linux/fs/btrfs/compression.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
   8#include <linux/file.h>
   9#include <linux/fs.h>
  10#include <linux/pagemap.h>
  11#include <linux/highmem.h>
  12#include <linux/kthread.h>
  13#include <linux/time.h>
  14#include <linux/init.h>
  15#include <linux/string.h>
  16#include <linux/backing-dev.h>
  17#include <linux/writeback.h>
  18#include <linux/slab.h>
  19#include <linux/sched/mm.h>
  20#include <linux/log2.h>
  21#include <crypto/hash.h>
  22#include "misc.h"
  23#include "ctree.h"
  24#include "disk-io.h"
  25#include "transaction.h"
  26#include "btrfs_inode.h"
  27#include "volumes.h"
  28#include "ordered-data.h"
  29#include "compression.h"
  30#include "extent_io.h"
  31#include "extent_map.h"
  32#include "subpage.h"
  33#include "zoned.h"
  34
  35static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
  36
  37const char* btrfs_compress_type2str(enum btrfs_compression_type type)
  38{
  39        switch (type) {
  40        case BTRFS_COMPRESS_ZLIB:
  41        case BTRFS_COMPRESS_LZO:
  42        case BTRFS_COMPRESS_ZSTD:
  43        case BTRFS_COMPRESS_NONE:
  44                return btrfs_compress_types[type];
  45        default:
  46                break;
  47        }
  48
  49        return NULL;
  50}
  51
  52bool btrfs_compress_is_valid_type(const char *str, size_t len)
  53{
  54        int i;
  55
  56        for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
  57                size_t comp_len = strlen(btrfs_compress_types[i]);
  58
  59                if (len < comp_len)
  60                        continue;
  61
  62                if (!strncmp(btrfs_compress_types[i], str, comp_len))
  63                        return true;
  64        }
  65        return false;
  66}
  67
  68static int compression_compress_pages(int type, struct list_head *ws,
  69               struct address_space *mapping, u64 start, struct page **pages,
  70               unsigned long *out_pages, unsigned long *total_in,
  71               unsigned long *total_out)
  72{
  73        switch (type) {
  74        case BTRFS_COMPRESS_ZLIB:
  75                return zlib_compress_pages(ws, mapping, start, pages,
  76                                out_pages, total_in, total_out);
  77        case BTRFS_COMPRESS_LZO:
  78                return lzo_compress_pages(ws, mapping, start, pages,
  79                                out_pages, total_in, total_out);
  80        case BTRFS_COMPRESS_ZSTD:
  81                return zstd_compress_pages(ws, mapping, start, pages,
  82                                out_pages, total_in, total_out);
  83        case BTRFS_COMPRESS_NONE:
  84        default:
  85                /*
  86                 * This can happen when compression races with remount setting
  87                 * it to 'no compress', while caller doesn't call
  88                 * inode_need_compress() to check if we really need to
  89                 * compress.
  90                 *
  91                 * Not a big deal, just need to inform caller that we
  92                 * haven't allocated any pages yet.
  93                 */
  94                *out_pages = 0;
  95                return -E2BIG;
  96        }
  97}
  98
  99static int compression_decompress_bio(int type, struct list_head *ws,
 100                struct compressed_bio *cb)
 101{
 102        switch (type) {
 103        case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
 104        case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
 105        case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
 106        case BTRFS_COMPRESS_NONE:
 107        default:
 108                /*
 109                 * This can't happen, the type is validated several times
 110                 * before we get here.
 111                 */
 112                BUG();
 113        }
 114}
 115
 116static int compression_decompress(int type, struct list_head *ws,
 117               unsigned char *data_in, struct page *dest_page,
 118               unsigned long start_byte, size_t srclen, size_t destlen)
 119{
 120        switch (type) {
 121        case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
 122                                                start_byte, srclen, destlen);
 123        case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
 124                                                start_byte, srclen, destlen);
 125        case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
 126                                                start_byte, srclen, destlen);
 127        case BTRFS_COMPRESS_NONE:
 128        default:
 129                /*
 130                 * This can't happen, the type is validated several times
 131                 * before we get here.
 132                 */
 133                BUG();
 134        }
 135}
 136
 137static int btrfs_decompress_bio(struct compressed_bio *cb);
 138
 139static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
 140                                      unsigned long disk_size)
 141{
 142        return sizeof(struct compressed_bio) +
 143                (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
 144}
 145
 146static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
 147                                 u64 disk_start)
 148{
 149        struct btrfs_fs_info *fs_info = inode->root->fs_info;
 150        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 151        const u32 csum_size = fs_info->csum_size;
 152        const u32 sectorsize = fs_info->sectorsize;
 153        struct page *page;
 154        unsigned int i;
 155        char *kaddr;
 156        u8 csum[BTRFS_CSUM_SIZE];
 157        struct compressed_bio *cb = bio->bi_private;
 158        u8 *cb_sum = cb->sums;
 159
 160        if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
 161                return 0;
 162
 163        shash->tfm = fs_info->csum_shash;
 164
 165        for (i = 0; i < cb->nr_pages; i++) {
 166                u32 pg_offset;
 167                u32 bytes_left = PAGE_SIZE;
 168                page = cb->compressed_pages[i];
 169
 170                /* Determine the remaining bytes inside the page first */
 171                if (i == cb->nr_pages - 1)
 172                        bytes_left = cb->compressed_len - i * PAGE_SIZE;
 173
 174                /* Hash through the page sector by sector */
 175                for (pg_offset = 0; pg_offset < bytes_left;
 176                     pg_offset += sectorsize) {
 177                        kaddr = kmap_atomic(page);
 178                        crypto_shash_digest(shash, kaddr + pg_offset,
 179                                            sectorsize, csum);
 180                        kunmap_atomic(kaddr);
 181
 182                        if (memcmp(&csum, cb_sum, csum_size) != 0) {
 183                                btrfs_print_data_csum_error(inode, disk_start,
 184                                                csum, cb_sum, cb->mirror_num);
 185                                if (btrfs_bio(bio)->device)
 186                                        btrfs_dev_stat_inc_and_print(
 187                                                btrfs_bio(bio)->device,
 188                                                BTRFS_DEV_STAT_CORRUPTION_ERRS);
 189                                return -EIO;
 190                        }
 191                        cb_sum += csum_size;
 192                        disk_start += sectorsize;
 193                }
 194        }
 195        return 0;
 196}
 197
 198/*
 199 * Reduce bio and io accounting for a compressed_bio with its corresponding bio.
 200 *
 201 * Return true if there is no pending bio nor io.
 202 * Return false otherwise.
 203 */
 204static bool dec_and_test_compressed_bio(struct compressed_bio *cb, struct bio *bio)
 205{
 206        struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
 207        unsigned int bi_size = 0;
 208        bool last_io = false;
 209        struct bio_vec *bvec;
 210        struct bvec_iter_all iter_all;
 211
 212        /*
 213         * At endio time, bi_iter.bi_size doesn't represent the real bio size.
 214         * Thus here we have to iterate through all segments to grab correct
 215         * bio size.
 216         */
 217        bio_for_each_segment_all(bvec, bio, iter_all)
 218                bi_size += bvec->bv_len;
 219
 220        if (bio->bi_status)
 221                cb->errors = 1;
 222
 223        ASSERT(bi_size && bi_size <= cb->compressed_len);
 224        last_io = refcount_sub_and_test(bi_size >> fs_info->sectorsize_bits,
 225                                        &cb->pending_sectors);
 226        /*
 227         * Here we must wake up the possible error handler after all other
 228         * operations on @cb finished, or we can race with
 229         * finish_compressed_bio_*() which may free @cb.
 230         */
 231        wake_up_var(cb);
 232
 233        return last_io;
 234}
 235
 236static void finish_compressed_bio_read(struct compressed_bio *cb, struct bio *bio)
 237{
 238        unsigned int index;
 239        struct page *page;
 240
 241        /* Release the compressed pages */
 242        for (index = 0; index < cb->nr_pages; index++) {
 243                page = cb->compressed_pages[index];
 244                page->mapping = NULL;
 245                put_page(page);
 246        }
 247
 248        /* Do io completion on the original bio */
 249        if (cb->errors) {
 250                bio_io_error(cb->orig_bio);
 251        } else {
 252                struct bio_vec *bvec;
 253                struct bvec_iter_all iter_all;
 254
 255                ASSERT(bio);
 256                ASSERT(!bio->bi_status);
 257                /*
 258                 * We have verified the checksum already, set page checked so
 259                 * the end_io handlers know about it
 260                 */
 261                ASSERT(!bio_flagged(bio, BIO_CLONED));
 262                bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) {
 263                        u64 bvec_start = page_offset(bvec->bv_page) +
 264                                         bvec->bv_offset;
 265
 266                        btrfs_page_set_checked(btrfs_sb(cb->inode->i_sb),
 267                                        bvec->bv_page, bvec_start,
 268                                        bvec->bv_len);
 269                }
 270
 271                bio_endio(cb->orig_bio);
 272        }
 273
 274        /* Finally free the cb struct */
 275        kfree(cb->compressed_pages);
 276        kfree(cb);
 277}
 278
 279/* when we finish reading compressed pages from the disk, we
 280 * decompress them and then run the bio end_io routines on the
 281 * decompressed pages (in the inode address space).
 282 *
 283 * This allows the checksumming and other IO error handling routines
 284 * to work normally
 285 *
 286 * The compressed pages are freed here, and it must be run
 287 * in process context
 288 */
 289static void end_compressed_bio_read(struct bio *bio)
 290{
 291        struct compressed_bio *cb = bio->bi_private;
 292        struct inode *inode;
 293        unsigned int mirror = btrfs_bio(bio)->mirror_num;
 294        int ret = 0;
 295
 296        if (!dec_and_test_compressed_bio(cb, bio))
 297                goto out;
 298
 299        /*
 300         * Record the correct mirror_num in cb->orig_bio so that
 301         * read-repair can work properly.
 302         */
 303        btrfs_bio(cb->orig_bio)->mirror_num = mirror;
 304        cb->mirror_num = mirror;
 305
 306        /*
 307         * Some IO in this cb have failed, just skip checksum as there
 308         * is no way it could be correct.
 309         */
 310        if (cb->errors == 1)
 311                goto csum_failed;
 312
 313        inode = cb->inode;
 314        ret = check_compressed_csum(BTRFS_I(inode), bio,
 315                                    bio->bi_iter.bi_sector << 9);
 316        if (ret)
 317                goto csum_failed;
 318
 319        /* ok, we're the last bio for this extent, lets start
 320         * the decompression.
 321         */
 322        ret = btrfs_decompress_bio(cb);
 323
 324csum_failed:
 325        if (ret)
 326                cb->errors = 1;
 327        finish_compressed_bio_read(cb, bio);
 328out:
 329        bio_put(bio);
 330}
 331
 332/*
 333 * Clear the writeback bits on all of the file
 334 * pages for a compressed write
 335 */
 336static noinline void end_compressed_writeback(struct inode *inode,
 337                                              const struct compressed_bio *cb)
 338{
 339        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 340        unsigned long index = cb->start >> PAGE_SHIFT;
 341        unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
 342        struct page *pages[16];
 343        unsigned long nr_pages = end_index - index + 1;
 344        int i;
 345        int ret;
 346
 347        if (cb->errors)
 348                mapping_set_error(inode->i_mapping, -EIO);
 349
 350        while (nr_pages > 0) {
 351                ret = find_get_pages_contig(inode->i_mapping, index,
 352                                     min_t(unsigned long,
 353                                     nr_pages, ARRAY_SIZE(pages)), pages);
 354                if (ret == 0) {
 355                        nr_pages -= 1;
 356                        index += 1;
 357                        continue;
 358                }
 359                for (i = 0; i < ret; i++) {
 360                        if (cb->errors)
 361                                SetPageError(pages[i]);
 362                        btrfs_page_clamp_clear_writeback(fs_info, pages[i],
 363                                                         cb->start, cb->len);
 364                        put_page(pages[i]);
 365                }
 366                nr_pages -= ret;
 367                index += ret;
 368        }
 369        /* the inode may be gone now */
 370}
 371
 372static void finish_compressed_bio_write(struct compressed_bio *cb)
 373{
 374        struct inode *inode = cb->inode;
 375        unsigned int index;
 376
 377        /*
 378         * Ok, we're the last bio for this extent, step one is to call back
 379         * into the FS and do all the end_io operations.
 380         */
 381        btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
 382                        cb->start, cb->start + cb->len - 1,
 383                        !cb->errors);
 384
 385        end_compressed_writeback(inode, cb);
 386        /* Note, our inode could be gone now */
 387
 388        /*
 389         * Release the compressed pages, these came from alloc_page and
 390         * are not attached to the inode at all
 391         */
 392        for (index = 0; index < cb->nr_pages; index++) {
 393                struct page *page = cb->compressed_pages[index];
 394
 395                page->mapping = NULL;
 396                put_page(page);
 397        }
 398
 399        /* Finally free the cb struct */
 400        kfree(cb->compressed_pages);
 401        kfree(cb);
 402}
 403
 404/*
 405 * Do the cleanup once all the compressed pages hit the disk.  This will clear
 406 * writeback on the file pages and free the compressed pages.
 407 *
 408 * This also calls the writeback end hooks for the file pages so that metadata
 409 * and checksums can be updated in the file.
 410 */
 411static void end_compressed_bio_write(struct bio *bio)
 412{
 413        struct compressed_bio *cb = bio->bi_private;
 414
 415        if (!dec_and_test_compressed_bio(cb, bio))
 416                goto out;
 417
 418        btrfs_record_physical_zoned(cb->inode, cb->start, bio);
 419
 420        finish_compressed_bio_write(cb);
 421out:
 422        bio_put(bio);
 423}
 424
 425static blk_status_t submit_compressed_bio(struct btrfs_fs_info *fs_info,
 426                                          struct compressed_bio *cb,
 427                                          struct bio *bio, int mirror_num)
 428{
 429        blk_status_t ret;
 430
 431        ASSERT(bio->bi_iter.bi_size);
 432        ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
 433        if (ret)
 434                return ret;
 435        ret = btrfs_map_bio(fs_info, bio, mirror_num);
 436        return ret;
 437}
 438
 439/*
 440 * Allocate a compressed_bio, which will be used to read/write on-disk
 441 * (aka, compressed) * data.
 442 *
 443 * @cb:                 The compressed_bio structure, which records all the needed
 444 *                      information to bind the compressed data to the uncompressed
 445 *                      page cache.
 446 * @disk_byten:         The logical bytenr where the compressed data will be read
 447 *                      from or written to.
 448 * @endio_func:         The endio function to call after the IO for compressed data
 449 *                      is finished.
 450 * @next_stripe_start:  Return value of logical bytenr of where next stripe starts.
 451 *                      Let the caller know to only fill the bio up to the stripe
 452 *                      boundary.
 453 */
 454
 455
 456static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr,
 457                                        unsigned int opf, bio_end_io_t endio_func,
 458                                        u64 *next_stripe_start)
 459{
 460        struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
 461        struct btrfs_io_geometry geom;
 462        struct extent_map *em;
 463        struct bio *bio;
 464        int ret;
 465
 466        bio = btrfs_bio_alloc(BIO_MAX_VECS);
 467
 468        bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
 469        bio->bi_opf = opf;
 470        bio->bi_private = cb;
 471        bio->bi_end_io = endio_func;
 472
 473        em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize);
 474        if (IS_ERR(em)) {
 475                bio_put(bio);
 476                return ERR_CAST(em);
 477        }
 478
 479        if (bio_op(bio) == REQ_OP_ZONE_APPEND)
 480                bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev);
 481
 482        ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom);
 483        free_extent_map(em);
 484        if (ret < 0) {
 485                bio_put(bio);
 486                return ERR_PTR(ret);
 487        }
 488        *next_stripe_start = disk_bytenr + geom.len;
 489
 490        return bio;
 491}
 492
 493/*
 494 * worker function to build and submit bios for previously compressed pages.
 495 * The corresponding pages in the inode should be marked for writeback
 496 * and the compressed pages should have a reference on them for dropping
 497 * when the IO is complete.
 498 *
 499 * This also checksums the file bytes and gets things ready for
 500 * the end io hooks.
 501 */
 502blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
 503                                 unsigned int len, u64 disk_start,
 504                                 unsigned int compressed_len,
 505                                 struct page **compressed_pages,
 506                                 unsigned int nr_pages,
 507                                 unsigned int write_flags,
 508                                 struct cgroup_subsys_state *blkcg_css)
 509{
 510        struct btrfs_fs_info *fs_info = inode->root->fs_info;
 511        struct bio *bio = NULL;
 512        struct compressed_bio *cb;
 513        u64 cur_disk_bytenr = disk_start;
 514        u64 next_stripe_start;
 515        blk_status_t ret;
 516        int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
 517        const bool use_append = btrfs_use_zone_append(inode, disk_start);
 518        const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
 519
 520        ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
 521               IS_ALIGNED(len, fs_info->sectorsize));
 522        cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 523        if (!cb)
 524                return BLK_STS_RESOURCE;
 525        refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
 526        cb->errors = 0;
 527        cb->inode = &inode->vfs_inode;
 528        cb->start = start;
 529        cb->len = len;
 530        cb->mirror_num = 0;
 531        cb->compressed_pages = compressed_pages;
 532        cb->compressed_len = compressed_len;
 533        cb->orig_bio = NULL;
 534        cb->nr_pages = nr_pages;
 535
 536        while (cur_disk_bytenr < disk_start + compressed_len) {
 537                u64 offset = cur_disk_bytenr - disk_start;
 538                unsigned int index = offset >> PAGE_SHIFT;
 539                unsigned int real_size;
 540                unsigned int added;
 541                struct page *page = compressed_pages[index];
 542                bool submit = false;
 543
 544                /* Allocate new bio if submitted or not yet allocated */
 545                if (!bio) {
 546                        bio = alloc_compressed_bio(cb, cur_disk_bytenr,
 547                                bio_op | write_flags, end_compressed_bio_write,
 548                                &next_stripe_start);
 549                        if (IS_ERR(bio)) {
 550                                ret = errno_to_blk_status(PTR_ERR(bio));
 551                                bio = NULL;
 552                                goto finish_cb;
 553                        }
 554                }
 555                /*
 556                 * We should never reach next_stripe_start start as we will
 557                 * submit comp_bio when reach the boundary immediately.
 558                 */
 559                ASSERT(cur_disk_bytenr != next_stripe_start);
 560
 561                /*
 562                 * We have various limits on the real read size:
 563                 * - stripe boundary
 564                 * - page boundary
 565                 * - compressed length boundary
 566                 */
 567                real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr);
 568                real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
 569                real_size = min_t(u64, real_size, compressed_len - offset);
 570                ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
 571
 572                if (use_append)
 573                        added = bio_add_zone_append_page(bio, page, real_size,
 574                                        offset_in_page(offset));
 575                else
 576                        added = bio_add_page(bio, page, real_size,
 577                                        offset_in_page(offset));
 578                /* Reached zoned boundary */
 579                if (added == 0)
 580                        submit = true;
 581
 582                cur_disk_bytenr += added;
 583                /* Reached stripe boundary */
 584                if (cur_disk_bytenr == next_stripe_start)
 585                        submit = true;
 586
 587                /* Finished the range */
 588                if (cur_disk_bytenr == disk_start + compressed_len)
 589                        submit = true;
 590
 591                if (submit) {
 592                        if (!skip_sum) {
 593                                ret = btrfs_csum_one_bio(inode, bio, start, 1);
 594                                if (ret)
 595                                        goto finish_cb;
 596                        }
 597
 598                        ret = submit_compressed_bio(fs_info, cb, bio, 0);
 599                        if (ret)
 600                                goto finish_cb;
 601                        bio = NULL;
 602                }
 603                cond_resched();
 604        }
 605        if (blkcg_css)
 606                kthread_associate_blkcg(NULL);
 607
 608        return 0;
 609
 610finish_cb:
 611        if (bio) {
 612                bio->bi_status = ret;
 613                bio_endio(bio);
 614        }
 615        /* Last byte of @cb is submitted, endio will free @cb */
 616        if (cur_disk_bytenr == disk_start + compressed_len)
 617                return ret;
 618
 619        wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
 620                           (disk_start + compressed_len - cur_disk_bytenr) >>
 621                           fs_info->sectorsize_bits);
 622        /*
 623         * Even with previous bio ended, we should still have io not yet
 624         * submitted, thus need to finish manually.
 625         */
 626        ASSERT(refcount_read(&cb->pending_sectors));
 627        /* Now we are the only one referring @cb, can finish it safely. */
 628        finish_compressed_bio_write(cb);
 629        return ret;
 630}
 631
 632static u64 bio_end_offset(struct bio *bio)
 633{
 634        struct bio_vec *last = bio_last_bvec_all(bio);
 635
 636        return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
 637}
 638
 639/*
 640 * Add extra pages in the same compressed file extent so that we don't need to
 641 * re-read the same extent again and again.
 642 *
 643 * NOTE: this won't work well for subpage, as for subpage read, we lock the
 644 * full page then submit bio for each compressed/regular extents.
 645 *
 646 * This means, if we have several sectors in the same page points to the same
 647 * on-disk compressed data, we will re-read the same extent many times and
 648 * this function can only help for the next page.
 649 */
 650static noinline int add_ra_bio_pages(struct inode *inode,
 651                                     u64 compressed_end,
 652                                     struct compressed_bio *cb)
 653{
 654        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 655        unsigned long end_index;
 656        u64 cur = bio_end_offset(cb->orig_bio);
 657        u64 isize = i_size_read(inode);
 658        int ret;
 659        struct page *page;
 660        struct extent_map *em;
 661        struct address_space *mapping = inode->i_mapping;
 662        struct extent_map_tree *em_tree;
 663        struct extent_io_tree *tree;
 664        int sectors_missed = 0;
 665
 666        em_tree = &BTRFS_I(inode)->extent_tree;
 667        tree = &BTRFS_I(inode)->io_tree;
 668
 669        if (isize == 0)
 670                return 0;
 671
 672        /*
 673         * For current subpage support, we only support 64K page size,
 674         * which means maximum compressed extent size (128K) is just 2x page
 675         * size.
 676         * This makes readahead less effective, so here disable readahead for
 677         * subpage for now, until full compressed write is supported.
 678         */
 679        if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
 680                return 0;
 681
 682        end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 683
 684        while (cur < compressed_end) {
 685                u64 page_end;
 686                u64 pg_index = cur >> PAGE_SHIFT;
 687                u32 add_size;
 688
 689                if (pg_index > end_index)
 690                        break;
 691
 692                page = xa_load(&mapping->i_pages, pg_index);
 693                if (page && !xa_is_value(page)) {
 694                        sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
 695                                          fs_info->sectorsize_bits;
 696
 697                        /* Beyond threshold, no need to continue */
 698                        if (sectors_missed > 4)
 699                                break;
 700
 701                        /*
 702                         * Jump to next page start as we already have page for
 703                         * current offset.
 704                         */
 705                        cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
 706                        continue;
 707                }
 708
 709                page = __page_cache_alloc(mapping_gfp_constraint(mapping,
 710                                                                 ~__GFP_FS));
 711                if (!page)
 712                        break;
 713
 714                if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
 715                        put_page(page);
 716                        /* There is already a page, skip to page end */
 717                        cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
 718                        continue;
 719                }
 720
 721                ret = set_page_extent_mapped(page);
 722                if (ret < 0) {
 723                        unlock_page(page);
 724                        put_page(page);
 725                        break;
 726                }
 727
 728                page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
 729                lock_extent(tree, cur, page_end);
 730                read_lock(&em_tree->lock);
 731                em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
 732                read_unlock(&em_tree->lock);
 733
 734                /*
 735                 * At this point, we have a locked page in the page cache for
 736                 * these bytes in the file.  But, we have to make sure they map
 737                 * to this compressed extent on disk.
 738                 */
 739                if (!em || cur < em->start ||
 740                    (cur + fs_info->sectorsize > extent_map_end(em)) ||
 741                    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
 742                        free_extent_map(em);
 743                        unlock_extent(tree, cur, page_end);
 744                        unlock_page(page);
 745                        put_page(page);
 746                        break;
 747                }
 748                free_extent_map(em);
 749
 750                if (page->index == end_index) {
 751                        size_t zero_offset = offset_in_page(isize);
 752
 753                        if (zero_offset) {
 754                                int zeros;
 755                                zeros = PAGE_SIZE - zero_offset;
 756                                memzero_page(page, zero_offset, zeros);
 757                                flush_dcache_page(page);
 758                        }
 759                }
 760
 761                add_size = min(em->start + em->len, page_end + 1) - cur;
 762                ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
 763                if (ret != add_size) {
 764                        unlock_extent(tree, cur, page_end);
 765                        unlock_page(page);
 766                        put_page(page);
 767                        break;
 768                }
 769                /*
 770                 * If it's subpage, we also need to increase its
 771                 * subpage::readers number, as at endio we will decrease
 772                 * subpage::readers and to unlock the page.
 773                 */
 774                if (fs_info->sectorsize < PAGE_SIZE)
 775                        btrfs_subpage_start_reader(fs_info, page, cur, add_size);
 776                put_page(page);
 777                cur += add_size;
 778        }
 779        return 0;
 780}
 781
 782/*
 783 * for a compressed read, the bio we get passed has all the inode pages
 784 * in it.  We don't actually do IO on those pages but allocate new ones
 785 * to hold the compressed pages on disk.
 786 *
 787 * bio->bi_iter.bi_sector points to the compressed extent on disk
 788 * bio->bi_io_vec points to all of the inode pages
 789 *
 790 * After the compressed pages are read, we copy the bytes into the
 791 * bio we were passed and then call the bio end_io calls
 792 */
 793blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 794                                 int mirror_num, unsigned long bio_flags)
 795{
 796        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 797        struct extent_map_tree *em_tree;
 798        struct compressed_bio *cb;
 799        unsigned int compressed_len;
 800        unsigned int nr_pages;
 801        unsigned int pg_index;
 802        struct bio *comp_bio = NULL;
 803        const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 804        u64 cur_disk_byte = disk_bytenr;
 805        u64 next_stripe_start;
 806        u64 file_offset;
 807        u64 em_len;
 808        u64 em_start;
 809        struct extent_map *em;
 810        blk_status_t ret = BLK_STS_RESOURCE;
 811        int faili = 0;
 812        u8 *sums;
 813
 814        em_tree = &BTRFS_I(inode)->extent_tree;
 815
 816        file_offset = bio_first_bvec_all(bio)->bv_offset +
 817                      page_offset(bio_first_page_all(bio));
 818
 819        /* we need the actual starting offset of this extent in the file */
 820        read_lock(&em_tree->lock);
 821        em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
 822        read_unlock(&em_tree->lock);
 823        if (!em)
 824                return BLK_STS_IOERR;
 825
 826        ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
 827        compressed_len = em->block_len;
 828        cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 829        if (!cb)
 830                goto out;
 831
 832        refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
 833        cb->errors = 0;
 834        cb->inode = inode;
 835        cb->mirror_num = mirror_num;
 836        sums = cb->sums;
 837
 838        cb->start = em->orig_start;
 839        em_len = em->len;
 840        em_start = em->start;
 841
 842        free_extent_map(em);
 843        em = NULL;
 844
 845        cb->len = bio->bi_iter.bi_size;
 846        cb->compressed_len = compressed_len;
 847        cb->compress_type = extent_compress_type(bio_flags);
 848        cb->orig_bio = bio;
 849
 850        nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
 851        cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
 852                                       GFP_NOFS);
 853        if (!cb->compressed_pages)
 854                goto fail1;
 855
 856        for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 857                cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS);
 858                if (!cb->compressed_pages[pg_index]) {
 859                        faili = pg_index - 1;
 860                        ret = BLK_STS_RESOURCE;
 861                        goto fail2;
 862                }
 863        }
 864        faili = nr_pages - 1;
 865        cb->nr_pages = nr_pages;
 866
 867        add_ra_bio_pages(inode, em_start + em_len, cb);
 868
 869        /* include any pages we added in add_ra-bio_pages */
 870        cb->len = bio->bi_iter.bi_size;
 871
 872        while (cur_disk_byte < disk_bytenr + compressed_len) {
 873                u64 offset = cur_disk_byte - disk_bytenr;
 874                unsigned int index = offset >> PAGE_SHIFT;
 875                unsigned int real_size;
 876                unsigned int added;
 877                struct page *page = cb->compressed_pages[index];
 878                bool submit = false;
 879
 880                /* Allocate new bio if submitted or not yet allocated */
 881                if (!comp_bio) {
 882                        comp_bio = alloc_compressed_bio(cb, cur_disk_byte,
 883                                        REQ_OP_READ, end_compressed_bio_read,
 884                                        &next_stripe_start);
 885                        if (IS_ERR(comp_bio)) {
 886                                ret = errno_to_blk_status(PTR_ERR(comp_bio));
 887                                comp_bio = NULL;
 888                                goto finish_cb;
 889                        }
 890                }
 891                /*
 892                 * We should never reach next_stripe_start start as we will
 893                 * submit comp_bio when reach the boundary immediately.
 894                 */
 895                ASSERT(cur_disk_byte != next_stripe_start);
 896                /*
 897                 * We have various limit on the real read size:
 898                 * - stripe boundary
 899                 * - page boundary
 900                 * - compressed length boundary
 901                 */
 902                real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte);
 903                real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
 904                real_size = min_t(u64, real_size, compressed_len - offset);
 905                ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
 906
 907                added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset));
 908                /*
 909                 * Maximum compressed extent is smaller than bio size limit,
 910                 * thus bio_add_page() should always success.
 911                 */
 912                ASSERT(added == real_size);
 913                cur_disk_byte += added;
 914
 915                /* Reached stripe boundary, need to submit */
 916                if (cur_disk_byte == next_stripe_start)
 917                        submit = true;
 918
 919                /* Has finished the range, need to submit */
 920                if (cur_disk_byte == disk_bytenr + compressed_len)
 921                        submit = true;
 922
 923                if (submit) {
 924                        unsigned int nr_sectors;
 925
 926                        ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
 927                        if (ret)
 928                                goto finish_cb;
 929
 930                        nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
 931                                                  fs_info->sectorsize);
 932                        sums += fs_info->csum_size * nr_sectors;
 933
 934                        ret = submit_compressed_bio(fs_info, cb, comp_bio, mirror_num);
 935                        if (ret)
 936                                goto finish_cb;
 937                        comp_bio = NULL;
 938                }
 939        }
 940        return 0;
 941
 942fail2:
 943        while (faili >= 0) {
 944                __free_page(cb->compressed_pages[faili]);
 945                faili--;
 946        }
 947
 948        kfree(cb->compressed_pages);
 949fail1:
 950        kfree(cb);
 951out:
 952        free_extent_map(em);
 953        return ret;
 954finish_cb:
 955        if (comp_bio) {
 956                comp_bio->bi_status = ret;
 957                bio_endio(comp_bio);
 958        }
 959        /* All bytes of @cb is submitted, endio will free @cb */
 960        if (cur_disk_byte == disk_bytenr + compressed_len)
 961                return ret;
 962
 963        wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
 964                           (disk_bytenr + compressed_len - cur_disk_byte) >>
 965                           fs_info->sectorsize_bits);
 966        /*
 967         * Even with previous bio ended, we should still have io not yet
 968         * submitted, thus need to finish @cb manually.
 969         */
 970        ASSERT(refcount_read(&cb->pending_sectors));
 971        /* Now we are the only one referring @cb, can finish it safely. */
 972        finish_compressed_bio_read(cb, NULL);
 973        return ret;
 974}
 975
 976/*
 977 * Heuristic uses systematic sampling to collect data from the input data
 978 * range, the logic can be tuned by the following constants:
 979 *
 980 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 981 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 982 */
 983#define SAMPLING_READ_SIZE      (16)
 984#define SAMPLING_INTERVAL       (256)
 985
 986/*
 987 * For statistical analysis of the input data we consider bytes that form a
 988 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 989 * many times the object appeared in the sample.
 990 */
 991#define BUCKET_SIZE             (256)
 992
 993/*
 994 * The size of the sample is based on a statistical sampling rule of thumb.
 995 * The common way is to perform sampling tests as long as the number of
 996 * elements in each cell is at least 5.
 997 *
 998 * Instead of 5, we choose 32 to obtain more accurate results.
 999 * If the data contain the maximum number of symbols, which is 256, we obtain a
1000 * sample size bound by 8192.
1001 *
1002 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
1003 * from up to 512 locations.
1004 */
1005#define MAX_SAMPLE_SIZE         (BTRFS_MAX_UNCOMPRESSED *               \
1006                                 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
1007
1008struct bucket_item {
1009        u32 count;
1010};
1011
1012struct heuristic_ws {
1013        /* Partial copy of input data */
1014        u8 *sample;
1015        u32 sample_size;
1016        /* Buckets store counters for each byte value */
1017        struct bucket_item *bucket;
1018        /* Sorting buffer */
1019        struct bucket_item *bucket_b;
1020        struct list_head list;
1021};
1022
1023static struct workspace_manager heuristic_wsm;
1024
1025static void free_heuristic_ws(struct list_head *ws)
1026{
1027        struct heuristic_ws *workspace;
1028
1029        workspace = list_entry(ws, struct heuristic_ws, list);
1030
1031        kvfree(workspace->sample);
1032        kfree(workspace->bucket);
1033        kfree(workspace->bucket_b);
1034        kfree(workspace);
1035}
1036
1037static struct list_head *alloc_heuristic_ws(unsigned int level)
1038{
1039        struct heuristic_ws *ws;
1040
1041        ws = kzalloc(sizeof(*ws), GFP_KERNEL);
1042        if (!ws)
1043                return ERR_PTR(-ENOMEM);
1044
1045        ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
1046        if (!ws->sample)
1047                goto fail;
1048
1049        ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
1050        if (!ws->bucket)
1051                goto fail;
1052
1053        ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
1054        if (!ws->bucket_b)
1055                goto fail;
1056
1057        INIT_LIST_HEAD(&ws->list);
1058        return &ws->list;
1059fail:
1060        free_heuristic_ws(&ws->list);
1061        return ERR_PTR(-ENOMEM);
1062}
1063
1064const struct btrfs_compress_op btrfs_heuristic_compress = {
1065        .workspace_manager = &heuristic_wsm,
1066};
1067
1068static const struct btrfs_compress_op * const btrfs_compress_op[] = {
1069        /* The heuristic is represented as compression type 0 */
1070        &btrfs_heuristic_compress,
1071        &btrfs_zlib_compress,
1072        &btrfs_lzo_compress,
1073        &btrfs_zstd_compress,
1074};
1075
1076static struct list_head *alloc_workspace(int type, unsigned int level)
1077{
1078        switch (type) {
1079        case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
1080        case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
1081        case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
1082        case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
1083        default:
1084                /*
1085                 * This can't happen, the type is validated several times
1086                 * before we get here.
1087                 */
1088                BUG();
1089        }
1090}
1091
1092static void free_workspace(int type, struct list_head *ws)
1093{
1094        switch (type) {
1095        case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
1096        case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
1097        case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
1098        case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
1099        default:
1100                /*
1101                 * This can't happen, the type is validated several times
1102                 * before we get here.
1103                 */
1104                BUG();
1105        }
1106}
1107
1108static void btrfs_init_workspace_manager(int type)
1109{
1110        struct workspace_manager *wsm;
1111        struct list_head *workspace;
1112
1113        wsm = btrfs_compress_op[type]->workspace_manager;
1114        INIT_LIST_HEAD(&wsm->idle_ws);
1115        spin_lock_init(&wsm->ws_lock);
1116        atomic_set(&wsm->total_ws, 0);
1117        init_waitqueue_head(&wsm->ws_wait);
1118
1119        /*
1120         * Preallocate one workspace for each compression type so we can
1121         * guarantee forward progress in the worst case
1122         */
1123        workspace = alloc_workspace(type, 0);
1124        if (IS_ERR(workspace)) {
1125                pr_warn(
1126        "BTRFS: cannot preallocate compression workspace, will try later\n");
1127        } else {
1128                atomic_set(&wsm->total_ws, 1);
1129                wsm->free_ws = 1;
1130                list_add(workspace, &wsm->idle_ws);
1131        }
1132}
1133
1134static void btrfs_cleanup_workspace_manager(int type)
1135{
1136        struct workspace_manager *wsman;
1137        struct list_head *ws;
1138
1139        wsman = btrfs_compress_op[type]->workspace_manager;
1140        while (!list_empty(&wsman->idle_ws)) {
1141                ws = wsman->idle_ws.next;
1142                list_del(ws);
1143                free_workspace(type, ws);
1144                atomic_dec(&wsman->total_ws);
1145        }
1146}
1147
1148/*
1149 * This finds an available workspace or allocates a new one.
1150 * If it's not possible to allocate a new one, waits until there's one.
1151 * Preallocation makes a forward progress guarantees and we do not return
1152 * errors.
1153 */
1154struct list_head *btrfs_get_workspace(int type, unsigned int level)
1155{
1156        struct workspace_manager *wsm;
1157        struct list_head *workspace;
1158        int cpus = num_online_cpus();
1159        unsigned nofs_flag;
1160        struct list_head *idle_ws;
1161        spinlock_t *ws_lock;
1162        atomic_t *total_ws;
1163        wait_queue_head_t *ws_wait;
1164        int *free_ws;
1165
1166        wsm = btrfs_compress_op[type]->workspace_manager;
1167        idle_ws  = &wsm->idle_ws;
1168        ws_lock  = &wsm->ws_lock;
1169        total_ws = &wsm->total_ws;
1170        ws_wait  = &wsm->ws_wait;
1171        free_ws  = &wsm->free_ws;
1172
1173again:
1174        spin_lock(ws_lock);
1175        if (!list_empty(idle_ws)) {
1176                workspace = idle_ws->next;
1177                list_del(workspace);
1178                (*free_ws)--;
1179                spin_unlock(ws_lock);
1180                return workspace;
1181
1182        }
1183        if (atomic_read(total_ws) > cpus) {
1184                DEFINE_WAIT(wait);
1185
1186                spin_unlock(ws_lock);
1187                prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1188                if (atomic_read(total_ws) > cpus && !*free_ws)
1189                        schedule();
1190                finish_wait(ws_wait, &wait);
1191                goto again;
1192        }
1193        atomic_inc(total_ws);
1194        spin_unlock(ws_lock);
1195
1196        /*
1197         * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1198         * to turn it off here because we might get called from the restricted
1199         * context of btrfs_compress_bio/btrfs_compress_pages
1200         */
1201        nofs_flag = memalloc_nofs_save();
1202        workspace = alloc_workspace(type, level);
1203        memalloc_nofs_restore(nofs_flag);
1204
1205        if (IS_ERR(workspace)) {
1206                atomic_dec(total_ws);
1207                wake_up(ws_wait);
1208
1209                /*
1210                 * Do not return the error but go back to waiting. There's a
1211                 * workspace preallocated for each type and the compression
1212                 * time is bounded so we get to a workspace eventually. This
1213                 * makes our caller's life easier.
1214                 *
1215                 * To prevent silent and low-probability deadlocks (when the
1216                 * initial preallocation fails), check if there are any
1217                 * workspaces at all.
1218                 */
1219                if (atomic_read(total_ws) == 0) {
1220                        static DEFINE_RATELIMIT_STATE(_rs,
1221                                        /* once per minute */ 60 * HZ,
1222                                        /* no burst */ 1);
1223
1224                        if (__ratelimit(&_rs)) {
1225                                pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1226                        }
1227                }
1228                goto again;
1229        }
1230        return workspace;
1231}
1232
1233static struct list_head *get_workspace(int type, int level)
1234{
1235        switch (type) {
1236        case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1237        case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1238        case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1239        case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1240        default:
1241                /*
1242                 * This can't happen, the type is validated several times
1243                 * before we get here.
1244                 */
1245                BUG();
1246        }
1247}
1248
1249/*
1250 * put a workspace struct back on the list or free it if we have enough
1251 * idle ones sitting around
1252 */
1253void btrfs_put_workspace(int type, struct list_head *ws)
1254{
1255        struct workspace_manager *wsm;
1256        struct list_head *idle_ws;
1257        spinlock_t *ws_lock;
1258        atomic_t *total_ws;
1259        wait_queue_head_t *ws_wait;
1260        int *free_ws;
1261
1262        wsm = btrfs_compress_op[type]->workspace_manager;
1263        idle_ws  = &wsm->idle_ws;
1264        ws_lock  = &wsm->ws_lock;
1265        total_ws = &wsm->total_ws;
1266        ws_wait  = &wsm->ws_wait;
1267        free_ws  = &wsm->free_ws;
1268
1269        spin_lock(ws_lock);
1270        if (*free_ws <= num_online_cpus()) {
1271                list_add(ws, idle_ws);
1272                (*free_ws)++;
1273                spin_unlock(ws_lock);
1274                goto wake;
1275        }
1276        spin_unlock(ws_lock);
1277
1278        free_workspace(type, ws);
1279        atomic_dec(total_ws);
1280wake:
1281        cond_wake_up(ws_wait);
1282}
1283
1284static void put_workspace(int type, struct list_head *ws)
1285{
1286        switch (type) {
1287        case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1288        case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1289        case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1290        case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1291        default:
1292                /*
1293                 * This can't happen, the type is validated several times
1294                 * before we get here.
1295                 */
1296                BUG();
1297        }
1298}
1299
1300/*
1301 * Adjust @level according to the limits of the compression algorithm or
1302 * fallback to default
1303 */
1304static unsigned int btrfs_compress_set_level(int type, unsigned level)
1305{
1306        const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1307
1308        if (level == 0)
1309                level = ops->default_level;
1310        else
1311                level = min(level, ops->max_level);
1312
1313        return level;
1314}
1315
1316/*
1317 * Given an address space and start and length, compress the bytes into @pages
1318 * that are allocated on demand.
1319 *
1320 * @type_level is encoded algorithm and level, where level 0 means whatever
1321 * default the algorithm chooses and is opaque here;
1322 * - compression algo are 0-3
1323 * - the level are bits 4-7
1324 *
1325 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1326 * and returns number of actually allocated pages
1327 *
1328 * @total_in is used to return the number of bytes actually read.  It
1329 * may be smaller than the input length if we had to exit early because we
1330 * ran out of room in the pages array or because we cross the
1331 * max_out threshold.
1332 *
1333 * @total_out is an in/out parameter, must be set to the input length and will
1334 * be also used to return the total number of compressed bytes
1335 */
1336int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1337                         u64 start, struct page **pages,
1338                         unsigned long *out_pages,
1339                         unsigned long *total_in,
1340                         unsigned long *total_out)
1341{
1342        int type = btrfs_compress_type(type_level);
1343        int level = btrfs_compress_level(type_level);
1344        struct list_head *workspace;
1345        int ret;
1346
1347        level = btrfs_compress_set_level(type, level);
1348        workspace = get_workspace(type, level);
1349        ret = compression_compress_pages(type, workspace, mapping, start, pages,
1350                                         out_pages, total_in, total_out);
1351        put_workspace(type, workspace);
1352        return ret;
1353}
1354
1355static int btrfs_decompress_bio(struct compressed_bio *cb)
1356{
1357        struct list_head *workspace;
1358        int ret;
1359        int type = cb->compress_type;
1360
1361        workspace = get_workspace(type, 0);
1362        ret = compression_decompress_bio(type, workspace, cb);
1363        put_workspace(type, workspace);
1364
1365        return ret;
1366}
1367
1368/*
1369 * a less complex decompression routine.  Our compressed data fits in a
1370 * single page, and we want to read a single page out of it.
1371 * start_byte tells us the offset into the compressed data we're interested in
1372 */
1373int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1374                     unsigned long start_byte, size_t srclen, size_t destlen)
1375{
1376        struct list_head *workspace;
1377        int ret;
1378
1379        workspace = get_workspace(type, 0);
1380        ret = compression_decompress(type, workspace, data_in, dest_page,
1381                                     start_byte, srclen, destlen);
1382        put_workspace(type, workspace);
1383
1384        return ret;
1385}
1386
1387void __init btrfs_init_compress(void)
1388{
1389        btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1390        btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1391        btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1392        zstd_init_workspace_manager();
1393}
1394
1395void __cold btrfs_exit_compress(void)
1396{
1397        btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1398        btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1399        btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1400        zstd_cleanup_workspace_manager();
1401}
1402
1403/*
1404 * Copy decompressed data from working buffer to pages.
1405 *
1406 * @buf:                The decompressed data buffer
1407 * @buf_len:            The decompressed data length
1408 * @decompressed:       Number of bytes that are already decompressed inside the
1409 *                      compressed extent
1410 * @cb:                 The compressed extent descriptor
1411 * @orig_bio:           The original bio that the caller wants to read for
1412 *
1413 * An easier to understand graph is like below:
1414 *
1415 *              |<- orig_bio ->|     |<- orig_bio->|
1416 *      |<-------      full decompressed extent      ----->|
1417 *      |<-----------    @cb range   ---->|
1418 *      |                       |<-- @buf_len -->|
1419 *      |<--- @decompressed --->|
1420 *
1421 * Note that, @cb can be a subpage of the full decompressed extent, but
1422 * @cb->start always has the same as the orig_file_offset value of the full
1423 * decompressed extent.
1424 *
1425 * When reading compressed extent, we have to read the full compressed extent,
1426 * while @orig_bio may only want part of the range.
1427 * Thus this function will ensure only data covered by @orig_bio will be copied
1428 * to.
1429 *
1430 * Return 0 if we have copied all needed contents for @orig_bio.
1431 * Return >0 if we need continue decompress.
1432 */
1433int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1434                              struct compressed_bio *cb, u32 decompressed)
1435{
1436        struct bio *orig_bio = cb->orig_bio;
1437        /* Offset inside the full decompressed extent */
1438        u32 cur_offset;
1439
1440        cur_offset = decompressed;
1441        /* The main loop to do the copy */
1442        while (cur_offset < decompressed + buf_len) {
1443                struct bio_vec bvec;
1444                size_t copy_len;
1445                u32 copy_start;
1446                /* Offset inside the full decompressed extent */
1447                u32 bvec_offset;
1448
1449                bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1450                /*
1451                 * cb->start may underflow, but subtracting that value can still
1452                 * give us correct offset inside the full decompressed extent.
1453                 */
1454                bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1455
1456                /* Haven't reached the bvec range, exit */
1457                if (decompressed + buf_len <= bvec_offset)
1458                        return 1;
1459
1460                copy_start = max(cur_offset, bvec_offset);
1461                copy_len = min(bvec_offset + bvec.bv_len,
1462                               decompressed + buf_len) - copy_start;
1463                ASSERT(copy_len);
1464
1465                /*
1466                 * Extra range check to ensure we didn't go beyond
1467                 * @buf + @buf_len.
1468                 */
1469                ASSERT(copy_start - decompressed < buf_len);
1470                memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1471                               buf + copy_start - decompressed, copy_len);
1472                flush_dcache_page(bvec.bv_page);
1473                cur_offset += copy_len;
1474
1475                bio_advance(orig_bio, copy_len);
1476                /* Finished the bio */
1477                if (!orig_bio->bi_iter.bi_size)
1478                        return 0;
1479        }
1480        return 1;
1481}
1482
1483/*
1484 * Shannon Entropy calculation
1485 *
1486 * Pure byte distribution analysis fails to determine compressibility of data.
1487 * Try calculating entropy to estimate the average minimum number of bits
1488 * needed to encode the sampled data.
1489 *
1490 * For convenience, return the percentage of needed bits, instead of amount of
1491 * bits directly.
1492 *
1493 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1494 *                          and can be compressible with high probability
1495 *
1496 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1497 *
1498 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1499 */
1500#define ENTROPY_LVL_ACEPTABLE           (65)
1501#define ENTROPY_LVL_HIGH                (80)
1502
1503/*
1504 * For increasead precision in shannon_entropy calculation,
1505 * let's do pow(n, M) to save more digits after comma:
1506 *
1507 * - maximum int bit length is 64
1508 * - ilog2(MAX_SAMPLE_SIZE)     -> 13
1509 * - 13 * 4 = 52 < 64           -> M = 4
1510 *
1511 * So use pow(n, 4).
1512 */
1513static inline u32 ilog2_w(u64 n)
1514{
1515        return ilog2(n * n * n * n);
1516}
1517
1518static u32 shannon_entropy(struct heuristic_ws *ws)
1519{
1520        const u32 entropy_max = 8 * ilog2_w(2);
1521        u32 entropy_sum = 0;
1522        u32 p, p_base, sz_base;
1523        u32 i;
1524
1525        sz_base = ilog2_w(ws->sample_size);
1526        for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1527                p = ws->bucket[i].count;
1528                p_base = ilog2_w(p);
1529                entropy_sum += p * (sz_base - p_base);
1530        }
1531
1532        entropy_sum /= ws->sample_size;
1533        return entropy_sum * 100 / entropy_max;
1534}
1535
1536#define RADIX_BASE              4U
1537#define COUNTERS_SIZE           (1U << RADIX_BASE)
1538
1539static u8 get4bits(u64 num, int shift) {
1540        u8 low4bits;
1541
1542        num >>= shift;
1543        /* Reverse order */
1544        low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1545        return low4bits;
1546}
1547
1548/*
1549 * Use 4 bits as radix base
1550 * Use 16 u32 counters for calculating new position in buf array
1551 *
1552 * @array     - array that will be sorted
1553 * @array_buf - buffer array to store sorting results
1554 *              must be equal in size to @array
1555 * @num       - array size
1556 */
1557static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1558                       int num)
1559{
1560        u64 max_num;
1561        u64 buf_num;
1562        u32 counters[COUNTERS_SIZE];
1563        u32 new_addr;
1564        u32 addr;
1565        int bitlen;
1566        int shift;
1567        int i;
1568
1569        /*
1570         * Try avoid useless loop iterations for small numbers stored in big
1571         * counters.  Example: 48 33 4 ... in 64bit array
1572         */
1573        max_num = array[0].count;
1574        for (i = 1; i < num; i++) {
1575                buf_num = array[i].count;
1576                if (buf_num > max_num)
1577                        max_num = buf_num;
1578        }
1579
1580        buf_num = ilog2(max_num);
1581        bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1582
1583        shift = 0;
1584        while (shift < bitlen) {
1585                memset(counters, 0, sizeof(counters));
1586
1587                for (i = 0; i < num; i++) {
1588                        buf_num = array[i].count;
1589                        addr = get4bits(buf_num, shift);
1590                        counters[addr]++;
1591                }
1592
1593                for (i = 1; i < COUNTERS_SIZE; i++)
1594                        counters[i] += counters[i - 1];
1595
1596                for (i = num - 1; i >= 0; i--) {
1597                        buf_num = array[i].count;
1598                        addr = get4bits(buf_num, shift);
1599                        counters[addr]--;
1600                        new_addr = counters[addr];
1601                        array_buf[new_addr] = array[i];
1602                }
1603
1604                shift += RADIX_BASE;
1605
1606                /*
1607                 * Normal radix expects to move data from a temporary array, to
1608                 * the main one.  But that requires some CPU time. Avoid that
1609                 * by doing another sort iteration to original array instead of
1610                 * memcpy()
1611                 */
1612                memset(counters, 0, sizeof(counters));
1613
1614                for (i = 0; i < num; i ++) {
1615                        buf_num = array_buf[i].count;
1616                        addr = get4bits(buf_num, shift);
1617                        counters[addr]++;
1618                }
1619
1620                for (i = 1; i < COUNTERS_SIZE; i++)
1621                        counters[i] += counters[i - 1];
1622
1623                for (i = num - 1; i >= 0; i--) {
1624                        buf_num = array_buf[i].count;
1625                        addr = get4bits(buf_num, shift);
1626                        counters[addr]--;
1627                        new_addr = counters[addr];
1628                        array[new_addr] = array_buf[i];
1629                }
1630
1631                shift += RADIX_BASE;
1632        }
1633}
1634
1635/*
1636 * Size of the core byte set - how many bytes cover 90% of the sample
1637 *
1638 * There are several types of structured binary data that use nearly all byte
1639 * values. The distribution can be uniform and counts in all buckets will be
1640 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1641 *
1642 * Other possibility is normal (Gaussian) distribution, where the data could
1643 * be potentially compressible, but we have to take a few more steps to decide
1644 * how much.
1645 *
1646 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1647 *                       compression algo can easy fix that
1648 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1649 *                       probability is not compressible
1650 */
1651#define BYTE_CORE_SET_LOW               (64)
1652#define BYTE_CORE_SET_HIGH              (200)
1653
1654static int byte_core_set_size(struct heuristic_ws *ws)
1655{
1656        u32 i;
1657        u32 coreset_sum = 0;
1658        const u32 core_set_threshold = ws->sample_size * 90 / 100;
1659        struct bucket_item *bucket = ws->bucket;
1660
1661        /* Sort in reverse order */
1662        radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1663
1664        for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1665                coreset_sum += bucket[i].count;
1666
1667        if (coreset_sum > core_set_threshold)
1668                return i;
1669
1670        for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1671                coreset_sum += bucket[i].count;
1672                if (coreset_sum > core_set_threshold)
1673                        break;
1674        }
1675
1676        return i;
1677}
1678
1679/*
1680 * Count byte values in buckets.
1681 * This heuristic can detect textual data (configs, xml, json, html, etc).
1682 * Because in most text-like data byte set is restricted to limited number of
1683 * possible characters, and that restriction in most cases makes data easy to
1684 * compress.
1685 *
1686 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1687 *      less - compressible
1688 *      more - need additional analysis
1689 */
1690#define BYTE_SET_THRESHOLD              (64)
1691
1692static u32 byte_set_size(const struct heuristic_ws *ws)
1693{
1694        u32 i;
1695        u32 byte_set_size = 0;
1696
1697        for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1698                if (ws->bucket[i].count > 0)
1699                        byte_set_size++;
1700        }
1701
1702        /*
1703         * Continue collecting count of byte values in buckets.  If the byte
1704         * set size is bigger then the threshold, it's pointless to continue,
1705         * the detection technique would fail for this type of data.
1706         */
1707        for (; i < BUCKET_SIZE; i++) {
1708                if (ws->bucket[i].count > 0) {
1709                        byte_set_size++;
1710                        if (byte_set_size > BYTE_SET_THRESHOLD)
1711                                return byte_set_size;
1712                }
1713        }
1714
1715        return byte_set_size;
1716}
1717
1718static bool sample_repeated_patterns(struct heuristic_ws *ws)
1719{
1720        const u32 half_of_sample = ws->sample_size / 2;
1721        const u8 *data = ws->sample;
1722
1723        return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1724}
1725
1726static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1727                                     struct heuristic_ws *ws)
1728{
1729        struct page *page;
1730        u64 index, index_end;
1731        u32 i, curr_sample_pos;
1732        u8 *in_data;
1733
1734        /*
1735         * Compression handles the input data by chunks of 128KiB
1736         * (defined by BTRFS_MAX_UNCOMPRESSED)
1737         *
1738         * We do the same for the heuristic and loop over the whole range.
1739         *
1740         * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1741         * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1742         */
1743        if (end - start > BTRFS_MAX_UNCOMPRESSED)
1744                end = start + BTRFS_MAX_UNCOMPRESSED;
1745
1746        index = start >> PAGE_SHIFT;
1747        index_end = end >> PAGE_SHIFT;
1748
1749        /* Don't miss unaligned end */
1750        if (!IS_ALIGNED(end, PAGE_SIZE))
1751                index_end++;
1752
1753        curr_sample_pos = 0;
1754        while (index < index_end) {
1755                page = find_get_page(inode->i_mapping, index);
1756                in_data = kmap_local_page(page);
1757                /* Handle case where the start is not aligned to PAGE_SIZE */
1758                i = start % PAGE_SIZE;
1759                while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1760                        /* Don't sample any garbage from the last page */
1761                        if (start > end - SAMPLING_READ_SIZE)
1762                                break;
1763                        memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1764                                        SAMPLING_READ_SIZE);
1765                        i += SAMPLING_INTERVAL;
1766                        start += SAMPLING_INTERVAL;
1767                        curr_sample_pos += SAMPLING_READ_SIZE;
1768                }
1769                kunmap_local(in_data);
1770                put_page(page);
1771
1772                index++;
1773        }
1774
1775        ws->sample_size = curr_sample_pos;
1776}
1777
1778/*
1779 * Compression heuristic.
1780 *
1781 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1782 * quickly (compared to direct compression) detect data characteristics
1783 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1784 * data.
1785 *
1786 * The following types of analysis can be performed:
1787 * - detect mostly zero data
1788 * - detect data with low "byte set" size (text, etc)
1789 * - detect data with low/high "core byte" set
1790 *
1791 * Return non-zero if the compression should be done, 0 otherwise.
1792 */
1793int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1794{
1795        struct list_head *ws_list = get_workspace(0, 0);
1796        struct heuristic_ws *ws;
1797        u32 i;
1798        u8 byte;
1799        int ret = 0;
1800
1801        ws = list_entry(ws_list, struct heuristic_ws, list);
1802
1803        heuristic_collect_sample(inode, start, end, ws);
1804
1805        if (sample_repeated_patterns(ws)) {
1806                ret = 1;
1807                goto out;
1808        }
1809
1810        memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1811
1812        for (i = 0; i < ws->sample_size; i++) {
1813                byte = ws->sample[i];
1814                ws->bucket[byte].count++;
1815        }
1816
1817        i = byte_set_size(ws);
1818        if (i < BYTE_SET_THRESHOLD) {
1819                ret = 2;
1820                goto out;
1821        }
1822
1823        i = byte_core_set_size(ws);
1824        if (i <= BYTE_CORE_SET_LOW) {
1825                ret = 3;
1826                goto out;
1827        }
1828
1829        if (i >= BYTE_CORE_SET_HIGH) {
1830                ret = 0;
1831                goto out;
1832        }
1833
1834        i = shannon_entropy(ws);
1835        if (i <= ENTROPY_LVL_ACEPTABLE) {
1836                ret = 4;
1837                goto out;
1838        }
1839
1840        /*
1841         * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1842         * needed to give green light to compression.
1843         *
1844         * For now just assume that compression at that level is not worth the
1845         * resources because:
1846         *
1847         * 1. it is possible to defrag the data later
1848         *
1849         * 2. the data would turn out to be hardly compressible, eg. 150 byte
1850         * values, every bucket has counter at level ~54. The heuristic would
1851         * be confused. This can happen when data have some internal repeated
1852         * patterns like "abbacbbc...". This can be detected by analyzing
1853         * pairs of bytes, which is too costly.
1854         */
1855        if (i < ENTROPY_LVL_HIGH) {
1856                ret = 5;
1857                goto out;
1858        } else {
1859                ret = 0;
1860                goto out;
1861        }
1862
1863out:
1864        put_workspace(0, ws_list);
1865        return ret;
1866}
1867
1868/*
1869 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1870 * level, unrecognized string will set the default level
1871 */
1872unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1873{
1874        unsigned int level = 0;
1875        int ret;
1876
1877        if (!type)
1878                return 0;
1879
1880        if (str[0] == ':') {
1881                ret = kstrtouint(str + 1, 10, &level);
1882                if (ret)
1883                        level = 0;
1884        }
1885
1886        level = btrfs_compress_set_level(type, level);
1887
1888        return level;
1889}
1890