linux/drivers/of/base.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Procedures for creating, accessing and interpreting the device tree.
   4 *
   5 * Paul Mackerras       August 1996.
   6 * Copyright (C) 1996-2005 Paul Mackerras.
   7 *
   8 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
   9 *    {engebret|bergner}@us.ibm.com
  10 *
  11 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
  12 *
  13 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
  14 *  Grant Likely.
  15 */
  16
  17#define pr_fmt(fmt)     "OF: " fmt
  18
  19#include <linux/bitmap.h>
  20#include <linux/console.h>
  21#include <linux/ctype.h>
  22#include <linux/cpu.h>
  23#include <linux/module.h>
  24#include <linux/of.h>
  25#include <linux/of_device.h>
  26#include <linux/of_graph.h>
  27#include <linux/spinlock.h>
  28#include <linux/slab.h>
  29#include <linux/string.h>
  30#include <linux/proc_fs.h>
  31
  32#include "of_private.h"
  33
  34LIST_HEAD(aliases_lookup);
  35
  36struct device_node *of_root;
  37EXPORT_SYMBOL(of_root);
  38struct device_node *of_chosen;
  39EXPORT_SYMBOL(of_chosen);
  40struct device_node *of_aliases;
  41struct device_node *of_stdout;
  42static const char *of_stdout_options;
  43
  44struct kset *of_kset;
  45
  46/*
  47 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
  48 * This mutex must be held whenever modifications are being made to the
  49 * device tree. The of_{attach,detach}_node() and
  50 * of_{add,remove,update}_property() helpers make sure this happens.
  51 */
  52DEFINE_MUTEX(of_mutex);
  53
  54/* use when traversing tree through the child, sibling,
  55 * or parent members of struct device_node.
  56 */
  57DEFINE_RAW_SPINLOCK(devtree_lock);
  58
  59bool of_node_name_eq(const struct device_node *np, const char *name)
  60{
  61        const char *node_name;
  62        size_t len;
  63
  64        if (!np)
  65                return false;
  66
  67        node_name = kbasename(np->full_name);
  68        len = strchrnul(node_name, '@') - node_name;
  69
  70        return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
  71}
  72EXPORT_SYMBOL(of_node_name_eq);
  73
  74bool of_node_name_prefix(const struct device_node *np, const char *prefix)
  75{
  76        if (!np)
  77                return false;
  78
  79        return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
  80}
  81EXPORT_SYMBOL(of_node_name_prefix);
  82
  83static bool __of_node_is_type(const struct device_node *np, const char *type)
  84{
  85        const char *match = __of_get_property(np, "device_type", NULL);
  86
  87        return np && match && type && !strcmp(match, type);
  88}
  89
  90int of_bus_n_addr_cells(struct device_node *np)
  91{
  92        u32 cells;
  93
  94        for (; np; np = np->parent)
  95                if (!of_property_read_u32(np, "#address-cells", &cells))
  96                        return cells;
  97
  98        /* No #address-cells property for the root node */
  99        return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
 100}
 101
 102int of_n_addr_cells(struct device_node *np)
 103{
 104        if (np->parent)
 105                np = np->parent;
 106
 107        return of_bus_n_addr_cells(np);
 108}
 109EXPORT_SYMBOL(of_n_addr_cells);
 110
 111int of_bus_n_size_cells(struct device_node *np)
 112{
 113        u32 cells;
 114
 115        for (; np; np = np->parent)
 116                if (!of_property_read_u32(np, "#size-cells", &cells))
 117                        return cells;
 118
 119        /* No #size-cells property for the root node */
 120        return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
 121}
 122
 123int of_n_size_cells(struct device_node *np)
 124{
 125        if (np->parent)
 126                np = np->parent;
 127
 128        return of_bus_n_size_cells(np);
 129}
 130EXPORT_SYMBOL(of_n_size_cells);
 131
 132#ifdef CONFIG_NUMA
 133int __weak of_node_to_nid(struct device_node *np)
 134{
 135        return NUMA_NO_NODE;
 136}
 137#endif
 138
 139#define OF_PHANDLE_CACHE_BITS   7
 140#define OF_PHANDLE_CACHE_SZ     BIT(OF_PHANDLE_CACHE_BITS)
 141
 142static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
 143
 144static u32 of_phandle_cache_hash(phandle handle)
 145{
 146        return hash_32(handle, OF_PHANDLE_CACHE_BITS);
 147}
 148
 149/*
 150 * Caller must hold devtree_lock.
 151 */
 152void __of_phandle_cache_inv_entry(phandle handle)
 153{
 154        u32 handle_hash;
 155        struct device_node *np;
 156
 157        if (!handle)
 158                return;
 159
 160        handle_hash = of_phandle_cache_hash(handle);
 161
 162        np = phandle_cache[handle_hash];
 163        if (np && handle == np->phandle)
 164                phandle_cache[handle_hash] = NULL;
 165}
 166
 167void __init of_core_init(void)
 168{
 169        struct device_node *np;
 170
 171
 172        /* Create the kset, and register existing nodes */
 173        mutex_lock(&of_mutex);
 174        of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
 175        if (!of_kset) {
 176                mutex_unlock(&of_mutex);
 177                pr_err("failed to register existing nodes\n");
 178                return;
 179        }
 180        for_each_of_allnodes(np) {
 181                __of_attach_node_sysfs(np);
 182                if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
 183                        phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
 184        }
 185        mutex_unlock(&of_mutex);
 186
 187        /* Symlink in /proc as required by userspace ABI */
 188        if (of_root)
 189                proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
 190}
 191
 192static struct property *__of_find_property(const struct device_node *np,
 193                                           const char *name, int *lenp)
 194{
 195        struct property *pp;
 196
 197        if (!np)
 198                return NULL;
 199
 200        for (pp = np->properties; pp; pp = pp->next) {
 201                if (of_prop_cmp(pp->name, name) == 0) {
 202                        if (lenp)
 203                                *lenp = pp->length;
 204                        break;
 205                }
 206        }
 207
 208        return pp;
 209}
 210
 211struct property *of_find_property(const struct device_node *np,
 212                                  const char *name,
 213                                  int *lenp)
 214{
 215        struct property *pp;
 216        unsigned long flags;
 217
 218        raw_spin_lock_irqsave(&devtree_lock, flags);
 219        pp = __of_find_property(np, name, lenp);
 220        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 221
 222        return pp;
 223}
 224EXPORT_SYMBOL(of_find_property);
 225
 226struct device_node *__of_find_all_nodes(struct device_node *prev)
 227{
 228        struct device_node *np;
 229        if (!prev) {
 230                np = of_root;
 231        } else if (prev->child) {
 232                np = prev->child;
 233        } else {
 234                /* Walk back up looking for a sibling, or the end of the structure */
 235                np = prev;
 236                while (np->parent && !np->sibling)
 237                        np = np->parent;
 238                np = np->sibling; /* Might be null at the end of the tree */
 239        }
 240        return np;
 241}
 242
 243/**
 244 * of_find_all_nodes - Get next node in global list
 245 * @prev:       Previous node or NULL to start iteration
 246 *              of_node_put() will be called on it
 247 *
 248 * Return: A node pointer with refcount incremented, use
 249 * of_node_put() on it when done.
 250 */
 251struct device_node *of_find_all_nodes(struct device_node *prev)
 252{
 253        struct device_node *np;
 254        unsigned long flags;
 255
 256        raw_spin_lock_irqsave(&devtree_lock, flags);
 257        np = __of_find_all_nodes(prev);
 258        of_node_get(np);
 259        of_node_put(prev);
 260        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 261        return np;
 262}
 263EXPORT_SYMBOL(of_find_all_nodes);
 264
 265/*
 266 * Find a property with a given name for a given node
 267 * and return the value.
 268 */
 269const void *__of_get_property(const struct device_node *np,
 270                              const char *name, int *lenp)
 271{
 272        struct property *pp = __of_find_property(np, name, lenp);
 273
 274        return pp ? pp->value : NULL;
 275}
 276
 277/*
 278 * Find a property with a given name for a given node
 279 * and return the value.
 280 */
 281const void *of_get_property(const struct device_node *np, const char *name,
 282                            int *lenp)
 283{
 284        struct property *pp = of_find_property(np, name, lenp);
 285
 286        return pp ? pp->value : NULL;
 287}
 288EXPORT_SYMBOL(of_get_property);
 289
 290/**
 291 * of_get_cpu_hwid - Get the hardware ID from a CPU device node
 292 *
 293 * @cpun: CPU number(logical index) for which device node is required
 294 * @thread: The local thread number to get the hardware ID for.
 295 *
 296 * Return: The hardware ID for the CPU node or ~0ULL if not found.
 297 */
 298u64 of_get_cpu_hwid(struct device_node *cpun, unsigned int thread)
 299{
 300        const __be32 *cell;
 301        int ac, len;
 302
 303        ac = of_n_addr_cells(cpun);
 304        cell = of_get_property(cpun, "reg", &len);
 305        if (!cell || !ac || ((sizeof(*cell) * ac * (thread + 1)) > len))
 306                return ~0ULL;
 307
 308        cell += ac * thread;
 309        return of_read_number(cell, ac);
 310}
 311
 312/*
 313 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
 314 *
 315 * @cpu: logical cpu index of a core/thread
 316 * @phys_id: physical identifier of a core/thread
 317 *
 318 * CPU logical to physical index mapping is architecture specific.
 319 * However this __weak function provides a default match of physical
 320 * id to logical cpu index. phys_id provided here is usually values read
 321 * from the device tree which must match the hardware internal registers.
 322 *
 323 * Returns true if the physical identifier and the logical cpu index
 324 * correspond to the same core/thread, false otherwise.
 325 */
 326bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
 327{
 328        return (u32)phys_id == cpu;
 329}
 330
 331/*
 332 * Checks if the given "prop_name" property holds the physical id of the
 333 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
 334 * NULL, local thread number within the core is returned in it.
 335 */
 336static bool __of_find_n_match_cpu_property(struct device_node *cpun,
 337                        const char *prop_name, int cpu, unsigned int *thread)
 338{
 339        const __be32 *cell;
 340        int ac, prop_len, tid;
 341        u64 hwid;
 342
 343        ac = of_n_addr_cells(cpun);
 344        cell = of_get_property(cpun, prop_name, &prop_len);
 345        if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
 346                return true;
 347        if (!cell || !ac)
 348                return false;
 349        prop_len /= sizeof(*cell) * ac;
 350        for (tid = 0; tid < prop_len; tid++) {
 351                hwid = of_read_number(cell, ac);
 352                if (arch_match_cpu_phys_id(cpu, hwid)) {
 353                        if (thread)
 354                                *thread = tid;
 355                        return true;
 356                }
 357                cell += ac;
 358        }
 359        return false;
 360}
 361
 362/*
 363 * arch_find_n_match_cpu_physical_id - See if the given device node is
 364 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
 365 * else false.  If 'thread' is non-NULL, the local thread number within the
 366 * core is returned in it.
 367 */
 368bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
 369                                              int cpu, unsigned int *thread)
 370{
 371        /* Check for non-standard "ibm,ppc-interrupt-server#s" property
 372         * for thread ids on PowerPC. If it doesn't exist fallback to
 373         * standard "reg" property.
 374         */
 375        if (IS_ENABLED(CONFIG_PPC) &&
 376            __of_find_n_match_cpu_property(cpun,
 377                                           "ibm,ppc-interrupt-server#s",
 378                                           cpu, thread))
 379                return true;
 380
 381        return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
 382}
 383
 384/**
 385 * of_get_cpu_node - Get device node associated with the given logical CPU
 386 *
 387 * @cpu: CPU number(logical index) for which device node is required
 388 * @thread: if not NULL, local thread number within the physical core is
 389 *          returned
 390 *
 391 * The main purpose of this function is to retrieve the device node for the
 392 * given logical CPU index. It should be used to initialize the of_node in
 393 * cpu device. Once of_node in cpu device is populated, all the further
 394 * references can use that instead.
 395 *
 396 * CPU logical to physical index mapping is architecture specific and is built
 397 * before booting secondary cores. This function uses arch_match_cpu_phys_id
 398 * which can be overridden by architecture specific implementation.
 399 *
 400 * Return: A node pointer for the logical cpu with refcount incremented, use
 401 * of_node_put() on it when done. Returns NULL if not found.
 402 */
 403struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
 404{
 405        struct device_node *cpun;
 406
 407        for_each_of_cpu_node(cpun) {
 408                if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
 409                        return cpun;
 410        }
 411        return NULL;
 412}
 413EXPORT_SYMBOL(of_get_cpu_node);
 414
 415/**
 416 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
 417 *
 418 * @cpu_node: Pointer to the device_node for CPU.
 419 *
 420 * Return: The logical CPU number of the given CPU device_node or -ENODEV if the
 421 * CPU is not found.
 422 */
 423int of_cpu_node_to_id(struct device_node *cpu_node)
 424{
 425        int cpu;
 426        bool found = false;
 427        struct device_node *np;
 428
 429        for_each_possible_cpu(cpu) {
 430                np = of_cpu_device_node_get(cpu);
 431                found = (cpu_node == np);
 432                of_node_put(np);
 433                if (found)
 434                        return cpu;
 435        }
 436
 437        return -ENODEV;
 438}
 439EXPORT_SYMBOL(of_cpu_node_to_id);
 440
 441/**
 442 * of_get_cpu_state_node - Get CPU's idle state node at the given index
 443 *
 444 * @cpu_node: The device node for the CPU
 445 * @index: The index in the list of the idle states
 446 *
 447 * Two generic methods can be used to describe a CPU's idle states, either via
 448 * a flattened description through the "cpu-idle-states" binding or via the
 449 * hierarchical layout, using the "power-domains" and the "domain-idle-states"
 450 * bindings. This function check for both and returns the idle state node for
 451 * the requested index.
 452 *
 453 * Return: An idle state node if found at @index. The refcount is incremented
 454 * for it, so call of_node_put() on it when done. Returns NULL if not found.
 455 */
 456struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
 457                                          int index)
 458{
 459        struct of_phandle_args args;
 460        int err;
 461
 462        err = of_parse_phandle_with_args(cpu_node, "power-domains",
 463                                        "#power-domain-cells", 0, &args);
 464        if (!err) {
 465                struct device_node *state_node =
 466                        of_parse_phandle(args.np, "domain-idle-states", index);
 467
 468                of_node_put(args.np);
 469                if (state_node)
 470                        return state_node;
 471        }
 472
 473        return of_parse_phandle(cpu_node, "cpu-idle-states", index);
 474}
 475EXPORT_SYMBOL(of_get_cpu_state_node);
 476
 477/**
 478 * __of_device_is_compatible() - Check if the node matches given constraints
 479 * @device: pointer to node
 480 * @compat: required compatible string, NULL or "" for any match
 481 * @type: required device_type value, NULL or "" for any match
 482 * @name: required node name, NULL or "" for any match
 483 *
 484 * Checks if the given @compat, @type and @name strings match the
 485 * properties of the given @device. A constraints can be skipped by
 486 * passing NULL or an empty string as the constraint.
 487 *
 488 * Returns 0 for no match, and a positive integer on match. The return
 489 * value is a relative score with larger values indicating better
 490 * matches. The score is weighted for the most specific compatible value
 491 * to get the highest score. Matching type is next, followed by matching
 492 * name. Practically speaking, this results in the following priority
 493 * order for matches:
 494 *
 495 * 1. specific compatible && type && name
 496 * 2. specific compatible && type
 497 * 3. specific compatible && name
 498 * 4. specific compatible
 499 * 5. general compatible && type && name
 500 * 6. general compatible && type
 501 * 7. general compatible && name
 502 * 8. general compatible
 503 * 9. type && name
 504 * 10. type
 505 * 11. name
 506 */
 507static int __of_device_is_compatible(const struct device_node *device,
 508                                     const char *compat, const char *type, const char *name)
 509{
 510        struct property *prop;
 511        const char *cp;
 512        int index = 0, score = 0;
 513
 514        /* Compatible match has highest priority */
 515        if (compat && compat[0]) {
 516                prop = __of_find_property(device, "compatible", NULL);
 517                for (cp = of_prop_next_string(prop, NULL); cp;
 518                     cp = of_prop_next_string(prop, cp), index++) {
 519                        if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
 520                                score = INT_MAX/2 - (index << 2);
 521                                break;
 522                        }
 523                }
 524                if (!score)
 525                        return 0;
 526        }
 527
 528        /* Matching type is better than matching name */
 529        if (type && type[0]) {
 530                if (!__of_node_is_type(device, type))
 531                        return 0;
 532                score += 2;
 533        }
 534
 535        /* Matching name is a bit better than not */
 536        if (name && name[0]) {
 537                if (!of_node_name_eq(device, name))
 538                        return 0;
 539                score++;
 540        }
 541
 542        return score;
 543}
 544
 545/** Checks if the given "compat" string matches one of the strings in
 546 * the device's "compatible" property
 547 */
 548int of_device_is_compatible(const struct device_node *device,
 549                const char *compat)
 550{
 551        unsigned long flags;
 552        int res;
 553
 554        raw_spin_lock_irqsave(&devtree_lock, flags);
 555        res = __of_device_is_compatible(device, compat, NULL, NULL);
 556        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 557        return res;
 558}
 559EXPORT_SYMBOL(of_device_is_compatible);
 560
 561/** Checks if the device is compatible with any of the entries in
 562 *  a NULL terminated array of strings. Returns the best match
 563 *  score or 0.
 564 */
 565int of_device_compatible_match(struct device_node *device,
 566                               const char *const *compat)
 567{
 568        unsigned int tmp, score = 0;
 569
 570        if (!compat)
 571                return 0;
 572
 573        while (*compat) {
 574                tmp = of_device_is_compatible(device, *compat);
 575                if (tmp > score)
 576                        score = tmp;
 577                compat++;
 578        }
 579
 580        return score;
 581}
 582
 583/**
 584 * of_machine_is_compatible - Test root of device tree for a given compatible value
 585 * @compat: compatible string to look for in root node's compatible property.
 586 *
 587 * Return: A positive integer if the root node has the given value in its
 588 * compatible property.
 589 */
 590int of_machine_is_compatible(const char *compat)
 591{
 592        struct device_node *root;
 593        int rc = 0;
 594
 595        root = of_find_node_by_path("/");
 596        if (root) {
 597                rc = of_device_is_compatible(root, compat);
 598                of_node_put(root);
 599        }
 600        return rc;
 601}
 602EXPORT_SYMBOL(of_machine_is_compatible);
 603
 604/**
 605 *  __of_device_is_available - check if a device is available for use
 606 *
 607 *  @device: Node to check for availability, with locks already held
 608 *
 609 *  Return: True if the status property is absent or set to "okay" or "ok",
 610 *  false otherwise
 611 */
 612static bool __of_device_is_available(const struct device_node *device)
 613{
 614        const char *status;
 615        int statlen;
 616
 617        if (!device)
 618                return false;
 619
 620        status = __of_get_property(device, "status", &statlen);
 621        if (status == NULL)
 622                return true;
 623
 624        if (statlen > 0) {
 625                if (!strcmp(status, "okay") || !strcmp(status, "ok"))
 626                        return true;
 627        }
 628
 629        return false;
 630}
 631
 632/**
 633 *  of_device_is_available - check if a device is available for use
 634 *
 635 *  @device: Node to check for availability
 636 *
 637 *  Return: True if the status property is absent or set to "okay" or "ok",
 638 *  false otherwise
 639 */
 640bool of_device_is_available(const struct device_node *device)
 641{
 642        unsigned long flags;
 643        bool res;
 644
 645        raw_spin_lock_irqsave(&devtree_lock, flags);
 646        res = __of_device_is_available(device);
 647        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 648        return res;
 649
 650}
 651EXPORT_SYMBOL(of_device_is_available);
 652
 653/**
 654 *  of_device_is_big_endian - check if a device has BE registers
 655 *
 656 *  @device: Node to check for endianness
 657 *
 658 *  Return: True if the device has a "big-endian" property, or if the kernel
 659 *  was compiled for BE *and* the device has a "native-endian" property.
 660 *  Returns false otherwise.
 661 *
 662 *  Callers would nominally use ioread32be/iowrite32be if
 663 *  of_device_is_big_endian() == true, or readl/writel otherwise.
 664 */
 665bool of_device_is_big_endian(const struct device_node *device)
 666{
 667        if (of_property_read_bool(device, "big-endian"))
 668                return true;
 669        if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
 670            of_property_read_bool(device, "native-endian"))
 671                return true;
 672        return false;
 673}
 674EXPORT_SYMBOL(of_device_is_big_endian);
 675
 676/**
 677 * of_get_parent - Get a node's parent if any
 678 * @node:       Node to get parent
 679 *
 680 * Return: A node pointer with refcount incremented, use
 681 * of_node_put() on it when done.
 682 */
 683struct device_node *of_get_parent(const struct device_node *node)
 684{
 685        struct device_node *np;
 686        unsigned long flags;
 687
 688        if (!node)
 689                return NULL;
 690
 691        raw_spin_lock_irqsave(&devtree_lock, flags);
 692        np = of_node_get(node->parent);
 693        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 694        return np;
 695}
 696EXPORT_SYMBOL(of_get_parent);
 697
 698/**
 699 * of_get_next_parent - Iterate to a node's parent
 700 * @node:       Node to get parent of
 701 *
 702 * This is like of_get_parent() except that it drops the
 703 * refcount on the passed node, making it suitable for iterating
 704 * through a node's parents.
 705 *
 706 * Return: A node pointer with refcount incremented, use
 707 * of_node_put() on it when done.
 708 */
 709struct device_node *of_get_next_parent(struct device_node *node)
 710{
 711        struct device_node *parent;
 712        unsigned long flags;
 713
 714        if (!node)
 715                return NULL;
 716
 717        raw_spin_lock_irqsave(&devtree_lock, flags);
 718        parent = of_node_get(node->parent);
 719        of_node_put(node);
 720        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 721        return parent;
 722}
 723EXPORT_SYMBOL(of_get_next_parent);
 724
 725static struct device_node *__of_get_next_child(const struct device_node *node,
 726                                                struct device_node *prev)
 727{
 728        struct device_node *next;
 729
 730        if (!node)
 731                return NULL;
 732
 733        next = prev ? prev->sibling : node->child;
 734        of_node_get(next);
 735        of_node_put(prev);
 736        return next;
 737}
 738#define __for_each_child_of_node(parent, child) \
 739        for (child = __of_get_next_child(parent, NULL); child != NULL; \
 740             child = __of_get_next_child(parent, child))
 741
 742/**
 743 * of_get_next_child - Iterate a node childs
 744 * @node:       parent node
 745 * @prev:       previous child of the parent node, or NULL to get first
 746 *
 747 * Return: A node pointer with refcount incremented, use of_node_put() on
 748 * it when done. Returns NULL when prev is the last child. Decrements the
 749 * refcount of prev.
 750 */
 751struct device_node *of_get_next_child(const struct device_node *node,
 752        struct device_node *prev)
 753{
 754        struct device_node *next;
 755        unsigned long flags;
 756
 757        raw_spin_lock_irqsave(&devtree_lock, flags);
 758        next = __of_get_next_child(node, prev);
 759        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 760        return next;
 761}
 762EXPORT_SYMBOL(of_get_next_child);
 763
 764/**
 765 * of_get_next_available_child - Find the next available child node
 766 * @node:       parent node
 767 * @prev:       previous child of the parent node, or NULL to get first
 768 *
 769 * This function is like of_get_next_child(), except that it
 770 * automatically skips any disabled nodes (i.e. status = "disabled").
 771 */
 772struct device_node *of_get_next_available_child(const struct device_node *node,
 773        struct device_node *prev)
 774{
 775        struct device_node *next;
 776        unsigned long flags;
 777
 778        if (!node)
 779                return NULL;
 780
 781        raw_spin_lock_irqsave(&devtree_lock, flags);
 782        next = prev ? prev->sibling : node->child;
 783        for (; next; next = next->sibling) {
 784                if (!__of_device_is_available(next))
 785                        continue;
 786                if (of_node_get(next))
 787                        break;
 788        }
 789        of_node_put(prev);
 790        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 791        return next;
 792}
 793EXPORT_SYMBOL(of_get_next_available_child);
 794
 795/**
 796 * of_get_next_cpu_node - Iterate on cpu nodes
 797 * @prev:       previous child of the /cpus node, or NULL to get first
 798 *
 799 * Return: A cpu node pointer with refcount incremented, use of_node_put()
 800 * on it when done. Returns NULL when prev is the last child. Decrements
 801 * the refcount of prev.
 802 */
 803struct device_node *of_get_next_cpu_node(struct device_node *prev)
 804{
 805        struct device_node *next = NULL;
 806        unsigned long flags;
 807        struct device_node *node;
 808
 809        if (!prev)
 810                node = of_find_node_by_path("/cpus");
 811
 812        raw_spin_lock_irqsave(&devtree_lock, flags);
 813        if (prev)
 814                next = prev->sibling;
 815        else if (node) {
 816                next = node->child;
 817                of_node_put(node);
 818        }
 819        for (; next; next = next->sibling) {
 820                if (!(of_node_name_eq(next, "cpu") ||
 821                      __of_node_is_type(next, "cpu")))
 822                        continue;
 823                if (of_node_get(next))
 824                        break;
 825        }
 826        of_node_put(prev);
 827        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 828        return next;
 829}
 830EXPORT_SYMBOL(of_get_next_cpu_node);
 831
 832/**
 833 * of_get_compatible_child - Find compatible child node
 834 * @parent:     parent node
 835 * @compatible: compatible string
 836 *
 837 * Lookup child node whose compatible property contains the given compatible
 838 * string.
 839 *
 840 * Return: a node pointer with refcount incremented, use of_node_put() on it
 841 * when done; or NULL if not found.
 842 */
 843struct device_node *of_get_compatible_child(const struct device_node *parent,
 844                                const char *compatible)
 845{
 846        struct device_node *child;
 847
 848        for_each_child_of_node(parent, child) {
 849                if (of_device_is_compatible(child, compatible))
 850                        break;
 851        }
 852
 853        return child;
 854}
 855EXPORT_SYMBOL(of_get_compatible_child);
 856
 857/**
 858 * of_get_child_by_name - Find the child node by name for a given parent
 859 * @node:       parent node
 860 * @name:       child name to look for.
 861 *
 862 * This function looks for child node for given matching name
 863 *
 864 * Return: A node pointer if found, with refcount incremented, use
 865 * of_node_put() on it when done.
 866 * Returns NULL if node is not found.
 867 */
 868struct device_node *of_get_child_by_name(const struct device_node *node,
 869                                const char *name)
 870{
 871        struct device_node *child;
 872
 873        for_each_child_of_node(node, child)
 874                if (of_node_name_eq(child, name))
 875                        break;
 876        return child;
 877}
 878EXPORT_SYMBOL(of_get_child_by_name);
 879
 880struct device_node *__of_find_node_by_path(struct device_node *parent,
 881                                                const char *path)
 882{
 883        struct device_node *child;
 884        int len;
 885
 886        len = strcspn(path, "/:");
 887        if (!len)
 888                return NULL;
 889
 890        __for_each_child_of_node(parent, child) {
 891                const char *name = kbasename(child->full_name);
 892                if (strncmp(path, name, len) == 0 && (strlen(name) == len))
 893                        return child;
 894        }
 895        return NULL;
 896}
 897
 898struct device_node *__of_find_node_by_full_path(struct device_node *node,
 899                                                const char *path)
 900{
 901        const char *separator = strchr(path, ':');
 902
 903        while (node && *path == '/') {
 904                struct device_node *tmp = node;
 905
 906                path++; /* Increment past '/' delimiter */
 907                node = __of_find_node_by_path(node, path);
 908                of_node_put(tmp);
 909                path = strchrnul(path, '/');
 910                if (separator && separator < path)
 911                        break;
 912        }
 913        return node;
 914}
 915
 916/**
 917 * of_find_node_opts_by_path - Find a node matching a full OF path
 918 * @path: Either the full path to match, or if the path does not
 919 *       start with '/', the name of a property of the /aliases
 920 *       node (an alias).  In the case of an alias, the node
 921 *       matching the alias' value will be returned.
 922 * @opts: Address of a pointer into which to store the start of
 923 *       an options string appended to the end of the path with
 924 *       a ':' separator.
 925 *
 926 * Valid paths:
 927 *  * /foo/bar  Full path
 928 *  * foo       Valid alias
 929 *  * foo/bar   Valid alias + relative path
 930 *
 931 * Return: A node pointer with refcount incremented, use
 932 * of_node_put() on it when done.
 933 */
 934struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
 935{
 936        struct device_node *np = NULL;
 937        struct property *pp;
 938        unsigned long flags;
 939        const char *separator = strchr(path, ':');
 940
 941        if (opts)
 942                *opts = separator ? separator + 1 : NULL;
 943
 944        if (strcmp(path, "/") == 0)
 945                return of_node_get(of_root);
 946
 947        /* The path could begin with an alias */
 948        if (*path != '/') {
 949                int len;
 950                const char *p = separator;
 951
 952                if (!p)
 953                        p = strchrnul(path, '/');
 954                len = p - path;
 955
 956                /* of_aliases must not be NULL */
 957                if (!of_aliases)
 958                        return NULL;
 959
 960                for_each_property_of_node(of_aliases, pp) {
 961                        if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
 962                                np = of_find_node_by_path(pp->value);
 963                                break;
 964                        }
 965                }
 966                if (!np)
 967                        return NULL;
 968                path = p;
 969        }
 970
 971        /* Step down the tree matching path components */
 972        raw_spin_lock_irqsave(&devtree_lock, flags);
 973        if (!np)
 974                np = of_node_get(of_root);
 975        np = __of_find_node_by_full_path(np, path);
 976        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 977        return np;
 978}
 979EXPORT_SYMBOL(of_find_node_opts_by_path);
 980
 981/**
 982 * of_find_node_by_name - Find a node by its "name" property
 983 * @from:       The node to start searching from or NULL; the node
 984 *              you pass will not be searched, only the next one
 985 *              will. Typically, you pass what the previous call
 986 *              returned. of_node_put() will be called on @from.
 987 * @name:       The name string to match against
 988 *
 989 * Return: A node pointer with refcount incremented, use
 990 * of_node_put() on it when done.
 991 */
 992struct device_node *of_find_node_by_name(struct device_node *from,
 993        const char *name)
 994{
 995        struct device_node *np;
 996        unsigned long flags;
 997
 998        raw_spin_lock_irqsave(&devtree_lock, flags);
 999        for_each_of_allnodes_from(from, np)
1000                if (of_node_name_eq(np, name) && of_node_get(np))
1001                        break;
1002        of_node_put(from);
1003        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1004        return np;
1005}
1006EXPORT_SYMBOL(of_find_node_by_name);
1007
1008/**
1009 * of_find_node_by_type - Find a node by its "device_type" property
1010 * @from:       The node to start searching from, or NULL to start searching
1011 *              the entire device tree. The node you pass will not be
1012 *              searched, only the next one will; typically, you pass
1013 *              what the previous call returned. of_node_put() will be
1014 *              called on from for you.
1015 * @type:       The type string to match against
1016 *
1017 * Return: A node pointer with refcount incremented, use
1018 * of_node_put() on it when done.
1019 */
1020struct device_node *of_find_node_by_type(struct device_node *from,
1021        const char *type)
1022{
1023        struct device_node *np;
1024        unsigned long flags;
1025
1026        raw_spin_lock_irqsave(&devtree_lock, flags);
1027        for_each_of_allnodes_from(from, np)
1028                if (__of_node_is_type(np, type) && of_node_get(np))
1029                        break;
1030        of_node_put(from);
1031        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1032        return np;
1033}
1034EXPORT_SYMBOL(of_find_node_by_type);
1035
1036/**
1037 * of_find_compatible_node - Find a node based on type and one of the
1038 *                                tokens in its "compatible" property
1039 * @from:       The node to start searching from or NULL, the node
1040 *              you pass will not be searched, only the next one
1041 *              will; typically, you pass what the previous call
1042 *              returned. of_node_put() will be called on it
1043 * @type:       The type string to match "device_type" or NULL to ignore
1044 * @compatible: The string to match to one of the tokens in the device
1045 *              "compatible" list.
1046 *
1047 * Return: A node pointer with refcount incremented, use
1048 * of_node_put() on it when done.
1049 */
1050struct device_node *of_find_compatible_node(struct device_node *from,
1051        const char *type, const char *compatible)
1052{
1053        struct device_node *np;
1054        unsigned long flags;
1055
1056        raw_spin_lock_irqsave(&devtree_lock, flags);
1057        for_each_of_allnodes_from(from, np)
1058                if (__of_device_is_compatible(np, compatible, type, NULL) &&
1059                    of_node_get(np))
1060                        break;
1061        of_node_put(from);
1062        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1063        return np;
1064}
1065EXPORT_SYMBOL(of_find_compatible_node);
1066
1067/**
1068 * of_find_node_with_property - Find a node which has a property with
1069 *                              the given name.
1070 * @from:       The node to start searching from or NULL, the node
1071 *              you pass will not be searched, only the next one
1072 *              will; typically, you pass what the previous call
1073 *              returned. of_node_put() will be called on it
1074 * @prop_name:  The name of the property to look for.
1075 *
1076 * Return: A node pointer with refcount incremented, use
1077 * of_node_put() on it when done.
1078 */
1079struct device_node *of_find_node_with_property(struct device_node *from,
1080        const char *prop_name)
1081{
1082        struct device_node *np;
1083        struct property *pp;
1084        unsigned long flags;
1085
1086        raw_spin_lock_irqsave(&devtree_lock, flags);
1087        for_each_of_allnodes_from(from, np) {
1088                for (pp = np->properties; pp; pp = pp->next) {
1089                        if (of_prop_cmp(pp->name, prop_name) == 0) {
1090                                of_node_get(np);
1091                                goto out;
1092                        }
1093                }
1094        }
1095out:
1096        of_node_put(from);
1097        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1098        return np;
1099}
1100EXPORT_SYMBOL(of_find_node_with_property);
1101
1102static
1103const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1104                                           const struct device_node *node)
1105{
1106        const struct of_device_id *best_match = NULL;
1107        int score, best_score = 0;
1108
1109        if (!matches)
1110                return NULL;
1111
1112        for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1113                score = __of_device_is_compatible(node, matches->compatible,
1114                                                  matches->type, matches->name);
1115                if (score > best_score) {
1116                        best_match = matches;
1117                        best_score = score;
1118                }
1119        }
1120
1121        return best_match;
1122}
1123
1124/**
1125 * of_match_node - Tell if a device_node has a matching of_match structure
1126 * @matches:    array of of device match structures to search in
1127 * @node:       the of device structure to match against
1128 *
1129 * Low level utility function used by device matching.
1130 */
1131const struct of_device_id *of_match_node(const struct of_device_id *matches,
1132                                         const struct device_node *node)
1133{
1134        const struct of_device_id *match;
1135        unsigned long flags;
1136
1137        raw_spin_lock_irqsave(&devtree_lock, flags);
1138        match = __of_match_node(matches, node);
1139        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1140        return match;
1141}
1142EXPORT_SYMBOL(of_match_node);
1143
1144/**
1145 * of_find_matching_node_and_match - Find a node based on an of_device_id
1146 *                                   match table.
1147 * @from:       The node to start searching from or NULL, the node
1148 *              you pass will not be searched, only the next one
1149 *              will; typically, you pass what the previous call
1150 *              returned. of_node_put() will be called on it
1151 * @matches:    array of of device match structures to search in
1152 * @match:      Updated to point at the matches entry which matched
1153 *
1154 * Return: A node pointer with refcount incremented, use
1155 * of_node_put() on it when done.
1156 */
1157struct device_node *of_find_matching_node_and_match(struct device_node *from,
1158                                        const struct of_device_id *matches,
1159                                        const struct of_device_id **match)
1160{
1161        struct device_node *np;
1162        const struct of_device_id *m;
1163        unsigned long flags;
1164
1165        if (match)
1166                *match = NULL;
1167
1168        raw_spin_lock_irqsave(&devtree_lock, flags);
1169        for_each_of_allnodes_from(from, np) {
1170                m = __of_match_node(matches, np);
1171                if (m && of_node_get(np)) {
1172                        if (match)
1173                                *match = m;
1174                        break;
1175                }
1176        }
1177        of_node_put(from);
1178        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1179        return np;
1180}
1181EXPORT_SYMBOL(of_find_matching_node_and_match);
1182
1183/**
1184 * of_modalias_node - Lookup appropriate modalias for a device node
1185 * @node:       pointer to a device tree node
1186 * @modalias:   Pointer to buffer that modalias value will be copied into
1187 * @len:        Length of modalias value
1188 *
1189 * Based on the value of the compatible property, this routine will attempt
1190 * to choose an appropriate modalias value for a particular device tree node.
1191 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1192 * from the first entry in the compatible list property.
1193 *
1194 * Return: This routine returns 0 on success, <0 on failure.
1195 */
1196int of_modalias_node(struct device_node *node, char *modalias, int len)
1197{
1198        const char *compatible, *p;
1199        int cplen;
1200
1201        compatible = of_get_property(node, "compatible", &cplen);
1202        if (!compatible || strlen(compatible) > cplen)
1203                return -ENODEV;
1204        p = strchr(compatible, ',');
1205        strlcpy(modalias, p ? p + 1 : compatible, len);
1206        return 0;
1207}
1208EXPORT_SYMBOL_GPL(of_modalias_node);
1209
1210/**
1211 * of_find_node_by_phandle - Find a node given a phandle
1212 * @handle:     phandle of the node to find
1213 *
1214 * Return: A node pointer with refcount incremented, use
1215 * of_node_put() on it when done.
1216 */
1217struct device_node *of_find_node_by_phandle(phandle handle)
1218{
1219        struct device_node *np = NULL;
1220        unsigned long flags;
1221        u32 handle_hash;
1222
1223        if (!handle)
1224                return NULL;
1225
1226        handle_hash = of_phandle_cache_hash(handle);
1227
1228        raw_spin_lock_irqsave(&devtree_lock, flags);
1229
1230        if (phandle_cache[handle_hash] &&
1231            handle == phandle_cache[handle_hash]->phandle)
1232                np = phandle_cache[handle_hash];
1233
1234        if (!np) {
1235                for_each_of_allnodes(np)
1236                        if (np->phandle == handle &&
1237                            !of_node_check_flag(np, OF_DETACHED)) {
1238                                phandle_cache[handle_hash] = np;
1239                                break;
1240                        }
1241        }
1242
1243        of_node_get(np);
1244        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1245        return np;
1246}
1247EXPORT_SYMBOL(of_find_node_by_phandle);
1248
1249void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1250{
1251        int i;
1252        printk("%s %pOF", msg, args->np);
1253        for (i = 0; i < args->args_count; i++) {
1254                const char delim = i ? ',' : ':';
1255
1256                pr_cont("%c%08x", delim, args->args[i]);
1257        }
1258        pr_cont("\n");
1259}
1260
1261int of_phandle_iterator_init(struct of_phandle_iterator *it,
1262                const struct device_node *np,
1263                const char *list_name,
1264                const char *cells_name,
1265                int cell_count)
1266{
1267        const __be32 *list;
1268        int size;
1269
1270        memset(it, 0, sizeof(*it));
1271
1272        /*
1273         * one of cell_count or cells_name must be provided to determine the
1274         * argument length.
1275         */
1276        if (cell_count < 0 && !cells_name)
1277                return -EINVAL;
1278
1279        list = of_get_property(np, list_name, &size);
1280        if (!list)
1281                return -ENOENT;
1282
1283        it->cells_name = cells_name;
1284        it->cell_count = cell_count;
1285        it->parent = np;
1286        it->list_end = list + size / sizeof(*list);
1287        it->phandle_end = list;
1288        it->cur = list;
1289
1290        return 0;
1291}
1292EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1293
1294int of_phandle_iterator_next(struct of_phandle_iterator *it)
1295{
1296        uint32_t count = 0;
1297
1298        if (it->node) {
1299                of_node_put(it->node);
1300                it->node = NULL;
1301        }
1302
1303        if (!it->cur || it->phandle_end >= it->list_end)
1304                return -ENOENT;
1305
1306        it->cur = it->phandle_end;
1307
1308        /* If phandle is 0, then it is an empty entry with no arguments. */
1309        it->phandle = be32_to_cpup(it->cur++);
1310
1311        if (it->phandle) {
1312
1313                /*
1314                 * Find the provider node and parse the #*-cells property to
1315                 * determine the argument length.
1316                 */
1317                it->node = of_find_node_by_phandle(it->phandle);
1318
1319                if (it->cells_name) {
1320                        if (!it->node) {
1321                                pr_err("%pOF: could not find phandle %d\n",
1322                                       it->parent, it->phandle);
1323                                goto err;
1324                        }
1325
1326                        if (of_property_read_u32(it->node, it->cells_name,
1327                                                 &count)) {
1328                                /*
1329                                 * If both cell_count and cells_name is given,
1330                                 * fall back to cell_count in absence
1331                                 * of the cells_name property
1332                                 */
1333                                if (it->cell_count >= 0) {
1334                                        count = it->cell_count;
1335                                } else {
1336                                        pr_err("%pOF: could not get %s for %pOF\n",
1337                                               it->parent,
1338                                               it->cells_name,
1339                                               it->node);
1340                                        goto err;
1341                                }
1342                        }
1343                } else {
1344                        count = it->cell_count;
1345                }
1346
1347                /*
1348                 * Make sure that the arguments actually fit in the remaining
1349                 * property data length
1350                 */
1351                if (it->cur + count > it->list_end) {
1352                        pr_err("%pOF: %s = %d found %d\n",
1353                               it->parent, it->cells_name,
1354                               count, it->cell_count);
1355                        goto err;
1356                }
1357        }
1358
1359        it->phandle_end = it->cur + count;
1360        it->cur_count = count;
1361
1362        return 0;
1363
1364err:
1365        if (it->node) {
1366                of_node_put(it->node);
1367                it->node = NULL;
1368        }
1369
1370        return -EINVAL;
1371}
1372EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1373
1374int of_phandle_iterator_args(struct of_phandle_iterator *it,
1375                             uint32_t *args,
1376                             int size)
1377{
1378        int i, count;
1379
1380        count = it->cur_count;
1381
1382        if (WARN_ON(size < count))
1383                count = size;
1384
1385        for (i = 0; i < count; i++)
1386                args[i] = be32_to_cpup(it->cur++);
1387
1388        return count;
1389}
1390
1391static int __of_parse_phandle_with_args(const struct device_node *np,
1392                                        const char *list_name,
1393                                        const char *cells_name,
1394                                        int cell_count, int index,
1395                                        struct of_phandle_args *out_args)
1396{
1397        struct of_phandle_iterator it;
1398        int rc, cur_index = 0;
1399
1400        /* Loop over the phandles until all the requested entry is found */
1401        of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1402                /*
1403                 * All of the error cases bail out of the loop, so at
1404                 * this point, the parsing is successful. If the requested
1405                 * index matches, then fill the out_args structure and return,
1406                 * or return -ENOENT for an empty entry.
1407                 */
1408                rc = -ENOENT;
1409                if (cur_index == index) {
1410                        if (!it.phandle)
1411                                goto err;
1412
1413                        if (out_args) {
1414                                int c;
1415
1416                                c = of_phandle_iterator_args(&it,
1417                                                             out_args->args,
1418                                                             MAX_PHANDLE_ARGS);
1419                                out_args->np = it.node;
1420                                out_args->args_count = c;
1421                        } else {
1422                                of_node_put(it.node);
1423                        }
1424
1425                        /* Found it! return success */
1426                        return 0;
1427                }
1428
1429                cur_index++;
1430        }
1431
1432        /*
1433         * Unlock node before returning result; will be one of:
1434         * -ENOENT : index is for empty phandle
1435         * -EINVAL : parsing error on data
1436         */
1437
1438 err:
1439        of_node_put(it.node);
1440        return rc;
1441}
1442
1443/**
1444 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1445 * @np: Pointer to device node holding phandle property
1446 * @phandle_name: Name of property holding a phandle value
1447 * @index: For properties holding a table of phandles, this is the index into
1448 *         the table
1449 *
1450 * Return: The device_node pointer with refcount incremented.  Use
1451 * of_node_put() on it when done.
1452 */
1453struct device_node *of_parse_phandle(const struct device_node *np,
1454                                     const char *phandle_name, int index)
1455{
1456        struct of_phandle_args args;
1457
1458        if (index < 0)
1459                return NULL;
1460
1461        if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1462                                         index, &args))
1463                return NULL;
1464
1465        return args.np;
1466}
1467EXPORT_SYMBOL(of_parse_phandle);
1468
1469/**
1470 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1471 * @np:         pointer to a device tree node containing a list
1472 * @list_name:  property name that contains a list
1473 * @cells_name: property name that specifies phandles' arguments count
1474 * @index:      index of a phandle to parse out
1475 * @out_args:   optional pointer to output arguments structure (will be filled)
1476 *
1477 * This function is useful to parse lists of phandles and their arguments.
1478 * Returns 0 on success and fills out_args, on error returns appropriate
1479 * errno value.
1480 *
1481 * Caller is responsible to call of_node_put() on the returned out_args->np
1482 * pointer.
1483 *
1484 * Example::
1485 *
1486 *  phandle1: node1 {
1487 *      #list-cells = <2>;
1488 *  };
1489 *
1490 *  phandle2: node2 {
1491 *      #list-cells = <1>;
1492 *  };
1493 *
1494 *  node3 {
1495 *      list = <&phandle1 1 2 &phandle2 3>;
1496 *  };
1497 *
1498 * To get a device_node of the ``node2`` node you may call this:
1499 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1500 */
1501int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1502                                const char *cells_name, int index,
1503                                struct of_phandle_args *out_args)
1504{
1505        int cell_count = -1;
1506
1507        if (index < 0)
1508                return -EINVAL;
1509
1510        /* If cells_name is NULL we assume a cell count of 0 */
1511        if (!cells_name)
1512                cell_count = 0;
1513
1514        return __of_parse_phandle_with_args(np, list_name, cells_name,
1515                                            cell_count, index, out_args);
1516}
1517EXPORT_SYMBOL(of_parse_phandle_with_args);
1518
1519/**
1520 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1521 * @np:         pointer to a device tree node containing a list
1522 * @list_name:  property name that contains a list
1523 * @stem_name:  stem of property names that specify phandles' arguments count
1524 * @index:      index of a phandle to parse out
1525 * @out_args:   optional pointer to output arguments structure (will be filled)
1526 *
1527 * This function is useful to parse lists of phandles and their arguments.
1528 * Returns 0 on success and fills out_args, on error returns appropriate errno
1529 * value. The difference between this function and of_parse_phandle_with_args()
1530 * is that this API remaps a phandle if the node the phandle points to has
1531 * a <@stem_name>-map property.
1532 *
1533 * Caller is responsible to call of_node_put() on the returned out_args->np
1534 * pointer.
1535 *
1536 * Example::
1537 *
1538 *  phandle1: node1 {
1539 *      #list-cells = <2>;
1540 *  };
1541 *
1542 *  phandle2: node2 {
1543 *      #list-cells = <1>;
1544 *  };
1545 *
1546 *  phandle3: node3 {
1547 *      #list-cells = <1>;
1548 *      list-map = <0 &phandle2 3>,
1549 *                 <1 &phandle2 2>,
1550 *                 <2 &phandle1 5 1>;
1551 *      list-map-mask = <0x3>;
1552 *  };
1553 *
1554 *  node4 {
1555 *      list = <&phandle1 1 2 &phandle3 0>;
1556 *  };
1557 *
1558 * To get a device_node of the ``node2`` node you may call this:
1559 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1560 */
1561int of_parse_phandle_with_args_map(const struct device_node *np,
1562                                   const char *list_name,
1563                                   const char *stem_name,
1564                                   int index, struct of_phandle_args *out_args)
1565{
1566        char *cells_name, *map_name = NULL, *mask_name = NULL;
1567        char *pass_name = NULL;
1568        struct device_node *cur, *new = NULL;
1569        const __be32 *map, *mask, *pass;
1570        static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1571        static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1572        __be32 initial_match_array[MAX_PHANDLE_ARGS];
1573        const __be32 *match_array = initial_match_array;
1574        int i, ret, map_len, match;
1575        u32 list_size, new_size;
1576
1577        if (index < 0)
1578                return -EINVAL;
1579
1580        cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1581        if (!cells_name)
1582                return -ENOMEM;
1583
1584        ret = -ENOMEM;
1585        map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1586        if (!map_name)
1587                goto free;
1588
1589        mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1590        if (!mask_name)
1591                goto free;
1592
1593        pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1594        if (!pass_name)
1595                goto free;
1596
1597        ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1598                                           out_args);
1599        if (ret)
1600                goto free;
1601
1602        /* Get the #<list>-cells property */
1603        cur = out_args->np;
1604        ret = of_property_read_u32(cur, cells_name, &list_size);
1605        if (ret < 0)
1606                goto put;
1607
1608        /* Precalculate the match array - this simplifies match loop */
1609        for (i = 0; i < list_size; i++)
1610                initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1611
1612        ret = -EINVAL;
1613        while (cur) {
1614                /* Get the <list>-map property */
1615                map = of_get_property(cur, map_name, &map_len);
1616                if (!map) {
1617                        ret = 0;
1618                        goto free;
1619                }
1620                map_len /= sizeof(u32);
1621
1622                /* Get the <list>-map-mask property (optional) */
1623                mask = of_get_property(cur, mask_name, NULL);
1624                if (!mask)
1625                        mask = dummy_mask;
1626                /* Iterate through <list>-map property */
1627                match = 0;
1628                while (map_len > (list_size + 1) && !match) {
1629                        /* Compare specifiers */
1630                        match = 1;
1631                        for (i = 0; i < list_size; i++, map_len--)
1632                                match &= !((match_array[i] ^ *map++) & mask[i]);
1633
1634                        of_node_put(new);
1635                        new = of_find_node_by_phandle(be32_to_cpup(map));
1636                        map++;
1637                        map_len--;
1638
1639                        /* Check if not found */
1640                        if (!new)
1641                                goto put;
1642
1643                        if (!of_device_is_available(new))
1644                                match = 0;
1645
1646                        ret = of_property_read_u32(new, cells_name, &new_size);
1647                        if (ret)
1648                                goto put;
1649
1650                        /* Check for malformed properties */
1651                        if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1652                                goto put;
1653                        if (map_len < new_size)
1654                                goto put;
1655
1656                        /* Move forward by new node's #<list>-cells amount */
1657                        map += new_size;
1658                        map_len -= new_size;
1659                }
1660                if (!match)
1661                        goto put;
1662
1663                /* Get the <list>-map-pass-thru property (optional) */
1664                pass = of_get_property(cur, pass_name, NULL);
1665                if (!pass)
1666                        pass = dummy_pass;
1667
1668                /*
1669                 * Successfully parsed a <list>-map translation; copy new
1670                 * specifier into the out_args structure, keeping the
1671                 * bits specified in <list>-map-pass-thru.
1672                 */
1673                match_array = map - new_size;
1674                for (i = 0; i < new_size; i++) {
1675                        __be32 val = *(map - new_size + i);
1676
1677                        if (i < list_size) {
1678                                val &= ~pass[i];
1679                                val |= cpu_to_be32(out_args->args[i]) & pass[i];
1680                        }
1681
1682                        out_args->args[i] = be32_to_cpu(val);
1683                }
1684                out_args->args_count = list_size = new_size;
1685                /* Iterate again with new provider */
1686                out_args->np = new;
1687                of_node_put(cur);
1688                cur = new;
1689        }
1690put:
1691        of_node_put(cur);
1692        of_node_put(new);
1693free:
1694        kfree(mask_name);
1695        kfree(map_name);
1696        kfree(cells_name);
1697        kfree(pass_name);
1698
1699        return ret;
1700}
1701EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1702
1703/**
1704 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1705 * @np:         pointer to a device tree node containing a list
1706 * @list_name:  property name that contains a list
1707 * @cell_count: number of argument cells following the phandle
1708 * @index:      index of a phandle to parse out
1709 * @out_args:   optional pointer to output arguments structure (will be filled)
1710 *
1711 * This function is useful to parse lists of phandles and their arguments.
1712 * Returns 0 on success and fills out_args, on error returns appropriate
1713 * errno value.
1714 *
1715 * Caller is responsible to call of_node_put() on the returned out_args->np
1716 * pointer.
1717 *
1718 * Example::
1719 *
1720 *  phandle1: node1 {
1721 *  };
1722 *
1723 *  phandle2: node2 {
1724 *  };
1725 *
1726 *  node3 {
1727 *      list = <&phandle1 0 2 &phandle2 2 3>;
1728 *  };
1729 *
1730 * To get a device_node of the ``node2`` node you may call this:
1731 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1732 */
1733int of_parse_phandle_with_fixed_args(const struct device_node *np,
1734                                const char *list_name, int cell_count,
1735                                int index, struct of_phandle_args *out_args)
1736{
1737        if (index < 0)
1738                return -EINVAL;
1739        return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1740                                           index, out_args);
1741}
1742EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1743
1744/**
1745 * of_count_phandle_with_args() - Find the number of phandles references in a property
1746 * @np:         pointer to a device tree node containing a list
1747 * @list_name:  property name that contains a list
1748 * @cells_name: property name that specifies phandles' arguments count
1749 *
1750 * Return: The number of phandle + argument tuples within a property. It
1751 * is a typical pattern to encode a list of phandle and variable
1752 * arguments into a single property. The number of arguments is encoded
1753 * by a property in the phandle-target node. For example, a gpios
1754 * property would contain a list of GPIO specifies consisting of a
1755 * phandle and 1 or more arguments. The number of arguments are
1756 * determined by the #gpio-cells property in the node pointed to by the
1757 * phandle.
1758 */
1759int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1760                                const char *cells_name)
1761{
1762        struct of_phandle_iterator it;
1763        int rc, cur_index = 0;
1764
1765        /*
1766         * If cells_name is NULL we assume a cell count of 0. This makes
1767         * counting the phandles trivial as each 32bit word in the list is a
1768         * phandle and no arguments are to consider. So we don't iterate through
1769         * the list but just use the length to determine the phandle count.
1770         */
1771        if (!cells_name) {
1772                const __be32 *list;
1773                int size;
1774
1775                list = of_get_property(np, list_name, &size);
1776                if (!list)
1777                        return -ENOENT;
1778
1779                return size / sizeof(*list);
1780        }
1781
1782        rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1783        if (rc)
1784                return rc;
1785
1786        while ((rc = of_phandle_iterator_next(&it)) == 0)
1787                cur_index += 1;
1788
1789        if (rc != -ENOENT)
1790                return rc;
1791
1792        return cur_index;
1793}
1794EXPORT_SYMBOL(of_count_phandle_with_args);
1795
1796/**
1797 * __of_add_property - Add a property to a node without lock operations
1798 * @np:         Caller's Device Node
1799 * @prop:       Property to add
1800 */
1801int __of_add_property(struct device_node *np, struct property *prop)
1802{
1803        struct property **next;
1804
1805        prop->next = NULL;
1806        next = &np->properties;
1807        while (*next) {
1808                if (strcmp(prop->name, (*next)->name) == 0)
1809                        /* duplicate ! don't insert it */
1810                        return -EEXIST;
1811
1812                next = &(*next)->next;
1813        }
1814        *next = prop;
1815
1816        return 0;
1817}
1818
1819/**
1820 * of_add_property - Add a property to a node
1821 * @np:         Caller's Device Node
1822 * @prop:       Property to add
1823 */
1824int of_add_property(struct device_node *np, struct property *prop)
1825{
1826        unsigned long flags;
1827        int rc;
1828
1829        mutex_lock(&of_mutex);
1830
1831        raw_spin_lock_irqsave(&devtree_lock, flags);
1832        rc = __of_add_property(np, prop);
1833        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1834
1835        if (!rc)
1836                __of_add_property_sysfs(np, prop);
1837
1838        mutex_unlock(&of_mutex);
1839
1840        if (!rc)
1841                of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1842
1843        return rc;
1844}
1845EXPORT_SYMBOL_GPL(of_add_property);
1846
1847int __of_remove_property(struct device_node *np, struct property *prop)
1848{
1849        struct property **next;
1850
1851        for (next = &np->properties; *next; next = &(*next)->next) {
1852                if (*next == prop)
1853                        break;
1854        }
1855        if (*next == NULL)
1856                return -ENODEV;
1857
1858        /* found the node */
1859        *next = prop->next;
1860        prop->next = np->deadprops;
1861        np->deadprops = prop;
1862
1863        return 0;
1864}
1865
1866/**
1867 * of_remove_property - Remove a property from a node.
1868 * @np:         Caller's Device Node
1869 * @prop:       Property to remove
1870 *
1871 * Note that we don't actually remove it, since we have given out
1872 * who-knows-how-many pointers to the data using get-property.
1873 * Instead we just move the property to the "dead properties"
1874 * list, so it won't be found any more.
1875 */
1876int of_remove_property(struct device_node *np, struct property *prop)
1877{
1878        unsigned long flags;
1879        int rc;
1880
1881        if (!prop)
1882                return -ENODEV;
1883
1884        mutex_lock(&of_mutex);
1885
1886        raw_spin_lock_irqsave(&devtree_lock, flags);
1887        rc = __of_remove_property(np, prop);
1888        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1889
1890        if (!rc)
1891                __of_remove_property_sysfs(np, prop);
1892
1893        mutex_unlock(&of_mutex);
1894
1895        if (!rc)
1896                of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1897
1898        return rc;
1899}
1900EXPORT_SYMBOL_GPL(of_remove_property);
1901
1902int __of_update_property(struct device_node *np, struct property *newprop,
1903                struct property **oldpropp)
1904{
1905        struct property **next, *oldprop;
1906
1907        for (next = &np->properties; *next; next = &(*next)->next) {
1908                if (of_prop_cmp((*next)->name, newprop->name) == 0)
1909                        break;
1910        }
1911        *oldpropp = oldprop = *next;
1912
1913        if (oldprop) {
1914                /* replace the node */
1915                newprop->next = oldprop->next;
1916                *next = newprop;
1917                oldprop->next = np->deadprops;
1918                np->deadprops = oldprop;
1919        } else {
1920                /* new node */
1921                newprop->next = NULL;
1922                *next = newprop;
1923        }
1924
1925        return 0;
1926}
1927
1928/*
1929 * of_update_property - Update a property in a node, if the property does
1930 * not exist, add it.
1931 *
1932 * Note that we don't actually remove it, since we have given out
1933 * who-knows-how-many pointers to the data using get-property.
1934 * Instead we just move the property to the "dead properties" list,
1935 * and add the new property to the property list
1936 */
1937int of_update_property(struct device_node *np, struct property *newprop)
1938{
1939        struct property *oldprop;
1940        unsigned long flags;
1941        int rc;
1942
1943        if (!newprop->name)
1944                return -EINVAL;
1945
1946        mutex_lock(&of_mutex);
1947
1948        raw_spin_lock_irqsave(&devtree_lock, flags);
1949        rc = __of_update_property(np, newprop, &oldprop);
1950        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1951
1952        if (!rc)
1953                __of_update_property_sysfs(np, newprop, oldprop);
1954
1955        mutex_unlock(&of_mutex);
1956
1957        if (!rc)
1958                of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1959
1960        return rc;
1961}
1962
1963static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1964                         int id, const char *stem, int stem_len)
1965{
1966        ap->np = np;
1967        ap->id = id;
1968        strncpy(ap->stem, stem, stem_len);
1969        ap->stem[stem_len] = 0;
1970        list_add_tail(&ap->link, &aliases_lookup);
1971        pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1972                 ap->alias, ap->stem, ap->id, np);
1973}
1974
1975/**
1976 * of_alias_scan - Scan all properties of the 'aliases' node
1977 * @dt_alloc:   An allocator that provides a virtual address to memory
1978 *              for storing the resulting tree
1979 *
1980 * The function scans all the properties of the 'aliases' node and populates
1981 * the global lookup table with the properties.  It returns the
1982 * number of alias properties found, or an error code in case of failure.
1983 */
1984void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1985{
1986        struct property *pp;
1987
1988        of_aliases = of_find_node_by_path("/aliases");
1989        of_chosen = of_find_node_by_path("/chosen");
1990        if (of_chosen == NULL)
1991                of_chosen = of_find_node_by_path("/chosen@0");
1992
1993        if (of_chosen) {
1994                /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1995                const char *name = NULL;
1996
1997                if (of_property_read_string(of_chosen, "stdout-path", &name))
1998                        of_property_read_string(of_chosen, "linux,stdout-path",
1999                                                &name);
2000                if (IS_ENABLED(CONFIG_PPC) && !name)
2001                        of_property_read_string(of_aliases, "stdout", &name);
2002                if (name)
2003                        of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
2004        }
2005
2006        if (!of_aliases)
2007                return;
2008
2009        for_each_property_of_node(of_aliases, pp) {
2010                const char *start = pp->name;
2011                const char *end = start + strlen(start);
2012                struct device_node *np;
2013                struct alias_prop *ap;
2014                int id, len;
2015
2016                /* Skip those we do not want to proceed */
2017                if (!strcmp(pp->name, "name") ||
2018                    !strcmp(pp->name, "phandle") ||
2019                    !strcmp(pp->name, "linux,phandle"))
2020                        continue;
2021
2022                np = of_find_node_by_path(pp->value);
2023                if (!np)
2024                        continue;
2025
2026                /* walk the alias backwards to extract the id and work out
2027                 * the 'stem' string */
2028                while (isdigit(*(end-1)) && end > start)
2029                        end--;
2030                len = end - start;
2031
2032                if (kstrtoint(end, 10, &id) < 0)
2033                        continue;
2034
2035                /* Allocate an alias_prop with enough space for the stem */
2036                ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2037                if (!ap)
2038                        continue;
2039                memset(ap, 0, sizeof(*ap) + len + 1);
2040                ap->alias = start;
2041                of_alias_add(ap, np, id, start, len);
2042        }
2043}
2044
2045/**
2046 * of_alias_get_id - Get alias id for the given device_node
2047 * @np:         Pointer to the given device_node
2048 * @stem:       Alias stem of the given device_node
2049 *
2050 * The function travels the lookup table to get the alias id for the given
2051 * device_node and alias stem.
2052 *
2053 * Return: The alias id if found.
2054 */
2055int of_alias_get_id(struct device_node *np, const char *stem)
2056{
2057        struct alias_prop *app;
2058        int id = -ENODEV;
2059
2060        mutex_lock(&of_mutex);
2061        list_for_each_entry(app, &aliases_lookup, link) {
2062                if (strcmp(app->stem, stem) != 0)
2063                        continue;
2064
2065                if (np == app->np) {
2066                        id = app->id;
2067                        break;
2068                }
2069        }
2070        mutex_unlock(&of_mutex);
2071
2072        return id;
2073}
2074EXPORT_SYMBOL_GPL(of_alias_get_id);
2075
2076/**
2077 * of_alias_get_alias_list - Get alias list for the given device driver
2078 * @matches:    Array of OF device match structures to search in
2079 * @stem:       Alias stem of the given device_node
2080 * @bitmap:     Bitmap field pointer
2081 * @nbits:      Maximum number of alias IDs which can be recorded in bitmap
2082 *
2083 * The function travels the lookup table to record alias ids for the given
2084 * device match structures and alias stem.
2085 *
2086 * Return:      0 or -ENOSYS when !CONFIG_OF or
2087 *              -EOVERFLOW if alias ID is greater then allocated nbits
2088 */
2089int of_alias_get_alias_list(const struct of_device_id *matches,
2090                             const char *stem, unsigned long *bitmap,
2091                             unsigned int nbits)
2092{
2093        struct alias_prop *app;
2094        int ret = 0;
2095
2096        /* Zero bitmap field to make sure that all the time it is clean */
2097        bitmap_zero(bitmap, nbits);
2098
2099        mutex_lock(&of_mutex);
2100        pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2101        list_for_each_entry(app, &aliases_lookup, link) {
2102                pr_debug("%s: stem: %s, id: %d\n",
2103                         __func__, app->stem, app->id);
2104
2105                if (strcmp(app->stem, stem) != 0) {
2106                        pr_debug("%s: stem comparison didn't pass %s\n",
2107                                 __func__, app->stem);
2108                        continue;
2109                }
2110
2111                if (of_match_node(matches, app->np)) {
2112                        pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2113
2114                        if (app->id >= nbits) {
2115                                pr_warn("%s: ID %d >= than bitmap field %d\n",
2116                                        __func__, app->id, nbits);
2117                                ret = -EOVERFLOW;
2118                        } else {
2119                                set_bit(app->id, bitmap);
2120                        }
2121                }
2122        }
2123        mutex_unlock(&of_mutex);
2124
2125        return ret;
2126}
2127EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2128
2129/**
2130 * of_alias_get_highest_id - Get highest alias id for the given stem
2131 * @stem:       Alias stem to be examined
2132 *
2133 * The function travels the lookup table to get the highest alias id for the
2134 * given alias stem.  It returns the alias id if found.
2135 */
2136int of_alias_get_highest_id(const char *stem)
2137{
2138        struct alias_prop *app;
2139        int id = -ENODEV;
2140
2141        mutex_lock(&of_mutex);
2142        list_for_each_entry(app, &aliases_lookup, link) {
2143                if (strcmp(app->stem, stem) != 0)
2144                        continue;
2145
2146                if (app->id > id)
2147                        id = app->id;
2148        }
2149        mutex_unlock(&of_mutex);
2150
2151        return id;
2152}
2153EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2154
2155/**
2156 * of_console_check() - Test and setup console for DT setup
2157 * @dn: Pointer to device node
2158 * @name: Name to use for preferred console without index. ex. "ttyS"
2159 * @index: Index to use for preferred console.
2160 *
2161 * Check if the given device node matches the stdout-path property in the
2162 * /chosen node. If it does then register it as the preferred console.
2163 *
2164 * Return: TRUE if console successfully setup. Otherwise return FALSE.
2165 */
2166bool of_console_check(struct device_node *dn, char *name, int index)
2167{
2168        if (!dn || dn != of_stdout || console_set_on_cmdline)
2169                return false;
2170
2171        /*
2172         * XXX: cast `options' to char pointer to suppress complication
2173         * warnings: printk, UART and console drivers expect char pointer.
2174         */
2175        return !add_preferred_console(name, index, (char *)of_stdout_options);
2176}
2177EXPORT_SYMBOL_GPL(of_console_check);
2178
2179/**
2180 * of_find_next_cache_node - Find a node's subsidiary cache
2181 * @np: node of type "cpu" or "cache"
2182 *
2183 * Return: A node pointer with refcount incremented, use
2184 * of_node_put() on it when done.  Caller should hold a reference
2185 * to np.
2186 */
2187struct device_node *of_find_next_cache_node(const struct device_node *np)
2188{
2189        struct device_node *child, *cache_node;
2190
2191        cache_node = of_parse_phandle(np, "l2-cache", 0);
2192        if (!cache_node)
2193                cache_node = of_parse_phandle(np, "next-level-cache", 0);
2194
2195        if (cache_node)
2196                return cache_node;
2197
2198        /* OF on pmac has nodes instead of properties named "l2-cache"
2199         * beneath CPU nodes.
2200         */
2201        if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2202                for_each_child_of_node(np, child)
2203                        if (of_node_is_type(child, "cache"))
2204                                return child;
2205
2206        return NULL;
2207}
2208
2209/**
2210 * of_find_last_cache_level - Find the level at which the last cache is
2211 *              present for the given logical cpu
2212 *
2213 * @cpu: cpu number(logical index) for which the last cache level is needed
2214 *
2215 * Return: The the level at which the last cache is present. It is exactly
2216 * same as  the total number of cache levels for the given logical cpu.
2217 */
2218int of_find_last_cache_level(unsigned int cpu)
2219{
2220        u32 cache_level = 0;
2221        struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2222
2223        while (np) {
2224                prev = np;
2225                of_node_put(np);
2226                np = of_find_next_cache_node(np);
2227        }
2228
2229        of_property_read_u32(prev, "cache-level", &cache_level);
2230
2231        return cache_level;
2232}
2233
2234/**
2235 * of_map_id - Translate an ID through a downstream mapping.
2236 * @np: root complex device node.
2237 * @id: device ID to map.
2238 * @map_name: property name of the map to use.
2239 * @map_mask_name: optional property name of the mask to use.
2240 * @target: optional pointer to a target device node.
2241 * @id_out: optional pointer to receive the translated ID.
2242 *
2243 * Given a device ID, look up the appropriate implementation-defined
2244 * platform ID and/or the target device which receives transactions on that
2245 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2246 * @id_out may be NULL if only the other is required. If @target points to
2247 * a non-NULL device node pointer, only entries targeting that node will be
2248 * matched; if it points to a NULL value, it will receive the device node of
2249 * the first matching target phandle, with a reference held.
2250 *
2251 * Return: 0 on success or a standard error code on failure.
2252 */
2253int of_map_id(struct device_node *np, u32 id,
2254               const char *map_name, const char *map_mask_name,
2255               struct device_node **target, u32 *id_out)
2256{
2257        u32 map_mask, masked_id;
2258        int map_len;
2259        const __be32 *map = NULL;
2260
2261        if (!np || !map_name || (!target && !id_out))
2262                return -EINVAL;
2263
2264        map = of_get_property(np, map_name, &map_len);
2265        if (!map) {
2266                if (target)
2267                        return -ENODEV;
2268                /* Otherwise, no map implies no translation */
2269                *id_out = id;
2270                return 0;
2271        }
2272
2273        if (!map_len || map_len % (4 * sizeof(*map))) {
2274                pr_err("%pOF: Error: Bad %s length: %d\n", np,
2275                        map_name, map_len);
2276                return -EINVAL;
2277        }
2278
2279        /* The default is to select all bits. */
2280        map_mask = 0xffffffff;
2281
2282        /*
2283         * Can be overridden by "{iommu,msi}-map-mask" property.
2284         * If of_property_read_u32() fails, the default is used.
2285         */
2286        if (map_mask_name)
2287                of_property_read_u32(np, map_mask_name, &map_mask);
2288
2289        masked_id = map_mask & id;
2290        for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2291                struct device_node *phandle_node;
2292                u32 id_base = be32_to_cpup(map + 0);
2293                u32 phandle = be32_to_cpup(map + 1);
2294                u32 out_base = be32_to_cpup(map + 2);
2295                u32 id_len = be32_to_cpup(map + 3);
2296
2297                if (id_base & ~map_mask) {
2298                        pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2299                                np, map_name, map_name,
2300                                map_mask, id_base);
2301                        return -EFAULT;
2302                }
2303
2304                if (masked_id < id_base || masked_id >= id_base + id_len)
2305                        continue;
2306
2307                phandle_node = of_find_node_by_phandle(phandle);
2308                if (!phandle_node)
2309                        return -ENODEV;
2310
2311                if (target) {
2312                        if (*target)
2313                                of_node_put(phandle_node);
2314                        else
2315                                *target = phandle_node;
2316
2317                        if (*target != phandle_node)
2318                                continue;
2319                }
2320
2321                if (id_out)
2322                        *id_out = masked_id - id_base + out_base;
2323
2324                pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2325                        np, map_name, map_mask, id_base, out_base,
2326                        id_len, id, masked_id - id_base + out_base);
2327                return 0;
2328        }
2329
2330        pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2331                id, target && *target ? *target : NULL);
2332
2333        /* Bypasses translation */
2334        if (id_out)
2335                *id_out = id;
2336        return 0;
2337}
2338EXPORT_SYMBOL_GPL(of_map_id);
2339