linux/drivers/net/wireless/zydas/zd1211rw/zd_mac.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* ZD1211 USB-WLAN driver for Linux
   3 *
   4 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
   5 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
   6 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
   7 * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
   8 */
   9
  10#include <linux/netdevice.h>
  11#include <linux/etherdevice.h>
  12#include <linux/slab.h>
  13#include <linux/usb.h>
  14#include <linux/jiffies.h>
  15#include <net/ieee80211_radiotap.h>
  16
  17#include "zd_def.h"
  18#include "zd_chip.h"
  19#include "zd_mac.h"
  20#include "zd_rf.h"
  21
  22struct zd_reg_alpha2_map {
  23        u32 reg;
  24        char alpha2[2];
  25};
  26
  27static struct zd_reg_alpha2_map reg_alpha2_map[] = {
  28        { ZD_REGDOMAIN_FCC, "US" },
  29        { ZD_REGDOMAIN_IC, "CA" },
  30        { ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
  31        { ZD_REGDOMAIN_JAPAN, "JP" },
  32        { ZD_REGDOMAIN_JAPAN_2, "JP" },
  33        { ZD_REGDOMAIN_JAPAN_3, "JP" },
  34        { ZD_REGDOMAIN_SPAIN, "ES" },
  35        { ZD_REGDOMAIN_FRANCE, "FR" },
  36};
  37
  38/* This table contains the hardware specific values for the modulation rates. */
  39static const struct ieee80211_rate zd_rates[] = {
  40        { .bitrate = 10,
  41          .hw_value = ZD_CCK_RATE_1M, },
  42        { .bitrate = 20,
  43          .hw_value = ZD_CCK_RATE_2M,
  44          .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
  45          .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  46        { .bitrate = 55,
  47          .hw_value = ZD_CCK_RATE_5_5M,
  48          .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
  49          .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  50        { .bitrate = 110,
  51          .hw_value = ZD_CCK_RATE_11M,
  52          .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
  53          .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  54        { .bitrate = 60,
  55          .hw_value = ZD_OFDM_RATE_6M,
  56          .flags = 0 },
  57        { .bitrate = 90,
  58          .hw_value = ZD_OFDM_RATE_9M,
  59          .flags = 0 },
  60        { .bitrate = 120,
  61          .hw_value = ZD_OFDM_RATE_12M,
  62          .flags = 0 },
  63        { .bitrate = 180,
  64          .hw_value = ZD_OFDM_RATE_18M,
  65          .flags = 0 },
  66        { .bitrate = 240,
  67          .hw_value = ZD_OFDM_RATE_24M,
  68          .flags = 0 },
  69        { .bitrate = 360,
  70          .hw_value = ZD_OFDM_RATE_36M,
  71          .flags = 0 },
  72        { .bitrate = 480,
  73          .hw_value = ZD_OFDM_RATE_48M,
  74          .flags = 0 },
  75        { .bitrate = 540,
  76          .hw_value = ZD_OFDM_RATE_54M,
  77          .flags = 0 },
  78};
  79
  80/*
  81 * Zydas retry rates table. Each line is listed in the same order as
  82 * in zd_rates[] and contains all the rate used when a packet is sent
  83 * starting with a given rates. Let's consider an example :
  84 *
  85 * "11 Mbits : 4, 3, 2, 1, 0" means :
  86 * - packet is sent using 4 different rates
  87 * - 1st rate is index 3 (ie 11 Mbits)
  88 * - 2nd rate is index 2 (ie 5.5 Mbits)
  89 * - 3rd rate is index 1 (ie 2 Mbits)
  90 * - 4th rate is index 0 (ie 1 Mbits)
  91 */
  92
  93static const struct tx_retry_rate zd_retry_rates[] = {
  94        { /*  1 Mbits */        1, { 0 }},
  95        { /*  2 Mbits */        2, { 1,  0 }},
  96        { /*  5.5 Mbits */      3, { 2,  1, 0 }},
  97        { /* 11 Mbits */        4, { 3,  2, 1, 0 }},
  98        { /*  6 Mbits */        5, { 4,  3, 2, 1, 0 }},
  99        { /*  9 Mbits */        6, { 5,  4, 3, 2, 1, 0}},
 100        { /* 12 Mbits */        5, { 6,  3, 2, 1, 0 }},
 101        { /* 18 Mbits */        6, { 7,  6, 3, 2, 1, 0 }},
 102        { /* 24 Mbits */        6, { 8,  6, 3, 2, 1, 0 }},
 103        { /* 36 Mbits */        7, { 9,  8, 6, 3, 2, 1, 0 }},
 104        { /* 48 Mbits */        8, {10,  9, 8, 6, 3, 2, 1, 0 }},
 105        { /* 54 Mbits */        9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
 106};
 107
 108static const struct ieee80211_channel zd_channels[] = {
 109        { .center_freq = 2412, .hw_value = 1 },
 110        { .center_freq = 2417, .hw_value = 2 },
 111        { .center_freq = 2422, .hw_value = 3 },
 112        { .center_freq = 2427, .hw_value = 4 },
 113        { .center_freq = 2432, .hw_value = 5 },
 114        { .center_freq = 2437, .hw_value = 6 },
 115        { .center_freq = 2442, .hw_value = 7 },
 116        { .center_freq = 2447, .hw_value = 8 },
 117        { .center_freq = 2452, .hw_value = 9 },
 118        { .center_freq = 2457, .hw_value = 10 },
 119        { .center_freq = 2462, .hw_value = 11 },
 120        { .center_freq = 2467, .hw_value = 12 },
 121        { .center_freq = 2472, .hw_value = 13 },
 122        { .center_freq = 2484, .hw_value = 14 },
 123};
 124
 125static void housekeeping_init(struct zd_mac *mac);
 126static void housekeeping_enable(struct zd_mac *mac);
 127static void housekeeping_disable(struct zd_mac *mac);
 128static void beacon_init(struct zd_mac *mac);
 129static void beacon_enable(struct zd_mac *mac);
 130static void beacon_disable(struct zd_mac *mac);
 131static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble);
 132static int zd_mac_config_beacon(struct ieee80211_hw *hw,
 133                                struct sk_buff *beacon, bool in_intr);
 134
 135static int zd_reg2alpha2(u8 regdomain, char *alpha2)
 136{
 137        unsigned int i;
 138        struct zd_reg_alpha2_map *reg_map;
 139        for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
 140                reg_map = &reg_alpha2_map[i];
 141                if (regdomain == reg_map->reg) {
 142                        alpha2[0] = reg_map->alpha2[0];
 143                        alpha2[1] = reg_map->alpha2[1];
 144                        return 0;
 145                }
 146        }
 147        return 1;
 148}
 149
 150static int zd_check_signal(struct ieee80211_hw *hw, int signal)
 151{
 152        struct zd_mac *mac = zd_hw_mac(hw);
 153
 154        dev_dbg_f_cond(zd_mac_dev(mac), signal < 0 || signal > 100,
 155                        "%s: signal value from device not in range 0..100, "
 156                        "but %d.\n", __func__, signal);
 157
 158        if (signal < 0)
 159                signal = 0;
 160        else if (signal > 100)
 161                signal = 100;
 162
 163        return signal;
 164}
 165
 166int zd_mac_preinit_hw(struct ieee80211_hw *hw)
 167{
 168        int r;
 169        u8 addr[ETH_ALEN];
 170        struct zd_mac *mac = zd_hw_mac(hw);
 171
 172        r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
 173        if (r)
 174                return r;
 175
 176        SET_IEEE80211_PERM_ADDR(hw, addr);
 177
 178        return 0;
 179}
 180
 181int zd_mac_init_hw(struct ieee80211_hw *hw)
 182{
 183        int r;
 184        struct zd_mac *mac = zd_hw_mac(hw);
 185        struct zd_chip *chip = &mac->chip;
 186        char alpha2[2];
 187        u8 default_regdomain;
 188
 189        r = zd_chip_enable_int(chip);
 190        if (r)
 191                goto out;
 192        r = zd_chip_init_hw(chip);
 193        if (r)
 194                goto disable_int;
 195
 196        ZD_ASSERT(!irqs_disabled());
 197
 198        r = zd_read_regdomain(chip, &default_regdomain);
 199        if (r)
 200                goto disable_int;
 201        spin_lock_irq(&mac->lock);
 202        mac->regdomain = mac->default_regdomain = default_regdomain;
 203        spin_unlock_irq(&mac->lock);
 204
 205        /* We must inform the device that we are doing encryption/decryption in
 206         * software at the moment. */
 207        r = zd_set_encryption_type(chip, ENC_SNIFFER);
 208        if (r)
 209                goto disable_int;
 210
 211        r = zd_reg2alpha2(mac->regdomain, alpha2);
 212        if (r)
 213                goto disable_int;
 214
 215        r = regulatory_hint(hw->wiphy, alpha2);
 216disable_int:
 217        zd_chip_disable_int(chip);
 218out:
 219        return r;
 220}
 221
 222void zd_mac_clear(struct zd_mac *mac)
 223{
 224        flush_workqueue(zd_workqueue);
 225        zd_chip_clear(&mac->chip);
 226        ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
 227}
 228
 229static int set_rx_filter(struct zd_mac *mac)
 230{
 231        unsigned long flags;
 232        u32 filter = STA_RX_FILTER;
 233
 234        spin_lock_irqsave(&mac->lock, flags);
 235        if (mac->pass_ctrl)
 236                filter |= RX_FILTER_CTRL;
 237        spin_unlock_irqrestore(&mac->lock, flags);
 238
 239        return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
 240}
 241
 242static int set_mac_and_bssid(struct zd_mac *mac)
 243{
 244        int r;
 245
 246        if (!mac->vif)
 247                return -1;
 248
 249        r = zd_write_mac_addr(&mac->chip, mac->vif->addr);
 250        if (r)
 251                return r;
 252
 253        /* Vendor driver after setting MAC either sets BSSID for AP or
 254         * filter for other modes.
 255         */
 256        if (mac->type != NL80211_IFTYPE_AP)
 257                return set_rx_filter(mac);
 258        else
 259                return zd_write_bssid(&mac->chip, mac->vif->addr);
 260}
 261
 262static int set_mc_hash(struct zd_mac *mac)
 263{
 264        struct zd_mc_hash hash;
 265        zd_mc_clear(&hash);
 266        return zd_chip_set_multicast_hash(&mac->chip, &hash);
 267}
 268
 269int zd_op_start(struct ieee80211_hw *hw)
 270{
 271        struct zd_mac *mac = zd_hw_mac(hw);
 272        struct zd_chip *chip = &mac->chip;
 273        struct zd_usb *usb = &chip->usb;
 274        int r;
 275
 276        if (!usb->initialized) {
 277                r = zd_usb_init_hw(usb);
 278                if (r)
 279                        goto out;
 280        }
 281
 282        r = zd_chip_enable_int(chip);
 283        if (r < 0)
 284                goto out;
 285
 286        r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
 287        if (r < 0)
 288                goto disable_int;
 289        r = set_rx_filter(mac);
 290        if (r)
 291                goto disable_int;
 292        r = set_mc_hash(mac);
 293        if (r)
 294                goto disable_int;
 295
 296        /* Wait after setting the multicast hash table and powering on
 297         * the radio otherwise interface bring up will fail. This matches
 298         * what the vendor driver did.
 299         */
 300        msleep(10);
 301
 302        r = zd_chip_switch_radio_on(chip);
 303        if (r < 0) {
 304                dev_err(zd_chip_dev(chip),
 305                        "%s: failed to set radio on\n", __func__);
 306                goto disable_int;
 307        }
 308        r = zd_chip_enable_rxtx(chip);
 309        if (r < 0)
 310                goto disable_radio;
 311        r = zd_chip_enable_hwint(chip);
 312        if (r < 0)
 313                goto disable_rxtx;
 314
 315        housekeeping_enable(mac);
 316        beacon_enable(mac);
 317        set_bit(ZD_DEVICE_RUNNING, &mac->flags);
 318        return 0;
 319disable_rxtx:
 320        zd_chip_disable_rxtx(chip);
 321disable_radio:
 322        zd_chip_switch_radio_off(chip);
 323disable_int:
 324        zd_chip_disable_int(chip);
 325out:
 326        return r;
 327}
 328
 329void zd_op_stop(struct ieee80211_hw *hw)
 330{
 331        struct zd_mac *mac = zd_hw_mac(hw);
 332        struct zd_chip *chip = &mac->chip;
 333        struct sk_buff *skb;
 334        struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
 335
 336        clear_bit(ZD_DEVICE_RUNNING, &mac->flags);
 337
 338        /* The order here deliberately is a little different from the open()
 339         * method, since we need to make sure there is no opportunity for RX
 340         * frames to be processed by mac80211 after we have stopped it.
 341         */
 342
 343        zd_chip_disable_rxtx(chip);
 344        beacon_disable(mac);
 345        housekeeping_disable(mac);
 346        flush_workqueue(zd_workqueue);
 347
 348        zd_chip_disable_hwint(chip);
 349        zd_chip_switch_radio_off(chip);
 350        zd_chip_disable_int(chip);
 351
 352
 353        while ((skb = skb_dequeue(ack_wait_queue)))
 354                dev_kfree_skb_any(skb);
 355}
 356
 357int zd_restore_settings(struct zd_mac *mac)
 358{
 359        struct sk_buff *beacon;
 360        struct zd_mc_hash multicast_hash;
 361        unsigned int short_preamble;
 362        int r, beacon_interval, beacon_period;
 363        u8 channel;
 364
 365        dev_dbg_f(zd_mac_dev(mac), "\n");
 366
 367        spin_lock_irq(&mac->lock);
 368        multicast_hash = mac->multicast_hash;
 369        short_preamble = mac->short_preamble;
 370        beacon_interval = mac->beacon.interval;
 371        beacon_period = mac->beacon.period;
 372        channel = mac->channel;
 373        spin_unlock_irq(&mac->lock);
 374
 375        r = set_mac_and_bssid(mac);
 376        if (r < 0) {
 377                dev_dbg_f(zd_mac_dev(mac), "set_mac_and_bssid failed, %d\n", r);
 378                return r;
 379        }
 380
 381        r = zd_chip_set_channel(&mac->chip, channel);
 382        if (r < 0) {
 383                dev_dbg_f(zd_mac_dev(mac), "zd_chip_set_channel failed, %d\n",
 384                          r);
 385                return r;
 386        }
 387
 388        set_rts_cts(mac, short_preamble);
 389
 390        r = zd_chip_set_multicast_hash(&mac->chip, &multicast_hash);
 391        if (r < 0) {
 392                dev_dbg_f(zd_mac_dev(mac),
 393                          "zd_chip_set_multicast_hash failed, %d\n", r);
 394                return r;
 395        }
 396
 397        if (mac->type == NL80211_IFTYPE_MESH_POINT ||
 398            mac->type == NL80211_IFTYPE_ADHOC ||
 399            mac->type == NL80211_IFTYPE_AP) {
 400                if (mac->vif != NULL) {
 401                        beacon = ieee80211_beacon_get(mac->hw, mac->vif);
 402                        if (beacon)
 403                                zd_mac_config_beacon(mac->hw, beacon, false);
 404                }
 405
 406                zd_set_beacon_interval(&mac->chip, beacon_interval,
 407                                        beacon_period, mac->type);
 408
 409                spin_lock_irq(&mac->lock);
 410                mac->beacon.last_update = jiffies;
 411                spin_unlock_irq(&mac->lock);
 412        }
 413
 414        return 0;
 415}
 416
 417/**
 418 * zd_mac_tx_status - reports tx status of a packet if required
 419 * @hw: a &struct ieee80211_hw pointer
 420 * @skb: a sk-buffer
 421 * @ackssi: ACK signal strength
 422 * @tx_status: success and/or retry
 423 *
 424 * This information calls ieee80211_tx_status_irqsafe() if required by the
 425 * control information. It copies the control information into the status
 426 * information.
 427 *
 428 * If no status information has been requested, the skb is freed.
 429 */
 430static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
 431                      int ackssi, struct tx_status *tx_status)
 432{
 433        struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 434        int i;
 435        int success = 1, retry = 1;
 436        int first_idx;
 437        const struct tx_retry_rate *retries;
 438
 439        ieee80211_tx_info_clear_status(info);
 440
 441        if (tx_status) {
 442                success = !tx_status->failure;
 443                retry = tx_status->retry + success;
 444        }
 445
 446        if (success) {
 447                /* success */
 448                info->flags |= IEEE80211_TX_STAT_ACK;
 449        } else {
 450                /* failure */
 451                info->flags &= ~IEEE80211_TX_STAT_ACK;
 452        }
 453
 454        first_idx = info->status.rates[0].idx;
 455        ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
 456        retries = &zd_retry_rates[first_idx];
 457        ZD_ASSERT(1 <= retry && retry <= retries->count);
 458
 459        info->status.rates[0].idx = retries->rate[0];
 460        info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1);
 461
 462        for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) {
 463                info->status.rates[i].idx = retries->rate[i];
 464                info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2);
 465        }
 466        for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) {
 467                info->status.rates[i].idx = retries->rate[retry - 1];
 468                info->status.rates[i].count = 1; // (success ? 1:2);
 469        }
 470        if (i<IEEE80211_TX_MAX_RATES)
 471                info->status.rates[i].idx = -1; /* terminate */
 472
 473        info->status.ack_signal = zd_check_signal(hw, ackssi);
 474        ieee80211_tx_status_irqsafe(hw, skb);
 475}
 476
 477/**
 478 * zd_mac_tx_failed - callback for failed frames
 479 * @urb: pointer to the urb structure
 480 *
 481 * This function is called if a frame couldn't be successfully
 482 * transferred. The first frame from the tx queue, will be selected and
 483 * reported as error to the upper layers.
 484 */
 485void zd_mac_tx_failed(struct urb *urb)
 486{
 487        struct ieee80211_hw * hw = zd_usb_to_hw(urb->context);
 488        struct zd_mac *mac = zd_hw_mac(hw);
 489        struct sk_buff_head *q = &mac->ack_wait_queue;
 490        struct sk_buff *skb;
 491        struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer;
 492        unsigned long flags;
 493        int success = !tx_status->failure;
 494        int retry = tx_status->retry + success;
 495        int found = 0;
 496        int i, position = 0;
 497
 498        spin_lock_irqsave(&q->lock, flags);
 499
 500        skb_queue_walk(q, skb) {
 501                struct ieee80211_hdr *tx_hdr;
 502                struct ieee80211_tx_info *info;
 503                int first_idx, final_idx;
 504                const struct tx_retry_rate *retries;
 505                u8 final_rate;
 506
 507                position ++;
 508
 509                /* if the hardware reports a failure and we had a 802.11 ACK
 510                 * pending, then we skip the first skb when searching for a
 511                 * matching frame */
 512                if (tx_status->failure && mac->ack_pending &&
 513                    skb_queue_is_first(q, skb)) {
 514                        continue;
 515                }
 516
 517                tx_hdr = (struct ieee80211_hdr *)skb->data;
 518
 519                /* we skip all frames not matching the reported destination */
 520                if (unlikely(!ether_addr_equal(tx_hdr->addr1, tx_status->mac)))
 521                        continue;
 522
 523                /* we skip all frames not matching the reported final rate */
 524
 525                info = IEEE80211_SKB_CB(skb);
 526                first_idx = info->status.rates[0].idx;
 527                ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
 528                retries = &zd_retry_rates[first_idx];
 529                if (retry <= 0 || retry > retries->count)
 530                        continue;
 531
 532                final_idx = retries->rate[retry - 1];
 533                final_rate = zd_rates[final_idx].hw_value;
 534
 535                if (final_rate != tx_status->rate) {
 536                        continue;
 537                }
 538
 539                found = 1;
 540                break;
 541        }
 542
 543        if (found) {
 544                for (i=1; i<=position; i++) {
 545                        skb = __skb_dequeue(q);
 546                        zd_mac_tx_status(hw, skb,
 547                                         mac->ack_pending ? mac->ack_signal : 0,
 548                                         i == position ? tx_status : NULL);
 549                        mac->ack_pending = 0;
 550                }
 551        }
 552
 553        spin_unlock_irqrestore(&q->lock, flags);
 554}
 555
 556/**
 557 * zd_mac_tx_to_dev - callback for USB layer
 558 * @skb: a &sk_buff pointer
 559 * @error: error value, 0 if transmission successful
 560 *
 561 * Informs the MAC layer that the frame has successfully transferred to the
 562 * device. If an ACK is required and the transfer to the device has been
 563 * successful, the packets are put on the @ack_wait_queue with
 564 * the control set removed.
 565 */
 566void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
 567{
 568        struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 569        struct ieee80211_hw *hw = info->rate_driver_data[0];
 570        struct zd_mac *mac = zd_hw_mac(hw);
 571
 572        ieee80211_tx_info_clear_status(info);
 573
 574        skb_pull(skb, sizeof(struct zd_ctrlset));
 575        if (unlikely(error ||
 576            (info->flags & IEEE80211_TX_CTL_NO_ACK))) {
 577                /*
 578                 * FIXME : do we need to fill in anything ?
 579                 */
 580                ieee80211_tx_status_irqsafe(hw, skb);
 581        } else {
 582                struct sk_buff_head *q = &mac->ack_wait_queue;
 583
 584                skb_queue_tail(q, skb);
 585                while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) {
 586                        zd_mac_tx_status(hw, skb_dequeue(q),
 587                                         mac->ack_pending ? mac->ack_signal : 0,
 588                                         NULL);
 589                        mac->ack_pending = 0;
 590                }
 591        }
 592}
 593
 594static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
 595{
 596        /* ZD_PURE_RATE() must be used to remove the modulation type flag of
 597         * the zd-rate values.
 598         */
 599        static const u8 rate_divisor[] = {
 600                [ZD_PURE_RATE(ZD_CCK_RATE_1M)]   =  1,
 601                [ZD_PURE_RATE(ZD_CCK_RATE_2M)]   =  2,
 602                /* Bits must be doubled. */
 603                [ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
 604                [ZD_PURE_RATE(ZD_CCK_RATE_11M)]  = 11,
 605                [ZD_PURE_RATE(ZD_OFDM_RATE_6M)]  =  6,
 606                [ZD_PURE_RATE(ZD_OFDM_RATE_9M)]  =  9,
 607                [ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
 608                [ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
 609                [ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
 610                [ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
 611                [ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
 612                [ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
 613        };
 614
 615        u32 bits = (u32)tx_length * 8;
 616        u32 divisor;
 617
 618        divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
 619        if (divisor == 0)
 620                return -EINVAL;
 621
 622        switch (zd_rate) {
 623        case ZD_CCK_RATE_5_5M:
 624                bits = (2*bits) + 10; /* round up to the next integer */
 625                break;
 626        case ZD_CCK_RATE_11M:
 627                if (service) {
 628                        u32 t = bits % 11;
 629                        *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
 630                        if (0 < t && t <= 3) {
 631                                *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
 632                        }
 633                }
 634                bits += 10; /* round up to the next integer */
 635                break;
 636        }
 637
 638        return bits/divisor;
 639}
 640
 641static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
 642                           struct ieee80211_hdr *header,
 643                           struct ieee80211_tx_info *info)
 644{
 645        /*
 646         * CONTROL TODO:
 647         * - if backoff needed, enable bit 0
 648         * - if burst (backoff not needed) disable bit 0
 649         */
 650
 651        cs->control = 0;
 652
 653        /* First fragment */
 654        if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
 655                cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
 656
 657        /* No ACK expected (multicast, etc.) */
 658        if (info->flags & IEEE80211_TX_CTL_NO_ACK)
 659                cs->control |= ZD_CS_NO_ACK;
 660
 661        /* PS-POLL */
 662        if (ieee80211_is_pspoll(header->frame_control))
 663                cs->control |= ZD_CS_PS_POLL_FRAME;
 664
 665        if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
 666                cs->control |= ZD_CS_RTS;
 667
 668        if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
 669                cs->control |= ZD_CS_SELF_CTS;
 670
 671        /* FIXME: Management frame? */
 672}
 673
 674static bool zd_mac_match_cur_beacon(struct zd_mac *mac, struct sk_buff *beacon)
 675{
 676        if (!mac->beacon.cur_beacon)
 677                return false;
 678
 679        if (mac->beacon.cur_beacon->len != beacon->len)
 680                return false;
 681
 682        return !memcmp(beacon->data, mac->beacon.cur_beacon->data, beacon->len);
 683}
 684
 685static void zd_mac_free_cur_beacon_locked(struct zd_mac *mac)
 686{
 687        ZD_ASSERT(mutex_is_locked(&mac->chip.mutex));
 688
 689        kfree_skb(mac->beacon.cur_beacon);
 690        mac->beacon.cur_beacon = NULL;
 691}
 692
 693static void zd_mac_free_cur_beacon(struct zd_mac *mac)
 694{
 695        mutex_lock(&mac->chip.mutex);
 696        zd_mac_free_cur_beacon_locked(mac);
 697        mutex_unlock(&mac->chip.mutex);
 698}
 699
 700static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon,
 701                                bool in_intr)
 702{
 703        struct zd_mac *mac = zd_hw_mac(hw);
 704        int r, ret, num_cmds, req_pos = 0;
 705        u32 tmp, j = 0;
 706        /* 4 more bytes for tail CRC */
 707        u32 full_len = beacon->len + 4;
 708        unsigned long end_jiffies, message_jiffies;
 709        struct zd_ioreq32 *ioreqs;
 710
 711        mutex_lock(&mac->chip.mutex);
 712
 713        /* Check if hw already has this beacon. */
 714        if (zd_mac_match_cur_beacon(mac, beacon)) {
 715                r = 0;
 716                goto out_nofree;
 717        }
 718
 719        /* Alloc memory for full beacon write at once. */
 720        num_cmds = 1 + zd_chip_is_zd1211b(&mac->chip) + full_len;
 721        ioreqs = kmalloc_array(num_cmds, sizeof(struct zd_ioreq32),
 722                               GFP_KERNEL);
 723        if (!ioreqs) {
 724                r = -ENOMEM;
 725                goto out_nofree;
 726        }
 727
 728        r = zd_iowrite32_locked(&mac->chip, 0, CR_BCN_FIFO_SEMAPHORE);
 729        if (r < 0)
 730                goto out;
 731        r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
 732        if (r < 0)
 733                goto release_sema;
 734        if (in_intr && tmp & 0x2) {
 735                r = -EBUSY;
 736                goto release_sema;
 737        }
 738
 739        end_jiffies = jiffies + HZ / 2; /*~500ms*/
 740        message_jiffies = jiffies + HZ / 10; /*~100ms*/
 741        while (tmp & 0x2) {
 742                r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
 743                if (r < 0)
 744                        goto release_sema;
 745                if (time_is_before_eq_jiffies(message_jiffies)) {
 746                        message_jiffies = jiffies + HZ / 10;
 747                        dev_err(zd_mac_dev(mac),
 748                                        "CR_BCN_FIFO_SEMAPHORE not ready\n");
 749                        if (time_is_before_eq_jiffies(end_jiffies))  {
 750                                dev_err(zd_mac_dev(mac),
 751                                                "Giving up beacon config.\n");
 752                                r = -ETIMEDOUT;
 753                                goto reset_device;
 754                        }
 755                }
 756                msleep(20);
 757        }
 758
 759        ioreqs[req_pos].addr = CR_BCN_FIFO;
 760        ioreqs[req_pos].value = full_len - 1;
 761        req_pos++;
 762        if (zd_chip_is_zd1211b(&mac->chip)) {
 763                ioreqs[req_pos].addr = CR_BCN_LENGTH;
 764                ioreqs[req_pos].value = full_len - 1;
 765                req_pos++;
 766        }
 767
 768        for (j = 0 ; j < beacon->len; j++) {
 769                ioreqs[req_pos].addr = CR_BCN_FIFO;
 770                ioreqs[req_pos].value = *((u8 *)(beacon->data + j));
 771                req_pos++;
 772        }
 773
 774        for (j = 0; j < 4; j++) {
 775                ioreqs[req_pos].addr = CR_BCN_FIFO;
 776                ioreqs[req_pos].value = 0x0;
 777                req_pos++;
 778        }
 779
 780        BUG_ON(req_pos != num_cmds);
 781
 782        r = zd_iowrite32a_locked(&mac->chip, ioreqs, num_cmds);
 783
 784release_sema:
 785        /*
 786         * Try very hard to release device beacon semaphore, as otherwise
 787         * device/driver can be left in unusable state.
 788         */
 789        end_jiffies = jiffies + HZ / 2; /*~500ms*/
 790        ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
 791        while (ret < 0) {
 792                if (in_intr || time_is_before_eq_jiffies(end_jiffies)) {
 793                        ret = -ETIMEDOUT;
 794                        break;
 795                }
 796
 797                msleep(20);
 798                ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
 799        }
 800
 801        if (ret < 0)
 802                dev_err(zd_mac_dev(mac), "Could not release "
 803                                         "CR_BCN_FIFO_SEMAPHORE!\n");
 804        if (r < 0 || ret < 0) {
 805                if (r >= 0)
 806                        r = ret;
 807
 808                /* We don't know if beacon was written successfully or not,
 809                 * so clear current. */
 810                zd_mac_free_cur_beacon_locked(mac);
 811
 812                goto out;
 813        }
 814
 815        /* Beacon has now been written successfully, update current. */
 816        zd_mac_free_cur_beacon_locked(mac);
 817        mac->beacon.cur_beacon = beacon;
 818        beacon = NULL;
 819
 820        /* 802.11b/g 2.4G CCK 1Mb
 821         * 802.11a, not yet implemented, uses different values (see GPL vendor
 822         * driver)
 823         */
 824        r = zd_iowrite32_locked(&mac->chip, 0x00000400 | (full_len << 19),
 825                                CR_BCN_PLCP_CFG);
 826out:
 827        kfree(ioreqs);
 828out_nofree:
 829        kfree_skb(beacon);
 830        mutex_unlock(&mac->chip.mutex);
 831
 832        return r;
 833
 834reset_device:
 835        zd_mac_free_cur_beacon_locked(mac);
 836        kfree_skb(beacon);
 837
 838        mutex_unlock(&mac->chip.mutex);
 839        kfree(ioreqs);
 840
 841        /* semaphore stuck, reset device to avoid fw freeze later */
 842        dev_warn(zd_mac_dev(mac), "CR_BCN_FIFO_SEMAPHORE stuck, "
 843                                  "resetting device...");
 844        usb_queue_reset_device(mac->chip.usb.intf);
 845
 846        return r;
 847}
 848
 849static int fill_ctrlset(struct zd_mac *mac,
 850                        struct sk_buff *skb)
 851{
 852        int r;
 853        struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
 854        unsigned int frag_len = skb->len + FCS_LEN;
 855        unsigned int packet_length;
 856        struct ieee80211_rate *txrate;
 857        struct zd_ctrlset *cs = skb_push(skb, sizeof(struct zd_ctrlset));
 858        struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 859
 860        ZD_ASSERT(frag_len <= 0xffff);
 861
 862        /*
 863         * Firmware computes the duration itself (for all frames except PSPoll)
 864         * and needs the field set to 0 at input, otherwise firmware messes up
 865         * duration_id and sets bits 14 and 15 on.
 866         */
 867        if (!ieee80211_is_pspoll(hdr->frame_control))
 868                hdr->duration_id = 0;
 869
 870        txrate = ieee80211_get_tx_rate(mac->hw, info);
 871
 872        cs->modulation = txrate->hw_value;
 873        if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
 874                cs->modulation = txrate->hw_value_short;
 875
 876        cs->tx_length = cpu_to_le16(frag_len);
 877
 878        cs_set_control(mac, cs, hdr, info);
 879
 880        packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
 881        ZD_ASSERT(packet_length <= 0xffff);
 882        /* ZD1211B: Computing the length difference this way, gives us
 883         * flexibility to compute the packet length.
 884         */
 885        cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
 886                        packet_length - frag_len : packet_length);
 887
 888        /*
 889         * CURRENT LENGTH:
 890         * - transmit frame length in microseconds
 891         * - seems to be derived from frame length
 892         * - see Cal_Us_Service() in zdinlinef.h
 893         * - if macp->bTxBurstEnable is enabled, then multiply by 4
 894         *  - bTxBurstEnable is never set in the vendor driver
 895         *
 896         * SERVICE:
 897         * - "for PLCP configuration"
 898         * - always 0 except in some situations at 802.11b 11M
 899         * - see line 53 of zdinlinef.h
 900         */
 901        cs->service = 0;
 902        r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
 903                                 le16_to_cpu(cs->tx_length));
 904        if (r < 0)
 905                return r;
 906        cs->current_length = cpu_to_le16(r);
 907        cs->next_frame_length = 0;
 908
 909        return 0;
 910}
 911
 912/**
 913 * zd_op_tx - transmits a network frame to the device
 914 *
 915 * @hw: a &struct ieee80211_hw pointer
 916 * @control: the control structure
 917 * @skb: socket buffer
 918 *
 919 * This function transmit an IEEE 802.11 network frame to the device. The
 920 * control block of the skbuff will be initialized. If necessary the incoming
 921 * mac80211 queues will be stopped.
 922 */
 923static void zd_op_tx(struct ieee80211_hw *hw,
 924                     struct ieee80211_tx_control *control,
 925                     struct sk_buff *skb)
 926{
 927        struct zd_mac *mac = zd_hw_mac(hw);
 928        struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 929        int r;
 930
 931        r = fill_ctrlset(mac, skb);
 932        if (r)
 933                goto fail;
 934
 935        info->rate_driver_data[0] = hw;
 936
 937        r = zd_usb_tx(&mac->chip.usb, skb);
 938        if (r)
 939                goto fail;
 940        return;
 941
 942fail:
 943        dev_kfree_skb(skb);
 944}
 945
 946/**
 947 * filter_ack - filters incoming packets for acknowledgements
 948 * @hw: a &struct ieee80211_hw pointer
 949 * @rx_hdr: received header
 950 * @stats: the status for the received packet
 951 *
 952 * This functions looks for ACK packets and tries to match them with the
 953 * frames in the tx queue. If a match is found the frame will be dequeued and
 954 * the upper layers is informed about the successful transmission. If
 955 * mac80211 queues have been stopped and the number of frames still to be
 956 * transmitted is low the queues will be opened again.
 957 *
 958 * Returns 1 if the frame was an ACK, 0 if it was ignored.
 959 */
 960static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
 961                      struct ieee80211_rx_status *stats)
 962{
 963        struct zd_mac *mac = zd_hw_mac(hw);
 964        struct sk_buff *skb;
 965        struct sk_buff_head *q;
 966        unsigned long flags;
 967        int found = 0;
 968        int i, position = 0;
 969
 970        if (!ieee80211_is_ack(rx_hdr->frame_control))
 971                return 0;
 972
 973        q = &mac->ack_wait_queue;
 974        spin_lock_irqsave(&q->lock, flags);
 975        skb_queue_walk(q, skb) {
 976                struct ieee80211_hdr *tx_hdr;
 977
 978                position ++;
 979
 980                if (mac->ack_pending && skb_queue_is_first(q, skb))
 981                    continue;
 982
 983                tx_hdr = (struct ieee80211_hdr *)skb->data;
 984                if (likely(ether_addr_equal(tx_hdr->addr2, rx_hdr->addr1)))
 985                {
 986                        found = 1;
 987                        break;
 988                }
 989        }
 990
 991        if (found) {
 992                for (i=1; i<position; i++) {
 993                        skb = __skb_dequeue(q);
 994                        zd_mac_tx_status(hw, skb,
 995                                         mac->ack_pending ? mac->ack_signal : 0,
 996                                         NULL);
 997                        mac->ack_pending = 0;
 998                }
 999
1000                mac->ack_pending = 1;
1001                mac->ack_signal = stats->signal;
1002
1003                /* Prevent pending tx-packet on AP-mode */
1004                if (mac->type == NL80211_IFTYPE_AP) {
1005                        skb = __skb_dequeue(q);
1006                        zd_mac_tx_status(hw, skb, mac->ack_signal, NULL);
1007                        mac->ack_pending = 0;
1008                }
1009        }
1010
1011        spin_unlock_irqrestore(&q->lock, flags);
1012        return 1;
1013}
1014
1015int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
1016{
1017        struct zd_mac *mac = zd_hw_mac(hw);
1018        struct ieee80211_rx_status stats;
1019        const struct rx_status *status;
1020        struct sk_buff *skb;
1021        int bad_frame = 0;
1022        __le16 fc;
1023        int need_padding;
1024        int i;
1025        u8 rate;
1026
1027        if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
1028                     FCS_LEN + sizeof(struct rx_status))
1029                return -EINVAL;
1030
1031        memset(&stats, 0, sizeof(stats));
1032
1033        /* Note about pass_failed_fcs and pass_ctrl access below:
1034         * mac locking intentionally omitted here, as this is the only unlocked
1035         * reader and the only writer is configure_filter. Plus, if there were
1036         * any races accessing these variables, it wouldn't really matter.
1037         * If mac80211 ever provides a way for us to access filter flags
1038         * from outside configure_filter, we could improve on this. Also, this
1039         * situation may change once we implement some kind of DMA-into-skb
1040         * RX path. */
1041
1042        /* Caller has to ensure that length >= sizeof(struct rx_status). */
1043        status = (struct rx_status *)
1044                (buffer + (length - sizeof(struct rx_status)));
1045        if (status->frame_status & ZD_RX_ERROR) {
1046                if (mac->pass_failed_fcs &&
1047                                (status->frame_status & ZD_RX_CRC32_ERROR)) {
1048                        stats.flag |= RX_FLAG_FAILED_FCS_CRC;
1049                        bad_frame = 1;
1050                } else {
1051                        return -EINVAL;
1052                }
1053        }
1054
1055        stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
1056        stats.band = NL80211_BAND_2GHZ;
1057        stats.signal = zd_check_signal(hw, status->signal_strength);
1058
1059        rate = zd_rx_rate(buffer, status);
1060
1061        /* todo: return index in the big switches in zd_rx_rate instead */
1062        for (i = 0; i < mac->band.n_bitrates; i++)
1063                if (rate == mac->band.bitrates[i].hw_value)
1064                        stats.rate_idx = i;
1065
1066        length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
1067        buffer += ZD_PLCP_HEADER_SIZE;
1068
1069        /* Except for bad frames, filter each frame to see if it is an ACK, in
1070         * which case our internal TX tracking is updated. Normally we then
1071         * bail here as there's no need to pass ACKs on up to the stack, but
1072         * there is also the case where the stack has requested us to pass
1073         * control frames on up (pass_ctrl) which we must consider. */
1074        if (!bad_frame &&
1075                        filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
1076                        && !mac->pass_ctrl)
1077                return 0;
1078
1079        fc = get_unaligned((__le16*)buffer);
1080        need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
1081
1082        skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
1083        if (skb == NULL)
1084                return -ENOMEM;
1085        if (need_padding) {
1086                /* Make sure the payload data is 4 byte aligned. */
1087                skb_reserve(skb, 2);
1088        }
1089
1090        /* FIXME : could we avoid this big memcpy ? */
1091        skb_put_data(skb, buffer, length);
1092
1093        memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
1094        ieee80211_rx_irqsafe(hw, skb);
1095        return 0;
1096}
1097
1098static int zd_op_add_interface(struct ieee80211_hw *hw,
1099                                struct ieee80211_vif *vif)
1100{
1101        struct zd_mac *mac = zd_hw_mac(hw);
1102
1103        /* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
1104        if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
1105                return -EOPNOTSUPP;
1106
1107        switch (vif->type) {
1108        case NL80211_IFTYPE_MONITOR:
1109        case NL80211_IFTYPE_MESH_POINT:
1110        case NL80211_IFTYPE_STATION:
1111        case NL80211_IFTYPE_ADHOC:
1112        case NL80211_IFTYPE_AP:
1113                mac->type = vif->type;
1114                break;
1115        default:
1116                return -EOPNOTSUPP;
1117        }
1118
1119        mac->vif = vif;
1120
1121        return set_mac_and_bssid(mac);
1122}
1123
1124static void zd_op_remove_interface(struct ieee80211_hw *hw,
1125                                    struct ieee80211_vif *vif)
1126{
1127        struct zd_mac *mac = zd_hw_mac(hw);
1128        mac->type = NL80211_IFTYPE_UNSPECIFIED;
1129        mac->vif = NULL;
1130        zd_set_beacon_interval(&mac->chip, 0, 0, NL80211_IFTYPE_UNSPECIFIED);
1131        zd_write_mac_addr(&mac->chip, NULL);
1132
1133        zd_mac_free_cur_beacon(mac);
1134}
1135
1136static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
1137{
1138        struct zd_mac *mac = zd_hw_mac(hw);
1139        struct ieee80211_conf *conf = &hw->conf;
1140
1141        spin_lock_irq(&mac->lock);
1142        mac->channel = conf->chandef.chan->hw_value;
1143        spin_unlock_irq(&mac->lock);
1144
1145        return zd_chip_set_channel(&mac->chip, conf->chandef.chan->hw_value);
1146}
1147
1148static void zd_beacon_done(struct zd_mac *mac)
1149{
1150        struct sk_buff *skb, *beacon;
1151
1152        if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1153                return;
1154        if (!mac->vif || mac->vif->type != NL80211_IFTYPE_AP)
1155                return;
1156
1157        /*
1158         * Send out buffered broad- and multicast frames.
1159         */
1160        while (!ieee80211_queue_stopped(mac->hw, 0)) {
1161                skb = ieee80211_get_buffered_bc(mac->hw, mac->vif);
1162                if (!skb)
1163                        break;
1164                zd_op_tx(mac->hw, NULL, skb);
1165        }
1166
1167        /*
1168         * Fetch next beacon so that tim_count is updated.
1169         */
1170        beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1171        if (beacon)
1172                zd_mac_config_beacon(mac->hw, beacon, true);
1173
1174        spin_lock_irq(&mac->lock);
1175        mac->beacon.last_update = jiffies;
1176        spin_unlock_irq(&mac->lock);
1177}
1178
1179static void zd_process_intr(struct work_struct *work)
1180{
1181        u16 int_status;
1182        unsigned long flags;
1183        struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
1184
1185        spin_lock_irqsave(&mac->lock, flags);
1186        int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer + 4));
1187        spin_unlock_irqrestore(&mac->lock, flags);
1188
1189        if (int_status & INT_CFG_NEXT_BCN) {
1190                /*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/
1191                zd_beacon_done(mac);
1192        } else {
1193                dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
1194        }
1195
1196        zd_chip_enable_hwint(&mac->chip);
1197}
1198
1199
1200static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw,
1201                                   struct netdev_hw_addr_list *mc_list)
1202{
1203        struct zd_mac *mac = zd_hw_mac(hw);
1204        struct zd_mc_hash hash;
1205        struct netdev_hw_addr *ha;
1206
1207        zd_mc_clear(&hash);
1208
1209        netdev_hw_addr_list_for_each(ha, mc_list) {
1210                dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr);
1211                zd_mc_add_addr(&hash, ha->addr);
1212        }
1213
1214        return hash.low | ((u64)hash.high << 32);
1215}
1216
1217#define SUPPORTED_FIF_FLAGS \
1218        (FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
1219        FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
1220static void zd_op_configure_filter(struct ieee80211_hw *hw,
1221                        unsigned int changed_flags,
1222                        unsigned int *new_flags,
1223                        u64 multicast)
1224{
1225        struct zd_mc_hash hash = {
1226                .low = multicast,
1227                .high = multicast >> 32,
1228        };
1229        struct zd_mac *mac = zd_hw_mac(hw);
1230        unsigned long flags;
1231        int r;
1232
1233        /* Only deal with supported flags */
1234        changed_flags &= SUPPORTED_FIF_FLAGS;
1235        *new_flags &= SUPPORTED_FIF_FLAGS;
1236
1237        /*
1238         * If multicast parameter (as returned by zd_op_prepare_multicast)
1239         * has changed, no bit in changed_flags is set. To handle this
1240         * situation, we do not return if changed_flags is 0. If we do so,
1241         * we will have some issue with IPv6 which uses multicast for link
1242         * layer address resolution.
1243         */
1244        if (*new_flags & FIF_ALLMULTI)
1245                zd_mc_add_all(&hash);
1246
1247        spin_lock_irqsave(&mac->lock, flags);
1248        mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
1249        mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
1250        mac->multicast_hash = hash;
1251        spin_unlock_irqrestore(&mac->lock, flags);
1252
1253        zd_chip_set_multicast_hash(&mac->chip, &hash);
1254
1255        if (changed_flags & FIF_CONTROL) {
1256                r = set_rx_filter(mac);
1257                if (r)
1258                        dev_err(zd_mac_dev(mac), "set_rx_filter error %d\n", r);
1259        }
1260
1261        /* no handling required for FIF_OTHER_BSS as we don't currently
1262         * do BSSID filtering */
1263        /* FIXME: in future it would be nice to enable the probe response
1264         * filter (so that the driver doesn't see them) until
1265         * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
1266         * have to schedule work to enable prbresp reception, which might
1267         * happen too late. For now we'll just listen and forward them all the
1268         * time. */
1269}
1270
1271static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble)
1272{
1273        mutex_lock(&mac->chip.mutex);
1274        zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
1275        mutex_unlock(&mac->chip.mutex);
1276}
1277
1278static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
1279                                   struct ieee80211_vif *vif,
1280                                   struct ieee80211_bss_conf *bss_conf,
1281                                   u32 changes)
1282{
1283        struct zd_mac *mac = zd_hw_mac(hw);
1284        int associated;
1285
1286        dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
1287
1288        if (mac->type == NL80211_IFTYPE_MESH_POINT ||
1289            mac->type == NL80211_IFTYPE_ADHOC ||
1290            mac->type == NL80211_IFTYPE_AP) {
1291                associated = true;
1292                if (changes & BSS_CHANGED_BEACON) {
1293                        struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
1294
1295                        if (beacon) {
1296                                zd_chip_disable_hwint(&mac->chip);
1297                                zd_mac_config_beacon(hw, beacon, false);
1298                                zd_chip_enable_hwint(&mac->chip);
1299                        }
1300                }
1301
1302                if (changes & BSS_CHANGED_BEACON_ENABLED) {
1303                        u16 interval = 0;
1304                        u8 period = 0;
1305
1306                        if (bss_conf->enable_beacon) {
1307                                period = bss_conf->dtim_period;
1308                                interval = bss_conf->beacon_int;
1309                        }
1310
1311                        spin_lock_irq(&mac->lock);
1312                        mac->beacon.period = period;
1313                        mac->beacon.interval = interval;
1314                        mac->beacon.last_update = jiffies;
1315                        spin_unlock_irq(&mac->lock);
1316
1317                        zd_set_beacon_interval(&mac->chip, interval, period,
1318                                               mac->type);
1319                }
1320        } else
1321                associated = is_valid_ether_addr(bss_conf->bssid);
1322
1323        spin_lock_irq(&mac->lock);
1324        mac->associated = associated;
1325        spin_unlock_irq(&mac->lock);
1326
1327        /* TODO: do hardware bssid filtering */
1328
1329        if (changes & BSS_CHANGED_ERP_PREAMBLE) {
1330                spin_lock_irq(&mac->lock);
1331                mac->short_preamble = bss_conf->use_short_preamble;
1332                spin_unlock_irq(&mac->lock);
1333
1334                set_rts_cts(mac, bss_conf->use_short_preamble);
1335        }
1336}
1337
1338static u64 zd_op_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1339{
1340        struct zd_mac *mac = zd_hw_mac(hw);
1341        return zd_chip_get_tsf(&mac->chip);
1342}
1343
1344static const struct ieee80211_ops zd_ops = {
1345        .tx                     = zd_op_tx,
1346        .start                  = zd_op_start,
1347        .stop                   = zd_op_stop,
1348        .add_interface          = zd_op_add_interface,
1349        .remove_interface       = zd_op_remove_interface,
1350        .config                 = zd_op_config,
1351        .prepare_multicast      = zd_op_prepare_multicast,
1352        .configure_filter       = zd_op_configure_filter,
1353        .bss_info_changed       = zd_op_bss_info_changed,
1354        .get_tsf                = zd_op_get_tsf,
1355};
1356
1357struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
1358{
1359        struct zd_mac *mac;
1360        struct ieee80211_hw *hw;
1361
1362        hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
1363        if (!hw) {
1364                dev_dbg_f(&intf->dev, "out of memory\n");
1365                return NULL;
1366        }
1367
1368        mac = zd_hw_mac(hw);
1369
1370        memset(mac, 0, sizeof(*mac));
1371        spin_lock_init(&mac->lock);
1372        mac->hw = hw;
1373
1374        mac->type = NL80211_IFTYPE_UNSPECIFIED;
1375
1376        memcpy(mac->channels, zd_channels, sizeof(zd_channels));
1377        memcpy(mac->rates, zd_rates, sizeof(zd_rates));
1378        mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
1379        mac->band.bitrates = mac->rates;
1380        mac->band.n_channels = ARRAY_SIZE(zd_channels);
1381        mac->band.channels = mac->channels;
1382
1383        hw->wiphy->bands[NL80211_BAND_2GHZ] = &mac->band;
1384
1385        ieee80211_hw_set(hw, MFP_CAPABLE);
1386        ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
1387        ieee80211_hw_set(hw, RX_INCLUDES_FCS);
1388        ieee80211_hw_set(hw, SIGNAL_UNSPEC);
1389
1390        hw->wiphy->interface_modes =
1391                BIT(NL80211_IFTYPE_MESH_POINT) |
1392                BIT(NL80211_IFTYPE_STATION) |
1393                BIT(NL80211_IFTYPE_ADHOC) |
1394                BIT(NL80211_IFTYPE_AP);
1395
1396        wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
1397
1398        hw->max_signal = 100;
1399        hw->queues = 1;
1400        hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
1401
1402        /*
1403         * Tell mac80211 that we support multi rate retries
1404         */
1405        hw->max_rates = IEEE80211_TX_MAX_RATES;
1406        hw->max_rate_tries = 18;        /* 9 rates * 2 retries/rate */
1407
1408        skb_queue_head_init(&mac->ack_wait_queue);
1409        mac->ack_pending = 0;
1410
1411        zd_chip_init(&mac->chip, hw, intf);
1412        housekeeping_init(mac);
1413        beacon_init(mac);
1414        INIT_WORK(&mac->process_intr, zd_process_intr);
1415
1416        SET_IEEE80211_DEV(hw, &intf->dev);
1417        return hw;
1418}
1419
1420#define BEACON_WATCHDOG_DELAY round_jiffies_relative(HZ)
1421
1422static void beacon_watchdog_handler(struct work_struct *work)
1423{
1424        struct zd_mac *mac =
1425                container_of(work, struct zd_mac, beacon.watchdog_work.work);
1426        struct sk_buff *beacon;
1427        unsigned long timeout;
1428        int interval, period;
1429
1430        if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1431                goto rearm;
1432        if (mac->type != NL80211_IFTYPE_AP || !mac->vif)
1433                goto rearm;
1434
1435        spin_lock_irq(&mac->lock);
1436        interval = mac->beacon.interval;
1437        period = mac->beacon.period;
1438        timeout = mac->beacon.last_update +
1439                        msecs_to_jiffies(interval * 1024 / 1000) * 3;
1440        spin_unlock_irq(&mac->lock);
1441
1442        if (interval > 0 && time_is_before_jiffies(timeout)) {
1443                dev_dbg_f(zd_mac_dev(mac), "beacon interrupt stalled, "
1444                                           "restarting. "
1445                                           "(interval: %d, dtim: %d)\n",
1446                                           interval, period);
1447
1448                zd_chip_disable_hwint(&mac->chip);
1449
1450                beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1451                if (beacon) {
1452                        zd_mac_free_cur_beacon(mac);
1453
1454                        zd_mac_config_beacon(mac->hw, beacon, false);
1455                }
1456
1457                zd_set_beacon_interval(&mac->chip, interval, period, mac->type);
1458
1459                zd_chip_enable_hwint(&mac->chip);
1460
1461                spin_lock_irq(&mac->lock);
1462                mac->beacon.last_update = jiffies;
1463                spin_unlock_irq(&mac->lock);
1464        }
1465
1466rearm:
1467        queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1468                           BEACON_WATCHDOG_DELAY);
1469}
1470
1471static void beacon_init(struct zd_mac *mac)
1472{
1473        INIT_DELAYED_WORK(&mac->beacon.watchdog_work, beacon_watchdog_handler);
1474}
1475
1476static void beacon_enable(struct zd_mac *mac)
1477{
1478        dev_dbg_f(zd_mac_dev(mac), "\n");
1479
1480        mac->beacon.last_update = jiffies;
1481        queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1482                           BEACON_WATCHDOG_DELAY);
1483}
1484
1485static void beacon_disable(struct zd_mac *mac)
1486{
1487        dev_dbg_f(zd_mac_dev(mac), "\n");
1488        cancel_delayed_work_sync(&mac->beacon.watchdog_work);
1489
1490        zd_mac_free_cur_beacon(mac);
1491}
1492
1493#define LINK_LED_WORK_DELAY HZ
1494
1495static void link_led_handler(struct work_struct *work)
1496{
1497        struct zd_mac *mac =
1498                container_of(work, struct zd_mac, housekeeping.link_led_work.work);
1499        struct zd_chip *chip = &mac->chip;
1500        int is_associated;
1501        int r;
1502
1503        if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1504                goto requeue;
1505
1506        spin_lock_irq(&mac->lock);
1507        is_associated = mac->associated;
1508        spin_unlock_irq(&mac->lock);
1509
1510        r = zd_chip_control_leds(chip,
1511                                 is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING);
1512        if (r)
1513                dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
1514
1515requeue:
1516        queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1517                           LINK_LED_WORK_DELAY);
1518}
1519
1520static void housekeeping_init(struct zd_mac *mac)
1521{
1522        INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
1523}
1524
1525static void housekeeping_enable(struct zd_mac *mac)
1526{
1527        dev_dbg_f(zd_mac_dev(mac), "\n");
1528        queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1529                           0);
1530}
1531
1532static void housekeeping_disable(struct zd_mac *mac)
1533{
1534        dev_dbg_f(zd_mac_dev(mac), "\n");
1535        cancel_delayed_work_sync(&mac->housekeeping.link_led_work);
1536        zd_chip_control_leds(&mac->chip, ZD_LED_OFF);
1537}
1538