linux/drivers/power/supply/ab8500_fg.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) ST-Ericsson AB 2012
   4 *
   5 * Main and Back-up battery management driver.
   6 *
   7 * Note: Backup battery management is required in case of Li-Ion battery and not
   8 * for capacitive battery. HREF boards have capacitive battery and hence backup
   9 * battery management is not used and the supported code is available in this
  10 * driver.
  11 *
  12 * Author:
  13 *      Johan Palsson <johan.palsson@stericsson.com>
  14 *      Karl Komierowski <karl.komierowski@stericsson.com>
  15 *      Arun R Murthy <arun.murthy@stericsson.com>
  16 */
  17
  18#include <linux/init.h>
  19#include <linux/module.h>
  20#include <linux/component.h>
  21#include <linux/device.h>
  22#include <linux/interrupt.h>
  23#include <linux/platform_device.h>
  24#include <linux/power_supply.h>
  25#include <linux/kobject.h>
  26#include <linux/slab.h>
  27#include <linux/delay.h>
  28#include <linux/time.h>
  29#include <linux/time64.h>
  30#include <linux/of.h>
  31#include <linux/completion.h>
  32#include <linux/mfd/core.h>
  33#include <linux/mfd/abx500.h>
  34#include <linux/mfd/abx500/ab8500.h>
  35#include <linux/iio/consumer.h>
  36#include <linux/kernel.h>
  37#include <linux/fixp-arith.h>
  38
  39#include "ab8500-bm.h"
  40
  41#define MILLI_TO_MICRO                  1000
  42#define FG_LSB_IN_MA                    1627
  43#define QLSB_NANO_AMP_HOURS_X10         1071
  44#define INS_CURR_TIMEOUT                (3 * HZ)
  45
  46#define SEC_TO_SAMPLE(S)                (S * 4)
  47
  48#define NBR_AVG_SAMPLES                 20
  49
  50#define LOW_BAT_CHECK_INTERVAL          (HZ / 16) /* 62.5 ms */
  51
  52#define VALID_CAPACITY_SEC              (45 * 60) /* 45 minutes */
  53#define BATT_OK_MIN                     2360 /* mV */
  54#define BATT_OK_INCREMENT               50 /* mV */
  55#define BATT_OK_MAX_NR_INCREMENTS       0xE
  56
  57/* FG constants */
  58#define BATT_OVV                        0x01
  59
  60/**
  61 * struct ab8500_fg_interrupts - ab8500 fg interrupts
  62 * @name:       name of the interrupt
  63 * @isr         function pointer to the isr
  64 */
  65struct ab8500_fg_interrupts {
  66        char *name;
  67        irqreturn_t (*isr)(int irq, void *data);
  68};
  69
  70enum ab8500_fg_discharge_state {
  71        AB8500_FG_DISCHARGE_INIT,
  72        AB8500_FG_DISCHARGE_INITMEASURING,
  73        AB8500_FG_DISCHARGE_INIT_RECOVERY,
  74        AB8500_FG_DISCHARGE_RECOVERY,
  75        AB8500_FG_DISCHARGE_READOUT_INIT,
  76        AB8500_FG_DISCHARGE_READOUT,
  77        AB8500_FG_DISCHARGE_WAKEUP,
  78};
  79
  80static char *discharge_state[] = {
  81        "DISCHARGE_INIT",
  82        "DISCHARGE_INITMEASURING",
  83        "DISCHARGE_INIT_RECOVERY",
  84        "DISCHARGE_RECOVERY",
  85        "DISCHARGE_READOUT_INIT",
  86        "DISCHARGE_READOUT",
  87        "DISCHARGE_WAKEUP",
  88};
  89
  90enum ab8500_fg_charge_state {
  91        AB8500_FG_CHARGE_INIT,
  92        AB8500_FG_CHARGE_READOUT,
  93};
  94
  95static char *charge_state[] = {
  96        "CHARGE_INIT",
  97        "CHARGE_READOUT",
  98};
  99
 100enum ab8500_fg_calibration_state {
 101        AB8500_FG_CALIB_INIT,
 102        AB8500_FG_CALIB_WAIT,
 103        AB8500_FG_CALIB_END,
 104};
 105
 106struct ab8500_fg_avg_cap {
 107        int avg;
 108        int samples[NBR_AVG_SAMPLES];
 109        time64_t time_stamps[NBR_AVG_SAMPLES];
 110        int pos;
 111        int nbr_samples;
 112        int sum;
 113};
 114
 115struct ab8500_fg_cap_scaling {
 116        bool enable;
 117        int cap_to_scale[2];
 118        int disable_cap_level;
 119        int scaled_cap;
 120};
 121
 122struct ab8500_fg_battery_capacity {
 123        int max_mah_design;
 124        int max_mah;
 125        int mah;
 126        int permille;
 127        int level;
 128        int prev_mah;
 129        int prev_percent;
 130        int prev_level;
 131        int user_mah;
 132        struct ab8500_fg_cap_scaling cap_scale;
 133};
 134
 135struct ab8500_fg_flags {
 136        bool fg_enabled;
 137        bool conv_done;
 138        bool charging;
 139        bool fully_charged;
 140        bool force_full;
 141        bool low_bat_delay;
 142        bool low_bat;
 143        bool bat_ovv;
 144        bool batt_unknown;
 145        bool calibrate;
 146        bool user_cap;
 147        bool batt_id_received;
 148};
 149
 150struct inst_curr_result_list {
 151        struct list_head list;
 152        int *result;
 153};
 154
 155/**
 156 * struct ab8500_fg - ab8500 FG device information
 157 * @dev:                Pointer to the structure device
 158 * @node:               a list of AB8500 FGs, hence prepared for reentrance
 159 * @irq                 holds the CCEOC interrupt number
 160 * @vbat:               Battery voltage in mV
 161 * @vbat_nom:           Nominal battery voltage in mV
 162 * @inst_curr:          Instantenous battery current in mA
 163 * @avg_curr:           Average battery current in mA
 164 * @bat_temp            battery temperature
 165 * @fg_samples:         Number of samples used in the FG accumulation
 166 * @accu_charge:        Accumulated charge from the last conversion
 167 * @recovery_cnt:       Counter for recovery mode
 168 * @high_curr_cnt:      Counter for high current mode
 169 * @init_cnt:           Counter for init mode
 170 * @low_bat_cnt         Counter for number of consecutive low battery measures
 171 * @nbr_cceoc_irq_cnt   Counter for number of CCEOC irqs received since enabled
 172 * @recovery_needed:    Indicate if recovery is needed
 173 * @high_curr_mode:     Indicate if we're in high current mode
 174 * @init_capacity:      Indicate if initial capacity measuring should be done
 175 * @turn_off_fg:        True if fg was off before current measurement
 176 * @calib_state         State during offset calibration
 177 * @discharge_state:    Current discharge state
 178 * @charge_state:       Current charge state
 179 * @ab8500_fg_started   Completion struct used for the instant current start
 180 * @ab8500_fg_complete  Completion struct used for the instant current reading
 181 * @flags:              Structure for information about events triggered
 182 * @bat_cap:            Structure for battery capacity specific parameters
 183 * @avg_cap:            Average capacity filter
 184 * @parent:             Pointer to the struct ab8500
 185 * @main_bat_v:         ADC channel for the main battery voltage
 186 * @bm:                 Platform specific battery management information
 187 * @fg_psy:             Structure that holds the FG specific battery properties
 188 * @fg_wq:              Work queue for running the FG algorithm
 189 * @fg_periodic_work:   Work to run the FG algorithm periodically
 190 * @fg_low_bat_work:    Work to check low bat condition
 191 * @fg_reinit_work      Work used to reset and reinitialise the FG algorithm
 192 * @fg_work:            Work to run the FG algorithm instantly
 193 * @fg_acc_cur_work:    Work to read the FG accumulator
 194 * @fg_check_hw_failure_work:   Work for checking HW state
 195 * @cc_lock:            Mutex for locking the CC
 196 * @fg_kobject:         Structure of type kobject
 197 */
 198struct ab8500_fg {
 199        struct device *dev;
 200        struct list_head node;
 201        int irq;
 202        int vbat;
 203        int vbat_nom;
 204        int inst_curr;
 205        int avg_curr;
 206        int bat_temp;
 207        int fg_samples;
 208        int accu_charge;
 209        int recovery_cnt;
 210        int high_curr_cnt;
 211        int init_cnt;
 212        int low_bat_cnt;
 213        int nbr_cceoc_irq_cnt;
 214        bool recovery_needed;
 215        bool high_curr_mode;
 216        bool init_capacity;
 217        bool turn_off_fg;
 218        enum ab8500_fg_calibration_state calib_state;
 219        enum ab8500_fg_discharge_state discharge_state;
 220        enum ab8500_fg_charge_state charge_state;
 221        struct completion ab8500_fg_started;
 222        struct completion ab8500_fg_complete;
 223        struct ab8500_fg_flags flags;
 224        struct ab8500_fg_battery_capacity bat_cap;
 225        struct ab8500_fg_avg_cap avg_cap;
 226        struct ab8500 *parent;
 227        struct iio_channel *main_bat_v;
 228        struct ab8500_bm_data *bm;
 229        struct power_supply *fg_psy;
 230        struct workqueue_struct *fg_wq;
 231        struct delayed_work fg_periodic_work;
 232        struct delayed_work fg_low_bat_work;
 233        struct delayed_work fg_reinit_work;
 234        struct work_struct fg_work;
 235        struct work_struct fg_acc_cur_work;
 236        struct delayed_work fg_check_hw_failure_work;
 237        struct mutex cc_lock;
 238        struct kobject fg_kobject;
 239};
 240static LIST_HEAD(ab8500_fg_list);
 241
 242/**
 243 * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
 244 * (i.e. the first fuel gauge in the instance list)
 245 */
 246struct ab8500_fg *ab8500_fg_get(void)
 247{
 248        return list_first_entry_or_null(&ab8500_fg_list, struct ab8500_fg,
 249                                        node);
 250}
 251
 252/* Main battery properties */
 253static enum power_supply_property ab8500_fg_props[] = {
 254        POWER_SUPPLY_PROP_VOLTAGE_NOW,
 255        POWER_SUPPLY_PROP_CURRENT_NOW,
 256        POWER_SUPPLY_PROP_CURRENT_AVG,
 257        POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
 258        POWER_SUPPLY_PROP_ENERGY_FULL,
 259        POWER_SUPPLY_PROP_ENERGY_NOW,
 260        POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
 261        POWER_SUPPLY_PROP_CHARGE_FULL,
 262        POWER_SUPPLY_PROP_CHARGE_NOW,
 263        POWER_SUPPLY_PROP_CAPACITY,
 264        POWER_SUPPLY_PROP_CAPACITY_LEVEL,
 265};
 266
 267/*
 268 * This array maps the raw hex value to lowbat voltage used by the AB8500
 269 * Values taken from the UM0836
 270 */
 271static int ab8500_fg_lowbat_voltage_map[] = {
 272        2300 ,
 273        2325 ,
 274        2350 ,
 275        2375 ,
 276        2400 ,
 277        2425 ,
 278        2450 ,
 279        2475 ,
 280        2500 ,
 281        2525 ,
 282        2550 ,
 283        2575 ,
 284        2600 ,
 285        2625 ,
 286        2650 ,
 287        2675 ,
 288        2700 ,
 289        2725 ,
 290        2750 ,
 291        2775 ,
 292        2800 ,
 293        2825 ,
 294        2850 ,
 295        2875 ,
 296        2900 ,
 297        2925 ,
 298        2950 ,
 299        2975 ,
 300        3000 ,
 301        3025 ,
 302        3050 ,
 303        3075 ,
 304        3100 ,
 305        3125 ,
 306        3150 ,
 307        3175 ,
 308        3200 ,
 309        3225 ,
 310        3250 ,
 311        3275 ,
 312        3300 ,
 313        3325 ,
 314        3350 ,
 315        3375 ,
 316        3400 ,
 317        3425 ,
 318        3450 ,
 319        3475 ,
 320        3500 ,
 321        3525 ,
 322        3550 ,
 323        3575 ,
 324        3600 ,
 325        3625 ,
 326        3650 ,
 327        3675 ,
 328        3700 ,
 329        3725 ,
 330        3750 ,
 331        3775 ,
 332        3800 ,
 333        3825 ,
 334        3850 ,
 335        3850 ,
 336};
 337
 338static u8 ab8500_volt_to_regval(int voltage)
 339{
 340        int i;
 341
 342        if (voltage < ab8500_fg_lowbat_voltage_map[0])
 343                return 0;
 344
 345        for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
 346                if (voltage < ab8500_fg_lowbat_voltage_map[i])
 347                        return (u8) i - 1;
 348        }
 349
 350        /* If not captured above, return index of last element */
 351        return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
 352}
 353
 354/**
 355 * ab8500_fg_is_low_curr() - Low or high current mode
 356 * @di:         pointer to the ab8500_fg structure
 357 * @curr:       the current to base or our decision on
 358 *
 359 * Low current mode if the current consumption is below a certain threshold
 360 */
 361static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
 362{
 363        /*
 364         * We want to know if we're in low current mode
 365         */
 366        if (curr > -di->bm->fg_params->high_curr_threshold)
 367                return true;
 368        else
 369                return false;
 370}
 371
 372/**
 373 * ab8500_fg_add_cap_sample() - Add capacity to average filter
 374 * @di:         pointer to the ab8500_fg structure
 375 * @sample:     the capacity in mAh to add to the filter
 376 *
 377 * A capacity is added to the filter and a new mean capacity is calculated and
 378 * returned
 379 */
 380static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
 381{
 382        time64_t now = ktime_get_boottime_seconds();
 383        struct ab8500_fg_avg_cap *avg = &di->avg_cap;
 384
 385        do {
 386                avg->sum += sample - avg->samples[avg->pos];
 387                avg->samples[avg->pos] = sample;
 388                avg->time_stamps[avg->pos] = now;
 389                avg->pos++;
 390
 391                if (avg->pos == NBR_AVG_SAMPLES)
 392                        avg->pos = 0;
 393
 394                if (avg->nbr_samples < NBR_AVG_SAMPLES)
 395                        avg->nbr_samples++;
 396
 397                /*
 398                 * Check the time stamp for each sample. If too old,
 399                 * replace with latest sample
 400                 */
 401        } while (now - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
 402
 403        avg->avg = avg->sum / avg->nbr_samples;
 404
 405        return avg->avg;
 406}
 407
 408/**
 409 * ab8500_fg_clear_cap_samples() - Clear average filter
 410 * @di:         pointer to the ab8500_fg structure
 411 *
 412 * The capacity filter is is reset to zero.
 413 */
 414static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
 415{
 416        int i;
 417        struct ab8500_fg_avg_cap *avg = &di->avg_cap;
 418
 419        avg->pos = 0;
 420        avg->nbr_samples = 0;
 421        avg->sum = 0;
 422        avg->avg = 0;
 423
 424        for (i = 0; i < NBR_AVG_SAMPLES; i++) {
 425                avg->samples[i] = 0;
 426                avg->time_stamps[i] = 0;
 427        }
 428}
 429
 430/**
 431 * ab8500_fg_fill_cap_sample() - Fill average filter
 432 * @di:         pointer to the ab8500_fg structure
 433 * @sample:     the capacity in mAh to fill the filter with
 434 *
 435 * The capacity filter is filled with a capacity in mAh
 436 */
 437static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
 438{
 439        int i;
 440        time64_t now;
 441        struct ab8500_fg_avg_cap *avg = &di->avg_cap;
 442
 443        now = ktime_get_boottime_seconds();
 444
 445        for (i = 0; i < NBR_AVG_SAMPLES; i++) {
 446                avg->samples[i] = sample;
 447                avg->time_stamps[i] = now;
 448        }
 449
 450        avg->pos = 0;
 451        avg->nbr_samples = NBR_AVG_SAMPLES;
 452        avg->sum = sample * NBR_AVG_SAMPLES;
 453        avg->avg = sample;
 454}
 455
 456/**
 457 * ab8500_fg_coulomb_counter() - enable coulomb counter
 458 * @di:         pointer to the ab8500_fg structure
 459 * @enable:     enable/disable
 460 *
 461 * Enable/Disable coulomb counter.
 462 * On failure returns negative value.
 463 */
 464static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
 465{
 466        int ret = 0;
 467        mutex_lock(&di->cc_lock);
 468        if (enable) {
 469                /* To be able to reprogram the number of samples, we have to
 470                 * first stop the CC and then enable it again */
 471                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 472                        AB8500_RTC_CC_CONF_REG, 0x00);
 473                if (ret)
 474                        goto cc_err;
 475
 476                /* Program the samples */
 477                ret = abx500_set_register_interruptible(di->dev,
 478                        AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
 479                        di->fg_samples);
 480                if (ret)
 481                        goto cc_err;
 482
 483                /* Start the CC */
 484                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 485                        AB8500_RTC_CC_CONF_REG,
 486                        (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
 487                if (ret)
 488                        goto cc_err;
 489
 490                di->flags.fg_enabled = true;
 491        } else {
 492                /* Clear any pending read requests */
 493                ret = abx500_mask_and_set_register_interruptible(di->dev,
 494                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
 495                        (RESET_ACCU | READ_REQ), 0);
 496                if (ret)
 497                        goto cc_err;
 498
 499                ret = abx500_set_register_interruptible(di->dev,
 500                        AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
 501                if (ret)
 502                        goto cc_err;
 503
 504                /* Stop the CC */
 505                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 506                        AB8500_RTC_CC_CONF_REG, 0);
 507                if (ret)
 508                        goto cc_err;
 509
 510                di->flags.fg_enabled = false;
 511
 512        }
 513        dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
 514                enable, di->fg_samples);
 515
 516        mutex_unlock(&di->cc_lock);
 517
 518        return ret;
 519cc_err:
 520        dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
 521        mutex_unlock(&di->cc_lock);
 522        return ret;
 523}
 524
 525/**
 526 * ab8500_fg_inst_curr_start() - start battery instantaneous current
 527 * @di:         pointer to the ab8500_fg structure
 528 *
 529 * Returns 0 or error code
 530 * Note: This is part "one" and has to be called before
 531 * ab8500_fg_inst_curr_finalize()
 532 */
 533int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
 534{
 535        u8 reg_val;
 536        int ret;
 537
 538        mutex_lock(&di->cc_lock);
 539
 540        di->nbr_cceoc_irq_cnt = 0;
 541        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
 542                AB8500_RTC_CC_CONF_REG, &reg_val);
 543        if (ret < 0)
 544                goto fail;
 545
 546        if (!(reg_val & CC_PWR_UP_ENA)) {
 547                dev_dbg(di->dev, "%s Enable FG\n", __func__);
 548                di->turn_off_fg = true;
 549
 550                /* Program the samples */
 551                ret = abx500_set_register_interruptible(di->dev,
 552                        AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
 553                        SEC_TO_SAMPLE(10));
 554                if (ret)
 555                        goto fail;
 556
 557                /* Start the CC */
 558                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 559                        AB8500_RTC_CC_CONF_REG,
 560                        (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
 561                if (ret)
 562                        goto fail;
 563        } else {
 564                di->turn_off_fg = false;
 565        }
 566
 567        /* Return and WFI */
 568        reinit_completion(&di->ab8500_fg_started);
 569        reinit_completion(&di->ab8500_fg_complete);
 570        enable_irq(di->irq);
 571
 572        /* Note: cc_lock is still locked */
 573        return 0;
 574fail:
 575        mutex_unlock(&di->cc_lock);
 576        return ret;
 577}
 578
 579/**
 580 * ab8500_fg_inst_curr_started() - check if fg conversion has started
 581 * @di:         pointer to the ab8500_fg structure
 582 *
 583 * Returns 1 if conversion started, 0 if still waiting
 584 */
 585int ab8500_fg_inst_curr_started(struct ab8500_fg *di)
 586{
 587        return completion_done(&di->ab8500_fg_started);
 588}
 589
 590/**
 591 * ab8500_fg_inst_curr_done() - check if fg conversion is done
 592 * @di:         pointer to the ab8500_fg structure
 593 *
 594 * Returns 1 if conversion done, 0 if still waiting
 595 */
 596int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
 597{
 598        return completion_done(&di->ab8500_fg_complete);
 599}
 600
 601/**
 602 * ab8500_fg_inst_curr_finalize() - battery instantaneous current
 603 * @di:         pointer to the ab8500_fg structure
 604 * @res:        battery instantenous current(on success)
 605 *
 606 * Returns 0 or an error code
 607 * Note: This is part "two" and has to be called at earliest 250 ms
 608 * after ab8500_fg_inst_curr_start()
 609 */
 610int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
 611{
 612        u8 low, high;
 613        int val;
 614        int ret;
 615        unsigned long timeout;
 616
 617        if (!completion_done(&di->ab8500_fg_complete)) {
 618                timeout = wait_for_completion_timeout(
 619                        &di->ab8500_fg_complete,
 620                        INS_CURR_TIMEOUT);
 621                dev_dbg(di->dev, "Finalize time: %d ms\n",
 622                        jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
 623                if (!timeout) {
 624                        ret = -ETIME;
 625                        disable_irq(di->irq);
 626                        di->nbr_cceoc_irq_cnt = 0;
 627                        dev_err(di->dev, "completion timed out [%d]\n",
 628                                __LINE__);
 629                        goto fail;
 630                }
 631        }
 632
 633        disable_irq(di->irq);
 634        di->nbr_cceoc_irq_cnt = 0;
 635
 636        ret = abx500_mask_and_set_register_interruptible(di->dev,
 637                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
 638                        READ_REQ, READ_REQ);
 639
 640        /* 100uS between read request and read is needed */
 641        usleep_range(100, 100);
 642
 643        /* Read CC Sample conversion value Low and high */
 644        ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 645                AB8500_GASG_CC_SMPL_CNVL_REG,  &low);
 646        if (ret < 0)
 647                goto fail;
 648
 649        ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 650                AB8500_GASG_CC_SMPL_CNVH_REG,  &high);
 651        if (ret < 0)
 652                goto fail;
 653
 654        /*
 655         * negative value for Discharging
 656         * convert 2's complement into decimal
 657         */
 658        if (high & 0x10)
 659                val = (low | (high << 8) | 0xFFFFE000);
 660        else
 661                val = (low | (high << 8));
 662
 663        /*
 664         * Convert to unit value in mA
 665         * Full scale input voltage is
 666         * 63.160mV => LSB = 63.160mV/(4096*res) = 1.542mA
 667         * Given a 250ms conversion cycle time the LSB corresponds
 668         * to 107.1 nAh. Convert to current by dividing by the conversion
 669         * time in hours (250ms = 1 / (3600 * 4)h)
 670         * 107.1nAh assumes 10mOhm, but fg_res is in 0.1mOhm
 671         */
 672        val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
 673                (1000 * di->bm->fg_res);
 674
 675        if (di->turn_off_fg) {
 676                dev_dbg(di->dev, "%s Disable FG\n", __func__);
 677
 678                /* Clear any pending read requests */
 679                ret = abx500_set_register_interruptible(di->dev,
 680                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
 681                if (ret)
 682                        goto fail;
 683
 684                /* Stop the CC */
 685                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 686                        AB8500_RTC_CC_CONF_REG, 0);
 687                if (ret)
 688                        goto fail;
 689        }
 690        mutex_unlock(&di->cc_lock);
 691        (*res) = val;
 692
 693        return 0;
 694fail:
 695        mutex_unlock(&di->cc_lock);
 696        return ret;
 697}
 698
 699/**
 700 * ab8500_fg_inst_curr_blocking() - battery instantaneous current
 701 * @di:         pointer to the ab8500_fg structure
 702 * @res:        battery instantenous current(on success)
 703 *
 704 * Returns 0 else error code
 705 */
 706int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
 707{
 708        int ret;
 709        unsigned long timeout;
 710        int res = 0;
 711
 712        ret = ab8500_fg_inst_curr_start(di);
 713        if (ret) {
 714                dev_err(di->dev, "Failed to initialize fg_inst\n");
 715                return 0;
 716        }
 717
 718        /* Wait for CC to actually start */
 719        if (!completion_done(&di->ab8500_fg_started)) {
 720                timeout = wait_for_completion_timeout(
 721                        &di->ab8500_fg_started,
 722                        INS_CURR_TIMEOUT);
 723                dev_dbg(di->dev, "Start time: %d ms\n",
 724                        jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
 725                if (!timeout) {
 726                        ret = -ETIME;
 727                        dev_err(di->dev, "completion timed out [%d]\n",
 728                                __LINE__);
 729                        goto fail;
 730                }
 731        }
 732
 733        ret = ab8500_fg_inst_curr_finalize(di, &res);
 734        if (ret) {
 735                dev_err(di->dev, "Failed to finalize fg_inst\n");
 736                return 0;
 737        }
 738
 739        dev_dbg(di->dev, "%s instant current: %d", __func__, res);
 740        return res;
 741fail:
 742        disable_irq(di->irq);
 743        mutex_unlock(&di->cc_lock);
 744        return ret;
 745}
 746
 747/**
 748 * ab8500_fg_acc_cur_work() - average battery current
 749 * @work:       pointer to the work_struct structure
 750 *
 751 * Updated the average battery current obtained from the
 752 * coulomb counter.
 753 */
 754static void ab8500_fg_acc_cur_work(struct work_struct *work)
 755{
 756        int val;
 757        int ret;
 758        u8 low, med, high;
 759
 760        struct ab8500_fg *di = container_of(work,
 761                struct ab8500_fg, fg_acc_cur_work);
 762
 763        mutex_lock(&di->cc_lock);
 764        ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 765                AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
 766        if (ret)
 767                goto exit;
 768
 769        ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 770                AB8500_GASG_CC_NCOV_ACCU_LOW,  &low);
 771        if (ret < 0)
 772                goto exit;
 773
 774        ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 775                AB8500_GASG_CC_NCOV_ACCU_MED,  &med);
 776        if (ret < 0)
 777                goto exit;
 778
 779        ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 780                AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
 781        if (ret < 0)
 782                goto exit;
 783
 784        /* Check for sign bit in case of negative value, 2's complement */
 785        if (high & 0x10)
 786                val = (low | (med << 8) | (high << 16) | 0xFFE00000);
 787        else
 788                val = (low | (med << 8) | (high << 16));
 789
 790        /*
 791         * Convert to uAh
 792         * Given a 250ms conversion cycle time the LSB corresponds
 793         * to 112.9 nAh.
 794         * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
 795         */
 796        di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
 797                (100 * di->bm->fg_res);
 798
 799        /*
 800         * Convert to unit value in mA
 801         * by dividing by the conversion
 802         * time in hours (= samples / (3600 * 4)h)
 803         * and multiply with 1000
 804         */
 805        di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
 806                (1000 * di->bm->fg_res * (di->fg_samples / 4));
 807
 808        di->flags.conv_done = true;
 809
 810        mutex_unlock(&di->cc_lock);
 811
 812        queue_work(di->fg_wq, &di->fg_work);
 813
 814        dev_dbg(di->dev, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n",
 815                                di->bm->fg_res, di->fg_samples, val, di->accu_charge);
 816        return;
 817exit:
 818        dev_err(di->dev,
 819                "Failed to read or write gas gauge registers\n");
 820        mutex_unlock(&di->cc_lock);
 821        queue_work(di->fg_wq, &di->fg_work);
 822}
 823
 824/**
 825 * ab8500_fg_bat_voltage() - get battery voltage
 826 * @di:         pointer to the ab8500_fg structure
 827 *
 828 * Returns battery voltage(on success) else error code
 829 */
 830static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
 831{
 832        int vbat, ret;
 833        static int prev;
 834
 835        ret = iio_read_channel_processed(di->main_bat_v, &vbat);
 836        if (ret < 0) {
 837                dev_err(di->dev,
 838                        "%s ADC conversion failed, using previous value\n",
 839                        __func__);
 840                return prev;
 841        }
 842
 843        prev = vbat;
 844        return vbat;
 845}
 846
 847/**
 848 * ab8500_fg_volt_to_capacity() - Voltage based capacity
 849 * @di:         pointer to the ab8500_fg structure
 850 * @voltage:    The voltage to convert to a capacity
 851 *
 852 * Returns battery capacity in per mille based on voltage
 853 */
 854static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
 855{
 856        int i, tbl_size;
 857        const struct ab8500_v_to_cap *tbl;
 858        int cap = 0;
 859
 860        tbl = di->bm->bat_type[di->bm->batt_id].v_to_cap_tbl;
 861        tbl_size = di->bm->bat_type[di->bm->batt_id].n_v_cap_tbl_elements;
 862
 863        for (i = 0; i < tbl_size; ++i) {
 864                if (voltage > tbl[i].voltage)
 865                        break;
 866        }
 867
 868        if ((i > 0) && (i < tbl_size)) {
 869                cap = fixp_linear_interpolate(
 870                        tbl[i].voltage,
 871                        tbl[i].capacity * 10,
 872                        tbl[i-1].voltage,
 873                        tbl[i-1].capacity * 10,
 874                        voltage);
 875        } else if (i == 0) {
 876                cap = 1000;
 877        } else {
 878                cap = 0;
 879        }
 880
 881        dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
 882                __func__, voltage, cap);
 883
 884        return cap;
 885}
 886
 887/**
 888 * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
 889 * @di:         pointer to the ab8500_fg structure
 890 *
 891 * Returns battery capacity based on battery voltage that is not compensated
 892 * for the voltage drop due to the load
 893 */
 894static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
 895{
 896        di->vbat = ab8500_fg_bat_voltage(di);
 897        return ab8500_fg_volt_to_capacity(di, di->vbat);
 898}
 899
 900/**
 901 * ab8500_fg_battery_resistance() - Returns the battery inner resistance
 902 * @di:         pointer to the ab8500_fg structure
 903 *
 904 * Returns battery inner resistance added with the fuel gauge resistor value
 905 * to get the total resistance in the whole link from gnd to bat+ node.
 906 */
 907static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
 908{
 909        int i, tbl_size;
 910        const struct batres_vs_temp *tbl;
 911        int resist = 0;
 912
 913        tbl = di->bm->bat_type[di->bm->batt_id].batres_tbl;
 914        tbl_size = di->bm->bat_type[di->bm->batt_id].n_batres_tbl_elements;
 915
 916        for (i = 0; i < tbl_size; ++i) {
 917                if (di->bat_temp / 10 > tbl[i].temp)
 918                        break;
 919        }
 920
 921        if ((i > 0) && (i < tbl_size)) {
 922                resist = fixp_linear_interpolate(
 923                        tbl[i].temp,
 924                        tbl[i].resist,
 925                        tbl[i-1].temp,
 926                        tbl[i-1].resist,
 927                        di->bat_temp / 10);
 928        } else if (i == 0) {
 929                resist = tbl[0].resist;
 930        } else {
 931                resist = tbl[tbl_size - 1].resist;
 932        }
 933
 934        dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
 935            " fg resistance %d, total: %d (mOhm)\n",
 936                __func__, di->bat_temp, resist, di->bm->fg_res / 10,
 937                (di->bm->fg_res / 10) + resist);
 938
 939        /* fg_res variable is in 0.1mOhm */
 940        resist += di->bm->fg_res / 10;
 941
 942        return resist;
 943}
 944
 945/**
 946 * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
 947 * @di:         pointer to the ab8500_fg structure
 948 *
 949 * Returns battery capacity based on battery voltage that is load compensated
 950 * for the voltage drop
 951 */
 952static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
 953{
 954        int vbat_comp, res;
 955        int i = 0;
 956        int vbat = 0;
 957
 958        ab8500_fg_inst_curr_start(di);
 959
 960        do {
 961                vbat += ab8500_fg_bat_voltage(di);
 962                i++;
 963                usleep_range(5000, 6000);
 964        } while (!ab8500_fg_inst_curr_done(di));
 965
 966        ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
 967
 968        di->vbat = vbat / i;
 969        res = ab8500_fg_battery_resistance(di);
 970
 971        /* Use Ohms law to get the load compensated voltage */
 972        vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
 973
 974        dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
 975                "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
 976                __func__, di->vbat, vbat_comp, res, di->inst_curr, i);
 977
 978        return ab8500_fg_volt_to_capacity(di, vbat_comp);
 979}
 980
 981/**
 982 * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
 983 * @di:         pointer to the ab8500_fg structure
 984 * @cap_mah:    capacity in mAh
 985 *
 986 * Converts capacity in mAh to capacity in permille
 987 */
 988static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
 989{
 990        return (cap_mah * 1000) / di->bat_cap.max_mah_design;
 991}
 992
 993/**
 994 * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
 995 * @di:         pointer to the ab8500_fg structure
 996 * @cap_pm:     capacity in permille
 997 *
 998 * Converts capacity in permille to capacity in mAh
 999 */
1000static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
1001{
1002        return cap_pm * di->bat_cap.max_mah_design / 1000;
1003}
1004
1005/**
1006 * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1007 * @di:         pointer to the ab8500_fg structure
1008 * @cap_mah:    capacity in mAh
1009 *
1010 * Converts capacity in mAh to capacity in uWh
1011 */
1012static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
1013{
1014        u64 div_res;
1015        u32 div_rem;
1016
1017        div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
1018        div_rem = do_div(div_res, 1000);
1019
1020        /* Make sure to round upwards if necessary */
1021        if (div_rem >= 1000 / 2)
1022                div_res++;
1023
1024        return (int) div_res;
1025}
1026
1027/**
1028 * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1029 * @di:         pointer to the ab8500_fg structure
1030 *
1031 * Return the capacity in mAh based on previous calculated capcity and the FG
1032 * accumulator register value. The filter is filled with this capacity
1033 */
1034static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
1035{
1036        dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1037                __func__,
1038                di->bat_cap.mah,
1039                di->accu_charge);
1040
1041        /* Capacity should not be less than 0 */
1042        if (di->bat_cap.mah + di->accu_charge > 0)
1043                di->bat_cap.mah += di->accu_charge;
1044        else
1045                di->bat_cap.mah = 0;
1046        /*
1047         * We force capacity to 100% once when the algorithm
1048         * reports that it's full.
1049         */
1050        if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1051                di->flags.force_full) {
1052                di->bat_cap.mah = di->bat_cap.max_mah_design;
1053        }
1054
1055        ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1056        di->bat_cap.permille =
1057                ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1058
1059        /* We need to update battery voltage and inst current when charging */
1060        di->vbat = ab8500_fg_bat_voltage(di);
1061        di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1062
1063        return di->bat_cap.mah;
1064}
1065
1066/**
1067 * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1068 * @di:         pointer to the ab8500_fg structure
1069 * @comp:       if voltage should be load compensated before capacity calc
1070 *
1071 * Return the capacity in mAh based on the battery voltage. The voltage can
1072 * either be load compensated or not. This value is added to the filter and a
1073 * new mean value is calculated and returned.
1074 */
1075static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1076{
1077        int permille, mah;
1078
1079        if (comp)
1080                permille = ab8500_fg_load_comp_volt_to_capacity(di);
1081        else
1082                permille = ab8500_fg_uncomp_volt_to_capacity(di);
1083
1084        mah = ab8500_fg_convert_permille_to_mah(di, permille);
1085
1086        di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1087        di->bat_cap.permille =
1088                ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1089
1090        return di->bat_cap.mah;
1091}
1092
1093/**
1094 * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1095 * @di:         pointer to the ab8500_fg structure
1096 *
1097 * Return the capacity in mAh based on previous calculated capcity and the FG
1098 * accumulator register value. This value is added to the filter and a
1099 * new mean value is calculated and returned.
1100 */
1101static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1102{
1103        int permille_volt, permille;
1104
1105        dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1106                __func__,
1107                di->bat_cap.mah,
1108                di->accu_charge);
1109
1110        /* Capacity should not be less than 0 */
1111        if (di->bat_cap.mah + di->accu_charge > 0)
1112                di->bat_cap.mah += di->accu_charge;
1113        else
1114                di->bat_cap.mah = 0;
1115
1116        if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1117                di->bat_cap.mah = di->bat_cap.max_mah_design;
1118
1119        /*
1120         * Check against voltage based capacity. It can not be lower
1121         * than what the uncompensated voltage says
1122         */
1123        permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1124        permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1125
1126        if (permille < permille_volt) {
1127                di->bat_cap.permille = permille_volt;
1128                di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1129                        di->bat_cap.permille);
1130
1131                dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1132                        __func__,
1133                        permille,
1134                        permille_volt);
1135
1136                ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1137        } else {
1138                ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1139                di->bat_cap.permille =
1140                        ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1141        }
1142
1143        return di->bat_cap.mah;
1144}
1145
1146/**
1147 * ab8500_fg_capacity_level() - Get the battery capacity level
1148 * @di:         pointer to the ab8500_fg structure
1149 *
1150 * Get the battery capacity level based on the capacity in percent
1151 */
1152static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1153{
1154        int ret, percent;
1155
1156        percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1157
1158        if (percent <= di->bm->cap_levels->critical ||
1159                di->flags.low_bat)
1160                ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1161        else if (percent <= di->bm->cap_levels->low)
1162                ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1163        else if (percent <= di->bm->cap_levels->normal)
1164                ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1165        else if (percent <= di->bm->cap_levels->high)
1166                ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1167        else
1168                ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1169
1170        return ret;
1171}
1172
1173/**
1174 * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
1175 * @di:         pointer to the ab8500_fg structure
1176 *
1177 * Calculates the capacity to be shown to upper layers. Scales the capacity
1178 * to have 100% as a reference from the actual capacity upon removal of charger
1179 * when charging is in maintenance mode.
1180 */
1181static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di)
1182{
1183        struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1184        int capacity = di->bat_cap.prev_percent;
1185
1186        if (!cs->enable)
1187                return capacity;
1188
1189        /*
1190         * As long as we are in fully charge mode scale the capacity
1191         * to show 100%.
1192         */
1193        if (di->flags.fully_charged) {
1194                cs->cap_to_scale[0] = 100;
1195                cs->cap_to_scale[1] =
1196                        max(capacity, di->bm->fg_params->maint_thres);
1197                dev_dbg(di->dev, "Scale cap with %d/%d\n",
1198                         cs->cap_to_scale[0], cs->cap_to_scale[1]);
1199        }
1200
1201        /* Calculates the scaled capacity. */
1202        if ((cs->cap_to_scale[0] != cs->cap_to_scale[1])
1203                                        && (cs->cap_to_scale[1] > 0))
1204                capacity = min(100,
1205                                 DIV_ROUND_CLOSEST(di->bat_cap.prev_percent *
1206                                                 cs->cap_to_scale[0],
1207                                                 cs->cap_to_scale[1]));
1208
1209        if (di->flags.charging) {
1210                if (capacity < cs->disable_cap_level) {
1211                        cs->disable_cap_level = capacity;
1212                        dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n",
1213                                cs->disable_cap_level);
1214                } else if (!di->flags.fully_charged) {
1215                        if (di->bat_cap.prev_percent >=
1216                            cs->disable_cap_level) {
1217                                dev_dbg(di->dev, "Disabling scaled capacity\n");
1218                                cs->enable = false;
1219                                capacity = di->bat_cap.prev_percent;
1220                        } else {
1221                                dev_dbg(di->dev,
1222                                        "Waiting in cap to level %d%%\n",
1223                                        cs->disable_cap_level);
1224                                capacity = cs->disable_cap_level;
1225                        }
1226                }
1227        }
1228
1229        return capacity;
1230}
1231
1232/**
1233 * ab8500_fg_update_cap_scalers() - Capacity scaling
1234 * @di:         pointer to the ab8500_fg structure
1235 *
1236 * To be called when state change from charge<->discharge to update
1237 * the capacity scalers.
1238 */
1239static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di)
1240{
1241        struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1242
1243        if (!cs->enable)
1244                return;
1245        if (di->flags.charging) {
1246                di->bat_cap.cap_scale.disable_cap_level =
1247                        di->bat_cap.cap_scale.scaled_cap;
1248                dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n",
1249                                di->bat_cap.cap_scale.disable_cap_level);
1250        } else {
1251                if (cs->scaled_cap != 100) {
1252                        cs->cap_to_scale[0] = cs->scaled_cap;
1253                        cs->cap_to_scale[1] = di->bat_cap.prev_percent;
1254                } else {
1255                        cs->cap_to_scale[0] = 100;
1256                        cs->cap_to_scale[1] =
1257                                max(di->bat_cap.prev_percent,
1258                                    di->bm->fg_params->maint_thres);
1259                }
1260
1261                dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n",
1262                                cs->cap_to_scale[0], cs->cap_to_scale[1]);
1263        }
1264}
1265
1266/**
1267 * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1268 * @di:         pointer to the ab8500_fg structure
1269 * @init:       capacity is allowed to go up in init mode
1270 *
1271 * Check if capacity or capacity limit has changed and notify the system
1272 * about it using the power_supply framework
1273 */
1274static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1275{
1276        bool changed = false;
1277        int percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1278
1279        di->bat_cap.level = ab8500_fg_capacity_level(di);
1280
1281        if (di->bat_cap.level != di->bat_cap.prev_level) {
1282                /*
1283                 * We do not allow reported capacity level to go up
1284                 * unless we're charging or if we're in init
1285                 */
1286                if (!(!di->flags.charging && di->bat_cap.level >
1287                        di->bat_cap.prev_level) || init) {
1288                        dev_dbg(di->dev, "level changed from %d to %d\n",
1289                                di->bat_cap.prev_level,
1290                                di->bat_cap.level);
1291                        di->bat_cap.prev_level = di->bat_cap.level;
1292                        changed = true;
1293                } else {
1294                        dev_dbg(di->dev, "level not allowed to go up "
1295                                "since no charger is connected: %d to %d\n",
1296                                di->bat_cap.prev_level,
1297                                di->bat_cap.level);
1298                }
1299        }
1300
1301        /*
1302         * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1303         * shutdown
1304         */
1305        if (di->flags.low_bat) {
1306                dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1307                di->bat_cap.prev_percent = 0;
1308                di->bat_cap.permille = 0;
1309                percent = 0;
1310                di->bat_cap.prev_mah = 0;
1311                di->bat_cap.mah = 0;
1312                changed = true;
1313        } else if (di->flags.fully_charged) {
1314                /*
1315                 * We report 100% if algorithm reported fully charged
1316                 * and show 100% during maintenance charging (scaling).
1317                 */
1318                if (di->flags.force_full) {
1319                        di->bat_cap.prev_percent = percent;
1320                        di->bat_cap.prev_mah = di->bat_cap.mah;
1321
1322                        changed = true;
1323
1324                        if (!di->bat_cap.cap_scale.enable &&
1325                                                di->bm->capacity_scaling) {
1326                                di->bat_cap.cap_scale.enable = true;
1327                                di->bat_cap.cap_scale.cap_to_scale[0] = 100;
1328                                di->bat_cap.cap_scale.cap_to_scale[1] =
1329                                                di->bat_cap.prev_percent;
1330                                di->bat_cap.cap_scale.disable_cap_level = 100;
1331                        }
1332                } else if (di->bat_cap.prev_percent != percent) {
1333                        dev_dbg(di->dev,
1334                                "battery reported full "
1335                                "but capacity dropping: %d\n",
1336                                percent);
1337                        di->bat_cap.prev_percent = percent;
1338                        di->bat_cap.prev_mah = di->bat_cap.mah;
1339
1340                        changed = true;
1341                }
1342        } else if (di->bat_cap.prev_percent != percent) {
1343                if (percent == 0) {
1344                        /*
1345                         * We will not report 0% unless we've got
1346                         * the LOW_BAT IRQ, no matter what the FG
1347                         * algorithm says.
1348                         */
1349                        di->bat_cap.prev_percent = 1;
1350                        percent = 1;
1351
1352                        changed = true;
1353                } else if (!(!di->flags.charging &&
1354                        percent > di->bat_cap.prev_percent) || init) {
1355                        /*
1356                         * We do not allow reported capacity to go up
1357                         * unless we're charging or if we're in init
1358                         */
1359                        dev_dbg(di->dev,
1360                                "capacity changed from %d to %d (%d)\n",
1361                                di->bat_cap.prev_percent,
1362                                percent,
1363                                di->bat_cap.permille);
1364                        di->bat_cap.prev_percent = percent;
1365                        di->bat_cap.prev_mah = di->bat_cap.mah;
1366
1367                        changed = true;
1368                } else {
1369                        dev_dbg(di->dev, "capacity not allowed to go up since "
1370                                "no charger is connected: %d to %d (%d)\n",
1371                                di->bat_cap.prev_percent,
1372                                percent,
1373                                di->bat_cap.permille);
1374                }
1375        }
1376
1377        if (changed) {
1378                if (di->bm->capacity_scaling) {
1379                        di->bat_cap.cap_scale.scaled_cap =
1380                                ab8500_fg_calculate_scaled_capacity(di);
1381
1382                        dev_info(di->dev, "capacity=%d (%d)\n",
1383                                di->bat_cap.prev_percent,
1384                                di->bat_cap.cap_scale.scaled_cap);
1385                }
1386                power_supply_changed(di->fg_psy);
1387                if (di->flags.fully_charged && di->flags.force_full) {
1388                        dev_dbg(di->dev, "Battery full, notifying.\n");
1389                        di->flags.force_full = false;
1390                        sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1391                }
1392                sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1393        }
1394}
1395
1396static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1397        enum ab8500_fg_charge_state new_state)
1398{
1399        dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1400                di->charge_state,
1401                charge_state[di->charge_state],
1402                new_state,
1403                charge_state[new_state]);
1404
1405        di->charge_state = new_state;
1406}
1407
1408static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
1409        enum ab8500_fg_discharge_state new_state)
1410{
1411        dev_dbg(di->dev, "Discharge state from %d [%s] to %d [%s]\n",
1412                di->discharge_state,
1413                discharge_state[di->discharge_state],
1414                new_state,
1415                discharge_state[new_state]);
1416
1417        di->discharge_state = new_state;
1418}
1419
1420/**
1421 * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1422 * @di:         pointer to the ab8500_fg structure
1423 *
1424 * Battery capacity calculation state machine for when we're charging
1425 */
1426static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1427{
1428        /*
1429         * If we change to discharge mode
1430         * we should start with recovery
1431         */
1432        if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1433                ab8500_fg_discharge_state_to(di,
1434                        AB8500_FG_DISCHARGE_INIT_RECOVERY);
1435
1436        switch (di->charge_state) {
1437        case AB8500_FG_CHARGE_INIT:
1438                di->fg_samples = SEC_TO_SAMPLE(
1439                        di->bm->fg_params->accu_charging);
1440
1441                ab8500_fg_coulomb_counter(di, true);
1442                ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1443
1444                break;
1445
1446        case AB8500_FG_CHARGE_READOUT:
1447                /*
1448                 * Read the FG and calculate the new capacity
1449                 */
1450                mutex_lock(&di->cc_lock);
1451                if (!di->flags.conv_done && !di->flags.force_full) {
1452                        /* Wasn't the CC IRQ that got us here */
1453                        mutex_unlock(&di->cc_lock);
1454                        dev_dbg(di->dev, "%s CC conv not done\n",
1455                                __func__);
1456
1457                        break;
1458                }
1459                di->flags.conv_done = false;
1460                mutex_unlock(&di->cc_lock);
1461
1462                ab8500_fg_calc_cap_charging(di);
1463
1464                break;
1465
1466        default:
1467                break;
1468        }
1469
1470        /* Check capacity limits */
1471        ab8500_fg_check_capacity_limits(di, false);
1472}
1473
1474static void force_capacity(struct ab8500_fg *di)
1475{
1476        int cap;
1477
1478        ab8500_fg_clear_cap_samples(di);
1479        cap = di->bat_cap.user_mah;
1480        if (cap > di->bat_cap.max_mah_design) {
1481                dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1482                        " %d\n", cap, di->bat_cap.max_mah_design);
1483                cap = di->bat_cap.max_mah_design;
1484        }
1485        ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1486        di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1487        di->bat_cap.mah = cap;
1488        ab8500_fg_check_capacity_limits(di, true);
1489}
1490
1491static bool check_sysfs_capacity(struct ab8500_fg *di)
1492{
1493        int cap, lower, upper;
1494        int cap_permille;
1495
1496        cap = di->bat_cap.user_mah;
1497
1498        cap_permille = ab8500_fg_convert_mah_to_permille(di,
1499                di->bat_cap.user_mah);
1500
1501        lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10;
1502        upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10;
1503
1504        if (lower < 0)
1505                lower = 0;
1506        /* 1000 is permille, -> 100 percent */
1507        if (upper > 1000)
1508                upper = 1000;
1509
1510        dev_dbg(di->dev, "Capacity limits:"
1511                " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1512                lower, cap_permille, upper, cap, di->bat_cap.mah);
1513
1514        /* If within limits, use the saved capacity and exit estimation...*/
1515        if (cap_permille > lower && cap_permille < upper) {
1516                dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1517                force_capacity(di);
1518                return true;
1519        }
1520        dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1521        return false;
1522}
1523
1524/**
1525 * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1526 * @di:         pointer to the ab8500_fg structure
1527 *
1528 * Battery capacity calculation state machine for when we're discharging
1529 */
1530static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1531{
1532        int sleep_time;
1533
1534        /* If we change to charge mode we should start with init */
1535        if (di->charge_state != AB8500_FG_CHARGE_INIT)
1536                ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1537
1538        switch (di->discharge_state) {
1539        case AB8500_FG_DISCHARGE_INIT:
1540                /* We use the FG IRQ to work on */
1541                di->init_cnt = 0;
1542                di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
1543                ab8500_fg_coulomb_counter(di, true);
1544                ab8500_fg_discharge_state_to(di,
1545                        AB8500_FG_DISCHARGE_INITMEASURING);
1546
1547                fallthrough;
1548        case AB8500_FG_DISCHARGE_INITMEASURING:
1549                /*
1550                 * Discard a number of samples during startup.
1551                 * After that, use compensated voltage for a few
1552                 * samples to get an initial capacity.
1553                 * Then go to READOUT
1554                 */
1555                sleep_time = di->bm->fg_params->init_timer;
1556
1557                /* Discard the first [x] seconds */
1558                if (di->init_cnt > di->bm->fg_params->init_discard_time) {
1559                        ab8500_fg_calc_cap_discharge_voltage(di, true);
1560
1561                        ab8500_fg_check_capacity_limits(di, true);
1562                }
1563
1564                di->init_cnt += sleep_time;
1565                if (di->init_cnt > di->bm->fg_params->init_total_time)
1566                        ab8500_fg_discharge_state_to(di,
1567                                AB8500_FG_DISCHARGE_READOUT_INIT);
1568
1569                break;
1570
1571        case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1572                di->recovery_cnt = 0;
1573                di->recovery_needed = true;
1574                ab8500_fg_discharge_state_to(di,
1575                        AB8500_FG_DISCHARGE_RECOVERY);
1576
1577                fallthrough;
1578
1579        case AB8500_FG_DISCHARGE_RECOVERY:
1580                sleep_time = di->bm->fg_params->recovery_sleep_timer;
1581
1582                /*
1583                 * We should check the power consumption
1584                 * If low, go to READOUT (after x min) or
1585                 * RECOVERY_SLEEP if time left.
1586                 * If high, go to READOUT
1587                 */
1588                di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1589
1590                if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1591                        if (di->recovery_cnt >
1592                                di->bm->fg_params->recovery_total_time) {
1593                                di->fg_samples = SEC_TO_SAMPLE(
1594                                        di->bm->fg_params->accu_high_curr);
1595                                ab8500_fg_coulomb_counter(di, true);
1596                                ab8500_fg_discharge_state_to(di,
1597                                        AB8500_FG_DISCHARGE_READOUT);
1598                                di->recovery_needed = false;
1599                        } else {
1600                                queue_delayed_work(di->fg_wq,
1601                                        &di->fg_periodic_work,
1602                                        sleep_time * HZ);
1603                        }
1604                        di->recovery_cnt += sleep_time;
1605                } else {
1606                        di->fg_samples = SEC_TO_SAMPLE(
1607                                di->bm->fg_params->accu_high_curr);
1608                        ab8500_fg_coulomb_counter(di, true);
1609                        ab8500_fg_discharge_state_to(di,
1610                                AB8500_FG_DISCHARGE_READOUT);
1611                }
1612                break;
1613
1614        case AB8500_FG_DISCHARGE_READOUT_INIT:
1615                di->fg_samples = SEC_TO_SAMPLE(
1616                        di->bm->fg_params->accu_high_curr);
1617                ab8500_fg_coulomb_counter(di, true);
1618                ab8500_fg_discharge_state_to(di,
1619                                AB8500_FG_DISCHARGE_READOUT);
1620                break;
1621
1622        case AB8500_FG_DISCHARGE_READOUT:
1623                di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1624
1625                if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1626                        /* Detect mode change */
1627                        if (di->high_curr_mode) {
1628                                di->high_curr_mode = false;
1629                                di->high_curr_cnt = 0;
1630                        }
1631
1632                        if (di->recovery_needed) {
1633                                ab8500_fg_discharge_state_to(di,
1634                                        AB8500_FG_DISCHARGE_INIT_RECOVERY);
1635
1636                                queue_delayed_work(di->fg_wq,
1637                                        &di->fg_periodic_work, 0);
1638
1639                                break;
1640                        }
1641
1642                        ab8500_fg_calc_cap_discharge_voltage(di, true);
1643                } else {
1644                        mutex_lock(&di->cc_lock);
1645                        if (!di->flags.conv_done) {
1646                                /* Wasn't the CC IRQ that got us here */
1647                                mutex_unlock(&di->cc_lock);
1648                                dev_dbg(di->dev, "%s CC conv not done\n",
1649                                        __func__);
1650
1651                                break;
1652                        }
1653                        di->flags.conv_done = false;
1654                        mutex_unlock(&di->cc_lock);
1655
1656                        /* Detect mode change */
1657                        if (!di->high_curr_mode) {
1658                                di->high_curr_mode = true;
1659                                di->high_curr_cnt = 0;
1660                        }
1661
1662                        di->high_curr_cnt +=
1663                                di->bm->fg_params->accu_high_curr;
1664                        if (di->high_curr_cnt >
1665                                di->bm->fg_params->high_curr_time)
1666                                di->recovery_needed = true;
1667
1668                        ab8500_fg_calc_cap_discharge_fg(di);
1669                }
1670
1671                ab8500_fg_check_capacity_limits(di, false);
1672
1673                break;
1674
1675        case AB8500_FG_DISCHARGE_WAKEUP:
1676                ab8500_fg_calc_cap_discharge_voltage(di, true);
1677
1678                di->fg_samples = SEC_TO_SAMPLE(
1679                        di->bm->fg_params->accu_high_curr);
1680                ab8500_fg_coulomb_counter(di, true);
1681                ab8500_fg_discharge_state_to(di,
1682                                AB8500_FG_DISCHARGE_READOUT);
1683
1684                ab8500_fg_check_capacity_limits(di, false);
1685
1686                break;
1687
1688        default:
1689                break;
1690        }
1691}
1692
1693/**
1694 * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1695 * @di:         pointer to the ab8500_fg structure
1696 *
1697 */
1698static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1699{
1700        int ret;
1701
1702        switch (di->calib_state) {
1703        case AB8500_FG_CALIB_INIT:
1704                dev_dbg(di->dev, "Calibration ongoing...\n");
1705
1706                ret = abx500_mask_and_set_register_interruptible(di->dev,
1707                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1708                        CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1709                if (ret < 0)
1710                        goto err;
1711
1712                ret = abx500_mask_and_set_register_interruptible(di->dev,
1713                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1714                        CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1715                if (ret < 0)
1716                        goto err;
1717                di->calib_state = AB8500_FG_CALIB_WAIT;
1718                break;
1719        case AB8500_FG_CALIB_END:
1720                ret = abx500_mask_and_set_register_interruptible(di->dev,
1721                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1722                        CC_MUXOFFSET, CC_MUXOFFSET);
1723                if (ret < 0)
1724                        goto err;
1725                di->flags.calibrate = false;
1726                dev_dbg(di->dev, "Calibration done...\n");
1727                queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1728                break;
1729        case AB8500_FG_CALIB_WAIT:
1730                dev_dbg(di->dev, "Calibration WFI\n");
1731                break;
1732        default:
1733                break;
1734        }
1735        return;
1736err:
1737        /* Something went wrong, don't calibrate then */
1738        dev_err(di->dev, "failed to calibrate the CC\n");
1739        di->flags.calibrate = false;
1740        di->calib_state = AB8500_FG_CALIB_INIT;
1741        queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1742}
1743
1744/**
1745 * ab8500_fg_algorithm() - Entry point for the FG algorithm
1746 * @di:         pointer to the ab8500_fg structure
1747 *
1748 * Entry point for the battery capacity calculation state machine
1749 */
1750static void ab8500_fg_algorithm(struct ab8500_fg *di)
1751{
1752        if (di->flags.calibrate)
1753                ab8500_fg_algorithm_calibrate(di);
1754        else {
1755                if (di->flags.charging)
1756                        ab8500_fg_algorithm_charging(di);
1757                else
1758                        ab8500_fg_algorithm_discharging(di);
1759        }
1760
1761        dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d %d "
1762                "%d %d %d %d %d %d %d\n",
1763                di->bat_cap.max_mah_design,
1764                di->bat_cap.max_mah,
1765                di->bat_cap.mah,
1766                di->bat_cap.permille,
1767                di->bat_cap.level,
1768                di->bat_cap.prev_mah,
1769                di->bat_cap.prev_percent,
1770                di->bat_cap.prev_level,
1771                di->vbat,
1772                di->inst_curr,
1773                di->avg_curr,
1774                di->accu_charge,
1775                di->flags.charging,
1776                di->charge_state,
1777                di->discharge_state,
1778                di->high_curr_mode,
1779                di->recovery_needed);
1780}
1781
1782/**
1783 * ab8500_fg_periodic_work() - Run the FG state machine periodically
1784 * @work:       pointer to the work_struct structure
1785 *
1786 * Work queue function for periodic work
1787 */
1788static void ab8500_fg_periodic_work(struct work_struct *work)
1789{
1790        struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1791                fg_periodic_work.work);
1792
1793        if (di->init_capacity) {
1794                /* Get an initial capacity calculation */
1795                ab8500_fg_calc_cap_discharge_voltage(di, true);
1796                ab8500_fg_check_capacity_limits(di, true);
1797                di->init_capacity = false;
1798
1799                queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1800        } else if (di->flags.user_cap) {
1801                if (check_sysfs_capacity(di)) {
1802                        ab8500_fg_check_capacity_limits(di, true);
1803                        if (di->flags.charging)
1804                                ab8500_fg_charge_state_to(di,
1805                                        AB8500_FG_CHARGE_INIT);
1806                        else
1807                                ab8500_fg_discharge_state_to(di,
1808                                        AB8500_FG_DISCHARGE_READOUT_INIT);
1809                }
1810                di->flags.user_cap = false;
1811                queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1812        } else
1813                ab8500_fg_algorithm(di);
1814
1815}
1816
1817/**
1818 * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1819 * @work:       pointer to the work_struct structure
1820 *
1821 * Work queue function for checking the OVV_BAT condition
1822 */
1823static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1824{
1825        int ret;
1826        u8 reg_value;
1827
1828        struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1829                fg_check_hw_failure_work.work);
1830
1831        /*
1832         * If we have had a battery over-voltage situation,
1833         * check ovv-bit to see if it should be reset.
1834         */
1835        ret = abx500_get_register_interruptible(di->dev,
1836                AB8500_CHARGER, AB8500_CH_STAT_REG,
1837                &reg_value);
1838        if (ret < 0) {
1839                dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1840                return;
1841        }
1842        if ((reg_value & BATT_OVV) == BATT_OVV) {
1843                if (!di->flags.bat_ovv) {
1844                        dev_dbg(di->dev, "Battery OVV\n");
1845                        di->flags.bat_ovv = true;
1846                        power_supply_changed(di->fg_psy);
1847                }
1848                /* Not yet recovered from ovv, reschedule this test */
1849                queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1850                                   HZ);
1851                } else {
1852                        dev_dbg(di->dev, "Battery recovered from OVV\n");
1853                        di->flags.bat_ovv = false;
1854                        power_supply_changed(di->fg_psy);
1855        }
1856}
1857
1858/**
1859 * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1860 * @work:       pointer to the work_struct structure
1861 *
1862 * Work queue function for checking the LOW_BAT condition
1863 */
1864static void ab8500_fg_low_bat_work(struct work_struct *work)
1865{
1866        int vbat;
1867
1868        struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1869                fg_low_bat_work.work);
1870
1871        vbat = ab8500_fg_bat_voltage(di);
1872
1873        /* Check if LOW_BAT still fulfilled */
1874        if (vbat < di->bm->fg_params->lowbat_threshold) {
1875                /* Is it time to shut down? */
1876                if (di->low_bat_cnt < 1) {
1877                        di->flags.low_bat = true;
1878                        dev_warn(di->dev, "Shut down pending...\n");
1879                } else {
1880                        /*
1881                        * Else we need to re-schedule this check to be able to detect
1882                        * if the voltage increases again during charging or
1883                        * due to decreasing load.
1884                        */
1885                        di->low_bat_cnt--;
1886                        dev_warn(di->dev, "Battery voltage still LOW\n");
1887                        queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1888                                round_jiffies(LOW_BAT_CHECK_INTERVAL));
1889                }
1890        } else {
1891                di->flags.low_bat_delay = false;
1892                di->low_bat_cnt = 10;
1893                dev_warn(di->dev, "Battery voltage OK again\n");
1894        }
1895
1896        /* This is needed to dispatch LOW_BAT */
1897        ab8500_fg_check_capacity_limits(di, false);
1898}
1899
1900/**
1901 * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1902 * to the target voltage.
1903 * @di:       pointer to the ab8500_fg structure
1904 * @target:   target voltage
1905 *
1906 * Returns bit pattern closest to the target voltage
1907 * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1908 */
1909
1910static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1911{
1912        if (target > BATT_OK_MIN +
1913                (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1914                return BATT_OK_MAX_NR_INCREMENTS;
1915        if (target < BATT_OK_MIN)
1916                return 0;
1917        return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1918}
1919
1920/**
1921 * ab8500_fg_battok_init_hw_register - init battok levels
1922 * @di:       pointer to the ab8500_fg structure
1923 *
1924 */
1925
1926static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1927{
1928        int selected;
1929        int sel0;
1930        int sel1;
1931        int cbp_sel0;
1932        int cbp_sel1;
1933        int ret;
1934        int new_val;
1935
1936        sel0 = di->bm->fg_params->battok_falling_th_sel0;
1937        sel1 = di->bm->fg_params->battok_raising_th_sel1;
1938
1939        cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1940        cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1941
1942        selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1943
1944        if (selected != sel0)
1945                dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1946                        sel0, selected, cbp_sel0);
1947
1948        selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1949
1950        if (selected != sel1)
1951                dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1952                        sel1, selected, cbp_sel1);
1953
1954        new_val = cbp_sel0 | (cbp_sel1 << 4);
1955
1956        dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1957        ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1958                AB8500_BATT_OK_REG, new_val);
1959        return ret;
1960}
1961
1962/**
1963 * ab8500_fg_instant_work() - Run the FG state machine instantly
1964 * @work:       pointer to the work_struct structure
1965 *
1966 * Work queue function for instant work
1967 */
1968static void ab8500_fg_instant_work(struct work_struct *work)
1969{
1970        struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1971
1972        ab8500_fg_algorithm(di);
1973}
1974
1975/**
1976 * ab8500_fg_cc_data_end_handler() - end of data conversion isr.
1977 * @irq:       interrupt number
1978 * @_di:       pointer to the ab8500_fg structure
1979 *
1980 * Returns IRQ status(IRQ_HANDLED)
1981 */
1982static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1983{
1984        struct ab8500_fg *di = _di;
1985        if (!di->nbr_cceoc_irq_cnt) {
1986                di->nbr_cceoc_irq_cnt++;
1987                complete(&di->ab8500_fg_started);
1988        } else {
1989                di->nbr_cceoc_irq_cnt = 0;
1990                complete(&di->ab8500_fg_complete);
1991        }
1992        return IRQ_HANDLED;
1993}
1994
1995/**
1996 * ab8500_fg_cc_int_calib_handler () - end of calibration isr.
1997 * @irq:       interrupt number
1998 * @_di:       pointer to the ab8500_fg structure
1999 *
2000 * Returns IRQ status(IRQ_HANDLED)
2001 */
2002static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
2003{
2004        struct ab8500_fg *di = _di;
2005        di->calib_state = AB8500_FG_CALIB_END;
2006        queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2007        return IRQ_HANDLED;
2008}
2009
2010/**
2011 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2012 * @irq:       interrupt number
2013 * @_di:       pointer to the ab8500_fg structure
2014 *
2015 * Returns IRQ status(IRQ_HANDLED)
2016 */
2017static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
2018{
2019        struct ab8500_fg *di = _di;
2020
2021        queue_work(di->fg_wq, &di->fg_acc_cur_work);
2022
2023        return IRQ_HANDLED;
2024}
2025
2026/**
2027 * ab8500_fg_batt_ovv_handler() - Battery OVV occured
2028 * @irq:       interrupt number
2029 * @_di:       pointer to the ab8500_fg structure
2030 *
2031 * Returns IRQ status(IRQ_HANDLED)
2032 */
2033static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
2034{
2035        struct ab8500_fg *di = _di;
2036
2037        dev_dbg(di->dev, "Battery OVV\n");
2038
2039        /* Schedule a new HW failure check */
2040        queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
2041
2042        return IRQ_HANDLED;
2043}
2044
2045/**
2046 * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
2047 * @irq:       interrupt number
2048 * @_di:       pointer to the ab8500_fg structure
2049 *
2050 * Returns IRQ status(IRQ_HANDLED)
2051 */
2052static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
2053{
2054        struct ab8500_fg *di = _di;
2055
2056        /* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */
2057        if (!di->flags.low_bat_delay) {
2058                dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
2059                di->flags.low_bat_delay = true;
2060                /*
2061                 * Start a timer to check LOW_BAT again after some time
2062                 * This is done to avoid shutdown on single voltage dips
2063                 */
2064                queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
2065                        round_jiffies(LOW_BAT_CHECK_INTERVAL));
2066        }
2067        return IRQ_HANDLED;
2068}
2069
2070/**
2071 * ab8500_fg_get_property() - get the fg properties
2072 * @psy:        pointer to the power_supply structure
2073 * @psp:        pointer to the power_supply_property structure
2074 * @val:        pointer to the power_supply_propval union
2075 *
2076 * This function gets called when an application tries to get the
2077 * fg properties by reading the sysfs files.
2078 * voltage_now:         battery voltage
2079 * current_now:         battery instant current
2080 * current_avg:         battery average current
2081 * charge_full_design:  capacity where battery is considered full
2082 * charge_now:          battery capacity in nAh
2083 * capacity:            capacity in percent
2084 * capacity_level:      capacity level
2085 *
2086 * Returns error code in case of failure else 0 on success
2087 */
2088static int ab8500_fg_get_property(struct power_supply *psy,
2089        enum power_supply_property psp,
2090        union power_supply_propval *val)
2091{
2092        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2093
2094        /*
2095         * If battery is identified as unknown and charging of unknown
2096         * batteries is disabled, we always report 100% capacity and
2097         * capacity level UNKNOWN, since we can't calculate
2098         * remaining capacity
2099         */
2100
2101        switch (psp) {
2102        case POWER_SUPPLY_PROP_VOLTAGE_NOW:
2103                if (di->flags.bat_ovv)
2104                        val->intval = BATT_OVV_VALUE * 1000;
2105                else
2106                        val->intval = di->vbat * 1000;
2107                break;
2108        case POWER_SUPPLY_PROP_CURRENT_NOW:
2109                val->intval = di->inst_curr * 1000;
2110                break;
2111        case POWER_SUPPLY_PROP_CURRENT_AVG:
2112                val->intval = di->avg_curr * 1000;
2113                break;
2114        case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2115                val->intval = ab8500_fg_convert_mah_to_uwh(di,
2116                                di->bat_cap.max_mah_design);
2117                break;
2118        case POWER_SUPPLY_PROP_ENERGY_FULL:
2119                val->intval = ab8500_fg_convert_mah_to_uwh(di,
2120                                di->bat_cap.max_mah);
2121                break;
2122        case POWER_SUPPLY_PROP_ENERGY_NOW:
2123                if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2124                                di->flags.batt_id_received)
2125                        val->intval = ab8500_fg_convert_mah_to_uwh(di,
2126                                        di->bat_cap.max_mah);
2127                else
2128                        val->intval = ab8500_fg_convert_mah_to_uwh(di,
2129                                        di->bat_cap.prev_mah);
2130                break;
2131        case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2132                val->intval = di->bat_cap.max_mah_design;
2133                break;
2134        case POWER_SUPPLY_PROP_CHARGE_FULL:
2135                val->intval = di->bat_cap.max_mah;
2136                break;
2137        case POWER_SUPPLY_PROP_CHARGE_NOW:
2138                if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2139                                di->flags.batt_id_received)
2140                        val->intval = di->bat_cap.max_mah;
2141                else
2142                        val->intval = di->bat_cap.prev_mah;
2143                break;
2144        case POWER_SUPPLY_PROP_CAPACITY:
2145                if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2146                                di->flags.batt_id_received)
2147                        val->intval = 100;
2148                else
2149                        val->intval = di->bat_cap.prev_percent;
2150                break;
2151        case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
2152                if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2153                                di->flags.batt_id_received)
2154                        val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
2155                else
2156                        val->intval = di->bat_cap.prev_level;
2157                break;
2158        default:
2159                return -EINVAL;
2160        }
2161        return 0;
2162}
2163
2164static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2165{
2166        struct power_supply *psy;
2167        struct power_supply *ext = dev_get_drvdata(dev);
2168        const char **supplicants = (const char **)ext->supplied_to;
2169        struct ab8500_fg *di;
2170        union power_supply_propval ret;
2171        int j;
2172
2173        psy = (struct power_supply *)data;
2174        di = power_supply_get_drvdata(psy);
2175
2176        /*
2177         * For all psy where the name of your driver
2178         * appears in any supplied_to
2179         */
2180        j = match_string(supplicants, ext->num_supplicants, psy->desc->name);
2181        if (j < 0)
2182                return 0;
2183
2184        /* Go through all properties for the psy */
2185        for (j = 0; j < ext->desc->num_properties; j++) {
2186                enum power_supply_property prop;
2187                prop = ext->desc->properties[j];
2188
2189                if (power_supply_get_property(ext, prop, &ret))
2190                        continue;
2191
2192                switch (prop) {
2193                case POWER_SUPPLY_PROP_STATUS:
2194                        switch (ext->desc->type) {
2195                        case POWER_SUPPLY_TYPE_BATTERY:
2196                                switch (ret.intval) {
2197                                case POWER_SUPPLY_STATUS_UNKNOWN:
2198                                case POWER_SUPPLY_STATUS_DISCHARGING:
2199                                case POWER_SUPPLY_STATUS_NOT_CHARGING:
2200                                        if (!di->flags.charging)
2201                                                break;
2202                                        di->flags.charging = false;
2203                                        di->flags.fully_charged = false;
2204                                        if (di->bm->capacity_scaling)
2205                                                ab8500_fg_update_cap_scalers(di);
2206                                        queue_work(di->fg_wq, &di->fg_work);
2207                                        break;
2208                                case POWER_SUPPLY_STATUS_FULL:
2209                                        if (di->flags.fully_charged)
2210                                                break;
2211                                        di->flags.fully_charged = true;
2212                                        di->flags.force_full = true;
2213                                        /* Save current capacity as maximum */
2214                                        di->bat_cap.max_mah = di->bat_cap.mah;
2215                                        queue_work(di->fg_wq, &di->fg_work);
2216                                        break;
2217                                case POWER_SUPPLY_STATUS_CHARGING:
2218                                        if (di->flags.charging &&
2219                                                !di->flags.fully_charged)
2220                                                break;
2221                                        di->flags.charging = true;
2222                                        di->flags.fully_charged = false;
2223                                        if (di->bm->capacity_scaling)
2224                                                ab8500_fg_update_cap_scalers(di);
2225                                        queue_work(di->fg_wq, &di->fg_work);
2226                                        break;
2227                                }
2228                                break;
2229                        default:
2230                                break;
2231                        }
2232                        break;
2233                case POWER_SUPPLY_PROP_TECHNOLOGY:
2234                        switch (ext->desc->type) {
2235                        case POWER_SUPPLY_TYPE_BATTERY:
2236                                if (!di->flags.batt_id_received &&
2237                                    di->bm->batt_id != BATTERY_UNKNOWN) {
2238                                        const struct ab8500_battery_type *b;
2239
2240                                        b = &(di->bm->bat_type[di->bm->batt_id]);
2241
2242                                        di->flags.batt_id_received = true;
2243
2244                                        di->bat_cap.max_mah_design =
2245                                                MILLI_TO_MICRO *
2246                                                b->charge_full_design;
2247
2248                                        di->bat_cap.max_mah =
2249                                                di->bat_cap.max_mah_design;
2250
2251                                        di->vbat_nom = b->nominal_voltage;
2252                                }
2253
2254                                if (ret.intval)
2255                                        di->flags.batt_unknown = false;
2256                                else
2257                                        di->flags.batt_unknown = true;
2258                                break;
2259                        default:
2260                                break;
2261                        }
2262                        break;
2263                case POWER_SUPPLY_PROP_TEMP:
2264                        switch (ext->desc->type) {
2265                        case POWER_SUPPLY_TYPE_BATTERY:
2266                                if (di->flags.batt_id_received)
2267                                        di->bat_temp = ret.intval;
2268                                break;
2269                        default:
2270                                break;
2271                        }
2272                        break;
2273                default:
2274                        break;
2275                }
2276        }
2277        return 0;
2278}
2279
2280/**
2281 * ab8500_fg_init_hw_registers() - Set up FG related registers
2282 * @di:         pointer to the ab8500_fg structure
2283 *
2284 * Set up battery OVV, low battery voltage registers
2285 */
2286static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2287{
2288        int ret;
2289
2290        /* Set VBAT OVV threshold */
2291        ret = abx500_mask_and_set_register_interruptible(di->dev,
2292                AB8500_CHARGER,
2293                AB8500_BATT_OVV,
2294                BATT_OVV_TH_4P75,
2295                BATT_OVV_TH_4P75);
2296        if (ret) {
2297                dev_err(di->dev, "failed to set BATT_OVV\n");
2298                goto out;
2299        }
2300
2301        /* Enable VBAT OVV detection */
2302        ret = abx500_mask_and_set_register_interruptible(di->dev,
2303                AB8500_CHARGER,
2304                AB8500_BATT_OVV,
2305                BATT_OVV_ENA,
2306                BATT_OVV_ENA);
2307        if (ret) {
2308                dev_err(di->dev, "failed to enable BATT_OVV\n");
2309                goto out;
2310        }
2311
2312        /* Low Battery Voltage */
2313        ret = abx500_set_register_interruptible(di->dev,
2314                AB8500_SYS_CTRL2_BLOCK,
2315                AB8500_LOW_BAT_REG,
2316                ab8500_volt_to_regval(
2317                        di->bm->fg_params->lowbat_threshold) << 1 |
2318                LOW_BAT_ENABLE);
2319        if (ret) {
2320                dev_err(di->dev, "%s write failed\n", __func__);
2321                goto out;
2322        }
2323
2324        /* Battery OK threshold */
2325        ret = ab8500_fg_battok_init_hw_register(di);
2326        if (ret) {
2327                dev_err(di->dev, "BattOk init write failed.\n");
2328                goto out;
2329        }
2330
2331        if (is_ab8505(di->parent)) {
2332                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2333                        AB8505_RTC_PCUT_MAX_TIME_REG, di->bm->fg_params->pcut_max_time);
2334
2335                if (ret) {
2336                        dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_MAX_TIME_REG\n", __func__);
2337                        goto out;
2338                }
2339
2340                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2341                        AB8505_RTC_PCUT_FLAG_TIME_REG, di->bm->fg_params->pcut_flag_time);
2342
2343                if (ret) {
2344                        dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_FLAG_TIME_REG\n", __func__);
2345                        goto out;
2346                }
2347
2348                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2349                        AB8505_RTC_PCUT_RESTART_REG, di->bm->fg_params->pcut_max_restart);
2350
2351                if (ret) {
2352                        dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_RESTART_REG\n", __func__);
2353                        goto out;
2354                }
2355
2356                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2357                        AB8505_RTC_PCUT_DEBOUNCE_REG, di->bm->fg_params->pcut_debounce_time);
2358
2359                if (ret) {
2360                        dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_DEBOUNCE_REG\n", __func__);
2361                        goto out;
2362                }
2363
2364                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2365                        AB8505_RTC_PCUT_CTL_STATUS_REG, di->bm->fg_params->pcut_enable);
2366
2367                if (ret) {
2368                        dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_CTL_STATUS_REG\n", __func__);
2369                        goto out;
2370                }
2371        }
2372out:
2373        return ret;
2374}
2375
2376/**
2377 * ab8500_fg_external_power_changed() - callback for power supply changes
2378 * @psy:       pointer to the structure power_supply
2379 *
2380 * This function is the entry point of the pointer external_power_changed
2381 * of the structure power_supply.
2382 * This function gets executed when there is a change in any external power
2383 * supply that this driver needs to be notified of.
2384 */
2385static void ab8500_fg_external_power_changed(struct power_supply *psy)
2386{
2387        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2388
2389        class_for_each_device(power_supply_class, NULL,
2390                di->fg_psy, ab8500_fg_get_ext_psy_data);
2391}
2392
2393/**
2394 * ab8500_fg_reinit_work() - work to reset the FG algorithm
2395 * @work:       pointer to the work_struct structure
2396 *
2397 * Used to reset the current battery capacity to be able to
2398 * retrigger a new voltage base capacity calculation. For
2399 * test and verification purpose.
2400 */
2401static void ab8500_fg_reinit_work(struct work_struct *work)
2402{
2403        struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2404                fg_reinit_work.work);
2405
2406        if (!di->flags.calibrate) {
2407                dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2408                ab8500_fg_clear_cap_samples(di);
2409                ab8500_fg_calc_cap_discharge_voltage(di, true);
2410                ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2411                ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2412                queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2413
2414        } else {
2415                dev_err(di->dev, "Residual offset calibration ongoing "
2416                        "retrying..\n");
2417                /* Wait one second until next try*/
2418                queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2419                        round_jiffies(1));
2420        }
2421}
2422
2423/* Exposure to the sysfs interface */
2424
2425struct ab8500_fg_sysfs_entry {
2426        struct attribute attr;
2427        ssize_t (*show)(struct ab8500_fg *, char *);
2428        ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2429};
2430
2431static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2432{
2433        return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2434}
2435
2436static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2437                                 size_t count)
2438{
2439        unsigned long charge_full;
2440        int ret;
2441
2442        ret = kstrtoul(buf, 10, &charge_full);
2443        if (ret)
2444                return ret;
2445
2446        di->bat_cap.max_mah = (int) charge_full;
2447        return count;
2448}
2449
2450static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2451{
2452        return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2453}
2454
2455static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2456                                 size_t count)
2457{
2458        unsigned long charge_now;
2459        int ret;
2460
2461        ret = kstrtoul(buf, 10, &charge_now);
2462        if (ret)
2463                return ret;
2464
2465        di->bat_cap.user_mah = (int) charge_now;
2466        di->flags.user_cap = true;
2467        queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2468        return count;
2469}
2470
2471static struct ab8500_fg_sysfs_entry charge_full_attr =
2472        __ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2473
2474static struct ab8500_fg_sysfs_entry charge_now_attr =
2475        __ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2476
2477static ssize_t
2478ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2479{
2480        struct ab8500_fg_sysfs_entry *entry;
2481        struct ab8500_fg *di;
2482
2483        entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2484        di = container_of(kobj, struct ab8500_fg, fg_kobject);
2485
2486        if (!entry->show)
2487                return -EIO;
2488
2489        return entry->show(di, buf);
2490}
2491static ssize_t
2492ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2493                size_t count)
2494{
2495        struct ab8500_fg_sysfs_entry *entry;
2496        struct ab8500_fg *di;
2497
2498        entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2499        di = container_of(kobj, struct ab8500_fg, fg_kobject);
2500
2501        if (!entry->store)
2502                return -EIO;
2503
2504        return entry->store(di, buf, count);
2505}
2506
2507static const struct sysfs_ops ab8500_fg_sysfs_ops = {
2508        .show = ab8500_fg_show,
2509        .store = ab8500_fg_store,
2510};
2511
2512static struct attribute *ab8500_fg_attrs[] = {
2513        &charge_full_attr.attr,
2514        &charge_now_attr.attr,
2515        NULL,
2516};
2517
2518static struct kobj_type ab8500_fg_ktype = {
2519        .sysfs_ops = &ab8500_fg_sysfs_ops,
2520        .default_attrs = ab8500_fg_attrs,
2521};
2522
2523/**
2524 * ab8500_fg_sysfs_exit() - de-init of sysfs entry
2525 * @di:                pointer to the struct ab8500_chargalg
2526 *
2527 * This function removes the entry in sysfs.
2528 */
2529static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2530{
2531        kobject_del(&di->fg_kobject);
2532}
2533
2534/**
2535 * ab8500_fg_sysfs_init() - init of sysfs entry
2536 * @di:                pointer to the struct ab8500_chargalg
2537 *
2538 * This function adds an entry in sysfs.
2539 * Returns error code in case of failure else 0(on success)
2540 */
2541static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2542{
2543        int ret = 0;
2544
2545        ret = kobject_init_and_add(&di->fg_kobject,
2546                &ab8500_fg_ktype,
2547                NULL, "battery");
2548        if (ret < 0)
2549                dev_err(di->dev, "failed to create sysfs entry\n");
2550
2551        return ret;
2552}
2553
2554static ssize_t ab8505_powercut_flagtime_read(struct device *dev,
2555                             struct device_attribute *attr,
2556                             char *buf)
2557{
2558        int ret;
2559        u8 reg_value;
2560        struct power_supply *psy = dev_get_drvdata(dev);
2561        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2562
2563        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2564                AB8505_RTC_PCUT_FLAG_TIME_REG, &reg_value);
2565
2566        if (ret < 0) {
2567                dev_err(dev, "Failed to read AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2568                goto fail;
2569        }
2570
2571        return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2572
2573fail:
2574        return ret;
2575}
2576
2577static ssize_t ab8505_powercut_flagtime_write(struct device *dev,
2578                                  struct device_attribute *attr,
2579                                  const char *buf, size_t count)
2580{
2581        int ret;
2582        int reg_value;
2583        struct power_supply *psy = dev_get_drvdata(dev);
2584        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2585
2586        if (kstrtoint(buf, 10, &reg_value))
2587                goto fail;
2588
2589        if (reg_value > 0x7F) {
2590                dev_err(dev, "Incorrect parameter, echo 0 (1.98s) - 127 (15.625ms) for flagtime\n");
2591                goto fail;
2592        }
2593
2594        ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2595                AB8505_RTC_PCUT_FLAG_TIME_REG, (u8)reg_value);
2596
2597        if (ret < 0)
2598                dev_err(dev, "Failed to set AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2599
2600fail:
2601        return count;
2602}
2603
2604static ssize_t ab8505_powercut_maxtime_read(struct device *dev,
2605                             struct device_attribute *attr,
2606                             char *buf)
2607{
2608        int ret;
2609        u8 reg_value;
2610        struct power_supply *psy = dev_get_drvdata(dev);
2611        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2612
2613        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2614                AB8505_RTC_PCUT_MAX_TIME_REG, &reg_value);
2615
2616        if (ret < 0) {
2617                dev_err(dev, "Failed to read AB8505_RTC_PCUT_MAX_TIME_REG\n");
2618                goto fail;
2619        }
2620
2621        return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2622
2623fail:
2624        return ret;
2625
2626}
2627
2628static ssize_t ab8505_powercut_maxtime_write(struct device *dev,
2629                                  struct device_attribute *attr,
2630                                  const char *buf, size_t count)
2631{
2632        int ret;
2633        int reg_value;
2634        struct power_supply *psy = dev_get_drvdata(dev);
2635        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2636
2637        if (kstrtoint(buf, 10, &reg_value))
2638                goto fail;
2639
2640        if (reg_value > 0x7F) {
2641                dev_err(dev, "Incorrect parameter, echo 0 (0.0s) - 127 (1.98s) for maxtime\n");
2642                goto fail;
2643        }
2644
2645        ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2646                AB8505_RTC_PCUT_MAX_TIME_REG, (u8)reg_value);
2647
2648        if (ret < 0)
2649                dev_err(dev, "Failed to set AB8505_RTC_PCUT_MAX_TIME_REG\n");
2650
2651fail:
2652        return count;
2653}
2654
2655static ssize_t ab8505_powercut_restart_read(struct device *dev,
2656                             struct device_attribute *attr,
2657                             char *buf)
2658{
2659        int ret;
2660        u8 reg_value;
2661        struct power_supply *psy = dev_get_drvdata(dev);
2662        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2663
2664        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2665                AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2666
2667        if (ret < 0) {
2668                dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2669                goto fail;
2670        }
2671
2672        return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF));
2673
2674fail:
2675        return ret;
2676}
2677
2678static ssize_t ab8505_powercut_restart_write(struct device *dev,
2679                                             struct device_attribute *attr,
2680                                             const char *buf, size_t count)
2681{
2682        int ret;
2683        int reg_value;
2684        struct power_supply *psy = dev_get_drvdata(dev);
2685        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2686
2687        if (kstrtoint(buf, 10, &reg_value))
2688                goto fail;
2689
2690        if (reg_value > 0xF) {
2691                dev_err(dev, "Incorrect parameter, echo 0 - 15 for number of restart\n");
2692                goto fail;
2693        }
2694
2695        ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2696                                                AB8505_RTC_PCUT_RESTART_REG, (u8)reg_value);
2697
2698        if (ret < 0)
2699                dev_err(dev, "Failed to set AB8505_RTC_PCUT_RESTART_REG\n");
2700
2701fail:
2702        return count;
2703
2704}
2705
2706static ssize_t ab8505_powercut_timer_read(struct device *dev,
2707                                          struct device_attribute *attr,
2708                                          char *buf)
2709{
2710        int ret;
2711        u8 reg_value;
2712        struct power_supply *psy = dev_get_drvdata(dev);
2713        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2714
2715        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2716                                                AB8505_RTC_PCUT_TIME_REG, &reg_value);
2717
2718        if (ret < 0) {
2719                dev_err(dev, "Failed to read AB8505_RTC_PCUT_TIME_REG\n");
2720                goto fail;
2721        }
2722
2723        return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2724
2725fail:
2726        return ret;
2727}
2728
2729static ssize_t ab8505_powercut_restart_counter_read(struct device *dev,
2730                                                    struct device_attribute *attr,
2731                                                    char *buf)
2732{
2733        int ret;
2734        u8 reg_value;
2735        struct power_supply *psy = dev_get_drvdata(dev);
2736        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2737
2738        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2739                                                AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2740
2741        if (ret < 0) {
2742                dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2743                goto fail;
2744        }
2745
2746        return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF0) >> 4);
2747
2748fail:
2749        return ret;
2750}
2751
2752static ssize_t ab8505_powercut_read(struct device *dev,
2753                                    struct device_attribute *attr,
2754                                    char *buf)
2755{
2756        int ret;
2757        u8 reg_value;
2758        struct power_supply *psy = dev_get_drvdata(dev);
2759        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2760
2761        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2762                                                AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2763
2764        if (ret < 0)
2765                goto fail;
2766
2767        return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x1));
2768
2769fail:
2770        return ret;
2771}
2772
2773static ssize_t ab8505_powercut_write(struct device *dev,
2774                                     struct device_attribute *attr,
2775                                     const char *buf, size_t count)
2776{
2777        int ret;
2778        int reg_value;
2779        struct power_supply *psy = dev_get_drvdata(dev);
2780        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2781
2782        if (kstrtoint(buf, 10, &reg_value))
2783                goto fail;
2784
2785        if (reg_value > 0x1) {
2786                dev_err(dev, "Incorrect parameter, echo 0/1 to disable/enable Pcut feature\n");
2787                goto fail;
2788        }
2789
2790        ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2791                                                AB8505_RTC_PCUT_CTL_STATUS_REG, (u8)reg_value);
2792
2793        if (ret < 0)
2794                dev_err(dev, "Failed to set AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2795
2796fail:
2797        return count;
2798}
2799
2800static ssize_t ab8505_powercut_flag_read(struct device *dev,
2801                                         struct device_attribute *attr,
2802                                         char *buf)
2803{
2804
2805        int ret;
2806        u8 reg_value;
2807        struct power_supply *psy = dev_get_drvdata(dev);
2808        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2809
2810        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2811                                                AB8505_RTC_PCUT_CTL_STATUS_REG,  &reg_value);
2812
2813        if (ret < 0) {
2814                dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2815                goto fail;
2816        }
2817
2818        return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x10) >> 4));
2819
2820fail:
2821        return ret;
2822}
2823
2824static ssize_t ab8505_powercut_debounce_read(struct device *dev,
2825                                             struct device_attribute *attr,
2826                                             char *buf)
2827{
2828        int ret;
2829        u8 reg_value;
2830        struct power_supply *psy = dev_get_drvdata(dev);
2831        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2832
2833        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2834                                                AB8505_RTC_PCUT_DEBOUNCE_REG,  &reg_value);
2835
2836        if (ret < 0) {
2837                dev_err(dev, "Failed to read AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2838                goto fail;
2839        }
2840
2841        return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7));
2842
2843fail:
2844        return ret;
2845}
2846
2847static ssize_t ab8505_powercut_debounce_write(struct device *dev,
2848                                              struct device_attribute *attr,
2849                                              const char *buf, size_t count)
2850{
2851        int ret;
2852        int reg_value;
2853        struct power_supply *psy = dev_get_drvdata(dev);
2854        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2855
2856        if (kstrtoint(buf, 10, &reg_value))
2857                goto fail;
2858
2859        if (reg_value > 0x7) {
2860                dev_err(dev, "Incorrect parameter, echo 0 to 7 for debounce setting\n");
2861                goto fail;
2862        }
2863
2864        ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2865                                                AB8505_RTC_PCUT_DEBOUNCE_REG, (u8)reg_value);
2866
2867        if (ret < 0)
2868                dev_err(dev, "Failed to set AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2869
2870fail:
2871        return count;
2872}
2873
2874static ssize_t ab8505_powercut_enable_status_read(struct device *dev,
2875                                                  struct device_attribute *attr,
2876                                                  char *buf)
2877{
2878        int ret;
2879        u8 reg_value;
2880        struct power_supply *psy = dev_get_drvdata(dev);
2881        struct ab8500_fg *di = power_supply_get_drvdata(psy);
2882
2883        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2884                                                AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2885
2886        if (ret < 0) {
2887                dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2888                goto fail;
2889        }
2890
2891        return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x20) >> 5));
2892
2893fail:
2894        return ret;
2895}
2896
2897static struct device_attribute ab8505_fg_sysfs_psy_attrs[] = {
2898        __ATTR(powercut_flagtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2899                ab8505_powercut_flagtime_read, ab8505_powercut_flagtime_write),
2900        __ATTR(powercut_maxtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2901                ab8505_powercut_maxtime_read, ab8505_powercut_maxtime_write),
2902        __ATTR(powercut_restart_max, (S_IRUGO | S_IWUSR | S_IWGRP),
2903                ab8505_powercut_restart_read, ab8505_powercut_restart_write),
2904        __ATTR(powercut_timer, S_IRUGO, ab8505_powercut_timer_read, NULL),
2905        __ATTR(powercut_restart_counter, S_IRUGO,
2906                ab8505_powercut_restart_counter_read, NULL),
2907        __ATTR(powercut_enable, (S_IRUGO | S_IWUSR | S_IWGRP),
2908                ab8505_powercut_read, ab8505_powercut_write),
2909        __ATTR(powercut_flag, S_IRUGO, ab8505_powercut_flag_read, NULL),
2910        __ATTR(powercut_debounce_time, (S_IRUGO | S_IWUSR | S_IWGRP),
2911                ab8505_powercut_debounce_read, ab8505_powercut_debounce_write),
2912        __ATTR(powercut_enable_status, S_IRUGO,
2913                ab8505_powercut_enable_status_read, NULL),
2914};
2915
2916static int ab8500_fg_sysfs_psy_create_attrs(struct ab8500_fg *di)
2917{
2918        unsigned int i;
2919
2920        if (is_ab8505(di->parent)) {
2921                for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2922                        if (device_create_file(&di->fg_psy->dev,
2923                                               &ab8505_fg_sysfs_psy_attrs[i]))
2924                                goto sysfs_psy_create_attrs_failed_ab8505;
2925        }
2926        return 0;
2927sysfs_psy_create_attrs_failed_ab8505:
2928        dev_err(&di->fg_psy->dev, "Failed creating sysfs psy attrs for ab8505.\n");
2929        while (i--)
2930                device_remove_file(&di->fg_psy->dev,
2931                                   &ab8505_fg_sysfs_psy_attrs[i]);
2932
2933        return -EIO;
2934}
2935
2936static void ab8500_fg_sysfs_psy_remove_attrs(struct ab8500_fg *di)
2937{
2938        unsigned int i;
2939
2940        if (is_ab8505(di->parent)) {
2941                for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2942                        (void)device_remove_file(&di->fg_psy->dev,
2943                                                 &ab8505_fg_sysfs_psy_attrs[i]);
2944        }
2945}
2946
2947/* Exposure to the sysfs interface <<END>> */
2948
2949static int __maybe_unused ab8500_fg_resume(struct device *dev)
2950{
2951        struct ab8500_fg *di = dev_get_drvdata(dev);
2952
2953        /*
2954         * Change state if we're not charging. If we're charging we will wake
2955         * up on the FG IRQ
2956         */
2957        if (!di->flags.charging) {
2958                ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
2959                queue_work(di->fg_wq, &di->fg_work);
2960        }
2961
2962        return 0;
2963}
2964
2965static int __maybe_unused ab8500_fg_suspend(struct device *dev)
2966{
2967        struct ab8500_fg *di = dev_get_drvdata(dev);
2968
2969        flush_delayed_work(&di->fg_periodic_work);
2970        flush_work(&di->fg_work);
2971        flush_work(&di->fg_acc_cur_work);
2972        flush_delayed_work(&di->fg_reinit_work);
2973        flush_delayed_work(&di->fg_low_bat_work);
2974        flush_delayed_work(&di->fg_check_hw_failure_work);
2975
2976        /*
2977         * If the FG is enabled we will disable it before going to suspend
2978         * only if we're not charging
2979         */
2980        if (di->flags.fg_enabled && !di->flags.charging)
2981                ab8500_fg_coulomb_counter(di, false);
2982
2983        return 0;
2984}
2985
2986/* ab8500 fg driver interrupts and their respective isr */
2987static struct ab8500_fg_interrupts ab8500_fg_irq[] = {
2988        {"NCONV_ACCU", ab8500_fg_cc_convend_handler},
2989        {"BATT_OVV", ab8500_fg_batt_ovv_handler},
2990        {"LOW_BAT_F", ab8500_fg_lowbatf_handler},
2991        {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
2992        {"CCEOC", ab8500_fg_cc_data_end_handler},
2993};
2994
2995static char *supply_interface[] = {
2996        "ab8500_chargalg",
2997        "ab8500_usb",
2998};
2999
3000static const struct power_supply_desc ab8500_fg_desc = {
3001        .name                   = "ab8500_fg",
3002        .type                   = POWER_SUPPLY_TYPE_BATTERY,
3003        .properties             = ab8500_fg_props,
3004        .num_properties         = ARRAY_SIZE(ab8500_fg_props),
3005        .get_property           = ab8500_fg_get_property,
3006        .external_power_changed = ab8500_fg_external_power_changed,
3007};
3008
3009static int ab8500_fg_bind(struct device *dev, struct device *master,
3010                          void *data)
3011{
3012        struct ab8500_fg *di = dev_get_drvdata(dev);
3013
3014        /* Create a work queue for running the FG algorithm */
3015        di->fg_wq = alloc_ordered_workqueue("ab8500_fg_wq", WQ_MEM_RECLAIM);
3016        if (di->fg_wq == NULL) {
3017                dev_err(dev, "failed to create work queue\n");
3018                return -ENOMEM;
3019        }
3020
3021        /* Start the coulomb counter */
3022        ab8500_fg_coulomb_counter(di, true);
3023        /* Run the FG algorithm */
3024        queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
3025
3026        return 0;
3027}
3028
3029static void ab8500_fg_unbind(struct device *dev, struct device *master,
3030                             void *data)
3031{
3032        struct ab8500_fg *di = dev_get_drvdata(dev);
3033        int ret;
3034
3035        /* Disable coulomb counter */
3036        ret = ab8500_fg_coulomb_counter(di, false);
3037        if (ret)
3038                dev_err(dev, "failed to disable coulomb counter\n");
3039
3040        destroy_workqueue(di->fg_wq);
3041        flush_scheduled_work();
3042}
3043
3044static const struct component_ops ab8500_fg_component_ops = {
3045        .bind = ab8500_fg_bind,
3046        .unbind = ab8500_fg_unbind,
3047};
3048
3049static int ab8500_fg_probe(struct platform_device *pdev)
3050{
3051        struct device *dev = &pdev->dev;
3052        struct power_supply_config psy_cfg = {};
3053        struct ab8500_fg *di;
3054        int i, irq;
3055        int ret = 0;
3056
3057        di = devm_kzalloc(dev, sizeof(*di), GFP_KERNEL);
3058        if (!di)
3059                return -ENOMEM;
3060
3061        di->bm = &ab8500_bm_data;
3062
3063        mutex_init(&di->cc_lock);
3064
3065        /* get parent data */
3066        di->dev = dev;
3067        di->parent = dev_get_drvdata(pdev->dev.parent);
3068
3069        di->main_bat_v = devm_iio_channel_get(dev, "main_bat_v");
3070        if (IS_ERR(di->main_bat_v)) {
3071                ret = dev_err_probe(dev, PTR_ERR(di->main_bat_v),
3072                                    "failed to get main battery ADC channel\n");
3073                return ret;
3074        }
3075
3076        psy_cfg.supplied_to = supply_interface;
3077        psy_cfg.num_supplicants = ARRAY_SIZE(supply_interface);
3078        psy_cfg.drv_data = di;
3079
3080        di->bat_cap.max_mah_design = MILLI_TO_MICRO *
3081                di->bm->bat_type[di->bm->batt_id].charge_full_design;
3082
3083        di->bat_cap.max_mah = di->bat_cap.max_mah_design;
3084
3085        di->vbat_nom = di->bm->bat_type[di->bm->batt_id].nominal_voltage;
3086
3087        di->init_capacity = true;
3088
3089        ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
3090        ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
3091
3092        /* Init work for running the fg algorithm instantly */
3093        INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
3094
3095        /* Init work for getting the battery accumulated current */
3096        INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
3097
3098        /* Init work for reinitialising the fg algorithm */
3099        INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
3100                ab8500_fg_reinit_work);
3101
3102        /* Work delayed Queue to run the state machine */
3103        INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
3104                ab8500_fg_periodic_work);
3105
3106        /* Work to check low battery condition */
3107        INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
3108                ab8500_fg_low_bat_work);
3109
3110        /* Init work for HW failure check */
3111        INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
3112                ab8500_fg_check_hw_failure_work);
3113
3114        /* Reset battery low voltage flag */
3115        di->flags.low_bat = false;
3116
3117        /* Initialize low battery counter */
3118        di->low_bat_cnt = 10;
3119
3120        /* Initialize OVV, and other registers */
3121        ret = ab8500_fg_init_hw_registers(di);
3122        if (ret) {
3123                dev_err(dev, "failed to initialize registers\n");
3124                return ret;
3125        }
3126
3127        /* Consider battery unknown until we're informed otherwise */
3128        di->flags.batt_unknown = true;
3129        di->flags.batt_id_received = false;
3130
3131        /* Register FG power supply class */
3132        di->fg_psy = devm_power_supply_register(dev, &ab8500_fg_desc, &psy_cfg);
3133        if (IS_ERR(di->fg_psy)) {
3134                dev_err(dev, "failed to register FG psy\n");
3135                return PTR_ERR(di->fg_psy);
3136        }
3137
3138        di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
3139
3140        /*
3141         * Initialize completion used to notify completion and start
3142         * of inst current
3143         */
3144        init_completion(&di->ab8500_fg_started);
3145        init_completion(&di->ab8500_fg_complete);
3146
3147        /* Register primary interrupt handlers */
3148        for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) {
3149                irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
3150                if (irq < 0)
3151                        return irq;
3152
3153                ret = devm_request_threaded_irq(dev, irq, NULL,
3154                                  ab8500_fg_irq[i].isr,
3155                                  IRQF_SHARED | IRQF_NO_SUSPEND | IRQF_ONESHOT,
3156                                  ab8500_fg_irq[i].name, di);
3157
3158                if (ret != 0) {
3159                        dev_err(dev, "failed to request %s IRQ %d: %d\n",
3160                                ab8500_fg_irq[i].name, irq, ret);
3161                        return ret;
3162                }
3163                dev_dbg(dev, "Requested %s IRQ %d: %d\n",
3164                        ab8500_fg_irq[i].name, irq, ret);
3165        }
3166
3167        di->irq = platform_get_irq_byname(pdev, "CCEOC");
3168        disable_irq(di->irq);
3169        di->nbr_cceoc_irq_cnt = 0;
3170
3171        platform_set_drvdata(pdev, di);
3172
3173        ret = ab8500_fg_sysfs_init(di);
3174        if (ret) {
3175                dev_err(dev, "failed to create sysfs entry\n");
3176                return ret;
3177        }
3178
3179        ret = ab8500_fg_sysfs_psy_create_attrs(di);
3180        if (ret) {
3181                dev_err(dev, "failed to create FG psy\n");
3182                ab8500_fg_sysfs_exit(di);
3183                return ret;
3184        }
3185
3186        /* Calibrate the fg first time */
3187        di->flags.calibrate = true;
3188        di->calib_state = AB8500_FG_CALIB_INIT;
3189
3190        /* Use room temp as default value until we get an update from driver. */
3191        di->bat_temp = 210;
3192
3193        list_add_tail(&di->node, &ab8500_fg_list);
3194
3195        return component_add(dev, &ab8500_fg_component_ops);
3196}
3197
3198static int ab8500_fg_remove(struct platform_device *pdev)
3199{
3200        int ret = 0;
3201        struct ab8500_fg *di = platform_get_drvdata(pdev);
3202
3203        component_del(&pdev->dev, &ab8500_fg_component_ops);
3204        list_del(&di->node);
3205        ab8500_fg_sysfs_exit(di);
3206        ab8500_fg_sysfs_psy_remove_attrs(di);
3207
3208        return ret;
3209}
3210
3211static SIMPLE_DEV_PM_OPS(ab8500_fg_pm_ops, ab8500_fg_suspend, ab8500_fg_resume);
3212
3213static const struct of_device_id ab8500_fg_match[] = {
3214        { .compatible = "stericsson,ab8500-fg", },
3215        { },
3216};
3217MODULE_DEVICE_TABLE(of, ab8500_fg_match);
3218
3219struct platform_driver ab8500_fg_driver = {
3220        .probe = ab8500_fg_probe,
3221        .remove = ab8500_fg_remove,
3222        .driver = {
3223                .name = "ab8500-fg",
3224                .of_match_table = ab8500_fg_match,
3225                .pm = &ab8500_fg_pm_ops,
3226        },
3227};
3228MODULE_LICENSE("GPL v2");
3229MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
3230MODULE_ALIAS("platform:ab8500-fg");
3231MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");
3232