linux/fs/btrfs/raid56.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2012 Fusion-io  All rights reserved.
   4 * Copyright (C) 2012 Intel Corp. All rights reserved.
   5 */
   6
   7#include <linux/sched.h>
   8#include <linux/bio.h>
   9#include <linux/slab.h>
  10#include <linux/blkdev.h>
  11#include <linux/raid/pq.h>
  12#include <linux/hash.h>
  13#include <linux/list_sort.h>
  14#include <linux/raid/xor.h>
  15#include <linux/mm.h>
  16#include "misc.h"
  17#include "ctree.h"
  18#include "disk-io.h"
  19#include "volumes.h"
  20#include "raid56.h"
  21#include "async-thread.h"
  22
  23/* set when additional merges to this rbio are not allowed */
  24#define RBIO_RMW_LOCKED_BIT     1
  25
  26/*
  27 * set when this rbio is sitting in the hash, but it is just a cache
  28 * of past RMW
  29 */
  30#define RBIO_CACHE_BIT          2
  31
  32/*
  33 * set when it is safe to trust the stripe_pages for caching
  34 */
  35#define RBIO_CACHE_READY_BIT    3
  36
  37#define RBIO_CACHE_SIZE 1024
  38
  39#define BTRFS_STRIPE_HASH_TABLE_BITS                            11
  40
  41/* Used by the raid56 code to lock stripes for read/modify/write */
  42struct btrfs_stripe_hash {
  43        struct list_head hash_list;
  44        spinlock_t lock;
  45};
  46
  47/* Used by the raid56 code to lock stripes for read/modify/write */
  48struct btrfs_stripe_hash_table {
  49        struct list_head stripe_cache;
  50        spinlock_t cache_lock;
  51        int cache_size;
  52        struct btrfs_stripe_hash table[];
  53};
  54
  55enum btrfs_rbio_ops {
  56        BTRFS_RBIO_WRITE,
  57        BTRFS_RBIO_READ_REBUILD,
  58        BTRFS_RBIO_PARITY_SCRUB,
  59        BTRFS_RBIO_REBUILD_MISSING,
  60};
  61
  62struct btrfs_raid_bio {
  63        struct btrfs_io_context *bioc;
  64
  65        /* while we're doing rmw on a stripe
  66         * we put it into a hash table so we can
  67         * lock the stripe and merge more rbios
  68         * into it.
  69         */
  70        struct list_head hash_list;
  71
  72        /*
  73         * LRU list for the stripe cache
  74         */
  75        struct list_head stripe_cache;
  76
  77        /*
  78         * for scheduling work in the helper threads
  79         */
  80        struct btrfs_work work;
  81
  82        /*
  83         * bio list and bio_list_lock are used
  84         * to add more bios into the stripe
  85         * in hopes of avoiding the full rmw
  86         */
  87        struct bio_list bio_list;
  88        spinlock_t bio_list_lock;
  89
  90        /* also protected by the bio_list_lock, the
  91         * plug list is used by the plugging code
  92         * to collect partial bios while plugged.  The
  93         * stripe locking code also uses it to hand off
  94         * the stripe lock to the next pending IO
  95         */
  96        struct list_head plug_list;
  97
  98        /*
  99         * flags that tell us if it is safe to
 100         * merge with this bio
 101         */
 102        unsigned long flags;
 103
 104        /* size of each individual stripe on disk */
 105        int stripe_len;
 106
 107        /* number of data stripes (no p/q) */
 108        int nr_data;
 109
 110        int real_stripes;
 111
 112        int stripe_npages;
 113        /*
 114         * set if we're doing a parity rebuild
 115         * for a read from higher up, which is handled
 116         * differently from a parity rebuild as part of
 117         * rmw
 118         */
 119        enum btrfs_rbio_ops operation;
 120
 121        /* first bad stripe */
 122        int faila;
 123
 124        /* second bad stripe (for raid6 use) */
 125        int failb;
 126
 127        int scrubp;
 128        /*
 129         * number of pages needed to represent the full
 130         * stripe
 131         */
 132        int nr_pages;
 133
 134        /*
 135         * size of all the bios in the bio_list.  This
 136         * helps us decide if the rbio maps to a full
 137         * stripe or not
 138         */
 139        int bio_list_bytes;
 140
 141        int generic_bio_cnt;
 142
 143        refcount_t refs;
 144
 145        atomic_t stripes_pending;
 146
 147        atomic_t error;
 148        /*
 149         * these are two arrays of pointers.  We allocate the
 150         * rbio big enough to hold them both and setup their
 151         * locations when the rbio is allocated
 152         */
 153
 154        /* pointers to pages that we allocated for
 155         * reading/writing stripes directly from the disk (including P/Q)
 156         */
 157        struct page **stripe_pages;
 158
 159        /*
 160         * pointers to the pages in the bio_list.  Stored
 161         * here for faster lookup
 162         */
 163        struct page **bio_pages;
 164
 165        /*
 166         * bitmap to record which horizontal stripe has data
 167         */
 168        unsigned long *dbitmap;
 169
 170        /* allocated with real_stripes-many pointers for finish_*() calls */
 171        void **finish_pointers;
 172
 173        /* allocated with stripe_npages-many bits for finish_*() calls */
 174        unsigned long *finish_pbitmap;
 175};
 176
 177static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
 178static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
 179static void rmw_work(struct btrfs_work *work);
 180static void read_rebuild_work(struct btrfs_work *work);
 181static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
 182static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
 183static void __free_raid_bio(struct btrfs_raid_bio *rbio);
 184static void index_rbio_pages(struct btrfs_raid_bio *rbio);
 185static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
 186
 187static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
 188                                         int need_check);
 189static void scrub_parity_work(struct btrfs_work *work);
 190
 191static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func)
 192{
 193        btrfs_init_work(&rbio->work, work_func, NULL, NULL);
 194        btrfs_queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
 195}
 196
 197/*
 198 * the stripe hash table is used for locking, and to collect
 199 * bios in hopes of making a full stripe
 200 */
 201int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
 202{
 203        struct btrfs_stripe_hash_table *table;
 204        struct btrfs_stripe_hash_table *x;
 205        struct btrfs_stripe_hash *cur;
 206        struct btrfs_stripe_hash *h;
 207        int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
 208        int i;
 209
 210        if (info->stripe_hash_table)
 211                return 0;
 212
 213        /*
 214         * The table is large, starting with order 4 and can go as high as
 215         * order 7 in case lock debugging is turned on.
 216         *
 217         * Try harder to allocate and fallback to vmalloc to lower the chance
 218         * of a failing mount.
 219         */
 220        table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
 221        if (!table)
 222                return -ENOMEM;
 223
 224        spin_lock_init(&table->cache_lock);
 225        INIT_LIST_HEAD(&table->stripe_cache);
 226
 227        h = table->table;
 228
 229        for (i = 0; i < num_entries; i++) {
 230                cur = h + i;
 231                INIT_LIST_HEAD(&cur->hash_list);
 232                spin_lock_init(&cur->lock);
 233        }
 234
 235        x = cmpxchg(&info->stripe_hash_table, NULL, table);
 236        kvfree(x);
 237        return 0;
 238}
 239
 240/*
 241 * caching an rbio means to copy anything from the
 242 * bio_pages array into the stripe_pages array.  We
 243 * use the page uptodate bit in the stripe cache array
 244 * to indicate if it has valid data
 245 *
 246 * once the caching is done, we set the cache ready
 247 * bit.
 248 */
 249static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
 250{
 251        int i;
 252        int ret;
 253
 254        ret = alloc_rbio_pages(rbio);
 255        if (ret)
 256                return;
 257
 258        for (i = 0; i < rbio->nr_pages; i++) {
 259                if (!rbio->bio_pages[i])
 260                        continue;
 261
 262                copy_highpage(rbio->stripe_pages[i], rbio->bio_pages[i]);
 263                SetPageUptodate(rbio->stripe_pages[i]);
 264        }
 265        set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 266}
 267
 268/*
 269 * we hash on the first logical address of the stripe
 270 */
 271static int rbio_bucket(struct btrfs_raid_bio *rbio)
 272{
 273        u64 num = rbio->bioc->raid_map[0];
 274
 275        /*
 276         * we shift down quite a bit.  We're using byte
 277         * addressing, and most of the lower bits are zeros.
 278         * This tends to upset hash_64, and it consistently
 279         * returns just one or two different values.
 280         *
 281         * shifting off the lower bits fixes things.
 282         */
 283        return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
 284}
 285
 286/*
 287 * stealing an rbio means taking all the uptodate pages from the stripe
 288 * array in the source rbio and putting them into the destination rbio
 289 */
 290static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
 291{
 292        int i;
 293        struct page *s;
 294        struct page *d;
 295
 296        if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
 297                return;
 298
 299        for (i = 0; i < dest->nr_pages; i++) {
 300                s = src->stripe_pages[i];
 301                if (!s || !PageUptodate(s)) {
 302                        continue;
 303                }
 304
 305                d = dest->stripe_pages[i];
 306                if (d)
 307                        __free_page(d);
 308
 309                dest->stripe_pages[i] = s;
 310                src->stripe_pages[i] = NULL;
 311        }
 312}
 313
 314/*
 315 * merging means we take the bio_list from the victim and
 316 * splice it into the destination.  The victim should
 317 * be discarded afterwards.
 318 *
 319 * must be called with dest->rbio_list_lock held
 320 */
 321static void merge_rbio(struct btrfs_raid_bio *dest,
 322                       struct btrfs_raid_bio *victim)
 323{
 324        bio_list_merge(&dest->bio_list, &victim->bio_list);
 325        dest->bio_list_bytes += victim->bio_list_bytes;
 326        dest->generic_bio_cnt += victim->generic_bio_cnt;
 327        bio_list_init(&victim->bio_list);
 328}
 329
 330/*
 331 * used to prune items that are in the cache.  The caller
 332 * must hold the hash table lock.
 333 */
 334static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 335{
 336        int bucket = rbio_bucket(rbio);
 337        struct btrfs_stripe_hash_table *table;
 338        struct btrfs_stripe_hash *h;
 339        int freeit = 0;
 340
 341        /*
 342         * check the bit again under the hash table lock.
 343         */
 344        if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 345                return;
 346
 347        table = rbio->bioc->fs_info->stripe_hash_table;
 348        h = table->table + bucket;
 349
 350        /* hold the lock for the bucket because we may be
 351         * removing it from the hash table
 352         */
 353        spin_lock(&h->lock);
 354
 355        /*
 356         * hold the lock for the bio list because we need
 357         * to make sure the bio list is empty
 358         */
 359        spin_lock(&rbio->bio_list_lock);
 360
 361        if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 362                list_del_init(&rbio->stripe_cache);
 363                table->cache_size -= 1;
 364                freeit = 1;
 365
 366                /* if the bio list isn't empty, this rbio is
 367                 * still involved in an IO.  We take it out
 368                 * of the cache list, and drop the ref that
 369                 * was held for the list.
 370                 *
 371                 * If the bio_list was empty, we also remove
 372                 * the rbio from the hash_table, and drop
 373                 * the corresponding ref
 374                 */
 375                if (bio_list_empty(&rbio->bio_list)) {
 376                        if (!list_empty(&rbio->hash_list)) {
 377                                list_del_init(&rbio->hash_list);
 378                                refcount_dec(&rbio->refs);
 379                                BUG_ON(!list_empty(&rbio->plug_list));
 380                        }
 381                }
 382        }
 383
 384        spin_unlock(&rbio->bio_list_lock);
 385        spin_unlock(&h->lock);
 386
 387        if (freeit)
 388                __free_raid_bio(rbio);
 389}
 390
 391/*
 392 * prune a given rbio from the cache
 393 */
 394static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 395{
 396        struct btrfs_stripe_hash_table *table;
 397        unsigned long flags;
 398
 399        if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 400                return;
 401
 402        table = rbio->bioc->fs_info->stripe_hash_table;
 403
 404        spin_lock_irqsave(&table->cache_lock, flags);
 405        __remove_rbio_from_cache(rbio);
 406        spin_unlock_irqrestore(&table->cache_lock, flags);
 407}
 408
 409/*
 410 * remove everything in the cache
 411 */
 412static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
 413{
 414        struct btrfs_stripe_hash_table *table;
 415        unsigned long flags;
 416        struct btrfs_raid_bio *rbio;
 417
 418        table = info->stripe_hash_table;
 419
 420        spin_lock_irqsave(&table->cache_lock, flags);
 421        while (!list_empty(&table->stripe_cache)) {
 422                rbio = list_entry(table->stripe_cache.next,
 423                                  struct btrfs_raid_bio,
 424                                  stripe_cache);
 425                __remove_rbio_from_cache(rbio);
 426        }
 427        spin_unlock_irqrestore(&table->cache_lock, flags);
 428}
 429
 430/*
 431 * remove all cached entries and free the hash table
 432 * used by unmount
 433 */
 434void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
 435{
 436        if (!info->stripe_hash_table)
 437                return;
 438        btrfs_clear_rbio_cache(info);
 439        kvfree(info->stripe_hash_table);
 440        info->stripe_hash_table = NULL;
 441}
 442
 443/*
 444 * insert an rbio into the stripe cache.  It
 445 * must have already been prepared by calling
 446 * cache_rbio_pages
 447 *
 448 * If this rbio was already cached, it gets
 449 * moved to the front of the lru.
 450 *
 451 * If the size of the rbio cache is too big, we
 452 * prune an item.
 453 */
 454static void cache_rbio(struct btrfs_raid_bio *rbio)
 455{
 456        struct btrfs_stripe_hash_table *table;
 457        unsigned long flags;
 458
 459        if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
 460                return;
 461
 462        table = rbio->bioc->fs_info->stripe_hash_table;
 463
 464        spin_lock_irqsave(&table->cache_lock, flags);
 465        spin_lock(&rbio->bio_list_lock);
 466
 467        /* bump our ref if we were not in the list before */
 468        if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
 469                refcount_inc(&rbio->refs);
 470
 471        if (!list_empty(&rbio->stripe_cache)){
 472                list_move(&rbio->stripe_cache, &table->stripe_cache);
 473        } else {
 474                list_add(&rbio->stripe_cache, &table->stripe_cache);
 475                table->cache_size += 1;
 476        }
 477
 478        spin_unlock(&rbio->bio_list_lock);
 479
 480        if (table->cache_size > RBIO_CACHE_SIZE) {
 481                struct btrfs_raid_bio *found;
 482
 483                found = list_entry(table->stripe_cache.prev,
 484                                  struct btrfs_raid_bio,
 485                                  stripe_cache);
 486
 487                if (found != rbio)
 488                        __remove_rbio_from_cache(found);
 489        }
 490
 491        spin_unlock_irqrestore(&table->cache_lock, flags);
 492}
 493
 494/*
 495 * helper function to run the xor_blocks api.  It is only
 496 * able to do MAX_XOR_BLOCKS at a time, so we need to
 497 * loop through.
 498 */
 499static void run_xor(void **pages, int src_cnt, ssize_t len)
 500{
 501        int src_off = 0;
 502        int xor_src_cnt = 0;
 503        void *dest = pages[src_cnt];
 504
 505        while(src_cnt > 0) {
 506                xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
 507                xor_blocks(xor_src_cnt, len, dest, pages + src_off);
 508
 509                src_cnt -= xor_src_cnt;
 510                src_off += xor_src_cnt;
 511        }
 512}
 513
 514/*
 515 * Returns true if the bio list inside this rbio covers an entire stripe (no
 516 * rmw required).
 517 */
 518static int rbio_is_full(struct btrfs_raid_bio *rbio)
 519{
 520        unsigned long flags;
 521        unsigned long size = rbio->bio_list_bytes;
 522        int ret = 1;
 523
 524        spin_lock_irqsave(&rbio->bio_list_lock, flags);
 525        if (size != rbio->nr_data * rbio->stripe_len)
 526                ret = 0;
 527        BUG_ON(size > rbio->nr_data * rbio->stripe_len);
 528        spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
 529
 530        return ret;
 531}
 532
 533/*
 534 * returns 1 if it is safe to merge two rbios together.
 535 * The merging is safe if the two rbios correspond to
 536 * the same stripe and if they are both going in the same
 537 * direction (read vs write), and if neither one is
 538 * locked for final IO
 539 *
 540 * The caller is responsible for locking such that
 541 * rmw_locked is safe to test
 542 */
 543static int rbio_can_merge(struct btrfs_raid_bio *last,
 544                          struct btrfs_raid_bio *cur)
 545{
 546        if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
 547            test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
 548                return 0;
 549
 550        /*
 551         * we can't merge with cached rbios, since the
 552         * idea is that when we merge the destination
 553         * rbio is going to run our IO for us.  We can
 554         * steal from cached rbios though, other functions
 555         * handle that.
 556         */
 557        if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
 558            test_bit(RBIO_CACHE_BIT, &cur->flags))
 559                return 0;
 560
 561        if (last->bioc->raid_map[0] != cur->bioc->raid_map[0])
 562                return 0;
 563
 564        /* we can't merge with different operations */
 565        if (last->operation != cur->operation)
 566                return 0;
 567        /*
 568         * We've need read the full stripe from the drive.
 569         * check and repair the parity and write the new results.
 570         *
 571         * We're not allowed to add any new bios to the
 572         * bio list here, anyone else that wants to
 573         * change this stripe needs to do their own rmw.
 574         */
 575        if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
 576                return 0;
 577
 578        if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
 579                return 0;
 580
 581        if (last->operation == BTRFS_RBIO_READ_REBUILD) {
 582                int fa = last->faila;
 583                int fb = last->failb;
 584                int cur_fa = cur->faila;
 585                int cur_fb = cur->failb;
 586
 587                if (last->faila >= last->failb) {
 588                        fa = last->failb;
 589                        fb = last->faila;
 590                }
 591
 592                if (cur->faila >= cur->failb) {
 593                        cur_fa = cur->failb;
 594                        cur_fb = cur->faila;
 595                }
 596
 597                if (fa != cur_fa || fb != cur_fb)
 598                        return 0;
 599        }
 600        return 1;
 601}
 602
 603static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
 604                                  int index)
 605{
 606        return stripe * rbio->stripe_npages + index;
 607}
 608
 609/*
 610 * these are just the pages from the rbio array, not from anything
 611 * the FS sent down to us
 612 */
 613static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
 614                                     int index)
 615{
 616        return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
 617}
 618
 619/*
 620 * helper to index into the pstripe
 621 */
 622static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
 623{
 624        return rbio_stripe_page(rbio, rbio->nr_data, index);
 625}
 626
 627/*
 628 * helper to index into the qstripe, returns null
 629 * if there is no qstripe
 630 */
 631static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
 632{
 633        if (rbio->nr_data + 1 == rbio->real_stripes)
 634                return NULL;
 635        return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
 636}
 637
 638/*
 639 * The first stripe in the table for a logical address
 640 * has the lock.  rbios are added in one of three ways:
 641 *
 642 * 1) Nobody has the stripe locked yet.  The rbio is given
 643 * the lock and 0 is returned.  The caller must start the IO
 644 * themselves.
 645 *
 646 * 2) Someone has the stripe locked, but we're able to merge
 647 * with the lock owner.  The rbio is freed and the IO will
 648 * start automatically along with the existing rbio.  1 is returned.
 649 *
 650 * 3) Someone has the stripe locked, but we're not able to merge.
 651 * The rbio is added to the lock owner's plug list, or merged into
 652 * an rbio already on the plug list.  When the lock owner unlocks,
 653 * the next rbio on the list is run and the IO is started automatically.
 654 * 1 is returned
 655 *
 656 * If we return 0, the caller still owns the rbio and must continue with
 657 * IO submission.  If we return 1, the caller must assume the rbio has
 658 * already been freed.
 659 */
 660static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
 661{
 662        struct btrfs_stripe_hash *h;
 663        struct btrfs_raid_bio *cur;
 664        struct btrfs_raid_bio *pending;
 665        unsigned long flags;
 666        struct btrfs_raid_bio *freeit = NULL;
 667        struct btrfs_raid_bio *cache_drop = NULL;
 668        int ret = 0;
 669
 670        h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
 671
 672        spin_lock_irqsave(&h->lock, flags);
 673        list_for_each_entry(cur, &h->hash_list, hash_list) {
 674                if (cur->bioc->raid_map[0] != rbio->bioc->raid_map[0])
 675                        continue;
 676
 677                spin_lock(&cur->bio_list_lock);
 678
 679                /* Can we steal this cached rbio's pages? */
 680                if (bio_list_empty(&cur->bio_list) &&
 681                    list_empty(&cur->plug_list) &&
 682                    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
 683                    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
 684                        list_del_init(&cur->hash_list);
 685                        refcount_dec(&cur->refs);
 686
 687                        steal_rbio(cur, rbio);
 688                        cache_drop = cur;
 689                        spin_unlock(&cur->bio_list_lock);
 690
 691                        goto lockit;
 692                }
 693
 694                /* Can we merge into the lock owner? */
 695                if (rbio_can_merge(cur, rbio)) {
 696                        merge_rbio(cur, rbio);
 697                        spin_unlock(&cur->bio_list_lock);
 698                        freeit = rbio;
 699                        ret = 1;
 700                        goto out;
 701                }
 702
 703
 704                /*
 705                 * We couldn't merge with the running rbio, see if we can merge
 706                 * with the pending ones.  We don't have to check for rmw_locked
 707                 * because there is no way they are inside finish_rmw right now
 708                 */
 709                list_for_each_entry(pending, &cur->plug_list, plug_list) {
 710                        if (rbio_can_merge(pending, rbio)) {
 711                                merge_rbio(pending, rbio);
 712                                spin_unlock(&cur->bio_list_lock);
 713                                freeit = rbio;
 714                                ret = 1;
 715                                goto out;
 716                        }
 717                }
 718
 719                /*
 720                 * No merging, put us on the tail of the plug list, our rbio
 721                 * will be started with the currently running rbio unlocks
 722                 */
 723                list_add_tail(&rbio->plug_list, &cur->plug_list);
 724                spin_unlock(&cur->bio_list_lock);
 725                ret = 1;
 726                goto out;
 727        }
 728lockit:
 729        refcount_inc(&rbio->refs);
 730        list_add(&rbio->hash_list, &h->hash_list);
 731out:
 732        spin_unlock_irqrestore(&h->lock, flags);
 733        if (cache_drop)
 734                remove_rbio_from_cache(cache_drop);
 735        if (freeit)
 736                __free_raid_bio(freeit);
 737        return ret;
 738}
 739
 740/*
 741 * called as rmw or parity rebuild is completed.  If the plug list has more
 742 * rbios waiting for this stripe, the next one on the list will be started
 743 */
 744static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
 745{
 746        int bucket;
 747        struct btrfs_stripe_hash *h;
 748        unsigned long flags;
 749        int keep_cache = 0;
 750
 751        bucket = rbio_bucket(rbio);
 752        h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
 753
 754        if (list_empty(&rbio->plug_list))
 755                cache_rbio(rbio);
 756
 757        spin_lock_irqsave(&h->lock, flags);
 758        spin_lock(&rbio->bio_list_lock);
 759
 760        if (!list_empty(&rbio->hash_list)) {
 761                /*
 762                 * if we're still cached and there is no other IO
 763                 * to perform, just leave this rbio here for others
 764                 * to steal from later
 765                 */
 766                if (list_empty(&rbio->plug_list) &&
 767                    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 768                        keep_cache = 1;
 769                        clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 770                        BUG_ON(!bio_list_empty(&rbio->bio_list));
 771                        goto done;
 772                }
 773
 774                list_del_init(&rbio->hash_list);
 775                refcount_dec(&rbio->refs);
 776
 777                /*
 778                 * we use the plug list to hold all the rbios
 779                 * waiting for the chance to lock this stripe.
 780                 * hand the lock over to one of them.
 781                 */
 782                if (!list_empty(&rbio->plug_list)) {
 783                        struct btrfs_raid_bio *next;
 784                        struct list_head *head = rbio->plug_list.next;
 785
 786                        next = list_entry(head, struct btrfs_raid_bio,
 787                                          plug_list);
 788
 789                        list_del_init(&rbio->plug_list);
 790
 791                        list_add(&next->hash_list, &h->hash_list);
 792                        refcount_inc(&next->refs);
 793                        spin_unlock(&rbio->bio_list_lock);
 794                        spin_unlock_irqrestore(&h->lock, flags);
 795
 796                        if (next->operation == BTRFS_RBIO_READ_REBUILD)
 797                                start_async_work(next, read_rebuild_work);
 798                        else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
 799                                steal_rbio(rbio, next);
 800                                start_async_work(next, read_rebuild_work);
 801                        } else if (next->operation == BTRFS_RBIO_WRITE) {
 802                                steal_rbio(rbio, next);
 803                                start_async_work(next, rmw_work);
 804                        } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
 805                                steal_rbio(rbio, next);
 806                                start_async_work(next, scrub_parity_work);
 807                        }
 808
 809                        goto done_nolock;
 810                }
 811        }
 812done:
 813        spin_unlock(&rbio->bio_list_lock);
 814        spin_unlock_irqrestore(&h->lock, flags);
 815
 816done_nolock:
 817        if (!keep_cache)
 818                remove_rbio_from_cache(rbio);
 819}
 820
 821static void __free_raid_bio(struct btrfs_raid_bio *rbio)
 822{
 823        int i;
 824
 825        if (!refcount_dec_and_test(&rbio->refs))
 826                return;
 827
 828        WARN_ON(!list_empty(&rbio->stripe_cache));
 829        WARN_ON(!list_empty(&rbio->hash_list));
 830        WARN_ON(!bio_list_empty(&rbio->bio_list));
 831
 832        for (i = 0; i < rbio->nr_pages; i++) {
 833                if (rbio->stripe_pages[i]) {
 834                        __free_page(rbio->stripe_pages[i]);
 835                        rbio->stripe_pages[i] = NULL;
 836                }
 837        }
 838
 839        btrfs_put_bioc(rbio->bioc);
 840        kfree(rbio);
 841}
 842
 843static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
 844{
 845        struct bio *next;
 846
 847        while (cur) {
 848                next = cur->bi_next;
 849                cur->bi_next = NULL;
 850                cur->bi_status = err;
 851                bio_endio(cur);
 852                cur = next;
 853        }
 854}
 855
 856/*
 857 * this frees the rbio and runs through all the bios in the
 858 * bio_list and calls end_io on them
 859 */
 860static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
 861{
 862        struct bio *cur = bio_list_get(&rbio->bio_list);
 863        struct bio *extra;
 864
 865        if (rbio->generic_bio_cnt)
 866                btrfs_bio_counter_sub(rbio->bioc->fs_info, rbio->generic_bio_cnt);
 867
 868        /*
 869         * At this moment, rbio->bio_list is empty, however since rbio does not
 870         * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
 871         * hash list, rbio may be merged with others so that rbio->bio_list
 872         * becomes non-empty.
 873         * Once unlock_stripe() is done, rbio->bio_list will not be updated any
 874         * more and we can call bio_endio() on all queued bios.
 875         */
 876        unlock_stripe(rbio);
 877        extra = bio_list_get(&rbio->bio_list);
 878        __free_raid_bio(rbio);
 879
 880        rbio_endio_bio_list(cur, err);
 881        if (extra)
 882                rbio_endio_bio_list(extra, err);
 883}
 884
 885/*
 886 * end io function used by finish_rmw.  When we finally
 887 * get here, we've written a full stripe
 888 */
 889static void raid_write_end_io(struct bio *bio)
 890{
 891        struct btrfs_raid_bio *rbio = bio->bi_private;
 892        blk_status_t err = bio->bi_status;
 893        int max_errors;
 894
 895        if (err)
 896                fail_bio_stripe(rbio, bio);
 897
 898        bio_put(bio);
 899
 900        if (!atomic_dec_and_test(&rbio->stripes_pending))
 901                return;
 902
 903        err = BLK_STS_OK;
 904
 905        /* OK, we have read all the stripes we need to. */
 906        max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
 907                     0 : rbio->bioc->max_errors;
 908        if (atomic_read(&rbio->error) > max_errors)
 909                err = BLK_STS_IOERR;
 910
 911        rbio_orig_end_io(rbio, err);
 912}
 913
 914/*
 915 * the read/modify/write code wants to use the original bio for
 916 * any pages it included, and then use the rbio for everything
 917 * else.  This function decides if a given index (stripe number)
 918 * and page number in that stripe fall inside the original bio
 919 * or the rbio.
 920 *
 921 * if you set bio_list_only, you'll get a NULL back for any ranges
 922 * that are outside the bio_list
 923 *
 924 * This doesn't take any refs on anything, you get a bare page pointer
 925 * and the caller must bump refs as required.
 926 *
 927 * You must call index_rbio_pages once before you can trust
 928 * the answers from this function.
 929 */
 930static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
 931                                 int index, int pagenr, int bio_list_only)
 932{
 933        int chunk_page;
 934        struct page *p = NULL;
 935
 936        chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
 937
 938        spin_lock_irq(&rbio->bio_list_lock);
 939        p = rbio->bio_pages[chunk_page];
 940        spin_unlock_irq(&rbio->bio_list_lock);
 941
 942        if (p || bio_list_only)
 943                return p;
 944
 945        return rbio->stripe_pages[chunk_page];
 946}
 947
 948/*
 949 * number of pages we need for the entire stripe across all the
 950 * drives
 951 */
 952static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
 953{
 954        return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
 955}
 956
 957/*
 958 * allocation and initial setup for the btrfs_raid_bio.  Not
 959 * this does not allocate any pages for rbio->pages.
 960 */
 961static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
 962                                         struct btrfs_io_context *bioc,
 963                                         u64 stripe_len)
 964{
 965        struct btrfs_raid_bio *rbio;
 966        int nr_data = 0;
 967        int real_stripes = bioc->num_stripes - bioc->num_tgtdevs;
 968        int num_pages = rbio_nr_pages(stripe_len, real_stripes);
 969        int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
 970        void *p;
 971
 972        rbio = kzalloc(sizeof(*rbio) +
 973                       sizeof(*rbio->stripe_pages) * num_pages +
 974                       sizeof(*rbio->bio_pages) * num_pages +
 975                       sizeof(*rbio->finish_pointers) * real_stripes +
 976                       sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_npages) +
 977                       sizeof(*rbio->finish_pbitmap) *
 978                                BITS_TO_LONGS(stripe_npages),
 979                       GFP_NOFS);
 980        if (!rbio)
 981                return ERR_PTR(-ENOMEM);
 982
 983        bio_list_init(&rbio->bio_list);
 984        INIT_LIST_HEAD(&rbio->plug_list);
 985        spin_lock_init(&rbio->bio_list_lock);
 986        INIT_LIST_HEAD(&rbio->stripe_cache);
 987        INIT_LIST_HEAD(&rbio->hash_list);
 988        rbio->bioc = bioc;
 989        rbio->stripe_len = stripe_len;
 990        rbio->nr_pages = num_pages;
 991        rbio->real_stripes = real_stripes;
 992        rbio->stripe_npages = stripe_npages;
 993        rbio->faila = -1;
 994        rbio->failb = -1;
 995        refcount_set(&rbio->refs, 1);
 996        atomic_set(&rbio->error, 0);
 997        atomic_set(&rbio->stripes_pending, 0);
 998
 999        /*
1000         * the stripe_pages, bio_pages, etc arrays point to the extra
1001         * memory we allocated past the end of the rbio
1002         */
1003        p = rbio + 1;
1004#define CONSUME_ALLOC(ptr, count)       do {                            \
1005                ptr = p;                                                \
1006                p = (unsigned char *)p + sizeof(*(ptr)) * (count);      \
1007        } while (0)
1008        CONSUME_ALLOC(rbio->stripe_pages, num_pages);
1009        CONSUME_ALLOC(rbio->bio_pages, num_pages);
1010        CONSUME_ALLOC(rbio->finish_pointers, real_stripes);
1011        CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_npages));
1012        CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_npages));
1013#undef  CONSUME_ALLOC
1014
1015        if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
1016                nr_data = real_stripes - 1;
1017        else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
1018                nr_data = real_stripes - 2;
1019        else
1020                BUG();
1021
1022        rbio->nr_data = nr_data;
1023        return rbio;
1024}
1025
1026/* allocate pages for all the stripes in the bio, including parity */
1027static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1028{
1029        int i;
1030        struct page *page;
1031
1032        for (i = 0; i < rbio->nr_pages; i++) {
1033                if (rbio->stripe_pages[i])
1034                        continue;
1035                page = alloc_page(GFP_NOFS);
1036                if (!page)
1037                        return -ENOMEM;
1038                rbio->stripe_pages[i] = page;
1039        }
1040        return 0;
1041}
1042
1043/* only allocate pages for p/q stripes */
1044static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1045{
1046        int i;
1047        struct page *page;
1048
1049        i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1050
1051        for (; i < rbio->nr_pages; i++) {
1052                if (rbio->stripe_pages[i])
1053                        continue;
1054                page = alloc_page(GFP_NOFS);
1055                if (!page)
1056                        return -ENOMEM;
1057                rbio->stripe_pages[i] = page;
1058        }
1059        return 0;
1060}
1061
1062/*
1063 * add a single page from a specific stripe into our list of bios for IO
1064 * this will try to merge into existing bios if possible, and returns
1065 * zero if all went well.
1066 */
1067static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1068                            struct bio_list *bio_list,
1069                            struct page *page,
1070                            int stripe_nr,
1071                            unsigned long page_index,
1072                            unsigned long bio_max_len)
1073{
1074        struct bio *last = bio_list->tail;
1075        int ret;
1076        struct bio *bio;
1077        struct btrfs_io_stripe *stripe;
1078        u64 disk_start;
1079
1080        stripe = &rbio->bioc->stripes[stripe_nr];
1081        disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1082
1083        /* if the device is missing, just fail this stripe */
1084        if (!stripe->dev->bdev)
1085                return fail_rbio_index(rbio, stripe_nr);
1086
1087        /* see if we can add this page onto our existing bio */
1088        if (last) {
1089                u64 last_end = last->bi_iter.bi_sector << 9;
1090                last_end += last->bi_iter.bi_size;
1091
1092                /*
1093                 * we can't merge these if they are from different
1094                 * devices or if they are not contiguous
1095                 */
1096                if (last_end == disk_start && !last->bi_status &&
1097                    last->bi_bdev == stripe->dev->bdev) {
1098                        ret = bio_add_page(last, page, PAGE_SIZE, 0);
1099                        if (ret == PAGE_SIZE)
1100                                return 0;
1101                }
1102        }
1103
1104        /* put a new bio on the list */
1105        bio = btrfs_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
1106        btrfs_bio(bio)->device = stripe->dev;
1107        bio->bi_iter.bi_size = 0;
1108        bio_set_dev(bio, stripe->dev->bdev);
1109        bio->bi_iter.bi_sector = disk_start >> 9;
1110
1111        bio_add_page(bio, page, PAGE_SIZE, 0);
1112        bio_list_add(bio_list, bio);
1113        return 0;
1114}
1115
1116/*
1117 * while we're doing the read/modify/write cycle, we could
1118 * have errors in reading pages off the disk.  This checks
1119 * for errors and if we're not able to read the page it'll
1120 * trigger parity reconstruction.  The rmw will be finished
1121 * after we've reconstructed the failed stripes
1122 */
1123static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1124{
1125        if (rbio->faila >= 0 || rbio->failb >= 0) {
1126                BUG_ON(rbio->faila == rbio->real_stripes - 1);
1127                __raid56_parity_recover(rbio);
1128        } else {
1129                finish_rmw(rbio);
1130        }
1131}
1132
1133/*
1134 * helper function to walk our bio list and populate the bio_pages array with
1135 * the result.  This seems expensive, but it is faster than constantly
1136 * searching through the bio list as we setup the IO in finish_rmw or stripe
1137 * reconstruction.
1138 *
1139 * This must be called before you trust the answers from page_in_rbio
1140 */
1141static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1142{
1143        struct bio *bio;
1144        u64 start;
1145        unsigned long stripe_offset;
1146        unsigned long page_index;
1147
1148        spin_lock_irq(&rbio->bio_list_lock);
1149        bio_list_for_each(bio, &rbio->bio_list) {
1150                struct bio_vec bvec;
1151                struct bvec_iter iter;
1152                int i = 0;
1153
1154                start = bio->bi_iter.bi_sector << 9;
1155                stripe_offset = start - rbio->bioc->raid_map[0];
1156                page_index = stripe_offset >> PAGE_SHIFT;
1157
1158                if (bio_flagged(bio, BIO_CLONED))
1159                        bio->bi_iter = btrfs_bio(bio)->iter;
1160
1161                bio_for_each_segment(bvec, bio, iter) {
1162                        rbio->bio_pages[page_index + i] = bvec.bv_page;
1163                        i++;
1164                }
1165        }
1166        spin_unlock_irq(&rbio->bio_list_lock);
1167}
1168
1169/*
1170 * this is called from one of two situations.  We either
1171 * have a full stripe from the higher layers, or we've read all
1172 * the missing bits off disk.
1173 *
1174 * This will calculate the parity and then send down any
1175 * changed blocks.
1176 */
1177static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1178{
1179        struct btrfs_io_context *bioc = rbio->bioc;
1180        void **pointers = rbio->finish_pointers;
1181        int nr_data = rbio->nr_data;
1182        int stripe;
1183        int pagenr;
1184        bool has_qstripe;
1185        struct bio_list bio_list;
1186        struct bio *bio;
1187        int ret;
1188
1189        bio_list_init(&bio_list);
1190
1191        if (rbio->real_stripes - rbio->nr_data == 1)
1192                has_qstripe = false;
1193        else if (rbio->real_stripes - rbio->nr_data == 2)
1194                has_qstripe = true;
1195        else
1196                BUG();
1197
1198        /* at this point we either have a full stripe,
1199         * or we've read the full stripe from the drive.
1200         * recalculate the parity and write the new results.
1201         *
1202         * We're not allowed to add any new bios to the
1203         * bio list here, anyone else that wants to
1204         * change this stripe needs to do their own rmw.
1205         */
1206        spin_lock_irq(&rbio->bio_list_lock);
1207        set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1208        spin_unlock_irq(&rbio->bio_list_lock);
1209
1210        atomic_set(&rbio->error, 0);
1211
1212        /*
1213         * now that we've set rmw_locked, run through the
1214         * bio list one last time and map the page pointers
1215         *
1216         * We don't cache full rbios because we're assuming
1217         * the higher layers are unlikely to use this area of
1218         * the disk again soon.  If they do use it again,
1219         * hopefully they will send another full bio.
1220         */
1221        index_rbio_pages(rbio);
1222        if (!rbio_is_full(rbio))
1223                cache_rbio_pages(rbio);
1224        else
1225                clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1226
1227        for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1228                struct page *p;
1229                /* first collect one page from each data stripe */
1230                for (stripe = 0; stripe < nr_data; stripe++) {
1231                        p = page_in_rbio(rbio, stripe, pagenr, 0);
1232                        pointers[stripe] = kmap_local_page(p);
1233                }
1234
1235                /* then add the parity stripe */
1236                p = rbio_pstripe_page(rbio, pagenr);
1237                SetPageUptodate(p);
1238                pointers[stripe++] = kmap_local_page(p);
1239
1240                if (has_qstripe) {
1241
1242                        /*
1243                         * raid6, add the qstripe and call the
1244                         * library function to fill in our p/q
1245                         */
1246                        p = rbio_qstripe_page(rbio, pagenr);
1247                        SetPageUptodate(p);
1248                        pointers[stripe++] = kmap_local_page(p);
1249
1250                        raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1251                                                pointers);
1252                } else {
1253                        /* raid5 */
1254                        copy_page(pointers[nr_data], pointers[0]);
1255                        run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1256                }
1257                for (stripe = stripe - 1; stripe >= 0; stripe--)
1258                        kunmap_local(pointers[stripe]);
1259        }
1260
1261        /*
1262         * time to start writing.  Make bios for everything from the
1263         * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1264         * everything else.
1265         */
1266        for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1267                for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1268                        struct page *page;
1269                        if (stripe < rbio->nr_data) {
1270                                page = page_in_rbio(rbio, stripe, pagenr, 1);
1271                                if (!page)
1272                                        continue;
1273                        } else {
1274                               page = rbio_stripe_page(rbio, stripe, pagenr);
1275                        }
1276
1277                        ret = rbio_add_io_page(rbio, &bio_list,
1278                                       page, stripe, pagenr, rbio->stripe_len);
1279                        if (ret)
1280                                goto cleanup;
1281                }
1282        }
1283
1284        if (likely(!bioc->num_tgtdevs))
1285                goto write_data;
1286
1287        for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1288                if (!bioc->tgtdev_map[stripe])
1289                        continue;
1290
1291                for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1292                        struct page *page;
1293                        if (stripe < rbio->nr_data) {
1294                                page = page_in_rbio(rbio, stripe, pagenr, 1);
1295                                if (!page)
1296                                        continue;
1297                        } else {
1298                               page = rbio_stripe_page(rbio, stripe, pagenr);
1299                        }
1300
1301                        ret = rbio_add_io_page(rbio, &bio_list, page,
1302                                               rbio->bioc->tgtdev_map[stripe],
1303                                               pagenr, rbio->stripe_len);
1304                        if (ret)
1305                                goto cleanup;
1306                }
1307        }
1308
1309write_data:
1310        atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1311        BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1312
1313        while ((bio = bio_list_pop(&bio_list))) {
1314                bio->bi_private = rbio;
1315                bio->bi_end_io = raid_write_end_io;
1316                bio->bi_opf = REQ_OP_WRITE;
1317
1318                submit_bio(bio);
1319        }
1320        return;
1321
1322cleanup:
1323        rbio_orig_end_io(rbio, BLK_STS_IOERR);
1324
1325        while ((bio = bio_list_pop(&bio_list)))
1326                bio_put(bio);
1327}
1328
1329/*
1330 * helper to find the stripe number for a given bio.  Used to figure out which
1331 * stripe has failed.  This expects the bio to correspond to a physical disk,
1332 * so it looks up based on physical sector numbers.
1333 */
1334static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1335                           struct bio *bio)
1336{
1337        u64 physical = bio->bi_iter.bi_sector;
1338        int i;
1339        struct btrfs_io_stripe *stripe;
1340
1341        physical <<= 9;
1342
1343        for (i = 0; i < rbio->bioc->num_stripes; i++) {
1344                stripe = &rbio->bioc->stripes[i];
1345                if (in_range(physical, stripe->physical, rbio->stripe_len) &&
1346                    stripe->dev->bdev && bio->bi_bdev == stripe->dev->bdev) {
1347                        return i;
1348                }
1349        }
1350        return -1;
1351}
1352
1353/*
1354 * helper to find the stripe number for a given
1355 * bio (before mapping).  Used to figure out which stripe has
1356 * failed.  This looks up based on logical block numbers.
1357 */
1358static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1359                                   struct bio *bio)
1360{
1361        u64 logical = bio->bi_iter.bi_sector << 9;
1362        int i;
1363
1364        for (i = 0; i < rbio->nr_data; i++) {
1365                u64 stripe_start = rbio->bioc->raid_map[i];
1366
1367                if (in_range(logical, stripe_start, rbio->stripe_len))
1368                        return i;
1369        }
1370        return -1;
1371}
1372
1373/*
1374 * returns -EIO if we had too many failures
1375 */
1376static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1377{
1378        unsigned long flags;
1379        int ret = 0;
1380
1381        spin_lock_irqsave(&rbio->bio_list_lock, flags);
1382
1383        /* we already know this stripe is bad, move on */
1384        if (rbio->faila == failed || rbio->failb == failed)
1385                goto out;
1386
1387        if (rbio->faila == -1) {
1388                /* first failure on this rbio */
1389                rbio->faila = failed;
1390                atomic_inc(&rbio->error);
1391        } else if (rbio->failb == -1) {
1392                /* second failure on this rbio */
1393                rbio->failb = failed;
1394                atomic_inc(&rbio->error);
1395        } else {
1396                ret = -EIO;
1397        }
1398out:
1399        spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1400
1401        return ret;
1402}
1403
1404/*
1405 * helper to fail a stripe based on a physical disk
1406 * bio.
1407 */
1408static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1409                           struct bio *bio)
1410{
1411        int failed = find_bio_stripe(rbio, bio);
1412
1413        if (failed < 0)
1414                return -EIO;
1415
1416        return fail_rbio_index(rbio, failed);
1417}
1418
1419/*
1420 * this sets each page in the bio uptodate.  It should only be used on private
1421 * rbio pages, nothing that comes in from the higher layers
1422 */
1423static void set_bio_pages_uptodate(struct bio *bio)
1424{
1425        struct bio_vec *bvec;
1426        struct bvec_iter_all iter_all;
1427
1428        ASSERT(!bio_flagged(bio, BIO_CLONED));
1429
1430        bio_for_each_segment_all(bvec, bio, iter_all)
1431                SetPageUptodate(bvec->bv_page);
1432}
1433
1434/*
1435 * end io for the read phase of the rmw cycle.  All the bios here are physical
1436 * stripe bios we've read from the disk so we can recalculate the parity of the
1437 * stripe.
1438 *
1439 * This will usually kick off finish_rmw once all the bios are read in, but it
1440 * may trigger parity reconstruction if we had any errors along the way
1441 */
1442static void raid_rmw_end_io(struct bio *bio)
1443{
1444        struct btrfs_raid_bio *rbio = bio->bi_private;
1445
1446        if (bio->bi_status)
1447                fail_bio_stripe(rbio, bio);
1448        else
1449                set_bio_pages_uptodate(bio);
1450
1451        bio_put(bio);
1452
1453        if (!atomic_dec_and_test(&rbio->stripes_pending))
1454                return;
1455
1456        if (atomic_read(&rbio->error) > rbio->bioc->max_errors)
1457                goto cleanup;
1458
1459        /*
1460         * this will normally call finish_rmw to start our write
1461         * but if there are any failed stripes we'll reconstruct
1462         * from parity first
1463         */
1464        validate_rbio_for_rmw(rbio);
1465        return;
1466
1467cleanup:
1468
1469        rbio_orig_end_io(rbio, BLK_STS_IOERR);
1470}
1471
1472/*
1473 * the stripe must be locked by the caller.  It will
1474 * unlock after all the writes are done
1475 */
1476static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1477{
1478        int bios_to_read = 0;
1479        struct bio_list bio_list;
1480        int ret;
1481        int pagenr;
1482        int stripe;
1483        struct bio *bio;
1484
1485        bio_list_init(&bio_list);
1486
1487        ret = alloc_rbio_pages(rbio);
1488        if (ret)
1489                goto cleanup;
1490
1491        index_rbio_pages(rbio);
1492
1493        atomic_set(&rbio->error, 0);
1494        /*
1495         * build a list of bios to read all the missing parts of this
1496         * stripe
1497         */
1498        for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1499                for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1500                        struct page *page;
1501                        /*
1502                         * we want to find all the pages missing from
1503                         * the rbio and read them from the disk.  If
1504                         * page_in_rbio finds a page in the bio list
1505                         * we don't need to read it off the stripe.
1506                         */
1507                        page = page_in_rbio(rbio, stripe, pagenr, 1);
1508                        if (page)
1509                                continue;
1510
1511                        page = rbio_stripe_page(rbio, stripe, pagenr);
1512                        /*
1513                         * the bio cache may have handed us an uptodate
1514                         * page.  If so, be happy and use it
1515                         */
1516                        if (PageUptodate(page))
1517                                continue;
1518
1519                        ret = rbio_add_io_page(rbio, &bio_list, page,
1520                                       stripe, pagenr, rbio->stripe_len);
1521                        if (ret)
1522                                goto cleanup;
1523                }
1524        }
1525
1526        bios_to_read = bio_list_size(&bio_list);
1527        if (!bios_to_read) {
1528                /*
1529                 * this can happen if others have merged with
1530                 * us, it means there is nothing left to read.
1531                 * But if there are missing devices it may not be
1532                 * safe to do the full stripe write yet.
1533                 */
1534                goto finish;
1535        }
1536
1537        /*
1538         * The bioc may be freed once we submit the last bio. Make sure not to
1539         * touch it after that.
1540         */
1541        atomic_set(&rbio->stripes_pending, bios_to_read);
1542        while ((bio = bio_list_pop(&bio_list))) {
1543                bio->bi_private = rbio;
1544                bio->bi_end_io = raid_rmw_end_io;
1545                bio->bi_opf = REQ_OP_READ;
1546
1547                btrfs_bio_wq_end_io(rbio->bioc->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1548
1549                submit_bio(bio);
1550        }
1551        /* the actual write will happen once the reads are done */
1552        return 0;
1553
1554cleanup:
1555        rbio_orig_end_io(rbio, BLK_STS_IOERR);
1556
1557        while ((bio = bio_list_pop(&bio_list)))
1558                bio_put(bio);
1559
1560        return -EIO;
1561
1562finish:
1563        validate_rbio_for_rmw(rbio);
1564        return 0;
1565}
1566
1567/*
1568 * if the upper layers pass in a full stripe, we thank them by only allocating
1569 * enough pages to hold the parity, and sending it all down quickly.
1570 */
1571static int full_stripe_write(struct btrfs_raid_bio *rbio)
1572{
1573        int ret;
1574
1575        ret = alloc_rbio_parity_pages(rbio);
1576        if (ret) {
1577                __free_raid_bio(rbio);
1578                return ret;
1579        }
1580
1581        ret = lock_stripe_add(rbio);
1582        if (ret == 0)
1583                finish_rmw(rbio);
1584        return 0;
1585}
1586
1587/*
1588 * partial stripe writes get handed over to async helpers.
1589 * We're really hoping to merge a few more writes into this
1590 * rbio before calculating new parity
1591 */
1592static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1593{
1594        int ret;
1595
1596        ret = lock_stripe_add(rbio);
1597        if (ret == 0)
1598                start_async_work(rbio, rmw_work);
1599        return 0;
1600}
1601
1602/*
1603 * sometimes while we were reading from the drive to
1604 * recalculate parity, enough new bios come into create
1605 * a full stripe.  So we do a check here to see if we can
1606 * go directly to finish_rmw
1607 */
1608static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1609{
1610        /* head off into rmw land if we don't have a full stripe */
1611        if (!rbio_is_full(rbio))
1612                return partial_stripe_write(rbio);
1613        return full_stripe_write(rbio);
1614}
1615
1616/*
1617 * We use plugging call backs to collect full stripes.
1618 * Any time we get a partial stripe write while plugged
1619 * we collect it into a list.  When the unplug comes down,
1620 * we sort the list by logical block number and merge
1621 * everything we can into the same rbios
1622 */
1623struct btrfs_plug_cb {
1624        struct blk_plug_cb cb;
1625        struct btrfs_fs_info *info;
1626        struct list_head rbio_list;
1627        struct btrfs_work work;
1628};
1629
1630/*
1631 * rbios on the plug list are sorted for easier merging.
1632 */
1633static int plug_cmp(void *priv, const struct list_head *a,
1634                    const struct list_head *b)
1635{
1636        const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1637                                                       plug_list);
1638        const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1639                                                       plug_list);
1640        u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1641        u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1642
1643        if (a_sector < b_sector)
1644                return -1;
1645        if (a_sector > b_sector)
1646                return 1;
1647        return 0;
1648}
1649
1650static void run_plug(struct btrfs_plug_cb *plug)
1651{
1652        struct btrfs_raid_bio *cur;
1653        struct btrfs_raid_bio *last = NULL;
1654
1655        /*
1656         * sort our plug list then try to merge
1657         * everything we can in hopes of creating full
1658         * stripes.
1659         */
1660        list_sort(NULL, &plug->rbio_list, plug_cmp);
1661        while (!list_empty(&plug->rbio_list)) {
1662                cur = list_entry(plug->rbio_list.next,
1663                                 struct btrfs_raid_bio, plug_list);
1664                list_del_init(&cur->plug_list);
1665
1666                if (rbio_is_full(cur)) {
1667                        int ret;
1668
1669                        /* we have a full stripe, send it down */
1670                        ret = full_stripe_write(cur);
1671                        BUG_ON(ret);
1672                        continue;
1673                }
1674                if (last) {
1675                        if (rbio_can_merge(last, cur)) {
1676                                merge_rbio(last, cur);
1677                                __free_raid_bio(cur);
1678                                continue;
1679
1680                        }
1681                        __raid56_parity_write(last);
1682                }
1683                last = cur;
1684        }
1685        if (last) {
1686                __raid56_parity_write(last);
1687        }
1688        kfree(plug);
1689}
1690
1691/*
1692 * if the unplug comes from schedule, we have to push the
1693 * work off to a helper thread
1694 */
1695static void unplug_work(struct btrfs_work *work)
1696{
1697        struct btrfs_plug_cb *plug;
1698        plug = container_of(work, struct btrfs_plug_cb, work);
1699        run_plug(plug);
1700}
1701
1702static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1703{
1704        struct btrfs_plug_cb *plug;
1705        plug = container_of(cb, struct btrfs_plug_cb, cb);
1706
1707        if (from_schedule) {
1708                btrfs_init_work(&plug->work, unplug_work, NULL, NULL);
1709                btrfs_queue_work(plug->info->rmw_workers,
1710                                 &plug->work);
1711                return;
1712        }
1713        run_plug(plug);
1714}
1715
1716/*
1717 * our main entry point for writes from the rest of the FS.
1718 */
1719int raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc,
1720                        u64 stripe_len)
1721{
1722        struct btrfs_fs_info *fs_info = bioc->fs_info;
1723        struct btrfs_raid_bio *rbio;
1724        struct btrfs_plug_cb *plug = NULL;
1725        struct blk_plug_cb *cb;
1726        int ret;
1727
1728        rbio = alloc_rbio(fs_info, bioc, stripe_len);
1729        if (IS_ERR(rbio)) {
1730                btrfs_put_bioc(bioc);
1731                return PTR_ERR(rbio);
1732        }
1733        bio_list_add(&rbio->bio_list, bio);
1734        rbio->bio_list_bytes = bio->bi_iter.bi_size;
1735        rbio->operation = BTRFS_RBIO_WRITE;
1736
1737        btrfs_bio_counter_inc_noblocked(fs_info);
1738        rbio->generic_bio_cnt = 1;
1739
1740        /*
1741         * don't plug on full rbios, just get them out the door
1742         * as quickly as we can
1743         */
1744        if (rbio_is_full(rbio)) {
1745                ret = full_stripe_write(rbio);
1746                if (ret)
1747                        btrfs_bio_counter_dec(fs_info);
1748                return ret;
1749        }
1750
1751        cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1752        if (cb) {
1753                plug = container_of(cb, struct btrfs_plug_cb, cb);
1754                if (!plug->info) {
1755                        plug->info = fs_info;
1756                        INIT_LIST_HEAD(&plug->rbio_list);
1757                }
1758                list_add_tail(&rbio->plug_list, &plug->rbio_list);
1759                ret = 0;
1760        } else {
1761                ret = __raid56_parity_write(rbio);
1762                if (ret)
1763                        btrfs_bio_counter_dec(fs_info);
1764        }
1765        return ret;
1766}
1767
1768/*
1769 * all parity reconstruction happens here.  We've read in everything
1770 * we can find from the drives and this does the heavy lifting of
1771 * sorting the good from the bad.
1772 */
1773static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1774{
1775        int pagenr, stripe;
1776        void **pointers;
1777        void **unmap_array;
1778        int faila = -1, failb = -1;
1779        struct page *page;
1780        blk_status_t err;
1781        int i;
1782
1783        pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1784        if (!pointers) {
1785                err = BLK_STS_RESOURCE;
1786                goto cleanup_io;
1787        }
1788
1789        /*
1790         * Store copy of pointers that does not get reordered during
1791         * reconstruction so that kunmap_local works.
1792         */
1793        unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1794        if (!unmap_array) {
1795                err = BLK_STS_RESOURCE;
1796                goto cleanup_pointers;
1797        }
1798
1799        faila = rbio->faila;
1800        failb = rbio->failb;
1801
1802        if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1803            rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1804                spin_lock_irq(&rbio->bio_list_lock);
1805                set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1806                spin_unlock_irq(&rbio->bio_list_lock);
1807        }
1808
1809        index_rbio_pages(rbio);
1810
1811        for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1812                /*
1813                 * Now we just use bitmap to mark the horizontal stripes in
1814                 * which we have data when doing parity scrub.
1815                 */
1816                if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1817                    !test_bit(pagenr, rbio->dbitmap))
1818                        continue;
1819
1820                /*
1821                 * Setup our array of pointers with pages from each stripe
1822                 *
1823                 * NOTE: store a duplicate array of pointers to preserve the
1824                 * pointer order
1825                 */
1826                for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1827                        /*
1828                         * if we're rebuilding a read, we have to use
1829                         * pages from the bio list
1830                         */
1831                        if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1832                             rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1833                            (stripe == faila || stripe == failb)) {
1834                                page = page_in_rbio(rbio, stripe, pagenr, 0);
1835                        } else {
1836                                page = rbio_stripe_page(rbio, stripe, pagenr);
1837                        }
1838                        pointers[stripe] = kmap_local_page(page);
1839                        unmap_array[stripe] = pointers[stripe];
1840                }
1841
1842                /* all raid6 handling here */
1843                if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1844                        /*
1845                         * single failure, rebuild from parity raid5
1846                         * style
1847                         */
1848                        if (failb < 0) {
1849                                if (faila == rbio->nr_data) {
1850                                        /*
1851                                         * Just the P stripe has failed, without
1852                                         * a bad data or Q stripe.
1853                                         * TODO, we should redo the xor here.
1854                                         */
1855                                        err = BLK_STS_IOERR;
1856                                        goto cleanup;
1857                                }
1858                                /*
1859                                 * a single failure in raid6 is rebuilt
1860                                 * in the pstripe code below
1861                                 */
1862                                goto pstripe;
1863                        }
1864
1865                        /* make sure our ps and qs are in order */
1866                        if (faila > failb)
1867                                swap(faila, failb);
1868
1869                        /* if the q stripe is failed, do a pstripe reconstruction
1870                         * from the xors.
1871                         * If both the q stripe and the P stripe are failed, we're
1872                         * here due to a crc mismatch and we can't give them the
1873                         * data they want
1874                         */
1875                        if (rbio->bioc->raid_map[failb] == RAID6_Q_STRIPE) {
1876                                if (rbio->bioc->raid_map[faila] ==
1877                                    RAID5_P_STRIPE) {
1878                                        err = BLK_STS_IOERR;
1879                                        goto cleanup;
1880                                }
1881                                /*
1882                                 * otherwise we have one bad data stripe and
1883                                 * a good P stripe.  raid5!
1884                                 */
1885                                goto pstripe;
1886                        }
1887
1888                        if (rbio->bioc->raid_map[failb] == RAID5_P_STRIPE) {
1889                                raid6_datap_recov(rbio->real_stripes,
1890                                                  PAGE_SIZE, faila, pointers);
1891                        } else {
1892                                raid6_2data_recov(rbio->real_stripes,
1893                                                  PAGE_SIZE, faila, failb,
1894                                                  pointers);
1895                        }
1896                } else {
1897                        void *p;
1898
1899                        /* rebuild from P stripe here (raid5 or raid6) */
1900                        BUG_ON(failb != -1);
1901pstripe:
1902                        /* Copy parity block into failed block to start with */
1903                        copy_page(pointers[faila], pointers[rbio->nr_data]);
1904
1905                        /* rearrange the pointer array */
1906                        p = pointers[faila];
1907                        for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1908                                pointers[stripe] = pointers[stripe + 1];
1909                        pointers[rbio->nr_data - 1] = p;
1910
1911                        /* xor in the rest */
1912                        run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1913                }
1914                /* if we're doing this rebuild as part of an rmw, go through
1915                 * and set all of our private rbio pages in the
1916                 * failed stripes as uptodate.  This way finish_rmw will
1917                 * know they can be trusted.  If this was a read reconstruction,
1918                 * other endio functions will fiddle the uptodate bits
1919                 */
1920                if (rbio->operation == BTRFS_RBIO_WRITE) {
1921                        for (i = 0;  i < rbio->stripe_npages; i++) {
1922                                if (faila != -1) {
1923                                        page = rbio_stripe_page(rbio, faila, i);
1924                                        SetPageUptodate(page);
1925                                }
1926                                if (failb != -1) {
1927                                        page = rbio_stripe_page(rbio, failb, i);
1928                                        SetPageUptodate(page);
1929                                }
1930                        }
1931                }
1932                for (stripe = rbio->real_stripes - 1; stripe >= 0; stripe--)
1933                        kunmap_local(unmap_array[stripe]);
1934        }
1935
1936        err = BLK_STS_OK;
1937cleanup:
1938        kfree(unmap_array);
1939cleanup_pointers:
1940        kfree(pointers);
1941
1942cleanup_io:
1943        /*
1944         * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
1945         * valid rbio which is consistent with ondisk content, thus such a
1946         * valid rbio can be cached to avoid further disk reads.
1947         */
1948        if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1949            rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1950                /*
1951                 * - In case of two failures, where rbio->failb != -1:
1952                 *
1953                 *   Do not cache this rbio since the above read reconstruction
1954                 *   (raid6_datap_recov() or raid6_2data_recov()) may have
1955                 *   changed some content of stripes which are not identical to
1956                 *   on-disk content any more, otherwise, a later write/recover
1957                 *   may steal stripe_pages from this rbio and end up with
1958                 *   corruptions or rebuild failures.
1959                 *
1960                 * - In case of single failure, where rbio->failb == -1:
1961                 *
1962                 *   Cache this rbio iff the above read reconstruction is
1963                 *   executed without problems.
1964                 */
1965                if (err == BLK_STS_OK && rbio->failb < 0)
1966                        cache_rbio_pages(rbio);
1967                else
1968                        clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1969
1970                rbio_orig_end_io(rbio, err);
1971        } else if (err == BLK_STS_OK) {
1972                rbio->faila = -1;
1973                rbio->failb = -1;
1974
1975                if (rbio->operation == BTRFS_RBIO_WRITE)
1976                        finish_rmw(rbio);
1977                else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1978                        finish_parity_scrub(rbio, 0);
1979                else
1980                        BUG();
1981        } else {
1982                rbio_orig_end_io(rbio, err);
1983        }
1984}
1985
1986/*
1987 * This is called only for stripes we've read from disk to
1988 * reconstruct the parity.
1989 */
1990static void raid_recover_end_io(struct bio *bio)
1991{
1992        struct btrfs_raid_bio *rbio = bio->bi_private;
1993
1994        /*
1995         * we only read stripe pages off the disk, set them
1996         * up to date if there were no errors
1997         */
1998        if (bio->bi_status)
1999                fail_bio_stripe(rbio, bio);
2000        else
2001                set_bio_pages_uptodate(bio);
2002        bio_put(bio);
2003
2004        if (!atomic_dec_and_test(&rbio->stripes_pending))
2005                return;
2006
2007        if (atomic_read(&rbio->error) > rbio->bioc->max_errors)
2008                rbio_orig_end_io(rbio, BLK_STS_IOERR);
2009        else
2010                __raid_recover_end_io(rbio);
2011}
2012
2013/*
2014 * reads everything we need off the disk to reconstruct
2015 * the parity. endio handlers trigger final reconstruction
2016 * when the IO is done.
2017 *
2018 * This is used both for reads from the higher layers and for
2019 * parity construction required to finish a rmw cycle.
2020 */
2021static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2022{
2023        int bios_to_read = 0;
2024        struct bio_list bio_list;
2025        int ret;
2026        int pagenr;
2027        int stripe;
2028        struct bio *bio;
2029
2030        bio_list_init(&bio_list);
2031
2032        ret = alloc_rbio_pages(rbio);
2033        if (ret)
2034                goto cleanup;
2035
2036        atomic_set(&rbio->error, 0);
2037
2038        /*
2039         * read everything that hasn't failed.  Thanks to the
2040         * stripe cache, it is possible that some or all of these
2041         * pages are going to be uptodate.
2042         */
2043        for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2044                if (rbio->faila == stripe || rbio->failb == stripe) {
2045                        atomic_inc(&rbio->error);
2046                        continue;
2047                }
2048
2049                for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2050                        struct page *p;
2051
2052                        /*
2053                         * the rmw code may have already read this
2054                         * page in
2055                         */
2056                        p = rbio_stripe_page(rbio, stripe, pagenr);
2057                        if (PageUptodate(p))
2058                                continue;
2059
2060                        ret = rbio_add_io_page(rbio, &bio_list,
2061                                       rbio_stripe_page(rbio, stripe, pagenr),
2062                                       stripe, pagenr, rbio->stripe_len);
2063                        if (ret < 0)
2064                                goto cleanup;
2065                }
2066        }
2067
2068        bios_to_read = bio_list_size(&bio_list);
2069        if (!bios_to_read) {
2070                /*
2071                 * we might have no bios to read just because the pages
2072                 * were up to date, or we might have no bios to read because
2073                 * the devices were gone.
2074                 */
2075                if (atomic_read(&rbio->error) <= rbio->bioc->max_errors) {
2076                        __raid_recover_end_io(rbio);
2077                        return 0;
2078                } else {
2079                        goto cleanup;
2080                }
2081        }
2082
2083        /*
2084         * The bioc may be freed once we submit the last bio. Make sure not to
2085         * touch it after that.
2086         */
2087        atomic_set(&rbio->stripes_pending, bios_to_read);
2088        while ((bio = bio_list_pop(&bio_list))) {
2089                bio->bi_private = rbio;
2090                bio->bi_end_io = raid_recover_end_io;
2091                bio->bi_opf = REQ_OP_READ;
2092
2093                btrfs_bio_wq_end_io(rbio->bioc->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2094
2095                submit_bio(bio);
2096        }
2097
2098        return 0;
2099
2100cleanup:
2101        if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2102            rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2103                rbio_orig_end_io(rbio, BLK_STS_IOERR);
2104
2105        while ((bio = bio_list_pop(&bio_list)))
2106                bio_put(bio);
2107
2108        return -EIO;
2109}
2110
2111/*
2112 * the main entry point for reads from the higher layers.  This
2113 * is really only called when the normal read path had a failure,
2114 * so we assume the bio they send down corresponds to a failed part
2115 * of the drive.
2116 */
2117int raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2118                          u64 stripe_len, int mirror_num, int generic_io)
2119{
2120        struct btrfs_fs_info *fs_info = bioc->fs_info;
2121        struct btrfs_raid_bio *rbio;
2122        int ret;
2123
2124        if (generic_io) {
2125                ASSERT(bioc->mirror_num == mirror_num);
2126                btrfs_bio(bio)->mirror_num = mirror_num;
2127        }
2128
2129        rbio = alloc_rbio(fs_info, bioc, stripe_len);
2130        if (IS_ERR(rbio)) {
2131                if (generic_io)
2132                        btrfs_put_bioc(bioc);
2133                return PTR_ERR(rbio);
2134        }
2135
2136        rbio->operation = BTRFS_RBIO_READ_REBUILD;
2137        bio_list_add(&rbio->bio_list, bio);
2138        rbio->bio_list_bytes = bio->bi_iter.bi_size;
2139
2140        rbio->faila = find_logical_bio_stripe(rbio, bio);
2141        if (rbio->faila == -1) {
2142                btrfs_warn(fs_info,
2143"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bioc has map_type %llu)",
2144                           __func__, bio->bi_iter.bi_sector << 9,
2145                           (u64)bio->bi_iter.bi_size, bioc->map_type);
2146                if (generic_io)
2147                        btrfs_put_bioc(bioc);
2148                kfree(rbio);
2149                return -EIO;
2150        }
2151
2152        if (generic_io) {
2153                btrfs_bio_counter_inc_noblocked(fs_info);
2154                rbio->generic_bio_cnt = 1;
2155        } else {
2156                btrfs_get_bioc(bioc);
2157        }
2158
2159        /*
2160         * Loop retry:
2161         * for 'mirror == 2', reconstruct from all other stripes.
2162         * for 'mirror_num > 2', select a stripe to fail on every retry.
2163         */
2164        if (mirror_num > 2) {
2165                /*
2166                 * 'mirror == 3' is to fail the p stripe and
2167                 * reconstruct from the q stripe.  'mirror > 3' is to
2168                 * fail a data stripe and reconstruct from p+q stripe.
2169                 */
2170                rbio->failb = rbio->real_stripes - (mirror_num - 1);
2171                ASSERT(rbio->failb > 0);
2172                if (rbio->failb <= rbio->faila)
2173                        rbio->failb--;
2174        }
2175
2176        ret = lock_stripe_add(rbio);
2177
2178        /*
2179         * __raid56_parity_recover will end the bio with
2180         * any errors it hits.  We don't want to return
2181         * its error value up the stack because our caller
2182         * will end up calling bio_endio with any nonzero
2183         * return
2184         */
2185        if (ret == 0)
2186                __raid56_parity_recover(rbio);
2187        /*
2188         * our rbio has been added to the list of
2189         * rbios that will be handled after the
2190         * currently lock owner is done
2191         */
2192        return 0;
2193
2194}
2195
2196static void rmw_work(struct btrfs_work *work)
2197{
2198        struct btrfs_raid_bio *rbio;
2199
2200        rbio = container_of(work, struct btrfs_raid_bio, work);
2201        raid56_rmw_stripe(rbio);
2202}
2203
2204static void read_rebuild_work(struct btrfs_work *work)
2205{
2206        struct btrfs_raid_bio *rbio;
2207
2208        rbio = container_of(work, struct btrfs_raid_bio, work);
2209        __raid56_parity_recover(rbio);
2210}
2211
2212/*
2213 * The following code is used to scrub/replace the parity stripe
2214 *
2215 * Caller must have already increased bio_counter for getting @bioc.
2216 *
2217 * Note: We need make sure all the pages that add into the scrub/replace
2218 * raid bio are correct and not be changed during the scrub/replace. That
2219 * is those pages just hold metadata or file data with checksum.
2220 */
2221
2222struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
2223                                struct btrfs_io_context *bioc,
2224                                u64 stripe_len, struct btrfs_device *scrub_dev,
2225                                unsigned long *dbitmap, int stripe_nsectors)
2226{
2227        struct btrfs_fs_info *fs_info = bioc->fs_info;
2228        struct btrfs_raid_bio *rbio;
2229        int i;
2230
2231        rbio = alloc_rbio(fs_info, bioc, stripe_len);
2232        if (IS_ERR(rbio))
2233                return NULL;
2234        bio_list_add(&rbio->bio_list, bio);
2235        /*
2236         * This is a special bio which is used to hold the completion handler
2237         * and make the scrub rbio is similar to the other types
2238         */
2239        ASSERT(!bio->bi_iter.bi_size);
2240        rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2241
2242        /*
2243         * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
2244         * to the end position, so this search can start from the first parity
2245         * stripe.
2246         */
2247        for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2248                if (bioc->stripes[i].dev == scrub_dev) {
2249                        rbio->scrubp = i;
2250                        break;
2251                }
2252        }
2253        ASSERT(i < rbio->real_stripes);
2254
2255        /* Now we just support the sectorsize equals to page size */
2256        ASSERT(fs_info->sectorsize == PAGE_SIZE);
2257        ASSERT(rbio->stripe_npages == stripe_nsectors);
2258        bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2259
2260        /*
2261         * We have already increased bio_counter when getting bioc, record it
2262         * so we can free it at rbio_orig_end_io().
2263         */
2264        rbio->generic_bio_cnt = 1;
2265
2266        return rbio;
2267}
2268
2269/* Used for both parity scrub and missing. */
2270void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2271                            u64 logical)
2272{
2273        int stripe_offset;
2274        int index;
2275
2276        ASSERT(logical >= rbio->bioc->raid_map[0]);
2277        ASSERT(logical + PAGE_SIZE <= rbio->bioc->raid_map[0] +
2278                                rbio->stripe_len * rbio->nr_data);
2279        stripe_offset = (int)(logical - rbio->bioc->raid_map[0]);
2280        index = stripe_offset >> PAGE_SHIFT;
2281        rbio->bio_pages[index] = page;
2282}
2283
2284/*
2285 * We just scrub the parity that we have correct data on the same horizontal,
2286 * so we needn't allocate all pages for all the stripes.
2287 */
2288static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2289{
2290        int i;
2291        int bit;
2292        int index;
2293        struct page *page;
2294
2295        for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2296                for (i = 0; i < rbio->real_stripes; i++) {
2297                        index = i * rbio->stripe_npages + bit;
2298                        if (rbio->stripe_pages[index])
2299                                continue;
2300
2301                        page = alloc_page(GFP_NOFS);
2302                        if (!page)
2303                                return -ENOMEM;
2304                        rbio->stripe_pages[index] = page;
2305                }
2306        }
2307        return 0;
2308}
2309
2310static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2311                                         int need_check)
2312{
2313        struct btrfs_io_context *bioc = rbio->bioc;
2314        void **pointers = rbio->finish_pointers;
2315        unsigned long *pbitmap = rbio->finish_pbitmap;
2316        int nr_data = rbio->nr_data;
2317        int stripe;
2318        int pagenr;
2319        bool has_qstripe;
2320        struct page *p_page = NULL;
2321        struct page *q_page = NULL;
2322        struct bio_list bio_list;
2323        struct bio *bio;
2324        int is_replace = 0;
2325        int ret;
2326
2327        bio_list_init(&bio_list);
2328
2329        if (rbio->real_stripes - rbio->nr_data == 1)
2330                has_qstripe = false;
2331        else if (rbio->real_stripes - rbio->nr_data == 2)
2332                has_qstripe = true;
2333        else
2334                BUG();
2335
2336        if (bioc->num_tgtdevs && bioc->tgtdev_map[rbio->scrubp]) {
2337                is_replace = 1;
2338                bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2339        }
2340
2341        /*
2342         * Because the higher layers(scrubber) are unlikely to
2343         * use this area of the disk again soon, so don't cache
2344         * it.
2345         */
2346        clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2347
2348        if (!need_check)
2349                goto writeback;
2350
2351        p_page = alloc_page(GFP_NOFS);
2352        if (!p_page)
2353                goto cleanup;
2354        SetPageUptodate(p_page);
2355
2356        if (has_qstripe) {
2357                /* RAID6, allocate and map temp space for the Q stripe */
2358                q_page = alloc_page(GFP_NOFS);
2359                if (!q_page) {
2360                        __free_page(p_page);
2361                        goto cleanup;
2362                }
2363                SetPageUptodate(q_page);
2364                pointers[rbio->real_stripes - 1] = kmap_local_page(q_page);
2365        }
2366
2367        atomic_set(&rbio->error, 0);
2368
2369        /* Map the parity stripe just once */
2370        pointers[nr_data] = kmap_local_page(p_page);
2371
2372        for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2373                struct page *p;
2374                void *parity;
2375                /* first collect one page from each data stripe */
2376                for (stripe = 0; stripe < nr_data; stripe++) {
2377                        p = page_in_rbio(rbio, stripe, pagenr, 0);
2378                        pointers[stripe] = kmap_local_page(p);
2379                }
2380
2381                if (has_qstripe) {
2382                        /* RAID6, call the library function to fill in our P/Q */
2383                        raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2384                                                pointers);
2385                } else {
2386                        /* raid5 */
2387                        copy_page(pointers[nr_data], pointers[0]);
2388                        run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2389                }
2390
2391                /* Check scrubbing parity and repair it */
2392                p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2393                parity = kmap_local_page(p);
2394                if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2395                        copy_page(parity, pointers[rbio->scrubp]);
2396                else
2397                        /* Parity is right, needn't writeback */
2398                        bitmap_clear(rbio->dbitmap, pagenr, 1);
2399                kunmap_local(parity);
2400
2401                for (stripe = nr_data - 1; stripe >= 0; stripe--)
2402                        kunmap_local(pointers[stripe]);
2403        }
2404
2405        kunmap_local(pointers[nr_data]);
2406        __free_page(p_page);
2407        if (q_page) {
2408                kunmap_local(pointers[rbio->real_stripes - 1]);
2409                __free_page(q_page);
2410        }
2411
2412writeback:
2413        /*
2414         * time to start writing.  Make bios for everything from the
2415         * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2416         * everything else.
2417         */
2418        for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2419                struct page *page;
2420
2421                page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2422                ret = rbio_add_io_page(rbio, &bio_list,
2423                               page, rbio->scrubp, pagenr, rbio->stripe_len);
2424                if (ret)
2425                        goto cleanup;
2426        }
2427
2428        if (!is_replace)
2429                goto submit_write;
2430
2431        for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2432                struct page *page;
2433
2434                page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2435                ret = rbio_add_io_page(rbio, &bio_list, page,
2436                                       bioc->tgtdev_map[rbio->scrubp],
2437                                       pagenr, rbio->stripe_len);
2438                if (ret)
2439                        goto cleanup;
2440        }
2441
2442submit_write:
2443        nr_data = bio_list_size(&bio_list);
2444        if (!nr_data) {
2445                /* Every parity is right */
2446                rbio_orig_end_io(rbio, BLK_STS_OK);
2447                return;
2448        }
2449
2450        atomic_set(&rbio->stripes_pending, nr_data);
2451
2452        while ((bio = bio_list_pop(&bio_list))) {
2453                bio->bi_private = rbio;
2454                bio->bi_end_io = raid_write_end_io;
2455                bio->bi_opf = REQ_OP_WRITE;
2456
2457                submit_bio(bio);
2458        }
2459        return;
2460
2461cleanup:
2462        rbio_orig_end_io(rbio, BLK_STS_IOERR);
2463
2464        while ((bio = bio_list_pop(&bio_list)))
2465                bio_put(bio);
2466}
2467
2468static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2469{
2470        if (stripe >= 0 && stripe < rbio->nr_data)
2471                return 1;
2472        return 0;
2473}
2474
2475/*
2476 * While we're doing the parity check and repair, we could have errors
2477 * in reading pages off the disk.  This checks for errors and if we're
2478 * not able to read the page it'll trigger parity reconstruction.  The
2479 * parity scrub will be finished after we've reconstructed the failed
2480 * stripes
2481 */
2482static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2483{
2484        if (atomic_read(&rbio->error) > rbio->bioc->max_errors)
2485                goto cleanup;
2486
2487        if (rbio->faila >= 0 || rbio->failb >= 0) {
2488                int dfail = 0, failp = -1;
2489
2490                if (is_data_stripe(rbio, rbio->faila))
2491                        dfail++;
2492                else if (is_parity_stripe(rbio->faila))
2493                        failp = rbio->faila;
2494
2495                if (is_data_stripe(rbio, rbio->failb))
2496                        dfail++;
2497                else if (is_parity_stripe(rbio->failb))
2498                        failp = rbio->failb;
2499
2500                /*
2501                 * Because we can not use a scrubbing parity to repair
2502                 * the data, so the capability of the repair is declined.
2503                 * (In the case of RAID5, we can not repair anything)
2504                 */
2505                if (dfail > rbio->bioc->max_errors - 1)
2506                        goto cleanup;
2507
2508                /*
2509                 * If all data is good, only parity is correctly, just
2510                 * repair the parity.
2511                 */
2512                if (dfail == 0) {
2513                        finish_parity_scrub(rbio, 0);
2514                        return;
2515                }
2516
2517                /*
2518                 * Here means we got one corrupted data stripe and one
2519                 * corrupted parity on RAID6, if the corrupted parity
2520                 * is scrubbing parity, luckily, use the other one to repair
2521                 * the data, or we can not repair the data stripe.
2522                 */
2523                if (failp != rbio->scrubp)
2524                        goto cleanup;
2525
2526                __raid_recover_end_io(rbio);
2527        } else {
2528                finish_parity_scrub(rbio, 1);
2529        }
2530        return;
2531
2532cleanup:
2533        rbio_orig_end_io(rbio, BLK_STS_IOERR);
2534}
2535
2536/*
2537 * end io for the read phase of the rmw cycle.  All the bios here are physical
2538 * stripe bios we've read from the disk so we can recalculate the parity of the
2539 * stripe.
2540 *
2541 * This will usually kick off finish_rmw once all the bios are read in, but it
2542 * may trigger parity reconstruction if we had any errors along the way
2543 */
2544static void raid56_parity_scrub_end_io(struct bio *bio)
2545{
2546        struct btrfs_raid_bio *rbio = bio->bi_private;
2547
2548        if (bio->bi_status)
2549                fail_bio_stripe(rbio, bio);
2550        else
2551                set_bio_pages_uptodate(bio);
2552
2553        bio_put(bio);
2554
2555        if (!atomic_dec_and_test(&rbio->stripes_pending))
2556                return;
2557
2558        /*
2559         * this will normally call finish_rmw to start our write
2560         * but if there are any failed stripes we'll reconstruct
2561         * from parity first
2562         */
2563        validate_rbio_for_parity_scrub(rbio);
2564}
2565
2566static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2567{
2568        int bios_to_read = 0;
2569        struct bio_list bio_list;
2570        int ret;
2571        int pagenr;
2572        int stripe;
2573        struct bio *bio;
2574
2575        bio_list_init(&bio_list);
2576
2577        ret = alloc_rbio_essential_pages(rbio);
2578        if (ret)
2579                goto cleanup;
2580
2581        atomic_set(&rbio->error, 0);
2582        /*
2583         * build a list of bios to read all the missing parts of this
2584         * stripe
2585         */
2586        for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2587                for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2588                        struct page *page;
2589                        /*
2590                         * we want to find all the pages missing from
2591                         * the rbio and read them from the disk.  If
2592                         * page_in_rbio finds a page in the bio list
2593                         * we don't need to read it off the stripe.
2594                         */
2595                        page = page_in_rbio(rbio, stripe, pagenr, 1);
2596                        if (page)
2597                                continue;
2598
2599                        page = rbio_stripe_page(rbio, stripe, pagenr);
2600                        /*
2601                         * the bio cache may have handed us an uptodate
2602                         * page.  If so, be happy and use it
2603                         */
2604                        if (PageUptodate(page))
2605                                continue;
2606
2607                        ret = rbio_add_io_page(rbio, &bio_list, page,
2608                                       stripe, pagenr, rbio->stripe_len);
2609                        if (ret)
2610                                goto cleanup;
2611                }
2612        }
2613
2614        bios_to_read = bio_list_size(&bio_list);
2615        if (!bios_to_read) {
2616                /*
2617                 * this can happen if others have merged with
2618                 * us, it means there is nothing left to read.
2619                 * But if there are missing devices it may not be
2620                 * safe to do the full stripe write yet.
2621                 */
2622                goto finish;
2623        }
2624
2625        /*
2626         * The bioc may be freed once we submit the last bio. Make sure not to
2627         * touch it after that.
2628         */
2629        atomic_set(&rbio->stripes_pending, bios_to_read);
2630        while ((bio = bio_list_pop(&bio_list))) {
2631                bio->bi_private = rbio;
2632                bio->bi_end_io = raid56_parity_scrub_end_io;
2633                bio->bi_opf = REQ_OP_READ;
2634
2635                btrfs_bio_wq_end_io(rbio->bioc->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2636
2637                submit_bio(bio);
2638        }
2639        /* the actual write will happen once the reads are done */
2640        return;
2641
2642cleanup:
2643        rbio_orig_end_io(rbio, BLK_STS_IOERR);
2644
2645        while ((bio = bio_list_pop(&bio_list)))
2646                bio_put(bio);
2647
2648        return;
2649
2650finish:
2651        validate_rbio_for_parity_scrub(rbio);
2652}
2653
2654static void scrub_parity_work(struct btrfs_work *work)
2655{
2656        struct btrfs_raid_bio *rbio;
2657
2658        rbio = container_of(work, struct btrfs_raid_bio, work);
2659        raid56_parity_scrub_stripe(rbio);
2660}
2661
2662void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2663{
2664        if (!lock_stripe_add(rbio))
2665                start_async_work(rbio, scrub_parity_work);
2666}
2667
2668/* The following code is used for dev replace of a missing RAID 5/6 device. */
2669
2670struct btrfs_raid_bio *
2671raid56_alloc_missing_rbio(struct bio *bio, struct btrfs_io_context *bioc,
2672                          u64 length)
2673{
2674        struct btrfs_fs_info *fs_info = bioc->fs_info;
2675        struct btrfs_raid_bio *rbio;
2676
2677        rbio = alloc_rbio(fs_info, bioc, length);
2678        if (IS_ERR(rbio))
2679                return NULL;
2680
2681        rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2682        bio_list_add(&rbio->bio_list, bio);
2683        /*
2684         * This is a special bio which is used to hold the completion handler
2685         * and make the scrub rbio is similar to the other types
2686         */
2687        ASSERT(!bio->bi_iter.bi_size);
2688
2689        rbio->faila = find_logical_bio_stripe(rbio, bio);
2690        if (rbio->faila == -1) {
2691                BUG();
2692                kfree(rbio);
2693                return NULL;
2694        }
2695
2696        /*
2697         * When we get bioc, we have already increased bio_counter, record it
2698         * so we can free it at rbio_orig_end_io()
2699         */
2700        rbio->generic_bio_cnt = 1;
2701
2702        return rbio;
2703}
2704
2705void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2706{
2707        if (!lock_stripe_add(rbio))
2708                start_async_work(rbio, read_rebuild_work);
2709}
2710