linux/drivers/spi/spi-atmel.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for Atmel AT32 and AT91 SPI Controllers
   4 *
   5 * Copyright (C) 2006 Atmel Corporation
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/clk.h>
  10#include <linux/module.h>
  11#include <linux/platform_device.h>
  12#include <linux/delay.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/dmaengine.h>
  15#include <linux/err.h>
  16#include <linux/interrupt.h>
  17#include <linux/spi/spi.h>
  18#include <linux/slab.h>
  19#include <linux/of.h>
  20
  21#include <linux/io.h>
  22#include <linux/gpio/consumer.h>
  23#include <linux/pinctrl/consumer.h>
  24#include <linux/pm_runtime.h>
  25#include <trace/events/spi.h>
  26
  27/* SPI register offsets */
  28#define SPI_CR                                  0x0000
  29#define SPI_MR                                  0x0004
  30#define SPI_RDR                                 0x0008
  31#define SPI_TDR                                 0x000c
  32#define SPI_SR                                  0x0010
  33#define SPI_IER                                 0x0014
  34#define SPI_IDR                                 0x0018
  35#define SPI_IMR                                 0x001c
  36#define SPI_CSR0                                0x0030
  37#define SPI_CSR1                                0x0034
  38#define SPI_CSR2                                0x0038
  39#define SPI_CSR3                                0x003c
  40#define SPI_FMR                                 0x0040
  41#define SPI_FLR                                 0x0044
  42#define SPI_VERSION                             0x00fc
  43#define SPI_RPR                                 0x0100
  44#define SPI_RCR                                 0x0104
  45#define SPI_TPR                                 0x0108
  46#define SPI_TCR                                 0x010c
  47#define SPI_RNPR                                0x0110
  48#define SPI_RNCR                                0x0114
  49#define SPI_TNPR                                0x0118
  50#define SPI_TNCR                                0x011c
  51#define SPI_PTCR                                0x0120
  52#define SPI_PTSR                                0x0124
  53
  54/* Bitfields in CR */
  55#define SPI_SPIEN_OFFSET                        0
  56#define SPI_SPIEN_SIZE                          1
  57#define SPI_SPIDIS_OFFSET                       1
  58#define SPI_SPIDIS_SIZE                         1
  59#define SPI_SWRST_OFFSET                        7
  60#define SPI_SWRST_SIZE                          1
  61#define SPI_LASTXFER_OFFSET                     24
  62#define SPI_LASTXFER_SIZE                       1
  63#define SPI_TXFCLR_OFFSET                       16
  64#define SPI_TXFCLR_SIZE                         1
  65#define SPI_RXFCLR_OFFSET                       17
  66#define SPI_RXFCLR_SIZE                         1
  67#define SPI_FIFOEN_OFFSET                       30
  68#define SPI_FIFOEN_SIZE                         1
  69#define SPI_FIFODIS_OFFSET                      31
  70#define SPI_FIFODIS_SIZE                        1
  71
  72/* Bitfields in MR */
  73#define SPI_MSTR_OFFSET                         0
  74#define SPI_MSTR_SIZE                           1
  75#define SPI_PS_OFFSET                           1
  76#define SPI_PS_SIZE                             1
  77#define SPI_PCSDEC_OFFSET                       2
  78#define SPI_PCSDEC_SIZE                         1
  79#define SPI_FDIV_OFFSET                         3
  80#define SPI_FDIV_SIZE                           1
  81#define SPI_MODFDIS_OFFSET                      4
  82#define SPI_MODFDIS_SIZE                        1
  83#define SPI_WDRBT_OFFSET                        5
  84#define SPI_WDRBT_SIZE                          1
  85#define SPI_LLB_OFFSET                          7
  86#define SPI_LLB_SIZE                            1
  87#define SPI_PCS_OFFSET                          16
  88#define SPI_PCS_SIZE                            4
  89#define SPI_DLYBCS_OFFSET                       24
  90#define SPI_DLYBCS_SIZE                         8
  91
  92/* Bitfields in RDR */
  93#define SPI_RD_OFFSET                           0
  94#define SPI_RD_SIZE                             16
  95
  96/* Bitfields in TDR */
  97#define SPI_TD_OFFSET                           0
  98#define SPI_TD_SIZE                             16
  99
 100/* Bitfields in SR */
 101#define SPI_RDRF_OFFSET                         0
 102#define SPI_RDRF_SIZE                           1
 103#define SPI_TDRE_OFFSET                         1
 104#define SPI_TDRE_SIZE                           1
 105#define SPI_MODF_OFFSET                         2
 106#define SPI_MODF_SIZE                           1
 107#define SPI_OVRES_OFFSET                        3
 108#define SPI_OVRES_SIZE                          1
 109#define SPI_ENDRX_OFFSET                        4
 110#define SPI_ENDRX_SIZE                          1
 111#define SPI_ENDTX_OFFSET                        5
 112#define SPI_ENDTX_SIZE                          1
 113#define SPI_RXBUFF_OFFSET                       6
 114#define SPI_RXBUFF_SIZE                         1
 115#define SPI_TXBUFE_OFFSET                       7
 116#define SPI_TXBUFE_SIZE                         1
 117#define SPI_NSSR_OFFSET                         8
 118#define SPI_NSSR_SIZE                           1
 119#define SPI_TXEMPTY_OFFSET                      9
 120#define SPI_TXEMPTY_SIZE                        1
 121#define SPI_SPIENS_OFFSET                       16
 122#define SPI_SPIENS_SIZE                         1
 123#define SPI_TXFEF_OFFSET                        24
 124#define SPI_TXFEF_SIZE                          1
 125#define SPI_TXFFF_OFFSET                        25
 126#define SPI_TXFFF_SIZE                          1
 127#define SPI_TXFTHF_OFFSET                       26
 128#define SPI_TXFTHF_SIZE                         1
 129#define SPI_RXFEF_OFFSET                        27
 130#define SPI_RXFEF_SIZE                          1
 131#define SPI_RXFFF_OFFSET                        28
 132#define SPI_RXFFF_SIZE                          1
 133#define SPI_RXFTHF_OFFSET                       29
 134#define SPI_RXFTHF_SIZE                         1
 135#define SPI_TXFPTEF_OFFSET                      30
 136#define SPI_TXFPTEF_SIZE                        1
 137#define SPI_RXFPTEF_OFFSET                      31
 138#define SPI_RXFPTEF_SIZE                        1
 139
 140/* Bitfields in CSR0 */
 141#define SPI_CPOL_OFFSET                         0
 142#define SPI_CPOL_SIZE                           1
 143#define SPI_NCPHA_OFFSET                        1
 144#define SPI_NCPHA_SIZE                          1
 145#define SPI_CSAAT_OFFSET                        3
 146#define SPI_CSAAT_SIZE                          1
 147#define SPI_BITS_OFFSET                         4
 148#define SPI_BITS_SIZE                           4
 149#define SPI_SCBR_OFFSET                         8
 150#define SPI_SCBR_SIZE                           8
 151#define SPI_DLYBS_OFFSET                        16
 152#define SPI_DLYBS_SIZE                          8
 153#define SPI_DLYBCT_OFFSET                       24
 154#define SPI_DLYBCT_SIZE                         8
 155
 156/* Bitfields in RCR */
 157#define SPI_RXCTR_OFFSET                        0
 158#define SPI_RXCTR_SIZE                          16
 159
 160/* Bitfields in TCR */
 161#define SPI_TXCTR_OFFSET                        0
 162#define SPI_TXCTR_SIZE                          16
 163
 164/* Bitfields in RNCR */
 165#define SPI_RXNCR_OFFSET                        0
 166#define SPI_RXNCR_SIZE                          16
 167
 168/* Bitfields in TNCR */
 169#define SPI_TXNCR_OFFSET                        0
 170#define SPI_TXNCR_SIZE                          16
 171
 172/* Bitfields in PTCR */
 173#define SPI_RXTEN_OFFSET                        0
 174#define SPI_RXTEN_SIZE                          1
 175#define SPI_RXTDIS_OFFSET                       1
 176#define SPI_RXTDIS_SIZE                         1
 177#define SPI_TXTEN_OFFSET                        8
 178#define SPI_TXTEN_SIZE                          1
 179#define SPI_TXTDIS_OFFSET                       9
 180#define SPI_TXTDIS_SIZE                         1
 181
 182/* Bitfields in FMR */
 183#define SPI_TXRDYM_OFFSET                       0
 184#define SPI_TXRDYM_SIZE                         2
 185#define SPI_RXRDYM_OFFSET                       4
 186#define SPI_RXRDYM_SIZE                         2
 187#define SPI_TXFTHRES_OFFSET                     16
 188#define SPI_TXFTHRES_SIZE                       6
 189#define SPI_RXFTHRES_OFFSET                     24
 190#define SPI_RXFTHRES_SIZE                       6
 191
 192/* Bitfields in FLR */
 193#define SPI_TXFL_OFFSET                         0
 194#define SPI_TXFL_SIZE                           6
 195#define SPI_RXFL_OFFSET                         16
 196#define SPI_RXFL_SIZE                           6
 197
 198/* Constants for BITS */
 199#define SPI_BITS_8_BPT                          0
 200#define SPI_BITS_9_BPT                          1
 201#define SPI_BITS_10_BPT                         2
 202#define SPI_BITS_11_BPT                         3
 203#define SPI_BITS_12_BPT                         4
 204#define SPI_BITS_13_BPT                         5
 205#define SPI_BITS_14_BPT                         6
 206#define SPI_BITS_15_BPT                         7
 207#define SPI_BITS_16_BPT                         8
 208#define SPI_ONE_DATA                            0
 209#define SPI_TWO_DATA                            1
 210#define SPI_FOUR_DATA                           2
 211
 212/* Bit manipulation macros */
 213#define SPI_BIT(name) \
 214        (1 << SPI_##name##_OFFSET)
 215#define SPI_BF(name, value) \
 216        (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 217#define SPI_BFEXT(name, value) \
 218        (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 219#define SPI_BFINS(name, value, old) \
 220        (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 221          | SPI_BF(name, value))
 222
 223/* Register access macros */
 224#define spi_readl(port, reg) \
 225        readl_relaxed((port)->regs + SPI_##reg)
 226#define spi_writel(port, reg, value) \
 227        writel_relaxed((value), (port)->regs + SPI_##reg)
 228#define spi_writew(port, reg, value) \
 229        writew_relaxed((value), (port)->regs + SPI_##reg)
 230
 231/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 232 * cache operations; better heuristics consider wordsize and bitrate.
 233 */
 234#define DMA_MIN_BYTES   16
 235
 236#define SPI_DMA_TIMEOUT         (msecs_to_jiffies(1000))
 237
 238#define AUTOSUSPEND_TIMEOUT     2000
 239
 240struct atmel_spi_caps {
 241        bool    is_spi2;
 242        bool    has_wdrbt;
 243        bool    has_dma_support;
 244        bool    has_pdc_support;
 245};
 246
 247/*
 248 * The core SPI transfer engine just talks to a register bank to set up
 249 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 250 * framework provides the base clock, subdivided for each spi_device.
 251 */
 252struct atmel_spi {
 253        spinlock_t              lock;
 254        unsigned long           flags;
 255
 256        phys_addr_t             phybase;
 257        void __iomem            *regs;
 258        int                     irq;
 259        struct clk              *clk;
 260        struct platform_device  *pdev;
 261        unsigned long           spi_clk;
 262
 263        struct spi_transfer     *current_transfer;
 264        int                     current_remaining_bytes;
 265        int                     done_status;
 266        dma_addr_t              dma_addr_rx_bbuf;
 267        dma_addr_t              dma_addr_tx_bbuf;
 268        void                    *addr_rx_bbuf;
 269        void                    *addr_tx_bbuf;
 270
 271        struct completion       xfer_completion;
 272
 273        struct atmel_spi_caps   caps;
 274
 275        bool                    use_dma;
 276        bool                    use_pdc;
 277
 278        bool                    keep_cs;
 279
 280        u32                     fifo_size;
 281        u8                      native_cs_free;
 282        u8                      native_cs_for_gpio;
 283};
 284
 285/* Controller-specific per-slave state */
 286struct atmel_spi_device {
 287        u32                     csr;
 288};
 289
 290#define SPI_MAX_DMA_XFER        65535 /* true for both PDC and DMA */
 291#define INVALID_DMA_ADDRESS     0xffffffff
 292
 293/*
 294 * Version 2 of the SPI controller has
 295 *  - CR.LASTXFER
 296 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 297 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 298 *  - SPI_CSRx.CSAAT
 299 *  - SPI_CSRx.SBCR allows faster clocking
 300 */
 301static bool atmel_spi_is_v2(struct atmel_spi *as)
 302{
 303        return as->caps.is_spi2;
 304}
 305
 306/*
 307 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 308 * they assume that spi slave device state will not change on deselect, so
 309 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 310 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 311 * controllers have CSAAT and friends.
 312 *
 313 * Even controller newer than ar91rm9200, using GPIOs can make sens as
 314 * it lets us support active-high chipselects despite the controller's
 315 * belief that only active-low devices/systems exists.
 316 *
 317 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 318 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 319 * Master on Chip Select 0.")  No workaround exists for that ... so for
 320 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 321 * and (c) will trigger that first erratum in some cases.
 322 */
 323
 324static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 325{
 326        struct atmel_spi_device *asd = spi->controller_state;
 327        int chip_select;
 328        u32 mr;
 329
 330        if (spi->cs_gpiod)
 331                chip_select = as->native_cs_for_gpio;
 332        else
 333                chip_select = spi->chip_select;
 334
 335        if (atmel_spi_is_v2(as)) {
 336                spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
 337                /* For the low SPI version, there is a issue that PDC transfer
 338                 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
 339                 */
 340                spi_writel(as, CSR0, asd->csr);
 341                if (as->caps.has_wdrbt) {
 342                        spi_writel(as, MR,
 343                                        SPI_BF(PCS, ~(0x01 << chip_select))
 344                                        | SPI_BIT(WDRBT)
 345                                        | SPI_BIT(MODFDIS)
 346                                        | SPI_BIT(MSTR));
 347                } else {
 348                        spi_writel(as, MR,
 349                                        SPI_BF(PCS, ~(0x01 << chip_select))
 350                                        | SPI_BIT(MODFDIS)
 351                                        | SPI_BIT(MSTR));
 352                }
 353
 354                mr = spi_readl(as, MR);
 355        } else {
 356                u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 357                int i;
 358                u32 csr;
 359
 360                /* Make sure clock polarity is correct */
 361                for (i = 0; i < spi->master->num_chipselect; i++) {
 362                        csr = spi_readl(as, CSR0 + 4 * i);
 363                        if ((csr ^ cpol) & SPI_BIT(CPOL))
 364                                spi_writel(as, CSR0 + 4 * i,
 365                                                csr ^ SPI_BIT(CPOL));
 366                }
 367
 368                mr = spi_readl(as, MR);
 369                mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
 370                spi_writel(as, MR, mr);
 371        }
 372
 373        dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
 374}
 375
 376static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 377{
 378        int chip_select;
 379        u32 mr;
 380
 381        if (spi->cs_gpiod)
 382                chip_select = as->native_cs_for_gpio;
 383        else
 384                chip_select = spi->chip_select;
 385
 386        /* only deactivate *this* device; sometimes transfers to
 387         * another device may be active when this routine is called.
 388         */
 389        mr = spi_readl(as, MR);
 390        if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
 391                mr = SPI_BFINS(PCS, 0xf, mr);
 392                spi_writel(as, MR, mr);
 393        }
 394
 395        dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
 396
 397        if (!spi->cs_gpiod)
 398                spi_writel(as, CR, SPI_BIT(LASTXFER));
 399}
 400
 401static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
 402{
 403        spin_lock_irqsave(&as->lock, as->flags);
 404}
 405
 406static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
 407{
 408        spin_unlock_irqrestore(&as->lock, as->flags);
 409}
 410
 411static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
 412{
 413        return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
 414}
 415
 416static inline bool atmel_spi_use_dma(struct atmel_spi *as,
 417                                struct spi_transfer *xfer)
 418{
 419        return as->use_dma && xfer->len >= DMA_MIN_BYTES;
 420}
 421
 422static bool atmel_spi_can_dma(struct spi_master *master,
 423                              struct spi_device *spi,
 424                              struct spi_transfer *xfer)
 425{
 426        struct atmel_spi *as = spi_master_get_devdata(master);
 427
 428        if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
 429                return atmel_spi_use_dma(as, xfer) &&
 430                        !atmel_spi_is_vmalloc_xfer(xfer);
 431        else
 432                return atmel_spi_use_dma(as, xfer);
 433
 434}
 435
 436static int atmel_spi_dma_slave_config(struct atmel_spi *as,
 437                                struct dma_slave_config *slave_config,
 438                                u8 bits_per_word)
 439{
 440        struct spi_master *master = platform_get_drvdata(as->pdev);
 441        int err = 0;
 442
 443        if (bits_per_word > 8) {
 444                slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 445                slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 446        } else {
 447                slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 448                slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 449        }
 450
 451        slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
 452        slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
 453        slave_config->src_maxburst = 1;
 454        slave_config->dst_maxburst = 1;
 455        slave_config->device_fc = false;
 456
 457        /*
 458         * This driver uses fixed peripheral select mode (PS bit set to '0' in
 459         * the Mode Register).
 460         * So according to the datasheet, when FIFOs are available (and
 461         * enabled), the Transmit FIFO operates in Multiple Data Mode.
 462         * In this mode, up to 2 data, not 4, can be written into the Transmit
 463         * Data Register in a single access.
 464         * However, the first data has to be written into the lowest 16 bits and
 465         * the second data into the highest 16 bits of the Transmit
 466         * Data Register. For 8bit data (the most frequent case), it would
 467         * require to rework tx_buf so each data would actualy fit 16 bits.
 468         * So we'd rather write only one data at the time. Hence the transmit
 469         * path works the same whether FIFOs are available (and enabled) or not.
 470         */
 471        slave_config->direction = DMA_MEM_TO_DEV;
 472        if (dmaengine_slave_config(master->dma_tx, slave_config)) {
 473                dev_err(&as->pdev->dev,
 474                        "failed to configure tx dma channel\n");
 475                err = -EINVAL;
 476        }
 477
 478        /*
 479         * This driver configures the spi controller for master mode (MSTR bit
 480         * set to '1' in the Mode Register).
 481         * So according to the datasheet, when FIFOs are available (and
 482         * enabled), the Receive FIFO operates in Single Data Mode.
 483         * So the receive path works the same whether FIFOs are available (and
 484         * enabled) or not.
 485         */
 486        slave_config->direction = DMA_DEV_TO_MEM;
 487        if (dmaengine_slave_config(master->dma_rx, slave_config)) {
 488                dev_err(&as->pdev->dev,
 489                        "failed to configure rx dma channel\n");
 490                err = -EINVAL;
 491        }
 492
 493        return err;
 494}
 495
 496static int atmel_spi_configure_dma(struct spi_master *master,
 497                                   struct atmel_spi *as)
 498{
 499        struct dma_slave_config slave_config;
 500        struct device *dev = &as->pdev->dev;
 501        int err;
 502
 503        master->dma_tx = dma_request_chan(dev, "tx");
 504        if (IS_ERR(master->dma_tx)) {
 505                err = PTR_ERR(master->dma_tx);
 506                dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
 507                goto error_clear;
 508        }
 509
 510        master->dma_rx = dma_request_chan(dev, "rx");
 511        if (IS_ERR(master->dma_rx)) {
 512                err = PTR_ERR(master->dma_rx);
 513                /*
 514                 * No reason to check EPROBE_DEFER here since we have already
 515                 * requested tx channel.
 516                 */
 517                dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
 518                goto error;
 519        }
 520
 521        err = atmel_spi_dma_slave_config(as, &slave_config, 8);
 522        if (err)
 523                goto error;
 524
 525        dev_info(&as->pdev->dev,
 526                        "Using %s (tx) and %s (rx) for DMA transfers\n",
 527                        dma_chan_name(master->dma_tx),
 528                        dma_chan_name(master->dma_rx));
 529
 530        return 0;
 531error:
 532        if (!IS_ERR(master->dma_rx))
 533                dma_release_channel(master->dma_rx);
 534        if (!IS_ERR(master->dma_tx))
 535                dma_release_channel(master->dma_tx);
 536error_clear:
 537        master->dma_tx = master->dma_rx = NULL;
 538        return err;
 539}
 540
 541static void atmel_spi_stop_dma(struct spi_master *master)
 542{
 543        if (master->dma_rx)
 544                dmaengine_terminate_all(master->dma_rx);
 545        if (master->dma_tx)
 546                dmaengine_terminate_all(master->dma_tx);
 547}
 548
 549static void atmel_spi_release_dma(struct spi_master *master)
 550{
 551        if (master->dma_rx) {
 552                dma_release_channel(master->dma_rx);
 553                master->dma_rx = NULL;
 554        }
 555        if (master->dma_tx) {
 556                dma_release_channel(master->dma_tx);
 557                master->dma_tx = NULL;
 558        }
 559}
 560
 561/* This function is called by the DMA driver from tasklet context */
 562static void dma_callback(void *data)
 563{
 564        struct spi_master       *master = data;
 565        struct atmel_spi        *as = spi_master_get_devdata(master);
 566
 567        if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
 568            IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 569                memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
 570                       as->current_transfer->len);
 571        }
 572        complete(&as->xfer_completion);
 573}
 574
 575/*
 576 * Next transfer using PIO without FIFO.
 577 */
 578static void atmel_spi_next_xfer_single(struct spi_master *master,
 579                                       struct spi_transfer *xfer)
 580{
 581        struct atmel_spi        *as = spi_master_get_devdata(master);
 582        unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
 583
 584        dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
 585
 586        /* Make sure data is not remaining in RDR */
 587        spi_readl(as, RDR);
 588        while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
 589                spi_readl(as, RDR);
 590                cpu_relax();
 591        }
 592
 593        if (xfer->bits_per_word > 8)
 594                spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
 595        else
 596                spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
 597
 598        dev_dbg(master->dev.parent,
 599                "  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
 600                xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 601                xfer->bits_per_word);
 602
 603        /* Enable relevant interrupts */
 604        spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
 605}
 606
 607/*
 608 * Next transfer using PIO with FIFO.
 609 */
 610static void atmel_spi_next_xfer_fifo(struct spi_master *master,
 611                                     struct spi_transfer *xfer)
 612{
 613        struct atmel_spi *as = spi_master_get_devdata(master);
 614        u32 current_remaining_data, num_data;
 615        u32 offset = xfer->len - as->current_remaining_bytes;
 616        const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
 617        const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
 618        u16 td0, td1;
 619        u32 fifomr;
 620
 621        dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
 622
 623        /* Compute the number of data to transfer in the current iteration */
 624        current_remaining_data = ((xfer->bits_per_word > 8) ?
 625                                  ((u32)as->current_remaining_bytes >> 1) :
 626                                  (u32)as->current_remaining_bytes);
 627        num_data = min(current_remaining_data, as->fifo_size);
 628
 629        /* Flush RX and TX FIFOs */
 630        spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
 631        while (spi_readl(as, FLR))
 632                cpu_relax();
 633
 634        /* Set RX FIFO Threshold to the number of data to transfer */
 635        fifomr = spi_readl(as, FMR);
 636        spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
 637
 638        /* Clear FIFO flags in the Status Register, especially RXFTHF */
 639        (void)spi_readl(as, SR);
 640
 641        /* Fill TX FIFO */
 642        while (num_data >= 2) {
 643                if (xfer->bits_per_word > 8) {
 644                        td0 = *words++;
 645                        td1 = *words++;
 646                } else {
 647                        td0 = *bytes++;
 648                        td1 = *bytes++;
 649                }
 650
 651                spi_writel(as, TDR, (td1 << 16) | td0);
 652                num_data -= 2;
 653        }
 654
 655        if (num_data) {
 656                if (xfer->bits_per_word > 8)
 657                        td0 = *words++;
 658                else
 659                        td0 = *bytes++;
 660
 661                spi_writew(as, TDR, td0);
 662                num_data--;
 663        }
 664
 665        dev_dbg(master->dev.parent,
 666                "  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
 667                xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 668                xfer->bits_per_word);
 669
 670        /*
 671         * Enable RX FIFO Threshold Flag interrupt to be notified about
 672         * transfer completion.
 673         */
 674        spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
 675}
 676
 677/*
 678 * Next transfer using PIO.
 679 */
 680static void atmel_spi_next_xfer_pio(struct spi_master *master,
 681                                    struct spi_transfer *xfer)
 682{
 683        struct atmel_spi *as = spi_master_get_devdata(master);
 684
 685        if (as->fifo_size)
 686                atmel_spi_next_xfer_fifo(master, xfer);
 687        else
 688                atmel_spi_next_xfer_single(master, xfer);
 689}
 690
 691/*
 692 * Submit next transfer for DMA.
 693 */
 694static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
 695                                struct spi_transfer *xfer,
 696                                u32 *plen)
 697{
 698        struct atmel_spi        *as = spi_master_get_devdata(master);
 699        struct dma_chan         *rxchan = master->dma_rx;
 700        struct dma_chan         *txchan = master->dma_tx;
 701        struct dma_async_tx_descriptor *rxdesc;
 702        struct dma_async_tx_descriptor *txdesc;
 703        struct dma_slave_config slave_config;
 704        dma_cookie_t            cookie;
 705
 706        dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
 707
 708        /* Check that the channels are available */
 709        if (!rxchan || !txchan)
 710                return -ENODEV;
 711
 712
 713        *plen = xfer->len;
 714
 715        if (atmel_spi_dma_slave_config(as, &slave_config,
 716                                       xfer->bits_per_word))
 717                goto err_exit;
 718
 719        /* Send both scatterlists */
 720        if (atmel_spi_is_vmalloc_xfer(xfer) &&
 721            IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 722                rxdesc = dmaengine_prep_slave_single(rxchan,
 723                                                     as->dma_addr_rx_bbuf,
 724                                                     xfer->len,
 725                                                     DMA_DEV_TO_MEM,
 726                                                     DMA_PREP_INTERRUPT |
 727                                                     DMA_CTRL_ACK);
 728        } else {
 729                rxdesc = dmaengine_prep_slave_sg(rxchan,
 730                                                 xfer->rx_sg.sgl,
 731                                                 xfer->rx_sg.nents,
 732                                                 DMA_DEV_TO_MEM,
 733                                                 DMA_PREP_INTERRUPT |
 734                                                 DMA_CTRL_ACK);
 735        }
 736        if (!rxdesc)
 737                goto err_dma;
 738
 739        if (atmel_spi_is_vmalloc_xfer(xfer) &&
 740            IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 741                memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
 742                txdesc = dmaengine_prep_slave_single(txchan,
 743                                                     as->dma_addr_tx_bbuf,
 744                                                     xfer->len, DMA_MEM_TO_DEV,
 745                                                     DMA_PREP_INTERRUPT |
 746                                                     DMA_CTRL_ACK);
 747        } else {
 748                txdesc = dmaengine_prep_slave_sg(txchan,
 749                                                 xfer->tx_sg.sgl,
 750                                                 xfer->tx_sg.nents,
 751                                                 DMA_MEM_TO_DEV,
 752                                                 DMA_PREP_INTERRUPT |
 753                                                 DMA_CTRL_ACK);
 754        }
 755        if (!txdesc)
 756                goto err_dma;
 757
 758        dev_dbg(master->dev.parent,
 759                "  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 760                xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
 761                xfer->rx_buf, (unsigned long long)xfer->rx_dma);
 762
 763        /* Enable relevant interrupts */
 764        spi_writel(as, IER, SPI_BIT(OVRES));
 765
 766        /* Put the callback on the RX transfer only, that should finish last */
 767        rxdesc->callback = dma_callback;
 768        rxdesc->callback_param = master;
 769
 770        /* Submit and fire RX and TX with TX last so we're ready to read! */
 771        cookie = rxdesc->tx_submit(rxdesc);
 772        if (dma_submit_error(cookie))
 773                goto err_dma;
 774        cookie = txdesc->tx_submit(txdesc);
 775        if (dma_submit_error(cookie))
 776                goto err_dma;
 777        rxchan->device->device_issue_pending(rxchan);
 778        txchan->device->device_issue_pending(txchan);
 779
 780        return 0;
 781
 782err_dma:
 783        spi_writel(as, IDR, SPI_BIT(OVRES));
 784        atmel_spi_stop_dma(master);
 785err_exit:
 786        return -ENOMEM;
 787}
 788
 789static void atmel_spi_next_xfer_data(struct spi_master *master,
 790                                struct spi_transfer *xfer,
 791                                dma_addr_t *tx_dma,
 792                                dma_addr_t *rx_dma,
 793                                u32 *plen)
 794{
 795        *rx_dma = xfer->rx_dma + xfer->len - *plen;
 796        *tx_dma = xfer->tx_dma + xfer->len - *plen;
 797        if (*plen > master->max_dma_len)
 798                *plen = master->max_dma_len;
 799}
 800
 801static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
 802                                    struct spi_device *spi,
 803                                    struct spi_transfer *xfer)
 804{
 805        u32                     scbr, csr;
 806        unsigned long           bus_hz;
 807        int chip_select;
 808
 809        if (spi->cs_gpiod)
 810                chip_select = as->native_cs_for_gpio;
 811        else
 812                chip_select = spi->chip_select;
 813
 814        /* v1 chips start out at half the peripheral bus speed. */
 815        bus_hz = as->spi_clk;
 816        if (!atmel_spi_is_v2(as))
 817                bus_hz /= 2;
 818
 819        /*
 820         * Calculate the lowest divider that satisfies the
 821         * constraint, assuming div32/fdiv/mbz == 0.
 822         */
 823        scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
 824
 825        /*
 826         * If the resulting divider doesn't fit into the
 827         * register bitfield, we can't satisfy the constraint.
 828         */
 829        if (scbr >= (1 << SPI_SCBR_SIZE)) {
 830                dev_err(&spi->dev,
 831                        "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 832                        xfer->speed_hz, scbr, bus_hz/255);
 833                return -EINVAL;
 834        }
 835        if (scbr == 0) {
 836                dev_err(&spi->dev,
 837                        "setup: %d Hz too high, scbr %u; max %ld Hz\n",
 838                        xfer->speed_hz, scbr, bus_hz);
 839                return -EINVAL;
 840        }
 841        csr = spi_readl(as, CSR0 + 4 * chip_select);
 842        csr = SPI_BFINS(SCBR, scbr, csr);
 843        spi_writel(as, CSR0 + 4 * chip_select, csr);
 844        xfer->effective_speed_hz = bus_hz / scbr;
 845
 846        return 0;
 847}
 848
 849/*
 850 * Submit next transfer for PDC.
 851 * lock is held, spi irq is blocked
 852 */
 853static void atmel_spi_pdc_next_xfer(struct spi_master *master,
 854                                        struct spi_transfer *xfer)
 855{
 856        struct atmel_spi        *as = spi_master_get_devdata(master);
 857        u32                     len;
 858        dma_addr_t              tx_dma, rx_dma;
 859
 860        spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 861
 862        len = as->current_remaining_bytes;
 863        atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 864        as->current_remaining_bytes -= len;
 865
 866        spi_writel(as, RPR, rx_dma);
 867        spi_writel(as, TPR, tx_dma);
 868
 869        if (xfer->bits_per_word > 8)
 870                len >>= 1;
 871        spi_writel(as, RCR, len);
 872        spi_writel(as, TCR, len);
 873
 874        dev_dbg(&master->dev,
 875                "  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 876                xfer, xfer->len, xfer->tx_buf,
 877                (unsigned long long)xfer->tx_dma, xfer->rx_buf,
 878                (unsigned long long)xfer->rx_dma);
 879
 880        if (as->current_remaining_bytes) {
 881                len = as->current_remaining_bytes;
 882                atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 883                as->current_remaining_bytes -= len;
 884
 885                spi_writel(as, RNPR, rx_dma);
 886                spi_writel(as, TNPR, tx_dma);
 887
 888                if (xfer->bits_per_word > 8)
 889                        len >>= 1;
 890                spi_writel(as, RNCR, len);
 891                spi_writel(as, TNCR, len);
 892
 893                dev_dbg(&master->dev,
 894                        "  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 895                        xfer, xfer->len, xfer->tx_buf,
 896                        (unsigned long long)xfer->tx_dma, xfer->rx_buf,
 897                        (unsigned long long)xfer->rx_dma);
 898        }
 899
 900        /* REVISIT: We're waiting for RXBUFF before we start the next
 901         * transfer because we need to handle some difficult timing
 902         * issues otherwise. If we wait for TXBUFE in one transfer and
 903         * then starts waiting for RXBUFF in the next, it's difficult
 904         * to tell the difference between the RXBUFF interrupt we're
 905         * actually waiting for and the RXBUFF interrupt of the
 906         * previous transfer.
 907         *
 908         * It should be doable, though. Just not now...
 909         */
 910        spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
 911        spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 912}
 913
 914/*
 915 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 916 *  - The buffer is either valid for CPU access, else NULL
 917 *  - If the buffer is valid, so is its DMA address
 918 *
 919 * This driver manages the dma address unless message->is_dma_mapped.
 920 */
 921static int
 922atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 923{
 924        struct device   *dev = &as->pdev->dev;
 925
 926        xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 927        if (xfer->tx_buf) {
 928                /* tx_buf is a const void* where we need a void * for the dma
 929                 * mapping */
 930                void *nonconst_tx = (void *)xfer->tx_buf;
 931
 932                xfer->tx_dma = dma_map_single(dev,
 933                                nonconst_tx, xfer->len,
 934                                DMA_TO_DEVICE);
 935                if (dma_mapping_error(dev, xfer->tx_dma))
 936                        return -ENOMEM;
 937        }
 938        if (xfer->rx_buf) {
 939                xfer->rx_dma = dma_map_single(dev,
 940                                xfer->rx_buf, xfer->len,
 941                                DMA_FROM_DEVICE);
 942                if (dma_mapping_error(dev, xfer->rx_dma)) {
 943                        if (xfer->tx_buf)
 944                                dma_unmap_single(dev,
 945                                                xfer->tx_dma, xfer->len,
 946                                                DMA_TO_DEVICE);
 947                        return -ENOMEM;
 948                }
 949        }
 950        return 0;
 951}
 952
 953static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
 954                                     struct spi_transfer *xfer)
 955{
 956        if (xfer->tx_dma != INVALID_DMA_ADDRESS)
 957                dma_unmap_single(master->dev.parent, xfer->tx_dma,
 958                                 xfer->len, DMA_TO_DEVICE);
 959        if (xfer->rx_dma != INVALID_DMA_ADDRESS)
 960                dma_unmap_single(master->dev.parent, xfer->rx_dma,
 961                                 xfer->len, DMA_FROM_DEVICE);
 962}
 963
 964static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
 965{
 966        spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 967}
 968
 969static void
 970atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
 971{
 972        u8              *rxp;
 973        u16             *rxp16;
 974        unsigned long   xfer_pos = xfer->len - as->current_remaining_bytes;
 975
 976        if (xfer->bits_per_word > 8) {
 977                rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
 978                *rxp16 = spi_readl(as, RDR);
 979        } else {
 980                rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
 981                *rxp = spi_readl(as, RDR);
 982        }
 983        if (xfer->bits_per_word > 8) {
 984                if (as->current_remaining_bytes > 2)
 985                        as->current_remaining_bytes -= 2;
 986                else
 987                        as->current_remaining_bytes = 0;
 988        } else {
 989                as->current_remaining_bytes--;
 990        }
 991}
 992
 993static void
 994atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
 995{
 996        u32 fifolr = spi_readl(as, FLR);
 997        u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
 998        u32 offset = xfer->len - as->current_remaining_bytes;
 999        u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1000        u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1001        u16 rd; /* RD field is the lowest 16 bits of RDR */
1002
1003        /* Update the number of remaining bytes to transfer */
1004        num_bytes = ((xfer->bits_per_word > 8) ?
1005                     (num_data << 1) :
1006                     num_data);
1007
1008        if (as->current_remaining_bytes > num_bytes)
1009                as->current_remaining_bytes -= num_bytes;
1010        else
1011                as->current_remaining_bytes = 0;
1012
1013        /* Handle odd number of bytes when data are more than 8bit width */
1014        if (xfer->bits_per_word > 8)
1015                as->current_remaining_bytes &= ~0x1;
1016
1017        /* Read data */
1018        while (num_data) {
1019                rd = spi_readl(as, RDR);
1020                if (xfer->bits_per_word > 8)
1021                        *words++ = rd;
1022                else
1023                        *bytes++ = rd;
1024                num_data--;
1025        }
1026}
1027
1028/* Called from IRQ
1029 *
1030 * Must update "current_remaining_bytes" to keep track of data
1031 * to transfer.
1032 */
1033static void
1034atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1035{
1036        if (as->fifo_size)
1037                atmel_spi_pump_fifo_data(as, xfer);
1038        else
1039                atmel_spi_pump_single_data(as, xfer);
1040}
1041
1042/* Interrupt
1043 *
1044 */
1045static irqreturn_t
1046atmel_spi_pio_interrupt(int irq, void *dev_id)
1047{
1048        struct spi_master       *master = dev_id;
1049        struct atmel_spi        *as = spi_master_get_devdata(master);
1050        u32                     status, pending, imr;
1051        struct spi_transfer     *xfer;
1052        int                     ret = IRQ_NONE;
1053
1054        imr = spi_readl(as, IMR);
1055        status = spi_readl(as, SR);
1056        pending = status & imr;
1057
1058        if (pending & SPI_BIT(OVRES)) {
1059                ret = IRQ_HANDLED;
1060                spi_writel(as, IDR, SPI_BIT(OVRES));
1061                dev_warn(master->dev.parent, "overrun\n");
1062
1063                /*
1064                 * When we get an overrun, we disregard the current
1065                 * transfer. Data will not be copied back from any
1066                 * bounce buffer and msg->actual_len will not be
1067                 * updated with the last xfer.
1068                 *
1069                 * We will also not process any remaning transfers in
1070                 * the message.
1071                 */
1072                as->done_status = -EIO;
1073                smp_wmb();
1074
1075                /* Clear any overrun happening while cleaning up */
1076                spi_readl(as, SR);
1077
1078                complete(&as->xfer_completion);
1079
1080        } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1081                atmel_spi_lock(as);
1082
1083                if (as->current_remaining_bytes) {
1084                        ret = IRQ_HANDLED;
1085                        xfer = as->current_transfer;
1086                        atmel_spi_pump_pio_data(as, xfer);
1087                        if (!as->current_remaining_bytes)
1088                                spi_writel(as, IDR, pending);
1089
1090                        complete(&as->xfer_completion);
1091                }
1092
1093                atmel_spi_unlock(as);
1094        } else {
1095                WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1096                ret = IRQ_HANDLED;
1097                spi_writel(as, IDR, pending);
1098        }
1099
1100        return ret;
1101}
1102
1103static irqreturn_t
1104atmel_spi_pdc_interrupt(int irq, void *dev_id)
1105{
1106        struct spi_master       *master = dev_id;
1107        struct atmel_spi        *as = spi_master_get_devdata(master);
1108        u32                     status, pending, imr;
1109        int                     ret = IRQ_NONE;
1110
1111        imr = spi_readl(as, IMR);
1112        status = spi_readl(as, SR);
1113        pending = status & imr;
1114
1115        if (pending & SPI_BIT(OVRES)) {
1116
1117                ret = IRQ_HANDLED;
1118
1119                spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1120                                     | SPI_BIT(OVRES)));
1121
1122                /* Clear any overrun happening while cleaning up */
1123                spi_readl(as, SR);
1124
1125                as->done_status = -EIO;
1126
1127                complete(&as->xfer_completion);
1128
1129        } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1130                ret = IRQ_HANDLED;
1131
1132                spi_writel(as, IDR, pending);
1133
1134                complete(&as->xfer_completion);
1135        }
1136
1137        return ret;
1138}
1139
1140static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1141{
1142        struct spi_delay *delay = &spi->word_delay;
1143        u32 value = delay->value;
1144
1145        switch (delay->unit) {
1146        case SPI_DELAY_UNIT_NSECS:
1147                value /= 1000;
1148                break;
1149        case SPI_DELAY_UNIT_USECS:
1150                break;
1151        default:
1152                return -EINVAL;
1153        }
1154
1155        return (as->spi_clk / 1000000 * value) >> 5;
1156}
1157
1158static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1159{
1160        int i;
1161        struct spi_master *master = platform_get_drvdata(as->pdev);
1162
1163        if (!as->native_cs_free)
1164                return; /* already initialized */
1165
1166        if (!master->cs_gpiods)
1167                return; /* No CS GPIO */
1168
1169        /*
1170         * On the first version of the controller (AT91RM9200), CS0
1171         * can't be used associated with GPIO
1172         */
1173        if (atmel_spi_is_v2(as))
1174                i = 0;
1175        else
1176                i = 1;
1177
1178        for (; i < 4; i++)
1179                if (master->cs_gpiods[i])
1180                        as->native_cs_free |= BIT(i);
1181
1182        if (as->native_cs_free)
1183                as->native_cs_for_gpio = ffs(as->native_cs_free);
1184}
1185
1186static int atmel_spi_setup(struct spi_device *spi)
1187{
1188        struct atmel_spi        *as;
1189        struct atmel_spi_device *asd;
1190        u32                     csr;
1191        unsigned int            bits = spi->bits_per_word;
1192        int chip_select;
1193        int                     word_delay_csr;
1194
1195        as = spi_master_get_devdata(spi->master);
1196
1197        /* see notes above re chipselect */
1198        if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1199                dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1200                return -EINVAL;
1201        }
1202
1203        /* Setup() is called during spi_register_controller(aka
1204         * spi_register_master) but after all membmers of the cs_gpiod
1205         * array have been filled, so we can looked for which native
1206         * CS will be free for using with GPIO
1207         */
1208        initialize_native_cs_for_gpio(as);
1209
1210        if (spi->cs_gpiod && as->native_cs_free) {
1211                dev_err(&spi->dev,
1212                        "No native CS available to support this GPIO CS\n");
1213                return -EBUSY;
1214        }
1215
1216        if (spi->cs_gpiod)
1217                chip_select = as->native_cs_for_gpio;
1218        else
1219                chip_select = spi->chip_select;
1220
1221        csr = SPI_BF(BITS, bits - 8);
1222        if (spi->mode & SPI_CPOL)
1223                csr |= SPI_BIT(CPOL);
1224        if (!(spi->mode & SPI_CPHA))
1225                csr |= SPI_BIT(NCPHA);
1226
1227        if (!spi->cs_gpiod)
1228                csr |= SPI_BIT(CSAAT);
1229        csr |= SPI_BF(DLYBS, 0);
1230
1231        word_delay_csr = atmel_word_delay_csr(spi, as);
1232        if (word_delay_csr < 0)
1233                return word_delay_csr;
1234
1235        /* DLYBCT adds delays between words.  This is useful for slow devices
1236         * that need a bit of time to setup the next transfer.
1237         */
1238        csr |= SPI_BF(DLYBCT, word_delay_csr);
1239
1240        asd = spi->controller_state;
1241        if (!asd) {
1242                asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1243                if (!asd)
1244                        return -ENOMEM;
1245
1246                spi->controller_state = asd;
1247        }
1248
1249        asd->csr = csr;
1250
1251        dev_dbg(&spi->dev,
1252                "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1253                bits, spi->mode, spi->chip_select, csr);
1254
1255        if (!atmel_spi_is_v2(as))
1256                spi_writel(as, CSR0 + 4 * chip_select, csr);
1257
1258        return 0;
1259}
1260
1261static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
1262{
1263        struct atmel_spi *as = spi_master_get_devdata(spi->master);
1264        /* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
1265         * since we already have routines for activate/deactivate translate
1266         * high/low to active/inactive
1267         */
1268        enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
1269
1270        if (enable) {
1271                cs_activate(as, spi);
1272        } else {
1273                cs_deactivate(as, spi);
1274        }
1275
1276}
1277
1278static int atmel_spi_one_transfer(struct spi_master *master,
1279                                        struct spi_device *spi,
1280                                        struct spi_transfer *xfer)
1281{
1282        struct atmel_spi        *as;
1283        u8                      bits;
1284        u32                     len;
1285        struct atmel_spi_device *asd;
1286        int                     timeout;
1287        int                     ret;
1288        unsigned long           dma_timeout;
1289
1290        as = spi_master_get_devdata(master);
1291
1292        asd = spi->controller_state;
1293        bits = (asd->csr >> 4) & 0xf;
1294        if (bits != xfer->bits_per_word - 8) {
1295                dev_dbg(&spi->dev,
1296                        "you can't yet change bits_per_word in transfers\n");
1297                return -ENOPROTOOPT;
1298        }
1299
1300        /*
1301         * DMA map early, for performance (empties dcache ASAP) and
1302         * better fault reporting.
1303         */
1304        if ((!master->cur_msg->is_dma_mapped)
1305                && as->use_pdc) {
1306                if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1307                        return -ENOMEM;
1308        }
1309
1310        atmel_spi_set_xfer_speed(as, spi, xfer);
1311
1312        as->done_status = 0;
1313        as->current_transfer = xfer;
1314        as->current_remaining_bytes = xfer->len;
1315        while (as->current_remaining_bytes) {
1316                reinit_completion(&as->xfer_completion);
1317
1318                if (as->use_pdc) {
1319                        atmel_spi_lock(as);
1320                        atmel_spi_pdc_next_xfer(master, xfer);
1321                        atmel_spi_unlock(as);
1322                } else if (atmel_spi_use_dma(as, xfer)) {
1323                        len = as->current_remaining_bytes;
1324                        ret = atmel_spi_next_xfer_dma_submit(master,
1325                                                                xfer, &len);
1326                        if (ret) {
1327                                dev_err(&spi->dev,
1328                                        "unable to use DMA, fallback to PIO\n");
1329                                as->done_status = ret;
1330                                break;
1331                        } else {
1332                                as->current_remaining_bytes -= len;
1333                                if (as->current_remaining_bytes < 0)
1334                                        as->current_remaining_bytes = 0;
1335                        }
1336                } else {
1337                        atmel_spi_lock(as);
1338                        atmel_spi_next_xfer_pio(master, xfer);
1339                        atmel_spi_unlock(as);
1340                }
1341
1342                dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1343                                                          SPI_DMA_TIMEOUT);
1344                if (WARN_ON(dma_timeout == 0)) {
1345                        dev_err(&spi->dev, "spi transfer timeout\n");
1346                        as->done_status = -EIO;
1347                }
1348
1349                if (as->done_status)
1350                        break;
1351        }
1352
1353        if (as->done_status) {
1354                if (as->use_pdc) {
1355                        dev_warn(master->dev.parent,
1356                                "overrun (%u/%u remaining)\n",
1357                                spi_readl(as, TCR), spi_readl(as, RCR));
1358
1359                        /*
1360                         * Clean up DMA registers and make sure the data
1361                         * registers are empty.
1362                         */
1363                        spi_writel(as, RNCR, 0);
1364                        spi_writel(as, TNCR, 0);
1365                        spi_writel(as, RCR, 0);
1366                        spi_writel(as, TCR, 0);
1367                        for (timeout = 1000; timeout; timeout--)
1368                                if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1369                                        break;
1370                        if (!timeout)
1371                                dev_warn(master->dev.parent,
1372                                         "timeout waiting for TXEMPTY");
1373                        while (spi_readl(as, SR) & SPI_BIT(RDRF))
1374                                spi_readl(as, RDR);
1375
1376                        /* Clear any overrun happening while cleaning up */
1377                        spi_readl(as, SR);
1378
1379                } else if (atmel_spi_use_dma(as, xfer)) {
1380                        atmel_spi_stop_dma(master);
1381                }
1382        }
1383
1384        if (!master->cur_msg->is_dma_mapped
1385                && as->use_pdc)
1386                atmel_spi_dma_unmap_xfer(master, xfer);
1387
1388        if (as->use_pdc)
1389                atmel_spi_disable_pdc_transfer(as);
1390
1391        return as->done_status;
1392}
1393
1394static void atmel_spi_cleanup(struct spi_device *spi)
1395{
1396        struct atmel_spi_device *asd = spi->controller_state;
1397
1398        if (!asd)
1399                return;
1400
1401        spi->controller_state = NULL;
1402        kfree(asd);
1403}
1404
1405static inline unsigned int atmel_get_version(struct atmel_spi *as)
1406{
1407        return spi_readl(as, VERSION) & 0x00000fff;
1408}
1409
1410static void atmel_get_caps(struct atmel_spi *as)
1411{
1412        unsigned int version;
1413
1414        version = atmel_get_version(as);
1415
1416        as->caps.is_spi2 = version > 0x121;
1417        as->caps.has_wdrbt = version >= 0x210;
1418        as->caps.has_dma_support = version >= 0x212;
1419        as->caps.has_pdc_support = version < 0x212;
1420}
1421
1422static void atmel_spi_init(struct atmel_spi *as)
1423{
1424        spi_writel(as, CR, SPI_BIT(SWRST));
1425        spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1426
1427        /* It is recommended to enable FIFOs first thing after reset */
1428        if (as->fifo_size)
1429                spi_writel(as, CR, SPI_BIT(FIFOEN));
1430
1431        if (as->caps.has_wdrbt) {
1432                spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1433                                | SPI_BIT(MSTR));
1434        } else {
1435                spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1436        }
1437
1438        if (as->use_pdc)
1439                spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1440        spi_writel(as, CR, SPI_BIT(SPIEN));
1441}
1442
1443static int atmel_spi_probe(struct platform_device *pdev)
1444{
1445        struct resource         *regs;
1446        int                     irq;
1447        struct clk              *clk;
1448        int                     ret;
1449        struct spi_master       *master;
1450        struct atmel_spi        *as;
1451
1452        /* Select default pin state */
1453        pinctrl_pm_select_default_state(&pdev->dev);
1454
1455        regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1456        if (!regs)
1457                return -ENXIO;
1458
1459        irq = platform_get_irq(pdev, 0);
1460        if (irq < 0)
1461                return irq;
1462
1463        clk = devm_clk_get(&pdev->dev, "spi_clk");
1464        if (IS_ERR(clk))
1465                return PTR_ERR(clk);
1466
1467        /* setup spi core then atmel-specific driver state */
1468        master = spi_alloc_master(&pdev->dev, sizeof(*as));
1469        if (!master)
1470                return -ENOMEM;
1471
1472        /* the spi->mode bits understood by this driver: */
1473        master->use_gpio_descriptors = true;
1474        master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1475        master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1476        master->dev.of_node = pdev->dev.of_node;
1477        master->bus_num = pdev->id;
1478        master->num_chipselect = 4;
1479        master->setup = atmel_spi_setup;
1480        master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX |
1481                        SPI_MASTER_GPIO_SS);
1482        master->transfer_one = atmel_spi_one_transfer;
1483        master->set_cs = atmel_spi_set_cs;
1484        master->cleanup = atmel_spi_cleanup;
1485        master->auto_runtime_pm = true;
1486        master->max_dma_len = SPI_MAX_DMA_XFER;
1487        master->can_dma = atmel_spi_can_dma;
1488        platform_set_drvdata(pdev, master);
1489
1490        as = spi_master_get_devdata(master);
1491
1492        spin_lock_init(&as->lock);
1493
1494        as->pdev = pdev;
1495        as->regs = devm_ioremap_resource(&pdev->dev, regs);
1496        if (IS_ERR(as->regs)) {
1497                ret = PTR_ERR(as->regs);
1498                goto out_unmap_regs;
1499        }
1500        as->phybase = regs->start;
1501        as->irq = irq;
1502        as->clk = clk;
1503
1504        init_completion(&as->xfer_completion);
1505
1506        atmel_get_caps(as);
1507
1508        as->use_dma = false;
1509        as->use_pdc = false;
1510        if (as->caps.has_dma_support) {
1511                ret = atmel_spi_configure_dma(master, as);
1512                if (ret == 0) {
1513                        as->use_dma = true;
1514                } else if (ret == -EPROBE_DEFER) {
1515                        goto out_unmap_regs;
1516                }
1517        } else if (as->caps.has_pdc_support) {
1518                as->use_pdc = true;
1519        }
1520
1521        if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1522                as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1523                                                      SPI_MAX_DMA_XFER,
1524                                                      &as->dma_addr_rx_bbuf,
1525                                                      GFP_KERNEL | GFP_DMA);
1526                if (!as->addr_rx_bbuf) {
1527                        as->use_dma = false;
1528                } else {
1529                        as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1530                                        SPI_MAX_DMA_XFER,
1531                                        &as->dma_addr_tx_bbuf,
1532                                        GFP_KERNEL | GFP_DMA);
1533                        if (!as->addr_tx_bbuf) {
1534                                as->use_dma = false;
1535                                dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1536                                                  as->addr_rx_bbuf,
1537                                                  as->dma_addr_rx_bbuf);
1538                        }
1539                }
1540                if (!as->use_dma)
1541                        dev_info(master->dev.parent,
1542                                 "  can not allocate dma coherent memory\n");
1543        }
1544
1545        if (as->caps.has_dma_support && !as->use_dma)
1546                dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1547
1548        if (as->use_pdc) {
1549                ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1550                                        0, dev_name(&pdev->dev), master);
1551        } else {
1552                ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1553                                        0, dev_name(&pdev->dev), master);
1554        }
1555        if (ret)
1556                goto out_unmap_regs;
1557
1558        /* Initialize the hardware */
1559        ret = clk_prepare_enable(clk);
1560        if (ret)
1561                goto out_free_irq;
1562
1563        as->spi_clk = clk_get_rate(clk);
1564
1565        as->fifo_size = 0;
1566        if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1567                                  &as->fifo_size)) {
1568                dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1569        }
1570
1571        atmel_spi_init(as);
1572
1573        pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1574        pm_runtime_use_autosuspend(&pdev->dev);
1575        pm_runtime_set_active(&pdev->dev);
1576        pm_runtime_enable(&pdev->dev);
1577
1578        ret = devm_spi_register_master(&pdev->dev, master);
1579        if (ret)
1580                goto out_free_dma;
1581
1582        /* go! */
1583        dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1584                        atmel_get_version(as), (unsigned long)regs->start,
1585                        irq);
1586
1587        return 0;
1588
1589out_free_dma:
1590        pm_runtime_disable(&pdev->dev);
1591        pm_runtime_set_suspended(&pdev->dev);
1592
1593        if (as->use_dma)
1594                atmel_spi_release_dma(master);
1595
1596        spi_writel(as, CR, SPI_BIT(SWRST));
1597        spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1598        clk_disable_unprepare(clk);
1599out_free_irq:
1600out_unmap_regs:
1601        spi_master_put(master);
1602        return ret;
1603}
1604
1605static int atmel_spi_remove(struct platform_device *pdev)
1606{
1607        struct spi_master       *master = platform_get_drvdata(pdev);
1608        struct atmel_spi        *as = spi_master_get_devdata(master);
1609
1610        pm_runtime_get_sync(&pdev->dev);
1611
1612        /* reset the hardware and block queue progress */
1613        if (as->use_dma) {
1614                atmel_spi_stop_dma(master);
1615                atmel_spi_release_dma(master);
1616                if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1617                        dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1618                                          as->addr_tx_bbuf,
1619                                          as->dma_addr_tx_bbuf);
1620                        dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1621                                          as->addr_rx_bbuf,
1622                                          as->dma_addr_rx_bbuf);
1623                }
1624        }
1625
1626        spin_lock_irq(&as->lock);
1627        spi_writel(as, CR, SPI_BIT(SWRST));
1628        spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1629        spi_readl(as, SR);
1630        spin_unlock_irq(&as->lock);
1631
1632        clk_disable_unprepare(as->clk);
1633
1634        pm_runtime_put_noidle(&pdev->dev);
1635        pm_runtime_disable(&pdev->dev);
1636
1637        return 0;
1638}
1639
1640#ifdef CONFIG_PM
1641static int atmel_spi_runtime_suspend(struct device *dev)
1642{
1643        struct spi_master *master = dev_get_drvdata(dev);
1644        struct atmel_spi *as = spi_master_get_devdata(master);
1645
1646        clk_disable_unprepare(as->clk);
1647        pinctrl_pm_select_sleep_state(dev);
1648
1649        return 0;
1650}
1651
1652static int atmel_spi_runtime_resume(struct device *dev)
1653{
1654        struct spi_master *master = dev_get_drvdata(dev);
1655        struct atmel_spi *as = spi_master_get_devdata(master);
1656
1657        pinctrl_pm_select_default_state(dev);
1658
1659        return clk_prepare_enable(as->clk);
1660}
1661
1662#ifdef CONFIG_PM_SLEEP
1663static int atmel_spi_suspend(struct device *dev)
1664{
1665        struct spi_master *master = dev_get_drvdata(dev);
1666        int ret;
1667
1668        /* Stop the queue running */
1669        ret = spi_master_suspend(master);
1670        if (ret)
1671                return ret;
1672
1673        if (!pm_runtime_suspended(dev))
1674                atmel_spi_runtime_suspend(dev);
1675
1676        return 0;
1677}
1678
1679static int atmel_spi_resume(struct device *dev)
1680{
1681        struct spi_master *master = dev_get_drvdata(dev);
1682        struct atmel_spi *as = spi_master_get_devdata(master);
1683        int ret;
1684
1685        ret = clk_prepare_enable(as->clk);
1686        if (ret)
1687                return ret;
1688
1689        atmel_spi_init(as);
1690
1691        clk_disable_unprepare(as->clk);
1692
1693        if (!pm_runtime_suspended(dev)) {
1694                ret = atmel_spi_runtime_resume(dev);
1695                if (ret)
1696                        return ret;
1697        }
1698
1699        /* Start the queue running */
1700        return spi_master_resume(master);
1701}
1702#endif
1703
1704static const struct dev_pm_ops atmel_spi_pm_ops = {
1705        SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1706        SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1707                           atmel_spi_runtime_resume, NULL)
1708};
1709#define ATMEL_SPI_PM_OPS        (&atmel_spi_pm_ops)
1710#else
1711#define ATMEL_SPI_PM_OPS        NULL
1712#endif
1713
1714static const struct of_device_id atmel_spi_dt_ids[] = {
1715        { .compatible = "atmel,at91rm9200-spi" },
1716        { /* sentinel */ }
1717};
1718
1719MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1720
1721static struct platform_driver atmel_spi_driver = {
1722        .driver         = {
1723                .name   = "atmel_spi",
1724                .pm     = ATMEL_SPI_PM_OPS,
1725                .of_match_table = atmel_spi_dt_ids,
1726        },
1727        .probe          = atmel_spi_probe,
1728        .remove         = atmel_spi_remove,
1729};
1730module_platform_driver(atmel_spi_driver);
1731
1732MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1733MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1734MODULE_LICENSE("GPL");
1735MODULE_ALIAS("platform:atmel_spi");
1736