linux/fs/btrfs/ioctl.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
   8#include <linux/file.h>
   9#include <linux/fs.h>
  10#include <linux/fsnotify.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/time.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
  17#include <linux/namei.h>
  18#include <linux/writeback.h>
  19#include <linux/compat.h>
  20#include <linux/security.h>
  21#include <linux/xattr.h>
  22#include <linux/mm.h>
  23#include <linux/slab.h>
  24#include <linux/blkdev.h>
  25#include <linux/uuid.h>
  26#include <linux/btrfs.h>
  27#include <linux/uaccess.h>
  28#include <linux/iversion.h>
  29#include <linux/fileattr.h>
  30#include <linux/fsverity.h>
  31#include "ctree.h"
  32#include "disk-io.h"
  33#include "export.h"
  34#include "transaction.h"
  35#include "btrfs_inode.h"
  36#include "print-tree.h"
  37#include "volumes.h"
  38#include "locking.h"
  39#include "backref.h"
  40#include "rcu-string.h"
  41#include "send.h"
  42#include "dev-replace.h"
  43#include "props.h"
  44#include "sysfs.h"
  45#include "qgroup.h"
  46#include "tree-log.h"
  47#include "compression.h"
  48#include "space-info.h"
  49#include "delalloc-space.h"
  50#include "block-group.h"
  51#include "subpage.h"
  52
  53#ifdef CONFIG_64BIT
  54/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
  55 * structures are incorrect, as the timespec structure from userspace
  56 * is 4 bytes too small. We define these alternatives here to teach
  57 * the kernel about the 32-bit struct packing.
  58 */
  59struct btrfs_ioctl_timespec_32 {
  60        __u64 sec;
  61        __u32 nsec;
  62} __attribute__ ((__packed__));
  63
  64struct btrfs_ioctl_received_subvol_args_32 {
  65        char    uuid[BTRFS_UUID_SIZE];  /* in */
  66        __u64   stransid;               /* in */
  67        __u64   rtransid;               /* out */
  68        struct btrfs_ioctl_timespec_32 stime; /* in */
  69        struct btrfs_ioctl_timespec_32 rtime; /* out */
  70        __u64   flags;                  /* in */
  71        __u64   reserved[16];           /* in */
  72} __attribute__ ((__packed__));
  73
  74#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
  75                                struct btrfs_ioctl_received_subvol_args_32)
  76#endif
  77
  78#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
  79struct btrfs_ioctl_send_args_32 {
  80        __s64 send_fd;                  /* in */
  81        __u64 clone_sources_count;      /* in */
  82        compat_uptr_t clone_sources;    /* in */
  83        __u64 parent_root;              /* in */
  84        __u64 flags;                    /* in */
  85        __u32 version;                  /* in */
  86        __u8  reserved[28];             /* in */
  87} __attribute__ ((__packed__));
  88
  89#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
  90                               struct btrfs_ioctl_send_args_32)
  91#endif
  92
  93/* Mask out flags that are inappropriate for the given type of inode. */
  94static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
  95                unsigned int flags)
  96{
  97        if (S_ISDIR(inode->i_mode))
  98                return flags;
  99        else if (S_ISREG(inode->i_mode))
 100                return flags & ~FS_DIRSYNC_FL;
 101        else
 102                return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
 103}
 104
 105/*
 106 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
 107 * ioctl.
 108 */
 109static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
 110{
 111        unsigned int iflags = 0;
 112        u32 flags = binode->flags;
 113        u32 ro_flags = binode->ro_flags;
 114
 115        if (flags & BTRFS_INODE_SYNC)
 116                iflags |= FS_SYNC_FL;
 117        if (flags & BTRFS_INODE_IMMUTABLE)
 118                iflags |= FS_IMMUTABLE_FL;
 119        if (flags & BTRFS_INODE_APPEND)
 120                iflags |= FS_APPEND_FL;
 121        if (flags & BTRFS_INODE_NODUMP)
 122                iflags |= FS_NODUMP_FL;
 123        if (flags & BTRFS_INODE_NOATIME)
 124                iflags |= FS_NOATIME_FL;
 125        if (flags & BTRFS_INODE_DIRSYNC)
 126                iflags |= FS_DIRSYNC_FL;
 127        if (flags & BTRFS_INODE_NODATACOW)
 128                iflags |= FS_NOCOW_FL;
 129        if (ro_flags & BTRFS_INODE_RO_VERITY)
 130                iflags |= FS_VERITY_FL;
 131
 132        if (flags & BTRFS_INODE_NOCOMPRESS)
 133                iflags |= FS_NOCOMP_FL;
 134        else if (flags & BTRFS_INODE_COMPRESS)
 135                iflags |= FS_COMPR_FL;
 136
 137        return iflags;
 138}
 139
 140/*
 141 * Update inode->i_flags based on the btrfs internal flags.
 142 */
 143void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
 144{
 145        struct btrfs_inode *binode = BTRFS_I(inode);
 146        unsigned int new_fl = 0;
 147
 148        if (binode->flags & BTRFS_INODE_SYNC)
 149                new_fl |= S_SYNC;
 150        if (binode->flags & BTRFS_INODE_IMMUTABLE)
 151                new_fl |= S_IMMUTABLE;
 152        if (binode->flags & BTRFS_INODE_APPEND)
 153                new_fl |= S_APPEND;
 154        if (binode->flags & BTRFS_INODE_NOATIME)
 155                new_fl |= S_NOATIME;
 156        if (binode->flags & BTRFS_INODE_DIRSYNC)
 157                new_fl |= S_DIRSYNC;
 158        if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
 159                new_fl |= S_VERITY;
 160
 161        set_mask_bits(&inode->i_flags,
 162                      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
 163                      S_VERITY, new_fl);
 164}
 165
 166/*
 167 * Check if @flags are a supported and valid set of FS_*_FL flags and that
 168 * the old and new flags are not conflicting
 169 */
 170static int check_fsflags(unsigned int old_flags, unsigned int flags)
 171{
 172        if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
 173                      FS_NOATIME_FL | FS_NODUMP_FL | \
 174                      FS_SYNC_FL | FS_DIRSYNC_FL | \
 175                      FS_NOCOMP_FL | FS_COMPR_FL |
 176                      FS_NOCOW_FL))
 177                return -EOPNOTSUPP;
 178
 179        /* COMPR and NOCOMP on new/old are valid */
 180        if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
 181                return -EINVAL;
 182
 183        if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
 184                return -EINVAL;
 185
 186        /* NOCOW and compression options are mutually exclusive */
 187        if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
 188                return -EINVAL;
 189        if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
 190                return -EINVAL;
 191
 192        return 0;
 193}
 194
 195static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
 196                                    unsigned int flags)
 197{
 198        if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
 199                return -EPERM;
 200
 201        return 0;
 202}
 203
 204/*
 205 * Set flags/xflags from the internal inode flags. The remaining items of
 206 * fsxattr are zeroed.
 207 */
 208int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
 209{
 210        struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
 211
 212        fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
 213        return 0;
 214}
 215
 216int btrfs_fileattr_set(struct user_namespace *mnt_userns,
 217                       struct dentry *dentry, struct fileattr *fa)
 218{
 219        struct inode *inode = d_inode(dentry);
 220        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 221        struct btrfs_inode *binode = BTRFS_I(inode);
 222        struct btrfs_root *root = binode->root;
 223        struct btrfs_trans_handle *trans;
 224        unsigned int fsflags, old_fsflags;
 225        int ret;
 226        const char *comp = NULL;
 227        u32 binode_flags;
 228
 229        if (btrfs_root_readonly(root))
 230                return -EROFS;
 231
 232        if (fileattr_has_fsx(fa))
 233                return -EOPNOTSUPP;
 234
 235        fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
 236        old_fsflags = btrfs_inode_flags_to_fsflags(binode);
 237        ret = check_fsflags(old_fsflags, fsflags);
 238        if (ret)
 239                return ret;
 240
 241        ret = check_fsflags_compatible(fs_info, fsflags);
 242        if (ret)
 243                return ret;
 244
 245        binode_flags = binode->flags;
 246        if (fsflags & FS_SYNC_FL)
 247                binode_flags |= BTRFS_INODE_SYNC;
 248        else
 249                binode_flags &= ~BTRFS_INODE_SYNC;
 250        if (fsflags & FS_IMMUTABLE_FL)
 251                binode_flags |= BTRFS_INODE_IMMUTABLE;
 252        else
 253                binode_flags &= ~BTRFS_INODE_IMMUTABLE;
 254        if (fsflags & FS_APPEND_FL)
 255                binode_flags |= BTRFS_INODE_APPEND;
 256        else
 257                binode_flags &= ~BTRFS_INODE_APPEND;
 258        if (fsflags & FS_NODUMP_FL)
 259                binode_flags |= BTRFS_INODE_NODUMP;
 260        else
 261                binode_flags &= ~BTRFS_INODE_NODUMP;
 262        if (fsflags & FS_NOATIME_FL)
 263                binode_flags |= BTRFS_INODE_NOATIME;
 264        else
 265                binode_flags &= ~BTRFS_INODE_NOATIME;
 266
 267        /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
 268        if (!fa->flags_valid) {
 269                /* 1 item for the inode */
 270                trans = btrfs_start_transaction(root, 1);
 271                if (IS_ERR(trans))
 272                        return PTR_ERR(trans);
 273                goto update_flags;
 274        }
 275
 276        if (fsflags & FS_DIRSYNC_FL)
 277                binode_flags |= BTRFS_INODE_DIRSYNC;
 278        else
 279                binode_flags &= ~BTRFS_INODE_DIRSYNC;
 280        if (fsflags & FS_NOCOW_FL) {
 281                if (S_ISREG(inode->i_mode)) {
 282                        /*
 283                         * It's safe to turn csums off here, no extents exist.
 284                         * Otherwise we want the flag to reflect the real COW
 285                         * status of the file and will not set it.
 286                         */
 287                        if (inode->i_size == 0)
 288                                binode_flags |= BTRFS_INODE_NODATACOW |
 289                                                BTRFS_INODE_NODATASUM;
 290                } else {
 291                        binode_flags |= BTRFS_INODE_NODATACOW;
 292                }
 293        } else {
 294                /*
 295                 * Revert back under same assumptions as above
 296                 */
 297                if (S_ISREG(inode->i_mode)) {
 298                        if (inode->i_size == 0)
 299                                binode_flags &= ~(BTRFS_INODE_NODATACOW |
 300                                                  BTRFS_INODE_NODATASUM);
 301                } else {
 302                        binode_flags &= ~BTRFS_INODE_NODATACOW;
 303                }
 304        }
 305
 306        /*
 307         * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
 308         * flag may be changed automatically if compression code won't make
 309         * things smaller.
 310         */
 311        if (fsflags & FS_NOCOMP_FL) {
 312                binode_flags &= ~BTRFS_INODE_COMPRESS;
 313                binode_flags |= BTRFS_INODE_NOCOMPRESS;
 314        } else if (fsflags & FS_COMPR_FL) {
 315
 316                if (IS_SWAPFILE(inode))
 317                        return -ETXTBSY;
 318
 319                binode_flags |= BTRFS_INODE_COMPRESS;
 320                binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
 321
 322                comp = btrfs_compress_type2str(fs_info->compress_type);
 323                if (!comp || comp[0] == 0)
 324                        comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
 325        } else {
 326                binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
 327        }
 328
 329        /*
 330         * 1 for inode item
 331         * 2 for properties
 332         */
 333        trans = btrfs_start_transaction(root, 3);
 334        if (IS_ERR(trans))
 335                return PTR_ERR(trans);
 336
 337        if (comp) {
 338                ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
 339                                     strlen(comp), 0);
 340                if (ret) {
 341                        btrfs_abort_transaction(trans, ret);
 342                        goto out_end_trans;
 343                }
 344        } else {
 345                ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
 346                                     0, 0);
 347                if (ret && ret != -ENODATA) {
 348                        btrfs_abort_transaction(trans, ret);
 349                        goto out_end_trans;
 350                }
 351        }
 352
 353update_flags:
 354        binode->flags = binode_flags;
 355        btrfs_sync_inode_flags_to_i_flags(inode);
 356        inode_inc_iversion(inode);
 357        inode->i_ctime = current_time(inode);
 358        ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
 359
 360 out_end_trans:
 361        btrfs_end_transaction(trans);
 362        return ret;
 363}
 364
 365/*
 366 * Start exclusive operation @type, return true on success
 367 */
 368bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
 369                        enum btrfs_exclusive_operation type)
 370{
 371        bool ret = false;
 372
 373        spin_lock(&fs_info->super_lock);
 374        if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
 375                fs_info->exclusive_operation = type;
 376                ret = true;
 377        }
 378        spin_unlock(&fs_info->super_lock);
 379
 380        return ret;
 381}
 382
 383/*
 384 * Conditionally allow to enter the exclusive operation in case it's compatible
 385 * with the running one.  This must be paired with btrfs_exclop_start_unlock and
 386 * btrfs_exclop_finish.
 387 *
 388 * Compatibility:
 389 * - the same type is already running
 390 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
 391 *   must check the condition first that would allow none -> @type
 392 */
 393bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
 394                                 enum btrfs_exclusive_operation type)
 395{
 396        spin_lock(&fs_info->super_lock);
 397        if (fs_info->exclusive_operation == type)
 398                return true;
 399
 400        spin_unlock(&fs_info->super_lock);
 401        return false;
 402}
 403
 404void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
 405{
 406        spin_unlock(&fs_info->super_lock);
 407}
 408
 409void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
 410{
 411        spin_lock(&fs_info->super_lock);
 412        WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
 413        spin_unlock(&fs_info->super_lock);
 414        sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
 415}
 416
 417static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
 418{
 419        struct inode *inode = file_inode(file);
 420
 421        return put_user(inode->i_generation, arg);
 422}
 423
 424static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
 425                                        void __user *arg)
 426{
 427        struct btrfs_device *device;
 428        struct request_queue *q;
 429        struct fstrim_range range;
 430        u64 minlen = ULLONG_MAX;
 431        u64 num_devices = 0;
 432        int ret;
 433
 434        if (!capable(CAP_SYS_ADMIN))
 435                return -EPERM;
 436
 437        /*
 438         * btrfs_trim_block_group() depends on space cache, which is not
 439         * available in zoned filesystem. So, disallow fitrim on a zoned
 440         * filesystem for now.
 441         */
 442        if (btrfs_is_zoned(fs_info))
 443                return -EOPNOTSUPP;
 444
 445        /*
 446         * If the fs is mounted with nologreplay, which requires it to be
 447         * mounted in RO mode as well, we can not allow discard on free space
 448         * inside block groups, because log trees refer to extents that are not
 449         * pinned in a block group's free space cache (pinning the extents is
 450         * precisely the first phase of replaying a log tree).
 451         */
 452        if (btrfs_test_opt(fs_info, NOLOGREPLAY))
 453                return -EROFS;
 454
 455        rcu_read_lock();
 456        list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
 457                                dev_list) {
 458                if (!device->bdev)
 459                        continue;
 460                q = bdev_get_queue(device->bdev);
 461                if (blk_queue_discard(q)) {
 462                        num_devices++;
 463                        minlen = min_t(u64, q->limits.discard_granularity,
 464                                     minlen);
 465                }
 466        }
 467        rcu_read_unlock();
 468
 469        if (!num_devices)
 470                return -EOPNOTSUPP;
 471        if (copy_from_user(&range, arg, sizeof(range)))
 472                return -EFAULT;
 473
 474        /*
 475         * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
 476         * block group is in the logical address space, which can be any
 477         * sectorsize aligned bytenr in  the range [0, U64_MAX].
 478         */
 479        if (range.len < fs_info->sb->s_blocksize)
 480                return -EINVAL;
 481
 482        range.minlen = max(range.minlen, minlen);
 483        ret = btrfs_trim_fs(fs_info, &range);
 484        if (ret < 0)
 485                return ret;
 486
 487        if (copy_to_user(arg, &range, sizeof(range)))
 488                return -EFAULT;
 489
 490        return 0;
 491}
 492
 493int __pure btrfs_is_empty_uuid(u8 *uuid)
 494{
 495        int i;
 496
 497        for (i = 0; i < BTRFS_UUID_SIZE; i++) {
 498                if (uuid[i])
 499                        return 0;
 500        }
 501        return 1;
 502}
 503
 504static noinline int create_subvol(struct user_namespace *mnt_userns,
 505                                  struct inode *dir, struct dentry *dentry,
 506                                  const char *name, int namelen,
 507                                  struct btrfs_qgroup_inherit *inherit)
 508{
 509        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 510        struct btrfs_trans_handle *trans;
 511        struct btrfs_key key;
 512        struct btrfs_root_item *root_item;
 513        struct btrfs_inode_item *inode_item;
 514        struct extent_buffer *leaf;
 515        struct btrfs_root *root = BTRFS_I(dir)->root;
 516        struct btrfs_root *new_root;
 517        struct btrfs_block_rsv block_rsv;
 518        struct timespec64 cur_time = current_time(dir);
 519        struct inode *inode;
 520        int ret;
 521        int err;
 522        dev_t anon_dev = 0;
 523        u64 objectid;
 524        u64 index = 0;
 525
 526        root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
 527        if (!root_item)
 528                return -ENOMEM;
 529
 530        ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
 531        if (ret)
 532                goto fail_free;
 533
 534        ret = get_anon_bdev(&anon_dev);
 535        if (ret < 0)
 536                goto fail_free;
 537
 538        /*
 539         * Don't create subvolume whose level is not zero. Or qgroup will be
 540         * screwed up since it assumes subvolume qgroup's level to be 0.
 541         */
 542        if (btrfs_qgroup_level(objectid)) {
 543                ret = -ENOSPC;
 544                goto fail_free;
 545        }
 546
 547        btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
 548        /*
 549         * The same as the snapshot creation, please see the comment
 550         * of create_snapshot().
 551         */
 552        ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
 553        if (ret)
 554                goto fail_free;
 555
 556        trans = btrfs_start_transaction(root, 0);
 557        if (IS_ERR(trans)) {
 558                ret = PTR_ERR(trans);
 559                btrfs_subvolume_release_metadata(root, &block_rsv);
 560                goto fail_free;
 561        }
 562        trans->block_rsv = &block_rsv;
 563        trans->bytes_reserved = block_rsv.size;
 564
 565        ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
 566        if (ret)
 567                goto fail;
 568
 569        leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
 570                                      BTRFS_NESTING_NORMAL);
 571        if (IS_ERR(leaf)) {
 572                ret = PTR_ERR(leaf);
 573                goto fail;
 574        }
 575
 576        btrfs_mark_buffer_dirty(leaf);
 577
 578        inode_item = &root_item->inode;
 579        btrfs_set_stack_inode_generation(inode_item, 1);
 580        btrfs_set_stack_inode_size(inode_item, 3);
 581        btrfs_set_stack_inode_nlink(inode_item, 1);
 582        btrfs_set_stack_inode_nbytes(inode_item,
 583                                     fs_info->nodesize);
 584        btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
 585
 586        btrfs_set_root_flags(root_item, 0);
 587        btrfs_set_root_limit(root_item, 0);
 588        btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
 589
 590        btrfs_set_root_bytenr(root_item, leaf->start);
 591        btrfs_set_root_generation(root_item, trans->transid);
 592        btrfs_set_root_level(root_item, 0);
 593        btrfs_set_root_refs(root_item, 1);
 594        btrfs_set_root_used(root_item, leaf->len);
 595        btrfs_set_root_last_snapshot(root_item, 0);
 596
 597        btrfs_set_root_generation_v2(root_item,
 598                        btrfs_root_generation(root_item));
 599        generate_random_guid(root_item->uuid);
 600        btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
 601        btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
 602        root_item->ctime = root_item->otime;
 603        btrfs_set_root_ctransid(root_item, trans->transid);
 604        btrfs_set_root_otransid(root_item, trans->transid);
 605
 606        btrfs_tree_unlock(leaf);
 607
 608        btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
 609
 610        key.objectid = objectid;
 611        key.offset = 0;
 612        key.type = BTRFS_ROOT_ITEM_KEY;
 613        ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
 614                                root_item);
 615        if (ret) {
 616                /*
 617                 * Since we don't abort the transaction in this case, free the
 618                 * tree block so that we don't leak space and leave the
 619                 * filesystem in an inconsistent state (an extent item in the
 620                 * extent tree with a backreference for a root that does not
 621                 * exists).
 622                 */
 623                btrfs_tree_lock(leaf);
 624                btrfs_clean_tree_block(leaf);
 625                btrfs_tree_unlock(leaf);
 626                btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
 627                free_extent_buffer(leaf);
 628                goto fail;
 629        }
 630
 631        free_extent_buffer(leaf);
 632        leaf = NULL;
 633
 634        key.offset = (u64)-1;
 635        new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
 636        if (IS_ERR(new_root)) {
 637                free_anon_bdev(anon_dev);
 638                ret = PTR_ERR(new_root);
 639                btrfs_abort_transaction(trans, ret);
 640                goto fail;
 641        }
 642        /* Freeing will be done in btrfs_put_root() of new_root */
 643        anon_dev = 0;
 644
 645        ret = btrfs_record_root_in_trans(trans, new_root);
 646        if (ret) {
 647                btrfs_put_root(new_root);
 648                btrfs_abort_transaction(trans, ret);
 649                goto fail;
 650        }
 651
 652        ret = btrfs_create_subvol_root(trans, new_root, root, mnt_userns);
 653        btrfs_put_root(new_root);
 654        if (ret) {
 655                /* We potentially lose an unused inode item here */
 656                btrfs_abort_transaction(trans, ret);
 657                goto fail;
 658        }
 659
 660        /*
 661         * insert the directory item
 662         */
 663        ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
 664        if (ret) {
 665                btrfs_abort_transaction(trans, ret);
 666                goto fail;
 667        }
 668
 669        ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
 670                                    BTRFS_FT_DIR, index);
 671        if (ret) {
 672                btrfs_abort_transaction(trans, ret);
 673                goto fail;
 674        }
 675
 676        btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
 677        ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
 678        if (ret) {
 679                btrfs_abort_transaction(trans, ret);
 680                goto fail;
 681        }
 682
 683        ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
 684                                 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
 685        if (ret) {
 686                btrfs_abort_transaction(trans, ret);
 687                goto fail;
 688        }
 689
 690        ret = btrfs_uuid_tree_add(trans, root_item->uuid,
 691                                  BTRFS_UUID_KEY_SUBVOL, objectid);
 692        if (ret)
 693                btrfs_abort_transaction(trans, ret);
 694
 695fail:
 696        kfree(root_item);
 697        trans->block_rsv = NULL;
 698        trans->bytes_reserved = 0;
 699        btrfs_subvolume_release_metadata(root, &block_rsv);
 700
 701        err = btrfs_commit_transaction(trans);
 702        if (err && !ret)
 703                ret = err;
 704
 705        if (!ret) {
 706                inode = btrfs_lookup_dentry(dir, dentry);
 707                if (IS_ERR(inode))
 708                        return PTR_ERR(inode);
 709                d_instantiate(dentry, inode);
 710        }
 711        return ret;
 712
 713fail_free:
 714        if (anon_dev)
 715                free_anon_bdev(anon_dev);
 716        kfree(root_item);
 717        return ret;
 718}
 719
 720static int create_snapshot(struct btrfs_root *root, struct inode *dir,
 721                           struct dentry *dentry, bool readonly,
 722                           struct btrfs_qgroup_inherit *inherit)
 723{
 724        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 725        struct inode *inode;
 726        struct btrfs_pending_snapshot *pending_snapshot;
 727        struct btrfs_trans_handle *trans;
 728        int ret;
 729
 730        if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 731                return -EINVAL;
 732
 733        if (atomic_read(&root->nr_swapfiles)) {
 734                btrfs_warn(fs_info,
 735                           "cannot snapshot subvolume with active swapfile");
 736                return -ETXTBSY;
 737        }
 738
 739        pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
 740        if (!pending_snapshot)
 741                return -ENOMEM;
 742
 743        ret = get_anon_bdev(&pending_snapshot->anon_dev);
 744        if (ret < 0)
 745                goto free_pending;
 746        pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
 747                        GFP_KERNEL);
 748        pending_snapshot->path = btrfs_alloc_path();
 749        if (!pending_snapshot->root_item || !pending_snapshot->path) {
 750                ret = -ENOMEM;
 751                goto free_pending;
 752        }
 753
 754        btrfs_init_block_rsv(&pending_snapshot->block_rsv,
 755                             BTRFS_BLOCK_RSV_TEMP);
 756        /*
 757         * 1 - parent dir inode
 758         * 2 - dir entries
 759         * 1 - root item
 760         * 2 - root ref/backref
 761         * 1 - root of snapshot
 762         * 1 - UUID item
 763         */
 764        ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
 765                                        &pending_snapshot->block_rsv, 8,
 766                                        false);
 767        if (ret)
 768                goto free_pending;
 769
 770        pending_snapshot->dentry = dentry;
 771        pending_snapshot->root = root;
 772        pending_snapshot->readonly = readonly;
 773        pending_snapshot->dir = dir;
 774        pending_snapshot->inherit = inherit;
 775
 776        trans = btrfs_start_transaction(root, 0);
 777        if (IS_ERR(trans)) {
 778                ret = PTR_ERR(trans);
 779                goto fail;
 780        }
 781
 782        spin_lock(&fs_info->trans_lock);
 783        list_add(&pending_snapshot->list,
 784                 &trans->transaction->pending_snapshots);
 785        spin_unlock(&fs_info->trans_lock);
 786
 787        ret = btrfs_commit_transaction(trans);
 788        if (ret)
 789                goto fail;
 790
 791        ret = pending_snapshot->error;
 792        if (ret)
 793                goto fail;
 794
 795        ret = btrfs_orphan_cleanup(pending_snapshot->snap);
 796        if (ret)
 797                goto fail;
 798
 799        inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
 800        if (IS_ERR(inode)) {
 801                ret = PTR_ERR(inode);
 802                goto fail;
 803        }
 804
 805        d_instantiate(dentry, inode);
 806        ret = 0;
 807        pending_snapshot->anon_dev = 0;
 808fail:
 809        /* Prevent double freeing of anon_dev */
 810        if (ret && pending_snapshot->snap)
 811                pending_snapshot->snap->anon_dev = 0;
 812        btrfs_put_root(pending_snapshot->snap);
 813        btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
 814free_pending:
 815        if (pending_snapshot->anon_dev)
 816                free_anon_bdev(pending_snapshot->anon_dev);
 817        kfree(pending_snapshot->root_item);
 818        btrfs_free_path(pending_snapshot->path);
 819        kfree(pending_snapshot);
 820
 821        return ret;
 822}
 823
 824/*  copy of may_delete in fs/namei.c()
 825 *      Check whether we can remove a link victim from directory dir, check
 826 *  whether the type of victim is right.
 827 *  1. We can't do it if dir is read-only (done in permission())
 828 *  2. We should have write and exec permissions on dir
 829 *  3. We can't remove anything from append-only dir
 830 *  4. We can't do anything with immutable dir (done in permission())
 831 *  5. If the sticky bit on dir is set we should either
 832 *      a. be owner of dir, or
 833 *      b. be owner of victim, or
 834 *      c. have CAP_FOWNER capability
 835 *  6. If the victim is append-only or immutable we can't do anything with
 836 *     links pointing to it.
 837 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
 838 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
 839 *  9. We can't remove a root or mountpoint.
 840 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
 841 *     nfs_async_unlink().
 842 */
 843
 844static int btrfs_may_delete(struct user_namespace *mnt_userns,
 845                            struct inode *dir, struct dentry *victim, int isdir)
 846{
 847        int error;
 848
 849        if (d_really_is_negative(victim))
 850                return -ENOENT;
 851
 852        BUG_ON(d_inode(victim->d_parent) != dir);
 853        audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
 854
 855        error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
 856        if (error)
 857                return error;
 858        if (IS_APPEND(dir))
 859                return -EPERM;
 860        if (check_sticky(mnt_userns, dir, d_inode(victim)) ||
 861            IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
 862            IS_SWAPFILE(d_inode(victim)))
 863                return -EPERM;
 864        if (isdir) {
 865                if (!d_is_dir(victim))
 866                        return -ENOTDIR;
 867                if (IS_ROOT(victim))
 868                        return -EBUSY;
 869        } else if (d_is_dir(victim))
 870                return -EISDIR;
 871        if (IS_DEADDIR(dir))
 872                return -ENOENT;
 873        if (victim->d_flags & DCACHE_NFSFS_RENAMED)
 874                return -EBUSY;
 875        return 0;
 876}
 877
 878/* copy of may_create in fs/namei.c() */
 879static inline int btrfs_may_create(struct user_namespace *mnt_userns,
 880                                   struct inode *dir, struct dentry *child)
 881{
 882        if (d_really_is_positive(child))
 883                return -EEXIST;
 884        if (IS_DEADDIR(dir))
 885                return -ENOENT;
 886        if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
 887                return -EOVERFLOW;
 888        return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
 889}
 890
 891/*
 892 * Create a new subvolume below @parent.  This is largely modeled after
 893 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
 894 * inside this filesystem so it's quite a bit simpler.
 895 */
 896static noinline int btrfs_mksubvol(const struct path *parent,
 897                                   struct user_namespace *mnt_userns,
 898                                   const char *name, int namelen,
 899                                   struct btrfs_root *snap_src,
 900                                   bool readonly,
 901                                   struct btrfs_qgroup_inherit *inherit)
 902{
 903        struct inode *dir = d_inode(parent->dentry);
 904        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 905        struct dentry *dentry;
 906        int error;
 907
 908        error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
 909        if (error == -EINTR)
 910                return error;
 911
 912        dentry = lookup_one(mnt_userns, name, parent->dentry, namelen);
 913        error = PTR_ERR(dentry);
 914        if (IS_ERR(dentry))
 915                goto out_unlock;
 916
 917        error = btrfs_may_create(mnt_userns, dir, dentry);
 918        if (error)
 919                goto out_dput;
 920
 921        /*
 922         * even if this name doesn't exist, we may get hash collisions.
 923         * check for them now when we can safely fail
 924         */
 925        error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
 926                                               dir->i_ino, name,
 927                                               namelen);
 928        if (error)
 929                goto out_dput;
 930
 931        down_read(&fs_info->subvol_sem);
 932
 933        if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
 934                goto out_up_read;
 935
 936        if (snap_src)
 937                error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
 938        else
 939                error = create_subvol(mnt_userns, dir, dentry, name, namelen, inherit);
 940
 941        if (!error)
 942                fsnotify_mkdir(dir, dentry);
 943out_up_read:
 944        up_read(&fs_info->subvol_sem);
 945out_dput:
 946        dput(dentry);
 947out_unlock:
 948        btrfs_inode_unlock(dir, 0);
 949        return error;
 950}
 951
 952static noinline int btrfs_mksnapshot(const struct path *parent,
 953                                   struct user_namespace *mnt_userns,
 954                                   const char *name, int namelen,
 955                                   struct btrfs_root *root,
 956                                   bool readonly,
 957                                   struct btrfs_qgroup_inherit *inherit)
 958{
 959        int ret;
 960        bool snapshot_force_cow = false;
 961
 962        /*
 963         * Force new buffered writes to reserve space even when NOCOW is
 964         * possible. This is to avoid later writeback (running dealloc) to
 965         * fallback to COW mode and unexpectedly fail with ENOSPC.
 966         */
 967        btrfs_drew_read_lock(&root->snapshot_lock);
 968
 969        ret = btrfs_start_delalloc_snapshot(root, false);
 970        if (ret)
 971                goto out;
 972
 973        /*
 974         * All previous writes have started writeback in NOCOW mode, so now
 975         * we force future writes to fallback to COW mode during snapshot
 976         * creation.
 977         */
 978        atomic_inc(&root->snapshot_force_cow);
 979        snapshot_force_cow = true;
 980
 981        btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
 982
 983        ret = btrfs_mksubvol(parent, mnt_userns, name, namelen,
 984                             root, readonly, inherit);
 985out:
 986        if (snapshot_force_cow)
 987                atomic_dec(&root->snapshot_force_cow);
 988        btrfs_drew_read_unlock(&root->snapshot_lock);
 989        return ret;
 990}
 991
 992static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
 993                                               bool locked)
 994{
 995        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 996        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 997        struct extent_map *em;
 998        const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
 999
1000        /*
1001         * hopefully we have this extent in the tree already, try without
1002         * the full extent lock
1003         */
1004        read_lock(&em_tree->lock);
1005        em = lookup_extent_mapping(em_tree, start, sectorsize);
1006        read_unlock(&em_tree->lock);
1007
1008        if (!em) {
1009                struct extent_state *cached = NULL;
1010                u64 end = start + sectorsize - 1;
1011
1012                /* get the big lock and read metadata off disk */
1013                if (!locked)
1014                        lock_extent_bits(io_tree, start, end, &cached);
1015                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, sectorsize);
1016                if (!locked)
1017                        unlock_extent_cached(io_tree, start, end, &cached);
1018
1019                if (IS_ERR(em))
1020                        return NULL;
1021        }
1022
1023        return em;
1024}
1025
1026static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
1027                                     bool locked)
1028{
1029        struct extent_map *next;
1030        bool ret = true;
1031
1032        /* this is the last extent */
1033        if (em->start + em->len >= i_size_read(inode))
1034                return false;
1035
1036        next = defrag_lookup_extent(inode, em->start + em->len, locked);
1037        if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1038                ret = false;
1039        else if ((em->block_start + em->block_len == next->block_start) &&
1040                 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1041                ret = false;
1042
1043        free_extent_map(next);
1044        return ret;
1045}
1046
1047/*
1048 * Prepare one page to be defragged.
1049 *
1050 * This will ensure:
1051 *
1052 * - Returned page is locked and has been set up properly.
1053 * - No ordered extent exists in the page.
1054 * - The page is uptodate.
1055 *
1056 * NOTE: Caller should also wait for page writeback after the cluster is
1057 * prepared, here we don't do writeback wait for each page.
1058 */
1059static struct page *defrag_prepare_one_page(struct btrfs_inode *inode,
1060                                            pgoff_t index)
1061{
1062        struct address_space *mapping = inode->vfs_inode.i_mapping;
1063        gfp_t mask = btrfs_alloc_write_mask(mapping);
1064        u64 page_start = (u64)index << PAGE_SHIFT;
1065        u64 page_end = page_start + PAGE_SIZE - 1;
1066        struct extent_state *cached_state = NULL;
1067        struct page *page;
1068        int ret;
1069
1070again:
1071        page = find_or_create_page(mapping, index, mask);
1072        if (!page)
1073                return ERR_PTR(-ENOMEM);
1074
1075        /*
1076         * Since we can defragment files opened read-only, we can encounter
1077         * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
1078         * can't do I/O using huge pages yet, so return an error for now.
1079         * Filesystem transparent huge pages are typically only used for
1080         * executables that explicitly enable them, so this isn't very
1081         * restrictive.
1082         */
1083        if (PageCompound(page)) {
1084                unlock_page(page);
1085                put_page(page);
1086                return ERR_PTR(-ETXTBSY);
1087        }
1088
1089        ret = set_page_extent_mapped(page);
1090        if (ret < 0) {
1091                unlock_page(page);
1092                put_page(page);
1093                return ERR_PTR(ret);
1094        }
1095
1096        /* Wait for any existing ordered extent in the range */
1097        while (1) {
1098                struct btrfs_ordered_extent *ordered;
1099
1100                lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
1101                ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
1102                unlock_extent_cached(&inode->io_tree, page_start, page_end,
1103                                     &cached_state);
1104                if (!ordered)
1105                        break;
1106
1107                unlock_page(page);
1108                btrfs_start_ordered_extent(ordered, 1);
1109                btrfs_put_ordered_extent(ordered);
1110                lock_page(page);
1111                /*
1112                 * We unlocked the page above, so we need check if it was
1113                 * released or not.
1114                 */
1115                if (page->mapping != mapping || !PagePrivate(page)) {
1116                        unlock_page(page);
1117                        put_page(page);
1118                        goto again;
1119                }
1120        }
1121
1122        /*
1123         * Now the page range has no ordered extent any more.  Read the page to
1124         * make it uptodate.
1125         */
1126        if (!PageUptodate(page)) {
1127                btrfs_readpage(NULL, page);
1128                lock_page(page);
1129                if (page->mapping != mapping || !PagePrivate(page)) {
1130                        unlock_page(page);
1131                        put_page(page);
1132                        goto again;
1133                }
1134                if (!PageUptodate(page)) {
1135                        unlock_page(page);
1136                        put_page(page);
1137                        return ERR_PTR(-EIO);
1138                }
1139        }
1140        return page;
1141}
1142
1143struct defrag_target_range {
1144        struct list_head list;
1145        u64 start;
1146        u64 len;
1147};
1148
1149/*
1150 * Collect all valid target extents.
1151 *
1152 * @start:         file offset to lookup
1153 * @len:           length to lookup
1154 * @extent_thresh: file extent size threshold, any extent size >= this value
1155 *                 will be ignored
1156 * @newer_than:    only defrag extents newer than this value
1157 * @do_compress:   whether the defrag is doing compression
1158 *                 if true, @extent_thresh will be ignored and all regular
1159 *                 file extents meeting @newer_than will be targets.
1160 * @locked:        if the range has already held extent lock
1161 * @target_list:   list of targets file extents
1162 */
1163static int defrag_collect_targets(struct btrfs_inode *inode,
1164                                  u64 start, u64 len, u32 extent_thresh,
1165                                  u64 newer_than, bool do_compress,
1166                                  bool locked, struct list_head *target_list)
1167{
1168        u64 cur = start;
1169        int ret = 0;
1170
1171        while (cur < start + len) {
1172                struct extent_map *em;
1173                struct defrag_target_range *new;
1174                bool next_mergeable = true;
1175                u64 range_len;
1176
1177                em = defrag_lookup_extent(&inode->vfs_inode, cur, locked);
1178                if (!em)
1179                        break;
1180
1181                /* Skip hole/inline/preallocated extents */
1182                if (em->block_start >= EXTENT_MAP_LAST_BYTE ||
1183                    test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1184                        goto next;
1185
1186                /* Skip older extent */
1187                if (em->generation < newer_than)
1188                        goto next;
1189
1190                /*
1191                 * For do_compress case, we want to compress all valid file
1192                 * extents, thus no @extent_thresh or mergeable check.
1193                 */
1194                if (do_compress)
1195                        goto add;
1196
1197                /* Skip too large extent */
1198                if (em->len >= extent_thresh)
1199                        goto next;
1200
1201                next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
1202                                                          locked);
1203                if (!next_mergeable) {
1204                        struct defrag_target_range *last;
1205
1206                        /* Empty target list, no way to merge with last entry */
1207                        if (list_empty(target_list))
1208                                goto next;
1209                        last = list_entry(target_list->prev,
1210                                          struct defrag_target_range, list);
1211                        /* Not mergeable with last entry */
1212                        if (last->start + last->len != cur)
1213                                goto next;
1214
1215                        /* Mergeable, fall through to add it to @target_list. */
1216                }
1217
1218add:
1219                range_len = min(extent_map_end(em), start + len) - cur;
1220                /*
1221                 * This one is a good target, check if it can be merged into
1222                 * last range of the target list.
1223                 */
1224                if (!list_empty(target_list)) {
1225                        struct defrag_target_range *last;
1226
1227                        last = list_entry(target_list->prev,
1228                                          struct defrag_target_range, list);
1229                        ASSERT(last->start + last->len <= cur);
1230                        if (last->start + last->len == cur) {
1231                                /* Mergeable, enlarge the last entry */
1232                                last->len += range_len;
1233                                goto next;
1234                        }
1235                        /* Fall through to allocate a new entry */
1236                }
1237
1238                /* Allocate new defrag_target_range */
1239                new = kmalloc(sizeof(*new), GFP_NOFS);
1240                if (!new) {
1241                        free_extent_map(em);
1242                        ret = -ENOMEM;
1243                        break;
1244                }
1245                new->start = cur;
1246                new->len = range_len;
1247                list_add_tail(&new->list, target_list);
1248
1249next:
1250                cur = extent_map_end(em);
1251                free_extent_map(em);
1252        }
1253        if (ret < 0) {
1254                struct defrag_target_range *entry;
1255                struct defrag_target_range *tmp;
1256
1257                list_for_each_entry_safe(entry, tmp, target_list, list) {
1258                        list_del_init(&entry->list);
1259                        kfree(entry);
1260                }
1261        }
1262        return ret;
1263}
1264
1265#define CLUSTER_SIZE    (SZ_256K)
1266
1267/*
1268 * Defrag one contiguous target range.
1269 *
1270 * @inode:      target inode
1271 * @target:     target range to defrag
1272 * @pages:      locked pages covering the defrag range
1273 * @nr_pages:   number of locked pages
1274 *
1275 * Caller should ensure:
1276 *
1277 * - Pages are prepared
1278 *   Pages should be locked, no ordered extent in the pages range,
1279 *   no writeback.
1280 *
1281 * - Extent bits are locked
1282 */
1283static int defrag_one_locked_target(struct btrfs_inode *inode,
1284                                    struct defrag_target_range *target,
1285                                    struct page **pages, int nr_pages,
1286                                    struct extent_state **cached_state)
1287{
1288        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1289        struct extent_changeset *data_reserved = NULL;
1290        const u64 start = target->start;
1291        const u64 len = target->len;
1292        unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1293        unsigned long start_index = start >> PAGE_SHIFT;
1294        unsigned long first_index = page_index(pages[0]);
1295        int ret = 0;
1296        int i;
1297
1298        ASSERT(last_index - first_index + 1 <= nr_pages);
1299
1300        ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1301        if (ret < 0)
1302                return ret;
1303        clear_extent_bit(&inode->io_tree, start, start + len - 1,
1304                         EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1305                         EXTENT_DEFRAG, 0, 0, cached_state);
1306        set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state);
1307
1308        /* Update the page status */
1309        for (i = start_index - first_index; i <= last_index - first_index; i++) {
1310                ClearPageChecked(pages[i]);
1311                btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
1312        }
1313        btrfs_delalloc_release_extents(inode, len);
1314        extent_changeset_free(data_reserved);
1315
1316        return ret;
1317}
1318
1319static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1320                            u32 extent_thresh, u64 newer_than, bool do_compress)
1321{
1322        struct extent_state *cached_state = NULL;
1323        struct defrag_target_range *entry;
1324        struct defrag_target_range *tmp;
1325        LIST_HEAD(target_list);
1326        struct page **pages;
1327        const u32 sectorsize = inode->root->fs_info->sectorsize;
1328        u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1329        u64 start_index = start >> PAGE_SHIFT;
1330        unsigned int nr_pages = last_index - start_index + 1;
1331        int ret = 0;
1332        int i;
1333
1334        ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1335        ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1336
1337        pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
1338        if (!pages)
1339                return -ENOMEM;
1340
1341        /* Prepare all pages */
1342        for (i = 0; i < nr_pages; i++) {
1343                pages[i] = defrag_prepare_one_page(inode, start_index + i);
1344                if (IS_ERR(pages[i])) {
1345                        ret = PTR_ERR(pages[i]);
1346                        pages[i] = NULL;
1347                        goto free_pages;
1348                }
1349        }
1350        for (i = 0; i < nr_pages; i++)
1351                wait_on_page_writeback(pages[i]);
1352
1353        /* Lock the pages range */
1354        lock_extent_bits(&inode->io_tree, start_index << PAGE_SHIFT,
1355                         (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1356                         &cached_state);
1357        /*
1358         * Now we have a consistent view about the extent map, re-check
1359         * which range really needs to be defragged.
1360         *
1361         * And this time we have extent locked already, pass @locked = true
1362         * so that we won't relock the extent range and cause deadlock.
1363         */
1364        ret = defrag_collect_targets(inode, start, len, extent_thresh,
1365                                     newer_than, do_compress, true,
1366                                     &target_list);
1367        if (ret < 0)
1368                goto unlock_extent;
1369
1370        list_for_each_entry(entry, &target_list, list) {
1371                ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
1372                                               &cached_state);
1373                if (ret < 0)
1374                        break;
1375        }
1376
1377        list_for_each_entry_safe(entry, tmp, &target_list, list) {
1378                list_del_init(&entry->list);
1379                kfree(entry);
1380        }
1381unlock_extent:
1382        unlock_extent_cached(&inode->io_tree, start_index << PAGE_SHIFT,
1383                             (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1384                             &cached_state);
1385free_pages:
1386        for (i = 0; i < nr_pages; i++) {
1387                if (pages[i]) {
1388                        unlock_page(pages[i]);
1389                        put_page(pages[i]);
1390                }
1391        }
1392        kfree(pages);
1393        return ret;
1394}
1395
1396static int defrag_one_cluster(struct btrfs_inode *inode,
1397                              struct file_ra_state *ra,
1398                              u64 start, u32 len, u32 extent_thresh,
1399                              u64 newer_than, bool do_compress,
1400                              unsigned long *sectors_defragged,
1401                              unsigned long max_sectors)
1402{
1403        const u32 sectorsize = inode->root->fs_info->sectorsize;
1404        struct defrag_target_range *entry;
1405        struct defrag_target_range *tmp;
1406        LIST_HEAD(target_list);
1407        int ret;
1408
1409        BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
1410        ret = defrag_collect_targets(inode, start, len, extent_thresh,
1411                                     newer_than, do_compress, false,
1412                                     &target_list);
1413        if (ret < 0)
1414                goto out;
1415
1416        list_for_each_entry(entry, &target_list, list) {
1417                u32 range_len = entry->len;
1418
1419                /* Reached the limit */
1420                if (max_sectors && max_sectors == *sectors_defragged)
1421                        break;
1422
1423                if (max_sectors)
1424                        range_len = min_t(u32, range_len,
1425                                (max_sectors - *sectors_defragged) * sectorsize);
1426
1427                if (ra)
1428                        page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1429                                ra, NULL, entry->start >> PAGE_SHIFT,
1430                                ((entry->start + range_len - 1) >> PAGE_SHIFT) -
1431                                (entry->start >> PAGE_SHIFT) + 1);
1432                /*
1433                 * Here we may not defrag any range if holes are punched before
1434                 * we locked the pages.
1435                 * But that's fine, it only affects the @sectors_defragged
1436                 * accounting.
1437                 */
1438                ret = defrag_one_range(inode, entry->start, range_len,
1439                                       extent_thresh, newer_than, do_compress);
1440                if (ret < 0)
1441                        break;
1442                *sectors_defragged += range_len;
1443        }
1444out:
1445        list_for_each_entry_safe(entry, tmp, &target_list, list) {
1446                list_del_init(&entry->list);
1447                kfree(entry);
1448        }
1449        return ret;
1450}
1451
1452/*
1453 * Entry point to file defragmentation.
1454 *
1455 * @inode:         inode to be defragged
1456 * @ra:            readahead state (can be NUL)
1457 * @range:         defrag options including range and flags
1458 * @newer_than:    minimum transid to defrag
1459 * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1460 *                 will be defragged.
1461 */
1462int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1463                      struct btrfs_ioctl_defrag_range_args *range,
1464                      u64 newer_than, unsigned long max_to_defrag)
1465{
1466        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1467        unsigned long sectors_defragged = 0;
1468        u64 isize = i_size_read(inode);
1469        u64 cur;
1470        u64 last_byte;
1471        bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1472        bool ra_allocated = false;
1473        int compress_type = BTRFS_COMPRESS_ZLIB;
1474        int ret = 0;
1475        u32 extent_thresh = range->extent_thresh;
1476
1477        if (isize == 0)
1478                return 0;
1479
1480        if (range->start >= isize)
1481                return -EINVAL;
1482
1483        if (do_compress) {
1484                if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1485                        return -EINVAL;
1486                if (range->compress_type)
1487                        compress_type = range->compress_type;
1488        }
1489
1490        if (extent_thresh == 0)
1491                extent_thresh = SZ_256K;
1492
1493        if (range->start + range->len > range->start) {
1494                /* Got a specific range */
1495                last_byte = min(isize, range->start + range->len) - 1;
1496        } else {
1497                /* Defrag until file end */
1498                last_byte = isize - 1;
1499        }
1500
1501        /*
1502         * If we were not given a ra, allocate a readahead context. As
1503         * readahead is just an optimization, defrag will work without it so
1504         * we don't error out.
1505         */
1506        if (!ra) {
1507                ra_allocated = true;
1508                ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1509                if (ra)
1510                        file_ra_state_init(ra, inode->i_mapping);
1511        }
1512
1513        /* Align the range */
1514        cur = round_down(range->start, fs_info->sectorsize);
1515        last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1516
1517        while (cur < last_byte) {
1518                u64 cluster_end;
1519
1520                /* The cluster size 256K should always be page aligned */
1521                BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
1522
1523                /* We want the cluster end at page boundary when possible */
1524                cluster_end = (((cur >> PAGE_SHIFT) +
1525                               (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1526                cluster_end = min(cluster_end, last_byte);
1527
1528                btrfs_inode_lock(inode, 0);
1529                if (IS_SWAPFILE(inode)) {
1530                        ret = -ETXTBSY;
1531                        btrfs_inode_unlock(inode, 0);
1532                        break;
1533                }
1534                if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1535                        btrfs_inode_unlock(inode, 0);
1536                        break;
1537                }
1538                if (do_compress)
1539                        BTRFS_I(inode)->defrag_compress = compress_type;
1540                ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1541                                cluster_end + 1 - cur, extent_thresh,
1542                                newer_than, do_compress,
1543                                &sectors_defragged, max_to_defrag);
1544                btrfs_inode_unlock(inode, 0);
1545                if (ret < 0)
1546                        break;
1547                cur = cluster_end + 1;
1548        }
1549
1550        if (ra_allocated)
1551                kfree(ra);
1552        if (sectors_defragged) {
1553                /*
1554                 * We have defragged some sectors, for compression case they
1555                 * need to be written back immediately.
1556                 */
1557                if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1558                        filemap_flush(inode->i_mapping);
1559                        if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1560                                     &BTRFS_I(inode)->runtime_flags))
1561                                filemap_flush(inode->i_mapping);
1562                }
1563                if (range->compress_type == BTRFS_COMPRESS_LZO)
1564                        btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1565                else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1566                        btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1567                ret = sectors_defragged;
1568        }
1569        if (do_compress) {
1570                btrfs_inode_lock(inode, 0);
1571                BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1572                btrfs_inode_unlock(inode, 0);
1573        }
1574        return ret;
1575}
1576
1577/*
1578 * Try to start exclusive operation @type or cancel it if it's running.
1579 *
1580 * Return:
1581 *   0        - normal mode, newly claimed op started
1582 *  >0        - normal mode, something else is running,
1583 *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1584 * ECANCELED  - cancel mode, successful cancel
1585 * ENOTCONN   - cancel mode, operation not running anymore
1586 */
1587static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1588                        enum btrfs_exclusive_operation type, bool cancel)
1589{
1590        if (!cancel) {
1591                /* Start normal op */
1592                if (!btrfs_exclop_start(fs_info, type))
1593                        return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1594                /* Exclusive operation is now claimed */
1595                return 0;
1596        }
1597
1598        /* Cancel running op */
1599        if (btrfs_exclop_start_try_lock(fs_info, type)) {
1600                /*
1601                 * This blocks any exclop finish from setting it to NONE, so we
1602                 * request cancellation. Either it runs and we will wait for it,
1603                 * or it has finished and no waiting will happen.
1604                 */
1605                atomic_inc(&fs_info->reloc_cancel_req);
1606                btrfs_exclop_start_unlock(fs_info);
1607
1608                if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1609                        wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1610                                    TASK_INTERRUPTIBLE);
1611
1612                return -ECANCELED;
1613        }
1614
1615        /* Something else is running or none */
1616        return -ENOTCONN;
1617}
1618
1619static noinline int btrfs_ioctl_resize(struct file *file,
1620                                        void __user *arg)
1621{
1622        BTRFS_DEV_LOOKUP_ARGS(args);
1623        struct inode *inode = file_inode(file);
1624        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1625        u64 new_size;
1626        u64 old_size;
1627        u64 devid = 1;
1628        struct btrfs_root *root = BTRFS_I(inode)->root;
1629        struct btrfs_ioctl_vol_args *vol_args;
1630        struct btrfs_trans_handle *trans;
1631        struct btrfs_device *device = NULL;
1632        char *sizestr;
1633        char *retptr;
1634        char *devstr = NULL;
1635        int ret = 0;
1636        int mod = 0;
1637        bool cancel;
1638
1639        if (!capable(CAP_SYS_ADMIN))
1640                return -EPERM;
1641
1642        ret = mnt_want_write_file(file);
1643        if (ret)
1644                return ret;
1645
1646        /*
1647         * Read the arguments before checking exclusivity to be able to
1648         * distinguish regular resize and cancel
1649         */
1650        vol_args = memdup_user(arg, sizeof(*vol_args));
1651        if (IS_ERR(vol_args)) {
1652                ret = PTR_ERR(vol_args);
1653                goto out_drop;
1654        }
1655        vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1656        sizestr = vol_args->name;
1657        cancel = (strcmp("cancel", sizestr) == 0);
1658        ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1659        if (ret)
1660                goto out_free;
1661        /* Exclusive operation is now claimed */
1662
1663        devstr = strchr(sizestr, ':');
1664        if (devstr) {
1665                sizestr = devstr + 1;
1666                *devstr = '\0';
1667                devstr = vol_args->name;
1668                ret = kstrtoull(devstr, 10, &devid);
1669                if (ret)
1670                        goto out_finish;
1671                if (!devid) {
1672                        ret = -EINVAL;
1673                        goto out_finish;
1674                }
1675                btrfs_info(fs_info, "resizing devid %llu", devid);
1676        }
1677
1678        args.devid = devid;
1679        device = btrfs_find_device(fs_info->fs_devices, &args);
1680        if (!device) {
1681                btrfs_info(fs_info, "resizer unable to find device %llu",
1682                           devid);
1683                ret = -ENODEV;
1684                goto out_finish;
1685        }
1686
1687        if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1688                btrfs_info(fs_info,
1689                           "resizer unable to apply on readonly device %llu",
1690                       devid);
1691                ret = -EPERM;
1692                goto out_finish;
1693        }
1694
1695        if (!strcmp(sizestr, "max"))
1696                new_size = bdev_nr_bytes(device->bdev);
1697        else {
1698                if (sizestr[0] == '-') {
1699                        mod = -1;
1700                        sizestr++;
1701                } else if (sizestr[0] == '+') {
1702                        mod = 1;
1703                        sizestr++;
1704                }
1705                new_size = memparse(sizestr, &retptr);
1706                if (*retptr != '\0' || new_size == 0) {
1707                        ret = -EINVAL;
1708                        goto out_finish;
1709                }
1710        }
1711
1712        if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1713                ret = -EPERM;
1714                goto out_finish;
1715        }
1716
1717        old_size = btrfs_device_get_total_bytes(device);
1718
1719        if (mod < 0) {
1720                if (new_size > old_size) {
1721                        ret = -EINVAL;
1722                        goto out_finish;
1723                }
1724                new_size = old_size - new_size;
1725        } else if (mod > 0) {
1726                if (new_size > ULLONG_MAX - old_size) {
1727                        ret = -ERANGE;
1728                        goto out_finish;
1729                }
1730                new_size = old_size + new_size;
1731        }
1732
1733        if (new_size < SZ_256M) {
1734                ret = -EINVAL;
1735                goto out_finish;
1736        }
1737        if (new_size > bdev_nr_bytes(device->bdev)) {
1738                ret = -EFBIG;
1739                goto out_finish;
1740        }
1741
1742        new_size = round_down(new_size, fs_info->sectorsize);
1743
1744        if (new_size > old_size) {
1745                trans = btrfs_start_transaction(root, 0);
1746                if (IS_ERR(trans)) {
1747                        ret = PTR_ERR(trans);
1748                        goto out_finish;
1749                }
1750                ret = btrfs_grow_device(trans, device, new_size);
1751                btrfs_commit_transaction(trans);
1752        } else if (new_size < old_size) {
1753                ret = btrfs_shrink_device(device, new_size);
1754        } /* equal, nothing need to do */
1755
1756        if (ret == 0 && new_size != old_size)
1757                btrfs_info_in_rcu(fs_info,
1758                        "resize device %s (devid %llu) from %llu to %llu",
1759                        rcu_str_deref(device->name), device->devid,
1760                        old_size, new_size);
1761out_finish:
1762        btrfs_exclop_finish(fs_info);
1763out_free:
1764        kfree(vol_args);
1765out_drop:
1766        mnt_drop_write_file(file);
1767        return ret;
1768}
1769
1770static noinline int __btrfs_ioctl_snap_create(struct file *file,
1771                                struct user_namespace *mnt_userns,
1772                                const char *name, unsigned long fd, int subvol,
1773                                bool readonly,
1774                                struct btrfs_qgroup_inherit *inherit)
1775{
1776        int namelen;
1777        int ret = 0;
1778
1779        if (!S_ISDIR(file_inode(file)->i_mode))
1780                return -ENOTDIR;
1781
1782        ret = mnt_want_write_file(file);
1783        if (ret)
1784                goto out;
1785
1786        namelen = strlen(name);
1787        if (strchr(name, '/')) {
1788                ret = -EINVAL;
1789                goto out_drop_write;
1790        }
1791
1792        if (name[0] == '.' &&
1793           (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1794                ret = -EEXIST;
1795                goto out_drop_write;
1796        }
1797
1798        if (subvol) {
1799                ret = btrfs_mksubvol(&file->f_path, mnt_userns, name,
1800                                     namelen, NULL, readonly, inherit);
1801        } else {
1802                struct fd src = fdget(fd);
1803                struct inode *src_inode;
1804                if (!src.file) {
1805                        ret = -EINVAL;
1806                        goto out_drop_write;
1807                }
1808
1809                src_inode = file_inode(src.file);
1810                if (src_inode->i_sb != file_inode(file)->i_sb) {
1811                        btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1812                                   "Snapshot src from another FS");
1813                        ret = -EXDEV;
1814                } else if (!inode_owner_or_capable(mnt_userns, src_inode)) {
1815                        /*
1816                         * Subvolume creation is not restricted, but snapshots
1817                         * are limited to own subvolumes only
1818                         */
1819                        ret = -EPERM;
1820                } else {
1821                        ret = btrfs_mksnapshot(&file->f_path, mnt_userns,
1822                                               name, namelen,
1823                                               BTRFS_I(src_inode)->root,
1824                                               readonly, inherit);
1825                }
1826                fdput(src);
1827        }
1828out_drop_write:
1829        mnt_drop_write_file(file);
1830out:
1831        return ret;
1832}
1833
1834static noinline int btrfs_ioctl_snap_create(struct file *file,
1835                                            void __user *arg, int subvol)
1836{
1837        struct btrfs_ioctl_vol_args *vol_args;
1838        int ret;
1839
1840        if (!S_ISDIR(file_inode(file)->i_mode))
1841                return -ENOTDIR;
1842
1843        vol_args = memdup_user(arg, sizeof(*vol_args));
1844        if (IS_ERR(vol_args))
1845                return PTR_ERR(vol_args);
1846        vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1847
1848        ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
1849                                        vol_args->name, vol_args->fd, subvol,
1850                                        false, NULL);
1851
1852        kfree(vol_args);
1853        return ret;
1854}
1855
1856static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1857                                               void __user *arg, int subvol)
1858{
1859        struct btrfs_ioctl_vol_args_v2 *vol_args;
1860        int ret;
1861        bool readonly = false;
1862        struct btrfs_qgroup_inherit *inherit = NULL;
1863
1864        if (!S_ISDIR(file_inode(file)->i_mode))
1865                return -ENOTDIR;
1866
1867        vol_args = memdup_user(arg, sizeof(*vol_args));
1868        if (IS_ERR(vol_args))
1869                return PTR_ERR(vol_args);
1870        vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1871
1872        if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1873                ret = -EOPNOTSUPP;
1874                goto free_args;
1875        }
1876
1877        if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1878                readonly = true;
1879        if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1880                u64 nums;
1881
1882                if (vol_args->size < sizeof(*inherit) ||
1883                    vol_args->size > PAGE_SIZE) {
1884                        ret = -EINVAL;
1885                        goto free_args;
1886                }
1887                inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1888                if (IS_ERR(inherit)) {
1889                        ret = PTR_ERR(inherit);
1890                        goto free_args;
1891                }
1892
1893                if (inherit->num_qgroups > PAGE_SIZE ||
1894                    inherit->num_ref_copies > PAGE_SIZE ||
1895                    inherit->num_excl_copies > PAGE_SIZE) {
1896                        ret = -EINVAL;
1897                        goto free_inherit;
1898                }
1899
1900                nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1901                       2 * inherit->num_excl_copies;
1902                if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1903                        ret = -EINVAL;
1904                        goto free_inherit;
1905                }
1906        }
1907
1908        ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
1909                                        vol_args->name, vol_args->fd, subvol,
1910                                        readonly, inherit);
1911        if (ret)
1912                goto free_inherit;
1913free_inherit:
1914        kfree(inherit);
1915free_args:
1916        kfree(vol_args);
1917        return ret;
1918}
1919
1920static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1921                                                void __user *arg)
1922{
1923        struct inode *inode = file_inode(file);
1924        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1925        struct btrfs_root *root = BTRFS_I(inode)->root;
1926        int ret = 0;
1927        u64 flags = 0;
1928
1929        if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1930                return -EINVAL;
1931
1932        down_read(&fs_info->subvol_sem);
1933        if (btrfs_root_readonly(root))
1934                flags |= BTRFS_SUBVOL_RDONLY;
1935        up_read(&fs_info->subvol_sem);
1936
1937        if (copy_to_user(arg, &flags, sizeof(flags)))
1938                ret = -EFAULT;
1939
1940        return ret;
1941}
1942
1943static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1944                                              void __user *arg)
1945{
1946        struct inode *inode = file_inode(file);
1947        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1948        struct btrfs_root *root = BTRFS_I(inode)->root;
1949        struct btrfs_trans_handle *trans;
1950        u64 root_flags;
1951        u64 flags;
1952        int ret = 0;
1953
1954        if (!inode_owner_or_capable(file_mnt_user_ns(file), inode))
1955                return -EPERM;
1956
1957        ret = mnt_want_write_file(file);
1958        if (ret)
1959                goto out;
1960
1961        if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1962                ret = -EINVAL;
1963                goto out_drop_write;
1964        }
1965
1966        if (copy_from_user(&flags, arg, sizeof(flags))) {
1967                ret = -EFAULT;
1968                goto out_drop_write;
1969        }
1970
1971        if (flags & ~BTRFS_SUBVOL_RDONLY) {
1972                ret = -EOPNOTSUPP;
1973                goto out_drop_write;
1974        }
1975
1976        down_write(&fs_info->subvol_sem);
1977
1978        /* nothing to do */
1979        if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1980                goto out_drop_sem;
1981
1982        root_flags = btrfs_root_flags(&root->root_item);
1983        if (flags & BTRFS_SUBVOL_RDONLY) {
1984                btrfs_set_root_flags(&root->root_item,
1985                                     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1986        } else {
1987                /*
1988                 * Block RO -> RW transition if this subvolume is involved in
1989                 * send
1990                 */
1991                spin_lock(&root->root_item_lock);
1992                if (root->send_in_progress == 0) {
1993                        btrfs_set_root_flags(&root->root_item,
1994                                     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1995                        spin_unlock(&root->root_item_lock);
1996                } else {
1997                        spin_unlock(&root->root_item_lock);
1998                        btrfs_warn(fs_info,
1999                                   "Attempt to set subvolume %llu read-write during send",
2000                                   root->root_key.objectid);
2001                        ret = -EPERM;
2002                        goto out_drop_sem;
2003                }
2004        }
2005
2006        trans = btrfs_start_transaction(root, 1);
2007        if (IS_ERR(trans)) {
2008                ret = PTR_ERR(trans);
2009                goto out_reset;
2010        }
2011
2012        ret = btrfs_update_root(trans, fs_info->tree_root,
2013                                &root->root_key, &root->root_item);
2014        if (ret < 0) {
2015                btrfs_end_transaction(trans);
2016                goto out_reset;
2017        }
2018
2019        ret = btrfs_commit_transaction(trans);
2020
2021out_reset:
2022        if (ret)
2023                btrfs_set_root_flags(&root->root_item, root_flags);
2024out_drop_sem:
2025        up_write(&fs_info->subvol_sem);
2026out_drop_write:
2027        mnt_drop_write_file(file);
2028out:
2029        return ret;
2030}
2031
2032static noinline int key_in_sk(struct btrfs_key *key,
2033                              struct btrfs_ioctl_search_key *sk)
2034{
2035        struct btrfs_key test;
2036        int ret;
2037
2038        test.objectid = sk->min_objectid;
2039        test.type = sk->min_type;
2040        test.offset = sk->min_offset;
2041
2042        ret = btrfs_comp_cpu_keys(key, &test);
2043        if (ret < 0)
2044                return 0;
2045
2046        test.objectid = sk->max_objectid;
2047        test.type = sk->max_type;
2048        test.offset = sk->max_offset;
2049
2050        ret = btrfs_comp_cpu_keys(key, &test);
2051        if (ret > 0)
2052                return 0;
2053        return 1;
2054}
2055
2056static noinline int copy_to_sk(struct btrfs_path *path,
2057                               struct btrfs_key *key,
2058                               struct btrfs_ioctl_search_key *sk,
2059                               size_t *buf_size,
2060                               char __user *ubuf,
2061                               unsigned long *sk_offset,
2062                               int *num_found)
2063{
2064        u64 found_transid;
2065        struct extent_buffer *leaf;
2066        struct btrfs_ioctl_search_header sh;
2067        struct btrfs_key test;
2068        unsigned long item_off;
2069        unsigned long item_len;
2070        int nritems;
2071        int i;
2072        int slot;
2073        int ret = 0;
2074
2075        leaf = path->nodes[0];
2076        slot = path->slots[0];
2077        nritems = btrfs_header_nritems(leaf);
2078
2079        if (btrfs_header_generation(leaf) > sk->max_transid) {
2080                i = nritems;
2081                goto advance_key;
2082        }
2083        found_transid = btrfs_header_generation(leaf);
2084
2085        for (i = slot; i < nritems; i++) {
2086                item_off = btrfs_item_ptr_offset(leaf, i);
2087                item_len = btrfs_item_size_nr(leaf, i);
2088
2089                btrfs_item_key_to_cpu(leaf, key, i);
2090                if (!key_in_sk(key, sk))
2091                        continue;
2092
2093                if (sizeof(sh) + item_len > *buf_size) {
2094                        if (*num_found) {
2095                                ret = 1;
2096                                goto out;
2097                        }
2098
2099                        /*
2100                         * return one empty item back for v1, which does not
2101                         * handle -EOVERFLOW
2102                         */
2103
2104                        *buf_size = sizeof(sh) + item_len;
2105                        item_len = 0;
2106                        ret = -EOVERFLOW;
2107                }
2108
2109                if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2110                        ret = 1;
2111                        goto out;
2112                }
2113
2114                sh.objectid = key->objectid;
2115                sh.offset = key->offset;
2116                sh.type = key->type;
2117                sh.len = item_len;
2118                sh.transid = found_transid;
2119
2120                /*
2121                 * Copy search result header. If we fault then loop again so we
2122                 * can fault in the pages and -EFAULT there if there's a
2123                 * problem. Otherwise we'll fault and then copy the buffer in
2124                 * properly this next time through
2125                 */
2126                if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2127                        ret = 0;
2128                        goto out;
2129                }
2130
2131                *sk_offset += sizeof(sh);
2132
2133                if (item_len) {
2134                        char __user *up = ubuf + *sk_offset;
2135                        /*
2136                         * Copy the item, same behavior as above, but reset the
2137                         * * sk_offset so we copy the full thing again.
2138                         */
2139                        if (read_extent_buffer_to_user_nofault(leaf, up,
2140                                                item_off, item_len)) {
2141                                ret = 0;
2142                                *sk_offset -= sizeof(sh);
2143                                goto out;
2144                        }
2145
2146                        *sk_offset += item_len;
2147                }
2148                (*num_found)++;
2149
2150                if (ret) /* -EOVERFLOW from above */
2151                        goto out;
2152
2153                if (*num_found >= sk->nr_items) {
2154                        ret = 1;
2155                        goto out;
2156                }
2157        }
2158advance_key:
2159        ret = 0;
2160        test.objectid = sk->max_objectid;
2161        test.type = sk->max_type;
2162        test.offset = sk->max_offset;
2163        if (btrfs_comp_cpu_keys(key, &test) >= 0)
2164                ret = 1;
2165        else if (key->offset < (u64)-1)
2166                key->offset++;
2167        else if (key->type < (u8)-1) {
2168                key->offset = 0;
2169                key->type++;
2170        } else if (key->objectid < (u64)-1) {
2171                key->offset = 0;
2172                key->type = 0;
2173                key->objectid++;
2174        } else
2175                ret = 1;
2176out:
2177        /*
2178         *  0: all items from this leaf copied, continue with next
2179         *  1: * more items can be copied, but unused buffer is too small
2180         *     * all items were found
2181         *     Either way, it will stops the loop which iterates to the next
2182         *     leaf
2183         *  -EOVERFLOW: item was to large for buffer
2184         *  -EFAULT: could not copy extent buffer back to userspace
2185         */
2186        return ret;
2187}
2188
2189static noinline int search_ioctl(struct inode *inode,
2190                                 struct btrfs_ioctl_search_key *sk,
2191                                 size_t *buf_size,
2192                                 char __user *ubuf)
2193{
2194        struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2195        struct btrfs_root *root;
2196        struct btrfs_key key;
2197        struct btrfs_path *path;
2198        int ret;
2199        int num_found = 0;
2200        unsigned long sk_offset = 0;
2201
2202        if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2203                *buf_size = sizeof(struct btrfs_ioctl_search_header);
2204                return -EOVERFLOW;
2205        }
2206
2207        path = btrfs_alloc_path();
2208        if (!path)
2209                return -ENOMEM;
2210
2211        if (sk->tree_id == 0) {
2212                /* search the root of the inode that was passed */
2213                root = btrfs_grab_root(BTRFS_I(inode)->root);
2214        } else {
2215                root = btrfs_get_fs_root(info, sk->tree_id, true);
2216                if (IS_ERR(root)) {
2217                        btrfs_free_path(path);
2218                        return PTR_ERR(root);
2219                }
2220        }
2221
2222        key.objectid = sk->min_objectid;
2223        key.type = sk->min_type;
2224        key.offset = sk->min_offset;
2225
2226        while (1) {
2227                ret = -EFAULT;
2228                if (fault_in_writeable(ubuf + sk_offset, *buf_size - sk_offset))
2229                        break;
2230
2231                ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2232                if (ret != 0) {
2233                        if (ret > 0)
2234                                ret = 0;
2235                        goto err;
2236                }
2237                ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2238                                 &sk_offset, &num_found);
2239                btrfs_release_path(path);
2240                if (ret)
2241                        break;
2242
2243        }
2244        if (ret > 0)
2245                ret = 0;
2246err:
2247        sk->nr_items = num_found;
2248        btrfs_put_root(root);
2249        btrfs_free_path(path);
2250        return ret;
2251}
2252
2253static noinline int btrfs_ioctl_tree_search(struct file *file,
2254                                           void __user *argp)
2255{
2256        struct btrfs_ioctl_search_args __user *uargs;
2257        struct btrfs_ioctl_search_key sk;
2258        struct inode *inode;
2259        int ret;
2260        size_t buf_size;
2261
2262        if (!capable(CAP_SYS_ADMIN))
2263                return -EPERM;
2264
2265        uargs = (struct btrfs_ioctl_search_args __user *)argp;
2266
2267        if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2268                return -EFAULT;
2269
2270        buf_size = sizeof(uargs->buf);
2271
2272        inode = file_inode(file);
2273        ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2274
2275        /*
2276         * In the origin implementation an overflow is handled by returning a
2277         * search header with a len of zero, so reset ret.
2278         */
2279        if (ret == -EOVERFLOW)
2280                ret = 0;
2281
2282        if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2283                ret = -EFAULT;
2284        return ret;
2285}
2286
2287static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2288                                               void __user *argp)
2289{
2290        struct btrfs_ioctl_search_args_v2 __user *uarg;
2291        struct btrfs_ioctl_search_args_v2 args;
2292        struct inode *inode;
2293        int ret;
2294        size_t buf_size;
2295        const size_t buf_limit = SZ_16M;
2296
2297        if (!capable(CAP_SYS_ADMIN))
2298                return -EPERM;
2299
2300        /* copy search header and buffer size */
2301        uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2302        if (copy_from_user(&args, uarg, sizeof(args)))
2303                return -EFAULT;
2304
2305        buf_size = args.buf_size;
2306
2307        /* limit result size to 16MB */
2308        if (buf_size > buf_limit)
2309                buf_size = buf_limit;
2310
2311        inode = file_inode(file);
2312        ret = search_ioctl(inode, &args.key, &buf_size,
2313                           (char __user *)(&uarg->buf[0]));
2314        if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2315                ret = -EFAULT;
2316        else if (ret == -EOVERFLOW &&
2317                copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2318                ret = -EFAULT;
2319
2320        return ret;
2321}
2322
2323/*
2324 * Search INODE_REFs to identify path name of 'dirid' directory
2325 * in a 'tree_id' tree. and sets path name to 'name'.
2326 */
2327static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2328                                u64 tree_id, u64 dirid, char *name)
2329{
2330        struct btrfs_root *root;
2331        struct btrfs_key key;
2332        char *ptr;
2333        int ret = -1;
2334        int slot;
2335        int len;
2336        int total_len = 0;
2337        struct btrfs_inode_ref *iref;
2338        struct extent_buffer *l;
2339        struct btrfs_path *path;
2340
2341        if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2342                name[0]='\0';
2343                return 0;
2344        }
2345
2346        path = btrfs_alloc_path();
2347        if (!path)
2348                return -ENOMEM;
2349
2350        ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2351
2352        root = btrfs_get_fs_root(info, tree_id, true);
2353        if (IS_ERR(root)) {
2354                ret = PTR_ERR(root);
2355                root = NULL;
2356                goto out;
2357        }
2358
2359        key.objectid = dirid;
2360        key.type = BTRFS_INODE_REF_KEY;
2361        key.offset = (u64)-1;
2362
2363        while (1) {
2364                ret = btrfs_search_backwards(root, &key, path);
2365                if (ret < 0)
2366                        goto out;
2367                else if (ret > 0) {
2368                        ret = -ENOENT;
2369                        goto out;
2370                }
2371
2372                l = path->nodes[0];
2373                slot = path->slots[0];
2374
2375                iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2376                len = btrfs_inode_ref_name_len(l, iref);
2377                ptr -= len + 1;
2378                total_len += len + 1;
2379                if (ptr < name) {
2380                        ret = -ENAMETOOLONG;
2381                        goto out;
2382                }
2383
2384                *(ptr + len) = '/';
2385                read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2386
2387                if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2388                        break;
2389
2390                btrfs_release_path(path);
2391                key.objectid = key.offset;
2392                key.offset = (u64)-1;
2393                dirid = key.objectid;
2394        }
2395        memmove(name, ptr, total_len);
2396        name[total_len] = '\0';
2397        ret = 0;
2398out:
2399        btrfs_put_root(root);
2400        btrfs_free_path(path);
2401        return ret;
2402}
2403
2404static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns,
2405                                struct inode *inode,
2406                                struct btrfs_ioctl_ino_lookup_user_args *args)
2407{
2408        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2409        struct super_block *sb = inode->i_sb;
2410        struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2411        u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2412        u64 dirid = args->dirid;
2413        unsigned long item_off;
2414        unsigned long item_len;
2415        struct btrfs_inode_ref *iref;
2416        struct btrfs_root_ref *rref;
2417        struct btrfs_root *root = NULL;
2418        struct btrfs_path *path;
2419        struct btrfs_key key, key2;
2420        struct extent_buffer *leaf;
2421        struct inode *temp_inode;
2422        char *ptr;
2423        int slot;
2424        int len;
2425        int total_len = 0;
2426        int ret;
2427
2428        path = btrfs_alloc_path();
2429        if (!path)
2430                return -ENOMEM;
2431
2432        /*
2433         * If the bottom subvolume does not exist directly under upper_limit,
2434         * construct the path in from the bottom up.
2435         */
2436        if (dirid != upper_limit.objectid) {
2437                ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2438
2439                root = btrfs_get_fs_root(fs_info, treeid, true);
2440                if (IS_ERR(root)) {
2441                        ret = PTR_ERR(root);
2442                        goto out;
2443                }
2444
2445                key.objectid = dirid;
2446                key.type = BTRFS_INODE_REF_KEY;
2447                key.offset = (u64)-1;
2448                while (1) {
2449                        ret = btrfs_search_backwards(root, &key, path);
2450                        if (ret < 0)
2451                                goto out_put;
2452                        else if (ret > 0) {
2453                                ret = -ENOENT;
2454                                goto out_put;
2455                        }
2456
2457                        leaf = path->nodes[0];
2458                        slot = path->slots[0];
2459
2460                        iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2461                        len = btrfs_inode_ref_name_len(leaf, iref);
2462                        ptr -= len + 1;
2463                        total_len += len + 1;
2464                        if (ptr < args->path) {
2465                                ret = -ENAMETOOLONG;
2466                                goto out_put;
2467                        }
2468
2469                        *(ptr + len) = '/';
2470                        read_extent_buffer(leaf, ptr,
2471                                        (unsigned long)(iref + 1), len);
2472
2473                        /* Check the read+exec permission of this directory */
2474                        ret = btrfs_previous_item(root, path, dirid,
2475                                                  BTRFS_INODE_ITEM_KEY);
2476                        if (ret < 0) {
2477                                goto out_put;
2478                        } else if (ret > 0) {
2479                                ret = -ENOENT;
2480                                goto out_put;
2481                        }
2482
2483                        leaf = path->nodes[0];
2484                        slot = path->slots[0];
2485                        btrfs_item_key_to_cpu(leaf, &key2, slot);
2486                        if (key2.objectid != dirid) {
2487                                ret = -ENOENT;
2488                                goto out_put;
2489                        }
2490
2491                        temp_inode = btrfs_iget(sb, key2.objectid, root);
2492                        if (IS_ERR(temp_inode)) {
2493                                ret = PTR_ERR(temp_inode);
2494                                goto out_put;
2495                        }
2496                        ret = inode_permission(mnt_userns, temp_inode,
2497                                               MAY_READ | MAY_EXEC);
2498                        iput(temp_inode);
2499                        if (ret) {
2500                                ret = -EACCES;
2501                                goto out_put;
2502                        }
2503
2504                        if (key.offset == upper_limit.objectid)
2505                                break;
2506                        if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2507                                ret = -EACCES;
2508                                goto out_put;
2509                        }
2510
2511                        btrfs_release_path(path);
2512                        key.objectid = key.offset;
2513                        key.offset = (u64)-1;
2514                        dirid = key.objectid;
2515                }
2516
2517                memmove(args->path, ptr, total_len);
2518                args->path[total_len] = '\0';
2519                btrfs_put_root(root);
2520                root = NULL;
2521                btrfs_release_path(path);
2522        }
2523
2524        /* Get the bottom subvolume's name from ROOT_REF */
2525        key.objectid = treeid;
2526        key.type = BTRFS_ROOT_REF_KEY;
2527        key.offset = args->treeid;
2528        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2529        if (ret < 0) {
2530                goto out;
2531        } else if (ret > 0) {
2532                ret = -ENOENT;
2533                goto out;
2534        }
2535
2536        leaf = path->nodes[0];
2537        slot = path->slots[0];
2538        btrfs_item_key_to_cpu(leaf, &key, slot);
2539
2540        item_off = btrfs_item_ptr_offset(leaf, slot);
2541        item_len = btrfs_item_size_nr(leaf, slot);
2542        /* Check if dirid in ROOT_REF corresponds to passed dirid */
2543        rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2544        if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2545                ret = -EINVAL;
2546                goto out;
2547        }
2548
2549        /* Copy subvolume's name */
2550        item_off += sizeof(struct btrfs_root_ref);
2551        item_len -= sizeof(struct btrfs_root_ref);
2552        read_extent_buffer(leaf, args->name, item_off, item_len);
2553        args->name[item_len] = 0;
2554
2555out_put:
2556        btrfs_put_root(root);
2557out:
2558        btrfs_free_path(path);
2559        return ret;
2560}
2561
2562static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2563                                           void __user *argp)
2564{
2565        struct btrfs_ioctl_ino_lookup_args *args;
2566        struct inode *inode;
2567        int ret = 0;
2568
2569        args = memdup_user(argp, sizeof(*args));
2570        if (IS_ERR(args))
2571                return PTR_ERR(args);
2572
2573        inode = file_inode(file);
2574
2575        /*
2576         * Unprivileged query to obtain the containing subvolume root id. The
2577         * path is reset so it's consistent with btrfs_search_path_in_tree.
2578         */
2579        if (args->treeid == 0)
2580                args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2581
2582        if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2583                args->name[0] = 0;
2584                goto out;
2585        }
2586
2587        if (!capable(CAP_SYS_ADMIN)) {
2588                ret = -EPERM;
2589                goto out;
2590        }
2591
2592        ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2593                                        args->treeid, args->objectid,
2594                                        args->name);
2595
2596out:
2597        if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2598                ret = -EFAULT;
2599
2600        kfree(args);
2601        return ret;
2602}
2603
2604/*
2605 * Version of ino_lookup ioctl (unprivileged)
2606 *
2607 * The main differences from ino_lookup ioctl are:
2608 *
2609 *   1. Read + Exec permission will be checked using inode_permission() during
2610 *      path construction. -EACCES will be returned in case of failure.
2611 *   2. Path construction will be stopped at the inode number which corresponds
2612 *      to the fd with which this ioctl is called. If constructed path does not
2613 *      exist under fd's inode, -EACCES will be returned.
2614 *   3. The name of bottom subvolume is also searched and filled.
2615 */
2616static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2617{
2618        struct btrfs_ioctl_ino_lookup_user_args *args;
2619        struct inode *inode;
2620        int ret;
2621
2622        args = memdup_user(argp, sizeof(*args));
2623        if (IS_ERR(args))
2624                return PTR_ERR(args);
2625
2626        inode = file_inode(file);
2627
2628        if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2629            BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2630                /*
2631                 * The subvolume does not exist under fd with which this is
2632                 * called
2633                 */
2634                kfree(args);
2635                return -EACCES;
2636        }
2637
2638        ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args);
2639
2640        if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2641                ret = -EFAULT;
2642
2643        kfree(args);
2644        return ret;
2645}
2646
2647/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2648static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2649{
2650        struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2651        struct btrfs_fs_info *fs_info;
2652        struct btrfs_root *root;
2653        struct btrfs_path *path;
2654        struct btrfs_key key;
2655        struct btrfs_root_item *root_item;
2656        struct btrfs_root_ref *rref;
2657        struct extent_buffer *leaf;
2658        unsigned long item_off;
2659        unsigned long item_len;
2660        struct inode *inode;
2661        int slot;
2662        int ret = 0;
2663
2664        path = btrfs_alloc_path();
2665        if (!path)
2666                return -ENOMEM;
2667
2668        subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2669        if (!subvol_info) {
2670                btrfs_free_path(path);
2671                return -ENOMEM;
2672        }
2673
2674        inode = file_inode(file);
2675        fs_info = BTRFS_I(inode)->root->fs_info;
2676
2677        /* Get root_item of inode's subvolume */
2678        key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2679        root = btrfs_get_fs_root(fs_info, key.objectid, true);
2680        if (IS_ERR(root)) {
2681                ret = PTR_ERR(root);
2682                goto out_free;
2683        }
2684        root_item = &root->root_item;
2685
2686        subvol_info->treeid = key.objectid;
2687
2688        subvol_info->generation = btrfs_root_generation(root_item);
2689        subvol_info->flags = btrfs_root_flags(root_item);
2690
2691        memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2692        memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2693                                                    BTRFS_UUID_SIZE);
2694        memcpy(subvol_info->received_uuid, root_item->received_uuid,
2695                                                    BTRFS_UUID_SIZE);
2696
2697        subvol_info->ctransid = btrfs_root_ctransid(root_item);
2698        subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2699        subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2700
2701        subvol_info->otransid = btrfs_root_otransid(root_item);
2702        subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2703        subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2704
2705        subvol_info->stransid = btrfs_root_stransid(root_item);
2706        subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2707        subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2708
2709        subvol_info->rtransid = btrfs_root_rtransid(root_item);
2710        subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2711        subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2712
2713        if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2714                /* Search root tree for ROOT_BACKREF of this subvolume */
2715                key.type = BTRFS_ROOT_BACKREF_KEY;
2716                key.offset = 0;
2717                ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2718                if (ret < 0) {
2719                        goto out;
2720                } else if (path->slots[0] >=
2721                           btrfs_header_nritems(path->nodes[0])) {
2722                        ret = btrfs_next_leaf(fs_info->tree_root, path);
2723                        if (ret < 0) {
2724                                goto out;
2725                        } else if (ret > 0) {
2726                                ret = -EUCLEAN;
2727                                goto out;
2728                        }
2729                }
2730
2731                leaf = path->nodes[0];
2732                slot = path->slots[0];
2733                btrfs_item_key_to_cpu(leaf, &key, slot);
2734                if (key.objectid == subvol_info->treeid &&
2735                    key.type == BTRFS_ROOT_BACKREF_KEY) {
2736                        subvol_info->parent_id = key.offset;
2737
2738                        rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2739                        subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2740
2741                        item_off = btrfs_item_ptr_offset(leaf, slot)
2742                                        + sizeof(struct btrfs_root_ref);
2743                        item_len = btrfs_item_size_nr(leaf, slot)
2744                                        - sizeof(struct btrfs_root_ref);
2745                        read_extent_buffer(leaf, subvol_info->name,
2746                                           item_off, item_len);
2747                } else {
2748                        ret = -ENOENT;
2749                        goto out;
2750                }
2751        }
2752
2753        if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2754                ret = -EFAULT;
2755
2756out:
2757        btrfs_put_root(root);
2758out_free:
2759        btrfs_free_path(path);
2760        kfree(subvol_info);
2761        return ret;
2762}
2763
2764/*
2765 * Return ROOT_REF information of the subvolume containing this inode
2766 * except the subvolume name.
2767 */
2768static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2769{
2770        struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2771        struct btrfs_root_ref *rref;
2772        struct btrfs_root *root;
2773        struct btrfs_path *path;
2774        struct btrfs_key key;
2775        struct extent_buffer *leaf;
2776        struct inode *inode;
2777        u64 objectid;
2778        int slot;
2779        int ret;
2780        u8 found;
2781
2782        path = btrfs_alloc_path();
2783        if (!path)
2784                return -ENOMEM;
2785
2786        rootrefs = memdup_user(argp, sizeof(*rootrefs));
2787        if (IS_ERR(rootrefs)) {
2788                btrfs_free_path(path);
2789                return PTR_ERR(rootrefs);
2790        }
2791
2792        inode = file_inode(file);
2793        root = BTRFS_I(inode)->root->fs_info->tree_root;
2794        objectid = BTRFS_I(inode)->root->root_key.objectid;
2795
2796        key.objectid = objectid;
2797        key.type = BTRFS_ROOT_REF_KEY;
2798        key.offset = rootrefs->min_treeid;
2799        found = 0;
2800
2801        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2802        if (ret < 0) {
2803                goto out;
2804        } else if (path->slots[0] >=
2805                   btrfs_header_nritems(path->nodes[0])) {
2806                ret = btrfs_next_leaf(root, path);
2807                if (ret < 0) {
2808                        goto out;
2809                } else if (ret > 0) {
2810                        ret = -EUCLEAN;
2811                        goto out;
2812                }
2813        }
2814        while (1) {
2815                leaf = path->nodes[0];
2816                slot = path->slots[0];
2817
2818                btrfs_item_key_to_cpu(leaf, &key, slot);
2819                if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2820                        ret = 0;
2821                        goto out;
2822                }
2823
2824                if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2825                        ret = -EOVERFLOW;
2826                        goto out;
2827                }
2828
2829                rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2830                rootrefs->rootref[found].treeid = key.offset;
2831                rootrefs->rootref[found].dirid =
2832                                  btrfs_root_ref_dirid(leaf, rref);
2833                found++;
2834
2835                ret = btrfs_next_item(root, path);
2836                if (ret < 0) {
2837                        goto out;
2838                } else if (ret > 0) {
2839                        ret = -EUCLEAN;
2840                        goto out;
2841                }
2842        }
2843
2844out:
2845        if (!ret || ret == -EOVERFLOW) {
2846                rootrefs->num_items = found;
2847                /* update min_treeid for next search */
2848                if (found)
2849                        rootrefs->min_treeid =
2850                                rootrefs->rootref[found - 1].treeid + 1;
2851                if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2852                        ret = -EFAULT;
2853        }
2854
2855        kfree(rootrefs);
2856        btrfs_free_path(path);
2857
2858        return ret;
2859}
2860
2861static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2862                                             void __user *arg,
2863                                             bool destroy_v2)
2864{
2865        struct dentry *parent = file->f_path.dentry;
2866        struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2867        struct dentry *dentry;
2868        struct inode *dir = d_inode(parent);
2869        struct inode *inode;
2870        struct btrfs_root *root = BTRFS_I(dir)->root;
2871        struct btrfs_root *dest = NULL;
2872        struct btrfs_ioctl_vol_args *vol_args = NULL;
2873        struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2874        struct user_namespace *mnt_userns = file_mnt_user_ns(file);
2875        char *subvol_name, *subvol_name_ptr = NULL;
2876        int subvol_namelen;
2877        int err = 0;
2878        bool destroy_parent = false;
2879
2880        if (destroy_v2) {
2881                vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2882                if (IS_ERR(vol_args2))
2883                        return PTR_ERR(vol_args2);
2884
2885                if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2886                        err = -EOPNOTSUPP;
2887                        goto out;
2888                }
2889
2890                /*
2891                 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2892                 * name, same as v1 currently does.
2893                 */
2894                if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2895                        vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2896                        subvol_name = vol_args2->name;
2897
2898                        err = mnt_want_write_file(file);
2899                        if (err)
2900                                goto out;
2901                } else {
2902                        struct inode *old_dir;
2903
2904                        if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2905                                err = -EINVAL;
2906                                goto out;
2907                        }
2908
2909                        err = mnt_want_write_file(file);
2910                        if (err)
2911                                goto out;
2912
2913                        dentry = btrfs_get_dentry(fs_info->sb,
2914                                        BTRFS_FIRST_FREE_OBJECTID,
2915                                        vol_args2->subvolid, 0, 0);
2916                        if (IS_ERR(dentry)) {
2917                                err = PTR_ERR(dentry);
2918                                goto out_drop_write;
2919                        }
2920
2921                        /*
2922                         * Change the default parent since the subvolume being
2923                         * deleted can be outside of the current mount point.
2924                         */
2925                        parent = btrfs_get_parent(dentry);
2926
2927                        /*
2928                         * At this point dentry->d_name can point to '/' if the
2929                         * subvolume we want to destroy is outsite of the
2930                         * current mount point, so we need to release the
2931                         * current dentry and execute the lookup to return a new
2932                         * one with ->d_name pointing to the
2933                         * <mount point>/subvol_name.
2934                         */
2935                        dput(dentry);
2936                        if (IS_ERR(parent)) {
2937                                err = PTR_ERR(parent);
2938                                goto out_drop_write;
2939                        }
2940                        old_dir = dir;
2941                        dir = d_inode(parent);
2942
2943                        /*
2944                         * If v2 was used with SPEC_BY_ID, a new parent was
2945                         * allocated since the subvolume can be outside of the
2946                         * current mount point. Later on we need to release this
2947                         * new parent dentry.
2948                         */
2949                        destroy_parent = true;
2950
2951                        /*
2952                         * On idmapped mounts, deletion via subvolid is
2953                         * restricted to subvolumes that are immediate
2954                         * ancestors of the inode referenced by the file
2955                         * descriptor in the ioctl. Otherwise the idmapping
2956                         * could potentially be abused to delete subvolumes
2957                         * anywhere in the filesystem the user wouldn't be able
2958                         * to delete without an idmapped mount.
2959                         */
2960                        if (old_dir != dir && mnt_userns != &init_user_ns) {
2961                                err = -EOPNOTSUPP;
2962                                goto free_parent;
2963                        }
2964
2965                        subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2966                                                fs_info, vol_args2->subvolid);
2967                        if (IS_ERR(subvol_name_ptr)) {
2968                                err = PTR_ERR(subvol_name_ptr);
2969                                goto free_parent;
2970                        }
2971                        /* subvol_name_ptr is already nul terminated */
2972                        subvol_name = (char *)kbasename(subvol_name_ptr);
2973                }
2974        } else {
2975                vol_args = memdup_user(arg, sizeof(*vol_args));
2976                if (IS_ERR(vol_args))
2977                        return PTR_ERR(vol_args);
2978
2979                vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2980                subvol_name = vol_args->name;
2981
2982                err = mnt_want_write_file(file);
2983                if (err)
2984                        goto out;
2985        }
2986
2987        subvol_namelen = strlen(subvol_name);
2988
2989        if (strchr(subvol_name, '/') ||
2990            strncmp(subvol_name, "..", subvol_namelen) == 0) {
2991                err = -EINVAL;
2992                goto free_subvol_name;
2993        }
2994
2995        if (!S_ISDIR(dir->i_mode)) {
2996                err = -ENOTDIR;
2997                goto free_subvol_name;
2998        }
2999
3000        err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3001        if (err == -EINTR)
3002                goto free_subvol_name;
3003        dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen);
3004        if (IS_ERR(dentry)) {
3005                err = PTR_ERR(dentry);
3006                goto out_unlock_dir;
3007        }
3008
3009        if (d_really_is_negative(dentry)) {
3010                err = -ENOENT;
3011                goto out_dput;
3012        }
3013
3014        inode = d_inode(dentry);
3015        dest = BTRFS_I(inode)->root;
3016        if (!capable(CAP_SYS_ADMIN)) {
3017                /*
3018                 * Regular user.  Only allow this with a special mount
3019                 * option, when the user has write+exec access to the
3020                 * subvol root, and when rmdir(2) would have been
3021                 * allowed.
3022                 *
3023                 * Note that this is _not_ check that the subvol is
3024                 * empty or doesn't contain data that we wouldn't
3025                 * otherwise be able to delete.
3026                 *
3027                 * Users who want to delete empty subvols should try
3028                 * rmdir(2).
3029                 */
3030                err = -EPERM;
3031                if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3032                        goto out_dput;
3033
3034                /*
3035                 * Do not allow deletion if the parent dir is the same
3036                 * as the dir to be deleted.  That means the ioctl
3037                 * must be called on the dentry referencing the root
3038                 * of the subvol, not a random directory contained
3039                 * within it.
3040                 */
3041                err = -EINVAL;
3042                if (root == dest)
3043                        goto out_dput;
3044
3045                err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC);
3046                if (err)
3047                        goto out_dput;
3048        }
3049
3050        /* check if subvolume may be deleted by a user */
3051        err = btrfs_may_delete(mnt_userns, dir, dentry, 1);
3052        if (err)
3053                goto out_dput;
3054
3055        if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3056                err = -EINVAL;
3057                goto out_dput;
3058        }
3059
3060        btrfs_inode_lock(inode, 0);
3061        err = btrfs_delete_subvolume(dir, dentry);
3062        btrfs_inode_unlock(inode, 0);
3063        if (!err) {
3064                fsnotify_rmdir(dir, dentry);
3065                d_delete(dentry);
3066        }
3067
3068out_dput:
3069        dput(dentry);
3070out_unlock_dir:
3071        btrfs_inode_unlock(dir, 0);
3072free_subvol_name:
3073        kfree(subvol_name_ptr);
3074free_parent:
3075        if (destroy_parent)
3076                dput(parent);
3077out_drop_write:
3078        mnt_drop_write_file(file);
3079out:
3080        kfree(vol_args2);
3081        kfree(vol_args);
3082        return err;
3083}
3084
3085static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3086{
3087        struct inode *inode = file_inode(file);
3088        struct btrfs_root *root = BTRFS_I(inode)->root;
3089        struct btrfs_ioctl_defrag_range_args range = {0};
3090        int ret;
3091
3092        ret = mnt_want_write_file(file);
3093        if (ret)
3094                return ret;
3095
3096        if (btrfs_root_readonly(root)) {
3097                ret = -EROFS;
3098                goto out;
3099        }
3100
3101        switch (inode->i_mode & S_IFMT) {
3102        case S_IFDIR:
3103                if (!capable(CAP_SYS_ADMIN)) {
3104                        ret = -EPERM;
3105                        goto out;
3106                }
3107                ret = btrfs_defrag_root(root);
3108                break;
3109        case S_IFREG:
3110                /*
3111                 * Note that this does not check the file descriptor for write
3112                 * access. This prevents defragmenting executables that are
3113                 * running and allows defrag on files open in read-only mode.
3114                 */
3115                if (!capable(CAP_SYS_ADMIN) &&
3116                    inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3117                        ret = -EPERM;
3118                        goto out;
3119                }
3120
3121                if (argp) {
3122                        if (copy_from_user(&range, argp, sizeof(range))) {
3123                                ret = -EFAULT;
3124                                goto out;
3125                        }
3126                        /* compression requires us to start the IO */
3127                        if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3128                                range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
3129                                range.extent_thresh = (u32)-1;
3130                        }
3131                } else {
3132                        /* the rest are all set to zero by kzalloc */
3133                        range.len = (u64)-1;
3134                }
3135                ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
3136                                        &range, BTRFS_OLDEST_GENERATION, 0);
3137                if (ret > 0)
3138                        ret = 0;
3139                break;
3140        default:
3141                ret = -EINVAL;
3142        }
3143out:
3144        mnt_drop_write_file(file);
3145        return ret;
3146}
3147
3148static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3149{
3150        struct btrfs_ioctl_vol_args *vol_args;
3151        int ret;
3152
3153        if (!capable(CAP_SYS_ADMIN))
3154                return -EPERM;
3155
3156        if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD))
3157                return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3158
3159        vol_args = memdup_user(arg, sizeof(*vol_args));
3160        if (IS_ERR(vol_args)) {
3161                ret = PTR_ERR(vol_args);
3162                goto out;
3163        }
3164
3165        vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3166        ret = btrfs_init_new_device(fs_info, vol_args->name);
3167
3168        if (!ret)
3169                btrfs_info(fs_info, "disk added %s", vol_args->name);
3170
3171        kfree(vol_args);
3172out:
3173        btrfs_exclop_finish(fs_info);
3174        return ret;
3175}
3176
3177static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3178{
3179        BTRFS_DEV_LOOKUP_ARGS(args);
3180        struct inode *inode = file_inode(file);
3181        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3182        struct btrfs_ioctl_vol_args_v2 *vol_args;
3183        struct block_device *bdev = NULL;
3184        fmode_t mode;
3185        int ret;
3186        bool cancel = false;
3187
3188        if (!capable(CAP_SYS_ADMIN))
3189                return -EPERM;
3190
3191        vol_args = memdup_user(arg, sizeof(*vol_args));
3192        if (IS_ERR(vol_args))
3193                return PTR_ERR(vol_args);
3194
3195        if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3196                ret = -EOPNOTSUPP;
3197                goto out;
3198        }
3199
3200        vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3201        if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3202                args.devid = vol_args->devid;
3203        } else if (!strcmp("cancel", vol_args->name)) {
3204                cancel = true;
3205        } else {
3206                ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3207                if (ret)
3208                        goto out;
3209        }
3210
3211        ret = mnt_want_write_file(file);
3212        if (ret)
3213                goto out;
3214
3215        ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3216                                           cancel);
3217        if (ret)
3218                goto err_drop;
3219
3220        /* Exclusive operation is now claimed */
3221        ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3222
3223        btrfs_exclop_finish(fs_info);
3224
3225        if (!ret) {
3226                if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3227                        btrfs_info(fs_info, "device deleted: id %llu",
3228                                        vol_args->devid);
3229                else
3230                        btrfs_info(fs_info, "device deleted: %s",
3231                                        vol_args->name);
3232        }
3233err_drop:
3234        mnt_drop_write_file(file);
3235        if (bdev)
3236                blkdev_put(bdev, mode);
3237out:
3238        btrfs_put_dev_args_from_path(&args);
3239        kfree(vol_args);
3240        return ret;
3241}
3242
3243static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3244{
3245        BTRFS_DEV_LOOKUP_ARGS(args);
3246        struct inode *inode = file_inode(file);
3247        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3248        struct btrfs_ioctl_vol_args *vol_args;
3249        struct block_device *bdev = NULL;
3250        fmode_t mode;
3251        int ret;
3252        bool cancel;
3253
3254        if (!capable(CAP_SYS_ADMIN))
3255                return -EPERM;
3256
3257        vol_args = memdup_user(arg, sizeof(*vol_args));
3258        if (IS_ERR(vol_args))
3259                return PTR_ERR(vol_args);
3260
3261        vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3262        if (!strcmp("cancel", vol_args->name)) {
3263                cancel = true;
3264        } else {
3265                ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3266                if (ret)
3267                        goto out;
3268        }
3269
3270        ret = mnt_want_write_file(file);
3271        if (ret)
3272                goto out;
3273
3274        ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3275                                           cancel);
3276        if (ret == 0) {
3277                ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3278                if (!ret)
3279                        btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3280                btrfs_exclop_finish(fs_info);
3281        }
3282
3283        mnt_drop_write_file(file);
3284        if (bdev)
3285                blkdev_put(bdev, mode);
3286out:
3287        btrfs_put_dev_args_from_path(&args);
3288        kfree(vol_args);
3289        return ret;
3290}
3291
3292static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3293                                void __user *arg)
3294{
3295        struct btrfs_ioctl_fs_info_args *fi_args;
3296        struct btrfs_device *device;
3297        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3298        u64 flags_in;
3299        int ret = 0;
3300
3301        fi_args = memdup_user(arg, sizeof(*fi_args));
3302        if (IS_ERR(fi_args))
3303                return PTR_ERR(fi_args);
3304
3305        flags_in = fi_args->flags;
3306        memset(fi_args, 0, sizeof(*fi_args));
3307
3308        rcu_read_lock();
3309        fi_args->num_devices = fs_devices->num_devices;
3310
3311        list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3312                if (device->devid > fi_args->max_id)
3313                        fi_args->max_id = device->devid;
3314        }
3315        rcu_read_unlock();
3316
3317        memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3318        fi_args->nodesize = fs_info->nodesize;
3319        fi_args->sectorsize = fs_info->sectorsize;
3320        fi_args->clone_alignment = fs_info->sectorsize;
3321
3322        if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3323                fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3324                fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3325                fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3326        }
3327
3328        if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3329                fi_args->generation = fs_info->generation;
3330                fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3331        }
3332
3333        if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3334                memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3335                       sizeof(fi_args->metadata_uuid));
3336                fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3337        }
3338
3339        if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3340                ret = -EFAULT;
3341
3342        kfree(fi_args);
3343        return ret;
3344}
3345
3346static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3347                                 void __user *arg)
3348{
3349        BTRFS_DEV_LOOKUP_ARGS(args);
3350        struct btrfs_ioctl_dev_info_args *di_args;
3351        struct btrfs_device *dev;
3352        int ret = 0;
3353
3354        di_args = memdup_user(arg, sizeof(*di_args));
3355        if (IS_ERR(di_args))
3356                return PTR_ERR(di_args);
3357
3358        args.devid = di_args->devid;
3359        if (!btrfs_is_empty_uuid(di_args->uuid))
3360                args.uuid = di_args->uuid;
3361
3362        rcu_read_lock();
3363        dev = btrfs_find_device(fs_info->fs_devices, &args);
3364        if (!dev) {
3365                ret = -ENODEV;
3366                goto out;
3367        }
3368
3369        di_args->devid = dev->devid;
3370        di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3371        di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3372        memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3373        if (dev->name) {
3374                strncpy(di_args->path, rcu_str_deref(dev->name),
3375                                sizeof(di_args->path) - 1);
3376                di_args->path[sizeof(di_args->path) - 1] = 0;
3377        } else {
3378                di_args->path[0] = '\0';
3379        }
3380
3381out:
3382        rcu_read_unlock();
3383        if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3384                ret = -EFAULT;
3385
3386        kfree(di_args);
3387        return ret;
3388}
3389
3390static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3391{
3392        struct inode *inode = file_inode(file);
3393        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3394        struct btrfs_root *root = BTRFS_I(inode)->root;
3395        struct btrfs_root *new_root;
3396        struct btrfs_dir_item *di;
3397        struct btrfs_trans_handle *trans;
3398        struct btrfs_path *path = NULL;
3399        struct btrfs_disk_key disk_key;
3400        u64 objectid = 0;
3401        u64 dir_id;
3402        int ret;
3403
3404        if (!capable(CAP_SYS_ADMIN))
3405                return -EPERM;
3406
3407        ret = mnt_want_write_file(file);
3408        if (ret)
3409                return ret;
3410
3411        if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3412                ret = -EFAULT;
3413                goto out;
3414        }
3415
3416        if (!objectid)
3417                objectid = BTRFS_FS_TREE_OBJECTID;
3418
3419        new_root = btrfs_get_fs_root(fs_info, objectid, true);
3420        if (IS_ERR(new_root)) {
3421                ret = PTR_ERR(new_root);
3422                goto out;
3423        }
3424        if (!is_fstree(new_root->root_key.objectid)) {
3425                ret = -ENOENT;
3426                goto out_free;
3427        }
3428
3429        path = btrfs_alloc_path();
3430        if (!path) {
3431                ret = -ENOMEM;
3432                goto out_free;
3433        }
3434
3435        trans = btrfs_start_transaction(root, 1);
3436        if (IS_ERR(trans)) {
3437                ret = PTR_ERR(trans);
3438                goto out_free;
3439        }
3440
3441        dir_id = btrfs_super_root_dir(fs_info->super_copy);
3442        di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3443                                   dir_id, "default", 7, 1);
3444        if (IS_ERR_OR_NULL(di)) {
3445                btrfs_release_path(path);
3446                btrfs_end_transaction(trans);
3447                btrfs_err(fs_info,
3448                          "Umm, you don't have the default diritem, this isn't going to work");
3449                ret = -ENOENT;
3450                goto out_free;
3451        }
3452
3453        btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3454        btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3455        btrfs_mark_buffer_dirty(path->nodes[0]);
3456        btrfs_release_path(path);
3457
3458        btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3459        btrfs_end_transaction(trans);
3460out_free:
3461        btrfs_put_root(new_root);
3462        btrfs_free_path(path);
3463out:
3464        mnt_drop_write_file(file);
3465        return ret;
3466}
3467
3468static void get_block_group_info(struct list_head *groups_list,
3469                                 struct btrfs_ioctl_space_info *space)
3470{
3471        struct btrfs_block_group *block_group;
3472
3473        space->total_bytes = 0;
3474        space->used_bytes = 0;
3475        space->flags = 0;
3476        list_for_each_entry(block_group, groups_list, list) {
3477                space->flags = block_group->flags;
3478                space->total_bytes += block_group->length;
3479                space->used_bytes += block_group->used;
3480        }
3481}
3482
3483static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3484                                   void __user *arg)
3485{
3486        struct btrfs_ioctl_space_args space_args;
3487        struct btrfs_ioctl_space_info space;
3488        struct btrfs_ioctl_space_info *dest;
3489        struct btrfs_ioctl_space_info *dest_orig;
3490        struct btrfs_ioctl_space_info __user *user_dest;
3491        struct btrfs_space_info *info;
3492        static const u64 types[] = {
3493                BTRFS_BLOCK_GROUP_DATA,
3494                BTRFS_BLOCK_GROUP_SYSTEM,
3495                BTRFS_BLOCK_GROUP_METADATA,
3496                BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3497        };
3498        int num_types = 4;
3499        int alloc_size;
3500        int ret = 0;
3501        u64 slot_count = 0;
3502        int i, c;
3503
3504        if (copy_from_user(&space_args,
3505                           (struct btrfs_ioctl_space_args __user *)arg,
3506                           sizeof(space_args)))
3507                return -EFAULT;
3508
3509        for (i = 0; i < num_types; i++) {
3510                struct btrfs_space_info *tmp;
3511
3512                info = NULL;
3513                list_for_each_entry(tmp, &fs_info->space_info, list) {
3514                        if (tmp->flags == types[i]) {
3515                                info = tmp;
3516                                break;
3517                        }
3518                }
3519
3520                if (!info)
3521                        continue;
3522
3523                down_read(&info->groups_sem);
3524                for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3525                        if (!list_empty(&info->block_groups[c]))
3526                                slot_count++;
3527                }
3528                up_read(&info->groups_sem);
3529        }
3530
3531        /*
3532         * Global block reserve, exported as a space_info
3533         */
3534        slot_count++;
3535
3536        /* space_slots == 0 means they are asking for a count */
3537        if (space_args.space_slots == 0) {
3538                space_args.total_spaces = slot_count;
3539                goto out;
3540        }
3541
3542        slot_count = min_t(u64, space_args.space_slots, slot_count);
3543
3544        alloc_size = sizeof(*dest) * slot_count;
3545
3546        /* we generally have at most 6 or so space infos, one for each raid
3547         * level.  So, a whole page should be more than enough for everyone
3548         */
3549        if (alloc_size > PAGE_SIZE)
3550                return -ENOMEM;
3551
3552        space_args.total_spaces = 0;
3553        dest = kmalloc(alloc_size, GFP_KERNEL);
3554        if (!dest)
3555                return -ENOMEM;
3556        dest_orig = dest;
3557
3558        /* now we have a buffer to copy into */
3559        for (i = 0; i < num_types; i++) {
3560                struct btrfs_space_info *tmp;
3561
3562                if (!slot_count)
3563                        break;
3564
3565                info = NULL;
3566                list_for_each_entry(tmp, &fs_info->space_info, list) {
3567                        if (tmp->flags == types[i]) {
3568                                info = tmp;
3569                                break;
3570                        }
3571                }
3572
3573                if (!info)
3574                        continue;
3575                down_read(&info->groups_sem);
3576                for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3577                        if (!list_empty(&info->block_groups[c])) {
3578                                get_block_group_info(&info->block_groups[c],
3579                                                     &space);
3580                                memcpy(dest, &space, sizeof(space));
3581                                dest++;
3582                                space_args.total_spaces++;
3583                                slot_count--;
3584                        }
3585                        if (!slot_count)
3586                                break;
3587                }
3588                up_read(&info->groups_sem);
3589        }
3590
3591        /*
3592         * Add global block reserve
3593         */
3594        if (slot_count) {
3595                struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3596
3597                spin_lock(&block_rsv->lock);
3598                space.total_bytes = block_rsv->size;
3599                space.used_bytes = block_rsv->size - block_rsv->reserved;
3600                spin_unlock(&block_rsv->lock);
3601                space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3602                memcpy(dest, &space, sizeof(space));
3603                space_args.total_spaces++;
3604        }
3605
3606        user_dest = (struct btrfs_ioctl_space_info __user *)
3607                (arg + sizeof(struct btrfs_ioctl_space_args));
3608
3609        if (copy_to_user(user_dest, dest_orig, alloc_size))
3610                ret = -EFAULT;
3611
3612        kfree(dest_orig);
3613out:
3614        if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3615                ret = -EFAULT;
3616
3617        return ret;
3618}
3619
3620static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3621                                            void __user *argp)
3622{
3623        struct btrfs_trans_handle *trans;
3624        u64 transid;
3625        int ret;
3626
3627        trans = btrfs_attach_transaction_barrier(root);
3628        if (IS_ERR(trans)) {
3629                if (PTR_ERR(trans) != -ENOENT)
3630                        return PTR_ERR(trans);
3631
3632                /* No running transaction, don't bother */
3633                transid = root->fs_info->last_trans_committed;
3634                goto out;
3635        }
3636        transid = trans->transid;
3637        ret = btrfs_commit_transaction_async(trans);
3638        if (ret) {
3639                btrfs_end_transaction(trans);
3640                return ret;
3641        }
3642out:
3643        if (argp)
3644                if (copy_to_user(argp, &transid, sizeof(transid)))
3645                        return -EFAULT;
3646        return 0;
3647}
3648
3649static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3650                                           void __user *argp)
3651{
3652        u64 transid;
3653
3654        if (argp) {
3655                if (copy_from_user(&transid, argp, sizeof(transid)))
3656                        return -EFAULT;
3657        } else {
3658                transid = 0;  /* current trans */
3659        }
3660        return btrfs_wait_for_commit(fs_info, transid);
3661}
3662
3663static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3664{
3665        struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3666        struct btrfs_ioctl_scrub_args *sa;
3667        int ret;
3668
3669        if (!capable(CAP_SYS_ADMIN))
3670                return -EPERM;
3671
3672        sa = memdup_user(arg, sizeof(*sa));
3673        if (IS_ERR(sa))
3674                return PTR_ERR(sa);
3675
3676        if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3677                ret = mnt_want_write_file(file);
3678                if (ret)
3679                        goto out;
3680        }
3681
3682        ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3683                              &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3684                              0);
3685
3686        /*
3687         * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3688         * error. This is important as it allows user space to know how much
3689         * progress scrub has done. For example, if scrub is canceled we get
3690         * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3691         * space. Later user space can inspect the progress from the structure
3692         * btrfs_ioctl_scrub_args and resume scrub from where it left off
3693         * previously (btrfs-progs does this).
3694         * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3695         * then return -EFAULT to signal the structure was not copied or it may
3696         * be corrupt and unreliable due to a partial copy.
3697         */
3698        if (copy_to_user(arg, sa, sizeof(*sa)))
3699                ret = -EFAULT;
3700
3701        if (!(sa->flags & BTRFS_SCRUB_READONLY))
3702                mnt_drop_write_file(file);
3703out:
3704        kfree(sa);
3705        return ret;
3706}
3707
3708static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3709{
3710        if (!capable(CAP_SYS_ADMIN))
3711                return -EPERM;
3712
3713        return btrfs_scrub_cancel(fs_info);
3714}
3715
3716static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3717                                       void __user *arg)
3718{
3719        struct btrfs_ioctl_scrub_args *sa;
3720        int ret;
3721
3722        if (!capable(CAP_SYS_ADMIN))
3723                return -EPERM;
3724
3725        sa = memdup_user(arg, sizeof(*sa));
3726        if (IS_ERR(sa))
3727                return PTR_ERR(sa);
3728
3729        ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3730
3731        if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3732                ret = -EFAULT;
3733
3734        kfree(sa);
3735        return ret;
3736}
3737
3738static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3739                                      void __user *arg)
3740{
3741        struct btrfs_ioctl_get_dev_stats *sa;
3742        int ret;
3743
3744        sa = memdup_user(arg, sizeof(*sa));
3745        if (IS_ERR(sa))
3746                return PTR_ERR(sa);
3747
3748        if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3749                kfree(sa);
3750                return -EPERM;
3751        }
3752
3753        ret = btrfs_get_dev_stats(fs_info, sa);
3754
3755        if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3756                ret = -EFAULT;
3757
3758        kfree(sa);
3759        return ret;
3760}
3761
3762static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3763                                    void __user *arg)
3764{
3765        struct btrfs_ioctl_dev_replace_args *p;
3766        int ret;
3767
3768        if (!capable(CAP_SYS_ADMIN))
3769                return -EPERM;
3770
3771        p = memdup_user(arg, sizeof(*p));
3772        if (IS_ERR(p))
3773                return PTR_ERR(p);
3774
3775        switch (p->cmd) {
3776        case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3777                if (sb_rdonly(fs_info->sb)) {
3778                        ret = -EROFS;
3779                        goto out;
3780                }
3781                if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3782                        ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3783                } else {
3784                        ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3785                        btrfs_exclop_finish(fs_info);
3786                }
3787                break;
3788        case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3789                btrfs_dev_replace_status(fs_info, p);
3790                ret = 0;
3791                break;
3792        case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3793                p->result = btrfs_dev_replace_cancel(fs_info);
3794                ret = 0;
3795                break;
3796        default:
3797                ret = -EINVAL;
3798                break;
3799        }
3800
3801        if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3802                ret = -EFAULT;
3803out:
3804        kfree(p);
3805        return ret;
3806}
3807
3808static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3809{
3810        int ret = 0;
3811        int i;
3812        u64 rel_ptr;
3813        int size;
3814        struct btrfs_ioctl_ino_path_args *ipa = NULL;
3815        struct inode_fs_paths *ipath = NULL;
3816        struct btrfs_path *path;
3817
3818        if (!capable(CAP_DAC_READ_SEARCH))
3819                return -EPERM;
3820
3821        path = btrfs_alloc_path();
3822        if (!path) {
3823                ret = -ENOMEM;
3824                goto out;
3825        }
3826
3827        ipa = memdup_user(arg, sizeof(*ipa));
3828        if (IS_ERR(ipa)) {
3829                ret = PTR_ERR(ipa);
3830                ipa = NULL;
3831                goto out;
3832        }
3833
3834        size = min_t(u32, ipa->size, 4096);
3835        ipath = init_ipath(size, root, path);
3836        if (IS_ERR(ipath)) {
3837                ret = PTR_ERR(ipath);
3838                ipath = NULL;
3839                goto out;
3840        }
3841
3842        ret = paths_from_inode(ipa->inum, ipath);
3843        if (ret < 0)
3844                goto out;
3845
3846        for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3847                rel_ptr = ipath->fspath->val[i] -
3848                          (u64)(unsigned long)ipath->fspath->val;
3849                ipath->fspath->val[i] = rel_ptr;
3850        }
3851
3852        ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3853                           ipath->fspath, size);
3854        if (ret) {
3855                ret = -EFAULT;
3856                goto out;
3857        }
3858
3859out:
3860        btrfs_free_path(path);
3861        free_ipath(ipath);
3862        kfree(ipa);
3863
3864        return ret;
3865}
3866
3867static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3868{
3869        struct btrfs_data_container *inodes = ctx;
3870        const size_t c = 3 * sizeof(u64);
3871
3872        if (inodes->bytes_left >= c) {
3873                inodes->bytes_left -= c;
3874                inodes->val[inodes->elem_cnt] = inum;
3875                inodes->val[inodes->elem_cnt + 1] = offset;
3876                inodes->val[inodes->elem_cnt + 2] = root;
3877                inodes->elem_cnt += 3;
3878        } else {
3879                inodes->bytes_missing += c - inodes->bytes_left;
3880                inodes->bytes_left = 0;
3881                inodes->elem_missed += 3;
3882        }
3883
3884        return 0;
3885}
3886
3887static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3888                                        void __user *arg, int version)
3889{
3890        int ret = 0;
3891        int size;
3892        struct btrfs_ioctl_logical_ino_args *loi;
3893        struct btrfs_data_container *inodes = NULL;
3894        struct btrfs_path *path = NULL;
3895        bool ignore_offset;
3896
3897        if (!capable(CAP_SYS_ADMIN))
3898                return -EPERM;
3899
3900        loi = memdup_user(arg, sizeof(*loi));
3901        if (IS_ERR(loi))
3902                return PTR_ERR(loi);
3903
3904        if (version == 1) {
3905                ignore_offset = false;
3906                size = min_t(u32, loi->size, SZ_64K);
3907        } else {
3908                /* All reserved bits must be 0 for now */
3909                if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3910                        ret = -EINVAL;
3911                        goto out_loi;
3912                }
3913                /* Only accept flags we have defined so far */
3914                if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3915                        ret = -EINVAL;
3916                        goto out_loi;
3917                }
3918                ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3919                size = min_t(u32, loi->size, SZ_16M);
3920        }
3921
3922        path = btrfs_alloc_path();
3923        if (!path) {
3924                ret = -ENOMEM;
3925                goto out;
3926        }
3927
3928        inodes = init_data_container(size);
3929        if (IS_ERR(inodes)) {
3930                ret = PTR_ERR(inodes);
3931                inodes = NULL;
3932                goto out;
3933        }
3934
3935        ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3936                                          build_ino_list, inodes, ignore_offset);
3937        if (ret == -EINVAL)
3938                ret = -ENOENT;
3939        if (ret < 0)
3940                goto out;
3941
3942        ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3943                           size);
3944        if (ret)
3945                ret = -EFAULT;
3946
3947out:
3948        btrfs_free_path(path);
3949        kvfree(inodes);
3950out_loi:
3951        kfree(loi);
3952
3953        return ret;
3954}
3955
3956void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3957                               struct btrfs_ioctl_balance_args *bargs)
3958{
3959        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3960
3961        bargs->flags = bctl->flags;
3962
3963        if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3964                bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3965        if (atomic_read(&fs_info->balance_pause_req))
3966                bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3967        if (atomic_read(&fs_info->balance_cancel_req))
3968                bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3969
3970        memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3971        memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3972        memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3973
3974        spin_lock(&fs_info->balance_lock);
3975        memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3976        spin_unlock(&fs_info->balance_lock);
3977}
3978
3979static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3980{
3981        struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3982        struct btrfs_fs_info *fs_info = root->fs_info;
3983        struct btrfs_ioctl_balance_args *bargs;
3984        struct btrfs_balance_control *bctl;
3985        bool need_unlock; /* for mut. excl. ops lock */
3986        int ret;
3987
3988        if (!arg)
3989                btrfs_warn(fs_info,
3990        "IOC_BALANCE ioctl (v1) is deprecated and will be removed in kernel 5.18");
3991
3992        if (!capable(CAP_SYS_ADMIN))
3993                return -EPERM;
3994
3995        ret = mnt_want_write_file(file);
3996        if (ret)
3997                return ret;
3998
3999again:
4000        if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4001                mutex_lock(&fs_info->balance_mutex);
4002                need_unlock = true;
4003                goto locked;
4004        }
4005
4006        /*
4007         * mut. excl. ops lock is locked.  Three possibilities:
4008         *   (1) some other op is running
4009         *   (2) balance is running
4010         *   (3) balance is paused -- special case (think resume)
4011         */
4012        mutex_lock(&fs_info->balance_mutex);
4013        if (fs_info->balance_ctl) {
4014                /* this is either (2) or (3) */
4015                if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4016                        mutex_unlock(&fs_info->balance_mutex);
4017                        /*
4018                         * Lock released to allow other waiters to continue,
4019                         * we'll reexamine the status again.
4020                         */
4021                        mutex_lock(&fs_info->balance_mutex);
4022
4023                        if (fs_info->balance_ctl &&
4024                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4025                                /* this is (3) */
4026                                need_unlock = false;
4027                                goto locked;
4028                        }
4029
4030                        mutex_unlock(&fs_info->balance_mutex);
4031                        goto again;
4032                } else {
4033                        /* this is (2) */
4034                        mutex_unlock(&fs_info->balance_mutex);
4035                        ret = -EINPROGRESS;
4036                        goto out;
4037                }
4038        } else {
4039                /* this is (1) */
4040                mutex_unlock(&fs_info->balance_mutex);
4041                ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4042                goto out;
4043        }
4044
4045locked:
4046
4047        if (arg) {
4048                bargs = memdup_user(arg, sizeof(*bargs));
4049                if (IS_ERR(bargs)) {
4050                        ret = PTR_ERR(bargs);
4051                        goto out_unlock;
4052                }
4053
4054                if (bargs->flags & BTRFS_BALANCE_RESUME) {
4055                        if (!fs_info->balance_ctl) {
4056                                ret = -ENOTCONN;
4057                                goto out_bargs;
4058                        }
4059
4060                        bctl = fs_info->balance_ctl;
4061                        spin_lock(&fs_info->balance_lock);
4062                        bctl->flags |= BTRFS_BALANCE_RESUME;
4063                        spin_unlock(&fs_info->balance_lock);
4064
4065                        goto do_balance;
4066                }
4067        } else {
4068                bargs = NULL;
4069        }
4070
4071        if (fs_info->balance_ctl) {
4072                ret = -EINPROGRESS;
4073                goto out_bargs;
4074        }
4075
4076        bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4077        if (!bctl) {
4078                ret = -ENOMEM;
4079                goto out_bargs;
4080        }
4081
4082        if (arg) {
4083                memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4084                memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4085                memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4086
4087                bctl->flags = bargs->flags;
4088        } else {
4089                /* balance everything - no filters */
4090                bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4091        }
4092
4093        if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4094                ret = -EINVAL;
4095                goto out_bctl;
4096        }
4097
4098do_balance:
4099        /*
4100         * Ownership of bctl and exclusive operation goes to btrfs_balance.
4101         * bctl is freed in reset_balance_state, or, if restriper was paused
4102         * all the way until unmount, in free_fs_info.  The flag should be
4103         * cleared after reset_balance_state.
4104         */
4105        need_unlock = false;
4106
4107        ret = btrfs_balance(fs_info, bctl, bargs);
4108        bctl = NULL;
4109
4110        if ((ret == 0 || ret == -ECANCELED) && arg) {
4111                if (copy_to_user(arg, bargs, sizeof(*bargs)))
4112                        ret = -EFAULT;
4113        }
4114
4115out_bctl:
4116        kfree(bctl);
4117out_bargs:
4118        kfree(bargs);
4119out_unlock:
4120        mutex_unlock(&fs_info->balance_mutex);
4121        if (need_unlock)
4122                btrfs_exclop_finish(fs_info);
4123out:
4124        mnt_drop_write_file(file);
4125        return ret;
4126}
4127
4128static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4129{
4130        if (!capable(CAP_SYS_ADMIN))
4131                return -EPERM;
4132
4133        switch (cmd) {
4134        case BTRFS_BALANCE_CTL_PAUSE:
4135                return btrfs_pause_balance(fs_info);
4136        case BTRFS_BALANCE_CTL_CANCEL:
4137                return btrfs_cancel_balance(fs_info);
4138        }
4139
4140        return -EINVAL;
4141}
4142
4143static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4144                                         void __user *arg)
4145{
4146        struct btrfs_ioctl_balance_args *bargs;
4147        int ret = 0;
4148
4149        if (!capable(CAP_SYS_ADMIN))
4150                return -EPERM;
4151
4152        mutex_lock(&fs_info->balance_mutex);
4153        if (!fs_info->balance_ctl) {
4154                ret = -ENOTCONN;
4155                goto out;
4156        }
4157
4158        bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4159        if (!bargs) {
4160                ret = -ENOMEM;
4161                goto out;
4162        }
4163
4164        btrfs_update_ioctl_balance_args(fs_info, bargs);
4165
4166        if (copy_to_user(arg, bargs, sizeof(*bargs)))
4167                ret = -EFAULT;
4168
4169        kfree(bargs);
4170out:
4171        mutex_unlock(&fs_info->balance_mutex);
4172        return ret;
4173}
4174
4175static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4176{
4177        struct inode *inode = file_inode(file);
4178        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4179        struct btrfs_ioctl_quota_ctl_args *sa;
4180        int ret;
4181
4182        if (!capable(CAP_SYS_ADMIN))
4183                return -EPERM;
4184
4185        ret = mnt_want_write_file(file);
4186        if (ret)
4187                return ret;
4188
4189        sa = memdup_user(arg, sizeof(*sa));
4190        if (IS_ERR(sa)) {
4191                ret = PTR_ERR(sa);
4192                goto drop_write;
4193        }
4194
4195        down_write(&fs_info->subvol_sem);
4196
4197        switch (sa->cmd) {
4198        case BTRFS_QUOTA_CTL_ENABLE:
4199                ret = btrfs_quota_enable(fs_info);
4200                break;
4201        case BTRFS_QUOTA_CTL_DISABLE:
4202                ret = btrfs_quota_disable(fs_info);
4203                break;
4204        default:
4205                ret = -EINVAL;
4206                break;
4207        }
4208
4209        kfree(sa);
4210        up_write(&fs_info->subvol_sem);
4211drop_write:
4212        mnt_drop_write_file(file);
4213        return ret;
4214}
4215
4216static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4217{
4218        struct inode *inode = file_inode(file);
4219        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4220        struct btrfs_root *root = BTRFS_I(inode)->root;
4221        struct btrfs_ioctl_qgroup_assign_args *sa;
4222        struct btrfs_trans_handle *trans;
4223        int ret;
4224        int err;
4225
4226        if (!capable(CAP_SYS_ADMIN))
4227                return -EPERM;
4228
4229        ret = mnt_want_write_file(file);
4230        if (ret)
4231                return ret;
4232
4233        sa = memdup_user(arg, sizeof(*sa));
4234        if (IS_ERR(sa)) {
4235                ret = PTR_ERR(sa);
4236                goto drop_write;
4237        }
4238
4239        trans = btrfs_join_transaction(root);
4240        if (IS_ERR(trans)) {
4241                ret = PTR_ERR(trans);
4242                goto out;
4243        }
4244
4245        if (sa->assign) {
4246                ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4247        } else {
4248                ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4249        }
4250
4251        /* update qgroup status and info */
4252        err = btrfs_run_qgroups(trans);
4253        if (err < 0)
4254                btrfs_handle_fs_error(fs_info, err,
4255                                      "failed to update qgroup status and info");
4256        err = btrfs_end_transaction(trans);
4257        if (err && !ret)
4258                ret = err;
4259
4260out:
4261        kfree(sa);
4262drop_write:
4263        mnt_drop_write_file(file);
4264        return ret;
4265}
4266
4267static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4268{
4269        struct inode *inode = file_inode(file);
4270        struct btrfs_root *root = BTRFS_I(inode)->root;
4271        struct btrfs_ioctl_qgroup_create_args *sa;
4272        struct btrfs_trans_handle *trans;
4273        int ret;
4274        int err;
4275
4276        if (!capable(CAP_SYS_ADMIN))
4277                return -EPERM;
4278
4279        ret = mnt_want_write_file(file);
4280        if (ret)
4281                return ret;
4282
4283        sa = memdup_user(arg, sizeof(*sa));
4284        if (IS_ERR(sa)) {
4285                ret = PTR_ERR(sa);
4286                goto drop_write;
4287        }
4288
4289        if (!sa->qgroupid) {
4290                ret = -EINVAL;
4291                goto out;
4292        }
4293
4294        trans = btrfs_join_transaction(root);
4295        if (IS_ERR(trans)) {
4296                ret = PTR_ERR(trans);
4297                goto out;
4298        }
4299
4300        if (sa->create) {
4301                ret = btrfs_create_qgroup(trans, sa->qgroupid);
4302        } else {
4303                ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4304        }
4305
4306        err = btrfs_end_transaction(trans);
4307        if (err && !ret)
4308                ret = err;
4309
4310out:
4311        kfree(sa);
4312drop_write:
4313        mnt_drop_write_file(file);
4314        return ret;
4315}
4316
4317static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4318{
4319        struct inode *inode = file_inode(file);
4320        struct btrfs_root *root = BTRFS_I(inode)->root;
4321        struct btrfs_ioctl_qgroup_limit_args *sa;
4322        struct btrfs_trans_handle *trans;
4323        int ret;
4324        int err;
4325        u64 qgroupid;
4326
4327        if (!capable(CAP_SYS_ADMIN))
4328                return -EPERM;
4329
4330        ret = mnt_want_write_file(file);
4331        if (ret)
4332                return ret;
4333
4334        sa = memdup_user(arg, sizeof(*sa));
4335        if (IS_ERR(sa)) {
4336                ret = PTR_ERR(sa);
4337                goto drop_write;
4338        }
4339
4340        trans = btrfs_join_transaction(root);
4341        if (IS_ERR(trans)) {
4342                ret = PTR_ERR(trans);
4343                goto out;
4344        }
4345
4346        qgroupid = sa->qgroupid;
4347        if (!qgroupid) {
4348                /* take the current subvol as qgroup */
4349                qgroupid = root->root_key.objectid;
4350        }
4351
4352        ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4353
4354        err = btrfs_end_transaction(trans);
4355        if (err && !ret)
4356                ret = err;
4357
4358out:
4359        kfree(sa);
4360drop_write:
4361        mnt_drop_write_file(file);
4362        return ret;
4363}
4364
4365static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4366{
4367        struct inode *inode = file_inode(file);
4368        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4369        struct btrfs_ioctl_quota_rescan_args *qsa;
4370        int ret;
4371
4372        if (!capable(CAP_SYS_ADMIN))
4373                return -EPERM;
4374
4375        ret = mnt_want_write_file(file);
4376        if (ret)
4377                return ret;
4378
4379        qsa = memdup_user(arg, sizeof(*qsa));
4380        if (IS_ERR(qsa)) {
4381                ret = PTR_ERR(qsa);
4382                goto drop_write;
4383        }
4384
4385        if (qsa->flags) {
4386                ret = -EINVAL;
4387                goto out;
4388        }
4389
4390        ret = btrfs_qgroup_rescan(fs_info);
4391
4392out:
4393        kfree(qsa);
4394drop_write:
4395        mnt_drop_write_file(file);
4396        return ret;
4397}
4398
4399static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4400                                                void __user *arg)
4401{
4402        struct btrfs_ioctl_quota_rescan_args qsa = {0};
4403
4404        if (!capable(CAP_SYS_ADMIN))
4405                return -EPERM;
4406
4407        if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4408                qsa.flags = 1;
4409                qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4410        }
4411
4412        if (copy_to_user(arg, &qsa, sizeof(qsa)))
4413                return -EFAULT;
4414
4415        return 0;
4416}
4417
4418static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4419                                                void __user *arg)
4420{
4421        if (!capable(CAP_SYS_ADMIN))
4422                return -EPERM;
4423
4424        return btrfs_qgroup_wait_for_completion(fs_info, true);
4425}
4426
4427static long _btrfs_ioctl_set_received_subvol(struct file *file,
4428                                            struct user_namespace *mnt_userns,
4429                                            struct btrfs_ioctl_received_subvol_args *sa)
4430{
4431        struct inode *inode = file_inode(file);
4432        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4433        struct btrfs_root *root = BTRFS_I(inode)->root;
4434        struct btrfs_root_item *root_item = &root->root_item;
4435        struct btrfs_trans_handle *trans;
4436        struct timespec64 ct = current_time(inode);
4437        int ret = 0;
4438        int received_uuid_changed;
4439
4440        if (!inode_owner_or_capable(mnt_userns, inode))
4441                return -EPERM;
4442
4443        ret = mnt_want_write_file(file);
4444        if (ret < 0)
4445                return ret;
4446
4447        down_write(&fs_info->subvol_sem);
4448
4449        if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4450                ret = -EINVAL;
4451                goto out;
4452        }
4453
4454        if (btrfs_root_readonly(root)) {
4455                ret = -EROFS;
4456                goto out;
4457        }
4458
4459        /*
4460         * 1 - root item
4461         * 2 - uuid items (received uuid + subvol uuid)
4462         */
4463        trans = btrfs_start_transaction(root, 3);
4464        if (IS_ERR(trans)) {
4465                ret = PTR_ERR(trans);
4466                trans = NULL;
4467                goto out;
4468        }
4469
4470        sa->rtransid = trans->transid;
4471        sa->rtime.sec = ct.tv_sec;
4472        sa->rtime.nsec = ct.tv_nsec;
4473
4474        received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4475                                       BTRFS_UUID_SIZE);
4476        if (received_uuid_changed &&
4477            !btrfs_is_empty_uuid(root_item->received_uuid)) {
4478                ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4479                                          BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4480                                          root->root_key.objectid);
4481                if (ret && ret != -ENOENT) {
4482                        btrfs_abort_transaction(trans, ret);
4483                        btrfs_end_transaction(trans);
4484                        goto out;
4485                }
4486        }
4487        memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4488        btrfs_set_root_stransid(root_item, sa->stransid);
4489        btrfs_set_root_rtransid(root_item, sa->rtransid);
4490        btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4491        btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4492        btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4493        btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4494
4495        ret = btrfs_update_root(trans, fs_info->tree_root,
4496                                &root->root_key, &root->root_item);
4497        if (ret < 0) {
4498                btrfs_end_transaction(trans);
4499                goto out;
4500        }
4501        if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4502                ret = btrfs_uuid_tree_add(trans, sa->uuid,
4503                                          BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4504                                          root->root_key.objectid);
4505                if (ret < 0 && ret != -EEXIST) {
4506                        btrfs_abort_transaction(trans, ret);
4507                        btrfs_end_transaction(trans);
4508                        goto out;
4509                }
4510        }
4511        ret = btrfs_commit_transaction(trans);
4512out:
4513        up_write(&fs_info->subvol_sem);
4514        mnt_drop_write_file(file);
4515        return ret;
4516}
4517
4518#ifdef CONFIG_64BIT
4519static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4520                                                void __user *arg)
4521{
4522        struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4523        struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4524        int ret = 0;
4525
4526        args32 = memdup_user(arg, sizeof(*args32));
4527        if (IS_ERR(args32))
4528                return PTR_ERR(args32);
4529
4530        args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4531        if (!args64) {
4532                ret = -ENOMEM;
4533                goto out;
4534        }
4535
4536        memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4537        args64->stransid = args32->stransid;
4538        args64->rtransid = args32->rtransid;
4539        args64->stime.sec = args32->stime.sec;
4540        args64->stime.nsec = args32->stime.nsec;
4541        args64->rtime.sec = args32->rtime.sec;
4542        args64->rtime.nsec = args32->rtime.nsec;
4543        args64->flags = args32->flags;
4544
4545        ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64);
4546        if (ret)
4547                goto out;
4548
4549        memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4550        args32->stransid = args64->stransid;
4551        args32->rtransid = args64->rtransid;
4552        args32->stime.sec = args64->stime.sec;
4553        args32->stime.nsec = args64->stime.nsec;
4554        args32->rtime.sec = args64->rtime.sec;
4555        args32->rtime.nsec = args64->rtime.nsec;
4556        args32->flags = args64->flags;
4557
4558        ret = copy_to_user(arg, args32, sizeof(*args32));
4559        if (ret)
4560                ret = -EFAULT;
4561
4562out:
4563        kfree(args32);
4564        kfree(args64);
4565        return ret;
4566}
4567#endif
4568
4569static long btrfs_ioctl_set_received_subvol(struct file *file,
4570                                            void __user *arg)
4571{
4572        struct btrfs_ioctl_received_subvol_args *sa = NULL;
4573        int ret = 0;
4574
4575        sa = memdup_user(arg, sizeof(*sa));
4576        if (IS_ERR(sa))
4577                return PTR_ERR(sa);
4578
4579        ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa);
4580
4581        if (ret)
4582                goto out;
4583
4584        ret = copy_to_user(arg, sa, sizeof(*sa));
4585        if (ret)
4586                ret = -EFAULT;
4587
4588out:
4589        kfree(sa);
4590        return ret;
4591}
4592
4593static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4594                                        void __user *arg)
4595{
4596        size_t len;
4597        int ret;
4598        char label[BTRFS_LABEL_SIZE];
4599
4600        spin_lock(&fs_info->super_lock);
4601        memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4602        spin_unlock(&fs_info->super_lock);
4603
4604        len = strnlen(label, BTRFS_LABEL_SIZE);
4605
4606        if (len == BTRFS_LABEL_SIZE) {
4607                btrfs_warn(fs_info,
4608                           "label is too long, return the first %zu bytes",
4609                           --len);
4610        }
4611
4612        ret = copy_to_user(arg, label, len);
4613
4614        return ret ? -EFAULT : 0;
4615}
4616
4617static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4618{
4619        struct inode *inode = file_inode(file);
4620        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4621        struct btrfs_root *root = BTRFS_I(inode)->root;
4622        struct btrfs_super_block *super_block = fs_info->super_copy;
4623        struct btrfs_trans_handle *trans;
4624        char label[BTRFS_LABEL_SIZE];
4625        int ret;
4626
4627        if (!capable(CAP_SYS_ADMIN))
4628                return -EPERM;
4629
4630        if (copy_from_user(label, arg, sizeof(label)))
4631                return -EFAULT;
4632
4633        if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4634                btrfs_err(fs_info,
4635                          "unable to set label with more than %d bytes",
4636                          BTRFS_LABEL_SIZE - 1);
4637                return -EINVAL;
4638        }
4639
4640        ret = mnt_want_write_file(file);
4641        if (ret)
4642                return ret;
4643
4644        trans = btrfs_start_transaction(root, 0);
4645        if (IS_ERR(trans)) {
4646                ret = PTR_ERR(trans);
4647                goto out_unlock;
4648        }
4649
4650        spin_lock(&fs_info->super_lock);
4651        strcpy(super_block->label, label);
4652        spin_unlock(&fs_info->super_lock);
4653        ret = btrfs_commit_transaction(trans);
4654
4655out_unlock:
4656        mnt_drop_write_file(file);
4657        return ret;
4658}
4659
4660#define INIT_FEATURE_FLAGS(suffix) \
4661        { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4662          .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4663          .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4664
4665int btrfs_ioctl_get_supported_features(void __user *arg)
4666{
4667        static const struct btrfs_ioctl_feature_flags features[3] = {
4668                INIT_FEATURE_FLAGS(SUPP),
4669                INIT_FEATURE_FLAGS(SAFE_SET),
4670                INIT_FEATURE_FLAGS(SAFE_CLEAR)
4671        };
4672
4673        if (copy_to_user(arg, &features, sizeof(features)))
4674                return -EFAULT;
4675
4676        return 0;
4677}
4678
4679static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4680                                        void __user *arg)
4681{
4682        struct btrfs_super_block *super_block = fs_info->super_copy;
4683        struct btrfs_ioctl_feature_flags features;
4684
4685        features.compat_flags = btrfs_super_compat_flags(super_block);
4686        features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4687        features.incompat_flags = btrfs_super_incompat_flags(super_block);
4688
4689        if (copy_to_user(arg, &features, sizeof(features)))
4690                return -EFAULT;
4691
4692        return 0;
4693}
4694
4695static int check_feature_bits(struct btrfs_fs_info *fs_info,
4696                              enum btrfs_feature_set set,
4697                              u64 change_mask, u64 flags, u64 supported_flags,
4698                              u64 safe_set, u64 safe_clear)
4699{
4700        const char *type = btrfs_feature_set_name(set);
4701        char *names;
4702        u64 disallowed, unsupported;
4703        u64 set_mask = flags & change_mask;
4704        u64 clear_mask = ~flags & change_mask;
4705
4706        unsupported = set_mask & ~supported_flags;
4707        if (unsupported) {
4708                names = btrfs_printable_features(set, unsupported);
4709                if (names) {
4710                        btrfs_warn(fs_info,
4711                                   "this kernel does not support the %s feature bit%s",
4712                                   names, strchr(names, ',') ? "s" : "");
4713                        kfree(names);
4714                } else
4715                        btrfs_warn(fs_info,
4716                                   "this kernel does not support %s bits 0x%llx",
4717                                   type, unsupported);
4718                return -EOPNOTSUPP;
4719        }
4720
4721        disallowed = set_mask & ~safe_set;
4722        if (disallowed) {
4723                names = btrfs_printable_features(set, disallowed);
4724                if (names) {
4725                        btrfs_warn(fs_info,
4726                                   "can't set the %s feature bit%s while mounted",
4727                                   names, strchr(names, ',') ? "s" : "");
4728                        kfree(names);
4729                } else
4730                        btrfs_warn(fs_info,
4731                                   "can't set %s bits 0x%llx while mounted",
4732                                   type, disallowed);
4733                return -EPERM;
4734        }
4735
4736        disallowed = clear_mask & ~safe_clear;
4737        if (disallowed) {
4738                names = btrfs_printable_features(set, disallowed);
4739                if (names) {
4740                        btrfs_warn(fs_info,
4741                                   "can't clear the %s feature bit%s while mounted",
4742                                   names, strchr(names, ',') ? "s" : "");
4743                        kfree(names);
4744                } else
4745                        btrfs_warn(fs_info,
4746                                   "can't clear %s bits 0x%llx while mounted",
4747                                   type, disallowed);
4748                return -EPERM;
4749        }
4750
4751        return 0;
4752}
4753
4754#define check_feature(fs_info, change_mask, flags, mask_base)   \
4755check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,       \
4756                   BTRFS_FEATURE_ ## mask_base ## _SUPP,        \
4757                   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,    \
4758                   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4759
4760static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4761{
4762        struct inode *inode = file_inode(file);
4763        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4764        struct btrfs_root *root = BTRFS_I(inode)->root;
4765        struct btrfs_super_block *super_block = fs_info->super_copy;
4766        struct btrfs_ioctl_feature_flags flags[2];
4767        struct btrfs_trans_handle *trans;
4768        u64 newflags;
4769        int ret;
4770
4771        if (!capable(CAP_SYS_ADMIN))
4772                return -EPERM;
4773
4774        if (copy_from_user(flags, arg, sizeof(flags)))
4775                return -EFAULT;
4776
4777        /* Nothing to do */
4778        if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4779            !flags[0].incompat_flags)
4780                return 0;
4781
4782        ret = check_feature(fs_info, flags[0].compat_flags,
4783                            flags[1].compat_flags, COMPAT);
4784        if (ret)
4785                return ret;
4786
4787        ret = check_feature(fs_info, flags[0].compat_ro_flags,
4788                            flags[1].compat_ro_flags, COMPAT_RO);
4789        if (ret)
4790                return ret;
4791
4792        ret = check_feature(fs_info, flags[0].incompat_flags,
4793                            flags[1].incompat_flags, INCOMPAT);
4794        if (ret)
4795                return ret;
4796
4797        ret = mnt_want_write_file(file);
4798        if (ret)
4799                return ret;
4800
4801        trans = btrfs_start_transaction(root, 0);
4802        if (IS_ERR(trans)) {
4803                ret = PTR_ERR(trans);
4804                goto out_drop_write;
4805        }
4806
4807        spin_lock(&fs_info->super_lock);
4808        newflags = btrfs_super_compat_flags(super_block);
4809        newflags |= flags[0].compat_flags & flags[1].compat_flags;
4810        newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4811        btrfs_set_super_compat_flags(super_block, newflags);
4812
4813        newflags = btrfs_super_compat_ro_flags(super_block);
4814        newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4815        newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4816        btrfs_set_super_compat_ro_flags(super_block, newflags);
4817
4818        newflags = btrfs_super_incompat_flags(super_block);
4819        newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4820        newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4821        btrfs_set_super_incompat_flags(super_block, newflags);
4822        spin_unlock(&fs_info->super_lock);
4823
4824        ret = btrfs_commit_transaction(trans);
4825out_drop_write:
4826        mnt_drop_write_file(file);
4827
4828        return ret;
4829}
4830
4831static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4832{
4833        struct btrfs_ioctl_send_args *arg;
4834        int ret;
4835
4836        if (compat) {
4837#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4838                struct btrfs_ioctl_send_args_32 args32;
4839
4840                ret = copy_from_user(&args32, argp, sizeof(args32));
4841                if (ret)
4842                        return -EFAULT;
4843                arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4844                if (!arg)
4845                        return -ENOMEM;
4846                arg->send_fd = args32.send_fd;
4847                arg->clone_sources_count = args32.clone_sources_count;
4848                arg->clone_sources = compat_ptr(args32.clone_sources);
4849                arg->parent_root = args32.parent_root;
4850                arg->flags = args32.flags;
4851                memcpy(arg->reserved, args32.reserved,
4852                       sizeof(args32.reserved));
4853#else
4854                return -ENOTTY;
4855#endif
4856        } else {
4857                arg = memdup_user(argp, sizeof(*arg));
4858                if (IS_ERR(arg))
4859                        return PTR_ERR(arg);
4860        }
4861        ret = btrfs_ioctl_send(file, arg);
4862        kfree(arg);
4863        return ret;
4864}
4865
4866long btrfs_ioctl(struct file *file, unsigned int
4867                cmd, unsigned long arg)
4868{
4869        struct inode *inode = file_inode(file);
4870        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4871        struct btrfs_root *root = BTRFS_I(inode)->root;
4872        void __user *argp = (void __user *)arg;
4873
4874        switch (cmd) {
4875        case FS_IOC_GETVERSION:
4876                return btrfs_ioctl_getversion(file, argp);
4877        case FS_IOC_GETFSLABEL:
4878                return btrfs_ioctl_get_fslabel(fs_info, argp);
4879        case FS_IOC_SETFSLABEL:
4880                return btrfs_ioctl_set_fslabel(file, argp);
4881        case FITRIM:
4882                return btrfs_ioctl_fitrim(fs_info, argp);
4883        case BTRFS_IOC_SNAP_CREATE:
4884                return btrfs_ioctl_snap_create(file, argp, 0);
4885        case BTRFS_IOC_SNAP_CREATE_V2:
4886                return btrfs_ioctl_snap_create_v2(file, argp, 0);
4887        case BTRFS_IOC_SUBVOL_CREATE:
4888                return btrfs_ioctl_snap_create(file, argp, 1);
4889        case BTRFS_IOC_SUBVOL_CREATE_V2:
4890                return btrfs_ioctl_snap_create_v2(file, argp, 1);
4891        case BTRFS_IOC_SNAP_DESTROY:
4892                return btrfs_ioctl_snap_destroy(file, argp, false);
4893        case BTRFS_IOC_SNAP_DESTROY_V2:
4894                return btrfs_ioctl_snap_destroy(file, argp, true);
4895        case BTRFS_IOC_SUBVOL_GETFLAGS:
4896                return btrfs_ioctl_subvol_getflags(file, argp);
4897        case BTRFS_IOC_SUBVOL_SETFLAGS:
4898                return btrfs_ioctl_subvol_setflags(file, argp);
4899        case BTRFS_IOC_DEFAULT_SUBVOL:
4900                return btrfs_ioctl_default_subvol(file, argp);
4901        case BTRFS_IOC_DEFRAG:
4902                return btrfs_ioctl_defrag(file, NULL);
4903        case BTRFS_IOC_DEFRAG_RANGE:
4904                return btrfs_ioctl_defrag(file, argp);
4905        case BTRFS_IOC_RESIZE:
4906                return btrfs_ioctl_resize(file, argp);
4907        case BTRFS_IOC_ADD_DEV:
4908                return btrfs_ioctl_add_dev(fs_info, argp);
4909        case BTRFS_IOC_RM_DEV:
4910                return btrfs_ioctl_rm_dev(file, argp);
4911        case BTRFS_IOC_RM_DEV_V2:
4912                return btrfs_ioctl_rm_dev_v2(file, argp);
4913        case BTRFS_IOC_FS_INFO:
4914                return btrfs_ioctl_fs_info(fs_info, argp);
4915        case BTRFS_IOC_DEV_INFO:
4916                return btrfs_ioctl_dev_info(fs_info, argp);
4917        case BTRFS_IOC_BALANCE:
4918                return btrfs_ioctl_balance(file, NULL);
4919        case BTRFS_IOC_TREE_SEARCH:
4920                return btrfs_ioctl_tree_search(file, argp);
4921        case BTRFS_IOC_TREE_SEARCH_V2:
4922                return btrfs_ioctl_tree_search_v2(file, argp);
4923        case BTRFS_IOC_INO_LOOKUP:
4924                return btrfs_ioctl_ino_lookup(file, argp);
4925        case BTRFS_IOC_INO_PATHS:
4926                return btrfs_ioctl_ino_to_path(root, argp);
4927        case BTRFS_IOC_LOGICAL_INO:
4928                return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4929        case BTRFS_IOC_LOGICAL_INO_V2:
4930                return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4931        case BTRFS_IOC_SPACE_INFO:
4932                return btrfs_ioctl_space_info(fs_info, argp);
4933        case BTRFS_IOC_SYNC: {
4934                int ret;
4935
4936                ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4937                if (ret)
4938                        return ret;
4939                ret = btrfs_sync_fs(inode->i_sb, 1);
4940                /*
4941                 * The transaction thread may want to do more work,
4942                 * namely it pokes the cleaner kthread that will start
4943                 * processing uncleaned subvols.
4944                 */
4945                wake_up_process(fs_info->transaction_kthread);
4946                return ret;
4947        }
4948        case BTRFS_IOC_START_SYNC:
4949                return btrfs_ioctl_start_sync(root, argp);
4950        case BTRFS_IOC_WAIT_SYNC:
4951                return btrfs_ioctl_wait_sync(fs_info, argp);
4952        case BTRFS_IOC_SCRUB:
4953                return btrfs_ioctl_scrub(file, argp);
4954        case BTRFS_IOC_SCRUB_CANCEL:
4955                return btrfs_ioctl_scrub_cancel(fs_info);
4956        case BTRFS_IOC_SCRUB_PROGRESS:
4957                return btrfs_ioctl_scrub_progress(fs_info, argp);
4958        case BTRFS_IOC_BALANCE_V2:
4959                return btrfs_ioctl_balance(file, argp);
4960        case BTRFS_IOC_BALANCE_CTL:
4961                return btrfs_ioctl_balance_ctl(fs_info, arg);
4962        case BTRFS_IOC_BALANCE_PROGRESS:
4963                return btrfs_ioctl_balance_progress(fs_info, argp);
4964        case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4965                return btrfs_ioctl_set_received_subvol(file, argp);
4966#ifdef CONFIG_64BIT
4967        case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4968                return btrfs_ioctl_set_received_subvol_32(file, argp);
4969#endif
4970        case BTRFS_IOC_SEND:
4971                return _btrfs_ioctl_send(file, argp, false);
4972#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4973        case BTRFS_IOC_SEND_32:
4974                return _btrfs_ioctl_send(file, argp, true);
4975#endif
4976        case BTRFS_IOC_GET_DEV_STATS:
4977                return btrfs_ioctl_get_dev_stats(fs_info, argp);
4978        case BTRFS_IOC_QUOTA_CTL:
4979                return btrfs_ioctl_quota_ctl(file, argp);
4980        case BTRFS_IOC_QGROUP_ASSIGN:
4981                return btrfs_ioctl_qgroup_assign(file, argp);
4982        case BTRFS_IOC_QGROUP_CREATE:
4983                return btrfs_ioctl_qgroup_create(file, argp);
4984        case BTRFS_IOC_QGROUP_LIMIT:
4985                return btrfs_ioctl_qgroup_limit(file, argp);
4986        case BTRFS_IOC_QUOTA_RESCAN:
4987                return btrfs_ioctl_quota_rescan(file, argp);
4988        case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4989                return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4990        case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4991                return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4992        case BTRFS_IOC_DEV_REPLACE:
4993                return btrfs_ioctl_dev_replace(fs_info, argp);
4994        case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4995                return btrfs_ioctl_get_supported_features(argp);
4996        case BTRFS_IOC_GET_FEATURES:
4997                return btrfs_ioctl_get_features(fs_info, argp);
4998        case BTRFS_IOC_SET_FEATURES:
4999                return btrfs_ioctl_set_features(file, argp);
5000        case BTRFS_IOC_GET_SUBVOL_INFO:
5001                return btrfs_ioctl_get_subvol_info(file, argp);
5002        case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5003                return btrfs_ioctl_get_subvol_rootref(file, argp);
5004        case BTRFS_IOC_INO_LOOKUP_USER:
5005                return btrfs_ioctl_ino_lookup_user(file, argp);
5006        case FS_IOC_ENABLE_VERITY:
5007                return fsverity_ioctl_enable(file, (const void __user *)argp);
5008        case FS_IOC_MEASURE_VERITY:
5009                return fsverity_ioctl_measure(file, argp);
5010        }
5011
5012        return -ENOTTY;
5013}
5014
5015#ifdef CONFIG_COMPAT
5016long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5017{
5018        /*
5019         * These all access 32-bit values anyway so no further
5020         * handling is necessary.
5021         */
5022        switch (cmd) {
5023        case FS_IOC32_GETVERSION:
5024                cmd = FS_IOC_GETVERSION;
5025                break;
5026        }
5027
5028        return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5029}
5030#endif
5031