linux/drivers/usb/gadget/function/f_fs.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * f_fs.c -- user mode file system API for USB composite function controllers
   4 *
   5 * Copyright (C) 2010 Samsung Electronics
   6 * Author: Michal Nazarewicz <mina86@mina86.com>
   7 *
   8 * Based on inode.c (GadgetFS) which was:
   9 * Copyright (C) 2003-2004 David Brownell
  10 * Copyright (C) 2003 Agilent Technologies
  11 */
  12
  13
  14/* #define DEBUG */
  15/* #define VERBOSE_DEBUG */
  16
  17#include <linux/blkdev.h>
  18#include <linux/pagemap.h>
  19#include <linux/export.h>
  20#include <linux/fs_parser.h>
  21#include <linux/hid.h>
  22#include <linux/mm.h>
  23#include <linux/module.h>
  24#include <linux/scatterlist.h>
  25#include <linux/sched/signal.h>
  26#include <linux/uio.h>
  27#include <linux/vmalloc.h>
  28#include <asm/unaligned.h>
  29
  30#include <linux/usb/ccid.h>
  31#include <linux/usb/composite.h>
  32#include <linux/usb/functionfs.h>
  33
  34#include <linux/aio.h>
  35#include <linux/kthread.h>
  36#include <linux/poll.h>
  37#include <linux/eventfd.h>
  38
  39#include "u_fs.h"
  40#include "u_f.h"
  41#include "u_os_desc.h"
  42#include "configfs.h"
  43
  44#define FUNCTIONFS_MAGIC        0xa647361 /* Chosen by a honest dice roll ;) */
  45
  46/* Reference counter handling */
  47static void ffs_data_get(struct ffs_data *ffs);
  48static void ffs_data_put(struct ffs_data *ffs);
  49/* Creates new ffs_data object. */
  50static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
  51        __attribute__((malloc));
  52
  53/* Opened counter handling. */
  54static void ffs_data_opened(struct ffs_data *ffs);
  55static void ffs_data_closed(struct ffs_data *ffs);
  56
  57/* Called with ffs->mutex held; take over ownership of data. */
  58static int __must_check
  59__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
  60static int __must_check
  61__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
  62
  63
  64/* The function structure ***************************************************/
  65
  66struct ffs_ep;
  67
  68struct ffs_function {
  69        struct usb_configuration        *conf;
  70        struct usb_gadget               *gadget;
  71        struct ffs_data                 *ffs;
  72
  73        struct ffs_ep                   *eps;
  74        u8                              eps_revmap[16];
  75        short                           *interfaces_nums;
  76
  77        struct usb_function             function;
  78};
  79
  80
  81static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
  82{
  83        return container_of(f, struct ffs_function, function);
  84}
  85
  86
  87static inline enum ffs_setup_state
  88ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
  89{
  90        return (enum ffs_setup_state)
  91                cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
  92}
  93
  94
  95static void ffs_func_eps_disable(struct ffs_function *func);
  96static int __must_check ffs_func_eps_enable(struct ffs_function *func);
  97
  98static int ffs_func_bind(struct usb_configuration *,
  99                         struct usb_function *);
 100static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
 101static void ffs_func_disable(struct usb_function *);
 102static int ffs_func_setup(struct usb_function *,
 103                          const struct usb_ctrlrequest *);
 104static bool ffs_func_req_match(struct usb_function *,
 105                               const struct usb_ctrlrequest *,
 106                               bool config0);
 107static void ffs_func_suspend(struct usb_function *);
 108static void ffs_func_resume(struct usb_function *);
 109
 110
 111static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
 112static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
 113
 114
 115/* The endpoints structures *************************************************/
 116
 117struct ffs_ep {
 118        struct usb_ep                   *ep;    /* P: ffs->eps_lock */
 119        struct usb_request              *req;   /* P: epfile->mutex */
 120
 121        /* [0]: full speed, [1]: high speed, [2]: super speed */
 122        struct usb_endpoint_descriptor  *descs[3];
 123
 124        u8                              num;
 125
 126        int                             status; /* P: epfile->mutex */
 127};
 128
 129struct ffs_epfile {
 130        /* Protects ep->ep and ep->req. */
 131        struct mutex                    mutex;
 132
 133        struct ffs_data                 *ffs;
 134        struct ffs_ep                   *ep;    /* P: ffs->eps_lock */
 135
 136        struct dentry                   *dentry;
 137
 138        /*
 139         * Buffer for holding data from partial reads which may happen since
 140         * we’re rounding user read requests to a multiple of a max packet size.
 141         *
 142         * The pointer is initialised with NULL value and may be set by
 143         * __ffs_epfile_read_data function to point to a temporary buffer.
 144         *
 145         * In normal operation, calls to __ffs_epfile_read_buffered will consume
 146         * data from said buffer and eventually free it.  Importantly, while the
 147         * function is using the buffer, it sets the pointer to NULL.  This is
 148         * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
 149         * can never run concurrently (they are synchronised by epfile->mutex)
 150         * so the latter will not assign a new value to the pointer.
 151         *
 152         * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
 153         * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
 154         * value is crux of the synchronisation between ffs_func_eps_disable and
 155         * __ffs_epfile_read_data.
 156         *
 157         * Once __ffs_epfile_read_data is about to finish it will try to set the
 158         * pointer back to its old value (as described above), but seeing as the
 159         * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
 160         * the buffer.
 161         *
 162         * == State transitions ==
 163         *
 164         * • ptr == NULL:  (initial state)
 165         *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
 166         *   ◦ __ffs_epfile_read_buffered:    nop
 167         *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
 168         *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 169         * • ptr == DROP:
 170         *   ◦ __ffs_epfile_read_buffer_free: nop
 171         *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
 172         *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
 173         *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 174         * • ptr == buf:
 175         *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
 176         *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
 177         *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
 178         *                                    is always called first
 179         *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 180         * • ptr == NULL and reading:
 181         *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
 182         *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
 183         *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
 184         *   ◦ reading finishes and …
 185         *     … all data read:               free buf, go to ptr == NULL
 186         *     … otherwise:                   go to ptr == buf and reading
 187         * • ptr == DROP and reading:
 188         *   ◦ __ffs_epfile_read_buffer_free: nop
 189         *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
 190         *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
 191         *   ◦ reading finishes:              free buf, go to ptr == DROP
 192         */
 193        struct ffs_buffer               *read_buffer;
 194#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
 195
 196        char                            name[5];
 197
 198        unsigned char                   in;     /* P: ffs->eps_lock */
 199        unsigned char                   isoc;   /* P: ffs->eps_lock */
 200
 201        unsigned char                   _pad;
 202};
 203
 204struct ffs_buffer {
 205        size_t length;
 206        char *data;
 207        char storage[];
 208};
 209
 210/*  ffs_io_data structure ***************************************************/
 211
 212struct ffs_io_data {
 213        bool aio;
 214        bool read;
 215
 216        struct kiocb *kiocb;
 217        struct iov_iter data;
 218        const void *to_free;
 219        char *buf;
 220
 221        struct mm_struct *mm;
 222        struct work_struct work;
 223
 224        struct usb_ep *ep;
 225        struct usb_request *req;
 226        struct sg_table sgt;
 227        bool use_sg;
 228
 229        struct ffs_data *ffs;
 230};
 231
 232struct ffs_desc_helper {
 233        struct ffs_data *ffs;
 234        unsigned interfaces_count;
 235        unsigned eps_count;
 236};
 237
 238static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
 239static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
 240
 241static struct dentry *
 242ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
 243                   const struct file_operations *fops);
 244
 245/* Devices management *******************************************************/
 246
 247DEFINE_MUTEX(ffs_lock);
 248EXPORT_SYMBOL_GPL(ffs_lock);
 249
 250static struct ffs_dev *_ffs_find_dev(const char *name);
 251static struct ffs_dev *_ffs_alloc_dev(void);
 252static void _ffs_free_dev(struct ffs_dev *dev);
 253static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
 254static void ffs_release_dev(struct ffs_dev *ffs_dev);
 255static int ffs_ready(struct ffs_data *ffs);
 256static void ffs_closed(struct ffs_data *ffs);
 257
 258/* Misc helper functions ****************************************************/
 259
 260static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
 261        __attribute__((warn_unused_result, nonnull));
 262static char *ffs_prepare_buffer(const char __user *buf, size_t len)
 263        __attribute__((warn_unused_result, nonnull));
 264
 265
 266/* Control file aka ep0 *****************************************************/
 267
 268static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
 269{
 270        struct ffs_data *ffs = req->context;
 271
 272        complete(&ffs->ep0req_completion);
 273}
 274
 275static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
 276        __releases(&ffs->ev.waitq.lock)
 277{
 278        struct usb_request *req = ffs->ep0req;
 279        int ret;
 280
 281        req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
 282
 283        spin_unlock_irq(&ffs->ev.waitq.lock);
 284
 285        req->buf      = data;
 286        req->length   = len;
 287
 288        /*
 289         * UDC layer requires to provide a buffer even for ZLP, but should
 290         * not use it at all. Let's provide some poisoned pointer to catch
 291         * possible bug in the driver.
 292         */
 293        if (req->buf == NULL)
 294                req->buf = (void *)0xDEADBABE;
 295
 296        reinit_completion(&ffs->ep0req_completion);
 297
 298        ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
 299        if (ret < 0)
 300                return ret;
 301
 302        ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
 303        if (ret) {
 304                usb_ep_dequeue(ffs->gadget->ep0, req);
 305                return -EINTR;
 306        }
 307
 308        ffs->setup_state = FFS_NO_SETUP;
 309        return req->status ? req->status : req->actual;
 310}
 311
 312static int __ffs_ep0_stall(struct ffs_data *ffs)
 313{
 314        if (ffs->ev.can_stall) {
 315                pr_vdebug("ep0 stall\n");
 316                usb_ep_set_halt(ffs->gadget->ep0);
 317                ffs->setup_state = FFS_NO_SETUP;
 318                return -EL2HLT;
 319        } else {
 320                pr_debug("bogus ep0 stall!\n");
 321                return -ESRCH;
 322        }
 323}
 324
 325static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
 326                             size_t len, loff_t *ptr)
 327{
 328        struct ffs_data *ffs = file->private_data;
 329        ssize_t ret;
 330        char *data;
 331
 332        ENTER();
 333
 334        /* Fast check if setup was canceled */
 335        if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 336                return -EIDRM;
 337
 338        /* Acquire mutex */
 339        ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 340        if (ret < 0)
 341                return ret;
 342
 343        /* Check state */
 344        switch (ffs->state) {
 345        case FFS_READ_DESCRIPTORS:
 346        case FFS_READ_STRINGS:
 347                /* Copy data */
 348                if (len < 16) {
 349                        ret = -EINVAL;
 350                        break;
 351                }
 352
 353                data = ffs_prepare_buffer(buf, len);
 354                if (IS_ERR(data)) {
 355                        ret = PTR_ERR(data);
 356                        break;
 357                }
 358
 359                /* Handle data */
 360                if (ffs->state == FFS_READ_DESCRIPTORS) {
 361                        pr_info("read descriptors\n");
 362                        ret = __ffs_data_got_descs(ffs, data, len);
 363                        if (ret < 0)
 364                                break;
 365
 366                        ffs->state = FFS_READ_STRINGS;
 367                        ret = len;
 368                } else {
 369                        pr_info("read strings\n");
 370                        ret = __ffs_data_got_strings(ffs, data, len);
 371                        if (ret < 0)
 372                                break;
 373
 374                        ret = ffs_epfiles_create(ffs);
 375                        if (ret) {
 376                                ffs->state = FFS_CLOSING;
 377                                break;
 378                        }
 379
 380                        ffs->state = FFS_ACTIVE;
 381                        mutex_unlock(&ffs->mutex);
 382
 383                        ret = ffs_ready(ffs);
 384                        if (ret < 0) {
 385                                ffs->state = FFS_CLOSING;
 386                                return ret;
 387                        }
 388
 389                        return len;
 390                }
 391                break;
 392
 393        case FFS_ACTIVE:
 394                data = NULL;
 395                /*
 396                 * We're called from user space, we can use _irq
 397                 * rather then _irqsave
 398                 */
 399                spin_lock_irq(&ffs->ev.waitq.lock);
 400                switch (ffs_setup_state_clear_cancelled(ffs)) {
 401                case FFS_SETUP_CANCELLED:
 402                        ret = -EIDRM;
 403                        goto done_spin;
 404
 405                case FFS_NO_SETUP:
 406                        ret = -ESRCH;
 407                        goto done_spin;
 408
 409                case FFS_SETUP_PENDING:
 410                        break;
 411                }
 412
 413                /* FFS_SETUP_PENDING */
 414                if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
 415                        spin_unlock_irq(&ffs->ev.waitq.lock);
 416                        ret = __ffs_ep0_stall(ffs);
 417                        break;
 418                }
 419
 420                /* FFS_SETUP_PENDING and not stall */
 421                len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 422
 423                spin_unlock_irq(&ffs->ev.waitq.lock);
 424
 425                data = ffs_prepare_buffer(buf, len);
 426                if (IS_ERR(data)) {
 427                        ret = PTR_ERR(data);
 428                        break;
 429                }
 430
 431                spin_lock_irq(&ffs->ev.waitq.lock);
 432
 433                /*
 434                 * We are guaranteed to be still in FFS_ACTIVE state
 435                 * but the state of setup could have changed from
 436                 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
 437                 * to check for that.  If that happened we copied data
 438                 * from user space in vain but it's unlikely.
 439                 *
 440                 * For sure we are not in FFS_NO_SETUP since this is
 441                 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
 442                 * transition can be performed and it's protected by
 443                 * mutex.
 444                 */
 445                if (ffs_setup_state_clear_cancelled(ffs) ==
 446                    FFS_SETUP_CANCELLED) {
 447                        ret = -EIDRM;
 448done_spin:
 449                        spin_unlock_irq(&ffs->ev.waitq.lock);
 450                } else {
 451                        /* unlocks spinlock */
 452                        ret = __ffs_ep0_queue_wait(ffs, data, len);
 453                }
 454                kfree(data);
 455                break;
 456
 457        default:
 458                ret = -EBADFD;
 459                break;
 460        }
 461
 462        mutex_unlock(&ffs->mutex);
 463        return ret;
 464}
 465
 466/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
 467static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
 468                                     size_t n)
 469        __releases(&ffs->ev.waitq.lock)
 470{
 471        /*
 472         * n cannot be bigger than ffs->ev.count, which cannot be bigger than
 473         * size of ffs->ev.types array (which is four) so that's how much space
 474         * we reserve.
 475         */
 476        struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
 477        const size_t size = n * sizeof *events;
 478        unsigned i = 0;
 479
 480        memset(events, 0, size);
 481
 482        do {
 483                events[i].type = ffs->ev.types[i];
 484                if (events[i].type == FUNCTIONFS_SETUP) {
 485                        events[i].u.setup = ffs->ev.setup;
 486                        ffs->setup_state = FFS_SETUP_PENDING;
 487                }
 488        } while (++i < n);
 489
 490        ffs->ev.count -= n;
 491        if (ffs->ev.count)
 492                memmove(ffs->ev.types, ffs->ev.types + n,
 493                        ffs->ev.count * sizeof *ffs->ev.types);
 494
 495        spin_unlock_irq(&ffs->ev.waitq.lock);
 496        mutex_unlock(&ffs->mutex);
 497
 498        return copy_to_user(buf, events, size) ? -EFAULT : size;
 499}
 500
 501static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
 502                            size_t len, loff_t *ptr)
 503{
 504        struct ffs_data *ffs = file->private_data;
 505        char *data = NULL;
 506        size_t n;
 507        int ret;
 508
 509        ENTER();
 510
 511        /* Fast check if setup was canceled */
 512        if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 513                return -EIDRM;
 514
 515        /* Acquire mutex */
 516        ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 517        if (ret < 0)
 518                return ret;
 519
 520        /* Check state */
 521        if (ffs->state != FFS_ACTIVE) {
 522                ret = -EBADFD;
 523                goto done_mutex;
 524        }
 525
 526        /*
 527         * We're called from user space, we can use _irq rather then
 528         * _irqsave
 529         */
 530        spin_lock_irq(&ffs->ev.waitq.lock);
 531
 532        switch (ffs_setup_state_clear_cancelled(ffs)) {
 533        case FFS_SETUP_CANCELLED:
 534                ret = -EIDRM;
 535                break;
 536
 537        case FFS_NO_SETUP:
 538                n = len / sizeof(struct usb_functionfs_event);
 539                if (!n) {
 540                        ret = -EINVAL;
 541                        break;
 542                }
 543
 544                if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
 545                        ret = -EAGAIN;
 546                        break;
 547                }
 548
 549                if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
 550                                                        ffs->ev.count)) {
 551                        ret = -EINTR;
 552                        break;
 553                }
 554
 555                /* unlocks spinlock */
 556                return __ffs_ep0_read_events(ffs, buf,
 557                                             min(n, (size_t)ffs->ev.count));
 558
 559        case FFS_SETUP_PENDING:
 560                if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
 561                        spin_unlock_irq(&ffs->ev.waitq.lock);
 562                        ret = __ffs_ep0_stall(ffs);
 563                        goto done_mutex;
 564                }
 565
 566                len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 567
 568                spin_unlock_irq(&ffs->ev.waitq.lock);
 569
 570                if (len) {
 571                        data = kmalloc(len, GFP_KERNEL);
 572                        if (!data) {
 573                                ret = -ENOMEM;
 574                                goto done_mutex;
 575                        }
 576                }
 577
 578                spin_lock_irq(&ffs->ev.waitq.lock);
 579
 580                /* See ffs_ep0_write() */
 581                if (ffs_setup_state_clear_cancelled(ffs) ==
 582                    FFS_SETUP_CANCELLED) {
 583                        ret = -EIDRM;
 584                        break;
 585                }
 586
 587                /* unlocks spinlock */
 588                ret = __ffs_ep0_queue_wait(ffs, data, len);
 589                if ((ret > 0) && (copy_to_user(buf, data, len)))
 590                        ret = -EFAULT;
 591                goto done_mutex;
 592
 593        default:
 594                ret = -EBADFD;
 595                break;
 596        }
 597
 598        spin_unlock_irq(&ffs->ev.waitq.lock);
 599done_mutex:
 600        mutex_unlock(&ffs->mutex);
 601        kfree(data);
 602        return ret;
 603}
 604
 605static int ffs_ep0_open(struct inode *inode, struct file *file)
 606{
 607        struct ffs_data *ffs = inode->i_private;
 608
 609        ENTER();
 610
 611        if (ffs->state == FFS_CLOSING)
 612                return -EBUSY;
 613
 614        file->private_data = ffs;
 615        ffs_data_opened(ffs);
 616
 617        return 0;
 618}
 619
 620static int ffs_ep0_release(struct inode *inode, struct file *file)
 621{
 622        struct ffs_data *ffs = file->private_data;
 623
 624        ENTER();
 625
 626        ffs_data_closed(ffs);
 627
 628        return 0;
 629}
 630
 631static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
 632{
 633        struct ffs_data *ffs = file->private_data;
 634        struct usb_gadget *gadget = ffs->gadget;
 635        long ret;
 636
 637        ENTER();
 638
 639        if (code == FUNCTIONFS_INTERFACE_REVMAP) {
 640                struct ffs_function *func = ffs->func;
 641                ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
 642        } else if (gadget && gadget->ops->ioctl) {
 643                ret = gadget->ops->ioctl(gadget, code, value);
 644        } else {
 645                ret = -ENOTTY;
 646        }
 647
 648        return ret;
 649}
 650
 651static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
 652{
 653        struct ffs_data *ffs = file->private_data;
 654        __poll_t mask = EPOLLWRNORM;
 655        int ret;
 656
 657        poll_wait(file, &ffs->ev.waitq, wait);
 658
 659        ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 660        if (ret < 0)
 661                return mask;
 662
 663        switch (ffs->state) {
 664        case FFS_READ_DESCRIPTORS:
 665        case FFS_READ_STRINGS:
 666                mask |= EPOLLOUT;
 667                break;
 668
 669        case FFS_ACTIVE:
 670                switch (ffs->setup_state) {
 671                case FFS_NO_SETUP:
 672                        if (ffs->ev.count)
 673                                mask |= EPOLLIN;
 674                        break;
 675
 676                case FFS_SETUP_PENDING:
 677                case FFS_SETUP_CANCELLED:
 678                        mask |= (EPOLLIN | EPOLLOUT);
 679                        break;
 680                }
 681                break;
 682
 683        case FFS_CLOSING:
 684                break;
 685        case FFS_DEACTIVATED:
 686                break;
 687        }
 688
 689        mutex_unlock(&ffs->mutex);
 690
 691        return mask;
 692}
 693
 694static const struct file_operations ffs_ep0_operations = {
 695        .llseek =       no_llseek,
 696
 697        .open =         ffs_ep0_open,
 698        .write =        ffs_ep0_write,
 699        .read =         ffs_ep0_read,
 700        .release =      ffs_ep0_release,
 701        .unlocked_ioctl =       ffs_ep0_ioctl,
 702        .poll =         ffs_ep0_poll,
 703};
 704
 705
 706/* "Normal" endpoints operations ********************************************/
 707
 708static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
 709{
 710        ENTER();
 711        if (req->context) {
 712                struct ffs_ep *ep = _ep->driver_data;
 713                ep->status = req->status ? req->status : req->actual;
 714                complete(req->context);
 715        }
 716}
 717
 718static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
 719{
 720        ssize_t ret = copy_to_iter(data, data_len, iter);
 721        if (ret == data_len)
 722                return ret;
 723
 724        if (iov_iter_count(iter))
 725                return -EFAULT;
 726
 727        /*
 728         * Dear user space developer!
 729         *
 730         * TL;DR: To stop getting below error message in your kernel log, change
 731         * user space code using functionfs to align read buffers to a max
 732         * packet size.
 733         *
 734         * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
 735         * packet size.  When unaligned buffer is passed to functionfs, it
 736         * internally uses a larger, aligned buffer so that such UDCs are happy.
 737         *
 738         * Unfortunately, this means that host may send more data than was
 739         * requested in read(2) system call.  f_fs doesn’t know what to do with
 740         * that excess data so it simply drops it.
 741         *
 742         * Was the buffer aligned in the first place, no such problem would
 743         * happen.
 744         *
 745         * Data may be dropped only in AIO reads.  Synchronous reads are handled
 746         * by splitting a request into multiple parts.  This splitting may still
 747         * be a problem though so it’s likely best to align the buffer
 748         * regardless of it being AIO or not..
 749         *
 750         * This only affects OUT endpoints, i.e. reading data with a read(2),
 751         * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
 752         * affected.
 753         */
 754        pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
 755               "Align read buffer size to max packet size to avoid the problem.\n",
 756               data_len, ret);
 757
 758        return ret;
 759}
 760
 761/*
 762 * allocate a virtually contiguous buffer and create a scatterlist describing it
 763 * @sg_table    - pointer to a place to be filled with sg_table contents
 764 * @size        - required buffer size
 765 */
 766static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
 767{
 768        struct page **pages;
 769        void *vaddr, *ptr;
 770        unsigned int n_pages;
 771        int i;
 772
 773        vaddr = vmalloc(sz);
 774        if (!vaddr)
 775                return NULL;
 776
 777        n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
 778        pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
 779        if (!pages) {
 780                vfree(vaddr);
 781
 782                return NULL;
 783        }
 784        for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
 785                pages[i] = vmalloc_to_page(ptr);
 786
 787        if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
 788                kvfree(pages);
 789                vfree(vaddr);
 790
 791                return NULL;
 792        }
 793        kvfree(pages);
 794
 795        return vaddr;
 796}
 797
 798static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
 799        size_t data_len)
 800{
 801        if (io_data->use_sg)
 802                return ffs_build_sg_list(&io_data->sgt, data_len);
 803
 804        return kmalloc(data_len, GFP_KERNEL);
 805}
 806
 807static inline void ffs_free_buffer(struct ffs_io_data *io_data)
 808{
 809        if (!io_data->buf)
 810                return;
 811
 812        if (io_data->use_sg) {
 813                sg_free_table(&io_data->sgt);
 814                vfree(io_data->buf);
 815        } else {
 816                kfree(io_data->buf);
 817        }
 818}
 819
 820static void ffs_user_copy_worker(struct work_struct *work)
 821{
 822        struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
 823                                                   work);
 824        int ret = io_data->req->status ? io_data->req->status :
 825                                         io_data->req->actual;
 826        bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
 827
 828        if (io_data->read && ret > 0) {
 829                kthread_use_mm(io_data->mm);
 830                ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
 831                kthread_unuse_mm(io_data->mm);
 832        }
 833
 834        io_data->kiocb->ki_complete(io_data->kiocb, ret);
 835
 836        if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
 837                eventfd_signal(io_data->ffs->ffs_eventfd, 1);
 838
 839        usb_ep_free_request(io_data->ep, io_data->req);
 840
 841        if (io_data->read)
 842                kfree(io_data->to_free);
 843        ffs_free_buffer(io_data);
 844        kfree(io_data);
 845}
 846
 847static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
 848                                         struct usb_request *req)
 849{
 850        struct ffs_io_data *io_data = req->context;
 851        struct ffs_data *ffs = io_data->ffs;
 852
 853        ENTER();
 854
 855        INIT_WORK(&io_data->work, ffs_user_copy_worker);
 856        queue_work(ffs->io_completion_wq, &io_data->work);
 857}
 858
 859static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
 860{
 861        /*
 862         * See comment in struct ffs_epfile for full read_buffer pointer
 863         * synchronisation story.
 864         */
 865        struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
 866        if (buf && buf != READ_BUFFER_DROP)
 867                kfree(buf);
 868}
 869
 870/* Assumes epfile->mutex is held. */
 871static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
 872                                          struct iov_iter *iter)
 873{
 874        /*
 875         * Null out epfile->read_buffer so ffs_func_eps_disable does not free
 876         * the buffer while we are using it.  See comment in struct ffs_epfile
 877         * for full read_buffer pointer synchronisation story.
 878         */
 879        struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
 880        ssize_t ret;
 881        if (!buf || buf == READ_BUFFER_DROP)
 882                return 0;
 883
 884        ret = copy_to_iter(buf->data, buf->length, iter);
 885        if (buf->length == ret) {
 886                kfree(buf);
 887                return ret;
 888        }
 889
 890        if (iov_iter_count(iter)) {
 891                ret = -EFAULT;
 892        } else {
 893                buf->length -= ret;
 894                buf->data += ret;
 895        }
 896
 897        if (cmpxchg(&epfile->read_buffer, NULL, buf))
 898                kfree(buf);
 899
 900        return ret;
 901}
 902
 903/* Assumes epfile->mutex is held. */
 904static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
 905                                      void *data, int data_len,
 906                                      struct iov_iter *iter)
 907{
 908        struct ffs_buffer *buf;
 909
 910        ssize_t ret = copy_to_iter(data, data_len, iter);
 911        if (data_len == ret)
 912                return ret;
 913
 914        if (iov_iter_count(iter))
 915                return -EFAULT;
 916
 917        /* See ffs_copy_to_iter for more context. */
 918        pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
 919                data_len, ret);
 920
 921        data_len -= ret;
 922        buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
 923        if (!buf)
 924                return -ENOMEM;
 925        buf->length = data_len;
 926        buf->data = buf->storage;
 927        memcpy(buf->storage, data + ret, data_len);
 928
 929        /*
 930         * At this point read_buffer is NULL or READ_BUFFER_DROP (if
 931         * ffs_func_eps_disable has been called in the meanwhile).  See comment
 932         * in struct ffs_epfile for full read_buffer pointer synchronisation
 933         * story.
 934         */
 935        if (cmpxchg(&epfile->read_buffer, NULL, buf))
 936                kfree(buf);
 937
 938        return ret;
 939}
 940
 941static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
 942{
 943        struct ffs_epfile *epfile = file->private_data;
 944        struct usb_request *req;
 945        struct ffs_ep *ep;
 946        char *data = NULL;
 947        ssize_t ret, data_len = -EINVAL;
 948        int halt;
 949
 950        /* Are we still active? */
 951        if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
 952                return -ENODEV;
 953
 954        /* Wait for endpoint to be enabled */
 955        ep = epfile->ep;
 956        if (!ep) {
 957                if (file->f_flags & O_NONBLOCK)
 958                        return -EAGAIN;
 959
 960                ret = wait_event_interruptible(
 961                                epfile->ffs->wait, (ep = epfile->ep));
 962                if (ret)
 963                        return -EINTR;
 964        }
 965
 966        /* Do we halt? */
 967        halt = (!io_data->read == !epfile->in);
 968        if (halt && epfile->isoc)
 969                return -EINVAL;
 970
 971        /* We will be using request and read_buffer */
 972        ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
 973        if (ret)
 974                goto error;
 975
 976        /* Allocate & copy */
 977        if (!halt) {
 978                struct usb_gadget *gadget;
 979
 980                /*
 981                 * Do we have buffered data from previous partial read?  Check
 982                 * that for synchronous case only because we do not have
 983                 * facility to ‘wake up’ a pending asynchronous read and push
 984                 * buffered data to it which we would need to make things behave
 985                 * consistently.
 986                 */
 987                if (!io_data->aio && io_data->read) {
 988                        ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
 989                        if (ret)
 990                                goto error_mutex;
 991                }
 992
 993                /*
 994                 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
 995                 * before the waiting completes, so do not assign to 'gadget'
 996                 * earlier
 997                 */
 998                gadget = epfile->ffs->gadget;
 999
1000                spin_lock_irq(&epfile->ffs->eps_lock);
1001                /* In the meantime, endpoint got disabled or changed. */
1002                if (epfile->ep != ep) {
1003                        ret = -ESHUTDOWN;
1004                        goto error_lock;
1005                }
1006                data_len = iov_iter_count(&io_data->data);
1007                /*
1008                 * Controller may require buffer size to be aligned to
1009                 * maxpacketsize of an out endpoint.
1010                 */
1011                if (io_data->read)
1012                        data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1013
1014                io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1015                spin_unlock_irq(&epfile->ffs->eps_lock);
1016
1017                data = ffs_alloc_buffer(io_data, data_len);
1018                if (!data) {
1019                        ret = -ENOMEM;
1020                        goto error_mutex;
1021                }
1022                if (!io_data->read &&
1023                    !copy_from_iter_full(data, data_len, &io_data->data)) {
1024                        ret = -EFAULT;
1025                        goto error_mutex;
1026                }
1027        }
1028
1029        spin_lock_irq(&epfile->ffs->eps_lock);
1030
1031        if (epfile->ep != ep) {
1032                /* In the meantime, endpoint got disabled or changed. */
1033                ret = -ESHUTDOWN;
1034        } else if (halt) {
1035                ret = usb_ep_set_halt(ep->ep);
1036                if (!ret)
1037                        ret = -EBADMSG;
1038        } else if (data_len == -EINVAL) {
1039                /*
1040                 * Sanity Check: even though data_len can't be used
1041                 * uninitialized at the time I write this comment, some
1042                 * compilers complain about this situation.
1043                 * In order to keep the code clean from warnings, data_len is
1044                 * being initialized to -EINVAL during its declaration, which
1045                 * means we can't rely on compiler anymore to warn no future
1046                 * changes won't result in data_len being used uninitialized.
1047                 * For such reason, we're adding this redundant sanity check
1048                 * here.
1049                 */
1050                WARN(1, "%s: data_len == -EINVAL\n", __func__);
1051                ret = -EINVAL;
1052        } else if (!io_data->aio) {
1053                DECLARE_COMPLETION_ONSTACK(done);
1054                bool interrupted = false;
1055
1056                req = ep->req;
1057                if (io_data->use_sg) {
1058                        req->buf = NULL;
1059                        req->sg = io_data->sgt.sgl;
1060                        req->num_sgs = io_data->sgt.nents;
1061                } else {
1062                        req->buf = data;
1063                        req->num_sgs = 0;
1064                }
1065                req->length = data_len;
1066
1067                io_data->buf = data;
1068
1069                req->context  = &done;
1070                req->complete = ffs_epfile_io_complete;
1071
1072                ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1073                if (ret < 0)
1074                        goto error_lock;
1075
1076                spin_unlock_irq(&epfile->ffs->eps_lock);
1077
1078                if (wait_for_completion_interruptible(&done)) {
1079                        /*
1080                         * To avoid race condition with ffs_epfile_io_complete,
1081                         * dequeue the request first then check
1082                         * status. usb_ep_dequeue API should guarantee no race
1083                         * condition with req->complete callback.
1084                         */
1085                        usb_ep_dequeue(ep->ep, req);
1086                        wait_for_completion(&done);
1087                        interrupted = ep->status < 0;
1088                }
1089
1090                if (interrupted)
1091                        ret = -EINTR;
1092                else if (io_data->read && ep->status > 0)
1093                        ret = __ffs_epfile_read_data(epfile, data, ep->status,
1094                                                     &io_data->data);
1095                else
1096                        ret = ep->status;
1097                goto error_mutex;
1098        } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1099                ret = -ENOMEM;
1100        } else {
1101                if (io_data->use_sg) {
1102                        req->buf = NULL;
1103                        req->sg = io_data->sgt.sgl;
1104                        req->num_sgs = io_data->sgt.nents;
1105                } else {
1106                        req->buf = data;
1107                        req->num_sgs = 0;
1108                }
1109                req->length = data_len;
1110
1111                io_data->buf = data;
1112                io_data->ep = ep->ep;
1113                io_data->req = req;
1114                io_data->ffs = epfile->ffs;
1115
1116                req->context  = io_data;
1117                req->complete = ffs_epfile_async_io_complete;
1118
1119                ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1120                if (ret) {
1121                        io_data->req = NULL;
1122                        usb_ep_free_request(ep->ep, req);
1123                        goto error_lock;
1124                }
1125
1126                ret = -EIOCBQUEUED;
1127                /*
1128                 * Do not kfree the buffer in this function.  It will be freed
1129                 * by ffs_user_copy_worker.
1130                 */
1131                data = NULL;
1132        }
1133
1134error_lock:
1135        spin_unlock_irq(&epfile->ffs->eps_lock);
1136error_mutex:
1137        mutex_unlock(&epfile->mutex);
1138error:
1139        if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1140                ffs_free_buffer(io_data);
1141        return ret;
1142}
1143
1144static int
1145ffs_epfile_open(struct inode *inode, struct file *file)
1146{
1147        struct ffs_epfile *epfile = inode->i_private;
1148
1149        ENTER();
1150
1151        if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1152                return -ENODEV;
1153
1154        file->private_data = epfile;
1155        ffs_data_opened(epfile->ffs);
1156
1157        return 0;
1158}
1159
1160static int ffs_aio_cancel(struct kiocb *kiocb)
1161{
1162        struct ffs_io_data *io_data = kiocb->private;
1163        struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1164        unsigned long flags;
1165        int value;
1166
1167        ENTER();
1168
1169        spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1170
1171        if (io_data && io_data->ep && io_data->req)
1172                value = usb_ep_dequeue(io_data->ep, io_data->req);
1173        else
1174                value = -EINVAL;
1175
1176        spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1177
1178        return value;
1179}
1180
1181static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1182{
1183        struct ffs_io_data io_data, *p = &io_data;
1184        ssize_t res;
1185
1186        ENTER();
1187
1188        if (!is_sync_kiocb(kiocb)) {
1189                p = kzalloc(sizeof(io_data), GFP_KERNEL);
1190                if (!p)
1191                        return -ENOMEM;
1192                p->aio = true;
1193        } else {
1194                memset(p, 0, sizeof(*p));
1195                p->aio = false;
1196        }
1197
1198        p->read = false;
1199        p->kiocb = kiocb;
1200        p->data = *from;
1201        p->mm = current->mm;
1202
1203        kiocb->private = p;
1204
1205        if (p->aio)
1206                kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1207
1208        res = ffs_epfile_io(kiocb->ki_filp, p);
1209        if (res == -EIOCBQUEUED)
1210                return res;
1211        if (p->aio)
1212                kfree(p);
1213        else
1214                *from = p->data;
1215        return res;
1216}
1217
1218static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1219{
1220        struct ffs_io_data io_data, *p = &io_data;
1221        ssize_t res;
1222
1223        ENTER();
1224
1225        if (!is_sync_kiocb(kiocb)) {
1226                p = kzalloc(sizeof(io_data), GFP_KERNEL);
1227                if (!p)
1228                        return -ENOMEM;
1229                p->aio = true;
1230        } else {
1231                memset(p, 0, sizeof(*p));
1232                p->aio = false;
1233        }
1234
1235        p->read = true;
1236        p->kiocb = kiocb;
1237        if (p->aio) {
1238                p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1239                if (!p->to_free) {
1240                        kfree(p);
1241                        return -ENOMEM;
1242                }
1243        } else {
1244                p->data = *to;
1245                p->to_free = NULL;
1246        }
1247        p->mm = current->mm;
1248
1249        kiocb->private = p;
1250
1251        if (p->aio)
1252                kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1253
1254        res = ffs_epfile_io(kiocb->ki_filp, p);
1255        if (res == -EIOCBQUEUED)
1256                return res;
1257
1258        if (p->aio) {
1259                kfree(p->to_free);
1260                kfree(p);
1261        } else {
1262                *to = p->data;
1263        }
1264        return res;
1265}
1266
1267static int
1268ffs_epfile_release(struct inode *inode, struct file *file)
1269{
1270        struct ffs_epfile *epfile = inode->i_private;
1271
1272        ENTER();
1273
1274        __ffs_epfile_read_buffer_free(epfile);
1275        ffs_data_closed(epfile->ffs);
1276
1277        return 0;
1278}
1279
1280static long ffs_epfile_ioctl(struct file *file, unsigned code,
1281                             unsigned long value)
1282{
1283        struct ffs_epfile *epfile = file->private_data;
1284        struct ffs_ep *ep;
1285        int ret;
1286
1287        ENTER();
1288
1289        if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1290                return -ENODEV;
1291
1292        /* Wait for endpoint to be enabled */
1293        ep = epfile->ep;
1294        if (!ep) {
1295                if (file->f_flags & O_NONBLOCK)
1296                        return -EAGAIN;
1297
1298                ret = wait_event_interruptible(
1299                                epfile->ffs->wait, (ep = epfile->ep));
1300                if (ret)
1301                        return -EINTR;
1302        }
1303
1304        spin_lock_irq(&epfile->ffs->eps_lock);
1305
1306        /* In the meantime, endpoint got disabled or changed. */
1307        if (epfile->ep != ep) {
1308                spin_unlock_irq(&epfile->ffs->eps_lock);
1309                return -ESHUTDOWN;
1310        }
1311
1312        switch (code) {
1313        case FUNCTIONFS_FIFO_STATUS:
1314                ret = usb_ep_fifo_status(epfile->ep->ep);
1315                break;
1316        case FUNCTIONFS_FIFO_FLUSH:
1317                usb_ep_fifo_flush(epfile->ep->ep);
1318                ret = 0;
1319                break;
1320        case FUNCTIONFS_CLEAR_HALT:
1321                ret = usb_ep_clear_halt(epfile->ep->ep);
1322                break;
1323        case FUNCTIONFS_ENDPOINT_REVMAP:
1324                ret = epfile->ep->num;
1325                break;
1326        case FUNCTIONFS_ENDPOINT_DESC:
1327        {
1328                int desc_idx;
1329                struct usb_endpoint_descriptor desc1, *desc;
1330
1331                switch (epfile->ffs->gadget->speed) {
1332                case USB_SPEED_SUPER:
1333                case USB_SPEED_SUPER_PLUS:
1334                        desc_idx = 2;
1335                        break;
1336                case USB_SPEED_HIGH:
1337                        desc_idx = 1;
1338                        break;
1339                default:
1340                        desc_idx = 0;
1341                }
1342
1343                desc = epfile->ep->descs[desc_idx];
1344                memcpy(&desc1, desc, desc->bLength);
1345
1346                spin_unlock_irq(&epfile->ffs->eps_lock);
1347                ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1348                if (ret)
1349                        ret = -EFAULT;
1350                return ret;
1351        }
1352        default:
1353                ret = -ENOTTY;
1354        }
1355        spin_unlock_irq(&epfile->ffs->eps_lock);
1356
1357        return ret;
1358}
1359
1360static const struct file_operations ffs_epfile_operations = {
1361        .llseek =       no_llseek,
1362
1363        .open =         ffs_epfile_open,
1364        .write_iter =   ffs_epfile_write_iter,
1365        .read_iter =    ffs_epfile_read_iter,
1366        .release =      ffs_epfile_release,
1367        .unlocked_ioctl =       ffs_epfile_ioctl,
1368        .compat_ioctl = compat_ptr_ioctl,
1369};
1370
1371
1372/* File system and super block operations ***********************************/
1373
1374/*
1375 * Mounting the file system creates a controller file, used first for
1376 * function configuration then later for event monitoring.
1377 */
1378
1379static struct inode *__must_check
1380ffs_sb_make_inode(struct super_block *sb, void *data,
1381                  const struct file_operations *fops,
1382                  const struct inode_operations *iops,
1383                  struct ffs_file_perms *perms)
1384{
1385        struct inode *inode;
1386
1387        ENTER();
1388
1389        inode = new_inode(sb);
1390
1391        if (inode) {
1392                struct timespec64 ts = current_time(inode);
1393
1394                inode->i_ino     = get_next_ino();
1395                inode->i_mode    = perms->mode;
1396                inode->i_uid     = perms->uid;
1397                inode->i_gid     = perms->gid;
1398                inode->i_atime   = ts;
1399                inode->i_mtime   = ts;
1400                inode->i_ctime   = ts;
1401                inode->i_private = data;
1402                if (fops)
1403                        inode->i_fop = fops;
1404                if (iops)
1405                        inode->i_op  = iops;
1406        }
1407
1408        return inode;
1409}
1410
1411/* Create "regular" file */
1412static struct dentry *ffs_sb_create_file(struct super_block *sb,
1413                                        const char *name, void *data,
1414                                        const struct file_operations *fops)
1415{
1416        struct ffs_data *ffs = sb->s_fs_info;
1417        struct dentry   *dentry;
1418        struct inode    *inode;
1419
1420        ENTER();
1421
1422        dentry = d_alloc_name(sb->s_root, name);
1423        if (!dentry)
1424                return NULL;
1425
1426        inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1427        if (!inode) {
1428                dput(dentry);
1429                return NULL;
1430        }
1431
1432        d_add(dentry, inode);
1433        return dentry;
1434}
1435
1436/* Super block */
1437static const struct super_operations ffs_sb_operations = {
1438        .statfs =       simple_statfs,
1439        .drop_inode =   generic_delete_inode,
1440};
1441
1442struct ffs_sb_fill_data {
1443        struct ffs_file_perms perms;
1444        umode_t root_mode;
1445        const char *dev_name;
1446        bool no_disconnect;
1447        struct ffs_data *ffs_data;
1448};
1449
1450static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1451{
1452        struct ffs_sb_fill_data *data = fc->fs_private;
1453        struct inode    *inode;
1454        struct ffs_data *ffs = data->ffs_data;
1455
1456        ENTER();
1457
1458        ffs->sb              = sb;
1459        data->ffs_data       = NULL;
1460        sb->s_fs_info        = ffs;
1461        sb->s_blocksize      = PAGE_SIZE;
1462        sb->s_blocksize_bits = PAGE_SHIFT;
1463        sb->s_magic          = FUNCTIONFS_MAGIC;
1464        sb->s_op             = &ffs_sb_operations;
1465        sb->s_time_gran      = 1;
1466
1467        /* Root inode */
1468        data->perms.mode = data->root_mode;
1469        inode = ffs_sb_make_inode(sb, NULL,
1470                                  &simple_dir_operations,
1471                                  &simple_dir_inode_operations,
1472                                  &data->perms);
1473        sb->s_root = d_make_root(inode);
1474        if (!sb->s_root)
1475                return -ENOMEM;
1476
1477        /* EP0 file */
1478        if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations))
1479                return -ENOMEM;
1480
1481        return 0;
1482}
1483
1484enum {
1485        Opt_no_disconnect,
1486        Opt_rmode,
1487        Opt_fmode,
1488        Opt_mode,
1489        Opt_uid,
1490        Opt_gid,
1491};
1492
1493static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1494        fsparam_bool    ("no_disconnect",       Opt_no_disconnect),
1495        fsparam_u32     ("rmode",               Opt_rmode),
1496        fsparam_u32     ("fmode",               Opt_fmode),
1497        fsparam_u32     ("mode",                Opt_mode),
1498        fsparam_u32     ("uid",                 Opt_uid),
1499        fsparam_u32     ("gid",                 Opt_gid),
1500        {}
1501};
1502
1503static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1504{
1505        struct ffs_sb_fill_data *data = fc->fs_private;
1506        struct fs_parse_result result;
1507        int opt;
1508
1509        ENTER();
1510
1511        opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1512        if (opt < 0)
1513                return opt;
1514
1515        switch (opt) {
1516        case Opt_no_disconnect:
1517                data->no_disconnect = result.boolean;
1518                break;
1519        case Opt_rmode:
1520                data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1521                break;
1522        case Opt_fmode:
1523                data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1524                break;
1525        case Opt_mode:
1526                data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1527                data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1528                break;
1529
1530        case Opt_uid:
1531                data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1532                if (!uid_valid(data->perms.uid))
1533                        goto unmapped_value;
1534                break;
1535        case Opt_gid:
1536                data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1537                if (!gid_valid(data->perms.gid))
1538                        goto unmapped_value;
1539                break;
1540
1541        default:
1542                return -ENOPARAM;
1543        }
1544
1545        return 0;
1546
1547unmapped_value:
1548        return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
1549}
1550
1551/*
1552 * Set up the superblock for a mount.
1553 */
1554static int ffs_fs_get_tree(struct fs_context *fc)
1555{
1556        struct ffs_sb_fill_data *ctx = fc->fs_private;
1557        struct ffs_data *ffs;
1558        int ret;
1559
1560        ENTER();
1561
1562        if (!fc->source)
1563                return invalf(fc, "No source specified");
1564
1565        ffs = ffs_data_new(fc->source);
1566        if (!ffs)
1567                return -ENOMEM;
1568        ffs->file_perms = ctx->perms;
1569        ffs->no_disconnect = ctx->no_disconnect;
1570
1571        ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
1572        if (!ffs->dev_name) {
1573                ffs_data_put(ffs);
1574                return -ENOMEM;
1575        }
1576
1577        ret = ffs_acquire_dev(ffs->dev_name, ffs);
1578        if (ret) {
1579                ffs_data_put(ffs);
1580                return ret;
1581        }
1582
1583        ctx->ffs_data = ffs;
1584        return get_tree_nodev(fc, ffs_sb_fill);
1585}
1586
1587static void ffs_fs_free_fc(struct fs_context *fc)
1588{
1589        struct ffs_sb_fill_data *ctx = fc->fs_private;
1590
1591        if (ctx) {
1592                if (ctx->ffs_data) {
1593                        ffs_data_put(ctx->ffs_data);
1594                }
1595
1596                kfree(ctx);
1597        }
1598}
1599
1600static const struct fs_context_operations ffs_fs_context_ops = {
1601        .free           = ffs_fs_free_fc,
1602        .parse_param    = ffs_fs_parse_param,
1603        .get_tree       = ffs_fs_get_tree,
1604};
1605
1606static int ffs_fs_init_fs_context(struct fs_context *fc)
1607{
1608        struct ffs_sb_fill_data *ctx;
1609
1610        ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
1611        if (!ctx)
1612                return -ENOMEM;
1613
1614        ctx->perms.mode = S_IFREG | 0600;
1615        ctx->perms.uid = GLOBAL_ROOT_UID;
1616        ctx->perms.gid = GLOBAL_ROOT_GID;
1617        ctx->root_mode = S_IFDIR | 0500;
1618        ctx->no_disconnect = false;
1619
1620        fc->fs_private = ctx;
1621        fc->ops = &ffs_fs_context_ops;
1622        return 0;
1623}
1624
1625static void
1626ffs_fs_kill_sb(struct super_block *sb)
1627{
1628        ENTER();
1629
1630        kill_litter_super(sb);
1631        if (sb->s_fs_info)
1632                ffs_data_closed(sb->s_fs_info);
1633}
1634
1635static struct file_system_type ffs_fs_type = {
1636        .owner          = THIS_MODULE,
1637        .name           = "functionfs",
1638        .init_fs_context = ffs_fs_init_fs_context,
1639        .parameters     = ffs_fs_fs_parameters,
1640        .kill_sb        = ffs_fs_kill_sb,
1641};
1642MODULE_ALIAS_FS("functionfs");
1643
1644
1645/* Driver's main init/cleanup functions *************************************/
1646
1647static int functionfs_init(void)
1648{
1649        int ret;
1650
1651        ENTER();
1652
1653        ret = register_filesystem(&ffs_fs_type);
1654        if (!ret)
1655                pr_info("file system registered\n");
1656        else
1657                pr_err("failed registering file system (%d)\n", ret);
1658
1659        return ret;
1660}
1661
1662static void functionfs_cleanup(void)
1663{
1664        ENTER();
1665
1666        pr_info("unloading\n");
1667        unregister_filesystem(&ffs_fs_type);
1668}
1669
1670
1671/* ffs_data and ffs_function construction and destruction code **************/
1672
1673static void ffs_data_clear(struct ffs_data *ffs);
1674static void ffs_data_reset(struct ffs_data *ffs);
1675
1676static void ffs_data_get(struct ffs_data *ffs)
1677{
1678        ENTER();
1679
1680        refcount_inc(&ffs->ref);
1681}
1682
1683static void ffs_data_opened(struct ffs_data *ffs)
1684{
1685        ENTER();
1686
1687        refcount_inc(&ffs->ref);
1688        if (atomic_add_return(1, &ffs->opened) == 1 &&
1689                        ffs->state == FFS_DEACTIVATED) {
1690                ffs->state = FFS_CLOSING;
1691                ffs_data_reset(ffs);
1692        }
1693}
1694
1695static void ffs_data_put(struct ffs_data *ffs)
1696{
1697        ENTER();
1698
1699        if (refcount_dec_and_test(&ffs->ref)) {
1700                pr_info("%s(): freeing\n", __func__);
1701                ffs_data_clear(ffs);
1702                ffs_release_dev(ffs->private_data);
1703                BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1704                       swait_active(&ffs->ep0req_completion.wait) ||
1705                       waitqueue_active(&ffs->wait));
1706                destroy_workqueue(ffs->io_completion_wq);
1707                kfree(ffs->dev_name);
1708                kfree(ffs);
1709        }
1710}
1711
1712static void ffs_data_closed(struct ffs_data *ffs)
1713{
1714        ENTER();
1715
1716        if (atomic_dec_and_test(&ffs->opened)) {
1717                if (ffs->no_disconnect) {
1718                        ffs->state = FFS_DEACTIVATED;
1719                        if (ffs->epfiles) {
1720                                ffs_epfiles_destroy(ffs->epfiles,
1721                                                   ffs->eps_count);
1722                                ffs->epfiles = NULL;
1723                        }
1724                        if (ffs->setup_state == FFS_SETUP_PENDING)
1725                                __ffs_ep0_stall(ffs);
1726                } else {
1727                        ffs->state = FFS_CLOSING;
1728                        ffs_data_reset(ffs);
1729                }
1730        }
1731        if (atomic_read(&ffs->opened) < 0) {
1732                ffs->state = FFS_CLOSING;
1733                ffs_data_reset(ffs);
1734        }
1735
1736        ffs_data_put(ffs);
1737}
1738
1739static struct ffs_data *ffs_data_new(const char *dev_name)
1740{
1741        struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1742        if (!ffs)
1743                return NULL;
1744
1745        ENTER();
1746
1747        ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1748        if (!ffs->io_completion_wq) {
1749                kfree(ffs);
1750                return NULL;
1751        }
1752
1753        refcount_set(&ffs->ref, 1);
1754        atomic_set(&ffs->opened, 0);
1755        ffs->state = FFS_READ_DESCRIPTORS;
1756        mutex_init(&ffs->mutex);
1757        spin_lock_init(&ffs->eps_lock);
1758        init_waitqueue_head(&ffs->ev.waitq);
1759        init_waitqueue_head(&ffs->wait);
1760        init_completion(&ffs->ep0req_completion);
1761
1762        /* XXX REVISIT need to update it in some places, or do we? */
1763        ffs->ev.can_stall = 1;
1764
1765        return ffs;
1766}
1767
1768static void ffs_data_clear(struct ffs_data *ffs)
1769{
1770        ENTER();
1771
1772        ffs_closed(ffs);
1773
1774        BUG_ON(ffs->gadget);
1775
1776        if (ffs->epfiles) {
1777                ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1778                ffs->epfiles = NULL;
1779        }
1780
1781        if (ffs->ffs_eventfd) {
1782                eventfd_ctx_put(ffs->ffs_eventfd);
1783                ffs->ffs_eventfd = NULL;
1784        }
1785
1786        kfree(ffs->raw_descs_data);
1787        kfree(ffs->raw_strings);
1788        kfree(ffs->stringtabs);
1789}
1790
1791static void ffs_data_reset(struct ffs_data *ffs)
1792{
1793        ENTER();
1794
1795        ffs_data_clear(ffs);
1796
1797        ffs->raw_descs_data = NULL;
1798        ffs->raw_descs = NULL;
1799        ffs->raw_strings = NULL;
1800        ffs->stringtabs = NULL;
1801
1802        ffs->raw_descs_length = 0;
1803        ffs->fs_descs_count = 0;
1804        ffs->hs_descs_count = 0;
1805        ffs->ss_descs_count = 0;
1806
1807        ffs->strings_count = 0;
1808        ffs->interfaces_count = 0;
1809        ffs->eps_count = 0;
1810
1811        ffs->ev.count = 0;
1812
1813        ffs->state = FFS_READ_DESCRIPTORS;
1814        ffs->setup_state = FFS_NO_SETUP;
1815        ffs->flags = 0;
1816
1817        ffs->ms_os_descs_ext_prop_count = 0;
1818        ffs->ms_os_descs_ext_prop_name_len = 0;
1819        ffs->ms_os_descs_ext_prop_data_len = 0;
1820}
1821
1822
1823static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1824{
1825        struct usb_gadget_strings **lang;
1826        int first_id;
1827
1828        ENTER();
1829
1830        if (WARN_ON(ffs->state != FFS_ACTIVE
1831                 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1832                return -EBADFD;
1833
1834        first_id = usb_string_ids_n(cdev, ffs->strings_count);
1835        if (first_id < 0)
1836                return first_id;
1837
1838        ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1839        if (!ffs->ep0req)
1840                return -ENOMEM;
1841        ffs->ep0req->complete = ffs_ep0_complete;
1842        ffs->ep0req->context = ffs;
1843
1844        lang = ffs->stringtabs;
1845        if (lang) {
1846                for (; *lang; ++lang) {
1847                        struct usb_string *str = (*lang)->strings;
1848                        int id = first_id;
1849                        for (; str->s; ++id, ++str)
1850                                str->id = id;
1851                }
1852        }
1853
1854        ffs->gadget = cdev->gadget;
1855        ffs_data_get(ffs);
1856        return 0;
1857}
1858
1859static void functionfs_unbind(struct ffs_data *ffs)
1860{
1861        ENTER();
1862
1863        if (!WARN_ON(!ffs->gadget)) {
1864                usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1865                ffs->ep0req = NULL;
1866                ffs->gadget = NULL;
1867                clear_bit(FFS_FL_BOUND, &ffs->flags);
1868                ffs_data_put(ffs);
1869        }
1870}
1871
1872static int ffs_epfiles_create(struct ffs_data *ffs)
1873{
1874        struct ffs_epfile *epfile, *epfiles;
1875        unsigned i, count;
1876
1877        ENTER();
1878
1879        count = ffs->eps_count;
1880        epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1881        if (!epfiles)
1882                return -ENOMEM;
1883
1884        epfile = epfiles;
1885        for (i = 1; i <= count; ++i, ++epfile) {
1886                epfile->ffs = ffs;
1887                mutex_init(&epfile->mutex);
1888                if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1889                        sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1890                else
1891                        sprintf(epfile->name, "ep%u", i);
1892                epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1893                                                 epfile,
1894                                                 &ffs_epfile_operations);
1895                if (!epfile->dentry) {
1896                        ffs_epfiles_destroy(epfiles, i - 1);
1897                        return -ENOMEM;
1898                }
1899        }
1900
1901        ffs->epfiles = epfiles;
1902        return 0;
1903}
1904
1905static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1906{
1907        struct ffs_epfile *epfile = epfiles;
1908
1909        ENTER();
1910
1911        for (; count; --count, ++epfile) {
1912                BUG_ON(mutex_is_locked(&epfile->mutex));
1913                if (epfile->dentry) {
1914                        d_delete(epfile->dentry);
1915                        dput(epfile->dentry);
1916                        epfile->dentry = NULL;
1917                }
1918        }
1919
1920        kfree(epfiles);
1921}
1922
1923static void ffs_func_eps_disable(struct ffs_function *func)
1924{
1925        struct ffs_ep *ep         = func->eps;
1926        struct ffs_epfile *epfile = func->ffs->epfiles;
1927        unsigned count            = func->ffs->eps_count;
1928        unsigned long flags;
1929
1930        spin_lock_irqsave(&func->ffs->eps_lock, flags);
1931        while (count--) {
1932                /* pending requests get nuked */
1933                if (ep->ep)
1934                        usb_ep_disable(ep->ep);
1935                ++ep;
1936
1937                if (epfile) {
1938                        epfile->ep = NULL;
1939                        __ffs_epfile_read_buffer_free(epfile);
1940                        ++epfile;
1941                }
1942        }
1943        spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1944}
1945
1946static int ffs_func_eps_enable(struct ffs_function *func)
1947{
1948        struct ffs_data *ffs      = func->ffs;
1949        struct ffs_ep *ep         = func->eps;
1950        struct ffs_epfile *epfile = ffs->epfiles;
1951        unsigned count            = ffs->eps_count;
1952        unsigned long flags;
1953        int ret = 0;
1954
1955        spin_lock_irqsave(&func->ffs->eps_lock, flags);
1956        while(count--) {
1957                ep->ep->driver_data = ep;
1958
1959                ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1960                if (ret) {
1961                        pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1962                                        __func__, ep->ep->name, ret);
1963                        break;
1964                }
1965
1966                ret = usb_ep_enable(ep->ep);
1967                if (!ret) {
1968                        epfile->ep = ep;
1969                        epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1970                        epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1971                } else {
1972                        break;
1973                }
1974
1975                ++ep;
1976                ++epfile;
1977        }
1978
1979        wake_up_interruptible(&ffs->wait);
1980        spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1981
1982        return ret;
1983}
1984
1985
1986/* Parsing and building descriptors and strings *****************************/
1987
1988/*
1989 * This validates if data pointed by data is a valid USB descriptor as
1990 * well as record how many interfaces, endpoints and strings are
1991 * required by given configuration.  Returns address after the
1992 * descriptor or NULL if data is invalid.
1993 */
1994
1995enum ffs_entity_type {
1996        FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1997};
1998
1999enum ffs_os_desc_type {
2000        FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2001};
2002
2003typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2004                                   u8 *valuep,
2005                                   struct usb_descriptor_header *desc,
2006                                   void *priv);
2007
2008typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2009                                    struct usb_os_desc_header *h, void *data,
2010                                    unsigned len, void *priv);
2011
2012static int __must_check ffs_do_single_desc(char *data, unsigned len,
2013                                           ffs_entity_callback entity,
2014                                           void *priv, int *current_class)
2015{
2016        struct usb_descriptor_header *_ds = (void *)data;
2017        u8 length;
2018        int ret;
2019
2020        ENTER();
2021
2022        /* At least two bytes are required: length and type */
2023        if (len < 2) {
2024                pr_vdebug("descriptor too short\n");
2025                return -EINVAL;
2026        }
2027
2028        /* If we have at least as many bytes as the descriptor takes? */
2029        length = _ds->bLength;
2030        if (len < length) {
2031                pr_vdebug("descriptor longer then available data\n");
2032                return -EINVAL;
2033        }
2034
2035#define __entity_check_INTERFACE(val)  1
2036#define __entity_check_STRING(val)     (val)
2037#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2038#define __entity(type, val) do {                                        \
2039                pr_vdebug("entity " #type "(%02x)\n", (val));           \
2040                if (!__entity_check_ ##type(val)) {                     \
2041                        pr_vdebug("invalid entity's value\n");          \
2042                        return -EINVAL;                                 \
2043                }                                                       \
2044                ret = entity(FFS_ ##type, &val, _ds, priv);             \
2045                if (ret < 0) {                                          \
2046                        pr_debug("entity " #type "(%02x); ret = %d\n",  \
2047                                 (val), ret);                           \
2048                        return ret;                                     \
2049                }                                                       \
2050        } while (0)
2051
2052        /* Parse descriptor depending on type. */
2053        switch (_ds->bDescriptorType) {
2054        case USB_DT_DEVICE:
2055        case USB_DT_CONFIG:
2056        case USB_DT_STRING:
2057        case USB_DT_DEVICE_QUALIFIER:
2058                /* function can't have any of those */
2059                pr_vdebug("descriptor reserved for gadget: %d\n",
2060                      _ds->bDescriptorType);
2061                return -EINVAL;
2062
2063        case USB_DT_INTERFACE: {
2064                struct usb_interface_descriptor *ds = (void *)_ds;
2065                pr_vdebug("interface descriptor\n");
2066                if (length != sizeof *ds)
2067                        goto inv_length;
2068
2069                __entity(INTERFACE, ds->bInterfaceNumber);
2070                if (ds->iInterface)
2071                        __entity(STRING, ds->iInterface);
2072                *current_class = ds->bInterfaceClass;
2073        }
2074                break;
2075
2076        case USB_DT_ENDPOINT: {
2077                struct usb_endpoint_descriptor *ds = (void *)_ds;
2078                pr_vdebug("endpoint descriptor\n");
2079                if (length != USB_DT_ENDPOINT_SIZE &&
2080                    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2081                        goto inv_length;
2082                __entity(ENDPOINT, ds->bEndpointAddress);
2083        }
2084                break;
2085
2086        case USB_TYPE_CLASS | 0x01:
2087                if (*current_class == USB_INTERFACE_CLASS_HID) {
2088                        pr_vdebug("hid descriptor\n");
2089                        if (length != sizeof(struct hid_descriptor))
2090                                goto inv_length;
2091                        break;
2092                } else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2093                        pr_vdebug("ccid descriptor\n");
2094                        if (length != sizeof(struct ccid_descriptor))
2095                                goto inv_length;
2096                        break;
2097                } else {
2098                        pr_vdebug("unknown descriptor: %d for class %d\n",
2099                              _ds->bDescriptorType, *current_class);
2100                        return -EINVAL;
2101                }
2102
2103        case USB_DT_OTG:
2104                if (length != sizeof(struct usb_otg_descriptor))
2105                        goto inv_length;
2106                break;
2107
2108        case USB_DT_INTERFACE_ASSOCIATION: {
2109                struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2110                pr_vdebug("interface association descriptor\n");
2111                if (length != sizeof *ds)
2112                        goto inv_length;
2113                if (ds->iFunction)
2114                        __entity(STRING, ds->iFunction);
2115        }
2116                break;
2117
2118        case USB_DT_SS_ENDPOINT_COMP:
2119                pr_vdebug("EP SS companion descriptor\n");
2120                if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2121                        goto inv_length;
2122                break;
2123
2124        case USB_DT_OTHER_SPEED_CONFIG:
2125        case USB_DT_INTERFACE_POWER:
2126        case USB_DT_DEBUG:
2127        case USB_DT_SECURITY:
2128        case USB_DT_CS_RADIO_CONTROL:
2129                /* TODO */
2130                pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2131                return -EINVAL;
2132
2133        default:
2134                /* We should never be here */
2135                pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2136                return -EINVAL;
2137
2138inv_length:
2139                pr_vdebug("invalid length: %d (descriptor %d)\n",
2140                          _ds->bLength, _ds->bDescriptorType);
2141                return -EINVAL;
2142        }
2143
2144#undef __entity
2145#undef __entity_check_DESCRIPTOR
2146#undef __entity_check_INTERFACE
2147#undef __entity_check_STRING
2148#undef __entity_check_ENDPOINT
2149
2150        return length;
2151}
2152
2153static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2154                                     ffs_entity_callback entity, void *priv)
2155{
2156        const unsigned _len = len;
2157        unsigned long num = 0;
2158        int current_class = -1;
2159
2160        ENTER();
2161
2162        for (;;) {
2163                int ret;
2164
2165                if (num == count)
2166                        data = NULL;
2167
2168                /* Record "descriptor" entity */
2169                ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2170                if (ret < 0) {
2171                        pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2172                                 num, ret);
2173                        return ret;
2174                }
2175
2176                if (!data)
2177                        return _len - len;
2178
2179                ret = ffs_do_single_desc(data, len, entity, priv,
2180                        &current_class);
2181                if (ret < 0) {
2182                        pr_debug("%s returns %d\n", __func__, ret);
2183                        return ret;
2184                }
2185
2186                len -= ret;
2187                data += ret;
2188                ++num;
2189        }
2190}
2191
2192static int __ffs_data_do_entity(enum ffs_entity_type type,
2193                                u8 *valuep, struct usb_descriptor_header *desc,
2194                                void *priv)
2195{
2196        struct ffs_desc_helper *helper = priv;
2197        struct usb_endpoint_descriptor *d;
2198
2199        ENTER();
2200
2201        switch (type) {
2202        case FFS_DESCRIPTOR:
2203                break;
2204
2205        case FFS_INTERFACE:
2206                /*
2207                 * Interfaces are indexed from zero so if we
2208                 * encountered interface "n" then there are at least
2209                 * "n+1" interfaces.
2210                 */
2211                if (*valuep >= helper->interfaces_count)
2212                        helper->interfaces_count = *valuep + 1;
2213                break;
2214
2215        case FFS_STRING:
2216                /*
2217                 * Strings are indexed from 1 (0 is reserved
2218                 * for languages list)
2219                 */
2220                if (*valuep > helper->ffs->strings_count)
2221                        helper->ffs->strings_count = *valuep;
2222                break;
2223
2224        case FFS_ENDPOINT:
2225                d = (void *)desc;
2226                helper->eps_count++;
2227                if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2228                        return -EINVAL;
2229                /* Check if descriptors for any speed were already parsed */
2230                if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2231                        helper->ffs->eps_addrmap[helper->eps_count] =
2232                                d->bEndpointAddress;
2233                else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2234                                d->bEndpointAddress)
2235                        return -EINVAL;
2236                break;
2237        }
2238
2239        return 0;
2240}
2241
2242static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2243                                   struct usb_os_desc_header *desc)
2244{
2245        u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2246        u16 w_index = le16_to_cpu(desc->wIndex);
2247
2248        if (bcd_version != 1) {
2249                pr_vdebug("unsupported os descriptors version: %d",
2250                          bcd_version);
2251                return -EINVAL;
2252        }
2253        switch (w_index) {
2254        case 0x4:
2255                *next_type = FFS_OS_DESC_EXT_COMPAT;
2256                break;
2257        case 0x5:
2258                *next_type = FFS_OS_DESC_EXT_PROP;
2259                break;
2260        default:
2261                pr_vdebug("unsupported os descriptor type: %d", w_index);
2262                return -EINVAL;
2263        }
2264
2265        return sizeof(*desc);
2266}
2267
2268/*
2269 * Process all extended compatibility/extended property descriptors
2270 * of a feature descriptor
2271 */
2272static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2273                                              enum ffs_os_desc_type type,
2274                                              u16 feature_count,
2275                                              ffs_os_desc_callback entity,
2276                                              void *priv,
2277                                              struct usb_os_desc_header *h)
2278{
2279        int ret;
2280        const unsigned _len = len;
2281
2282        ENTER();
2283
2284        /* loop over all ext compat/ext prop descriptors */
2285        while (feature_count--) {
2286                ret = entity(type, h, data, len, priv);
2287                if (ret < 0) {
2288                        pr_debug("bad OS descriptor, type: %d\n", type);
2289                        return ret;
2290                }
2291                data += ret;
2292                len -= ret;
2293        }
2294        return _len - len;
2295}
2296
2297/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2298static int __must_check ffs_do_os_descs(unsigned count,
2299                                        char *data, unsigned len,
2300                                        ffs_os_desc_callback entity, void *priv)
2301{
2302        const unsigned _len = len;
2303        unsigned long num = 0;
2304
2305        ENTER();
2306
2307        for (num = 0; num < count; ++num) {
2308                int ret;
2309                enum ffs_os_desc_type type;
2310                u16 feature_count;
2311                struct usb_os_desc_header *desc = (void *)data;
2312
2313                if (len < sizeof(*desc))
2314                        return -EINVAL;
2315
2316                /*
2317                 * Record "descriptor" entity.
2318                 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2319                 * Move the data pointer to the beginning of extended
2320                 * compatibilities proper or extended properties proper
2321                 * portions of the data
2322                 */
2323                if (le32_to_cpu(desc->dwLength) > len)
2324                        return -EINVAL;
2325
2326                ret = __ffs_do_os_desc_header(&type, desc);
2327                if (ret < 0) {
2328                        pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2329                                 num, ret);
2330                        return ret;
2331                }
2332                /*
2333                 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2334                 */
2335                feature_count = le16_to_cpu(desc->wCount);
2336                if (type == FFS_OS_DESC_EXT_COMPAT &&
2337                    (feature_count > 255 || desc->Reserved))
2338                                return -EINVAL;
2339                len -= ret;
2340                data += ret;
2341
2342                /*
2343                 * Process all function/property descriptors
2344                 * of this Feature Descriptor
2345                 */
2346                ret = ffs_do_single_os_desc(data, len, type,
2347                                            feature_count, entity, priv, desc);
2348                if (ret < 0) {
2349                        pr_debug("%s returns %d\n", __func__, ret);
2350                        return ret;
2351                }
2352
2353                len -= ret;
2354                data += ret;
2355        }
2356        return _len - len;
2357}
2358
2359/*
2360 * Validate contents of the buffer from userspace related to OS descriptors.
2361 */
2362static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2363                                 struct usb_os_desc_header *h, void *data,
2364                                 unsigned len, void *priv)
2365{
2366        struct ffs_data *ffs = priv;
2367        u8 length;
2368
2369        ENTER();
2370
2371        switch (type) {
2372        case FFS_OS_DESC_EXT_COMPAT: {
2373                struct usb_ext_compat_desc *d = data;
2374                int i;
2375
2376                if (len < sizeof(*d) ||
2377                    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2378                        return -EINVAL;
2379                if (d->Reserved1 != 1) {
2380                        /*
2381                         * According to the spec, Reserved1 must be set to 1
2382                         * but older kernels incorrectly rejected non-zero
2383                         * values.  We fix it here to avoid returning EINVAL
2384                         * in response to values we used to accept.
2385                         */
2386                        pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2387                        d->Reserved1 = 1;
2388                }
2389                for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2390                        if (d->Reserved2[i])
2391                                return -EINVAL;
2392
2393                length = sizeof(struct usb_ext_compat_desc);
2394        }
2395                break;
2396        case FFS_OS_DESC_EXT_PROP: {
2397                struct usb_ext_prop_desc *d = data;
2398                u32 type, pdl;
2399                u16 pnl;
2400
2401                if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2402                        return -EINVAL;
2403                length = le32_to_cpu(d->dwSize);
2404                if (len < length)
2405                        return -EINVAL;
2406                type = le32_to_cpu(d->dwPropertyDataType);
2407                if (type < USB_EXT_PROP_UNICODE ||
2408                    type > USB_EXT_PROP_UNICODE_MULTI) {
2409                        pr_vdebug("unsupported os descriptor property type: %d",
2410                                  type);
2411                        return -EINVAL;
2412                }
2413                pnl = le16_to_cpu(d->wPropertyNameLength);
2414                if (length < 14 + pnl) {
2415                        pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2416                                  length, pnl, type);
2417                        return -EINVAL;
2418                }
2419                pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2420                if (length != 14 + pnl + pdl) {
2421                        pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2422                                  length, pnl, pdl, type);
2423                        return -EINVAL;
2424                }
2425                ++ffs->ms_os_descs_ext_prop_count;
2426                /* property name reported to the host as "WCHAR"s */
2427                ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2428                ffs->ms_os_descs_ext_prop_data_len += pdl;
2429        }
2430                break;
2431        default:
2432                pr_vdebug("unknown descriptor: %d\n", type);
2433                return -EINVAL;
2434        }
2435        return length;
2436}
2437
2438static int __ffs_data_got_descs(struct ffs_data *ffs,
2439                                char *const _data, size_t len)
2440{
2441        char *data = _data, *raw_descs;
2442        unsigned os_descs_count = 0, counts[3], flags;
2443        int ret = -EINVAL, i;
2444        struct ffs_desc_helper helper;
2445
2446        ENTER();
2447
2448        if (get_unaligned_le32(data + 4) != len)
2449                goto error;
2450
2451        switch (get_unaligned_le32(data)) {
2452        case FUNCTIONFS_DESCRIPTORS_MAGIC:
2453                flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2454                data += 8;
2455                len  -= 8;
2456                break;
2457        case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2458                flags = get_unaligned_le32(data + 8);
2459                ffs->user_flags = flags;
2460                if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2461                              FUNCTIONFS_HAS_HS_DESC |
2462                              FUNCTIONFS_HAS_SS_DESC |
2463                              FUNCTIONFS_HAS_MS_OS_DESC |
2464                              FUNCTIONFS_VIRTUAL_ADDR |
2465                              FUNCTIONFS_EVENTFD |
2466                              FUNCTIONFS_ALL_CTRL_RECIP |
2467                              FUNCTIONFS_CONFIG0_SETUP)) {
2468                        ret = -ENOSYS;
2469                        goto error;
2470                }
2471                data += 12;
2472                len  -= 12;
2473                break;
2474        default:
2475                goto error;
2476        }
2477
2478        if (flags & FUNCTIONFS_EVENTFD) {
2479                if (len < 4)
2480                        goto error;
2481                ffs->ffs_eventfd =
2482                        eventfd_ctx_fdget((int)get_unaligned_le32(data));
2483                if (IS_ERR(ffs->ffs_eventfd)) {
2484                        ret = PTR_ERR(ffs->ffs_eventfd);
2485                        ffs->ffs_eventfd = NULL;
2486                        goto error;
2487                }
2488                data += 4;
2489                len  -= 4;
2490        }
2491
2492        /* Read fs_count, hs_count and ss_count (if present) */
2493        for (i = 0; i < 3; ++i) {
2494                if (!(flags & (1 << i))) {
2495                        counts[i] = 0;
2496                } else if (len < 4) {
2497                        goto error;
2498                } else {
2499                        counts[i] = get_unaligned_le32(data);
2500                        data += 4;
2501                        len  -= 4;
2502                }
2503        }
2504        if (flags & (1 << i)) {
2505                if (len < 4) {
2506                        goto error;
2507                }
2508                os_descs_count = get_unaligned_le32(data);
2509                data += 4;
2510                len -= 4;
2511        }
2512
2513        /* Read descriptors */
2514        raw_descs = data;
2515        helper.ffs = ffs;
2516        for (i = 0; i < 3; ++i) {
2517                if (!counts[i])
2518                        continue;
2519                helper.interfaces_count = 0;
2520                helper.eps_count = 0;
2521                ret = ffs_do_descs(counts[i], data, len,
2522                                   __ffs_data_do_entity, &helper);
2523                if (ret < 0)
2524                        goto error;
2525                if (!ffs->eps_count && !ffs->interfaces_count) {
2526                        ffs->eps_count = helper.eps_count;
2527                        ffs->interfaces_count = helper.interfaces_count;
2528                } else {
2529                        if (ffs->eps_count != helper.eps_count) {
2530                                ret = -EINVAL;
2531                                goto error;
2532                        }
2533                        if (ffs->interfaces_count != helper.interfaces_count) {
2534                                ret = -EINVAL;
2535                                goto error;
2536                        }
2537                }
2538                data += ret;
2539                len  -= ret;
2540        }
2541        if (os_descs_count) {
2542                ret = ffs_do_os_descs(os_descs_count, data, len,
2543                                      __ffs_data_do_os_desc, ffs);
2544                if (ret < 0)
2545                        goto error;
2546                data += ret;
2547                len -= ret;
2548        }
2549
2550        if (raw_descs == data || len) {
2551                ret = -EINVAL;
2552                goto error;
2553        }
2554
2555        ffs->raw_descs_data     = _data;
2556        ffs->raw_descs          = raw_descs;
2557        ffs->raw_descs_length   = data - raw_descs;
2558        ffs->fs_descs_count     = counts[0];
2559        ffs->hs_descs_count     = counts[1];
2560        ffs->ss_descs_count     = counts[2];
2561        ffs->ms_os_descs_count  = os_descs_count;
2562
2563        return 0;
2564
2565error:
2566        kfree(_data);
2567        return ret;
2568}
2569
2570static int __ffs_data_got_strings(struct ffs_data *ffs,
2571                                  char *const _data, size_t len)
2572{
2573        u32 str_count, needed_count, lang_count;
2574        struct usb_gadget_strings **stringtabs, *t;
2575        const char *data = _data;
2576        struct usb_string *s;
2577
2578        ENTER();
2579
2580        if (len < 16 ||
2581            get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2582            get_unaligned_le32(data + 4) != len)
2583                goto error;
2584        str_count  = get_unaligned_le32(data + 8);
2585        lang_count = get_unaligned_le32(data + 12);
2586
2587        /* if one is zero the other must be zero */
2588        if (!str_count != !lang_count)
2589                goto error;
2590
2591        /* Do we have at least as many strings as descriptors need? */
2592        needed_count = ffs->strings_count;
2593        if (str_count < needed_count)
2594                goto error;
2595
2596        /*
2597         * If we don't need any strings just return and free all
2598         * memory.
2599         */
2600        if (!needed_count) {
2601                kfree(_data);
2602                return 0;
2603        }
2604
2605        /* Allocate everything in one chunk so there's less maintenance. */
2606        {
2607                unsigned i = 0;
2608                vla_group(d);
2609                vla_item(d, struct usb_gadget_strings *, stringtabs,
2610                        lang_count + 1);
2611                vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2612                vla_item(d, struct usb_string, strings,
2613                        lang_count*(needed_count+1));
2614
2615                char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2616
2617                if (!vlabuf) {
2618                        kfree(_data);
2619                        return -ENOMEM;
2620                }
2621
2622                /* Initialize the VLA pointers */
2623                stringtabs = vla_ptr(vlabuf, d, stringtabs);
2624                t = vla_ptr(vlabuf, d, stringtab);
2625                i = lang_count;
2626                do {
2627                        *stringtabs++ = t++;
2628                } while (--i);
2629                *stringtabs = NULL;
2630
2631                /* stringtabs = vlabuf = d_stringtabs for later kfree */
2632                stringtabs = vla_ptr(vlabuf, d, stringtabs);
2633                t = vla_ptr(vlabuf, d, stringtab);
2634                s = vla_ptr(vlabuf, d, strings);
2635        }
2636
2637        /* For each language */
2638        data += 16;
2639        len -= 16;
2640
2641        do { /* lang_count > 0 so we can use do-while */
2642                unsigned needed = needed_count;
2643                u32 str_per_lang = str_count;
2644
2645                if (len < 3)
2646                        goto error_free;
2647                t->language = get_unaligned_le16(data);
2648                t->strings  = s;
2649                ++t;
2650
2651                data += 2;
2652                len -= 2;
2653
2654                /* For each string */
2655                do { /* str_count > 0 so we can use do-while */
2656                        size_t length = strnlen(data, len);
2657
2658                        if (length == len)
2659                                goto error_free;
2660
2661                        /*
2662                         * User may provide more strings then we need,
2663                         * if that's the case we simply ignore the
2664                         * rest
2665                         */
2666                        if (needed) {
2667                                /*
2668                                 * s->id will be set while adding
2669                                 * function to configuration so for
2670                                 * now just leave garbage here.
2671                                 */
2672                                s->s = data;
2673                                --needed;
2674                                ++s;
2675                        }
2676
2677                        data += length + 1;
2678                        len -= length + 1;
2679                } while (--str_per_lang);
2680
2681                s->id = 0;   /* terminator */
2682                s->s = NULL;
2683                ++s;
2684
2685        } while (--lang_count);
2686
2687        /* Some garbage left? */
2688        if (len)
2689                goto error_free;
2690
2691        /* Done! */
2692        ffs->stringtabs = stringtabs;
2693        ffs->raw_strings = _data;
2694
2695        return 0;
2696
2697error_free:
2698        kfree(stringtabs);
2699error:
2700        kfree(_data);
2701        return -EINVAL;
2702}
2703
2704
2705/* Events handling and management *******************************************/
2706
2707static void __ffs_event_add(struct ffs_data *ffs,
2708                            enum usb_functionfs_event_type type)
2709{
2710        enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2711        int neg = 0;
2712
2713        /*
2714         * Abort any unhandled setup
2715         *
2716         * We do not need to worry about some cmpxchg() changing value
2717         * of ffs->setup_state without holding the lock because when
2718         * state is FFS_SETUP_PENDING cmpxchg() in several places in
2719         * the source does nothing.
2720         */
2721        if (ffs->setup_state == FFS_SETUP_PENDING)
2722                ffs->setup_state = FFS_SETUP_CANCELLED;
2723
2724        /*
2725         * Logic of this function guarantees that there are at most four pending
2726         * evens on ffs->ev.types queue.  This is important because the queue
2727         * has space for four elements only and __ffs_ep0_read_events function
2728         * depends on that limit as well.  If more event types are added, those
2729         * limits have to be revisited or guaranteed to still hold.
2730         */
2731        switch (type) {
2732        case FUNCTIONFS_RESUME:
2733                rem_type2 = FUNCTIONFS_SUSPEND;
2734                fallthrough;
2735        case FUNCTIONFS_SUSPEND:
2736        case FUNCTIONFS_SETUP:
2737                rem_type1 = type;
2738                /* Discard all similar events */
2739                break;
2740
2741        case FUNCTIONFS_BIND:
2742        case FUNCTIONFS_UNBIND:
2743        case FUNCTIONFS_DISABLE:
2744        case FUNCTIONFS_ENABLE:
2745                /* Discard everything other then power management. */
2746                rem_type1 = FUNCTIONFS_SUSPEND;
2747                rem_type2 = FUNCTIONFS_RESUME;
2748                neg = 1;
2749                break;
2750
2751        default:
2752                WARN(1, "%d: unknown event, this should not happen\n", type);
2753                return;
2754        }
2755
2756        {
2757                u8 *ev  = ffs->ev.types, *out = ev;
2758                unsigned n = ffs->ev.count;
2759                for (; n; --n, ++ev)
2760                        if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2761                                *out++ = *ev;
2762                        else
2763                                pr_vdebug("purging event %d\n", *ev);
2764                ffs->ev.count = out - ffs->ev.types;
2765        }
2766
2767        pr_vdebug("adding event %d\n", type);
2768        ffs->ev.types[ffs->ev.count++] = type;
2769        wake_up_locked(&ffs->ev.waitq);
2770        if (ffs->ffs_eventfd)
2771                eventfd_signal(ffs->ffs_eventfd, 1);
2772}
2773
2774static void ffs_event_add(struct ffs_data *ffs,
2775                          enum usb_functionfs_event_type type)
2776{
2777        unsigned long flags;
2778        spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2779        __ffs_event_add(ffs, type);
2780        spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2781}
2782
2783/* Bind/unbind USB function hooks *******************************************/
2784
2785static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2786{
2787        int i;
2788
2789        for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2790                if (ffs->eps_addrmap[i] == endpoint_address)
2791                        return i;
2792        return -ENOENT;
2793}
2794
2795static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2796                                    struct usb_descriptor_header *desc,
2797                                    void *priv)
2798{
2799        struct usb_endpoint_descriptor *ds = (void *)desc;
2800        struct ffs_function *func = priv;
2801        struct ffs_ep *ffs_ep;
2802        unsigned ep_desc_id;
2803        int idx;
2804        static const char *speed_names[] = { "full", "high", "super" };
2805
2806        if (type != FFS_DESCRIPTOR)
2807                return 0;
2808
2809        /*
2810         * If ss_descriptors is not NULL, we are reading super speed
2811         * descriptors; if hs_descriptors is not NULL, we are reading high
2812         * speed descriptors; otherwise, we are reading full speed
2813         * descriptors.
2814         */
2815        if (func->function.ss_descriptors) {
2816                ep_desc_id = 2;
2817                func->function.ss_descriptors[(long)valuep] = desc;
2818        } else if (func->function.hs_descriptors) {
2819                ep_desc_id = 1;
2820                func->function.hs_descriptors[(long)valuep] = desc;
2821        } else {
2822                ep_desc_id = 0;
2823                func->function.fs_descriptors[(long)valuep]    = desc;
2824        }
2825
2826        if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2827                return 0;
2828
2829        idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2830        if (idx < 0)
2831                return idx;
2832
2833        ffs_ep = func->eps + idx;
2834
2835        if (ffs_ep->descs[ep_desc_id]) {
2836                pr_err("two %sspeed descriptors for EP %d\n",
2837                          speed_names[ep_desc_id],
2838                          ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2839                return -EINVAL;
2840        }
2841        ffs_ep->descs[ep_desc_id] = ds;
2842
2843        ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2844        if (ffs_ep->ep) {
2845                ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2846                if (!ds->wMaxPacketSize)
2847                        ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2848        } else {
2849                struct usb_request *req;
2850                struct usb_ep *ep;
2851                u8 bEndpointAddress;
2852                u16 wMaxPacketSize;
2853
2854                /*
2855                 * We back up bEndpointAddress because autoconfig overwrites
2856                 * it with physical endpoint address.
2857                 */
2858                bEndpointAddress = ds->bEndpointAddress;
2859                /*
2860                 * We back up wMaxPacketSize because autoconfig treats
2861                 * endpoint descriptors as if they were full speed.
2862                 */
2863                wMaxPacketSize = ds->wMaxPacketSize;
2864                pr_vdebug("autoconfig\n");
2865                ep = usb_ep_autoconfig(func->gadget, ds);
2866                if (!ep)
2867                        return -ENOTSUPP;
2868                ep->driver_data = func->eps + idx;
2869
2870                req = usb_ep_alloc_request(ep, GFP_KERNEL);
2871                if (!req)
2872                        return -ENOMEM;
2873
2874                ffs_ep->ep  = ep;
2875                ffs_ep->req = req;
2876                func->eps_revmap[ds->bEndpointAddress &
2877                                 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2878                /*
2879                 * If we use virtual address mapping, we restore
2880                 * original bEndpointAddress value.
2881                 */
2882                if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2883                        ds->bEndpointAddress = bEndpointAddress;
2884                /*
2885                 * Restore wMaxPacketSize which was potentially
2886                 * overwritten by autoconfig.
2887                 */
2888                ds->wMaxPacketSize = wMaxPacketSize;
2889        }
2890        ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2891
2892        return 0;
2893}
2894
2895static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2896                                   struct usb_descriptor_header *desc,
2897                                   void *priv)
2898{
2899        struct ffs_function *func = priv;
2900        unsigned idx;
2901        u8 newValue;
2902
2903        switch (type) {
2904        default:
2905        case FFS_DESCRIPTOR:
2906                /* Handled in previous pass by __ffs_func_bind_do_descs() */
2907                return 0;
2908
2909        case FFS_INTERFACE:
2910                idx = *valuep;
2911                if (func->interfaces_nums[idx] < 0) {
2912                        int id = usb_interface_id(func->conf, &func->function);
2913                        if (id < 0)
2914                                return id;
2915                        func->interfaces_nums[idx] = id;
2916                }
2917                newValue = func->interfaces_nums[idx];
2918                break;
2919
2920        case FFS_STRING:
2921                /* String' IDs are allocated when fsf_data is bound to cdev */
2922                newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2923                break;
2924
2925        case FFS_ENDPOINT:
2926                /*
2927                 * USB_DT_ENDPOINT are handled in
2928                 * __ffs_func_bind_do_descs().
2929                 */
2930                if (desc->bDescriptorType == USB_DT_ENDPOINT)
2931                        return 0;
2932
2933                idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2934                if (!func->eps[idx].ep)
2935                        return -EINVAL;
2936
2937                {
2938                        struct usb_endpoint_descriptor **descs;
2939                        descs = func->eps[idx].descs;
2940                        newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2941                }
2942                break;
2943        }
2944
2945        pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2946        *valuep = newValue;
2947        return 0;
2948}
2949
2950static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2951                                      struct usb_os_desc_header *h, void *data,
2952                                      unsigned len, void *priv)
2953{
2954        struct ffs_function *func = priv;
2955        u8 length = 0;
2956
2957        switch (type) {
2958        case FFS_OS_DESC_EXT_COMPAT: {
2959                struct usb_ext_compat_desc *desc = data;
2960                struct usb_os_desc_table *t;
2961
2962                t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2963                t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2964                memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2965                       ARRAY_SIZE(desc->CompatibleID) +
2966                       ARRAY_SIZE(desc->SubCompatibleID));
2967                length = sizeof(*desc);
2968        }
2969                break;
2970        case FFS_OS_DESC_EXT_PROP: {
2971                struct usb_ext_prop_desc *desc = data;
2972                struct usb_os_desc_table *t;
2973                struct usb_os_desc_ext_prop *ext_prop;
2974                char *ext_prop_name;
2975                char *ext_prop_data;
2976
2977                t = &func->function.os_desc_table[h->interface];
2978                t->if_id = func->interfaces_nums[h->interface];
2979
2980                ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2981                func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2982
2983                ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2984                ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2985                ext_prop->data_len = le32_to_cpu(*(__le32 *)
2986                        usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2987                length = ext_prop->name_len + ext_prop->data_len + 14;
2988
2989                ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2990                func->ffs->ms_os_descs_ext_prop_name_avail +=
2991                        ext_prop->name_len;
2992
2993                ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2994                func->ffs->ms_os_descs_ext_prop_data_avail +=
2995                        ext_prop->data_len;
2996                memcpy(ext_prop_data,
2997                       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2998                       ext_prop->data_len);
2999                /* unicode data reported to the host as "WCHAR"s */
3000                switch (ext_prop->type) {
3001                case USB_EXT_PROP_UNICODE:
3002                case USB_EXT_PROP_UNICODE_ENV:
3003                case USB_EXT_PROP_UNICODE_LINK:
3004                case USB_EXT_PROP_UNICODE_MULTI:
3005                        ext_prop->data_len *= 2;
3006                        break;
3007                }
3008                ext_prop->data = ext_prop_data;
3009
3010                memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3011                       ext_prop->name_len);
3012                /* property name reported to the host as "WCHAR"s */
3013                ext_prop->name_len *= 2;
3014                ext_prop->name = ext_prop_name;
3015
3016                t->os_desc->ext_prop_len +=
3017                        ext_prop->name_len + ext_prop->data_len + 14;
3018                ++t->os_desc->ext_prop_count;
3019                list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3020        }
3021                break;
3022        default:
3023                pr_vdebug("unknown descriptor: %d\n", type);
3024        }
3025
3026        return length;
3027}
3028
3029static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3030                                                struct usb_configuration *c)
3031{
3032        struct ffs_function *func = ffs_func_from_usb(f);
3033        struct f_fs_opts *ffs_opts =
3034                container_of(f->fi, struct f_fs_opts, func_inst);
3035        struct ffs_data *ffs_data;
3036        int ret;
3037
3038        ENTER();
3039
3040        /*
3041         * Legacy gadget triggers binding in functionfs_ready_callback,
3042         * which already uses locking; taking the same lock here would
3043         * cause a deadlock.
3044         *
3045         * Configfs-enabled gadgets however do need ffs_dev_lock.
3046         */
3047        if (!ffs_opts->no_configfs)
3048                ffs_dev_lock();
3049        ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3050        ffs_data = ffs_opts->dev->ffs_data;
3051        if (!ffs_opts->no_configfs)
3052                ffs_dev_unlock();
3053        if (ret)
3054                return ERR_PTR(ret);
3055
3056        func->ffs = ffs_data;
3057        func->conf = c;
3058        func->gadget = c->cdev->gadget;
3059
3060        /*
3061         * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3062         * configurations are bound in sequence with list_for_each_entry,
3063         * in each configuration its functions are bound in sequence
3064         * with list_for_each_entry, so we assume no race condition
3065         * with regard to ffs_opts->bound access
3066         */
3067        if (!ffs_opts->refcnt) {
3068                ret = functionfs_bind(func->ffs, c->cdev);
3069                if (ret)
3070                        return ERR_PTR(ret);
3071        }
3072        ffs_opts->refcnt++;
3073        func->function.strings = func->ffs->stringtabs;
3074
3075        return ffs_opts;
3076}
3077
3078static int _ffs_func_bind(struct usb_configuration *c,
3079                          struct usb_function *f)
3080{
3081        struct ffs_function *func = ffs_func_from_usb(f);
3082        struct ffs_data *ffs = func->ffs;
3083
3084        const int full = !!func->ffs->fs_descs_count;
3085        const int high = !!func->ffs->hs_descs_count;
3086        const int super = !!func->ffs->ss_descs_count;
3087
3088        int fs_len, hs_len, ss_len, ret, i;
3089        struct ffs_ep *eps_ptr;
3090
3091        /* Make it a single chunk, less management later on */
3092        vla_group(d);
3093        vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3094        vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3095                full ? ffs->fs_descs_count + 1 : 0);
3096        vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3097                high ? ffs->hs_descs_count + 1 : 0);
3098        vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3099                super ? ffs->ss_descs_count + 1 : 0);
3100        vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3101        vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3102                         c->cdev->use_os_string ? ffs->interfaces_count : 0);
3103        vla_item_with_sz(d, char[16], ext_compat,
3104                         c->cdev->use_os_string ? ffs->interfaces_count : 0);
3105        vla_item_with_sz(d, struct usb_os_desc, os_desc,
3106                         c->cdev->use_os_string ? ffs->interfaces_count : 0);
3107        vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3108                         ffs->ms_os_descs_ext_prop_count);
3109        vla_item_with_sz(d, char, ext_prop_name,
3110                         ffs->ms_os_descs_ext_prop_name_len);
3111        vla_item_with_sz(d, char, ext_prop_data,
3112                         ffs->ms_os_descs_ext_prop_data_len);
3113        vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3114        char *vlabuf;
3115
3116        ENTER();
3117
3118        /* Has descriptors only for speeds gadget does not support */
3119        if (!(full | high | super))
3120                return -ENOTSUPP;
3121
3122        /* Allocate a single chunk, less management later on */
3123        vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3124        if (!vlabuf)
3125                return -ENOMEM;
3126
3127        ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3128        ffs->ms_os_descs_ext_prop_name_avail =
3129                vla_ptr(vlabuf, d, ext_prop_name);
3130        ffs->ms_os_descs_ext_prop_data_avail =
3131                vla_ptr(vlabuf, d, ext_prop_data);
3132
3133        /* Copy descriptors  */
3134        memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3135               ffs->raw_descs_length);
3136
3137        memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3138        eps_ptr = vla_ptr(vlabuf, d, eps);
3139        for (i = 0; i < ffs->eps_count; i++)
3140                eps_ptr[i].num = -1;
3141
3142        /* Save pointers
3143         * d_eps == vlabuf, func->eps used to kfree vlabuf later
3144        */
3145        func->eps             = vla_ptr(vlabuf, d, eps);
3146        func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3147
3148        /*
3149         * Go through all the endpoint descriptors and allocate
3150         * endpoints first, so that later we can rewrite the endpoint
3151         * numbers without worrying that it may be described later on.
3152         */
3153        if (full) {
3154                func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3155                fs_len = ffs_do_descs(ffs->fs_descs_count,
3156                                      vla_ptr(vlabuf, d, raw_descs),
3157                                      d_raw_descs__sz,
3158                                      __ffs_func_bind_do_descs, func);
3159                if (fs_len < 0) {
3160                        ret = fs_len;
3161                        goto error;
3162                }
3163        } else {
3164                fs_len = 0;
3165        }
3166
3167        if (high) {
3168                func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3169                hs_len = ffs_do_descs(ffs->hs_descs_count,
3170                                      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3171                                      d_raw_descs__sz - fs_len,
3172                                      __ffs_func_bind_do_descs, func);
3173                if (hs_len < 0) {
3174                        ret = hs_len;
3175                        goto error;
3176                }
3177        } else {
3178                hs_len = 0;
3179        }
3180
3181        if (super) {
3182                func->function.ss_descriptors = func->function.ssp_descriptors =
3183                        vla_ptr(vlabuf, d, ss_descs);
3184                ss_len = ffs_do_descs(ffs->ss_descs_count,
3185                                vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3186                                d_raw_descs__sz - fs_len - hs_len,
3187                                __ffs_func_bind_do_descs, func);
3188                if (ss_len < 0) {
3189                        ret = ss_len;
3190                        goto error;
3191                }
3192        } else {
3193                ss_len = 0;
3194        }
3195
3196        /*
3197         * Now handle interface numbers allocation and interface and
3198         * endpoint numbers rewriting.  We can do that in one go
3199         * now.
3200         */
3201        ret = ffs_do_descs(ffs->fs_descs_count +
3202                           (high ? ffs->hs_descs_count : 0) +
3203                           (super ? ffs->ss_descs_count : 0),
3204                           vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3205                           __ffs_func_bind_do_nums, func);
3206        if (ret < 0)
3207                goto error;
3208
3209        func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3210        if (c->cdev->use_os_string) {
3211                for (i = 0; i < ffs->interfaces_count; ++i) {
3212                        struct usb_os_desc *desc;
3213
3214                        desc = func->function.os_desc_table[i].os_desc =
3215                                vla_ptr(vlabuf, d, os_desc) +
3216                                i * sizeof(struct usb_os_desc);
3217                        desc->ext_compat_id =
3218                                vla_ptr(vlabuf, d, ext_compat) + i * 16;
3219                        INIT_LIST_HEAD(&desc->ext_prop);
3220                }
3221                ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3222                                      vla_ptr(vlabuf, d, raw_descs) +
3223                                      fs_len + hs_len + ss_len,
3224                                      d_raw_descs__sz - fs_len - hs_len -
3225                                      ss_len,
3226                                      __ffs_func_bind_do_os_desc, func);
3227                if (ret < 0)
3228                        goto error;
3229        }
3230        func->function.os_desc_n =
3231                c->cdev->use_os_string ? ffs->interfaces_count : 0;
3232
3233        /* And we're done */
3234        ffs_event_add(ffs, FUNCTIONFS_BIND);
3235        return 0;
3236
3237error:
3238        /* XXX Do we need to release all claimed endpoints here? */
3239        return ret;
3240}
3241
3242static int ffs_func_bind(struct usb_configuration *c,
3243                         struct usb_function *f)
3244{
3245        struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3246        struct ffs_function *func = ffs_func_from_usb(f);
3247        int ret;
3248
3249        if (IS_ERR(ffs_opts))
3250                return PTR_ERR(ffs_opts);
3251
3252        ret = _ffs_func_bind(c, f);
3253        if (ret && !--ffs_opts->refcnt)
3254                functionfs_unbind(func->ffs);
3255
3256        return ret;
3257}
3258
3259
3260/* Other USB function hooks *************************************************/
3261
3262static void ffs_reset_work(struct work_struct *work)
3263{
3264        struct ffs_data *ffs = container_of(work,
3265                struct ffs_data, reset_work);
3266        ffs_data_reset(ffs);
3267}
3268
3269static int ffs_func_set_alt(struct usb_function *f,
3270                            unsigned interface, unsigned alt)
3271{
3272        struct ffs_function *func = ffs_func_from_usb(f);
3273        struct ffs_data *ffs = func->ffs;
3274        int ret = 0, intf;
3275
3276        if (alt != (unsigned)-1) {
3277                intf = ffs_func_revmap_intf(func, interface);
3278                if (intf < 0)
3279                        return intf;
3280        }
3281
3282        if (ffs->func)
3283                ffs_func_eps_disable(ffs->func);
3284
3285        if (ffs->state == FFS_DEACTIVATED) {
3286                ffs->state = FFS_CLOSING;
3287                INIT_WORK(&ffs->reset_work, ffs_reset_work);
3288                schedule_work(&ffs->reset_work);
3289                return -ENODEV;
3290        }
3291
3292        if (ffs->state != FFS_ACTIVE)
3293                return -ENODEV;
3294
3295        if (alt == (unsigned)-1) {
3296                ffs->func = NULL;
3297                ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3298                return 0;
3299        }
3300
3301        ffs->func = func;
3302        ret = ffs_func_eps_enable(func);
3303        if (ret >= 0)
3304                ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3305        return ret;
3306}
3307
3308static void ffs_func_disable(struct usb_function *f)
3309{
3310        ffs_func_set_alt(f, 0, (unsigned)-1);
3311}
3312
3313static int ffs_func_setup(struct usb_function *f,
3314                          const struct usb_ctrlrequest *creq)
3315{
3316        struct ffs_function *func = ffs_func_from_usb(f);
3317        struct ffs_data *ffs = func->ffs;
3318        unsigned long flags;
3319        int ret;
3320
3321        ENTER();
3322
3323        pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3324        pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3325        pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3326        pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3327        pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3328
3329        /*
3330         * Most requests directed to interface go through here
3331         * (notable exceptions are set/get interface) so we need to
3332         * handle them.  All other either handled by composite or
3333         * passed to usb_configuration->setup() (if one is set).  No
3334         * matter, we will handle requests directed to endpoint here
3335         * as well (as it's straightforward).  Other request recipient
3336         * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3337         * is being used.
3338         */
3339        if (ffs->state != FFS_ACTIVE)
3340                return -ENODEV;
3341
3342        switch (creq->bRequestType & USB_RECIP_MASK) {
3343        case USB_RECIP_INTERFACE:
3344                ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3345                if (ret < 0)
3346                        return ret;
3347                break;
3348
3349        case USB_RECIP_ENDPOINT:
3350                ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3351                if (ret < 0)
3352                        return ret;
3353                if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3354                        ret = func->ffs->eps_addrmap[ret];
3355                break;
3356
3357        default:
3358                if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3359                        ret = le16_to_cpu(creq->wIndex);
3360                else
3361                        return -EOPNOTSUPP;
3362        }
3363
3364        spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3365        ffs->ev.setup = *creq;
3366        ffs->ev.setup.wIndex = cpu_to_le16(ret);
3367        __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3368        spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3369
3370        return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3371}
3372
3373static bool ffs_func_req_match(struct usb_function *f,
3374                               const struct usb_ctrlrequest *creq,
3375                               bool config0)
3376{
3377        struct ffs_function *func = ffs_func_from_usb(f);
3378
3379        if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3380                return false;
3381
3382        switch (creq->bRequestType & USB_RECIP_MASK) {
3383        case USB_RECIP_INTERFACE:
3384                return (ffs_func_revmap_intf(func,
3385                                             le16_to_cpu(creq->wIndex)) >= 0);
3386        case USB_RECIP_ENDPOINT:
3387                return (ffs_func_revmap_ep(func,
3388                                           le16_to_cpu(creq->wIndex)) >= 0);
3389        default:
3390                return (bool) (func->ffs->user_flags &
3391                               FUNCTIONFS_ALL_CTRL_RECIP);
3392        }
3393}
3394
3395static void ffs_func_suspend(struct usb_function *f)
3396{
3397        ENTER();
3398        ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3399}
3400
3401static void ffs_func_resume(struct usb_function *f)
3402{
3403        ENTER();
3404        ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3405}
3406
3407
3408/* Endpoint and interface numbers reverse mapping ***************************/
3409
3410static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3411{
3412        num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3413        return num ? num : -EDOM;
3414}
3415
3416static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3417{
3418        short *nums = func->interfaces_nums;
3419        unsigned count = func->ffs->interfaces_count;
3420
3421        for (; count; --count, ++nums) {
3422                if (*nums >= 0 && *nums == intf)
3423                        return nums - func->interfaces_nums;
3424        }
3425
3426        return -EDOM;
3427}
3428
3429
3430/* Devices management *******************************************************/
3431
3432static LIST_HEAD(ffs_devices);
3433
3434static struct ffs_dev *_ffs_do_find_dev(const char *name)
3435{
3436        struct ffs_dev *dev;
3437
3438        if (!name)
3439                return NULL;
3440
3441        list_for_each_entry(dev, &ffs_devices, entry) {
3442                if (strcmp(dev->name, name) == 0)
3443                        return dev;
3444        }
3445
3446        return NULL;
3447}
3448
3449/*
3450 * ffs_lock must be taken by the caller of this function
3451 */
3452static struct ffs_dev *_ffs_get_single_dev(void)
3453{
3454        struct ffs_dev *dev;
3455
3456        if (list_is_singular(&ffs_devices)) {
3457                dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3458                if (dev->single)
3459                        return dev;
3460        }
3461
3462        return NULL;
3463}
3464
3465/*
3466 * ffs_lock must be taken by the caller of this function
3467 */
3468static struct ffs_dev *_ffs_find_dev(const char *name)
3469{
3470        struct ffs_dev *dev;
3471
3472        dev = _ffs_get_single_dev();
3473        if (dev)
3474                return dev;
3475
3476        return _ffs_do_find_dev(name);
3477}
3478
3479/* Configfs support *********************************************************/
3480
3481static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3482{
3483        return container_of(to_config_group(item), struct f_fs_opts,
3484                            func_inst.group);
3485}
3486
3487static void ffs_attr_release(struct config_item *item)
3488{
3489        struct f_fs_opts *opts = to_ffs_opts(item);
3490
3491        usb_put_function_instance(&opts->func_inst);
3492}
3493
3494static struct configfs_item_operations ffs_item_ops = {
3495        .release        = ffs_attr_release,
3496};
3497
3498static const struct config_item_type ffs_func_type = {
3499        .ct_item_ops    = &ffs_item_ops,
3500        .ct_owner       = THIS_MODULE,
3501};
3502
3503
3504/* Function registration interface ******************************************/
3505
3506static void ffs_free_inst(struct usb_function_instance *f)
3507{
3508        struct f_fs_opts *opts;
3509
3510        opts = to_f_fs_opts(f);
3511        ffs_release_dev(opts->dev);
3512        ffs_dev_lock();
3513        _ffs_free_dev(opts->dev);
3514        ffs_dev_unlock();
3515        kfree(opts);
3516}
3517
3518static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3519{
3520        if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3521                return -ENAMETOOLONG;
3522        return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3523}
3524
3525static struct usb_function_instance *ffs_alloc_inst(void)
3526{
3527        struct f_fs_opts *opts;
3528        struct ffs_dev *dev;
3529
3530        opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3531        if (!opts)
3532                return ERR_PTR(-ENOMEM);
3533
3534        opts->func_inst.set_inst_name = ffs_set_inst_name;
3535        opts->func_inst.free_func_inst = ffs_free_inst;
3536        ffs_dev_lock();
3537        dev = _ffs_alloc_dev();
3538        ffs_dev_unlock();
3539        if (IS_ERR(dev)) {
3540                kfree(opts);
3541                return ERR_CAST(dev);
3542        }
3543        opts->dev = dev;
3544        dev->opts = opts;
3545
3546        config_group_init_type_name(&opts->func_inst.group, "",
3547                                    &ffs_func_type);
3548        return &opts->func_inst;
3549}
3550
3551static void ffs_free(struct usb_function *f)
3552{
3553        kfree(ffs_func_from_usb(f));
3554}
3555
3556static void ffs_func_unbind(struct usb_configuration *c,
3557                            struct usb_function *f)
3558{
3559        struct ffs_function *func = ffs_func_from_usb(f);
3560        struct ffs_data *ffs = func->ffs;
3561        struct f_fs_opts *opts =
3562                container_of(f->fi, struct f_fs_opts, func_inst);
3563        struct ffs_ep *ep = func->eps;
3564        unsigned count = ffs->eps_count;
3565        unsigned long flags;
3566
3567        ENTER();
3568        if (ffs->func == func) {
3569                ffs_func_eps_disable(func);
3570                ffs->func = NULL;
3571        }
3572
3573        /* Drain any pending AIO completions */
3574        drain_workqueue(ffs->io_completion_wq);
3575
3576        if (!--opts->refcnt)
3577                functionfs_unbind(ffs);
3578
3579        /* cleanup after autoconfig */
3580        spin_lock_irqsave(&func->ffs->eps_lock, flags);
3581        while (count--) {
3582                if (ep->ep && ep->req)
3583                        usb_ep_free_request(ep->ep, ep->req);
3584                ep->req = NULL;
3585                ++ep;
3586        }
3587        spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3588        kfree(func->eps);
3589        func->eps = NULL;
3590        /*
3591         * eps, descriptors and interfaces_nums are allocated in the
3592         * same chunk so only one free is required.
3593         */
3594        func->function.fs_descriptors = NULL;
3595        func->function.hs_descriptors = NULL;
3596        func->function.ss_descriptors = NULL;
3597        func->function.ssp_descriptors = NULL;
3598        func->interfaces_nums = NULL;
3599
3600        ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3601}
3602
3603static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3604{
3605        struct ffs_function *func;
3606
3607        ENTER();
3608
3609        func = kzalloc(sizeof(*func), GFP_KERNEL);
3610        if (!func)
3611                return ERR_PTR(-ENOMEM);
3612
3613        func->function.name    = "Function FS Gadget";
3614
3615        func->function.bind    = ffs_func_bind;
3616        func->function.unbind  = ffs_func_unbind;
3617        func->function.set_alt = ffs_func_set_alt;
3618        func->function.disable = ffs_func_disable;
3619        func->function.setup   = ffs_func_setup;
3620        func->function.req_match = ffs_func_req_match;
3621        func->function.suspend = ffs_func_suspend;
3622        func->function.resume  = ffs_func_resume;
3623        func->function.free_func = ffs_free;
3624
3625        return &func->function;
3626}
3627
3628/*
3629 * ffs_lock must be taken by the caller of this function
3630 */
3631static struct ffs_dev *_ffs_alloc_dev(void)
3632{
3633        struct ffs_dev *dev;
3634        int ret;
3635
3636        if (_ffs_get_single_dev())
3637                        return ERR_PTR(-EBUSY);
3638
3639        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3640        if (!dev)
3641                return ERR_PTR(-ENOMEM);
3642
3643        if (list_empty(&ffs_devices)) {
3644                ret = functionfs_init();
3645                if (ret) {
3646                        kfree(dev);
3647                        return ERR_PTR(ret);
3648                }
3649        }
3650
3651        list_add(&dev->entry, &ffs_devices);
3652
3653        return dev;
3654}
3655
3656int ffs_name_dev(struct ffs_dev *dev, const char *name)
3657{
3658        struct ffs_dev *existing;
3659        int ret = 0;
3660
3661        ffs_dev_lock();
3662
3663        existing = _ffs_do_find_dev(name);
3664        if (!existing)
3665                strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3666        else if (existing != dev)
3667                ret = -EBUSY;
3668
3669        ffs_dev_unlock();
3670
3671        return ret;
3672}
3673EXPORT_SYMBOL_GPL(ffs_name_dev);
3674
3675int ffs_single_dev(struct ffs_dev *dev)
3676{
3677        int ret;
3678
3679        ret = 0;
3680        ffs_dev_lock();
3681
3682        if (!list_is_singular(&ffs_devices))
3683                ret = -EBUSY;
3684        else
3685                dev->single = true;
3686
3687        ffs_dev_unlock();
3688        return ret;
3689}
3690EXPORT_SYMBOL_GPL(ffs_single_dev);
3691
3692/*
3693 * ffs_lock must be taken by the caller of this function
3694 */
3695static void _ffs_free_dev(struct ffs_dev *dev)
3696{
3697        list_del(&dev->entry);
3698
3699        kfree(dev);
3700        if (list_empty(&ffs_devices))
3701                functionfs_cleanup();
3702}
3703
3704static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
3705{
3706        int ret = 0;
3707        struct ffs_dev *ffs_dev;
3708
3709        ENTER();
3710        ffs_dev_lock();
3711
3712        ffs_dev = _ffs_find_dev(dev_name);
3713        if (!ffs_dev) {
3714                ret = -ENOENT;
3715        } else if (ffs_dev->mounted) {
3716                ret = -EBUSY;
3717        } else if (ffs_dev->ffs_acquire_dev_callback &&
3718                   ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
3719                ret = -ENOENT;
3720        } else {
3721                ffs_dev->mounted = true;
3722                ffs_dev->ffs_data = ffs_data;
3723                ffs_data->private_data = ffs_dev;
3724        }
3725
3726        ffs_dev_unlock();
3727        return ret;
3728}
3729
3730static void ffs_release_dev(struct ffs_dev *ffs_dev)
3731{
3732        ENTER();
3733        ffs_dev_lock();
3734
3735        if (ffs_dev && ffs_dev->mounted) {
3736                ffs_dev->mounted = false;
3737                if (ffs_dev->ffs_data) {
3738                        ffs_dev->ffs_data->private_data = NULL;
3739                        ffs_dev->ffs_data = NULL;
3740                }
3741
3742                if (ffs_dev->ffs_release_dev_callback)
3743                        ffs_dev->ffs_release_dev_callback(ffs_dev);
3744        }
3745
3746        ffs_dev_unlock();
3747}
3748
3749static int ffs_ready(struct ffs_data *ffs)
3750{
3751        struct ffs_dev *ffs_obj;
3752        int ret = 0;
3753
3754        ENTER();
3755        ffs_dev_lock();
3756
3757        ffs_obj = ffs->private_data;
3758        if (!ffs_obj) {
3759                ret = -EINVAL;
3760                goto done;
3761        }
3762        if (WARN_ON(ffs_obj->desc_ready)) {
3763                ret = -EBUSY;
3764                goto done;
3765        }
3766
3767        ffs_obj->desc_ready = true;
3768
3769        if (ffs_obj->ffs_ready_callback) {
3770                ret = ffs_obj->ffs_ready_callback(ffs);
3771                if (ret)
3772                        goto done;
3773        }
3774
3775        set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3776done:
3777        ffs_dev_unlock();
3778        return ret;
3779}
3780
3781static void ffs_closed(struct ffs_data *ffs)
3782{
3783        struct ffs_dev *ffs_obj;
3784        struct f_fs_opts *opts;
3785        struct config_item *ci;
3786
3787        ENTER();
3788        ffs_dev_lock();
3789
3790        ffs_obj = ffs->private_data;
3791        if (!ffs_obj)
3792                goto done;
3793
3794        ffs_obj->desc_ready = false;
3795
3796        if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3797            ffs_obj->ffs_closed_callback)
3798                ffs_obj->ffs_closed_callback(ffs);
3799
3800        if (ffs_obj->opts)
3801                opts = ffs_obj->opts;
3802        else
3803                goto done;
3804
3805        if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3806            || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3807                goto done;
3808
3809        ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3810        ffs_dev_unlock();
3811
3812        if (test_bit(FFS_FL_BOUND, &ffs->flags))
3813                unregister_gadget_item(ci);
3814        return;
3815done:
3816        ffs_dev_unlock();
3817}
3818
3819/* Misc helper functions ****************************************************/
3820
3821static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3822{
3823        return nonblock
3824                ? mutex_trylock(mutex) ? 0 : -EAGAIN
3825                : mutex_lock_interruptible(mutex);
3826}
3827
3828static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3829{
3830        char *data;
3831
3832        if (!len)
3833                return NULL;
3834
3835        data = memdup_user(buf, len);
3836        if (IS_ERR(data))
3837                return data;
3838
3839        pr_vdebug("Buffer from user space:\n");
3840        ffs_dump_mem("", data, len);
3841
3842        return data;
3843}
3844
3845DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3846MODULE_LICENSE("GPL");
3847MODULE_AUTHOR("Michal Nazarewicz");
3848