linux/drivers/net/wireless/ath/ath9k/eeprom.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2008-2011 Atheros Communications Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include "hw.h"
  18#include <linux/ath9k_platform.h>
  19
  20void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
  21{
  22        REG_WRITE(ah, reg, val);
  23
  24        if (ah->config.analog_shiftreg)
  25                udelay(100);
  26}
  27
  28void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
  29                               u32 shift, u32 val)
  30{
  31        REG_RMW(ah, reg, ((val << shift) & mask), mask);
  32
  33        if (ah->config.analog_shiftreg)
  34                udelay(100);
  35}
  36
  37int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
  38                             int16_t targetLeft, int16_t targetRight)
  39{
  40        int16_t rv;
  41
  42        if (srcRight == srcLeft) {
  43                rv = targetLeft;
  44        } else {
  45                rv = (int16_t) (((target - srcLeft) * targetRight +
  46                                 (srcRight - target) * targetLeft) /
  47                                (srcRight - srcLeft));
  48        }
  49        return rv;
  50}
  51
  52bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
  53                                    u16 *indexL, u16 *indexR)
  54{
  55        u16 i;
  56
  57        if (target <= pList[0]) {
  58                *indexL = *indexR = 0;
  59                return true;
  60        }
  61        if (target >= pList[listSize - 1]) {
  62                *indexL = *indexR = (u16) (listSize - 1);
  63                return true;
  64        }
  65
  66        for (i = 0; i < listSize - 1; i++) {
  67                if (pList[i] == target) {
  68                        *indexL = *indexR = i;
  69                        return true;
  70                }
  71                if (target < pList[i + 1]) {
  72                        *indexL = i;
  73                        *indexR = (u16) (i + 1);
  74                        return false;
  75                }
  76        }
  77        return false;
  78}
  79
  80void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
  81                                  int eep_start_loc, int size)
  82{
  83        int i = 0, j, addr;
  84        u32 addrdata[8];
  85        u32 data[8];
  86
  87        for (addr = 0; addr < size; addr++) {
  88                addrdata[i] = AR5416_EEPROM_OFFSET +
  89                        ((addr + eep_start_loc) << AR5416_EEPROM_S);
  90                i++;
  91                if (i == 8) {
  92                        REG_READ_MULTI(ah, addrdata, data, i);
  93
  94                        for (j = 0; j < i; j++) {
  95                                *eep_data = data[j];
  96                                eep_data++;
  97                        }
  98                        i = 0;
  99                }
 100        }
 101
 102        if (i != 0) {
 103                REG_READ_MULTI(ah, addrdata, data, i);
 104
 105                for (j = 0; j < i; j++) {
 106                        *eep_data = data[j];
 107                        eep_data++;
 108                }
 109        }
 110}
 111
 112static bool ath9k_hw_nvram_read_array(u16 *blob, size_t blob_size,
 113                                      off_t offset, u16 *data)
 114{
 115        if (offset >= blob_size)
 116                return false;
 117
 118        *data =  blob[offset];
 119        return true;
 120}
 121
 122static bool ath9k_hw_nvram_read_pdata(struct ath9k_platform_data *pdata,
 123                                      off_t offset, u16 *data)
 124{
 125        return ath9k_hw_nvram_read_array(pdata->eeprom_data,
 126                                         ARRAY_SIZE(pdata->eeprom_data),
 127                                         offset, data);
 128}
 129
 130static bool ath9k_hw_nvram_read_firmware(const struct firmware *eeprom_blob,
 131                                         off_t offset, u16 *data)
 132{
 133        return ath9k_hw_nvram_read_array((u16 *) eeprom_blob->data,
 134                                         eeprom_blob->size / sizeof(u16),
 135                                         offset, data);
 136}
 137
 138static bool ath9k_hw_nvram_read_nvmem(struct ath_hw *ah, off_t offset,
 139                                      u16 *data)
 140{
 141        return ath9k_hw_nvram_read_array(ah->nvmem_blob,
 142                                         ah->nvmem_blob_len / sizeof(u16),
 143                                         offset, data);
 144}
 145
 146bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
 147{
 148        struct ath_common *common = ath9k_hw_common(ah);
 149        struct ath9k_platform_data *pdata = ah->dev->platform_data;
 150        bool ret;
 151
 152        if (ah->nvmem_blob)
 153                ret = ath9k_hw_nvram_read_nvmem(ah, off, data);
 154        else if (ah->eeprom_blob)
 155                ret = ath9k_hw_nvram_read_firmware(ah->eeprom_blob, off, data);
 156        else if (pdata && !pdata->use_eeprom)
 157                ret = ath9k_hw_nvram_read_pdata(pdata, off, data);
 158        else
 159                ret = common->bus_ops->eeprom_read(common, off, data);
 160
 161        if (!ret)
 162                ath_dbg(common, EEPROM,
 163                        "unable to read eeprom region at offset %u\n", off);
 164
 165        return ret;
 166}
 167
 168int ath9k_hw_nvram_swap_data(struct ath_hw *ah, bool *swap_needed, int size)
 169{
 170        u16 magic;
 171        u16 *eepdata;
 172        int i;
 173        bool needs_byteswap = false;
 174        struct ath_common *common = ath9k_hw_common(ah);
 175
 176        if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
 177                ath_err(common, "Reading Magic # failed\n");
 178                return -EIO;
 179        }
 180
 181        if (swab16(magic) == AR5416_EEPROM_MAGIC) {
 182                needs_byteswap = true;
 183                ath_dbg(common, EEPROM,
 184                        "EEPROM needs byte-swapping to correct endianness.\n");
 185        } else if (magic != AR5416_EEPROM_MAGIC) {
 186                if (ath9k_hw_use_flash(ah)) {
 187                        ath_dbg(common, EEPROM,
 188                                "Ignoring invalid EEPROM magic (0x%04x).\n",
 189                                magic);
 190                } else {
 191                        ath_err(common,
 192                                "Invalid EEPROM magic (0x%04x).\n", magic);
 193                        return -EINVAL;
 194                }
 195        }
 196
 197        if (needs_byteswap) {
 198                if (ah->ah_flags & AH_NO_EEP_SWAP) {
 199                        ath_info(common,
 200                                 "Ignoring endianness difference in EEPROM magic bytes.\n");
 201                } else {
 202                        eepdata = (u16 *)(&ah->eeprom);
 203
 204                        for (i = 0; i < size; i++)
 205                                eepdata[i] = swab16(eepdata[i]);
 206                }
 207        }
 208
 209        if (ah->eep_ops->get_eepmisc(ah) & AR5416_EEPMISC_BIG_ENDIAN) {
 210                *swap_needed = true;
 211                ath_dbg(common, EEPROM,
 212                        "Big Endian EEPROM detected according to EEPMISC register.\n");
 213        } else {
 214                *swap_needed = false;
 215        }
 216
 217        return 0;
 218}
 219
 220bool ath9k_hw_nvram_validate_checksum(struct ath_hw *ah, int size)
 221{
 222        u32 i, sum = 0;
 223        u16 *eepdata = (u16 *)(&ah->eeprom);
 224        struct ath_common *common = ath9k_hw_common(ah);
 225
 226        for (i = 0; i < size; i++)
 227                sum ^= eepdata[i];
 228
 229        if (sum != 0xffff) {
 230                ath_err(common, "Bad EEPROM checksum 0x%x\n", sum);
 231                return false;
 232        }
 233
 234        return true;
 235}
 236
 237bool ath9k_hw_nvram_check_version(struct ath_hw *ah, int version, int minrev)
 238{
 239        struct ath_common *common = ath9k_hw_common(ah);
 240
 241        if (ah->eep_ops->get_eeprom_ver(ah) != version ||
 242            ah->eep_ops->get_eeprom_rev(ah) < minrev) {
 243                ath_err(common, "Bad EEPROM VER 0x%04x or REV 0x%04x\n",
 244                        ah->eep_ops->get_eeprom_ver(ah),
 245                        ah->eep_ops->get_eeprom_rev(ah));
 246                return false;
 247        }
 248
 249        return true;
 250}
 251
 252void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
 253                             u8 *pVpdList, u16 numIntercepts,
 254                             u8 *pRetVpdList)
 255{
 256        u16 i, k;
 257        u8 currPwr = pwrMin;
 258        u16 idxL = 0, idxR = 0;
 259
 260        for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
 261                ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
 262                                               numIntercepts, &(idxL),
 263                                               &(idxR));
 264                if (idxR < 1)
 265                        idxR = 1;
 266                if (idxL == numIntercepts - 1)
 267                        idxL = (u16) (numIntercepts - 2);
 268                if (pPwrList[idxL] == pPwrList[idxR])
 269                        k = pVpdList[idxL];
 270                else
 271                        k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
 272                                   (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
 273                                  (pPwrList[idxR] - pPwrList[idxL]));
 274                pRetVpdList[i] = (u8) k;
 275                currPwr += 2;
 276        }
 277}
 278
 279void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
 280                                       struct ath9k_channel *chan,
 281                                       struct cal_target_power_leg *powInfo,
 282                                       u16 numChannels,
 283                                       struct cal_target_power_leg *pNewPower,
 284                                       u16 numRates, bool isExtTarget)
 285{
 286        struct chan_centers centers;
 287        u16 clo, chi;
 288        int i;
 289        int matchIndex = -1, lowIndex = -1;
 290        u16 freq;
 291
 292        ath9k_hw_get_channel_centers(ah, chan, &centers);
 293        freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
 294
 295        if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
 296                                       IS_CHAN_2GHZ(chan))) {
 297                matchIndex = 0;
 298        } else {
 299                for (i = 0; (i < numChannels) &&
 300                             (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
 301                        if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
 302                                                       IS_CHAN_2GHZ(chan))) {
 303                                matchIndex = i;
 304                                break;
 305                        } else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
 306                                                IS_CHAN_2GHZ(chan)) && i > 0 &&
 307                                   freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
 308                                                IS_CHAN_2GHZ(chan))) {
 309                                lowIndex = i - 1;
 310                                break;
 311                        }
 312                }
 313                if ((matchIndex == -1) && (lowIndex == -1))
 314                        matchIndex = i - 1;
 315        }
 316
 317        if (matchIndex != -1) {
 318                *pNewPower = powInfo[matchIndex];
 319        } else {
 320                clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
 321                                         IS_CHAN_2GHZ(chan));
 322                chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
 323                                         IS_CHAN_2GHZ(chan));
 324
 325                for (i = 0; i < numRates; i++) {
 326                        pNewPower->tPow2x[i] =
 327                                (u8)ath9k_hw_interpolate(freq, clo, chi,
 328                                                powInfo[lowIndex].tPow2x[i],
 329                                                powInfo[lowIndex + 1].tPow2x[i]);
 330                }
 331        }
 332}
 333
 334void ath9k_hw_get_target_powers(struct ath_hw *ah,
 335                                struct ath9k_channel *chan,
 336                                struct cal_target_power_ht *powInfo,
 337                                u16 numChannels,
 338                                struct cal_target_power_ht *pNewPower,
 339                                u16 numRates, bool isHt40Target)
 340{
 341        struct chan_centers centers;
 342        u16 clo, chi;
 343        int i;
 344        int matchIndex = -1, lowIndex = -1;
 345        u16 freq;
 346
 347        ath9k_hw_get_channel_centers(ah, chan, &centers);
 348        freq = isHt40Target ? centers.synth_center : centers.ctl_center;
 349
 350        if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
 351                matchIndex = 0;
 352        } else {
 353                for (i = 0; (i < numChannels) &&
 354                             (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
 355                        if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
 356                                                       IS_CHAN_2GHZ(chan))) {
 357                                matchIndex = i;
 358                                break;
 359                        } else
 360                                if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
 361                                                IS_CHAN_2GHZ(chan)) && i > 0 &&
 362                                    freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
 363                                                IS_CHAN_2GHZ(chan))) {
 364                                        lowIndex = i - 1;
 365                                        break;
 366                                }
 367                }
 368                if ((matchIndex == -1) && (lowIndex == -1))
 369                        matchIndex = i - 1;
 370        }
 371
 372        if (matchIndex != -1) {
 373                *pNewPower = powInfo[matchIndex];
 374        } else {
 375                clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
 376                                         IS_CHAN_2GHZ(chan));
 377                chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
 378                                         IS_CHAN_2GHZ(chan));
 379
 380                for (i = 0; i < numRates; i++) {
 381                        pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
 382                                                clo, chi,
 383                                                powInfo[lowIndex].tPow2x[i],
 384                                                powInfo[lowIndex + 1].tPow2x[i]);
 385                }
 386        }
 387}
 388
 389u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
 390                                bool is2GHz, int num_band_edges)
 391{
 392        u16 twiceMaxEdgePower = MAX_RATE_POWER;
 393        int i;
 394
 395        for (i = 0; (i < num_band_edges) &&
 396                     (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
 397                if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
 398                        twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
 399                        break;
 400                } else if ((i > 0) &&
 401                           (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
 402                                                      is2GHz))) {
 403                        if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
 404                                               is2GHz) < freq &&
 405                            CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
 406                                twiceMaxEdgePower =
 407                                        CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
 408                        }
 409                        break;
 410                }
 411        }
 412
 413        return twiceMaxEdgePower;
 414}
 415
 416u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
 417                              u8 antenna_reduction)
 418{
 419        u16 reduction = antenna_reduction;
 420
 421        /*
 422         * Reduce scaled Power by number of chains active
 423         * to get the per chain tx power level.
 424         */
 425        switch (ar5416_get_ntxchains(ah->txchainmask)) {
 426        case 1:
 427                break;
 428        case 2:
 429                reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
 430                break;
 431        case 3:
 432                reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
 433                break;
 434        }
 435
 436        if (power_limit > reduction)
 437                power_limit -= reduction;
 438        else
 439                power_limit = 0;
 440
 441        return min_t(u16, power_limit, MAX_RATE_POWER);
 442}
 443
 444void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
 445{
 446        struct ath_common *common = ath9k_hw_common(ah);
 447        struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 448
 449        switch (ar5416_get_ntxchains(ah->txchainmask)) {
 450        case 1:
 451                break;
 452        case 2:
 453                regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
 454                break;
 455        case 3:
 456                regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
 457                break;
 458        default:
 459                ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
 460                break;
 461        }
 462}
 463
 464void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
 465                                struct ath9k_channel *chan,
 466                                void *pRawDataSet,
 467                                u8 *bChans, u16 availPiers,
 468                                u16 tPdGainOverlap,
 469                                u16 *pPdGainBoundaries, u8 *pPDADCValues,
 470                                u16 numXpdGains)
 471{
 472        int i, j, k;
 473        int16_t ss;
 474        u16 idxL = 0, idxR = 0, numPiers;
 475        static u8 vpdTableL[AR5416_NUM_PD_GAINS]
 476                [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
 477        static u8 vpdTableR[AR5416_NUM_PD_GAINS]
 478                [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
 479        static u8 vpdTableI[AR5416_NUM_PD_GAINS]
 480                [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
 481
 482        u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
 483        u8 minPwrT4[AR5416_NUM_PD_GAINS];
 484        u8 maxPwrT4[AR5416_NUM_PD_GAINS];
 485        int16_t vpdStep;
 486        int16_t tmpVal;
 487        u16 sizeCurrVpdTable, maxIndex, tgtIndex;
 488        bool match;
 489        int16_t minDelta = 0;
 490        struct chan_centers centers;
 491        int pdgain_boundary_default;
 492        struct cal_data_per_freq *data_def = pRawDataSet;
 493        struct cal_data_per_freq_4k *data_4k = pRawDataSet;
 494        struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
 495        bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
 496        int intercepts;
 497
 498        if (AR_SREV_9287(ah))
 499                intercepts = AR9287_PD_GAIN_ICEPTS;
 500        else
 501                intercepts = AR5416_PD_GAIN_ICEPTS;
 502
 503        memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
 504        ath9k_hw_get_channel_centers(ah, chan, &centers);
 505
 506        for (numPiers = 0; numPiers < availPiers; numPiers++) {
 507                if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
 508                        break;
 509        }
 510
 511        match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
 512                                                             IS_CHAN_2GHZ(chan)),
 513                                               bChans, numPiers, &idxL, &idxR);
 514
 515        if (match) {
 516                if (AR_SREV_9287(ah)) {
 517                        for (i = 0; i < numXpdGains; i++) {
 518                                minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
 519                                maxPwrT4[i] = data_9287[idxL].pwrPdg[i][intercepts - 1];
 520                                ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
 521                                                data_9287[idxL].pwrPdg[i],
 522                                                data_9287[idxL].vpdPdg[i],
 523                                                intercepts,
 524                                                vpdTableI[i]);
 525                        }
 526                } else if (eeprom_4k) {
 527                        for (i = 0; i < numXpdGains; i++) {
 528                                minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
 529                                maxPwrT4[i] = data_4k[idxL].pwrPdg[i][intercepts - 1];
 530                                ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
 531                                                data_4k[idxL].pwrPdg[i],
 532                                                data_4k[idxL].vpdPdg[i],
 533                                                intercepts,
 534                                                vpdTableI[i]);
 535                        }
 536                } else {
 537                        for (i = 0; i < numXpdGains; i++) {
 538                                minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
 539                                maxPwrT4[i] = data_def[idxL].pwrPdg[i][intercepts - 1];
 540                                ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
 541                                                data_def[idxL].pwrPdg[i],
 542                                                data_def[idxL].vpdPdg[i],
 543                                                intercepts,
 544                                                vpdTableI[i]);
 545                        }
 546                }
 547        } else {
 548                for (i = 0; i < numXpdGains; i++) {
 549                        if (AR_SREV_9287(ah)) {
 550                                pVpdL = data_9287[idxL].vpdPdg[i];
 551                                pPwrL = data_9287[idxL].pwrPdg[i];
 552                                pVpdR = data_9287[idxR].vpdPdg[i];
 553                                pPwrR = data_9287[idxR].pwrPdg[i];
 554                        } else if (eeprom_4k) {
 555                                pVpdL = data_4k[idxL].vpdPdg[i];
 556                                pPwrL = data_4k[idxL].pwrPdg[i];
 557                                pVpdR = data_4k[idxR].vpdPdg[i];
 558                                pPwrR = data_4k[idxR].pwrPdg[i];
 559                        } else {
 560                                pVpdL = data_def[idxL].vpdPdg[i];
 561                                pPwrL = data_def[idxL].pwrPdg[i];
 562                                pVpdR = data_def[idxR].vpdPdg[i];
 563                                pPwrR = data_def[idxR].pwrPdg[i];
 564                        }
 565
 566                        minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
 567
 568                        maxPwrT4[i] =
 569                                min(pPwrL[intercepts - 1],
 570                                    pPwrR[intercepts - 1]);
 571
 572
 573                        ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
 574                                                pPwrL, pVpdL,
 575                                                intercepts,
 576                                                vpdTableL[i]);
 577                        ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
 578                                                pPwrR, pVpdR,
 579                                                intercepts,
 580                                                vpdTableR[i]);
 581
 582                        for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
 583                                vpdTableI[i][j] =
 584                                        (u8)(ath9k_hw_interpolate((u16)
 585                                             FREQ2FBIN(centers.
 586                                                       synth_center,
 587                                                       IS_CHAN_2GHZ
 588                                                       (chan)),
 589                                             bChans[idxL], bChans[idxR],
 590                                             vpdTableL[i][j], vpdTableR[i][j]));
 591                        }
 592                }
 593        }
 594
 595        k = 0;
 596
 597        for (i = 0; i < numXpdGains; i++) {
 598                if (i == (numXpdGains - 1))
 599                        pPdGainBoundaries[i] =
 600                                (u16)(maxPwrT4[i] / 2);
 601                else
 602                        pPdGainBoundaries[i] =
 603                                (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
 604
 605                pPdGainBoundaries[i] =
 606                        min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
 607
 608                minDelta = 0;
 609
 610                if (i == 0) {
 611                        if (AR_SREV_9280_20_OR_LATER(ah))
 612                                ss = (int16_t)(0 - (minPwrT4[i] / 2));
 613                        else
 614                                ss = 0;
 615                } else {
 616                        ss = (int16_t)((pPdGainBoundaries[i - 1] -
 617                                        (minPwrT4[i] / 2)) -
 618                                       tPdGainOverlap + 1 + minDelta);
 619                }
 620                vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
 621                vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
 622
 623                while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
 624                        tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
 625                        pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
 626                        ss++;
 627                }
 628
 629                sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
 630                tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
 631                                (minPwrT4[i] / 2));
 632                maxIndex = (tgtIndex < sizeCurrVpdTable) ?
 633                        tgtIndex : sizeCurrVpdTable;
 634
 635                while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
 636                        pPDADCValues[k++] = vpdTableI[i][ss++];
 637                }
 638
 639                vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
 640                                    vpdTableI[i][sizeCurrVpdTable - 2]);
 641                vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
 642
 643                if (tgtIndex >= maxIndex) {
 644                        while ((ss <= tgtIndex) &&
 645                               (k < (AR5416_NUM_PDADC_VALUES - 1))) {
 646                                tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
 647                                                    (ss - maxIndex + 1) * vpdStep));
 648                                pPDADCValues[k++] = (u8)((tmpVal > 255) ?
 649                                                         255 : tmpVal);
 650                                ss++;
 651                        }
 652                }
 653        }
 654
 655        if (eeprom_4k)
 656                pdgain_boundary_default = 58;
 657        else
 658                pdgain_boundary_default = pPdGainBoundaries[i - 1];
 659
 660        while (i < AR5416_PD_GAINS_IN_MASK) {
 661                pPdGainBoundaries[i] = pdgain_boundary_default;
 662                i++;
 663        }
 664
 665        while (k < AR5416_NUM_PDADC_VALUES) {
 666                pPDADCValues[k] = pPDADCValues[k - 1];
 667                k++;
 668        }
 669}
 670
 671int ath9k_hw_eeprom_init(struct ath_hw *ah)
 672{
 673        int status;
 674
 675        if (AR_SREV_9300_20_OR_LATER(ah))
 676                ah->eep_ops = &eep_ar9300_ops;
 677        else if (AR_SREV_9287(ah)) {
 678                ah->eep_ops = &eep_ar9287_ops;
 679        } else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
 680                ah->eep_ops = &eep_4k_ops;
 681        } else {
 682                ah->eep_ops = &eep_def_ops;
 683        }
 684
 685        if (!ah->eep_ops->fill_eeprom(ah))
 686                return -EIO;
 687
 688        status = ah->eep_ops->check_eeprom(ah);
 689
 690        return status;
 691}
 692