_addr_external = find_mii(dev);
 908                /* If we're ignoring the PHY it doesn't matter if we can't
 909                 * find one. */
 910                if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
 911                        dev->if_port = PORT_TP;
 912                        np->phy_addr_external = PHY_ADDR_INTERNAL;
 913                }
 914        } else {
 915                np->phy_addr_external = PHY_ADDR_INTERNAL;
 916        }
 917
 918        option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
 919        /* The lower four bits are the media type. */
 920        if (option) {
 921                if (option & 0x200)
 922                        np->full_duplex = 1;
 923                if (option & 15)
 924                        printk(KERN_INFO
 925                                "natsemi %s: ignoring user supplied media type %d",
 926                                pci_name(np->pci_dev), option & 15);
 927        }
 928        if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt])
 929                np->full_duplex = 1;
 930
 931        dev->netdev_ops = &natsemi_netdev_ops;
 932        dev->watchdog_timeo = TX_TIMEOUT;
 933
 934        dev->ethtool_ops = &ethtool_ops;
 935
 936        /* MTU range: 64 - 2024 */
 937        dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
 938        dev->max_mtu = NATSEMI_RX_LIMIT - NATSEMI_HEADERS;
 939
 940        if (mtu)
 941                dev->mtu = mtu;
 942
 943        natsemi_init_media(dev);
 944
 945        /* save the silicon revision for later querying */
 946        np->srr = readl(ioaddr + SiliconRev);
 947        if (netif_msg_hw(np))
 948                printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
 949                                pci_name(np->pci_dev), np->srr);
 950
 951        i = register_netdev(dev);
 952        if (i)
 953                goto err_register_netdev;
 954        i = NATSEMI_CREATE_FILE(pdev, dspcfg_workaround);
 955        if (i)
 956                goto err_create_file;
 957
 958        if (netif_msg_drv(np)) {
 959                printk(KERN_INFO "natsemi %s: %s at %#08llx "
 960                       "(%s), %pM, IRQ %d",
 961                       dev->name, natsemi_pci_info[chip_idx].name,
 962                       (unsigned long long)iostart, pci_name(np->pci_dev),
 963                       dev->dev_addr, irq);
 964                if (dev->if_port == PORT_TP)
 965                        printk(", port TP.\n");
 966                else if (np->ignore_phy)
 967                        printk(", port MII, ignoring PHY\n");
 968                else
 969                        printk(", port MII, phy ad %d.\n", np->phy_addr_external);
 970        }
 971        return 0;
 972
 973 err_create_file:
 974        unregister_netdev(dev);
 975
 976 err_register_netdev:
 977        iounmap(ioaddr);
 978
 979 err_pci_request_regions:
 980        free_netdev(dev);
 981        return i;
 982}
 983
 984
 985/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
 986   The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
 987
 988/* Delay between EEPROM clock transitions.
 989   No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
 990   a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
 991   made udelay() unreliable.
 992   The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
 993   deprecated.
 994*/
 995#define eeprom_delay(ee_addr)   readl(ee_addr)
 996
 997#define EE_Write0 (EE_ChipSelect)
 998#define EE_Write1 (EE_ChipSelect | EE_DataIn)
 999
1000/* The EEPROM commands include the alway-set leading bit. */
1001enum EEPROM_Cmds {
1002        EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
1003};
1004
1005static int eeprom_read(void __iomem *addr, int location)
1006{
1007        int i;
1008        int retval = 0;
1009        void __iomem *ee_addr = addr + EECtrl;
1010        int read_cmd = location | EE_ReadCmd;
1011
1012        writel(EE_Write0, ee_addr);
1013
1014        /* Shift the read command bits out. */
1015        for (i = 10; i >= 0; i--) {
1016                short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1017                writel(dataval, ee_addr);
1018                eeprom_delay(ee_addr);
1019                writel(dataval | EE_ShiftClk, ee_addr);
1020                eeprom_delay(ee_addr);
1021        }
1022        writel(EE_ChipSelect, ee_addr);
1023        eeprom_delay(ee_addr);
1024
1025        for (i = 0; i < 16; i++) {
1026                writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1027                eeprom_delay(ee_addr);
1028                retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1029                writel(EE_ChipSelect, ee_addr);
1030                eeprom_delay(ee_addr);
1031        }
1032
1033        /* Terminate the EEPROM access. */
1034        writel(EE_Write0, ee_addr);
1035        writel(0, ee_addr);
1036        return retval;
1037}
1038
1039/* MII transceiver control section.
1040 * The 83815 series has an internal transceiver, and we present the
1041 * internal management registers as if they were MII connected.
1042 * External Phy registers are referenced through the MII interface.
1043 */
1044
1045/* clock transitions >= 20ns (25MHz)
1046 * One readl should be good to PCI @ 100MHz
1047 */
1048#define mii_delay(ioaddr)  readl(ioaddr + EECtrl)
1049
1050static int mii_getbit (struct net_device *dev)
1051{
1052        int data;
1053        void __iomem *ioaddr = ns_ioaddr(dev);
1054
1055        writel(MII_ShiftClk, ioaddr + EECtrl);
1056        data = readl(ioaddr + EECtrl);
1057        writel(0, ioaddr + EECtrl);
1058        mii_delay(ioaddr);
1059        return (data & MII_Data)? 1 : 0;
1060}
1061
1062static void mii_send_bits (struct net_device *dev, u32 data, int len)
1063{
1064        u32 i;
1065        void __iomem *ioaddr = ns_ioaddr(dev);
1066
1067        for (i = (1 << (len-1)); i; i >>= 1)
1068        {
1069                u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1070                writel(mdio_val, ioaddr + EECtrl);
1071                mii_delay(ioaddr);
1072                writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1073                mii_delay(ioaddr);
1074        }
1075        writel(0, ioaddr + EECtrl);
1076        mii_delay(ioaddr);
1077}
1078
1079static int miiport_read(struct net_device *dev, int phy_id, int reg)
1080{
1081        u32 cmd;
1082        int i;
1083        u32 retval = 0;
1084
1085        /* Ensure sync */
1086        mii_send_bits (dev, 0xffffffff, 32);
1087        /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1088        /* ST,OP = 0110'b for read operation */
1089        cmd = (0x06 << 10) | (phy_id << 5) | reg;
1090        mii_send_bits (dev, cmd, 14);
1091        /* Turnaround */
1092        if (mii_getbit (dev))
1093                return 0;
1094        /* Read data */
1095        for (i = 0; i < 16; i++) {
1096                retval <<= 1;
1097                retval |= mii_getbit (dev);
1098        }
1099        /* End cycle */
1100        mii_getbit (dev);
1101        return retval;
1102}
1103
1104static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1105{
1106        u32 cmd;
1107
1108        /* Ensure sync */
1109        mii_send_bits (dev, 0xffffffff, 32);
1110        /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1111        /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1112        cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1113        mii_send_bits (dev, cmd, 32);
1114        /* End cycle */
1115        mii_getbit (dev);
1116}
1117
1118static int mdio_read(struct net_device *dev, int reg)
1119{
1120        struct netdev_private *np = netdev_priv(dev);
1121        void __iomem *ioaddr = ns_ioaddr(dev);
1122
1123        /* The 83815 series has two ports:
1124         * - an internal transceiver
1125         * - an external mii bus
1126         */
1127        if (dev->if_port == PORT_TP)
1128                return readw(ioaddr+BasicControl+(reg<<2));
1129        else
1130                return miiport_read(dev, np->phy_addr_external, reg);
1131}
1132
1133static void mdio_write(struct net_device *dev, int reg, u16 data)
1134{
1135        struct netdev_private *np = netdev_priv(dev);
1136        void __iomem *ioaddr = ns_ioaddr(dev);
1137
1138        /* The 83815 series has an internal transceiver; handle separately */
1139        if (dev->if_port == PORT_TP)
1140                writew(data, ioaddr+BasicControl+(reg<<2));
1141        else
1142                miiport_write(dev, np->phy_addr_external, reg, data);
1143}
1144
1145static void init_phy_fixup(struct net_device *dev)
1146{
1147        struct netdev_private *np = netdev_priv(dev);
1148        void __iomem *ioaddr = ns_ioaddr(dev);
1149        int i;
1150        u32 cfg;
1151        u16 tmp;
1152
1153        /* restore stuff lost when power was out */
1154        tmp = mdio_read(dev, MII_BMCR);
1155        if (np->autoneg == AUTONEG_ENABLE) {
1156                /* renegotiate if something changed */
1157                if ((tmp & BMCR_ANENABLE) == 0 ||
1158                    np->advertising != mdio_read(dev, MII_ADVERTISE))
1159                {
1160                        /* turn on autonegotiation and force negotiation */
1161                        tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1162                        mdio_write(dev, MII_ADVERTISE, np->advertising);
1163                }
1164        } else {
1165                /* turn off auto negotiation, set speed and duplexity */
1166                tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1167                if (np->speed == SPEED_100)
1168                        tmp |= BMCR_SPEED100;
1169                if (np->duplex == DUPLEX_FULL)
1170                        tmp |= BMCR_FULLDPLX;
1171                /*
1172                 * Note: there is no good way to inform the link partner
1173                 * that our capabilities changed. The user has to unplug
1174                 * and replug the network cable after some changes, e.g.
1175                 * after switching from 10HD, autoneg off to 100 HD,
1176                 * autoneg off.
1177                 */
1178        }
1179        mdio_write(dev, MII_BMCR, tmp);
1180        readl(ioaddr + ChipConfig);
1181        udelay(1);
1182
1183        /* find out what phy this is */
1184        np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1185                                + mdio_read(dev, MII_PHYSID2);
1186
1187        /* handle external phys here */
1188        switch (np->mii) {
1189        case PHYID_AM79C874:
1190                /* phy specific configuration for fibre/tp operation */
1191                tmp = mdio_read(dev, MII_MCTRL);
1192                tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1193                if (dev->if_port == PORT_FIBRE)
1194                        tmp |= MII_FX_SEL;
1195                else
1196                        tmp |= MII_EN_SCRM;
1197                mdio_write(dev, MII_MCTRL, tmp);
1198                break;
1199        default:
1200                break;
1201        }
1202        cfg = readl(ioaddr + ChipConfig);
1203        if (cfg & CfgExtPhy)
1204                return;
1205
1206        /* On page 78 of the spec, they recommend some settings for "optimum
1207           performance" to be done in sequence.  These settings optimize some
1208           of the 100Mbit autodetection circuitry.  They say we only want to
1209           do this for rev C of the chip, but engineers at NSC (Bradley
1210           Kennedy) recommends always setting them.  If you don't, you get
1211           errors on some autonegotiations that make the device unusable.
1212
1213           It seems that the DSP needs a few usec to reinitialize after
1214           the start of the phy. Just retry writing these values until they
1215           stick.
1216        */
1217        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1218
1219                int dspcfg;
1220                writew(1, ioaddr + PGSEL);
1221                writew(PMDCSR_VAL, ioaddr + PMDCSR);
1222                writew(TSTDAT_VAL, ioaddr + TSTDAT);
1223                np->dspcfg = (np->srr <= SRR_DP83815_C)?
1224                        DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1225                writew(np->dspcfg, ioaddr + DSPCFG);
1226                writew(SDCFG_VAL, ioaddr + SDCFG);
1227                writew(0, ioaddr + PGSEL);
1228                readl(ioaddr + ChipConfig);
1229                udelay(10);
1230
1231                writew(1, ioaddr + PGSEL);
1232                dspcfg = readw(ioaddr + DSPCFG);
1233                writew(0, ioaddr + PGSEL);
1234                if (np->dspcfg == dspcfg)
1235                        break;
1236        }
1237
1238        if (netif_msg_link(np)) {
1239                if (i==NATSEMI_HW_TIMEOUT) {
1240                        printk(KERN_INFO
1241                                "%s: DSPCFG mismatch after retrying for %d usec.\n",
1242                                dev->name, i*10);
1243                } else {
1244                        printk(KERN_INFO
1245                                "%s: DSPCFG accepted after %d usec.\n",
1246                                dev->name, i*10);
1247                }
1248        }
1249        /*
1250         * Enable PHY Specific event based interrupts.  Link state change
1251         * and Auto-Negotiation Completion are among the affected.
1252         * Read the intr status to clear it (needed for wake events).
1253         */
1254        readw(ioaddr + MIntrStatus);
1255        writew(MICRIntEn, ioaddr + MIntrCtrl);
1256}
1257
1258static int switch_port_external(struct net_device *dev)
1259{
1260        struct netdev_private *np = netdev_priv(dev);
1261        void __iomem *ioaddr = ns_ioaddr(dev);
1262        u32 cfg;
1263
1264        cfg = readl(ioaddr + ChipConfig);
1265        if (cfg & CfgExtPhy)
1266                return 0;
1267
1268        if (netif_msg_link(np)) {
1269                printk(KERN_INFO "%s: switching to external transceiver.\n",
1270                                dev->name);
1271        }
1272
1273        /* 1) switch back to external phy */
1274        writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1275        readl(ioaddr + ChipConfig);
1276        udelay(1);
1277
1278        /* 2) reset the external phy: */
1279        /* resetting the external PHY has been known to cause a hub supplying
1280         * power over Ethernet to kill the power.  We don't want to kill
1281         * power to this computer, so we avoid resetting the phy.
1282         */
1283
1284        /* 3) reinit the phy fixup, it got lost during power down. */
1285        move_int_phy(dev, np->phy_addr_external);
1286        init_phy_fixup(dev);
1287
1288        return 1;
1289}
1290
1291static int switch_port_internal(struct net_device *dev)
1292{
1293        struct netdev_private *np = netdev_priv(dev);
1294        void __iomem *ioaddr = ns_ioaddr(dev);
1295        int i;
1296        u32 cfg;
1297        u16 bmcr;
1298
1299        cfg = readl(ioaddr + ChipConfig);
1300        if (!(cfg &CfgExtPhy))
1301                return 0;
1302
1303        if (netif_msg_link(np)) {
1304                printk(KERN_INFO "%s: switching to internal transceiver.\n",
1305                                dev->name);
1306        }
1307        /* 1) switch back to internal phy: */
1308        cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1309        writel(cfg, ioaddr + ChipConfig);
1310        readl(ioaddr + ChipConfig);
1311        udelay(1);
1312
1313        /* 2) reset the internal phy: */
1314        bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1315        writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1316        readl(ioaddr + ChipConfig);
1317        udelay(10);
1318        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1319                bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1320                if (!(bmcr & BMCR_RESET))
1321                        break;
1322                udelay(10);
1323        }
1324        if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1325                printk(KERN_INFO
1326                        "%s: phy reset did not complete in %d usec.\n",
1327                        dev->name, i*10);
1328        }
1329        /* 3) reinit the phy fixup, it got lost during power down. */
1330        init_phy_fixup(dev);
1331
1332        return 1;
1333}
1334
1335/* Scan for a PHY on the external mii bus.
1336 * There are two tricky points:
1337 * - Do not scan while the internal phy is enabled. The internal phy will
1338 *   crash: e.g. reads from the DSPCFG register will return odd values and
1339 *   the nasty random phy reset code will reset the nic every few seconds.
1340 * - The internal phy must be moved around, an external phy could
1341 *   have the same address as the internal phy.
1342 */
1343static int find_mii(struct net_device *dev)
1344{
1345        struct netdev_private *np = netdev_priv(dev);
1346        int tmp;
1347        int i;
1348        int did_switch;
1349
1350        /* Switch to external phy */
1351        did_switch = switch_port_external(dev);
1352
1353        /* Scan the possible phy addresses:
1354         *
1355         * PHY address 0 means that the phy is in isolate mode. Not yet
1356         * supported due to lack of test hardware. User space should
1357         * handle it through ethtool.
1358         */
1359        for (i = 1; i <= 31; i++) {
1360                move_int_phy(dev, i);
1361                tmp = miiport_read(dev, i, MII_BMSR);
1362                if (tmp != 0xffff && tmp != 0x0000) {
1363                        /* found something! */
1364                        np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1365                                        + mdio_read(dev, MII_PHYSID2);
1366                        if (netif_msg_probe(np)) {
1367                                printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1368                                                pci_name(np->pci_dev), np->mii, i);
1369                        }
1370                        break;
1371                }
1372        }
1373        /* And switch back to internal phy: */
1374        if (did_switch)
1375                switch_port_internal(dev);
1376        return i;
1377}
1378
1379/* CFG bits [13:16] [18:23] */
1380#define CFG_RESET_SAVE 0xfde000
1381/* WCSR bits [0:4] [9:10] */
1382#define WCSR_RESET_SAVE 0x61f
1383/* RFCR bits [20] [22] [27:31] */
1384#define RFCR_RESET_SAVE 0xf8500000
1385
1386static void natsemi_reset(struct net_device *dev)
1387{
1388        int i;
1389        u32 cfg;
1390        u32 wcsr;
1391        u32 rfcr;
1392        u16 pmatch[3];
1393        u16 sopass[3];
1394        struct netdev_private *np = netdev_priv(dev);
1395        void __iomem *ioaddr = ns_ioaddr(dev);
1396
1397        /*
1398         * Resetting the chip causes some registers to be lost.
1399         * Natsemi suggests NOT reloading the EEPROM while live, so instead
1400         * we save the state that would have been loaded from EEPROM
1401         * on a normal power-up (see the spec EEPROM map).  This assumes
1402         * whoever calls this will follow up with init_registers() eventually.
1403         */
1404
1405        /* CFG */
1406        cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1407        /* WCSR */
1408        wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1409        /* RFCR */
1410        rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1411        /* PMATCH */
1412        for (i = 0; i < 3; i++) {
1413                writel(i*2, ioaddr + RxFilterAddr);
1414                pmatch[i] = readw(ioaddr + RxFilterData);
1415        }
1416        /* SOPAS */
1417        for (i = 0; i < 3; i++) {
1418                writel(0xa+(i*2), ioaddr + RxFilterAddr);
1419                sopass[i] = readw(ioaddr + RxFilterData);
1420        }
1421
1422        /* now whack the chip */
1423        writel(ChipReset, ioaddr + ChipCmd);
1424        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1425                if (!(readl(ioaddr + ChipCmd) & ChipReset))
1426                        break;
1427                udelay(5);
1428        }
1429        if (i==NATSEMI_HW_TIMEOUT) {
1430                printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1431                        dev->name, i*5);
1432        } else if (netif_msg_hw(np)) {
1433                printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1434                        dev->name, i*5);
1435        }
1436
1437        /* restore CFG */
1438        cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1439        /* turn on external phy if it was selected */
1440        if (dev->if_port == PORT_TP)
1441                cfg &= ~(CfgExtPhy | CfgPhyDis);
1442        else
1443                cfg |= (CfgExtPhy | CfgPhyDis);
1444        writel(cfg, ioaddr + ChipConfig);
1445        /* restore WCSR */
1446        wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1447        writel(wcsr, ioaddr + WOLCmd);
1448        /* read RFCR */
1449        rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1450        /* restore PMATCH */
1451        for (i = 0; i < 3; i++) {
1452                writel(i*2, ioaddr + RxFilterAddr);
1453                writew(pmatch[i], ioaddr + RxFilterData);
1454        }
1455        for (i = 0; i < 3; i++) {
1456                writel(0xa+(i*2), ioaddr + RxFilterAddr);
1457                writew(sopass[i], ioaddr + RxFilterData);
1458        }
1459        /* restore RFCR */
1460        writel(rfcr, ioaddr + RxFilterAddr);
1461}
1462
1463static void reset_rx(struct net_device *dev)
1464{
1465        int i;
1466        struct netdev_private *np = netdev_priv(dev);
1467        void __iomem *ioaddr = ns_ioaddr(dev);
1468
1469        np->intr_status &= ~RxResetDone;
1470
1471        writel(RxReset, ioaddr + ChipCmd);
1472
1473        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1474                np->intr_status |= readl(ioaddr + IntrStatus);
1475                if (np->intr_status & RxResetDone)
1476                        break;
1477                udelay(15);
1478        }
1479        if (i==NATSEMI_HW_TIMEOUT) {
1480                printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1481                       dev->name, i*15);
1482        } else if (netif_msg_hw(np)) {
1483                printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1484                       dev->name, i*15);
1485        }
1486}
1487
1488static void natsemi_reload_eeprom(struct net_device *dev)
1489{
1490        struct netdev_private *np = netdev_priv(dev);
1491        void __iomem *ioaddr = ns_ioaddr(dev);
1492        int i;
1493
1494        writel(EepromReload, ioaddr + PCIBusCfg);
1495        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1496                udelay(50);
1497                if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1498                        break;
1499        }
1500        if (i==NATSEMI_HW_TIMEOUT) {
1501                printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1502                        pci_name(np->pci_dev), i*50);
1503        } else if (netif_msg_hw(np)) {
1504                printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1505                        pci_name(np->pci_dev), i*50);
1506        }
1507}
1508
1509static void natsemi_stop_rxtx(struct net_device *dev)
1510{
1511        void __iomem * ioaddr = ns_ioaddr(dev);
1512        struct netdev_private *np = netdev_priv(dev);
1513        int i;
1514
1515        writel(RxOff | TxOff, ioaddr + ChipCmd);
1516        for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1517                if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1518                        break;
1519                udelay(5);
1520        }
1521        if (i==NATSEMI_HW_TIMEOUT) {
1522                printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1523                        dev->name, i*5);
1524        } else if (netif_msg_hw(np)) {
1525                printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1526                        dev->name, i*5);
1527        }
1528}
1529
1530static int netdev_open(struct net_device *dev)
1531{
1532        struct netdev_private *np = netdev_priv(dev);
1533        void __iomem * ioaddr = ns_ioaddr(dev);
1534        const int irq = np->pci_dev->irq;
1535        int i;
1536
1537        /* Reset the chip, just in case. */
1538        natsemi_reset(dev);
1539
1540        i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
1541        if (i) return i;
1542
1543        if (netif_msg_ifup(np))
1544                printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1545                        dev->name, irq);
1546        i = alloc_ring(dev);
1547        if (i < 0) {
1548                free_irq(irq, dev);
1549                return i;
1550        }
1551        napi_enable(&np->napi);
1552
1553        init_ring(dev);
1554        spin_lock_irq(&np->lock);
1555        init_registers(dev);
1556        /* now set the MAC address according to dev->dev_addr */
1557        for (i = 0; i < 3; i++) {
1558                u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1559
1560                writel(i*2, ioaddr + RxFilterAddr);
1561                writew(mac, ioaddr + RxFilterData);
1562        }
1563        writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1564        spin_unlock_irq(&np->lock);
1565
1566        netif_start_queue(dev);
1567
1568        if (netif_msg_ifup(np))
1569                printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1570                        dev->name, (int)readl(ioaddr + ChipCmd));
1571
1572        /* Set the timer to check for link beat. */
1573        timer_setup(&np->timer, netdev_timer, 0);
1574        np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1575        add_timer(&np->timer);
1576
1577        return 0;
1578}
1579
1580static void do_cable_magic(struct net_device *dev)
1581{
1582        struct netdev_private *np = netdev_priv(dev);
1583        void __iomem *ioaddr = ns_ioaddr(dev);
1584
1585        if (dev->if_port != PORT_TP)
1586                return;
1587
1588        if (np->srr >= SRR_DP83816_A5)
1589                return;
1590
1591        /*
1592         * 100 MBit links with short cables can trip an issue with the chip.
1593         * The problem manifests as lots of CRC errors and/or flickering
1594         * activity LED while idle.  This process is based on instructions
1595         * from engineers at National.
1596         */
1597        if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1598                u16 data;
1599
1600                writew(1, ioaddr + PGSEL);
1601                /*
1602                 * coefficient visibility should already be enabled via
1603                 * DSPCFG | 0x1000
1604                 */
1605                data = readw(ioaddr + TSTDAT) & 0xff;
1606                /*
1607                 * the value must be negative, and within certain values
1608                 * (these values all come from National)
1609                 */
1610                if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1611                        np = netdev_priv(dev);
1612
1613                        /* the bug has been triggered - fix the coefficient */
1614                        writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1615                        /* lock the value */
1616                        data = readw(ioaddr + DSPCFG);
1617                        np->dspcfg = data | DSPCFG_LOCK;
1618                        writew(np->dspcfg, ioaddr + DSPCFG);
1619                }
1620                writew(0, ioaddr + PGSEL);
1621        }
1622}
1623
1624static void undo_cable_magic(struct net_device *dev)
1625{
1626        u16 data;
1627        struct netdev_private *np = netdev_priv(dev);
1628        void __iomem * ioaddr = ns_ioaddr(dev);
1629
1630        if (dev->if_port != PORT_TP)
1631                return;
1632
1633        if (np->srr >= SRR_DP83816_A5)
1634                return;
1635
1636        writew(1, ioaddr + PGSEL);
1637        /* make sure the lock bit is clear */
1638        data = readw(ioaddr + DSPCFG);
1639        np->dspcfg = data & ~DSPCFG_LOCK;
1640        writew(np->dspcfg, ioaddr + DSPCFG);
1641        writew(0, ioaddr + PGSEL);
1642}
1643
1644static void check_link(struct net_device *dev)
1645{
1646        struct netdev_private *np = netdev_priv(dev);
1647        void __iomem * ioaddr = ns_ioaddr(dev);
1648        int duplex = np->duplex;
1649        u16 bmsr;
1650
1651        /* If we are ignoring the PHY then don't try reading it. */
1652        if (np->ignore_phy)
1653                goto propagate_state;
1654
1655        /* The link status field is latched: it remains low after a temporary
1656         * link failure until it's read. We need the current link status,
1657         * thus read twice.
1658         */
1659        mdio_read(dev, MII_BMSR);
1660        bmsr = mdio_read(dev, MII_BMSR);
1661
1662        if (!(bmsr & BMSR_LSTATUS)) {
1663                if (netif_carrier_ok(dev)) {
1664                        if (netif_msg_link(np))
1665                                printk(KERN_NOTICE "%s: link down.\n",
1666                                       dev->name);
1667                        netif_carrier_off(dev);
1668                        undo_cable_magic(dev);
1669                }
1670                return;
1671        }
1672        if (!netif_carrier_ok(dev)) {
1673                if (netif_msg_link(np))
1674                        printk(KERN_NOTICE "%s: link up.\n", dev->name);
1675                netif_carrier_on(dev);
1676                do_cable_magic(dev);
1677        }
1678
1679        duplex = np->full_duplex;
1680        if (!duplex) {
1681                if (bmsr & BMSR_ANEGCOMPLETE) {
1682                        int tmp = mii_nway_result(
1683                                np->advertising & mdio_read(dev, MII_LPA));
1684                        if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1685                                duplex = 1;
1686                } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1687                        duplex = 1;
1688        }
1689
1690propagate_state:
1691        /* if duplex is set then bit 28 must be set, too */
1692        if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1693                if (netif_msg_link(np))
1694                        printk(KERN_INFO
1695                                "%s: Setting %s-duplex based on negotiated "
1696                                "link capability.\n", dev->name,
1697                                duplex ? "full" : "half");
1698                if (duplex) {
1699                        np->rx_config |= RxAcceptTx;
1700                        np->tx_config |= TxCarrierIgn | TxHeartIgn;
1701                } else {
1702                        np->rx_config &= ~RxAcceptTx;
1703                        np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1704                }
1705                writel(np->tx_config, ioaddr + TxConfig);
1706                writel(np->rx_config, ioaddr + RxConfig);
1707        }
1708}
1709
1710static void init_registers(struct net_device *dev)
1711{
1712        struct netdev_private *np = netdev_priv(dev);
1713        void __iomem * ioaddr = ns_ioaddr(dev);
1714
1715        init_phy_fixup(dev);
1716
1717        /* clear any interrupts that are pending, such as wake events */
1718        readl(ioaddr + IntrStatus);
1719
1720        writel(np->ring_dma, ioaddr + RxRingPtr);
1721        writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1722                ioaddr + TxRingPtr);
1723
1724        /* Initialize other registers.
1725         * Configure the PCI bus bursts and FIFO thresholds.
1726         * Configure for standard, in-spec Ethernet.
1727         * Start with half-duplex. check_link will update
1728         * to the correct settings.
1729         */
1730
1731        /* DRTH: 2: start tx if 64 bytes are in the fifo
1732         * FLTH: 0x10: refill with next packet if 512 bytes are free
1733         * MXDMA: 0: up to 256 byte bursts.
1734         *      MXDMA must be <= FLTH
1735         * ECRETRY=1
1736         * ATP=1
1737         */
1738        np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1739                                TX_FLTH_VAL | TX_DRTH_VAL_START;
1740        writel(np->tx_config, ioaddr + TxConfig);
1741
1742        /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1743         * MXDMA 0: up to 256 byte bursts
1744         */
1745        np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1746        /* if receive ring now has bigger buffers than normal, enable jumbo */
1747        if (np->rx_buf_sz > NATSEMI_LONGPKT)
1748                np->rx_config |= RxAcceptLong;
1749
1750        writel(np->rx_config, ioaddr + RxConfig);
1751
1752        /* Disable PME:
1753         * The PME bit is initialized from the EEPROM contents.
1754         * PCI cards probably have PME disabled, but motherboard
1755         * implementations may have PME set to enable WakeOnLan.
1756         * With PME set the chip will scan incoming packets but
1757         * nothing will be written to memory. */
1758        np->SavedClkRun = readl(ioaddr + ClkRun);
1759        writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1760        if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1761                printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1762                        dev->name, readl(ioaddr + WOLCmd));
1763        }
1764
1765        check_link(dev);
1766        __set_rx_mode(dev);
1767
1768        /* Enable interrupts by setting the interrupt mask. */
1769        writel(DEFAULT_INTR, ioaddr + IntrMask);
1770        natsemi_irq_enable(dev);
1771
1772        writel(RxOn | TxOn, ioaddr + ChipCmd);
1773        writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1774}
1775
1776/*
1777 * netdev_timer:
1778 * Purpose:
1779 * 1) check for link changes. Usually they are handled by the MII interrupt
1780 *    but it doesn't hurt to check twice.
1781 * 2) check for sudden death of the NIC:
1782 *    It seems that a reference set for this chip went out with incorrect info,
1783 *    and there exist boards that aren't quite right.  An unexpected voltage
1784 *    drop can cause the PHY to get itself in a weird state (basically reset).
1785 *    NOTE: this only seems to affect revC chips.  The user can disable
1786 *    this check via dspcfg_workaround sysfs option.
1787 * 3) check of death of the RX path due to OOM
1788 */
1789static void netdev_timer(struct timer_list *t)
1790{
1791        struct netdev_private *np = from_timer(np, t, timer);
1792        struct net_device *dev = np->dev;
1793        void __iomem * ioaddr = ns_ioaddr(dev);
1794        int next_tick = NATSEMI_TIMER_FREQ;
1795        const int irq = np->pci_dev->irq;
1796
1797        if (netif_msg_timer(np)) {
1798                /* DO NOT read the IntrStatus register,
1799                 * a read clears any pending interrupts.
1800                 */
1801                printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1802                        dev->name);
1803        }
1804
1805        if (dev->if_port == PORT_TP) {
1806                u16 dspcfg;
1807
1808                spin_lock_irq(&np->lock);
1809                /* check for a nasty random phy-reset - use dspcfg as a flag */
1810                writew(1, ioaddr+PGSEL);
1811                dspcfg = readw(ioaddr+DSPCFG);
1812                writew(0, ioaddr+PGSEL);
1813                if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1814                        if (!netif_queue_stopped(dev)) {
1815                                spin_unlock_irq(&np->lock);
1816                                if (netif_msg_drv(np))
1817                                        printk(KERN_NOTICE "%s: possible phy reset: "
1818                                                "re-initializing\n", dev->name);
1819                                disable_irq(irq);
1820                                spin_lock_irq(&np->lock);
1821                                natsemi_stop_rxtx(dev);
1822                                dump_ring(dev);
1823                                reinit_ring(dev);
1824                                init_registers(dev);
1825                                spin_unlock_irq(&np->lock);
1826                                enable_irq(irq);
1827                        } else {
1828                                /* hurry back */
1829                                next_tick = HZ;
1830                                spin_unlock_irq(&np->lock);
1831                        }
1832                } else {
1833                        /* init_registers() calls check_link() for the above case */
1834                        check_link(dev);
1835                        spin_unlock_irq(&np->lock);
1836                }
1837        } else {
1838                spin_lock_irq(&np->lock);
1839                check_link(dev);
1840                spin_unlock_irq(&np->lock);
1841        }
1842        if (np->oom) {
1843                disable_irq(irq);
1844                np->oom = 0;
1845                refill_rx(dev);
1846                enable_irq(irq);
1847                if (!np->oom) {
1848                        writel(RxOn, ioaddr + ChipCmd);
1849                } else {
1850                        next_tick = 1;
1851                }
1852        }
1853
1854        if (next_tick > 1)
1855                mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1856        else
1857                mod_timer(&np->timer, jiffies + next_tick);
1858}
1859
1860static void dump_ring(struct net_device *dev)
1861{
1862        struct netdev_private *np = netdev_priv(dev);
1863
1864        if (netif_msg_pktdata(np)) {
1865                int i;
1866                printk(KERN_DEBUG "  Tx ring at %p:\n", np->tx_ring);
1867                for (i = 0; i < TX_RING_SIZE; i++) {
1868                        printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1869                                i, np->tx_ring[i].next_desc,
1870                                np->tx_ring[i].cmd_status,
1871                                np->tx_ring[i].addr);
1872                }
1873                printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1874                for (i = 0; i < RX_RING_SIZE; i++) {
1875                        printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1876                                i, np->rx_ring[i].next_desc,
1877                                np->rx_ring[i].cmd_status,
1878                                np->rx_ring[i].addr);
1879                }
1880        }
1881}
1882
1883static void ns_tx_timeout(struct net_device *dev, unsigned int txqueue)
1884{
1885        struct netdev_private *np = netdev_priv(dev);
1886        void __iomem * ioaddr = ns_ioaddr(dev);
1887        const int irq = np->pci_dev->irq;
1888
1889        disable_irq(irq);
1890        spin_lock_irq(&np->lock);
1891        if (!np->hands_off) {
1892                if (netif_msg_tx_err(np))
1893                        printk(KERN_WARNING
1894                                "%s: Transmit timed out, status %#08x,"
1895                                " resetting...\n",
1896                                dev->name, readl(ioaddr + IntrStatus));
1897                dump_ring(dev);
1898
1899                natsemi_reset(dev);
1900                reinit_ring(dev);
1901                init_registers(dev);
1902        } else {
1903                printk(KERN_WARNING
1904                        "%s: tx_timeout while in hands_off state?\n",
1905                        dev->name);
1906        }
1907        spin_unlock_irq(&np->lock);
1908        enable_irq(irq);
1909
1910        netif_trans_update(dev); /* prevent tx timeout */
1911        dev->stats.tx_errors++;
1912        netif_wake_queue(dev);
1913}
1914
1915static int alloc_ring(struct net_device *dev)
1916{
1917        struct netdev_private *np = netdev_priv(dev);
1918        np->rx_ring = dma_alloc_coherent(&np->pci_dev->dev,
1919                                         sizeof(struct netdev_desc) * (RX_RING_SIZE + TX_RING_SIZE),
1920                                         &np->ring_dma, GFP_KERNEL);
1921        if (!np->rx_ring)
1922                return -ENOMEM;
1923        np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1924        return 0;
1925}
1926
1927static void refill_rx(struct net_device *dev)
1928{
1929        struct netdev_private *np = netdev_priv(dev);
1930
1931        /* Refill the Rx ring buffers. */
1932        for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1933                struct sk_buff *skb;
1934                int entry = np->dirty_rx % RX_RING_SIZE;
1935                if (np->rx_skbuff[entry] == NULL) {
1936                        unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1937                        skb = netdev_alloc_skb(dev, buflen);
1938                        np->rx_skbuff[entry] = skb;
1939                        if (skb == NULL)
1940                                break; /* Better luck next round. */
1941                        np->rx_dma[entry] = dma_map_single(&np->pci_dev->dev,
1942                                                           skb->data, buflen,
1943                                                           DMA_FROM_DEVICE);
1944                        if (dma_mapping_error(&np->pci_dev->dev, np->rx_dma[entry])) {
1945                                dev_kfree_skb_any(skb);
1946                                np->rx_skbuff[entry] = NULL;
1947                                break; /* Better luck next round. */
1948                        }
1949                        np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1950                }
1951                np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1952        }
1953        if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1954                if (netif_msg_rx_err(np))
1955                        printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1956                np->oom = 1;
1957        }
1958}
1959
1960static void set_bufsize(struct net_device *dev)
1961{
1962        struct netdev_private *np = netdev_priv(dev);
1963        if (dev->mtu <= ETH_DATA_LEN)
1964                np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1965        else
1966                np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1967}
1968
1969/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1970static void init_ring(struct net_device *dev)
1971{
1972        struct netdev_private *np = netdev_priv(dev);
1973        int i;
1974
1975        /* 1) TX ring */
1976        np->dirty_tx = np->cur_tx = 0;
1977        for (i = 0; i < TX_RING_SIZE; i++) {
1978                np->tx_skbuff[i] = NULL;
1979                np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1980                        +sizeof(struct netdev_desc)
1981                        *((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1982                np->tx_ring[i].cmd_status = 0;
1983        }
1984
1985        /* 2) RX ring */
1986        np->dirty_rx = 0;
1987        np->cur_rx = RX_RING_SIZE;
1988        np->oom = 0;
1989        set_bufsize(dev);
1990
1991        np->rx_head_desc = &np->rx_ring[0];
1992
1993        /* Please be careful before changing this loop - at least gcc-2.95.1
1994         * miscompiles it otherwise.
1995         */
1996        /* Initialize all Rx descriptors. */
1997        for (i = 0; i < RX_RING_SIZE; i++) {
1998                np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1999                                +sizeof(struct netdev_desc)
2000                                *((i+1)%RX_RING_SIZE));
2001                np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2002                np->rx_skbuff[i] = NULL;
2003        }
2004        refill_rx(dev);
2005        dump_ring(dev);
2006}
2007
2008static void drain_tx(struct net_device *dev)
2009{
2010        struct netdev_private *np = netdev_priv(dev);
2011        int i;
2012
2013        for (i = 0; i < TX_RING_SIZE; i++) {
2014                if (np->tx_skbuff[i]) {
2015                        dma_unmap_single(&np->pci_dev->dev, np->tx_dma[i],
2016                                         np->tx_skbuff[i]->len, DMA_TO_DEVICE);
2017                        dev_kfree_skb(np->tx_skbuff[i]);
2018                        dev->stats.tx_dropped++;
2019                }
2020                np->tx_skbuff[i] = NULL;
2021        }
2022}
2023
2024static void drain_rx(struct net_device *dev)
2025{
2026        struct netdev_private *np = netdev_priv(dev);
2027        unsigned int buflen = np->rx_buf_sz;
2028        int i;
2029
2030        /* Free all the skbuffs in the Rx queue. */
2031        for (i = 0; i < RX_RING_SIZE; i++) {
2032                np->rx_ring[i].cmd_status = 0;
2033                np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
2034                if (np->rx_skbuff[i]) {
2035                        dma_unmap_single(&np->pci_dev->dev, np->rx_dma[i],
2036                                         buflen + NATSEMI_PADDING,
2037                                         DMA_FROM_DEVICE);
2038                        dev_kfree_skb(np->rx_skbuff[i]);
2039                }
2040                np->rx_skbuff[i] = NULL;
2041        }
2042}
2043
2044static void drain_ring(struct net_device *dev)
2045{
2046        drain_rx(dev);
2047        drain_tx(dev);
2048}
2049
2050static void free_ring(struct net_device *dev)
2051{
2052        struct netdev_private *np = netdev_priv(dev);
2053        dma_free_coherent(&np->pci_dev->dev,
2054                          sizeof(struct netdev_desc) * (RX_RING_SIZE + TX_RING_SIZE),
2055                          np->rx_ring, np->ring_dma);
2056}
2057
2058static void reinit_rx(struct net_device *dev)
2059{
2060        struct netdev_private *np = netdev_priv(dev);
2061        int i;
2062
2063        /* RX Ring */
2064        np->dirty_rx = 0;
2065        np->cur_rx = RX_RING_SIZE;
2066        np->rx_head_desc = &np->rx_ring[0];
2067        /* Initialize all Rx descriptors. */
2068        for (i = 0; i < RX_RING_SIZE; i++)
2069                np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2070
2071        refill_rx(dev);
2072}
2073
2074static void reinit_ring(struct net_device *dev)
2075{
2076        struct netdev_private *np = netdev_priv(dev);
2077        int i;
2078
2079        /* drain TX ring */
2080        drain_tx(dev);
2081        np->dirty_tx = np->cur_tx = 0;
2082        for (i=0;i<TX_RING_SIZE;i++)
2083                np->tx_ring[i].cmd_status = 0;
2084
2085        reinit_rx(dev);
2086}
2087
2088static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
2089{
2090        struct netdev_private *np = netdev_priv(dev);
2091        void __iomem * ioaddr = ns_ioaddr(dev);
2092        unsigned entry;
2093        unsigned long flags;
2094
2095        /* Note: Ordering is important here, set the field with the
2096           "ownership" bit last, and only then increment cur_tx. */
2097
2098        /* Calculate the next Tx descriptor entry. */
2099        entry = np->cur_tx % TX_RING_SIZE;
2100
2101        np->tx_skbuff[entry] = skb;
2102        np->tx_dma[entry] = dma_map_single(&np->pci_dev->dev, skb->data,
2103                                           skb->len, DMA_TO_DEVICE);
2104        if (dma_mapping_error(&np->pci_dev->dev, np->tx_dma[entry])) {
2105                np->tx_skbuff[entry] = NULL;
2106                dev_kfree_skb_irq(skb);
2107                dev->stats.tx_dropped++;
2108                return NETDEV_TX_OK;
2109        }
2110
2111        np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2112
2113        spin_lock_irqsave(&np->lock, flags);
2114
2115        if (!np->hands_off) {
2116                np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2117                /* StrongARM: Explicitly cache flush np->tx_ring and
2118                 * skb->data,skb->len. */
2119                wmb();
2120                np->cur_tx++;
2121                if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2122                        netdev_tx_done(dev);
2123                        if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2124                                netif_stop_queue(dev);
2125                }
2126                /* Wake the potentially-idle transmit channel. */
2127                writel(TxOn, ioaddr + ChipCmd);
2128        } else {
2129                dev_kfree_skb_irq(skb);
2130                dev->stats.tx_dropped++;
2131        }
2132        spin_unlock_irqrestore(&np->lock, flags);
2133
2134        if (netif_msg_tx_queued(np)) {
2135                printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2136                        dev->name, np->cur_tx, entry);
2137        }
2138        return NETDEV_TX_OK;
2139}
2140
2141static void netdev_tx_done(struct net_device *dev)
2142{
2143        struct netdev_private *np = netdev_priv(dev);
2144
2145        for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2146                int entry = np->dirty_tx % TX_RING_SIZE;
2147                if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2148                        break;
2149                if (netif_msg_tx_done(np))
2150                        printk(KERN_DEBUG
2151                                "%s: tx frame #%d finished, status %#08x.\n",
2152                                        dev->name, np->dirty_tx,
2153                                        le32_to_cpu(np->tx_ring[entry].cmd_status));
2154                if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2155                        dev->stats.tx_packets++;
2156                        dev->stats.tx_bytes += np->tx_skbuff[entry]->len;
2157                } else { /* Various Tx errors */
2158                        int tx_status =
2159                                le32_to_cpu(np->tx_ring[entry].cmd_status);
2160                        if (tx_status & (DescTxAbort|DescTxExcColl))
2161                                dev->stats.tx_aborted_errors++;
2162                        if (tx_status & DescTxFIFO)
2163                                dev->stats.tx_fifo_errors++;
2164                        if (tx_status & DescTxCarrier)
2165                                dev->stats.tx_carrier_errors++;
2166                        if (tx_status & DescTxOOWCol)
2167                                dev->stats.tx_window_errors++;
2168                        dev->stats.tx_errors++;
2169                }
2170                dma_unmap_single(&np->pci_dev->dev, np->tx_dma[entry],
2171                                 np->tx_skbuff[entry]->len, DMA_TO_DEVICE);
2172                /* Free the original skb. */
2173                dev_consume_skb_irq(np->tx_skbuff[entry]);
2174                np->tx_skbuff[entry] = NULL;
2175        }
2176        if (netif_queue_stopped(dev) &&
2177            np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2178                /* The ring is no longer full, wake queue. */
2179                netif_wake_queue(dev);
2180        }
2181}
2182
2183/* The interrupt handler doesn't actually handle interrupts itself, it
2184 * schedules a NAPI poll if there is anything to do. */
2185static irqreturn_t intr_handler(int irq, void *dev_instance)
2186{
2187        struct net_device *dev = dev_instance;
2188        struct netdev_private *np = netdev_priv(dev);
2189        void __iomem * ioaddr = ns_ioaddr(dev);
2190
2191        /* Reading IntrStatus automatically acknowledges so don't do
2192         * that while interrupts are disabled, (for example, while a
2193         * poll is scheduled).  */
2194        if (np->hands_off || !readl(ioaddr + IntrEnable))
2195                return IRQ_NONE;
2196
2197        np->intr_status = readl(ioaddr + IntrStatus);
2198
2199        if (!np->intr_status)
2200                return IRQ_NONE;
2201
2202        if (netif_msg_intr(np))
2203                printk(KERN_DEBUG
2204                       "%s: Interrupt, status %#08x, mask %#08x.\n",
2205                       dev->name, np->intr_status,
2206                       readl(ioaddr + IntrMask));
2207
2208        prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2209
2210        if (napi_schedule_prep(&np->napi)) {
2211                /* Disable interrupts and register for poll */
2212                natsemi_irq_disable(dev);
2213                __napi_schedule(&np->napi);
2214        } else
2215                printk(KERN_WARNING
2216                       "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2217                       dev->name, np->intr_status,
2218                       readl(ioaddr + IntrMask));
2219
2220        return IRQ_HANDLED;
2221}
2222
2223/* This is the NAPI poll routine.  As well as the standard RX handling
2224 * it also handles all other interrupts that the chip might raise.
2225 */
2226static int natsemi_poll(struct napi_struct *napi, int budget)
2227{
2228        struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2229        struct net_device *dev = np->dev;
2230        void __iomem * ioaddr = ns_ioaddr(dev);
2231        int work_done = 0;
2232
2233        do {
2234                if (netif_msg_intr(np))
2235                        printk(KERN_DEBUG
2236                               "%s: Poll, status %#08x, mask %#08x.\n",
2237                               dev->name, np->intr_status,
2238                               readl(ioaddr + IntrMask));
2239
2240                /* netdev_rx() may read IntrStatus again if the RX state
2241                 * machine falls over so do it first. */
2242                if (np->intr_status &
2243                    (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2244                     IntrRxErr | IntrRxOverrun)) {
2245                        netdev_rx(dev, &work_done, budget);
2246                }
2247
2248                if (np->intr_status &
2249                    (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2250                        spin_lock(&np->lock);
2251                        netdev_tx_done(dev);
2252                        spin_unlock(&np->lock);
2253                }
2254
2255                /* Abnormal error summary/uncommon events handlers. */
2256                if (np->intr_status & IntrAbnormalSummary)
2257                        netdev_error(dev, np->intr_status);
2258
2259                if (work_done >= budget)
2260                        return work_done;
2261
2262                np->intr_status = readl(ioaddr + IntrStatus);
2263        } while (np->intr_status);
2264
2265        napi_complete_done(napi, work_done);
2266
2267        /* Reenable interrupts providing nothing is trying to shut
2268         * the chip down. */
2269        spin_lock(&np->lock);
2270        if (!np->hands_off)
2271                natsemi_irq_enable(dev);
2272        spin_unlock(&np->lock);
2273
2274        return work_done;
2275}
2276
2277/* This routine is logically part of the interrupt handler, but separated
2278   for clarity and better register allocation. */
2279static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2280{
2281        struct netdev_private *np = netdev_priv(dev);
2282        int entry = np->cur_rx % RX_RING_SIZE;
2283        int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2284        s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2285        unsigned int buflen = np->rx_buf_sz;
2286        void __iomem * ioaddr = ns_ioaddr(dev);
2287
2288        /* If the driver owns the next entry it's a new packet. Send it up. */
2289        while (desc_status < 0) { /* e.g. & DescOwn */
2290                int pkt_len;
2291                if (netif_msg_rx_status(np))
2292                        printk(KERN_DEBUG
2293                                "  netdev_rx() entry %d status was %#08x.\n",
2294                                entry, desc_status);
2295                if (--boguscnt < 0)
2296                        break;
2297
2298                if (*work_done >= work_to_do)
2299                        break;
2300
2301                (*work_done)++;
2302
2303                pkt_len = (desc_status & DescSizeMask) - 4;
2304                if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2305                        if (desc_status & DescMore) {
2306                                unsigned long flags;
2307
2308                                if (netif_msg_rx_err(np))
2309                                        printk(KERN_WARNING
2310                                                "%s: Oversized(?) Ethernet "
2311                                                "frame spanned multiple "
2312                                                "buffers, entry %#08x "
2313                                                "status %#08x.\n", dev->name,
2314                                                np->cur_rx, desc_status);
2315                                dev->stats.rx_length_errors++;
2316
2317                                /* The RX state machine has probably
2318                                 * locked up beneath us.  Follow the
2319                                 * reset procedure documented in
2320                                 * AN-1287. */
2321
2322                                spin_lock_irqsave(&np->lock, flags);
2323                                reset_rx(dev);
2324                                reinit_rx(dev);
2325                                writel(np->ring_dma, ioaddr + RxRingPtr);
2326                                check_link(dev);
2327                                spin_unlock_irqrestore(&np->lock, flags);
2328
2329                                /* We'll enable RX on exit from this
2330                                 * function. */
2331                                break;
2332
2333                        } else {
2334                                /* There was an error. */
2335                                dev->stats.rx_errors++;
2336                                if (desc_status & (DescRxAbort|DescRxOver))
2337                                        dev->stats.rx_over_errors++;
2338                                if (desc_status & (DescRxLong|DescRxRunt))
2339                                        dev->stats.rx_length_errors++;
2340                                if (desc_status & (DescRxInvalid|DescRxAlign))
2341                                        dev->stats.rx_frame_errors++;
2342                                if (desc_status & DescRxCRC)
2343                                        dev->stats.rx_crc_errors++;
2344                        }
2345                } else if (pkt_len > np->rx_buf_sz) {
2346                        /* if this is the tail of a double buffer
2347                         * packet, we've already counted the error
2348                         * on the first part.  Ignore the second half.
2349                         */
2350                } else {
2351                        struct sk_buff *skb;
2352                        /* Omit CRC size. */
2353                        /* Check if the packet is long enough to accept
2354                         * without copying to a minimally-sized skbuff. */
2355                        if (pkt_len < rx_copybreak &&
2356                            (skb = netdev_alloc_skb(dev, pkt_len + RX_OFFSET)) != NULL) {
2357                                /* 16 byte align the IP header */
2358                                skb_reserve(skb, RX_OFFSET);
2359                                dma_sync_single_for_cpu(&np->pci_dev->dev,
2360                                                        np->rx_dma[entry],
2361                                                        buflen,
2362                                                        DMA_FROM_DEVICE);
2363                                skb_copy_to_linear_data(skb,
2364                                        np->rx_skbuff[entry]->data, pkt_len);
2365                                skb_put(skb, pkt_len);
2366                                dma_sync_single_for_device(&np->pci_dev->dev,
2367                                                           np->rx_dma[entry],
2368                                                           buflen,
2369                                                           DMA_FROM_DEVICE);
2370                        } else {
2371                                dma_unmap_single(&np->pci_dev->dev,
2372                                                 np->rx_dma[entry],
2373                                                 buflen + NATSEMI_PADDING,
2374                                                 DMA_FROM_DEVICE);
2375                                skb_put(skb = np->rx_skbuff[entry], pkt_len);
2376                                np->rx_skbuff[entry] = NULL;
2377                        }
2378                        skb->protocol = eth_type_trans(skb, dev);
2379                        netif_receive_skb(skb);
2380                        dev->stats.rx_packets++;
2381                        dev->stats.rx_bytes += pkt_len;
2382                }
2383                entry = (++np->cur_rx) % RX_RING_SIZE;
2384                np->rx_head_desc = &np->rx_ring[entry];
2385                desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2386        }
2387        refill_rx(dev);
2388
2389        /* Restart Rx engine if stopped. */
2390        if (np->oom)
2391                mod_timer(&np->timer, jiffies + 1);
2392        else
2393                writel(RxOn, ioaddr + ChipCmd);
2394}
2395
2396static void netdev_error(struct net_device *dev, int intr_status)
2397{
2398        struct netdev_private *np = netdev_priv(dev);
2399        void __iomem * ioaddr = ns_ioaddr(dev);
2400
2401        spin_lock(&np->lock);
2402        if (intr_status & LinkChange) {
2403                u16 lpa = mdio_read(dev, MII_LPA);
2404                if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE &&
2405                    netif_msg_link(np)) {
2406                        printk(KERN_INFO
2407                                "%s: Autonegotiation advertising"
2408                                " %#04x  partner %#04x.\n", dev->name,
2409                                np->advertising, lpa);
2410                }
2411
2412                /* read MII int status to clear the flag */
2413                readw(ioaddr + MIntrStatus);
2414                check_link(dev);
2415        }
2416        if (intr_status & StatsMax) {
2417                __get_stats(dev);
2418        }
2419        if (intr_status & IntrTxUnderrun) {
2420                if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2421                        np->tx_config += TX_DRTH_VAL_INC;
2422                        if (netif_msg_tx_err(np))
2423                                printk(KERN_NOTICE
2424                                        "%s: increased tx threshold, txcfg %#08x.\n",
2425                                        dev->name, np->tx_config);
2426                } else {
2427                        if (netif_msg_tx_err(np))
2428                                printk(KERN_NOTICE
2429                                        "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2430                                        dev->name, np->tx_config);
2431                }
2432                writel(np->tx_config, ioaddr + TxConfig);
2433        }
2434        if (intr_status & WOLPkt && netif_msg_wol(np)) {
2435                int wol_status = readl(ioaddr + WOLCmd);
2436                printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2437                        dev->name, wol_status);
2438        }
2439        if (intr_status & RxStatusFIFOOver) {
2440                if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2441                        printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2442                                dev->name);
2443                }
2444                dev->stats.rx_fifo_errors++;
2445                dev->stats.rx_errors++;
2446        }
2447        /* Hmmmmm, it's not clear how to recover from PCI faults. */
2448        if (intr_status & IntrPCIErr) {
2449                printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2450                        intr_status & IntrPCIErr);
2451                dev->stats.tx_fifo_errors++;
2452                dev->stats.tx_errors++;
2453                dev->stats.rx_fifo_errors++;
2454                dev->stats.rx_errors++;
2455        }
2456        spin_unlock(&np->lock);
2457}
2458
2459static void __get_stats(struct net_device *dev)
2460{
2461        void __iomem * ioaddr = ns_ioaddr(dev);
2462
2463        /* The chip only need report frame silently dropped. */
2464        dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2465        dev->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2466}
2467
2468static struct net_device_stats *get_stats(struct net_device *dev)
2469{
2470        struct netdev_private *np = netdev_priv(dev);
2471
2472        /* The chip only need report frame silently dropped. */
2473        spin_lock_irq(&np->lock);
2474        if (netif_running(dev) && !np->hands_off)
2475                __get_stats(dev);
2476        spin_unlock_irq(&np->lock);
2477
2478        return &dev->stats;
2479}
2480
2481#ifdef CONFIG_NET_POLL_CONTROLLER
2482static void natsemi_poll_controller(struct net_device *dev)
2483{
2484        struct netdev_private *np = netdev_priv(dev);
2485        const int irq = np->pci_dev->irq;
2486
2487        disable_irq(irq);
2488        intr_handler(irq, dev);
2489        enable_irq(irq);
2490}
2491#endif
2492
2493#define HASH_TABLE      0x200
2494static void __set_rx_mode(struct net_device *dev)
2495{
2496        void __iomem * ioaddr = ns_ioaddr(dev);
2497        struct netdev_private *np = netdev_priv(dev);
2498        u8 mc_filter[64]; /* Multicast hash filter */
2499        u32 rx_mode;
2500
2501        if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2502                rx_mode = RxFilterEnable | AcceptBroadcast
2503                        | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2504        } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2505                   (dev->flags & IFF_ALLMULTI)) {
2506                rx_mode = RxFilterEnable | AcceptBroadcast
2507                        | AcceptAllMulticast | AcceptMyPhys;
2508        } else {
2509                struct netdev_hw_addr *ha;
2510                int i;
2511
2512                memset(mc_filter, 0, sizeof(mc_filter));
2513                netdev_for_each_mc_addr(ha, dev) {
2514                        int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff;
2515                        mc_filter[b/8] |= (1 << (b & 0x07));
2516                }
2517                rx_mode = RxFilterEnable | AcceptBroadcast
2518                        | AcceptMulticast | AcceptMyPhys;
2519                for (i = 0; i < 64; i += 2) {
2520                        writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2521                        writel((mc_filter[i + 1] << 8) + mc_filter[i],
2522                               ioaddr + RxFilterData);
2523                }
2524        }
2525        writel(rx_mode, ioaddr + RxFilterAddr);
2526        np->cur_rx_mode = rx_mode;
2527}
2528
2529static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2530{
2531        dev->mtu = new_mtu;
2532
2533        /* synchronized against open : rtnl_lock() held by caller */
2534        if (netif_running(dev)) {
2535                struct netdev_private *np = netdev_priv(dev);
2536                void __iomem * ioaddr = ns_ioaddr(dev);
2537                const int irq = np->pci_dev->irq;
2538
2539                disable_irq(irq);
2540                spin_lock(&np->lock);
2541                /* stop engines */
2542                natsemi_stop_rxtx(dev);
2543                /* drain rx queue */
2544                drain_rx(dev);
2545                /* change buffers */
2546                set_bufsize(dev);
2547                reinit_rx(dev);
2548                writel(np->ring_dma, ioaddr + RxRingPtr);
2549                /* restart engines */
2550                writel(RxOn | TxOn, ioaddr + ChipCmd);
2551                spin_unlock(&np->lock);
2552                enable_irq(irq);
2553        }
2554        return 0;
2555}
2556
2557static void set_rx_mode(struct net_device *dev)
2558{
2559        struct netdev_private *np = netdev_priv(dev);
2560        spin_lock_irq(&np->lock);
2561        if (!np->hands_off)
2562                __set_rx_mode(dev);
2563        spin_unlock_irq(&np->lock);
2564}
2565
2566static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2567{
2568        struct netdev_private *np = netdev_priv(dev);
2569        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2570        strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2571        strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
2572}
2573
2574static int get_regs_len(struct net_device *dev)
2575{
2576        return NATSEMI_REGS_SIZE;
2577}
2578
2579static int get_eeprom_len(struct net_device *dev)
2580{
2581        struct netdev_private *np = netdev_priv(dev);
2582        return np->eeprom_size;
2583}
2584
2585static int get_link_ksettings(struct net_device *dev,
2586                              struct ethtool_link_ksettings *ecmd)
2587{
2588        struct netdev_private *np = netdev_priv(dev);
2589        spin_lock_irq(&np->lock);
2590        netdev_get_ecmd(dev, ecmd);
2591        spin_unlock_irq(&np->lock);
2592        return 0;
2593}
2594
2595static int set_link_ksettings(struct net_device *dev,
2596                              const struct ethtool_link_ksettings *ecmd)
2597{
2598        struct netdev_private *np = netdev_priv(dev);
2599        int res;
2600        spin_lock_irq(&np->lock);
2601        res = netdev_set_ecmd(dev, ecmd);
2602        spin_unlock_irq(&np->lock);
2603        return res;
2604}
2605
2606static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2607{
2608        struct netdev_private *np = netdev_priv(dev);
2609        spin_lock_irq(&np->lock);
2610        netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2611        netdev_get_sopass(dev, wol->sopass);
2612        spin_unlock_irq(&np->lock);
2613}
2614
2615static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2616{
2617        struct netdev_private *np = netdev_priv(dev);
2618        int res;
2619        spin_lock_irq(&np->lock);
2620        netdev_set_wol(dev, wol->wolopts);
2621        res = netdev_set_sopass(dev, wol->sopass);
2622        spin_unlock_irq(&np->lock);
2623        return res;
2624}
2625
2626static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2627{
2628        struct netdev_private *np = netdev_priv(dev);
2629        regs->version = NATSEMI_REGS_VER;
2630        spin_lock_irq(&np->lock);
2631        netdev_get_regs(dev, buf);
2632        spin_unlock_irq(&np->lock);
2633}
2634
2635static u32 get_msglevel(struct net_device *dev)
2636{
2637        struct netdev_private *np = netdev_priv(dev);
2638        return np->msg_enable;
2639}
2640
2641static void set_msglevel(struct net_device *dev, u32 val)
2642{
2643        struct netdev_private *np = netdev_priv(dev);
2644        np->msg_enable = val;
2645}
2646
2647static int nway_reset(struct net_device *dev)
2648{
2649        int tmp;
2650        int r = -EINVAL;
2651        /* if autoneg is off, it's an error */
2652        tmp = mdio_read(dev, MII_BMCR);
2653        if (tmp & BMCR_ANENABLE) {
2654                tmp |= (BMCR_ANRESTART);
2655                mdio_write(dev, MII_BMCR, tmp);
2656                r = 0;
2657        }
2658        return r;
2659}
2660
2661static u32 get_link(struct net_device *dev)
2662{
2663        /* LSTATUS is latched low until a read - so read twice */
2664        mdio_read(dev, MII_BMSR);
2665        return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2666}
2667
2668static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2669{
2670        struct netdev_private *np = netdev_priv(dev);
2671        u8 *eebuf;
2672        int res;
2673
2674        eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2675        if (!eebuf)
2676                return -ENOMEM;
2677
2678        eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2679        spin_lock_irq(&np->lock);
2680        res = netdev_get_eeprom(dev, eebuf);
2681        spin_unlock_irq(&np->lock);
2682        if (!res)
2683                memcpy(data, eebuf+eeprom->offset, eeprom->len);
2684        kfree(eebuf);
2685        return res;
2686}
2687
2688static const struct ethtool_ops ethtool_ops = {
2689        .get_drvinfo = get_drvinfo,
2690        .get_regs_len = get_regs_len,
2691        .get_eeprom_len = get_eeprom_len,
2692        .get_wol = get_wol,
2693        .set_wol = set_wol,
2694        .get_regs = get_regs,
2695        .get_msglevel = get_msglevel,
2696        .set_msglevel = set_msglevel,
2697        .nway_reset = nway_reset,
2698        .get_link = get_link,
2699        .get_eeprom = get_eeprom,
2700        .get_link_ksettings = get_link_ksettings,
2701        .set_link_ksettings = set_link_ksettings,
2702};
2703
2704static int netdev_set_wol(struct net_device *dev, u32 newval)
2705{
2706        struct netdev_private *np = netdev_priv(dev);
2707        void __iomem * ioaddr = ns_ioaddr(dev);
2708        u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2709
2710        /* translate to bitmasks this chip understands */
2711        if (newval & WAKE_PHY)
2712                data |= WakePhy;
2713        if (newval & WAKE_UCAST)
2714                data |= WakeUnicast;
2715        if (newval & WAKE_MCAST)
2716                data |= WakeMulticast;
2717        if (newval & WAKE_BCAST)
2718                data |= WakeBroadcast;
2719        if (newval & WAKE_ARP)
2720                data |= WakeArp;
2721        if (newval & WAKE_MAGIC)
2722                data |= WakeMagic;
2723        if (np->srr >= SRR_DP83815_D) {
2724                if (newval & WAKE_MAGICSECURE) {
2725                        data |= WakeMagicSecure;
2726                }
2727        }
2728
2729        writel(data, ioaddr + WOLCmd);
2730
2731        return 0;
2732}
2733
2734static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2735{
2736        struct netdev_private *np = netdev_priv(dev);
2737        void __iomem * ioaddr = ns_ioaddr(dev);
2738        u32 regval = readl(ioaddr + WOLCmd);
2739
2740        *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2741                        | WAKE_ARP | WAKE_MAGIC);
2742
2743        if (np->srr >= SRR_DP83815_D) {
2744                /* SOPASS works on revD and higher */
2745                *supported |= WAKE_MAGICSECURE;
2746        }
2747        *cur = 0;
2748
2749        /* translate from chip bitmasks */
2750        if (regval & WakePhy)
2751                *cur |= WAKE_PHY;
2752        if (regval & WakeUnicast)
2753                *cur |= WAKE_UCAST;
2754        if (regval & WakeMulticast)
2755                *cur |= WAKE_MCAST;
2756        if (regval & WakeBroadcast)
2757                *cur |= WAKE_BCAST;
2758        if (regval & WakeArp)
2759                *cur |= WAKE_ARP;
2760        if (regval & WakeMagic)
2761                *cur |= WAKE_MAGIC;
2762        if (regval & WakeMagicSecure) {
2763                /* this can be on in revC, but it's broken */
2764                *cur |= WAKE_MAGICSECURE;
2765        }
2766
2767        return 0;
2768}
2769
2770static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2771{
2772        struct netdev_private *np = netdev_priv(dev);
2773        void __iomem * ioaddr = ns_ioaddr(dev);
2774        u16 *sval = (u16 *)newval;
2775        u32 addr;
2776
2777        if (np->srr < SRR_DP83815_D) {
2778                return 0;
2779        }
2780
2781        /* enable writing to these registers by disabling the RX filter */
2782        addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2783        addr &= ~RxFilterEnable;
2784        writel(addr, ioaddr + RxFilterAddr);
2785
2786        /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2787        writel(addr | 0xa, ioaddr + RxFilterAddr);
2788        writew(sval[0], ioaddr + RxFilterData);
2789
2790        writel(addr | 0xc, ioaddr + RxFilterAddr);
2791        writew(sval[1], ioaddr + RxFilterData);
2792
2793        writel(addr | 0xe, ioaddr + RxFilterAddr);
2794        writew(sval[2], ioaddr + RxFilterData);
2795
2796        /* re-enable the RX filter */
2797        writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2798
2799        return 0;
2800}
2801
2802static int netdev_get_sopass(struct net_device *dev, u8 *data)
2803{
2804        struct netdev_private *np = netdev_priv(dev);
2805        void __iomem * ioaddr = ns_ioaddr(dev);
2806        u16 *sval = (u16 *)data;
2807        u32 addr;
2808
2809        if (np->srr < SRR_DP83815_D) {
2810                sval[0] = sval[1] = sval[2] = 0;
2811                return 0;
2812        }
2813
2814        /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2815        addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2816
2817        writel(addr | 0xa, ioaddr + RxFilterAddr);
2818        sval[0] = readw(ioaddr + RxFilterData);
2819
2820        writel(addr | 0xc, ioaddr + RxFilterAddr);
2821        sval[1] = readw(ioaddr + RxFilterData);
2822
2823        writel(addr | 0xe, ioaddr + RxFilterAddr);
2824        sval[2] = readw(ioaddr + RxFilterData);
2825
2826        writel(addr, ioaddr + RxFilterAddr);
2827
2828        return 0;
2829}
2830
2831static int netdev_get_ecmd(struct net_device *dev,
2832                           struct ethtool_link_ksettings *ecmd)
2833{
2834        struct netdev_private *np = netdev_priv(dev);
2835        u32 supported, advertising;
2836        u32 tmp;
2837
2838        ecmd->base.port   = dev->if_port;
2839        ecmd->base.speed  = np->speed;
2840        ecmd->base.duplex = np->duplex;
2841        ecmd->base.autoneg = np->autoneg;
2842        advertising = 0;
2843
2844        if (np->advertising & ADVERTISE_10HALF)
2845                advertising |= ADVERTISED_10baseT_Half;
2846        if (np->advertising & ADVERTISE_10FULL)
2847                advertising |= ADVERTISED_10baseT_Full;
2848        if (np->advertising & ADVERTISE_100HALF)
2849                advertising |= ADVERTISED_100baseT_Half;
2850        if (np->advertising & ADVERTISE_100FULL)
2851                advertising |= ADVERTISED_100baseT_Full;
2852        supported   = (SUPPORTED_Autoneg |
2853                SUPPORTED_10baseT_Half  | SUPPORTED_10baseT_Full  |
2854                SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2855                SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2856        ecmd->base.phy_address = np->phy_addr_external;
2857        /*
2858         * We intentionally report the phy address of the external
2859         * phy, even if the internal phy is used. This is necessary
2860         * to work around a deficiency of the ethtool interface:
2861         * It's only possible to query the settings of the active
2862         * port. Therefore
2863         * # ethtool -s ethX port mii
2864         * actually sends an ioctl to switch to port mii with the
2865         * settings that are used for the current active port.
2866         * If we would report a different phy address in this
2867         * command, then
2868         * # ethtool -s ethX port tp;ethtool -s ethX port mii
2869         * would unintentionally change the phy address.
2870         *
2871         * Fortunately the phy address doesn't matter with the
2872         * internal phy...
2873         */
2874
2875        /* set information based on active port type */
2876        switch (ecmd->base.port) {
2877        default:
2878        case PORT_TP:
2879                advertising |= ADVERTISED_TP;
2880                break;
2881        case PORT_MII:
2882                advertising |= ADVERTISED_MII;
2883                break;
2884        case PORT_FIBRE:
2885                advertising |= ADVERTISED_FIBRE;
2886                break;
2887        }
2888
2889        /* if autonegotiation is on, try to return the active speed/duplex */
2890        if (ecmd->base.autoneg == AUTONEG_ENABLE) {
2891                advertising |= ADVERTISED_Autoneg;
2892                tmp = mii_nway_result(
2893                        np->advertising & mdio_read(dev, MII_LPA));
2894                if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2895                        ecmd->base.speed = SPEED_100;
2896                else
2897                        ecmd->base.speed = SPEED_10;
2898                if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2899                        ecmd->base.duplex = DUPLEX_FULL;
2900                else
2901                        ecmd->base.duplex = DUPLEX_HALF;
2902        }
2903
2904        /* ignore maxtxpkt, maxrxpkt for now */
2905
2906        ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.supported,
2907                                                supported);
2908        ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.advertising,
2909                                                advertising);
2910
2911        return 0;
2912}
2913
2914static int netdev_set_ecmd(struct net_device *dev,
2915                           const struct ethtool_link_ksettings *ecmd)
2916{
2917        struct netdev_private *np = netdev_priv(dev);
2918        u32 advertising;
2919
2920        ethtool_convert_link_mode_to_legacy_u32(&advertising,
2921                                                ecmd->link_modes.advertising);
2922
2923        if (ecmd->base.port != PORT_TP &&
2924            ecmd->base.port != PORT_MII &&
2925            ecmd->base.port != PORT_FIBRE)
2926                return -EINVAL;
2927        if (ecmd->base.autoneg == AUTONEG_ENABLE) {
2928                if ((advertising & (ADVERTISED_10baseT_Half |
2929                                          ADVERTISED_10baseT_Full |
2930                                          ADVERTISED_100baseT_Half |
2931                                          ADVERTISED_100baseT_Full)) == 0) {
2932                        return -EINVAL;
2933                }
2934        } else if (ecmd->base.autoneg == AUTONEG_DISABLE) {
2935                u32 speed = ecmd->base.speed;
2936                if (speed != SPEED_10 && speed != SPEED_100)
2937                        return -EINVAL;
2938                if (ecmd->base.duplex != DUPLEX_HALF &&
2939                    ecmd->base.duplex != DUPLEX_FULL)
2940                        return -EINVAL;
2941        } else {
2942                return -EINVAL;
2943        }
2944
2945        /*
2946         * If we're ignoring the PHY then autoneg and the internal
2947         * transceiver are really not going to work so don't let the
2948         * user select them.
2949         */
2950        if (np->ignore_phy && (ecmd->base.autoneg == AUTONEG_ENABLE ||
2951                               ecmd->base.port == PORT_TP))
2952                return -EINVAL;
2953
2954        /*
2955         * maxtxpkt, maxrxpkt: ignored for now.
2956         *
2957         * transceiver:
2958         * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2959         * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2960         * selects based on ecmd->port.
2961         *
2962         * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2963         * phys that are connected to the mii bus. It's used to apply fibre
2964         * specific updates.
2965         */
2966
2967        /* WHEW! now lets bang some bits */
2968
2969        /* save the parms */
2970        dev->if_port          = ecmd->base.port;
2971        np->autoneg           = ecmd->base.autoneg;
2972        np->phy_addr_external = ecmd->base.phy_address & PhyAddrMask;
2973        if (np->autoneg == AUTONEG_ENABLE) {
2974                /* advertise only what has been requested */
2975                np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2976                if (advertising & ADVERTISED_10baseT_Half)
2977                        np->advertising |= ADVERTISE_10HALF;
2978                if (advertising & ADVERTISED_10baseT_Full)
2979                        np->advertising |= ADVERTISE_10FULL;
2980                if (advertising & ADVERTISED_100baseT_Half)
2981                        np->advertising |= ADVERTISE_100HALF;
2982                if (advertising & ADVERTISED_100baseT_Full)
2983                        np->advertising |= ADVERTISE_100FULL;
2984        } else {
2985                np->speed  = ecmd->base.speed;
2986                np->duplex = ecmd->base.duplex;
2987                /* user overriding the initial full duplex parm? */
2988                if (np->duplex == DUPLEX_HALF)
2989                        np->full_duplex = 0;
2990        }
2991
2992        /* get the right phy enabled */
2993        if (ecmd->base.port == PORT_TP)
2994                switch_port_internal(dev);
2995        else
2996                switch_port_external(dev);
2997
2998        /* set parms and see how this affected our link status */
2999        init_phy_fixup(dev);
3000        check_link(dev);
3001        return 0;
3002}
3003
3004static int netdev_get_regs(struct net_device *dev, u8 *buf)
3005{
3006        int i;
3007        int j;
3008        u32 rfcr;
3009        u32 *rbuf = (u32 *)buf;
3010        void __iomem * ioaddr = ns_ioaddr(dev);
3011
3012        /* read non-mii page 0 of registers */
3013        for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
3014                rbuf[i] = readl(ioaddr + i*4);
3015        }
3016
3017        /* read current mii registers */
3018        for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
3019                rbuf[i] = mdio_read(dev, i & 0x1f);
3020
3021        /* read only the 'magic' registers from page 1 */
3022        writew(1, ioaddr + PGSEL);
3023        rbuf[i++] = readw(ioaddr + PMDCSR);
3024        rbuf[i++] = readw(ioaddr + TSTDAT);
3025        rbuf[i++] = readw(ioaddr + DSPCFG);
3026        rbuf[i++] = readw(ioaddr + SDCFG);
3027        writew(0, ioaddr + PGSEL);
3028
3029        /* read RFCR indexed registers */
3030        rfcr = readl(ioaddr + RxFilterAddr);
3031        for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3032                writel(j*2, ioaddr + RxFilterAddr);
3033                rbuf[i++] = readw(ioaddr + RxFilterData);
3034        }
3035        writel(rfcr, ioaddr + RxFilterAddr);
3036
3037        /* the interrupt status is clear-on-read - see if we missed any */
3038        if (rbuf[4] & rbuf[5]) {
3039                printk(KERN_WARNING
3040                        "%s: shoot, we dropped an interrupt (%#08x)\n",
3041                        dev->name, rbuf[4] & rbuf[5]);
3042        }
3043
3044        return 0;
3045}
3046
3047#define SWAP_BITS(x)    ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3048                        | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9)  \
3049                        | (((x) & 0x0010) << 7)  | (((x) & 0x0020) << 5)  \
3050                        | (((x) & 0x0040) << 3)  | (((x) & 0x0080) << 1)  \
3051                        | (((x) & 0x0100) >> 1)  | (((x) & 0x0200) >> 3)  \
3052                        | (((x) & 0x0400) >> 5)  | (((x) & 0x0800) >> 7)  \
3053                        | (((x) & 0x1000) >> 9)  | (((x) & 0x2000) >> 11) \
3054                        | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3055
3056static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3057{
3058        int i;
3059        u16 *ebuf = (u16 *)buf;
3060        void __iomem * ioaddr = ns_ioaddr(dev);
3061        struct netdev_private *np = netdev_priv(dev);
3062
3063        /* eeprom_read reads 16 bits, and indexes by 16 bits */
3064        for (i = 0; i < np->eeprom_size/2; i++) {
3065                ebuf[i] = eeprom_read(ioaddr, i);
3066                /* The EEPROM itself stores data bit-swapped, but eeprom_read
3067                 * reads it back "sanely". So we swap it back here in order to
3068                 * present it to userland as it is stored. */
3069                ebuf[i] = SWAP_BITS(ebuf[i]);
3070        }
3071        return 0;
3072}
3073
3074static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3075{
3076        struct mii_ioctl_data *data = if_mii(rq);
3077        struct netdev_private *np = netdev_priv(dev);
3078
3079        switch(cmd) {
3080        case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
3081                data->phy_id = np->phy_addr_external;
3082                fallthrough;
3083
3084        case SIOCGMIIREG:               /* Read MII PHY register. */
3085                /* The phy_id is not enough to uniquely identify
3086                 * the intended target. Therefore the command is sent to
3087                 * the given mii on the current port.
3088                 */
3089                if (dev->if_port == PORT_TP) {
3090                        if ((data->phy_id & 0x1f) == np->phy_addr_external)
3091                                data->val_out = mdio_read(dev,
3092                                                        data->reg_num & 0x1f);
3093                        else
3094                                data->val_out = 0;
3095                } else {
3096                        move_int_phy(dev, data->phy_id & 0x1f);
3097                        data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3098                                                        data->reg_num & 0x1f);
3099                }
3100                return 0;
3101
3102        case SIOCSMIIREG:               /* Write MII PHY register. */
3103                if (dev->if_port == PORT_TP) {
3104                        if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3105                                if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3106                                        np->advertising = data->val_in;
3107                                mdio_write(dev, data->reg_num & 0x1f,
3108                                                        data->val_in);
3109                        }
3110                } else {
3111                        if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3112                                if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3113                                        np->advertising = data->val_in;
3114                        }
3115                        move_int_phy(dev, data->phy_id & 0x1f);
3116                        miiport_write(dev, data->phy_id & 0x1f,
3117                                                data->reg_num & 0x1f,
3118                                                data->val_in);
3119                }
3120                return 0;
3121        default:
3122                return -EOPNOTSUPP;
3123        }
3124}
3125
3126static void enable_wol_mode(struct net_device *dev, int enable_intr)
3127{
3128        void __iomem * ioaddr = ns_ioaddr(dev);
3129        struct netdev_private *np = netdev_priv(dev);
3130
3131        if (netif_msg_wol(np))
3132                printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3133                        dev->name);
3134
3135        /* For WOL we must restart the rx process in silent mode.
3136         * Write NULL to the RxRingPtr. Only possible if
3137         * rx process is stopped
3138         */
3139        writel(0, ioaddr + RxRingPtr);
3140
3141        /* read WoL status to clear */
3142        readl(ioaddr + WOLCmd);
3143
3144        /* PME on, clear status */
3145        writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3146
3147        /* and restart the rx process */
3148        writel(RxOn, ioaddr + ChipCmd);
3149
3150        if (enable_intr) {
3151                /* enable the WOL interrupt.
3152                 * Could be used to send a netlink message.
3153                 */
3154                writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3155                natsemi_irq_enable(dev);
3156        }
3157}
3158
3159static int netdev_close(struct net_device *dev)
3160{
3161        void __iomem * ioaddr = ns_ioaddr(dev);
3162        struct netdev_private *np = netdev_priv(dev);
3163        const int irq = np->pci_dev->irq;
3164
3165        if (netif_msg_ifdown(np))
3166                printk(KERN_DEBUG
3167                        "%s: Shutting down ethercard, status was %#04x.\n",
3168                        dev->name, (int)readl(ioaddr + ChipCmd));
3169        if (netif_msg_pktdata(np))
3170                printk(KERN_DEBUG
3171                        "%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
3172                        dev->name, np->cur_tx, np->dirty_tx,
3173                        np->cur_rx, np->dirty_rx);
3174
3175        napi_disable(&np->napi);
3176
3177        /*
3178         * FIXME: what if someone tries to close a device
3179         * that is suspended?
3180         * Should we reenable the nic to switch to
3181         * the final WOL settings?
3182         */
3183
3184        del_timer_sync(&np->timer);
3185        disable_irq(irq);
3186        spin_lock_irq(&np->lock);
3187        natsemi_irq_disable(dev);
3188        np->hands_off = 1;
3189        spin_unlock_irq(&np->lock);
3190        enable_irq(irq);
3191
3192        free_irq(irq, dev);
3193
3194        /* Interrupt disabled, interrupt handler released,
3195         * queue stopped, timer deleted, rtnl_lock held
3196         * All async codepaths that access the driver are disabled.
3197         */
3198        spin_lock_irq(&np->lock);
3199        np->hands_off = 0;
3200        readl(ioaddr + IntrMask);
3201        readw(ioaddr + MIntrStatus);
3202
3203        /* Freeze Stats */
3204        writel(StatsFreeze, ioaddr + StatsCtrl);
3205
3206        /* Stop the chip's Tx and Rx processes. */
3207        natsemi_stop_rxtx(dev);
3208
3209        __get_stats(dev);
3210        spin_unlock_irq(&np->lock);
3211
3212        /* clear the carrier last - an interrupt could reenable it otherwise */
3213        netif_carrier_off(dev);
3214        netif_stop_queue(dev);
3215
3216        dump_ring(dev);
3217        drain_ring(dev);
3218        free_ring(dev);
3219
3220        {
3221                u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3222                if (wol) {
3223                        /* restart the NIC in WOL mode.
3224                         * The nic must be stopped for this.
3225                         */
3226                        enable_wol_mode(dev, 0);
3227                } else {
3228                        /* Restore PME enable bit unmolested */
3229                        writel(np->SavedClkRun, ioaddr + ClkRun);
3230                }
3231        }
3232        return 0;
3233}
3234
3235
3236static void natsemi_remove1(struct pci_dev *pdev)
3237{
3238        struct net_device *dev = pci_get_drvdata(pdev);
3239        void __iomem * ioaddr = ns_ioaddr(dev);
3240
3241        NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3242        unregister_netdev (dev);
3243        iounmap(ioaddr);
3244        free_netdev (dev);
3245}
3246
3247/*
3248 * The ns83815 chip doesn't have explicit RxStop bits.
3249 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3250 * of the nic, thus this function must be very careful:
3251 *
3252 * suspend/resume synchronization:
3253 * entry points:
3254 *   netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3255 *   start_tx, ns_tx_timeout
3256 *
3257 * No function accesses the hardware without checking np->hands_off.
3258 *      the check occurs under spin_lock_irq(&np->lock);
3259 * exceptions:
3260 *      * netdev_ioctl: noncritical access.
3261 *      * netdev_open: cannot happen due to the device_detach
3262 *      * netdev_close: doesn't hurt.
3263 *      * netdev_timer: timer stopped by natsemi_suspend.
3264 *      * intr_handler: doesn't acquire the spinlock. suspend calls
3265 *              disable_irq() to enforce synchronization.
3266 *      * natsemi_poll: checks before reenabling interrupts.  suspend
3267 *              sets hands_off, disables interrupts and then waits with
3268 *              napi_disable().
3269 *
3270 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3271 */
3272
3273static int __maybe_unused natsemi_suspend(struct device *dev_d)
3274{
3275        struct net_device *dev = dev_get_drvdata(dev_d);
3276        struct netdev_private *np = netdev_priv(dev);
3277        void __iomem * ioaddr = ns_ioaddr(dev);
3278
3279        rtnl_lock();
3280        if (netif_running (dev)) {
3281                const int irq = np->pci_dev->irq;
3282
3283                del_timer_sync(&np->timer);
3284
3285                disable_irq(irq);
3286                spin_lock_irq(&np->lock);
3287
3288                natsemi_irq_disable(dev);
3289                np->hands_off = 1;
3290                natsemi_stop_rxtx(dev);
3291                netif_stop_queue(dev);
3292
3293                spin_unlock_irq(&np->lock);
3294                enable_irq(irq);
3295
3296                napi_disable(&np->napi);
3297
3298                /* Update the error counts. */
3299                __get_stats(dev);
3300
3301                /* pci_power_off(pdev, -1); */
3302                drain_ring(dev);
3303                {
3304                        u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3305                        /* Restore PME enable bit */
3306                        if (wol) {
3307                                /* restart the NIC in WOL mode.
3308                                 * The nic must be stopped for this.
3309                                 * FIXME: use the WOL interrupt
3310                                 */
3311                                enable_wol_mode(dev, 0);
3312                        } else {
3313                                /* Restore PME enable bit unmolested */
3314                                writel(np->SavedClkRun, ioaddr + ClkRun);
3315                        }
3316                }
3317        }
3318        netif_device_detach(dev);
3319        rtnl_unlock();
3320        return 0;
3321}
3322
3323
3324static int __maybe_unused natsemi_resume(struct device *dev_d)
3325{
3326        struct net_device *dev = dev_get_drvdata(dev_d);
3327        struct netdev_private *np = netdev_priv(dev);
3328
3329        rtnl_lock();
3330        if (netif_device_present(dev))
3331                goto out;
3332        if (netif_running(dev)) {
3333                const int irq = np->pci_dev->irq;
3334
3335                BUG_ON(!np->hands_off);
3336        /*      pci_power_on(pdev); */
3337
3338                napi_enable(&np->napi);
3339
3340                natsemi_reset(dev);
3341                init_ring(dev);
3342                disable_irq(irq);
3343                spin_lock_irq(&np->lock);
3344                np->hands_off = 0;
3345                init_registers(dev);
3346                netif_device_attach(dev);
3347                spin_unlock_irq(&np->lock);
3348                enable_irq(irq);
3349
3350                mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
3351        }
3352        netif_device_attach(dev);
3353out:
3354        rtnl_unlock();
3355        return 0;
3356}
3357
3358static SIMPLE_DEV_PM_OPS(natsemi_pm_ops, natsemi_suspend, natsemi_resume);
3359
3360static struct pci_driver natsemi_driver = {
3361        .name           = DRV_NAME,
3362        .id_table       = natsemi_pci_tbl,
3363        .probe          = natsemi_probe1,
3364        .remove         = natsemi_remove1,
3365        .driver.pm      = &natsemi_pm_ops,
3366};
3367
3368static int __init natsemi_init_mod (void)
3369{
3370/* when a module, this is printed whether or not devices are found in probe */
3371#ifdef MODULE
3372        printk(version);
3373#endif
3374
3375        return pci_register_driver(&natsemi_driver);
3376}
3377
3378static void __exit natsemi_exit_mod (void)
3379{
3380        pci_unregister_driver (&natsemi_driver);
3381}
3382
3383module_init(natsemi_init_mod);
3384module_exit(natsemi_exit_mod);
3385
3386