linux/drivers/nvme/host/tcp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * NVMe over Fabrics TCP host.
   4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
   5 */
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7#include <linux/module.h>
   8#include <linux/init.h>
   9#include <linux/slab.h>
  10#include <linux/err.h>
  11#include <linux/nvme-tcp.h>
  12#include <net/sock.h>
  13#include <net/tcp.h>
  14#include <linux/blk-mq.h>
  15#include <crypto/hash.h>
  16#include <net/busy_poll.h>
  17
  18#include "nvme.h"
  19#include "fabrics.h"
  20
  21struct nvme_tcp_queue;
  22
  23/* Define the socket priority to use for connections were it is desirable
  24 * that the NIC consider performing optimized packet processing or filtering.
  25 * A non-zero value being sufficient to indicate general consideration of any
  26 * possible optimization.  Making it a module param allows for alternative
  27 * values that may be unique for some NIC implementations.
  28 */
  29static int so_priority;
  30module_param(so_priority, int, 0644);
  31MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
  32
  33enum nvme_tcp_send_state {
  34        NVME_TCP_SEND_CMD_PDU = 0,
  35        NVME_TCP_SEND_H2C_PDU,
  36        NVME_TCP_SEND_DATA,
  37        NVME_TCP_SEND_DDGST,
  38};
  39
  40struct nvme_tcp_request {
  41        struct nvme_request     req;
  42        void                    *pdu;
  43        struct nvme_tcp_queue   *queue;
  44        u32                     data_len;
  45        u32                     pdu_len;
  46        u32                     pdu_sent;
  47        u16                     ttag;
  48        __le16                  status;
  49        struct list_head        entry;
  50        struct llist_node       lentry;
  51        __le32                  ddgst;
  52
  53        struct bio              *curr_bio;
  54        struct iov_iter         iter;
  55
  56        /* send state */
  57        size_t                  offset;
  58        size_t                  data_sent;
  59        enum nvme_tcp_send_state state;
  60};
  61
  62enum nvme_tcp_queue_flags {
  63        NVME_TCP_Q_ALLOCATED    = 0,
  64        NVME_TCP_Q_LIVE         = 1,
  65        NVME_TCP_Q_POLLING      = 2,
  66};
  67
  68enum nvme_tcp_recv_state {
  69        NVME_TCP_RECV_PDU = 0,
  70        NVME_TCP_RECV_DATA,
  71        NVME_TCP_RECV_DDGST,
  72};
  73
  74struct nvme_tcp_ctrl;
  75struct nvme_tcp_queue {
  76        struct socket           *sock;
  77        struct work_struct      io_work;
  78        int                     io_cpu;
  79
  80        struct mutex            queue_lock;
  81        struct mutex            send_mutex;
  82        struct llist_head       req_list;
  83        struct list_head        send_list;
  84        bool                    more_requests;
  85
  86        /* recv state */
  87        void                    *pdu;
  88        int                     pdu_remaining;
  89        int                     pdu_offset;
  90        size_t                  data_remaining;
  91        size_t                  ddgst_remaining;
  92        unsigned int            nr_cqe;
  93
  94        /* send state */
  95        struct nvme_tcp_request *request;
  96
  97        int                     queue_size;
  98        size_t                  cmnd_capsule_len;
  99        struct nvme_tcp_ctrl    *ctrl;
 100        unsigned long           flags;
 101        bool                    rd_enabled;
 102
 103        bool                    hdr_digest;
 104        bool                    data_digest;
 105        struct ahash_request    *rcv_hash;
 106        struct ahash_request    *snd_hash;
 107        __le32                  exp_ddgst;
 108        __le32                  recv_ddgst;
 109
 110        struct page_frag_cache  pf_cache;
 111
 112        void (*state_change)(struct sock *);
 113        void (*data_ready)(struct sock *);
 114        void (*write_space)(struct sock *);
 115};
 116
 117struct nvme_tcp_ctrl {
 118        /* read only in the hot path */
 119        struct nvme_tcp_queue   *queues;
 120        struct blk_mq_tag_set   tag_set;
 121
 122        /* other member variables */
 123        struct list_head        list;
 124        struct blk_mq_tag_set   admin_tag_set;
 125        struct sockaddr_storage addr;
 126        struct sockaddr_storage src_addr;
 127        struct nvme_ctrl        ctrl;
 128
 129        struct work_struct      err_work;
 130        struct delayed_work     connect_work;
 131        struct nvme_tcp_request async_req;
 132        u32                     io_queues[HCTX_MAX_TYPES];
 133};
 134
 135static LIST_HEAD(nvme_tcp_ctrl_list);
 136static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
 137static struct workqueue_struct *nvme_tcp_wq;
 138static const struct blk_mq_ops nvme_tcp_mq_ops;
 139static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
 140static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
 141
 142static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
 143{
 144        return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
 145}
 146
 147static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
 148{
 149        return queue - queue->ctrl->queues;
 150}
 151
 152static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
 153{
 154        u32 queue_idx = nvme_tcp_queue_id(queue);
 155
 156        if (queue_idx == 0)
 157                return queue->ctrl->admin_tag_set.tags[queue_idx];
 158        return queue->ctrl->tag_set.tags[queue_idx - 1];
 159}
 160
 161static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
 162{
 163        return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
 164}
 165
 166static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
 167{
 168        return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
 169}
 170
 171static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
 172{
 173        return queue->cmnd_capsule_len - sizeof(struct nvme_command);
 174}
 175
 176static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
 177{
 178        return req == &req->queue->ctrl->async_req;
 179}
 180
 181static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
 182{
 183        struct request *rq;
 184
 185        if (unlikely(nvme_tcp_async_req(req)))
 186                return false; /* async events don't have a request */
 187
 188        rq = blk_mq_rq_from_pdu(req);
 189
 190        return rq_data_dir(rq) == WRITE && req->data_len &&
 191                req->data_len <= nvme_tcp_inline_data_size(req->queue);
 192}
 193
 194static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
 195{
 196        return req->iter.bvec->bv_page;
 197}
 198
 199static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
 200{
 201        return req->iter.bvec->bv_offset + req->iter.iov_offset;
 202}
 203
 204static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
 205{
 206        return min_t(size_t, iov_iter_single_seg_count(&req->iter),
 207                        req->pdu_len - req->pdu_sent);
 208}
 209
 210static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
 211{
 212        return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
 213                        req->pdu_len - req->pdu_sent : 0;
 214}
 215
 216static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
 217                int len)
 218{
 219        return nvme_tcp_pdu_data_left(req) <= len;
 220}
 221
 222static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
 223                unsigned int dir)
 224{
 225        struct request *rq = blk_mq_rq_from_pdu(req);
 226        struct bio_vec *vec;
 227        unsigned int size;
 228        int nr_bvec;
 229        size_t offset;
 230
 231        if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
 232                vec = &rq->special_vec;
 233                nr_bvec = 1;
 234                size = blk_rq_payload_bytes(rq);
 235                offset = 0;
 236        } else {
 237                struct bio *bio = req->curr_bio;
 238                struct bvec_iter bi;
 239                struct bio_vec bv;
 240
 241                vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
 242                nr_bvec = 0;
 243                bio_for_each_bvec(bv, bio, bi) {
 244                        nr_bvec++;
 245                }
 246                size = bio->bi_iter.bi_size;
 247                offset = bio->bi_iter.bi_bvec_done;
 248        }
 249
 250        iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
 251        req->iter.iov_offset = offset;
 252}
 253
 254static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
 255                int len)
 256{
 257        req->data_sent += len;
 258        req->pdu_sent += len;
 259        iov_iter_advance(&req->iter, len);
 260        if (!iov_iter_count(&req->iter) &&
 261            req->data_sent < req->data_len) {
 262                req->curr_bio = req->curr_bio->bi_next;
 263                nvme_tcp_init_iter(req, WRITE);
 264        }
 265}
 266
 267static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
 268{
 269        int ret;
 270
 271        /* drain the send queue as much as we can... */
 272        do {
 273                ret = nvme_tcp_try_send(queue);
 274        } while (ret > 0);
 275}
 276
 277static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
 278{
 279        return !list_empty(&queue->send_list) ||
 280                !llist_empty(&queue->req_list) || queue->more_requests;
 281}
 282
 283static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
 284                bool sync, bool last)
 285{
 286        struct nvme_tcp_queue *queue = req->queue;
 287        bool empty;
 288
 289        empty = llist_add(&req->lentry, &queue->req_list) &&
 290                list_empty(&queue->send_list) && !queue->request;
 291
 292        /*
 293         * if we're the first on the send_list and we can try to send
 294         * directly, otherwise queue io_work. Also, only do that if we
 295         * are on the same cpu, so we don't introduce contention.
 296         */
 297        if (queue->io_cpu == raw_smp_processor_id() &&
 298            sync && empty && mutex_trylock(&queue->send_mutex)) {
 299                queue->more_requests = !last;
 300                nvme_tcp_send_all(queue);
 301                queue->more_requests = false;
 302                mutex_unlock(&queue->send_mutex);
 303        }
 304
 305        if (last && nvme_tcp_queue_more(queue))
 306                queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
 307}
 308
 309static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
 310{
 311        struct nvme_tcp_request *req;
 312        struct llist_node *node;
 313
 314        for (node = llist_del_all(&queue->req_list); node; node = node->next) {
 315                req = llist_entry(node, struct nvme_tcp_request, lentry);
 316                list_add(&req->entry, &queue->send_list);
 317        }
 318}
 319
 320static inline struct nvme_tcp_request *
 321nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
 322{
 323        struct nvme_tcp_request *req;
 324
 325        req = list_first_entry_or_null(&queue->send_list,
 326                        struct nvme_tcp_request, entry);
 327        if (!req) {
 328                nvme_tcp_process_req_list(queue);
 329                req = list_first_entry_or_null(&queue->send_list,
 330                                struct nvme_tcp_request, entry);
 331                if (unlikely(!req))
 332                        return NULL;
 333        }
 334
 335        list_del(&req->entry);
 336        return req;
 337}
 338
 339static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
 340                __le32 *dgst)
 341{
 342        ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
 343        crypto_ahash_final(hash);
 344}
 345
 346static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
 347                struct page *page, off_t off, size_t len)
 348{
 349        struct scatterlist sg;
 350
 351        sg_init_marker(&sg, 1);
 352        sg_set_page(&sg, page, len, off);
 353        ahash_request_set_crypt(hash, &sg, NULL, len);
 354        crypto_ahash_update(hash);
 355}
 356
 357static inline void nvme_tcp_hdgst(struct ahash_request *hash,
 358                void *pdu, size_t len)
 359{
 360        struct scatterlist sg;
 361
 362        sg_init_one(&sg, pdu, len);
 363        ahash_request_set_crypt(hash, &sg, pdu + len, len);
 364        crypto_ahash_digest(hash);
 365}
 366
 367static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
 368                void *pdu, size_t pdu_len)
 369{
 370        struct nvme_tcp_hdr *hdr = pdu;
 371        __le32 recv_digest;
 372        __le32 exp_digest;
 373
 374        if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
 375                dev_err(queue->ctrl->ctrl.device,
 376                        "queue %d: header digest flag is cleared\n",
 377                        nvme_tcp_queue_id(queue));
 378                return -EPROTO;
 379        }
 380
 381        recv_digest = *(__le32 *)(pdu + hdr->hlen);
 382        nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
 383        exp_digest = *(__le32 *)(pdu + hdr->hlen);
 384        if (recv_digest != exp_digest) {
 385                dev_err(queue->ctrl->ctrl.device,
 386                        "header digest error: recv %#x expected %#x\n",
 387                        le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
 388                return -EIO;
 389        }
 390
 391        return 0;
 392}
 393
 394static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
 395{
 396        struct nvme_tcp_hdr *hdr = pdu;
 397        u8 digest_len = nvme_tcp_hdgst_len(queue);
 398        u32 len;
 399
 400        len = le32_to_cpu(hdr->plen) - hdr->hlen -
 401                ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
 402
 403        if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
 404                dev_err(queue->ctrl->ctrl.device,
 405                        "queue %d: data digest flag is cleared\n",
 406                nvme_tcp_queue_id(queue));
 407                return -EPROTO;
 408        }
 409        crypto_ahash_init(queue->rcv_hash);
 410
 411        return 0;
 412}
 413
 414static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
 415                struct request *rq, unsigned int hctx_idx)
 416{
 417        struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
 418
 419        page_frag_free(req->pdu);
 420}
 421
 422static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
 423                struct request *rq, unsigned int hctx_idx,
 424                unsigned int numa_node)
 425{
 426        struct nvme_tcp_ctrl *ctrl = set->driver_data;
 427        struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
 428        struct nvme_tcp_cmd_pdu *pdu;
 429        int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
 430        struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
 431        u8 hdgst = nvme_tcp_hdgst_len(queue);
 432
 433        req->pdu = page_frag_alloc(&queue->pf_cache,
 434                sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
 435                GFP_KERNEL | __GFP_ZERO);
 436        if (!req->pdu)
 437                return -ENOMEM;
 438
 439        pdu = req->pdu;
 440        req->queue = queue;
 441        nvme_req(rq)->ctrl = &ctrl->ctrl;
 442        nvme_req(rq)->cmd = &pdu->cmd;
 443
 444        return 0;
 445}
 446
 447static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 448                unsigned int hctx_idx)
 449{
 450        struct nvme_tcp_ctrl *ctrl = data;
 451        struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
 452
 453        hctx->driver_data = queue;
 454        return 0;
 455}
 456
 457static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 458                unsigned int hctx_idx)
 459{
 460        struct nvme_tcp_ctrl *ctrl = data;
 461        struct nvme_tcp_queue *queue = &ctrl->queues[0];
 462
 463        hctx->driver_data = queue;
 464        return 0;
 465}
 466
 467static enum nvme_tcp_recv_state
 468nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
 469{
 470        return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
 471                (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
 472                NVME_TCP_RECV_DATA;
 473}
 474
 475static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
 476{
 477        queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
 478                                nvme_tcp_hdgst_len(queue);
 479        queue->pdu_offset = 0;
 480        queue->data_remaining = -1;
 481        queue->ddgst_remaining = 0;
 482}
 483
 484static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
 485{
 486        if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
 487                return;
 488
 489        dev_warn(ctrl->device, "starting error recovery\n");
 490        queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
 491}
 492
 493static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
 494                struct nvme_completion *cqe)
 495{
 496        struct nvme_tcp_request *req;
 497        struct request *rq;
 498
 499        rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
 500        if (!rq) {
 501                dev_err(queue->ctrl->ctrl.device,
 502                        "got bad cqe.command_id %#x on queue %d\n",
 503                        cqe->command_id, nvme_tcp_queue_id(queue));
 504                nvme_tcp_error_recovery(&queue->ctrl->ctrl);
 505                return -EINVAL;
 506        }
 507
 508        req = blk_mq_rq_to_pdu(rq);
 509        if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
 510                req->status = cqe->status;
 511
 512        if (!nvme_try_complete_req(rq, req->status, cqe->result))
 513                nvme_complete_rq(rq);
 514        queue->nr_cqe++;
 515
 516        return 0;
 517}
 518
 519static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
 520                struct nvme_tcp_data_pdu *pdu)
 521{
 522        struct request *rq;
 523
 524        rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
 525        if (!rq) {
 526                dev_err(queue->ctrl->ctrl.device,
 527                        "got bad c2hdata.command_id %#x on queue %d\n",
 528                        pdu->command_id, nvme_tcp_queue_id(queue));
 529                return -ENOENT;
 530        }
 531
 532        if (!blk_rq_payload_bytes(rq)) {
 533                dev_err(queue->ctrl->ctrl.device,
 534                        "queue %d tag %#x unexpected data\n",
 535                        nvme_tcp_queue_id(queue), rq->tag);
 536                return -EIO;
 537        }
 538
 539        queue->data_remaining = le32_to_cpu(pdu->data_length);
 540
 541        if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
 542            unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
 543                dev_err(queue->ctrl->ctrl.device,
 544                        "queue %d tag %#x SUCCESS set but not last PDU\n",
 545                        nvme_tcp_queue_id(queue), rq->tag);
 546                nvme_tcp_error_recovery(&queue->ctrl->ctrl);
 547                return -EPROTO;
 548        }
 549
 550        return 0;
 551}
 552
 553static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
 554                struct nvme_tcp_rsp_pdu *pdu)
 555{
 556        struct nvme_completion *cqe = &pdu->cqe;
 557        int ret = 0;
 558
 559        /*
 560         * AEN requests are special as they don't time out and can
 561         * survive any kind of queue freeze and often don't respond to
 562         * aborts.  We don't even bother to allocate a struct request
 563         * for them but rather special case them here.
 564         */
 565        if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
 566                                     cqe->command_id)))
 567                nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
 568                                &cqe->result);
 569        else
 570                ret = nvme_tcp_process_nvme_cqe(queue, cqe);
 571
 572        return ret;
 573}
 574
 575static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
 576                struct nvme_tcp_r2t_pdu *pdu)
 577{
 578        struct nvme_tcp_data_pdu *data = req->pdu;
 579        struct nvme_tcp_queue *queue = req->queue;
 580        struct request *rq = blk_mq_rq_from_pdu(req);
 581        u8 hdgst = nvme_tcp_hdgst_len(queue);
 582        u8 ddgst = nvme_tcp_ddgst_len(queue);
 583
 584        req->state = NVME_TCP_SEND_H2C_PDU;
 585        req->offset = 0;
 586        req->pdu_len = le32_to_cpu(pdu->r2t_length);
 587        req->pdu_sent = 0;
 588
 589        memset(data, 0, sizeof(*data));
 590        data->hdr.type = nvme_tcp_h2c_data;
 591        data->hdr.flags = NVME_TCP_F_DATA_LAST;
 592        if (queue->hdr_digest)
 593                data->hdr.flags |= NVME_TCP_F_HDGST;
 594        if (queue->data_digest)
 595                data->hdr.flags |= NVME_TCP_F_DDGST;
 596        data->hdr.hlen = sizeof(*data);
 597        data->hdr.pdo = data->hdr.hlen + hdgst;
 598        data->hdr.plen =
 599                cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
 600        data->ttag = pdu->ttag;
 601        data->command_id = nvme_cid(rq);
 602        data->data_offset = pdu->r2t_offset;
 603        data->data_length = cpu_to_le32(req->pdu_len);
 604}
 605
 606static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
 607                struct nvme_tcp_r2t_pdu *pdu)
 608{
 609        struct nvme_tcp_request *req;
 610        struct request *rq;
 611        u32 r2t_length = le32_to_cpu(pdu->r2t_length);
 612
 613        rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
 614        if (!rq) {
 615                dev_err(queue->ctrl->ctrl.device,
 616                        "got bad r2t.command_id %#x on queue %d\n",
 617                        pdu->command_id, nvme_tcp_queue_id(queue));
 618                return -ENOENT;
 619        }
 620        req = blk_mq_rq_to_pdu(rq);
 621
 622        if (unlikely(!r2t_length)) {
 623                dev_err(queue->ctrl->ctrl.device,
 624                        "req %d r2t len is %u, probably a bug...\n",
 625                        rq->tag, r2t_length);
 626                return -EPROTO;
 627        }
 628
 629        if (unlikely(req->data_sent + r2t_length > req->data_len)) {
 630                dev_err(queue->ctrl->ctrl.device,
 631                        "req %d r2t len %u exceeded data len %u (%zu sent)\n",
 632                        rq->tag, r2t_length, req->data_len, req->data_sent);
 633                return -EPROTO;
 634        }
 635
 636        if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
 637                dev_err(queue->ctrl->ctrl.device,
 638                        "req %d unexpected r2t offset %u (expected %zu)\n",
 639                        rq->tag, le32_to_cpu(pdu->r2t_offset), req->data_sent);
 640                return -EPROTO;
 641        }
 642
 643        nvme_tcp_setup_h2c_data_pdu(req, pdu);
 644        nvme_tcp_queue_request(req, false, true);
 645
 646        return 0;
 647}
 648
 649static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
 650                unsigned int *offset, size_t *len)
 651{
 652        struct nvme_tcp_hdr *hdr;
 653        char *pdu = queue->pdu;
 654        size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
 655        int ret;
 656
 657        ret = skb_copy_bits(skb, *offset,
 658                &pdu[queue->pdu_offset], rcv_len);
 659        if (unlikely(ret))
 660                return ret;
 661
 662        queue->pdu_remaining -= rcv_len;
 663        queue->pdu_offset += rcv_len;
 664        *offset += rcv_len;
 665        *len -= rcv_len;
 666        if (queue->pdu_remaining)
 667                return 0;
 668
 669        hdr = queue->pdu;
 670        if (queue->hdr_digest) {
 671                ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
 672                if (unlikely(ret))
 673                        return ret;
 674        }
 675
 676
 677        if (queue->data_digest) {
 678                ret = nvme_tcp_check_ddgst(queue, queue->pdu);
 679                if (unlikely(ret))
 680                        return ret;
 681        }
 682
 683        switch (hdr->type) {
 684        case nvme_tcp_c2h_data:
 685                return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
 686        case nvme_tcp_rsp:
 687                nvme_tcp_init_recv_ctx(queue);
 688                return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
 689        case nvme_tcp_r2t:
 690                nvme_tcp_init_recv_ctx(queue);
 691                return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
 692        default:
 693                dev_err(queue->ctrl->ctrl.device,
 694                        "unsupported pdu type (%d)\n", hdr->type);
 695                return -EINVAL;
 696        }
 697}
 698
 699static inline void nvme_tcp_end_request(struct request *rq, u16 status)
 700{
 701        union nvme_result res = {};
 702
 703        if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
 704                nvme_complete_rq(rq);
 705}
 706
 707static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
 708                              unsigned int *offset, size_t *len)
 709{
 710        struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
 711        struct request *rq =
 712                nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
 713        struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
 714
 715        while (true) {
 716                int recv_len, ret;
 717
 718                recv_len = min_t(size_t, *len, queue->data_remaining);
 719                if (!recv_len)
 720                        break;
 721
 722                if (!iov_iter_count(&req->iter)) {
 723                        req->curr_bio = req->curr_bio->bi_next;
 724
 725                        /*
 726                         * If we don`t have any bios it means that controller
 727                         * sent more data than we requested, hence error
 728                         */
 729                        if (!req->curr_bio) {
 730                                dev_err(queue->ctrl->ctrl.device,
 731                                        "queue %d no space in request %#x",
 732                                        nvme_tcp_queue_id(queue), rq->tag);
 733                                nvme_tcp_init_recv_ctx(queue);
 734                                return -EIO;
 735                        }
 736                        nvme_tcp_init_iter(req, READ);
 737                }
 738
 739                /* we can read only from what is left in this bio */
 740                recv_len = min_t(size_t, recv_len,
 741                                iov_iter_count(&req->iter));
 742
 743                if (queue->data_digest)
 744                        ret = skb_copy_and_hash_datagram_iter(skb, *offset,
 745                                &req->iter, recv_len, queue->rcv_hash);
 746                else
 747                        ret = skb_copy_datagram_iter(skb, *offset,
 748                                        &req->iter, recv_len);
 749                if (ret) {
 750                        dev_err(queue->ctrl->ctrl.device,
 751                                "queue %d failed to copy request %#x data",
 752                                nvme_tcp_queue_id(queue), rq->tag);
 753                        return ret;
 754                }
 755
 756                *len -= recv_len;
 757                *offset += recv_len;
 758                queue->data_remaining -= recv_len;
 759        }
 760
 761        if (!queue->data_remaining) {
 762                if (queue->data_digest) {
 763                        nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
 764                        queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
 765                } else {
 766                        if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
 767                                nvme_tcp_end_request(rq,
 768                                                le16_to_cpu(req->status));
 769                                queue->nr_cqe++;
 770                        }
 771                        nvme_tcp_init_recv_ctx(queue);
 772                }
 773        }
 774
 775        return 0;
 776}
 777
 778static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
 779                struct sk_buff *skb, unsigned int *offset, size_t *len)
 780{
 781        struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
 782        char *ddgst = (char *)&queue->recv_ddgst;
 783        size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
 784        off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
 785        int ret;
 786
 787        ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
 788        if (unlikely(ret))
 789                return ret;
 790
 791        queue->ddgst_remaining -= recv_len;
 792        *offset += recv_len;
 793        *len -= recv_len;
 794        if (queue->ddgst_remaining)
 795                return 0;
 796
 797        if (queue->recv_ddgst != queue->exp_ddgst) {
 798                struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
 799                                        pdu->command_id);
 800                struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
 801
 802                req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
 803
 804                dev_err(queue->ctrl->ctrl.device,
 805                        "data digest error: recv %#x expected %#x\n",
 806                        le32_to_cpu(queue->recv_ddgst),
 807                        le32_to_cpu(queue->exp_ddgst));
 808        }
 809
 810        if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
 811                struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
 812                                        pdu->command_id);
 813                struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
 814
 815                nvme_tcp_end_request(rq, le16_to_cpu(req->status));
 816                queue->nr_cqe++;
 817        }
 818
 819        nvme_tcp_init_recv_ctx(queue);
 820        return 0;
 821}
 822
 823static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
 824                             unsigned int offset, size_t len)
 825{
 826        struct nvme_tcp_queue *queue = desc->arg.data;
 827        size_t consumed = len;
 828        int result;
 829
 830        while (len) {
 831                switch (nvme_tcp_recv_state(queue)) {
 832                case NVME_TCP_RECV_PDU:
 833                        result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
 834                        break;
 835                case NVME_TCP_RECV_DATA:
 836                        result = nvme_tcp_recv_data(queue, skb, &offset, &len);
 837                        break;
 838                case NVME_TCP_RECV_DDGST:
 839                        result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
 840                        break;
 841                default:
 842                        result = -EFAULT;
 843                }
 844                if (result) {
 845                        dev_err(queue->ctrl->ctrl.device,
 846                                "receive failed:  %d\n", result);
 847                        queue->rd_enabled = false;
 848                        nvme_tcp_error_recovery(&queue->ctrl->ctrl);
 849                        return result;
 850                }
 851        }
 852
 853        return consumed;
 854}
 855
 856static void nvme_tcp_data_ready(struct sock *sk)
 857{
 858        struct nvme_tcp_queue *queue;
 859
 860        read_lock_bh(&sk->sk_callback_lock);
 861        queue = sk->sk_user_data;
 862        if (likely(queue && queue->rd_enabled) &&
 863            !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
 864                queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
 865        read_unlock_bh(&sk->sk_callback_lock);
 866}
 867
 868static void nvme_tcp_write_space(struct sock *sk)
 869{
 870        struct nvme_tcp_queue *queue;
 871
 872        read_lock_bh(&sk->sk_callback_lock);
 873        queue = sk->sk_user_data;
 874        if (likely(queue && sk_stream_is_writeable(sk))) {
 875                clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 876                queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
 877        }
 878        read_unlock_bh(&sk->sk_callback_lock);
 879}
 880
 881static void nvme_tcp_state_change(struct sock *sk)
 882{
 883        struct nvme_tcp_queue *queue;
 884
 885        read_lock_bh(&sk->sk_callback_lock);
 886        queue = sk->sk_user_data;
 887        if (!queue)
 888                goto done;
 889
 890        switch (sk->sk_state) {
 891        case TCP_CLOSE:
 892        case TCP_CLOSE_WAIT:
 893        case TCP_LAST_ACK:
 894        case TCP_FIN_WAIT1:
 895        case TCP_FIN_WAIT2:
 896                nvme_tcp_error_recovery(&queue->ctrl->ctrl);
 897                break;
 898        default:
 899                dev_info(queue->ctrl->ctrl.device,
 900                        "queue %d socket state %d\n",
 901                        nvme_tcp_queue_id(queue), sk->sk_state);
 902        }
 903
 904        queue->state_change(sk);
 905done:
 906        read_unlock_bh(&sk->sk_callback_lock);
 907}
 908
 909static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
 910{
 911        queue->request = NULL;
 912}
 913
 914static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
 915{
 916        nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR);
 917}
 918
 919static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
 920{
 921        struct nvme_tcp_queue *queue = req->queue;
 922        int req_data_len = req->data_len;
 923
 924        while (true) {
 925                struct page *page = nvme_tcp_req_cur_page(req);
 926                size_t offset = nvme_tcp_req_cur_offset(req);
 927                size_t len = nvme_tcp_req_cur_length(req);
 928                bool last = nvme_tcp_pdu_last_send(req, len);
 929                int req_data_sent = req->data_sent;
 930                int ret, flags = MSG_DONTWAIT;
 931
 932                if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
 933                        flags |= MSG_EOR;
 934                else
 935                        flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
 936
 937                if (sendpage_ok(page)) {
 938                        ret = kernel_sendpage(queue->sock, page, offset, len,
 939                                        flags);
 940                } else {
 941                        ret = sock_no_sendpage(queue->sock, page, offset, len,
 942                                        flags);
 943                }
 944                if (ret <= 0)
 945                        return ret;
 946
 947                if (queue->data_digest)
 948                        nvme_tcp_ddgst_update(queue->snd_hash, page,
 949                                        offset, ret);
 950
 951                /*
 952                 * update the request iterator except for the last payload send
 953                 * in the request where we don't want to modify it as we may
 954                 * compete with the RX path completing the request.
 955                 */
 956                if (req_data_sent + ret < req_data_len)
 957                        nvme_tcp_advance_req(req, ret);
 958
 959                /* fully successful last send in current PDU */
 960                if (last && ret == len) {
 961                        if (queue->data_digest) {
 962                                nvme_tcp_ddgst_final(queue->snd_hash,
 963                                        &req->ddgst);
 964                                req->state = NVME_TCP_SEND_DDGST;
 965                                req->offset = 0;
 966                        } else {
 967                                nvme_tcp_done_send_req(queue);
 968                        }
 969                        return 1;
 970                }
 971        }
 972        return -EAGAIN;
 973}
 974
 975static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
 976{
 977        struct nvme_tcp_queue *queue = req->queue;
 978        struct nvme_tcp_cmd_pdu *pdu = req->pdu;
 979        bool inline_data = nvme_tcp_has_inline_data(req);
 980        u8 hdgst = nvme_tcp_hdgst_len(queue);
 981        int len = sizeof(*pdu) + hdgst - req->offset;
 982        int flags = MSG_DONTWAIT;
 983        int ret;
 984
 985        if (inline_data || nvme_tcp_queue_more(queue))
 986                flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
 987        else
 988                flags |= MSG_EOR;
 989
 990        if (queue->hdr_digest && !req->offset)
 991                nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
 992
 993        ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
 994                        offset_in_page(pdu) + req->offset, len,  flags);
 995        if (unlikely(ret <= 0))
 996                return ret;
 997
 998        len -= ret;
 999        if (!len) {
1000                if (inline_data) {
1001                        req->state = NVME_TCP_SEND_DATA;
1002                        if (queue->data_digest)
1003                                crypto_ahash_init(queue->snd_hash);
1004                } else {
1005                        nvme_tcp_done_send_req(queue);
1006                }
1007                return 1;
1008        }
1009        req->offset += ret;
1010
1011        return -EAGAIN;
1012}
1013
1014static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1015{
1016        struct nvme_tcp_queue *queue = req->queue;
1017        struct nvme_tcp_data_pdu *pdu = req->pdu;
1018        u8 hdgst = nvme_tcp_hdgst_len(queue);
1019        int len = sizeof(*pdu) - req->offset + hdgst;
1020        int ret;
1021
1022        if (queue->hdr_digest && !req->offset)
1023                nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1024
1025        ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1026                        offset_in_page(pdu) + req->offset, len,
1027                        MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1028        if (unlikely(ret <= 0))
1029                return ret;
1030
1031        len -= ret;
1032        if (!len) {
1033                req->state = NVME_TCP_SEND_DATA;
1034                if (queue->data_digest)
1035                        crypto_ahash_init(queue->snd_hash);
1036                return 1;
1037        }
1038        req->offset += ret;
1039
1040        return -EAGAIN;
1041}
1042
1043static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1044{
1045        struct nvme_tcp_queue *queue = req->queue;
1046        size_t offset = req->offset;
1047        int ret;
1048        struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1049        struct kvec iov = {
1050                .iov_base = (u8 *)&req->ddgst + req->offset,
1051                .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1052        };
1053
1054        if (nvme_tcp_queue_more(queue))
1055                msg.msg_flags |= MSG_MORE;
1056        else
1057                msg.msg_flags |= MSG_EOR;
1058
1059        ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1060        if (unlikely(ret <= 0))
1061                return ret;
1062
1063        if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1064                nvme_tcp_done_send_req(queue);
1065                return 1;
1066        }
1067
1068        req->offset += ret;
1069        return -EAGAIN;
1070}
1071
1072static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1073{
1074        struct nvme_tcp_request *req;
1075        int ret = 1;
1076
1077        if (!queue->request) {
1078                queue->request = nvme_tcp_fetch_request(queue);
1079                if (!queue->request)
1080                        return 0;
1081        }
1082        req = queue->request;
1083
1084        if (req->state == NVME_TCP_SEND_CMD_PDU) {
1085                ret = nvme_tcp_try_send_cmd_pdu(req);
1086                if (ret <= 0)
1087                        goto done;
1088                if (!nvme_tcp_has_inline_data(req))
1089                        return ret;
1090        }
1091
1092        if (req->state == NVME_TCP_SEND_H2C_PDU) {
1093                ret = nvme_tcp_try_send_data_pdu(req);
1094                if (ret <= 0)
1095                        goto done;
1096        }
1097
1098        if (req->state == NVME_TCP_SEND_DATA) {
1099                ret = nvme_tcp_try_send_data(req);
1100                if (ret <= 0)
1101                        goto done;
1102        }
1103
1104        if (req->state == NVME_TCP_SEND_DDGST)
1105                ret = nvme_tcp_try_send_ddgst(req);
1106done:
1107        if (ret == -EAGAIN) {
1108                ret = 0;
1109        } else if (ret < 0) {
1110                dev_err(queue->ctrl->ctrl.device,
1111                        "failed to send request %d\n", ret);
1112                if (ret != -EPIPE && ret != -ECONNRESET)
1113                        nvme_tcp_fail_request(queue->request);
1114                nvme_tcp_done_send_req(queue);
1115        }
1116        return ret;
1117}
1118
1119static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1120{
1121        struct socket *sock = queue->sock;
1122        struct sock *sk = sock->sk;
1123        read_descriptor_t rd_desc;
1124        int consumed;
1125
1126        rd_desc.arg.data = queue;
1127        rd_desc.count = 1;
1128        lock_sock(sk);
1129        queue->nr_cqe = 0;
1130        consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1131        release_sock(sk);
1132        return consumed;
1133}
1134
1135static void nvme_tcp_io_work(struct work_struct *w)
1136{
1137        struct nvme_tcp_queue *queue =
1138                container_of(w, struct nvme_tcp_queue, io_work);
1139        unsigned long deadline = jiffies + msecs_to_jiffies(1);
1140
1141        do {
1142                bool pending = false;
1143                int result;
1144
1145                if (mutex_trylock(&queue->send_mutex)) {
1146                        result = nvme_tcp_try_send(queue);
1147                        mutex_unlock(&queue->send_mutex);
1148                        if (result > 0)
1149                                pending = true;
1150                        else if (unlikely(result < 0))
1151                                break;
1152                }
1153
1154                result = nvme_tcp_try_recv(queue);
1155                if (result > 0)
1156                        pending = true;
1157                else if (unlikely(result < 0))
1158                        return;
1159
1160                if (!pending)
1161                        return;
1162
1163        } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1164
1165        queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1166}
1167
1168static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1169{
1170        struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1171
1172        ahash_request_free(queue->rcv_hash);
1173        ahash_request_free(queue->snd_hash);
1174        crypto_free_ahash(tfm);
1175}
1176
1177static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1178{
1179        struct crypto_ahash *tfm;
1180
1181        tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1182        if (IS_ERR(tfm))
1183                return PTR_ERR(tfm);
1184
1185        queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1186        if (!queue->snd_hash)
1187                goto free_tfm;
1188        ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1189
1190        queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1191        if (!queue->rcv_hash)
1192                goto free_snd_hash;
1193        ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1194
1195        return 0;
1196free_snd_hash:
1197        ahash_request_free(queue->snd_hash);
1198free_tfm:
1199        crypto_free_ahash(tfm);
1200        return -ENOMEM;
1201}
1202
1203static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1204{
1205        struct nvme_tcp_request *async = &ctrl->async_req;
1206
1207        page_frag_free(async->pdu);
1208}
1209
1210static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1211{
1212        struct nvme_tcp_queue *queue = &ctrl->queues[0];
1213        struct nvme_tcp_request *async = &ctrl->async_req;
1214        u8 hdgst = nvme_tcp_hdgst_len(queue);
1215
1216        async->pdu = page_frag_alloc(&queue->pf_cache,
1217                sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1218                GFP_KERNEL | __GFP_ZERO);
1219        if (!async->pdu)
1220                return -ENOMEM;
1221
1222        async->queue = &ctrl->queues[0];
1223        return 0;
1224}
1225
1226static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1227{
1228        struct page *page;
1229        struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1230        struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1231
1232        if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1233                return;
1234
1235        if (queue->hdr_digest || queue->data_digest)
1236                nvme_tcp_free_crypto(queue);
1237
1238        if (queue->pf_cache.va) {
1239                page = virt_to_head_page(queue->pf_cache.va);
1240                __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1241                queue->pf_cache.va = NULL;
1242        }
1243        sock_release(queue->sock);
1244        kfree(queue->pdu);
1245        mutex_destroy(&queue->send_mutex);
1246        mutex_destroy(&queue->queue_lock);
1247}
1248
1249static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1250{
1251        struct nvme_tcp_icreq_pdu *icreq;
1252        struct nvme_tcp_icresp_pdu *icresp;
1253        struct msghdr msg = {};
1254        struct kvec iov;
1255        bool ctrl_hdgst, ctrl_ddgst;
1256        int ret;
1257
1258        icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1259        if (!icreq)
1260                return -ENOMEM;
1261
1262        icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1263        if (!icresp) {
1264                ret = -ENOMEM;
1265                goto free_icreq;
1266        }
1267
1268        icreq->hdr.type = nvme_tcp_icreq;
1269        icreq->hdr.hlen = sizeof(*icreq);
1270        icreq->hdr.pdo = 0;
1271        icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1272        icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1273        icreq->maxr2t = 0; /* single inflight r2t supported */
1274        icreq->hpda = 0; /* no alignment constraint */
1275        if (queue->hdr_digest)
1276                icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1277        if (queue->data_digest)
1278                icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1279
1280        iov.iov_base = icreq;
1281        iov.iov_len = sizeof(*icreq);
1282        ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1283        if (ret < 0)
1284                goto free_icresp;
1285
1286        memset(&msg, 0, sizeof(msg));
1287        iov.iov_base = icresp;
1288        iov.iov_len = sizeof(*icresp);
1289        ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1290                        iov.iov_len, msg.msg_flags);
1291        if (ret < 0)
1292                goto free_icresp;
1293
1294        ret = -EINVAL;
1295        if (icresp->hdr.type != nvme_tcp_icresp) {
1296                pr_err("queue %d: bad type returned %d\n",
1297                        nvme_tcp_queue_id(queue), icresp->hdr.type);
1298                goto free_icresp;
1299        }
1300
1301        if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1302                pr_err("queue %d: bad pdu length returned %d\n",
1303                        nvme_tcp_queue_id(queue), icresp->hdr.plen);
1304                goto free_icresp;
1305        }
1306
1307        if (icresp->pfv != NVME_TCP_PFV_1_0) {
1308                pr_err("queue %d: bad pfv returned %d\n",
1309                        nvme_tcp_queue_id(queue), icresp->pfv);
1310                goto free_icresp;
1311        }
1312
1313        ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1314        if ((queue->data_digest && !ctrl_ddgst) ||
1315            (!queue->data_digest && ctrl_ddgst)) {
1316                pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1317                        nvme_tcp_queue_id(queue),
1318                        queue->data_digest ? "enabled" : "disabled",
1319                        ctrl_ddgst ? "enabled" : "disabled");
1320                goto free_icresp;
1321        }
1322
1323        ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1324        if ((queue->hdr_digest && !ctrl_hdgst) ||
1325            (!queue->hdr_digest && ctrl_hdgst)) {
1326                pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1327                        nvme_tcp_queue_id(queue),
1328                        queue->hdr_digest ? "enabled" : "disabled",
1329                        ctrl_hdgst ? "enabled" : "disabled");
1330                goto free_icresp;
1331        }
1332
1333        if (icresp->cpda != 0) {
1334                pr_err("queue %d: unsupported cpda returned %d\n",
1335                        nvme_tcp_queue_id(queue), icresp->cpda);
1336                goto free_icresp;
1337        }
1338
1339        ret = 0;
1340free_icresp:
1341        kfree(icresp);
1342free_icreq:
1343        kfree(icreq);
1344        return ret;
1345}
1346
1347static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1348{
1349        return nvme_tcp_queue_id(queue) == 0;
1350}
1351
1352static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1353{
1354        struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1355        int qid = nvme_tcp_queue_id(queue);
1356
1357        return !nvme_tcp_admin_queue(queue) &&
1358                qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1359}
1360
1361static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1362{
1363        struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1364        int qid = nvme_tcp_queue_id(queue);
1365
1366        return !nvme_tcp_admin_queue(queue) &&
1367                !nvme_tcp_default_queue(queue) &&
1368                qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1369                          ctrl->io_queues[HCTX_TYPE_READ];
1370}
1371
1372static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1373{
1374        struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1375        int qid = nvme_tcp_queue_id(queue);
1376
1377        return !nvme_tcp_admin_queue(queue) &&
1378                !nvme_tcp_default_queue(queue) &&
1379                !nvme_tcp_read_queue(queue) &&
1380                qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1381                          ctrl->io_queues[HCTX_TYPE_READ] +
1382                          ctrl->io_queues[HCTX_TYPE_POLL];
1383}
1384
1385static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1386{
1387        struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1388        int qid = nvme_tcp_queue_id(queue);
1389        int n = 0;
1390
1391        if (nvme_tcp_default_queue(queue))
1392                n = qid - 1;
1393        else if (nvme_tcp_read_queue(queue))
1394                n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1395        else if (nvme_tcp_poll_queue(queue))
1396                n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1397                                ctrl->io_queues[HCTX_TYPE_READ] - 1;
1398        queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1399}
1400
1401static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1402                int qid, size_t queue_size)
1403{
1404        struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1405        struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1406        int ret, rcv_pdu_size;
1407
1408        mutex_init(&queue->queue_lock);
1409        queue->ctrl = ctrl;
1410        init_llist_head(&queue->req_list);
1411        INIT_LIST_HEAD(&queue->send_list);
1412        mutex_init(&queue->send_mutex);
1413        INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1414        queue->queue_size = queue_size;
1415
1416        if (qid > 0)
1417                queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1418        else
1419                queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1420                                                NVME_TCP_ADMIN_CCSZ;
1421
1422        ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1423                        IPPROTO_TCP, &queue->sock);
1424        if (ret) {
1425                dev_err(nctrl->device,
1426                        "failed to create socket: %d\n", ret);
1427                goto err_destroy_mutex;
1428        }
1429
1430        /* Single syn retry */
1431        tcp_sock_set_syncnt(queue->sock->sk, 1);
1432
1433        /* Set TCP no delay */
1434        tcp_sock_set_nodelay(queue->sock->sk);
1435
1436        /*
1437         * Cleanup whatever is sitting in the TCP transmit queue on socket
1438         * close. This is done to prevent stale data from being sent should
1439         * the network connection be restored before TCP times out.
1440         */
1441        sock_no_linger(queue->sock->sk);
1442
1443        if (so_priority > 0)
1444                sock_set_priority(queue->sock->sk, so_priority);
1445
1446        /* Set socket type of service */
1447        if (nctrl->opts->tos >= 0)
1448                ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1449
1450        /* Set 10 seconds timeout for icresp recvmsg */
1451        queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1452
1453        queue->sock->sk->sk_allocation = GFP_ATOMIC;
1454        nvme_tcp_set_queue_io_cpu(queue);
1455        queue->request = NULL;
1456        queue->data_remaining = 0;
1457        queue->ddgst_remaining = 0;
1458        queue->pdu_remaining = 0;
1459        queue->pdu_offset = 0;
1460        sk_set_memalloc(queue->sock->sk);
1461
1462        if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1463                ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1464                        sizeof(ctrl->src_addr));
1465                if (ret) {
1466                        dev_err(nctrl->device,
1467                                "failed to bind queue %d socket %d\n",
1468                                qid, ret);
1469                        goto err_sock;
1470                }
1471        }
1472
1473        if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1474                char *iface = nctrl->opts->host_iface;
1475                sockptr_t optval = KERNEL_SOCKPTR(iface);
1476
1477                ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1478                                      optval, strlen(iface));
1479                if (ret) {
1480                        dev_err(nctrl->device,
1481                          "failed to bind to interface %s queue %d err %d\n",
1482                          iface, qid, ret);
1483                        goto err_sock;
1484                }
1485        }
1486
1487        queue->hdr_digest = nctrl->opts->hdr_digest;
1488        queue->data_digest = nctrl->opts->data_digest;
1489        if (queue->hdr_digest || queue->data_digest) {
1490                ret = nvme_tcp_alloc_crypto(queue);
1491                if (ret) {
1492                        dev_err(nctrl->device,
1493                                "failed to allocate queue %d crypto\n", qid);
1494                        goto err_sock;
1495                }
1496        }
1497
1498        rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1499                        nvme_tcp_hdgst_len(queue);
1500        queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1501        if (!queue->pdu) {
1502                ret = -ENOMEM;
1503                goto err_crypto;
1504        }
1505
1506        dev_dbg(nctrl->device, "connecting queue %d\n",
1507                        nvme_tcp_queue_id(queue));
1508
1509        ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1510                sizeof(ctrl->addr), 0);
1511        if (ret) {
1512                dev_err(nctrl->device,
1513                        "failed to connect socket: %d\n", ret);
1514                goto err_rcv_pdu;
1515        }
1516
1517        ret = nvme_tcp_init_connection(queue);
1518        if (ret)
1519                goto err_init_connect;
1520
1521        queue->rd_enabled = true;
1522        set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1523        nvme_tcp_init_recv_ctx(queue);
1524
1525        write_lock_bh(&queue->sock->sk->sk_callback_lock);
1526        queue->sock->sk->sk_user_data = queue;
1527        queue->state_change = queue->sock->sk->sk_state_change;
1528        queue->data_ready = queue->sock->sk->sk_data_ready;
1529        queue->write_space = queue->sock->sk->sk_write_space;
1530        queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1531        queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1532        queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1533#ifdef CONFIG_NET_RX_BUSY_POLL
1534        queue->sock->sk->sk_ll_usec = 1;
1535#endif
1536        write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1537
1538        return 0;
1539
1540err_init_connect:
1541        kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1542err_rcv_pdu:
1543        kfree(queue->pdu);
1544err_crypto:
1545        if (queue->hdr_digest || queue->data_digest)
1546                nvme_tcp_free_crypto(queue);
1547err_sock:
1548        sock_release(queue->sock);
1549        queue->sock = NULL;
1550err_destroy_mutex:
1551        mutex_destroy(&queue->send_mutex);
1552        mutex_destroy(&queue->queue_lock);
1553        return ret;
1554}
1555
1556static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1557{
1558        struct socket *sock = queue->sock;
1559
1560        write_lock_bh(&sock->sk->sk_callback_lock);
1561        sock->sk->sk_user_data  = NULL;
1562        sock->sk->sk_data_ready = queue->data_ready;
1563        sock->sk->sk_state_change = queue->state_change;
1564        sock->sk->sk_write_space  = queue->write_space;
1565        write_unlock_bh(&sock->sk->sk_callback_lock);
1566}
1567
1568static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1569{
1570        kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1571        nvme_tcp_restore_sock_calls(queue);
1572        cancel_work_sync(&queue->io_work);
1573}
1574
1575static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1576{
1577        struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1578        struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1579
1580        mutex_lock(&queue->queue_lock);
1581        if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1582                __nvme_tcp_stop_queue(queue);
1583        mutex_unlock(&queue->queue_lock);
1584}
1585
1586static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1587{
1588        struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1589        int ret;
1590
1591        if (idx)
1592                ret = nvmf_connect_io_queue(nctrl, idx);
1593        else
1594                ret = nvmf_connect_admin_queue(nctrl);
1595
1596        if (!ret) {
1597                set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1598        } else {
1599                if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1600                        __nvme_tcp_stop_queue(&ctrl->queues[idx]);
1601                dev_err(nctrl->device,
1602                        "failed to connect queue: %d ret=%d\n", idx, ret);
1603        }
1604        return ret;
1605}
1606
1607static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1608                bool admin)
1609{
1610        struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1611        struct blk_mq_tag_set *set;
1612        int ret;
1613
1614        if (admin) {
1615                set = &ctrl->admin_tag_set;
1616                memset(set, 0, sizeof(*set));
1617                set->ops = &nvme_tcp_admin_mq_ops;
1618                set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1619                set->reserved_tags = NVMF_RESERVED_TAGS;
1620                set->numa_node = nctrl->numa_node;
1621                set->flags = BLK_MQ_F_BLOCKING;
1622                set->cmd_size = sizeof(struct nvme_tcp_request);
1623                set->driver_data = ctrl;
1624                set->nr_hw_queues = 1;
1625                set->timeout = NVME_ADMIN_TIMEOUT;
1626        } else {
1627                set = &ctrl->tag_set;
1628                memset(set, 0, sizeof(*set));
1629                set->ops = &nvme_tcp_mq_ops;
1630                set->queue_depth = nctrl->sqsize + 1;
1631                set->reserved_tags = NVMF_RESERVED_TAGS;
1632                set->numa_node = nctrl->numa_node;
1633                set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1634                set->cmd_size = sizeof(struct nvme_tcp_request);
1635                set->driver_data = ctrl;
1636                set->nr_hw_queues = nctrl->queue_count - 1;
1637                set->timeout = NVME_IO_TIMEOUT;
1638                set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1639        }
1640
1641        ret = blk_mq_alloc_tag_set(set);
1642        if (ret)
1643                return ERR_PTR(ret);
1644
1645        return set;
1646}
1647
1648static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1649{
1650        if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1651                cancel_work_sync(&ctrl->async_event_work);
1652                nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1653                to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1654        }
1655
1656        nvme_tcp_free_queue(ctrl, 0);
1657}
1658
1659static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1660{
1661        int i;
1662
1663        for (i = 1; i < ctrl->queue_count; i++)
1664                nvme_tcp_free_queue(ctrl, i);
1665}
1666
1667static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1668{
1669        int i;
1670
1671        for (i = 1; i < ctrl->queue_count; i++)
1672                nvme_tcp_stop_queue(ctrl, i);
1673}
1674
1675static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1676{
1677        int i, ret = 0;
1678
1679        for (i = 1; i < ctrl->queue_count; i++) {
1680                ret = nvme_tcp_start_queue(ctrl, i);
1681                if (ret)
1682                        goto out_stop_queues;
1683        }
1684
1685        return 0;
1686
1687out_stop_queues:
1688        for (i--; i >= 1; i--)
1689                nvme_tcp_stop_queue(ctrl, i);
1690        return ret;
1691}
1692
1693static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1694{
1695        int ret;
1696
1697        ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1698        if (ret)
1699                return ret;
1700
1701        ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1702        if (ret)
1703                goto out_free_queue;
1704
1705        return 0;
1706
1707out_free_queue:
1708        nvme_tcp_free_queue(ctrl, 0);
1709        return ret;
1710}
1711
1712static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1713{
1714        int i, ret;
1715
1716        for (i = 1; i < ctrl->queue_count; i++) {
1717                ret = nvme_tcp_alloc_queue(ctrl, i,
1718                                ctrl->sqsize + 1);
1719                if (ret)
1720                        goto out_free_queues;
1721        }
1722
1723        return 0;
1724
1725out_free_queues:
1726        for (i--; i >= 1; i--)
1727                nvme_tcp_free_queue(ctrl, i);
1728
1729        return ret;
1730}
1731
1732static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1733{
1734        unsigned int nr_io_queues;
1735
1736        nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1737        nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1738        nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1739
1740        return nr_io_queues;
1741}
1742
1743static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1744                unsigned int nr_io_queues)
1745{
1746        struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1747        struct nvmf_ctrl_options *opts = nctrl->opts;
1748
1749        if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1750                /*
1751                 * separate read/write queues
1752                 * hand out dedicated default queues only after we have
1753                 * sufficient read queues.
1754                 */
1755                ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1756                nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1757                ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1758                        min(opts->nr_write_queues, nr_io_queues);
1759                nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1760        } else {
1761                /*
1762                 * shared read/write queues
1763                 * either no write queues were requested, or we don't have
1764                 * sufficient queue count to have dedicated default queues.
1765                 */
1766                ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1767                        min(opts->nr_io_queues, nr_io_queues);
1768                nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1769        }
1770
1771        if (opts->nr_poll_queues && nr_io_queues) {
1772                /* map dedicated poll queues only if we have queues left */
1773                ctrl->io_queues[HCTX_TYPE_POLL] =
1774                        min(opts->nr_poll_queues, nr_io_queues);
1775        }
1776}
1777
1778static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1779{
1780        unsigned int nr_io_queues;
1781        int ret;
1782
1783        nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1784        ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1785        if (ret)
1786                return ret;
1787
1788        if (nr_io_queues == 0) {
1789                dev_err(ctrl->device,
1790                        "unable to set any I/O queues\n");
1791                return -ENOMEM;
1792        }
1793
1794        ctrl->queue_count = nr_io_queues + 1;
1795        dev_info(ctrl->device,
1796                "creating %d I/O queues.\n", nr_io_queues);
1797
1798        nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1799
1800        return __nvme_tcp_alloc_io_queues(ctrl);
1801}
1802
1803static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1804{
1805        nvme_tcp_stop_io_queues(ctrl);
1806        if (remove) {
1807                blk_cleanup_queue(ctrl->connect_q);
1808                blk_mq_free_tag_set(ctrl->tagset);
1809        }
1810        nvme_tcp_free_io_queues(ctrl);
1811}
1812
1813static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1814{
1815        int ret;
1816
1817        ret = nvme_tcp_alloc_io_queues(ctrl);
1818        if (ret)
1819                return ret;
1820
1821        if (new) {
1822                ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1823                if (IS_ERR(ctrl->tagset)) {
1824                        ret = PTR_ERR(ctrl->tagset);
1825                        goto out_free_io_queues;
1826                }
1827
1828                ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1829                if (IS_ERR(ctrl->connect_q)) {
1830                        ret = PTR_ERR(ctrl->connect_q);
1831                        goto out_free_tag_set;
1832                }
1833        }
1834
1835        ret = nvme_tcp_start_io_queues(ctrl);
1836        if (ret)
1837                goto out_cleanup_connect_q;
1838
1839        if (!new) {
1840                nvme_start_queues(ctrl);
1841                if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1842                        /*
1843                         * If we timed out waiting for freeze we are likely to
1844                         * be stuck.  Fail the controller initialization just
1845                         * to be safe.
1846                         */
1847                        ret = -ENODEV;
1848                        goto out_wait_freeze_timed_out;
1849                }
1850                blk_mq_update_nr_hw_queues(ctrl->tagset,
1851                        ctrl->queue_count - 1);
1852                nvme_unfreeze(ctrl);
1853        }
1854
1855        return 0;
1856
1857out_wait_freeze_timed_out:
1858        nvme_stop_queues(ctrl);
1859        nvme_sync_io_queues(ctrl);
1860        nvme_tcp_stop_io_queues(ctrl);
1861out_cleanup_connect_q:
1862        nvme_cancel_tagset(ctrl);
1863        if (new)
1864                blk_cleanup_queue(ctrl->connect_q);
1865out_free_tag_set:
1866        if (new)
1867                blk_mq_free_tag_set(ctrl->tagset);
1868out_free_io_queues:
1869        nvme_tcp_free_io_queues(ctrl);
1870        return ret;
1871}
1872
1873static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1874{
1875        nvme_tcp_stop_queue(ctrl, 0);
1876        if (remove) {
1877                blk_cleanup_queue(ctrl->admin_q);
1878                blk_cleanup_queue(ctrl->fabrics_q);
1879                blk_mq_free_tag_set(ctrl->admin_tagset);
1880        }
1881        nvme_tcp_free_admin_queue(ctrl);
1882}
1883
1884static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1885{
1886        int error;
1887
1888        error = nvme_tcp_alloc_admin_queue(ctrl);
1889        if (error)
1890                return error;
1891
1892        if (new) {
1893                ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1894                if (IS_ERR(ctrl->admin_tagset)) {
1895                        error = PTR_ERR(ctrl->admin_tagset);
1896                        goto out_free_queue;
1897                }
1898
1899                ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1900                if (IS_ERR(ctrl->fabrics_q)) {
1901                        error = PTR_ERR(ctrl->fabrics_q);
1902                        goto out_free_tagset;
1903                }
1904
1905                ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1906                if (IS_ERR(ctrl->admin_q)) {
1907                        error = PTR_ERR(ctrl->admin_q);
1908                        goto out_cleanup_fabrics_q;
1909                }
1910        }
1911
1912        error = nvme_tcp_start_queue(ctrl, 0);
1913        if (error)
1914                goto out_cleanup_queue;
1915
1916        error = nvme_enable_ctrl(ctrl);
1917        if (error)
1918                goto out_stop_queue;
1919
1920        nvme_start_admin_queue(ctrl);
1921
1922        error = nvme_init_ctrl_finish(ctrl);
1923        if (error)
1924                goto out_quiesce_queue;
1925
1926        return 0;
1927
1928out_quiesce_queue:
1929        nvme_stop_admin_queue(ctrl);
1930        blk_sync_queue(ctrl->admin_q);
1931out_stop_queue:
1932        nvme_tcp_stop_queue(ctrl, 0);
1933        nvme_cancel_admin_tagset(ctrl);
1934out_cleanup_queue:
1935        if (new)
1936                blk_cleanup_queue(ctrl->admin_q);
1937out_cleanup_fabrics_q:
1938        if (new)
1939                blk_cleanup_queue(ctrl->fabrics_q);
1940out_free_tagset:
1941        if (new)
1942                blk_mq_free_tag_set(ctrl->admin_tagset);
1943out_free_queue:
1944        nvme_tcp_free_admin_queue(ctrl);
1945        return error;
1946}
1947
1948static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1949                bool remove)
1950{
1951        nvme_stop_admin_queue(ctrl);
1952        blk_sync_queue(ctrl->admin_q);
1953        nvme_tcp_stop_queue(ctrl, 0);
1954        nvme_cancel_admin_tagset(ctrl);
1955        if (remove)
1956                nvme_start_admin_queue(ctrl);
1957        nvme_tcp_destroy_admin_queue(ctrl, remove);
1958}
1959
1960static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1961                bool remove)
1962{
1963        if (ctrl->queue_count <= 1)
1964                return;
1965        nvme_stop_admin_queue(ctrl);
1966        nvme_start_freeze(ctrl);
1967        nvme_stop_queues(ctrl);
1968        nvme_sync_io_queues(ctrl);
1969        nvme_tcp_stop_io_queues(ctrl);
1970        nvme_cancel_tagset(ctrl);
1971        if (remove)
1972                nvme_start_queues(ctrl);
1973        nvme_tcp_destroy_io_queues(ctrl, remove);
1974}
1975
1976static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1977{
1978        /* If we are resetting/deleting then do nothing */
1979        if (ctrl->state != NVME_CTRL_CONNECTING) {
1980                WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1981                        ctrl->state == NVME_CTRL_LIVE);
1982                return;
1983        }
1984
1985        if (nvmf_should_reconnect(ctrl)) {
1986                dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1987                        ctrl->opts->reconnect_delay);
1988                queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1989                                ctrl->opts->reconnect_delay * HZ);
1990        } else {
1991                dev_info(ctrl->device, "Removing controller...\n");
1992                nvme_delete_ctrl(ctrl);
1993        }
1994}
1995
1996static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1997{
1998        struct nvmf_ctrl_options *opts = ctrl->opts;
1999        int ret;
2000
2001        ret = nvme_tcp_configure_admin_queue(ctrl, new);
2002        if (ret)
2003                return ret;
2004
2005        if (ctrl->icdoff) {
2006                ret = -EOPNOTSUPP;
2007                dev_err(ctrl->device, "icdoff is not supported!\n");
2008                goto destroy_admin;
2009        }
2010
2011        if (!nvme_ctrl_sgl_supported(ctrl)) {
2012                ret = -EOPNOTSUPP;
2013                dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2014                goto destroy_admin;
2015        }
2016
2017        if (opts->queue_size > ctrl->sqsize + 1)
2018                dev_warn(ctrl->device,
2019                        "queue_size %zu > ctrl sqsize %u, clamping down\n",
2020                        opts->queue_size, ctrl->sqsize + 1);
2021
2022        if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2023                dev_warn(ctrl->device,
2024                        "sqsize %u > ctrl maxcmd %u, clamping down\n",
2025                        ctrl->sqsize + 1, ctrl->maxcmd);
2026                ctrl->sqsize = ctrl->maxcmd - 1;
2027        }
2028
2029        if (ctrl->queue_count > 1) {
2030                ret = nvme_tcp_configure_io_queues(ctrl, new);
2031                if (ret)
2032                        goto destroy_admin;
2033        }
2034
2035        if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2036                /*
2037                 * state change failure is ok if we started ctrl delete,
2038                 * unless we're during creation of a new controller to
2039                 * avoid races with teardown flow.
2040                 */
2041                WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2042                             ctrl->state != NVME_CTRL_DELETING_NOIO);
2043                WARN_ON_ONCE(new);
2044                ret = -EINVAL;
2045                goto destroy_io;
2046        }
2047
2048        nvme_start_ctrl(ctrl);
2049        return 0;
2050
2051destroy_io:
2052        if (ctrl->queue_count > 1) {
2053                nvme_stop_queues(ctrl);
2054                nvme_sync_io_queues(ctrl);
2055                nvme_tcp_stop_io_queues(ctrl);
2056                nvme_cancel_tagset(ctrl);
2057                nvme_tcp_destroy_io_queues(ctrl, new);
2058        }
2059destroy_admin:
2060        nvme_stop_admin_queue(ctrl);
2061        blk_sync_queue(ctrl->admin_q);
2062        nvme_tcp_stop_queue(ctrl, 0);
2063        nvme_cancel_admin_tagset(ctrl);
2064        nvme_tcp_destroy_admin_queue(ctrl, new);
2065        return ret;
2066}
2067
2068static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2069{
2070        struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2071                        struct nvme_tcp_ctrl, connect_work);
2072        struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2073
2074        ++ctrl->nr_reconnects;
2075
2076        if (nvme_tcp_setup_ctrl(ctrl, false))
2077                goto requeue;
2078
2079        dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2080                        ctrl->nr_reconnects);
2081
2082        ctrl->nr_reconnects = 0;
2083
2084        return;
2085
2086requeue:
2087        dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2088                        ctrl->nr_reconnects);
2089        nvme_tcp_reconnect_or_remove(ctrl);
2090}
2091
2092static void nvme_tcp_error_recovery_work(struct work_struct *work)
2093{
2094        struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2095                                struct nvme_tcp_ctrl, err_work);
2096        struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2097
2098        nvme_stop_keep_alive(ctrl);
2099        nvme_tcp_teardown_io_queues(ctrl, false);
2100        /* unquiesce to fail fast pending requests */
2101        nvme_start_queues(ctrl);
2102        nvme_tcp_teardown_admin_queue(ctrl, false);
2103        nvme_start_admin_queue(ctrl);
2104
2105        if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2106                /* state change failure is ok if we started ctrl delete */
2107                WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2108                             ctrl->state != NVME_CTRL_DELETING_NOIO);
2109                return;
2110        }
2111
2112        nvme_tcp_reconnect_or_remove(ctrl);
2113}
2114
2115static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2116{
2117        cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2118        cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2119
2120        nvme_tcp_teardown_io_queues(ctrl, shutdown);
2121        nvme_stop_admin_queue(ctrl);
2122        if (shutdown)
2123                nvme_shutdown_ctrl(ctrl);
2124        else
2125                nvme_disable_ctrl(ctrl);
2126        nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2127}
2128
2129static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2130{
2131        nvme_tcp_teardown_ctrl(ctrl, true);
2132}
2133
2134static void nvme_reset_ctrl_work(struct work_struct *work)
2135{
2136        struct nvme_ctrl *ctrl =
2137                container_of(work, struct nvme_ctrl, reset_work);
2138
2139        nvme_stop_ctrl(ctrl);
2140        nvme_tcp_teardown_ctrl(ctrl, false);
2141
2142        if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2143                /* state change failure is ok if we started ctrl delete */
2144                WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2145                             ctrl->state != NVME_CTRL_DELETING_NOIO);
2146                return;
2147        }
2148
2149        if (nvme_tcp_setup_ctrl(ctrl, false))
2150                goto out_fail;
2151
2152        return;
2153
2154out_fail:
2155        ++ctrl->nr_reconnects;
2156        nvme_tcp_reconnect_or_remove(ctrl);
2157}
2158
2159static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2160{
2161        struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2162
2163        if (list_empty(&ctrl->list))
2164                goto free_ctrl;
2165
2166        mutex_lock(&nvme_tcp_ctrl_mutex);
2167        list_del(&ctrl->list);
2168        mutex_unlock(&nvme_tcp_ctrl_mutex);
2169
2170        nvmf_free_options(nctrl->opts);
2171free_ctrl:
2172        kfree(ctrl->queues);
2173        kfree(ctrl);
2174}
2175
2176static void nvme_tcp_set_sg_null(struct nvme_command *c)
2177{
2178        struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2179
2180        sg->addr = 0;
2181        sg->length = 0;
2182        sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2183                        NVME_SGL_FMT_TRANSPORT_A;
2184}
2185
2186static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2187                struct nvme_command *c, u32 data_len)
2188{
2189        struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2190
2191        sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2192        sg->length = cpu_to_le32(data_len);
2193        sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2194}
2195
2196static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2197                u32 data_len)
2198{
2199        struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2200
2201        sg->addr = 0;
2202        sg->length = cpu_to_le32(data_len);
2203        sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2204                        NVME_SGL_FMT_TRANSPORT_A;
2205}
2206
2207static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2208{
2209        struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2210        struct nvme_tcp_queue *queue = &ctrl->queues[0];
2211        struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2212        struct nvme_command *cmd = &pdu->cmd;
2213        u8 hdgst = nvme_tcp_hdgst_len(queue);
2214
2215        memset(pdu, 0, sizeof(*pdu));
2216        pdu->hdr.type = nvme_tcp_cmd;
2217        if (queue->hdr_digest)
2218                pdu->hdr.flags |= NVME_TCP_F_HDGST;
2219        pdu->hdr.hlen = sizeof(*pdu);
2220        pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2221
2222        cmd->common.opcode = nvme_admin_async_event;
2223        cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2224        cmd->common.flags |= NVME_CMD_SGL_METABUF;
2225        nvme_tcp_set_sg_null(cmd);
2226
2227        ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2228        ctrl->async_req.offset = 0;
2229        ctrl->async_req.curr_bio = NULL;
2230        ctrl->async_req.data_len = 0;
2231
2232        nvme_tcp_queue_request(&ctrl->async_req, true, true);
2233}
2234
2235static void nvme_tcp_complete_timed_out(struct request *rq)
2236{
2237        struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2238        struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2239
2240        nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2241        if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2242                nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2243                blk_mq_complete_request(rq);
2244        }
2245}
2246
2247static enum blk_eh_timer_return
2248nvme_tcp_timeout(struct request *rq, bool reserved)
2249{
2250        struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2251        struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2252        struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2253
2254        dev_warn(ctrl->device,
2255                "queue %d: timeout request %#x type %d\n",
2256                nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2257
2258        if (ctrl->state != NVME_CTRL_LIVE) {
2259                /*
2260                 * If we are resetting, connecting or deleting we should
2261                 * complete immediately because we may block controller
2262                 * teardown or setup sequence
2263                 * - ctrl disable/shutdown fabrics requests
2264                 * - connect requests
2265                 * - initialization admin requests
2266                 * - I/O requests that entered after unquiescing and
2267                 *   the controller stopped responding
2268                 *
2269                 * All other requests should be cancelled by the error
2270                 * recovery work, so it's fine that we fail it here.
2271                 */
2272                nvme_tcp_complete_timed_out(rq);
2273                return BLK_EH_DONE;
2274        }
2275
2276        /*
2277         * LIVE state should trigger the normal error recovery which will
2278         * handle completing this request.
2279         */
2280        nvme_tcp_error_recovery(ctrl);
2281        return BLK_EH_RESET_TIMER;
2282}
2283
2284static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2285                        struct request *rq)
2286{
2287        struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2288        struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2289        struct nvme_command *c = &pdu->cmd;
2290
2291        c->common.flags |= NVME_CMD_SGL_METABUF;
2292
2293        if (!blk_rq_nr_phys_segments(rq))
2294                nvme_tcp_set_sg_null(c);
2295        else if (rq_data_dir(rq) == WRITE &&
2296            req->data_len <= nvme_tcp_inline_data_size(queue))
2297                nvme_tcp_set_sg_inline(queue, c, req->data_len);
2298        else
2299                nvme_tcp_set_sg_host_data(c, req->data_len);
2300
2301        return 0;
2302}
2303
2304static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2305                struct request *rq)
2306{
2307        struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2308        struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2309        struct nvme_tcp_queue *queue = req->queue;
2310        u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2311        blk_status_t ret;
2312
2313        ret = nvme_setup_cmd(ns, rq);
2314        if (ret)
2315                return ret;
2316
2317        req->state = NVME_TCP_SEND_CMD_PDU;
2318        req->status = cpu_to_le16(NVME_SC_SUCCESS);
2319        req->offset = 0;
2320        req->data_sent = 0;
2321        req->pdu_len = 0;
2322        req->pdu_sent = 0;
2323        req->data_len = blk_rq_nr_phys_segments(rq) ?
2324                                blk_rq_payload_bytes(rq) : 0;
2325        req->curr_bio = rq->bio;
2326        if (req->curr_bio && req->data_len)
2327                nvme_tcp_init_iter(req, rq_data_dir(rq));
2328
2329        if (rq_data_dir(rq) == WRITE &&
2330            req->data_len <= nvme_tcp_inline_data_size(queue))
2331                req->pdu_len = req->data_len;
2332
2333        pdu->hdr.type = nvme_tcp_cmd;
2334        pdu->hdr.flags = 0;
2335        if (queue->hdr_digest)
2336                pdu->hdr.flags |= NVME_TCP_F_HDGST;
2337        if (queue->data_digest && req->pdu_len) {
2338                pdu->hdr.flags |= NVME_TCP_F_DDGST;
2339                ddgst = nvme_tcp_ddgst_len(queue);
2340        }
2341        pdu->hdr.hlen = sizeof(*pdu);
2342        pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2343        pdu->hdr.plen =
2344                cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2345
2346        ret = nvme_tcp_map_data(queue, rq);
2347        if (unlikely(ret)) {
2348                nvme_cleanup_cmd(rq);
2349                dev_err(queue->ctrl->ctrl.device,
2350                        "Failed to map data (%d)\n", ret);
2351                return ret;
2352        }
2353
2354        return 0;
2355}
2356
2357static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2358{
2359        struct nvme_tcp_queue *queue = hctx->driver_data;
2360
2361        if (!llist_empty(&queue->req_list))
2362                queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2363}
2364
2365static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2366                const struct blk_mq_queue_data *bd)
2367{
2368        struct nvme_ns *ns = hctx->queue->queuedata;
2369        struct nvme_tcp_queue *queue = hctx->driver_data;
2370        struct request *rq = bd->rq;
2371        struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2372        bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2373        blk_status_t ret;
2374
2375        if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2376                return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2377
2378        ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2379        if (unlikely(ret))
2380                return ret;
2381
2382        blk_mq_start_request(rq);
2383
2384        nvme_tcp_queue_request(req, true, bd->last);
2385
2386        return BLK_STS_OK;
2387}
2388
2389static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2390{
2391        struct nvme_tcp_ctrl *ctrl = set->driver_data;
2392        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2393
2394        if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2395                /* separate read/write queues */
2396                set->map[HCTX_TYPE_DEFAULT].nr_queues =
2397                        ctrl->io_queues[HCTX_TYPE_DEFAULT];
2398                set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2399                set->map[HCTX_TYPE_READ].nr_queues =
2400                        ctrl->io_queues[HCTX_TYPE_READ];
2401                set->map[HCTX_TYPE_READ].queue_offset =
2402                        ctrl->io_queues[HCTX_TYPE_DEFAULT];
2403        } else {
2404                /* shared read/write queues */
2405                set->map[HCTX_TYPE_DEFAULT].nr_queues =
2406                        ctrl->io_queues[HCTX_TYPE_DEFAULT];
2407                set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2408                set->map[HCTX_TYPE_READ].nr_queues =
2409                        ctrl->io_queues[HCTX_TYPE_DEFAULT];
2410                set->map[HCTX_TYPE_READ].queue_offset = 0;
2411        }
2412        blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2413        blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2414
2415        if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2416                /* map dedicated poll queues only if we have queues left */
2417                set->map[HCTX_TYPE_POLL].nr_queues =
2418                                ctrl->io_queues[HCTX_TYPE_POLL];
2419                set->map[HCTX_TYPE_POLL].queue_offset =
2420                        ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2421                        ctrl->io_queues[HCTX_TYPE_READ];
2422                blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2423        }
2424
2425        dev_info(ctrl->ctrl.device,
2426                "mapped %d/%d/%d default/read/poll queues.\n",
2427                ctrl->io_queues[HCTX_TYPE_DEFAULT],
2428                ctrl->io_queues[HCTX_TYPE_READ],
2429                ctrl->io_queues[HCTX_TYPE_POLL]);
2430
2431        return 0;
2432}
2433
2434static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2435{
2436        struct nvme_tcp_queue *queue = hctx->driver_data;
2437        struct sock *sk = queue->sock->sk;
2438
2439        if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2440                return 0;
2441
2442        set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2443        if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2444                sk_busy_loop(sk, true);
2445        nvme_tcp_try_recv(queue);
2446        clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2447        return queue->nr_cqe;
2448}
2449
2450static const struct blk_mq_ops nvme_tcp_mq_ops = {
2451        .queue_rq       = nvme_tcp_queue_rq,
2452        .commit_rqs     = nvme_tcp_commit_rqs,
2453        .complete       = nvme_complete_rq,
2454        .init_request   = nvme_tcp_init_request,
2455        .exit_request   = nvme_tcp_exit_request,
2456        .init_hctx      = nvme_tcp_init_hctx,
2457        .timeout        = nvme_tcp_timeout,
2458        .map_queues     = nvme_tcp_map_queues,
2459        .poll           = nvme_tcp_poll,
2460};
2461
2462static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2463        .queue_rq       = nvme_tcp_queue_rq,
2464        .complete       = nvme_complete_rq,
2465        .init_request   = nvme_tcp_init_request,
2466        .exit_request   = nvme_tcp_exit_request,
2467        .init_hctx      = nvme_tcp_init_admin_hctx,
2468        .timeout        = nvme_tcp_timeout,
2469};
2470
2471static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2472        .name                   = "tcp",
2473        .module                 = THIS_MODULE,
2474        .flags                  = NVME_F_FABRICS,
2475        .reg_read32             = nvmf_reg_read32,
2476        .reg_read64             = nvmf_reg_read64,
2477        .reg_write32            = nvmf_reg_write32,
2478        .free_ctrl              = nvme_tcp_free_ctrl,
2479        .submit_async_event     = nvme_tcp_submit_async_event,
2480        .delete_ctrl            = nvme_tcp_delete_ctrl,
2481        .get_address            = nvmf_get_address,
2482};
2483
2484static bool
2485nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2486{
2487        struct nvme_tcp_ctrl *ctrl;
2488        bool found = false;
2489
2490        mutex_lock(&nvme_tcp_ctrl_mutex);
2491        list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2492                found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2493                if (found)
2494                        break;
2495        }
2496        mutex_unlock(&nvme_tcp_ctrl_mutex);
2497
2498        return found;
2499}
2500
2501static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2502                struct nvmf_ctrl_options *opts)
2503{
2504        struct nvme_tcp_ctrl *ctrl;
2505        int ret;
2506
2507        ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2508        if (!ctrl)
2509                return ERR_PTR(-ENOMEM);
2510
2511        INIT_LIST_HEAD(&ctrl->list);
2512        ctrl->ctrl.opts = opts;
2513        ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2514                                opts->nr_poll_queues + 1;
2515        ctrl->ctrl.sqsize = opts->queue_size - 1;
2516        ctrl->ctrl.kato = opts->kato;
2517
2518        INIT_DELAYED_WORK(&ctrl->connect_work,
2519                        nvme_tcp_reconnect_ctrl_work);
2520        INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2521        INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2522
2523        if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2524                opts->trsvcid =
2525                        kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2526                if (!opts->trsvcid) {
2527                        ret = -ENOMEM;
2528                        goto out_free_ctrl;
2529                }
2530                opts->mask |= NVMF_OPT_TRSVCID;
2531        }
2532
2533        ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2534                        opts->traddr, opts->trsvcid, &ctrl->addr);
2535        if (ret) {
2536                pr_err("malformed address passed: %s:%s\n",
2537                        opts->traddr, opts->trsvcid);
2538                goto out_free_ctrl;
2539        }
2540
2541        if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2542                ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2543                        opts->host_traddr, NULL, &ctrl->src_addr);
2544                if (ret) {
2545                        pr_err("malformed src address passed: %s\n",
2546                               opts->host_traddr);
2547                        goto out_free_ctrl;
2548                }
2549        }
2550
2551        if (opts->mask & NVMF_OPT_HOST_IFACE) {
2552                if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2553                        pr_err("invalid interface passed: %s\n",
2554                               opts->host_iface);
2555                        ret = -ENODEV;
2556                        goto out_free_ctrl;
2557                }
2558        }
2559
2560        if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2561                ret = -EALREADY;
2562                goto out_free_ctrl;
2563        }
2564
2565        ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2566                                GFP_KERNEL);
2567        if (!ctrl->queues) {
2568                ret = -ENOMEM;
2569                goto out_free_ctrl;
2570        }
2571
2572        ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2573        if (ret)
2574                goto out_kfree_queues;
2575
2576        if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2577                WARN_ON_ONCE(1);
2578                ret = -EINTR;
2579                goto out_uninit_ctrl;
2580        }
2581
2582        ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2583        if (ret)
2584                goto out_uninit_ctrl;
2585
2586        dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2587                nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2588
2589        mutex_lock(&nvme_tcp_ctrl_mutex);
2590        list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2591        mutex_unlock(&nvme_tcp_ctrl_mutex);
2592
2593        return &ctrl->ctrl;
2594
2595out_uninit_ctrl:
2596        nvme_uninit_ctrl(&ctrl->ctrl);
2597        nvme_put_ctrl(&ctrl->ctrl);
2598        if (ret > 0)
2599                ret = -EIO;
2600        return ERR_PTR(ret);
2601out_kfree_queues:
2602        kfree(ctrl->queues);
2603out_free_ctrl:
2604        kfree(ctrl);
2605        return ERR_PTR(ret);
2606}
2607
2608static struct nvmf_transport_ops nvme_tcp_transport = {
2609        .name           = "tcp",
2610        .module         = THIS_MODULE,
2611        .required_opts  = NVMF_OPT_TRADDR,
2612        .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2613                          NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2614                          NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2615                          NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2616                          NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
2617        .create_ctrl    = nvme_tcp_create_ctrl,
2618};
2619
2620static int __init nvme_tcp_init_module(void)
2621{
2622        nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2623                        WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2624        if (!nvme_tcp_wq)
2625                return -ENOMEM;
2626
2627        nvmf_register_transport(&nvme_tcp_transport);
2628        return 0;
2629}
2630
2631static void __exit nvme_tcp_cleanup_module(void)
2632{
2633        struct nvme_tcp_ctrl *ctrl;
2634
2635        nvmf_unregister_transport(&nvme_tcp_transport);
2636
2637        mutex_lock(&nvme_tcp_ctrl_mutex);
2638        list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2639                nvme_delete_ctrl(&ctrl->ctrl);
2640        mutex_unlock(&nvme_tcp_ctrl_mutex);
2641        flush_workqueue(nvme_delete_wq);
2642
2643        destroy_workqueue(nvme_tcp_wq);
2644}
2645
2646module_init(nvme_tcp_init_module);
2647module_exit(nvme_tcp_cleanup_module);
2648
2649MODULE_LICENSE("GPL v2");
2650