linux/fs/btrfs/scrub.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/ratelimit.h>
   8#include <linux/sched/mm.h>
   9#include <crypto/hash.h>
  10#include "ctree.h"
  11#include "discard.h"
  12#include "volumes.h"
  13#include "disk-io.h"
  14#include "ordered-data.h"
  15#include "transaction.h"
  16#include "backref.h"
  17#include "extent_io.h"
  18#include "dev-replace.h"
  19#include "check-integrity.h"
  20#include "rcu-string.h"
  21#include "raid56.h"
  22#include "block-group.h"
  23#include "zoned.h"
  24
  25/*
  26 * This is only the first step towards a full-features scrub. It reads all
  27 * extent and super block and verifies the checksums. In case a bad checksum
  28 * is found or the extent cannot be read, good data will be written back if
  29 * any can be found.
  30 *
  31 * Future enhancements:
  32 *  - In case an unrepairable extent is encountered, track which files are
  33 *    affected and report them
  34 *  - track and record media errors, throw out bad devices
  35 *  - add a mode to also read unallocated space
  36 */
  37
  38struct scrub_block;
  39struct scrub_ctx;
  40
  41/*
  42 * the following three values only influence the performance.
  43 * The last one configures the number of parallel and outstanding I/O
  44 * operations. The first two values configure an upper limit for the number
  45 * of (dynamically allocated) pages that are added to a bio.
  46 */
  47#define SCRUB_PAGES_PER_RD_BIO  32      /* 128k per bio */
  48#define SCRUB_PAGES_PER_WR_BIO  32      /* 128k per bio */
  49#define SCRUB_BIOS_PER_SCTX     64      /* 8MB per device in flight */
  50
  51/*
  52 * the following value times PAGE_SIZE needs to be large enough to match the
  53 * largest node/leaf/sector size that shall be supported.
  54 * Values larger than BTRFS_STRIPE_LEN are not supported.
  55 */
  56#define SCRUB_MAX_PAGES_PER_BLOCK       16      /* 64k per node/leaf/sector */
  57
  58struct scrub_recover {
  59        refcount_t              refs;
  60        struct btrfs_io_context *bioc;
  61        u64                     map_length;
  62};
  63
  64struct scrub_page {
  65        struct scrub_block      *sblock;
  66        struct page             *page;
  67        struct btrfs_device     *dev;
  68        struct list_head        list;
  69        u64                     flags;  /* extent flags */
  70        u64                     generation;
  71        u64                     logical;
  72        u64                     physical;
  73        u64                     physical_for_dev_replace;
  74        atomic_t                refs;
  75        u8                      mirror_num;
  76        unsigned int            have_csum:1;
  77        unsigned int            io_error:1;
  78        u8                      csum[BTRFS_CSUM_SIZE];
  79
  80        struct scrub_recover    *recover;
  81};
  82
  83struct scrub_bio {
  84        int                     index;
  85        struct scrub_ctx        *sctx;
  86        struct btrfs_device     *dev;
  87        struct bio              *bio;
  88        blk_status_t            status;
  89        u64                     logical;
  90        u64                     physical;
  91#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
  92        struct scrub_page       *pagev[SCRUB_PAGES_PER_WR_BIO];
  93#else
  94        struct scrub_page       *pagev[SCRUB_PAGES_PER_RD_BIO];
  95#endif
  96        int                     page_count;
  97        int                     next_free;
  98        struct btrfs_work       work;
  99};
 100
 101struct scrub_block {
 102        struct scrub_page       *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 103        int                     page_count;
 104        atomic_t                outstanding_pages;
 105        refcount_t              refs; /* free mem on transition to zero */
 106        struct scrub_ctx        *sctx;
 107        struct scrub_parity     *sparity;
 108        struct {
 109                unsigned int    header_error:1;
 110                unsigned int    checksum_error:1;
 111                unsigned int    no_io_error_seen:1;
 112                unsigned int    generation_error:1; /* also sets header_error */
 113
 114                /* The following is for the data used to check parity */
 115                /* It is for the data with checksum */
 116                unsigned int    data_corrected:1;
 117        };
 118        struct btrfs_work       work;
 119};
 120
 121/* Used for the chunks with parity stripe such RAID5/6 */
 122struct scrub_parity {
 123        struct scrub_ctx        *sctx;
 124
 125        struct btrfs_device     *scrub_dev;
 126
 127        u64                     logic_start;
 128
 129        u64                     logic_end;
 130
 131        int                     nsectors;
 132
 133        u32                     stripe_len;
 134
 135        refcount_t              refs;
 136
 137        struct list_head        spages;
 138
 139        /* Work of parity check and repair */
 140        struct btrfs_work       work;
 141
 142        /* Mark the parity blocks which have data */
 143        unsigned long           *dbitmap;
 144
 145        /*
 146         * Mark the parity blocks which have data, but errors happen when
 147         * read data or check data
 148         */
 149        unsigned long           *ebitmap;
 150
 151        unsigned long           bitmap[];
 152};
 153
 154struct scrub_ctx {
 155        struct scrub_bio        *bios[SCRUB_BIOS_PER_SCTX];
 156        struct btrfs_fs_info    *fs_info;
 157        int                     first_free;
 158        int                     curr;
 159        atomic_t                bios_in_flight;
 160        atomic_t                workers_pending;
 161        spinlock_t              list_lock;
 162        wait_queue_head_t       list_wait;
 163        struct list_head        csum_list;
 164        atomic_t                cancel_req;
 165        int                     readonly;
 166        int                     pages_per_rd_bio;
 167
 168        /* State of IO submission throttling affecting the associated device */
 169        ktime_t                 throttle_deadline;
 170        u64                     throttle_sent;
 171
 172        int                     is_dev_replace;
 173        u64                     write_pointer;
 174
 175        struct scrub_bio        *wr_curr_bio;
 176        struct mutex            wr_lock;
 177        int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 178        struct btrfs_device     *wr_tgtdev;
 179        bool                    flush_all_writes;
 180
 181        /*
 182         * statistics
 183         */
 184        struct btrfs_scrub_progress stat;
 185        spinlock_t              stat_lock;
 186
 187        /*
 188         * Use a ref counter to avoid use-after-free issues. Scrub workers
 189         * decrement bios_in_flight and workers_pending and then do a wakeup
 190         * on the list_wait wait queue. We must ensure the main scrub task
 191         * doesn't free the scrub context before or while the workers are
 192         * doing the wakeup() call.
 193         */
 194        refcount_t              refs;
 195};
 196
 197struct scrub_warning {
 198        struct btrfs_path       *path;
 199        u64                     extent_item_size;
 200        const char              *errstr;
 201        u64                     physical;
 202        u64                     logical;
 203        struct btrfs_device     *dev;
 204};
 205
 206struct full_stripe_lock {
 207        struct rb_node node;
 208        u64 logical;
 209        u64 refs;
 210        struct mutex mutex;
 211};
 212
 213static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
 214                                     struct scrub_block *sblocks_for_recheck);
 215static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 216                                struct scrub_block *sblock,
 217                                int retry_failed_mirror);
 218static void scrub_recheck_block_checksum(struct scrub_block *sblock);
 219static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 220                                             struct scrub_block *sblock_good);
 221static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 222                                            struct scrub_block *sblock_good,
 223                                            int page_num, int force_write);
 224static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 225static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 226                                           int page_num);
 227static int scrub_checksum_data(struct scrub_block *sblock);
 228static int scrub_checksum_tree_block(struct scrub_block *sblock);
 229static int scrub_checksum_super(struct scrub_block *sblock);
 230static void scrub_block_put(struct scrub_block *sblock);
 231static void scrub_page_get(struct scrub_page *spage);
 232static void scrub_page_put(struct scrub_page *spage);
 233static void scrub_parity_get(struct scrub_parity *sparity);
 234static void scrub_parity_put(struct scrub_parity *sparity);
 235static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
 236                       u64 physical, struct btrfs_device *dev, u64 flags,
 237                       u64 gen, int mirror_num, u8 *csum,
 238                       u64 physical_for_dev_replace);
 239static void scrub_bio_end_io(struct bio *bio);
 240static void scrub_bio_end_io_worker(struct btrfs_work *work);
 241static void scrub_block_complete(struct scrub_block *sblock);
 242static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 243                               u64 extent_logical, u32 extent_len,
 244                               u64 *extent_physical,
 245                               struct btrfs_device **extent_dev,
 246                               int *extent_mirror_num);
 247static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 248                                    struct scrub_page *spage);
 249static void scrub_wr_submit(struct scrub_ctx *sctx);
 250static void scrub_wr_bio_end_io(struct bio *bio);
 251static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 252static void scrub_put_ctx(struct scrub_ctx *sctx);
 253
 254static inline int scrub_is_page_on_raid56(struct scrub_page *spage)
 255{
 256        return spage->recover &&
 257               (spage->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
 258}
 259
 260static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 261{
 262        refcount_inc(&sctx->refs);
 263        atomic_inc(&sctx->bios_in_flight);
 264}
 265
 266static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 267{
 268        atomic_dec(&sctx->bios_in_flight);
 269        wake_up(&sctx->list_wait);
 270        scrub_put_ctx(sctx);
 271}
 272
 273static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 274{
 275        while (atomic_read(&fs_info->scrub_pause_req)) {
 276                mutex_unlock(&fs_info->scrub_lock);
 277                wait_event(fs_info->scrub_pause_wait,
 278                   atomic_read(&fs_info->scrub_pause_req) == 0);
 279                mutex_lock(&fs_info->scrub_lock);
 280        }
 281}
 282
 283static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 284{
 285        atomic_inc(&fs_info->scrubs_paused);
 286        wake_up(&fs_info->scrub_pause_wait);
 287}
 288
 289static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 290{
 291        mutex_lock(&fs_info->scrub_lock);
 292        __scrub_blocked_if_needed(fs_info);
 293        atomic_dec(&fs_info->scrubs_paused);
 294        mutex_unlock(&fs_info->scrub_lock);
 295
 296        wake_up(&fs_info->scrub_pause_wait);
 297}
 298
 299static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 300{
 301        scrub_pause_on(fs_info);
 302        scrub_pause_off(fs_info);
 303}
 304
 305/*
 306 * Insert new full stripe lock into full stripe locks tree
 307 *
 308 * Return pointer to existing or newly inserted full_stripe_lock structure if
 309 * everything works well.
 310 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 311 *
 312 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 313 * function
 314 */
 315static struct full_stripe_lock *insert_full_stripe_lock(
 316                struct btrfs_full_stripe_locks_tree *locks_root,
 317                u64 fstripe_logical)
 318{
 319        struct rb_node **p;
 320        struct rb_node *parent = NULL;
 321        struct full_stripe_lock *entry;
 322        struct full_stripe_lock *ret;
 323
 324        lockdep_assert_held(&locks_root->lock);
 325
 326        p = &locks_root->root.rb_node;
 327        while (*p) {
 328                parent = *p;
 329                entry = rb_entry(parent, struct full_stripe_lock, node);
 330                if (fstripe_logical < entry->logical) {
 331                        p = &(*p)->rb_left;
 332                } else if (fstripe_logical > entry->logical) {
 333                        p = &(*p)->rb_right;
 334                } else {
 335                        entry->refs++;
 336                        return entry;
 337                }
 338        }
 339
 340        /*
 341         * Insert new lock.
 342         */
 343        ret = kmalloc(sizeof(*ret), GFP_KERNEL);
 344        if (!ret)
 345                return ERR_PTR(-ENOMEM);
 346        ret->logical = fstripe_logical;
 347        ret->refs = 1;
 348        mutex_init(&ret->mutex);
 349
 350        rb_link_node(&ret->node, parent, p);
 351        rb_insert_color(&ret->node, &locks_root->root);
 352        return ret;
 353}
 354
 355/*
 356 * Search for a full stripe lock of a block group
 357 *
 358 * Return pointer to existing full stripe lock if found
 359 * Return NULL if not found
 360 */
 361static struct full_stripe_lock *search_full_stripe_lock(
 362                struct btrfs_full_stripe_locks_tree *locks_root,
 363                u64 fstripe_logical)
 364{
 365        struct rb_node *node;
 366        struct full_stripe_lock *entry;
 367
 368        lockdep_assert_held(&locks_root->lock);
 369
 370        node = locks_root->root.rb_node;
 371        while (node) {
 372                entry = rb_entry(node, struct full_stripe_lock, node);
 373                if (fstripe_logical < entry->logical)
 374                        node = node->rb_left;
 375                else if (fstripe_logical > entry->logical)
 376                        node = node->rb_right;
 377                else
 378                        return entry;
 379        }
 380        return NULL;
 381}
 382
 383/*
 384 * Helper to get full stripe logical from a normal bytenr.
 385 *
 386 * Caller must ensure @cache is a RAID56 block group.
 387 */
 388static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
 389{
 390        u64 ret;
 391
 392        /*
 393         * Due to chunk item size limit, full stripe length should not be
 394         * larger than U32_MAX. Just a sanity check here.
 395         */
 396        WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
 397
 398        /*
 399         * round_down() can only handle power of 2, while RAID56 full
 400         * stripe length can be 64KiB * n, so we need to manually round down.
 401         */
 402        ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
 403                        cache->full_stripe_len + cache->start;
 404        return ret;
 405}
 406
 407/*
 408 * Lock a full stripe to avoid concurrency of recovery and read
 409 *
 410 * It's only used for profiles with parities (RAID5/6), for other profiles it
 411 * does nothing.
 412 *
 413 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 414 * So caller must call unlock_full_stripe() at the same context.
 415 *
 416 * Return <0 if encounters error.
 417 */
 418static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 419                            bool *locked_ret)
 420{
 421        struct btrfs_block_group *bg_cache;
 422        struct btrfs_full_stripe_locks_tree *locks_root;
 423        struct full_stripe_lock *existing;
 424        u64 fstripe_start;
 425        int ret = 0;
 426
 427        *locked_ret = false;
 428        bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 429        if (!bg_cache) {
 430                ASSERT(0);
 431                return -ENOENT;
 432        }
 433
 434        /* Profiles not based on parity don't need full stripe lock */
 435        if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 436                goto out;
 437        locks_root = &bg_cache->full_stripe_locks_root;
 438
 439        fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 440
 441        /* Now insert the full stripe lock */
 442        mutex_lock(&locks_root->lock);
 443        existing = insert_full_stripe_lock(locks_root, fstripe_start);
 444        mutex_unlock(&locks_root->lock);
 445        if (IS_ERR(existing)) {
 446                ret = PTR_ERR(existing);
 447                goto out;
 448        }
 449        mutex_lock(&existing->mutex);
 450        *locked_ret = true;
 451out:
 452        btrfs_put_block_group(bg_cache);
 453        return ret;
 454}
 455
 456/*
 457 * Unlock a full stripe.
 458 *
 459 * NOTE: Caller must ensure it's the same context calling corresponding
 460 * lock_full_stripe().
 461 *
 462 * Return 0 if we unlock full stripe without problem.
 463 * Return <0 for error
 464 */
 465static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 466                              bool locked)
 467{
 468        struct btrfs_block_group *bg_cache;
 469        struct btrfs_full_stripe_locks_tree *locks_root;
 470        struct full_stripe_lock *fstripe_lock;
 471        u64 fstripe_start;
 472        bool freeit = false;
 473        int ret = 0;
 474
 475        /* If we didn't acquire full stripe lock, no need to continue */
 476        if (!locked)
 477                return 0;
 478
 479        bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 480        if (!bg_cache) {
 481                ASSERT(0);
 482                return -ENOENT;
 483        }
 484        if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 485                goto out;
 486
 487        locks_root = &bg_cache->full_stripe_locks_root;
 488        fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 489
 490        mutex_lock(&locks_root->lock);
 491        fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
 492        /* Unpaired unlock_full_stripe() detected */
 493        if (!fstripe_lock) {
 494                WARN_ON(1);
 495                ret = -ENOENT;
 496                mutex_unlock(&locks_root->lock);
 497                goto out;
 498        }
 499
 500        if (fstripe_lock->refs == 0) {
 501                WARN_ON(1);
 502                btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
 503                        fstripe_lock->logical);
 504        } else {
 505                fstripe_lock->refs--;
 506        }
 507
 508        if (fstripe_lock->refs == 0) {
 509                rb_erase(&fstripe_lock->node, &locks_root->root);
 510                freeit = true;
 511        }
 512        mutex_unlock(&locks_root->lock);
 513
 514        mutex_unlock(&fstripe_lock->mutex);
 515        if (freeit)
 516                kfree(fstripe_lock);
 517out:
 518        btrfs_put_block_group(bg_cache);
 519        return ret;
 520}
 521
 522static void scrub_free_csums(struct scrub_ctx *sctx)
 523{
 524        while (!list_empty(&sctx->csum_list)) {
 525                struct btrfs_ordered_sum *sum;
 526                sum = list_first_entry(&sctx->csum_list,
 527                                       struct btrfs_ordered_sum, list);
 528                list_del(&sum->list);
 529                kfree(sum);
 530        }
 531}
 532
 533static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 534{
 535        int i;
 536
 537        if (!sctx)
 538                return;
 539
 540        /* this can happen when scrub is cancelled */
 541        if (sctx->curr != -1) {
 542                struct scrub_bio *sbio = sctx->bios[sctx->curr];
 543
 544                for (i = 0; i < sbio->page_count; i++) {
 545                        WARN_ON(!sbio->pagev[i]->page);
 546                        scrub_block_put(sbio->pagev[i]->sblock);
 547                }
 548                bio_put(sbio->bio);
 549        }
 550
 551        for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 552                struct scrub_bio *sbio = sctx->bios[i];
 553
 554                if (!sbio)
 555                        break;
 556                kfree(sbio);
 557        }
 558
 559        kfree(sctx->wr_curr_bio);
 560        scrub_free_csums(sctx);
 561        kfree(sctx);
 562}
 563
 564static void scrub_put_ctx(struct scrub_ctx *sctx)
 565{
 566        if (refcount_dec_and_test(&sctx->refs))
 567                scrub_free_ctx(sctx);
 568}
 569
 570static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
 571                struct btrfs_fs_info *fs_info, int is_dev_replace)
 572{
 573        struct scrub_ctx *sctx;
 574        int             i;
 575
 576        sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
 577        if (!sctx)
 578                goto nomem;
 579        refcount_set(&sctx->refs, 1);
 580        sctx->is_dev_replace = is_dev_replace;
 581        sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 582        sctx->curr = -1;
 583        sctx->fs_info = fs_info;
 584        INIT_LIST_HEAD(&sctx->csum_list);
 585        for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 586                struct scrub_bio *sbio;
 587
 588                sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
 589                if (!sbio)
 590                        goto nomem;
 591                sctx->bios[i] = sbio;
 592
 593                sbio->index = i;
 594                sbio->sctx = sctx;
 595                sbio->page_count = 0;
 596                btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
 597                                NULL);
 598
 599                if (i != SCRUB_BIOS_PER_SCTX - 1)
 600                        sctx->bios[i]->next_free = i + 1;
 601                else
 602                        sctx->bios[i]->next_free = -1;
 603        }
 604        sctx->first_free = 0;
 605        atomic_set(&sctx->bios_in_flight, 0);
 606        atomic_set(&sctx->workers_pending, 0);
 607        atomic_set(&sctx->cancel_req, 0);
 608
 609        spin_lock_init(&sctx->list_lock);
 610        spin_lock_init(&sctx->stat_lock);
 611        init_waitqueue_head(&sctx->list_wait);
 612        sctx->throttle_deadline = 0;
 613
 614        WARN_ON(sctx->wr_curr_bio != NULL);
 615        mutex_init(&sctx->wr_lock);
 616        sctx->wr_curr_bio = NULL;
 617        if (is_dev_replace) {
 618                WARN_ON(!fs_info->dev_replace.tgtdev);
 619                sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
 620                sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 621                sctx->flush_all_writes = false;
 622        }
 623
 624        return sctx;
 625
 626nomem:
 627        scrub_free_ctx(sctx);
 628        return ERR_PTR(-ENOMEM);
 629}
 630
 631static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 632                                     void *warn_ctx)
 633{
 634        u32 nlink;
 635        int ret;
 636        int i;
 637        unsigned nofs_flag;
 638        struct extent_buffer *eb;
 639        struct btrfs_inode_item *inode_item;
 640        struct scrub_warning *swarn = warn_ctx;
 641        struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 642        struct inode_fs_paths *ipath = NULL;
 643        struct btrfs_root *local_root;
 644        struct btrfs_key key;
 645
 646        local_root = btrfs_get_fs_root(fs_info, root, true);
 647        if (IS_ERR(local_root)) {
 648                ret = PTR_ERR(local_root);
 649                goto err;
 650        }
 651
 652        /*
 653         * this makes the path point to (inum INODE_ITEM ioff)
 654         */
 655        key.objectid = inum;
 656        key.type = BTRFS_INODE_ITEM_KEY;
 657        key.offset = 0;
 658
 659        ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 660        if (ret) {
 661                btrfs_put_root(local_root);
 662                btrfs_release_path(swarn->path);
 663                goto err;
 664        }
 665
 666        eb = swarn->path->nodes[0];
 667        inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 668                                        struct btrfs_inode_item);
 669        nlink = btrfs_inode_nlink(eb, inode_item);
 670        btrfs_release_path(swarn->path);
 671
 672        /*
 673         * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 674         * uses GFP_NOFS in this context, so we keep it consistent but it does
 675         * not seem to be strictly necessary.
 676         */
 677        nofs_flag = memalloc_nofs_save();
 678        ipath = init_ipath(4096, local_root, swarn->path);
 679        memalloc_nofs_restore(nofs_flag);
 680        if (IS_ERR(ipath)) {
 681                btrfs_put_root(local_root);
 682                ret = PTR_ERR(ipath);
 683                ipath = NULL;
 684                goto err;
 685        }
 686        ret = paths_from_inode(inum, ipath);
 687
 688        if (ret < 0)
 689                goto err;
 690
 691        /*
 692         * we deliberately ignore the bit ipath might have been too small to
 693         * hold all of the paths here
 694         */
 695        for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 696                btrfs_warn_in_rcu(fs_info,
 697"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
 698                                  swarn->errstr, swarn->logical,
 699                                  rcu_str_deref(swarn->dev->name),
 700                                  swarn->physical,
 701                                  root, inum, offset,
 702                                  fs_info->sectorsize, nlink,
 703                                  (char *)(unsigned long)ipath->fspath->val[i]);
 704
 705        btrfs_put_root(local_root);
 706        free_ipath(ipath);
 707        return 0;
 708
 709err:
 710        btrfs_warn_in_rcu(fs_info,
 711                          "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 712                          swarn->errstr, swarn->logical,
 713                          rcu_str_deref(swarn->dev->name),
 714                          swarn->physical,
 715                          root, inum, offset, ret);
 716
 717        free_ipath(ipath);
 718        return 0;
 719}
 720
 721static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 722{
 723        struct btrfs_device *dev;
 724        struct btrfs_fs_info *fs_info;
 725        struct btrfs_path *path;
 726        struct btrfs_key found_key;
 727        struct extent_buffer *eb;
 728        struct btrfs_extent_item *ei;
 729        struct scrub_warning swarn;
 730        unsigned long ptr = 0;
 731        u64 extent_item_pos;
 732        u64 flags = 0;
 733        u64 ref_root;
 734        u32 item_size;
 735        u8 ref_level = 0;
 736        int ret;
 737
 738        WARN_ON(sblock->page_count < 1);
 739        dev = sblock->pagev[0]->dev;
 740        fs_info = sblock->sctx->fs_info;
 741
 742        path = btrfs_alloc_path();
 743        if (!path)
 744                return;
 745
 746        swarn.physical = sblock->pagev[0]->physical;
 747        swarn.logical = sblock->pagev[0]->logical;
 748        swarn.errstr = errstr;
 749        swarn.dev = NULL;
 750
 751        ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 752                                  &flags);
 753        if (ret < 0)
 754                goto out;
 755
 756        extent_item_pos = swarn.logical - found_key.objectid;
 757        swarn.extent_item_size = found_key.offset;
 758
 759        eb = path->nodes[0];
 760        ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 761        item_size = btrfs_item_size_nr(eb, path->slots[0]);
 762
 763        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 764                do {
 765                        ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 766                                                      item_size, &ref_root,
 767                                                      &ref_level);
 768                        btrfs_warn_in_rcu(fs_info,
 769"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 770                                errstr, swarn.logical,
 771                                rcu_str_deref(dev->name),
 772                                swarn.physical,
 773                                ref_level ? "node" : "leaf",
 774                                ret < 0 ? -1 : ref_level,
 775                                ret < 0 ? -1 : ref_root);
 776                } while (ret != 1);
 777                btrfs_release_path(path);
 778        } else {
 779                btrfs_release_path(path);
 780                swarn.path = path;
 781                swarn.dev = dev;
 782                iterate_extent_inodes(fs_info, found_key.objectid,
 783                                        extent_item_pos, 1,
 784                                        scrub_print_warning_inode, &swarn, false);
 785        }
 786
 787out:
 788        btrfs_free_path(path);
 789}
 790
 791static inline void scrub_get_recover(struct scrub_recover *recover)
 792{
 793        refcount_inc(&recover->refs);
 794}
 795
 796static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
 797                                     struct scrub_recover *recover)
 798{
 799        if (refcount_dec_and_test(&recover->refs)) {
 800                btrfs_bio_counter_dec(fs_info);
 801                btrfs_put_bioc(recover->bioc);
 802                kfree(recover);
 803        }
 804}
 805
 806/*
 807 * scrub_handle_errored_block gets called when either verification of the
 808 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 809 * case, this function handles all pages in the bio, even though only one
 810 * may be bad.
 811 * The goal of this function is to repair the errored block by using the
 812 * contents of one of the mirrors.
 813 */
 814static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 815{
 816        struct scrub_ctx *sctx = sblock_to_check->sctx;
 817        struct btrfs_device *dev;
 818        struct btrfs_fs_info *fs_info;
 819        u64 logical;
 820        unsigned int failed_mirror_index;
 821        unsigned int is_metadata;
 822        unsigned int have_csum;
 823        struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 824        struct scrub_block *sblock_bad;
 825        int ret;
 826        int mirror_index;
 827        int page_num;
 828        int success;
 829        bool full_stripe_locked;
 830        unsigned int nofs_flag;
 831        static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
 832                                      DEFAULT_RATELIMIT_BURST);
 833
 834        BUG_ON(sblock_to_check->page_count < 1);
 835        fs_info = sctx->fs_info;
 836        if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
 837                /*
 838                 * if we find an error in a super block, we just report it.
 839                 * They will get written with the next transaction commit
 840                 * anyway
 841                 */
 842                spin_lock(&sctx->stat_lock);
 843                ++sctx->stat.super_errors;
 844                spin_unlock(&sctx->stat_lock);
 845                return 0;
 846        }
 847        logical = sblock_to_check->pagev[0]->logical;
 848        BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
 849        failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
 850        is_metadata = !(sblock_to_check->pagev[0]->flags &
 851                        BTRFS_EXTENT_FLAG_DATA);
 852        have_csum = sblock_to_check->pagev[0]->have_csum;
 853        dev = sblock_to_check->pagev[0]->dev;
 854
 855        if (btrfs_is_zoned(fs_info) && !sctx->is_dev_replace)
 856                return btrfs_repair_one_zone(fs_info, logical);
 857
 858        /*
 859         * We must use GFP_NOFS because the scrub task might be waiting for a
 860         * worker task executing this function and in turn a transaction commit
 861         * might be waiting the scrub task to pause (which needs to wait for all
 862         * the worker tasks to complete before pausing).
 863         * We do allocations in the workers through insert_full_stripe_lock()
 864         * and scrub_add_page_to_wr_bio(), which happens down the call chain of
 865         * this function.
 866         */
 867        nofs_flag = memalloc_nofs_save();
 868        /*
 869         * For RAID5/6, race can happen for a different device scrub thread.
 870         * For data corruption, Parity and Data threads will both try
 871         * to recovery the data.
 872         * Race can lead to doubly added csum error, or even unrecoverable
 873         * error.
 874         */
 875        ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
 876        if (ret < 0) {
 877                memalloc_nofs_restore(nofs_flag);
 878                spin_lock(&sctx->stat_lock);
 879                if (ret == -ENOMEM)
 880                        sctx->stat.malloc_errors++;
 881                sctx->stat.read_errors++;
 882                sctx->stat.uncorrectable_errors++;
 883                spin_unlock(&sctx->stat_lock);
 884                return ret;
 885        }
 886
 887        /*
 888         * read all mirrors one after the other. This includes to
 889         * re-read the extent or metadata block that failed (that was
 890         * the cause that this fixup code is called) another time,
 891         * sector by sector this time in order to know which sectors
 892         * caused I/O errors and which ones are good (for all mirrors).
 893         * It is the goal to handle the situation when more than one
 894         * mirror contains I/O errors, but the errors do not
 895         * overlap, i.e. the data can be repaired by selecting the
 896         * sectors from those mirrors without I/O error on the
 897         * particular sectors. One example (with blocks >= 2 * sectorsize)
 898         * would be that mirror #1 has an I/O error on the first sector,
 899         * the second sector is good, and mirror #2 has an I/O error on
 900         * the second sector, but the first sector is good.
 901         * Then the first sector of the first mirror can be repaired by
 902         * taking the first sector of the second mirror, and the
 903         * second sector of the second mirror can be repaired by
 904         * copying the contents of the 2nd sector of the 1st mirror.
 905         * One more note: if the sectors of one mirror contain I/O
 906         * errors, the checksum cannot be verified. In order to get
 907         * the best data for repairing, the first attempt is to find
 908         * a mirror without I/O errors and with a validated checksum.
 909         * Only if this is not possible, the sectors are picked from
 910         * mirrors with I/O errors without considering the checksum.
 911         * If the latter is the case, at the end, the checksum of the
 912         * repaired area is verified in order to correctly maintain
 913         * the statistics.
 914         */
 915
 916        sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
 917                                      sizeof(*sblocks_for_recheck), GFP_KERNEL);
 918        if (!sblocks_for_recheck) {
 919                spin_lock(&sctx->stat_lock);
 920                sctx->stat.malloc_errors++;
 921                sctx->stat.read_errors++;
 922                sctx->stat.uncorrectable_errors++;
 923                spin_unlock(&sctx->stat_lock);
 924                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 925                goto out;
 926        }
 927
 928        /* setup the context, map the logical blocks and alloc the pages */
 929        ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
 930        if (ret) {
 931                spin_lock(&sctx->stat_lock);
 932                sctx->stat.read_errors++;
 933                sctx->stat.uncorrectable_errors++;
 934                spin_unlock(&sctx->stat_lock);
 935                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 936                goto out;
 937        }
 938        BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 939        sblock_bad = sblocks_for_recheck + failed_mirror_index;
 940
 941        /* build and submit the bios for the failed mirror, check checksums */
 942        scrub_recheck_block(fs_info, sblock_bad, 1);
 943
 944        if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 945            sblock_bad->no_io_error_seen) {
 946                /*
 947                 * the error disappeared after reading page by page, or
 948                 * the area was part of a huge bio and other parts of the
 949                 * bio caused I/O errors, or the block layer merged several
 950                 * read requests into one and the error is caused by a
 951                 * different bio (usually one of the two latter cases is
 952                 * the cause)
 953                 */
 954                spin_lock(&sctx->stat_lock);
 955                sctx->stat.unverified_errors++;
 956                sblock_to_check->data_corrected = 1;
 957                spin_unlock(&sctx->stat_lock);
 958
 959                if (sctx->is_dev_replace)
 960                        scrub_write_block_to_dev_replace(sblock_bad);
 961                goto out;
 962        }
 963
 964        if (!sblock_bad->no_io_error_seen) {
 965                spin_lock(&sctx->stat_lock);
 966                sctx->stat.read_errors++;
 967                spin_unlock(&sctx->stat_lock);
 968                if (__ratelimit(&rs))
 969                        scrub_print_warning("i/o error", sblock_to_check);
 970                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 971        } else if (sblock_bad->checksum_error) {
 972                spin_lock(&sctx->stat_lock);
 973                sctx->stat.csum_errors++;
 974                spin_unlock(&sctx->stat_lock);
 975                if (__ratelimit(&rs))
 976                        scrub_print_warning("checksum error", sblock_to_check);
 977                btrfs_dev_stat_inc_and_print(dev,
 978                                             BTRFS_DEV_STAT_CORRUPTION_ERRS);
 979        } else if (sblock_bad->header_error) {
 980                spin_lock(&sctx->stat_lock);
 981                sctx->stat.verify_errors++;
 982                spin_unlock(&sctx->stat_lock);
 983                if (__ratelimit(&rs))
 984                        scrub_print_warning("checksum/header error",
 985                                            sblock_to_check);
 986                if (sblock_bad->generation_error)
 987                        btrfs_dev_stat_inc_and_print(dev,
 988                                BTRFS_DEV_STAT_GENERATION_ERRS);
 989                else
 990                        btrfs_dev_stat_inc_and_print(dev,
 991                                BTRFS_DEV_STAT_CORRUPTION_ERRS);
 992        }
 993
 994        if (sctx->readonly) {
 995                ASSERT(!sctx->is_dev_replace);
 996                goto out;
 997        }
 998
 999        /*
1000         * now build and submit the bios for the other mirrors, check
1001         * checksums.
1002         * First try to pick the mirror which is completely without I/O
1003         * errors and also does not have a checksum error.
1004         * If one is found, and if a checksum is present, the full block
1005         * that is known to contain an error is rewritten. Afterwards
1006         * the block is known to be corrected.
1007         * If a mirror is found which is completely correct, and no
1008         * checksum is present, only those pages are rewritten that had
1009         * an I/O error in the block to be repaired, since it cannot be
1010         * determined, which copy of the other pages is better (and it
1011         * could happen otherwise that a correct page would be
1012         * overwritten by a bad one).
1013         */
1014        for (mirror_index = 0; ;mirror_index++) {
1015                struct scrub_block *sblock_other;
1016
1017                if (mirror_index == failed_mirror_index)
1018                        continue;
1019
1020                /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1021                if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1022                        if (mirror_index >= BTRFS_MAX_MIRRORS)
1023                                break;
1024                        if (!sblocks_for_recheck[mirror_index].page_count)
1025                                break;
1026
1027                        sblock_other = sblocks_for_recheck + mirror_index;
1028                } else {
1029                        struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1030                        int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs;
1031
1032                        if (mirror_index >= max_allowed)
1033                                break;
1034                        if (!sblocks_for_recheck[1].page_count)
1035                                break;
1036
1037                        ASSERT(failed_mirror_index == 0);
1038                        sblock_other = sblocks_for_recheck + 1;
1039                        sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1040                }
1041
1042                /* build and submit the bios, check checksums */
1043                scrub_recheck_block(fs_info, sblock_other, 0);
1044
1045                if (!sblock_other->header_error &&
1046                    !sblock_other->checksum_error &&
1047                    sblock_other->no_io_error_seen) {
1048                        if (sctx->is_dev_replace) {
1049                                scrub_write_block_to_dev_replace(sblock_other);
1050                                goto corrected_error;
1051                        } else {
1052                                ret = scrub_repair_block_from_good_copy(
1053                                                sblock_bad, sblock_other);
1054                                if (!ret)
1055                                        goto corrected_error;
1056                        }
1057                }
1058        }
1059
1060        if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1061                goto did_not_correct_error;
1062
1063        /*
1064         * In case of I/O errors in the area that is supposed to be
1065         * repaired, continue by picking good copies of those sectors.
1066         * Select the good sectors from mirrors to rewrite bad sectors from
1067         * the area to fix. Afterwards verify the checksum of the block
1068         * that is supposed to be repaired. This verification step is
1069         * only done for the purpose of statistic counting and for the
1070         * final scrub report, whether errors remain.
1071         * A perfect algorithm could make use of the checksum and try
1072         * all possible combinations of sectors from the different mirrors
1073         * until the checksum verification succeeds. For example, when
1074         * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1075         * of mirror #2 is readable but the final checksum test fails,
1076         * then the 2nd sector of mirror #3 could be tried, whether now
1077         * the final checksum succeeds. But this would be a rare
1078         * exception and is therefore not implemented. At least it is
1079         * avoided that the good copy is overwritten.
1080         * A more useful improvement would be to pick the sectors
1081         * without I/O error based on sector sizes (512 bytes on legacy
1082         * disks) instead of on sectorsize. Then maybe 512 byte of one
1083         * mirror could be repaired by taking 512 byte of a different
1084         * mirror, even if other 512 byte sectors in the same sectorsize
1085         * area are unreadable.
1086         */
1087        success = 1;
1088        for (page_num = 0; page_num < sblock_bad->page_count;
1089             page_num++) {
1090                struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1091                struct scrub_block *sblock_other = NULL;
1092
1093                /* skip no-io-error page in scrub */
1094                if (!spage_bad->io_error && !sctx->is_dev_replace)
1095                        continue;
1096
1097                if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1098                        /*
1099                         * In case of dev replace, if raid56 rebuild process
1100                         * didn't work out correct data, then copy the content
1101                         * in sblock_bad to make sure target device is identical
1102                         * to source device, instead of writing garbage data in
1103                         * sblock_for_recheck array to target device.
1104                         */
1105                        sblock_other = NULL;
1106                } else if (spage_bad->io_error) {
1107                        /* try to find no-io-error page in mirrors */
1108                        for (mirror_index = 0;
1109                             mirror_index < BTRFS_MAX_MIRRORS &&
1110                             sblocks_for_recheck[mirror_index].page_count > 0;
1111                             mirror_index++) {
1112                                if (!sblocks_for_recheck[mirror_index].
1113                                    pagev[page_num]->io_error) {
1114                                        sblock_other = sblocks_for_recheck +
1115                                                       mirror_index;
1116                                        break;
1117                                }
1118                        }
1119                        if (!sblock_other)
1120                                success = 0;
1121                }
1122
1123                if (sctx->is_dev_replace) {
1124                        /*
1125                         * did not find a mirror to fetch the page
1126                         * from. scrub_write_page_to_dev_replace()
1127                         * handles this case (page->io_error), by
1128                         * filling the block with zeros before
1129                         * submitting the write request
1130                         */
1131                        if (!sblock_other)
1132                                sblock_other = sblock_bad;
1133
1134                        if (scrub_write_page_to_dev_replace(sblock_other,
1135                                                            page_num) != 0) {
1136                                atomic64_inc(
1137                                        &fs_info->dev_replace.num_write_errors);
1138                                success = 0;
1139                        }
1140                } else if (sblock_other) {
1141                        ret = scrub_repair_page_from_good_copy(sblock_bad,
1142                                                               sblock_other,
1143                                                               page_num, 0);
1144                        if (0 == ret)
1145                                spage_bad->io_error = 0;
1146                        else
1147                                success = 0;
1148                }
1149        }
1150
1151        if (success && !sctx->is_dev_replace) {
1152                if (is_metadata || have_csum) {
1153                        /*
1154                         * need to verify the checksum now that all
1155                         * sectors on disk are repaired (the write
1156                         * request for data to be repaired is on its way).
1157                         * Just be lazy and use scrub_recheck_block()
1158                         * which re-reads the data before the checksum
1159                         * is verified, but most likely the data comes out
1160                         * of the page cache.
1161                         */
1162                        scrub_recheck_block(fs_info, sblock_bad, 1);
1163                        if (!sblock_bad->header_error &&
1164                            !sblock_bad->checksum_error &&
1165                            sblock_bad->no_io_error_seen)
1166                                goto corrected_error;
1167                        else
1168                                goto did_not_correct_error;
1169                } else {
1170corrected_error:
1171                        spin_lock(&sctx->stat_lock);
1172                        sctx->stat.corrected_errors++;
1173                        sblock_to_check->data_corrected = 1;
1174                        spin_unlock(&sctx->stat_lock);
1175                        btrfs_err_rl_in_rcu(fs_info,
1176                                "fixed up error at logical %llu on dev %s",
1177                                logical, rcu_str_deref(dev->name));
1178                }
1179        } else {
1180did_not_correct_error:
1181                spin_lock(&sctx->stat_lock);
1182                sctx->stat.uncorrectable_errors++;
1183                spin_unlock(&sctx->stat_lock);
1184                btrfs_err_rl_in_rcu(fs_info,
1185                        "unable to fixup (regular) error at logical %llu on dev %s",
1186                        logical, rcu_str_deref(dev->name));
1187        }
1188
1189out:
1190        if (sblocks_for_recheck) {
1191                for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1192                     mirror_index++) {
1193                        struct scrub_block *sblock = sblocks_for_recheck +
1194                                                     mirror_index;
1195                        struct scrub_recover *recover;
1196                        int page_index;
1197
1198                        for (page_index = 0; page_index < sblock->page_count;
1199                             page_index++) {
1200                                sblock->pagev[page_index]->sblock = NULL;
1201                                recover = sblock->pagev[page_index]->recover;
1202                                if (recover) {
1203                                        scrub_put_recover(fs_info, recover);
1204                                        sblock->pagev[page_index]->recover =
1205                                                                        NULL;
1206                                }
1207                                scrub_page_put(sblock->pagev[page_index]);
1208                        }
1209                }
1210                kfree(sblocks_for_recheck);
1211        }
1212
1213        ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1214        memalloc_nofs_restore(nofs_flag);
1215        if (ret < 0)
1216                return ret;
1217        return 0;
1218}
1219
1220static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
1221{
1222        if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
1223                return 2;
1224        else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
1225                return 3;
1226        else
1227                return (int)bioc->num_stripes;
1228}
1229
1230static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1231                                                 u64 *raid_map,
1232                                                 u64 mapped_length,
1233                                                 int nstripes, int mirror,
1234                                                 int *stripe_index,
1235                                                 u64 *stripe_offset)
1236{
1237        int i;
1238
1239        if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1240                /* RAID5/6 */
1241                for (i = 0; i < nstripes; i++) {
1242                        if (raid_map[i] == RAID6_Q_STRIPE ||
1243                            raid_map[i] == RAID5_P_STRIPE)
1244                                continue;
1245
1246                        if (logical >= raid_map[i] &&
1247                            logical < raid_map[i] + mapped_length)
1248                                break;
1249                }
1250
1251                *stripe_index = i;
1252                *stripe_offset = logical - raid_map[i];
1253        } else {
1254                /* The other RAID type */
1255                *stripe_index = mirror;
1256                *stripe_offset = 0;
1257        }
1258}
1259
1260static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1261                                     struct scrub_block *sblocks_for_recheck)
1262{
1263        struct scrub_ctx *sctx = original_sblock->sctx;
1264        struct btrfs_fs_info *fs_info = sctx->fs_info;
1265        u64 length = original_sblock->page_count * fs_info->sectorsize;
1266        u64 logical = original_sblock->pagev[0]->logical;
1267        u64 generation = original_sblock->pagev[0]->generation;
1268        u64 flags = original_sblock->pagev[0]->flags;
1269        u64 have_csum = original_sblock->pagev[0]->have_csum;
1270        struct scrub_recover *recover;
1271        struct btrfs_io_context *bioc;
1272        u64 sublen;
1273        u64 mapped_length;
1274        u64 stripe_offset;
1275        int stripe_index;
1276        int page_index = 0;
1277        int mirror_index;
1278        int nmirrors;
1279        int ret;
1280
1281        /*
1282         * note: the two members refs and outstanding_pages
1283         * are not used (and not set) in the blocks that are used for
1284         * the recheck procedure
1285         */
1286
1287        while (length > 0) {
1288                sublen = min_t(u64, length, fs_info->sectorsize);
1289                mapped_length = sublen;
1290                bioc = NULL;
1291
1292                /*
1293                 * With a length of sectorsize, each returned stripe represents
1294                 * one mirror
1295                 */
1296                btrfs_bio_counter_inc_blocked(fs_info);
1297                ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1298                                       logical, &mapped_length, &bioc);
1299                if (ret || !bioc || mapped_length < sublen) {
1300                        btrfs_put_bioc(bioc);
1301                        btrfs_bio_counter_dec(fs_info);
1302                        return -EIO;
1303                }
1304
1305                recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1306                if (!recover) {
1307                        btrfs_put_bioc(bioc);
1308                        btrfs_bio_counter_dec(fs_info);
1309                        return -ENOMEM;
1310                }
1311
1312                refcount_set(&recover->refs, 1);
1313                recover->bioc = bioc;
1314                recover->map_length = mapped_length;
1315
1316                BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1317
1318                nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
1319
1320                for (mirror_index = 0; mirror_index < nmirrors;
1321                     mirror_index++) {
1322                        struct scrub_block *sblock;
1323                        struct scrub_page *spage;
1324
1325                        sblock = sblocks_for_recheck + mirror_index;
1326                        sblock->sctx = sctx;
1327
1328                        spage = kzalloc(sizeof(*spage), GFP_NOFS);
1329                        if (!spage) {
1330leave_nomem:
1331                                spin_lock(&sctx->stat_lock);
1332                                sctx->stat.malloc_errors++;
1333                                spin_unlock(&sctx->stat_lock);
1334                                scrub_put_recover(fs_info, recover);
1335                                return -ENOMEM;
1336                        }
1337                        scrub_page_get(spage);
1338                        sblock->pagev[page_index] = spage;
1339                        spage->sblock = sblock;
1340                        spage->flags = flags;
1341                        spage->generation = generation;
1342                        spage->logical = logical;
1343                        spage->have_csum = have_csum;
1344                        if (have_csum)
1345                                memcpy(spage->csum,
1346                                       original_sblock->pagev[0]->csum,
1347                                       sctx->fs_info->csum_size);
1348
1349                        scrub_stripe_index_and_offset(logical,
1350                                                      bioc->map_type,
1351                                                      bioc->raid_map,
1352                                                      mapped_length,
1353                                                      bioc->num_stripes -
1354                                                      bioc->num_tgtdevs,
1355                                                      mirror_index,
1356                                                      &stripe_index,
1357                                                      &stripe_offset);
1358                        spage->physical = bioc->stripes[stripe_index].physical +
1359                                         stripe_offset;
1360                        spage->dev = bioc->stripes[stripe_index].dev;
1361
1362                        BUG_ON(page_index >= original_sblock->page_count);
1363                        spage->physical_for_dev_replace =
1364                                original_sblock->pagev[page_index]->
1365                                physical_for_dev_replace;
1366                        /* for missing devices, dev->bdev is NULL */
1367                        spage->mirror_num = mirror_index + 1;
1368                        sblock->page_count++;
1369                        spage->page = alloc_page(GFP_NOFS);
1370                        if (!spage->page)
1371                                goto leave_nomem;
1372
1373                        scrub_get_recover(recover);
1374                        spage->recover = recover;
1375                }
1376                scrub_put_recover(fs_info, recover);
1377                length -= sublen;
1378                logical += sublen;
1379                page_index++;
1380        }
1381
1382        return 0;
1383}
1384
1385static void scrub_bio_wait_endio(struct bio *bio)
1386{
1387        complete(bio->bi_private);
1388}
1389
1390static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1391                                        struct bio *bio,
1392                                        struct scrub_page *spage)
1393{
1394        DECLARE_COMPLETION_ONSTACK(done);
1395        int ret;
1396        int mirror_num;
1397
1398        bio->bi_iter.bi_sector = spage->logical >> 9;
1399        bio->bi_private = &done;
1400        bio->bi_end_io = scrub_bio_wait_endio;
1401
1402        mirror_num = spage->sblock->pagev[0]->mirror_num;
1403        ret = raid56_parity_recover(bio, spage->recover->bioc,
1404                                    spage->recover->map_length,
1405                                    mirror_num, 0);
1406        if (ret)
1407                return ret;
1408
1409        wait_for_completion_io(&done);
1410        return blk_status_to_errno(bio->bi_status);
1411}
1412
1413static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1414                                          struct scrub_block *sblock)
1415{
1416        struct scrub_page *first_page = sblock->pagev[0];
1417        struct bio *bio;
1418        int page_num;
1419
1420        /* All pages in sblock belong to the same stripe on the same device. */
1421        ASSERT(first_page->dev);
1422        if (!first_page->dev->bdev)
1423                goto out;
1424
1425        bio = btrfs_bio_alloc(BIO_MAX_VECS);
1426        bio_set_dev(bio, first_page->dev->bdev);
1427
1428        for (page_num = 0; page_num < sblock->page_count; page_num++) {
1429                struct scrub_page *spage = sblock->pagev[page_num];
1430
1431                WARN_ON(!spage->page);
1432                bio_add_page(bio, spage->page, PAGE_SIZE, 0);
1433        }
1434
1435        if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1436                bio_put(bio);
1437                goto out;
1438        }
1439
1440        bio_put(bio);
1441
1442        scrub_recheck_block_checksum(sblock);
1443
1444        return;
1445out:
1446        for (page_num = 0; page_num < sblock->page_count; page_num++)
1447                sblock->pagev[page_num]->io_error = 1;
1448
1449        sblock->no_io_error_seen = 0;
1450}
1451
1452/*
1453 * this function will check the on disk data for checksum errors, header
1454 * errors and read I/O errors. If any I/O errors happen, the exact pages
1455 * which are errored are marked as being bad. The goal is to enable scrub
1456 * to take those pages that are not errored from all the mirrors so that
1457 * the pages that are errored in the just handled mirror can be repaired.
1458 */
1459static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1460                                struct scrub_block *sblock,
1461                                int retry_failed_mirror)
1462{
1463        int page_num;
1464
1465        sblock->no_io_error_seen = 1;
1466
1467        /* short cut for raid56 */
1468        if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1469                return scrub_recheck_block_on_raid56(fs_info, sblock);
1470
1471        for (page_num = 0; page_num < sblock->page_count; page_num++) {
1472                struct bio *bio;
1473                struct scrub_page *spage = sblock->pagev[page_num];
1474
1475                if (spage->dev->bdev == NULL) {
1476                        spage->io_error = 1;
1477                        sblock->no_io_error_seen = 0;
1478                        continue;
1479                }
1480
1481                WARN_ON(!spage->page);
1482                bio = btrfs_bio_alloc(1);
1483                bio_set_dev(bio, spage->dev->bdev);
1484
1485                bio_add_page(bio, spage->page, fs_info->sectorsize, 0);
1486                bio->bi_iter.bi_sector = spage->physical >> 9;
1487                bio->bi_opf = REQ_OP_READ;
1488
1489                if (btrfsic_submit_bio_wait(bio)) {
1490                        spage->io_error = 1;
1491                        sblock->no_io_error_seen = 0;
1492                }
1493
1494                bio_put(bio);
1495        }
1496
1497        if (sblock->no_io_error_seen)
1498                scrub_recheck_block_checksum(sblock);
1499}
1500
1501static inline int scrub_check_fsid(u8 fsid[],
1502                                   struct scrub_page *spage)
1503{
1504        struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1505        int ret;
1506
1507        ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1508        return !ret;
1509}
1510
1511static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1512{
1513        sblock->header_error = 0;
1514        sblock->checksum_error = 0;
1515        sblock->generation_error = 0;
1516
1517        if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1518                scrub_checksum_data(sblock);
1519        else
1520                scrub_checksum_tree_block(sblock);
1521}
1522
1523static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1524                                             struct scrub_block *sblock_good)
1525{
1526        int page_num;
1527        int ret = 0;
1528
1529        for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1530                int ret_sub;
1531
1532                ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1533                                                           sblock_good,
1534                                                           page_num, 1);
1535                if (ret_sub)
1536                        ret = ret_sub;
1537        }
1538
1539        return ret;
1540}
1541
1542static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1543                                            struct scrub_block *sblock_good,
1544                                            int page_num, int force_write)
1545{
1546        struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1547        struct scrub_page *spage_good = sblock_good->pagev[page_num];
1548        struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1549        const u32 sectorsize = fs_info->sectorsize;
1550
1551        BUG_ON(spage_bad->page == NULL);
1552        BUG_ON(spage_good->page == NULL);
1553        if (force_write || sblock_bad->header_error ||
1554            sblock_bad->checksum_error || spage_bad->io_error) {
1555                struct bio *bio;
1556                int ret;
1557
1558                if (!spage_bad->dev->bdev) {
1559                        btrfs_warn_rl(fs_info,
1560                                "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1561                        return -EIO;
1562                }
1563
1564                bio = btrfs_bio_alloc(1);
1565                bio_set_dev(bio, spage_bad->dev->bdev);
1566                bio->bi_iter.bi_sector = spage_bad->physical >> 9;
1567                bio->bi_opf = REQ_OP_WRITE;
1568
1569                ret = bio_add_page(bio, spage_good->page, sectorsize, 0);
1570                if (ret != sectorsize) {
1571                        bio_put(bio);
1572                        return -EIO;
1573                }
1574
1575                if (btrfsic_submit_bio_wait(bio)) {
1576                        btrfs_dev_stat_inc_and_print(spage_bad->dev,
1577                                BTRFS_DEV_STAT_WRITE_ERRS);
1578                        atomic64_inc(&fs_info->dev_replace.num_write_errors);
1579                        bio_put(bio);
1580                        return -EIO;
1581                }
1582                bio_put(bio);
1583        }
1584
1585        return 0;
1586}
1587
1588static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1589{
1590        struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1591        int page_num;
1592
1593        /*
1594         * This block is used for the check of the parity on the source device,
1595         * so the data needn't be written into the destination device.
1596         */
1597        if (sblock->sparity)
1598                return;
1599
1600        for (page_num = 0; page_num < sblock->page_count; page_num++) {
1601                int ret;
1602
1603                ret = scrub_write_page_to_dev_replace(sblock, page_num);
1604                if (ret)
1605                        atomic64_inc(&fs_info->dev_replace.num_write_errors);
1606        }
1607}
1608
1609static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1610                                           int page_num)
1611{
1612        struct scrub_page *spage = sblock->pagev[page_num];
1613
1614        BUG_ON(spage->page == NULL);
1615        if (spage->io_error)
1616                clear_page(page_address(spage->page));
1617
1618        return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1619}
1620
1621static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
1622{
1623        int ret = 0;
1624        u64 length;
1625
1626        if (!btrfs_is_zoned(sctx->fs_info))
1627                return 0;
1628
1629        if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
1630                return 0;
1631
1632        if (sctx->write_pointer < physical) {
1633                length = physical - sctx->write_pointer;
1634
1635                ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
1636                                                sctx->write_pointer, length);
1637                if (!ret)
1638                        sctx->write_pointer = physical;
1639        }
1640        return ret;
1641}
1642
1643static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1644                                    struct scrub_page *spage)
1645{
1646        struct scrub_bio *sbio;
1647        int ret;
1648        const u32 sectorsize = sctx->fs_info->sectorsize;
1649
1650        mutex_lock(&sctx->wr_lock);
1651again:
1652        if (!sctx->wr_curr_bio) {
1653                sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1654                                              GFP_KERNEL);
1655                if (!sctx->wr_curr_bio) {
1656                        mutex_unlock(&sctx->wr_lock);
1657                        return -ENOMEM;
1658                }
1659                sctx->wr_curr_bio->sctx = sctx;
1660                sctx->wr_curr_bio->page_count = 0;
1661        }
1662        sbio = sctx->wr_curr_bio;
1663        if (sbio->page_count == 0) {
1664                struct bio *bio;
1665
1666                ret = fill_writer_pointer_gap(sctx,
1667                                              spage->physical_for_dev_replace);
1668                if (ret) {
1669                        mutex_unlock(&sctx->wr_lock);
1670                        return ret;
1671                }
1672
1673                sbio->physical = spage->physical_for_dev_replace;
1674                sbio->logical = spage->logical;
1675                sbio->dev = sctx->wr_tgtdev;
1676                bio = sbio->bio;
1677                if (!bio) {
1678                        bio = btrfs_bio_alloc(sctx->pages_per_wr_bio);
1679                        sbio->bio = bio;
1680                }
1681
1682                bio->bi_private = sbio;
1683                bio->bi_end_io = scrub_wr_bio_end_io;
1684                bio_set_dev(bio, sbio->dev->bdev);
1685                bio->bi_iter.bi_sector = sbio->physical >> 9;
1686                bio->bi_opf = REQ_OP_WRITE;
1687                sbio->status = 0;
1688        } else if (sbio->physical + sbio->page_count * sectorsize !=
1689                   spage->physical_for_dev_replace ||
1690                   sbio->logical + sbio->page_count * sectorsize !=
1691                   spage->logical) {
1692                scrub_wr_submit(sctx);
1693                goto again;
1694        }
1695
1696        ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0);
1697        if (ret != sectorsize) {
1698                if (sbio->page_count < 1) {
1699                        bio_put(sbio->bio);
1700                        sbio->bio = NULL;
1701                        mutex_unlock(&sctx->wr_lock);
1702                        return -EIO;
1703                }
1704                scrub_wr_submit(sctx);
1705                goto again;
1706        }
1707
1708        sbio->pagev[sbio->page_count] = spage;
1709        scrub_page_get(spage);
1710        sbio->page_count++;
1711        if (sbio->page_count == sctx->pages_per_wr_bio)
1712                scrub_wr_submit(sctx);
1713        mutex_unlock(&sctx->wr_lock);
1714
1715        return 0;
1716}
1717
1718static void scrub_wr_submit(struct scrub_ctx *sctx)
1719{
1720        struct scrub_bio *sbio;
1721
1722        if (!sctx->wr_curr_bio)
1723                return;
1724
1725        sbio = sctx->wr_curr_bio;
1726        sctx->wr_curr_bio = NULL;
1727        WARN_ON(!sbio->bio->bi_bdev);
1728        scrub_pending_bio_inc(sctx);
1729        /* process all writes in a single worker thread. Then the block layer
1730         * orders the requests before sending them to the driver which
1731         * doubled the write performance on spinning disks when measured
1732         * with Linux 3.5 */
1733        btrfsic_submit_bio(sbio->bio);
1734
1735        if (btrfs_is_zoned(sctx->fs_info))
1736                sctx->write_pointer = sbio->physical + sbio->page_count *
1737                        sctx->fs_info->sectorsize;
1738}
1739
1740static void scrub_wr_bio_end_io(struct bio *bio)
1741{
1742        struct scrub_bio *sbio = bio->bi_private;
1743        struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1744
1745        sbio->status = bio->bi_status;
1746        sbio->bio = bio;
1747
1748        btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1749        btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1750}
1751
1752static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1753{
1754        struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1755        struct scrub_ctx *sctx = sbio->sctx;
1756        int i;
1757
1758        WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1759        if (sbio->status) {
1760                struct btrfs_dev_replace *dev_replace =
1761                        &sbio->sctx->fs_info->dev_replace;
1762
1763                for (i = 0; i < sbio->page_count; i++) {
1764                        struct scrub_page *spage = sbio->pagev[i];
1765
1766                        spage->io_error = 1;
1767                        atomic64_inc(&dev_replace->num_write_errors);
1768                }
1769        }
1770
1771        for (i = 0; i < sbio->page_count; i++)
1772                scrub_page_put(sbio->pagev[i]);
1773
1774        bio_put(sbio->bio);
1775        kfree(sbio);
1776        scrub_pending_bio_dec(sctx);
1777}
1778
1779static int scrub_checksum(struct scrub_block *sblock)
1780{
1781        u64 flags;
1782        int ret;
1783
1784        /*
1785         * No need to initialize these stats currently,
1786         * because this function only use return value
1787         * instead of these stats value.
1788         *
1789         * Todo:
1790         * always use stats
1791         */
1792        sblock->header_error = 0;
1793        sblock->generation_error = 0;
1794        sblock->checksum_error = 0;
1795
1796        WARN_ON(sblock->page_count < 1);
1797        flags = sblock->pagev[0]->flags;
1798        ret = 0;
1799        if (flags & BTRFS_EXTENT_FLAG_DATA)
1800                ret = scrub_checksum_data(sblock);
1801        else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1802                ret = scrub_checksum_tree_block(sblock);
1803        else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1804                (void)scrub_checksum_super(sblock);
1805        else
1806                WARN_ON(1);
1807        if (ret)
1808                scrub_handle_errored_block(sblock);
1809
1810        return ret;
1811}
1812
1813static int scrub_checksum_data(struct scrub_block *sblock)
1814{
1815        struct scrub_ctx *sctx = sblock->sctx;
1816        struct btrfs_fs_info *fs_info = sctx->fs_info;
1817        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1818        u8 csum[BTRFS_CSUM_SIZE];
1819        struct scrub_page *spage;
1820        char *kaddr;
1821
1822        BUG_ON(sblock->page_count < 1);
1823        spage = sblock->pagev[0];
1824        if (!spage->have_csum)
1825                return 0;
1826
1827        kaddr = page_address(spage->page);
1828
1829        shash->tfm = fs_info->csum_shash;
1830        crypto_shash_init(shash);
1831
1832        /*
1833         * In scrub_pages() and scrub_pages_for_parity() we ensure each spage
1834         * only contains one sector of data.
1835         */
1836        crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
1837
1838        if (memcmp(csum, spage->csum, fs_info->csum_size))
1839                sblock->checksum_error = 1;
1840        return sblock->checksum_error;
1841}
1842
1843static int scrub_checksum_tree_block(struct scrub_block *sblock)
1844{
1845        struct scrub_ctx *sctx = sblock->sctx;
1846        struct btrfs_header *h;
1847        struct btrfs_fs_info *fs_info = sctx->fs_info;
1848        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1849        u8 calculated_csum[BTRFS_CSUM_SIZE];
1850        u8 on_disk_csum[BTRFS_CSUM_SIZE];
1851        /*
1852         * This is done in sectorsize steps even for metadata as there's a
1853         * constraint for nodesize to be aligned to sectorsize. This will need
1854         * to change so we don't misuse data and metadata units like that.
1855         */
1856        const u32 sectorsize = sctx->fs_info->sectorsize;
1857        const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
1858        int i;
1859        struct scrub_page *spage;
1860        char *kaddr;
1861
1862        BUG_ON(sblock->page_count < 1);
1863
1864        /* Each member in pagev is just one block, not a full page */
1865        ASSERT(sblock->page_count == num_sectors);
1866
1867        spage = sblock->pagev[0];
1868        kaddr = page_address(spage->page);
1869        h = (struct btrfs_header *)kaddr;
1870        memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
1871
1872        /*
1873         * we don't use the getter functions here, as we
1874         * a) don't have an extent buffer and
1875         * b) the page is already kmapped
1876         */
1877        if (spage->logical != btrfs_stack_header_bytenr(h))
1878                sblock->header_error = 1;
1879
1880        if (spage->generation != btrfs_stack_header_generation(h)) {
1881                sblock->header_error = 1;
1882                sblock->generation_error = 1;
1883        }
1884
1885        if (!scrub_check_fsid(h->fsid, spage))
1886                sblock->header_error = 1;
1887
1888        if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1889                   BTRFS_UUID_SIZE))
1890                sblock->header_error = 1;
1891
1892        shash->tfm = fs_info->csum_shash;
1893        crypto_shash_init(shash);
1894        crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1895                            sectorsize - BTRFS_CSUM_SIZE);
1896
1897        for (i = 1; i < num_sectors; i++) {
1898                kaddr = page_address(sblock->pagev[i]->page);
1899                crypto_shash_update(shash, kaddr, sectorsize);
1900        }
1901
1902        crypto_shash_final(shash, calculated_csum);
1903        if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
1904                sblock->checksum_error = 1;
1905
1906        return sblock->header_error || sblock->checksum_error;
1907}
1908
1909static int scrub_checksum_super(struct scrub_block *sblock)
1910{
1911        struct btrfs_super_block *s;
1912        struct scrub_ctx *sctx = sblock->sctx;
1913        struct btrfs_fs_info *fs_info = sctx->fs_info;
1914        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1915        u8 calculated_csum[BTRFS_CSUM_SIZE];
1916        struct scrub_page *spage;
1917        char *kaddr;
1918        int fail_gen = 0;
1919        int fail_cor = 0;
1920
1921        BUG_ON(sblock->page_count < 1);
1922        spage = sblock->pagev[0];
1923        kaddr = page_address(spage->page);
1924        s = (struct btrfs_super_block *)kaddr;
1925
1926        if (spage->logical != btrfs_super_bytenr(s))
1927                ++fail_cor;
1928
1929        if (spage->generation != btrfs_super_generation(s))
1930                ++fail_gen;
1931
1932        if (!scrub_check_fsid(s->fsid, spage))
1933                ++fail_cor;
1934
1935        shash->tfm = fs_info->csum_shash;
1936        crypto_shash_init(shash);
1937        crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
1938                        BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
1939
1940        if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
1941                ++fail_cor;
1942
1943        if (fail_cor + fail_gen) {
1944                /*
1945                 * if we find an error in a super block, we just report it.
1946                 * They will get written with the next transaction commit
1947                 * anyway
1948                 */
1949                spin_lock(&sctx->stat_lock);
1950                ++sctx->stat.super_errors;
1951                spin_unlock(&sctx->stat_lock);
1952                if (fail_cor)
1953                        btrfs_dev_stat_inc_and_print(spage->dev,
1954                                BTRFS_DEV_STAT_CORRUPTION_ERRS);
1955                else
1956                        btrfs_dev_stat_inc_and_print(spage->dev,
1957                                BTRFS_DEV_STAT_GENERATION_ERRS);
1958        }
1959
1960        return fail_cor + fail_gen;
1961}
1962
1963static void scrub_block_get(struct scrub_block *sblock)
1964{
1965        refcount_inc(&sblock->refs);
1966}
1967
1968static void scrub_block_put(struct scrub_block *sblock)
1969{
1970        if (refcount_dec_and_test(&sblock->refs)) {
1971                int i;
1972
1973                if (sblock->sparity)
1974                        scrub_parity_put(sblock->sparity);
1975
1976                for (i = 0; i < sblock->page_count; i++)
1977                        scrub_page_put(sblock->pagev[i]);
1978                kfree(sblock);
1979        }
1980}
1981
1982static void scrub_page_get(struct scrub_page *spage)
1983{
1984        atomic_inc(&spage->refs);
1985}
1986
1987static void scrub_page_put(struct scrub_page *spage)
1988{
1989        if (atomic_dec_and_test(&spage->refs)) {
1990                if (spage->page)
1991                        __free_page(spage->page);
1992                kfree(spage);
1993        }
1994}
1995
1996/*
1997 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1998 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1999 */
2000static void scrub_throttle(struct scrub_ctx *sctx)
2001{
2002        const int time_slice = 1000;
2003        struct scrub_bio *sbio;
2004        struct btrfs_device *device;
2005        s64 delta;
2006        ktime_t now;
2007        u32 div;
2008        u64 bwlimit;
2009
2010        sbio = sctx->bios[sctx->curr];
2011        device = sbio->dev;
2012        bwlimit = READ_ONCE(device->scrub_speed_max);
2013        if (bwlimit == 0)
2014                return;
2015
2016        /*
2017         * Slice is divided into intervals when the IO is submitted, adjust by
2018         * bwlimit and maximum of 64 intervals.
2019         */
2020        div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
2021        div = min_t(u32, 64, div);
2022
2023        /* Start new epoch, set deadline */
2024        now = ktime_get();
2025        if (sctx->throttle_deadline == 0) {
2026                sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
2027                sctx->throttle_sent = 0;
2028        }
2029
2030        /* Still in the time to send? */
2031        if (ktime_before(now, sctx->throttle_deadline)) {
2032                /* If current bio is within the limit, send it */
2033                sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
2034                if (sctx->throttle_sent <= div_u64(bwlimit, div))
2035                        return;
2036
2037                /* We're over the limit, sleep until the rest of the slice */
2038                delta = ktime_ms_delta(sctx->throttle_deadline, now);
2039        } else {
2040                /* New request after deadline, start new epoch */
2041                delta = 0;
2042        }
2043
2044        if (delta) {
2045                long timeout;
2046
2047                timeout = div_u64(delta * HZ, 1000);
2048                schedule_timeout_interruptible(timeout);
2049        }
2050
2051        /* Next call will start the deadline period */
2052        sctx->throttle_deadline = 0;
2053}
2054
2055static void scrub_submit(struct scrub_ctx *sctx)
2056{
2057        struct scrub_bio *sbio;
2058
2059        if (sctx->curr == -1)
2060                return;
2061
2062        scrub_throttle(sctx);
2063
2064        sbio = sctx->bios[sctx->curr];
2065        sctx->curr = -1;
2066        scrub_pending_bio_inc(sctx);
2067        btrfsic_submit_bio(sbio->bio);
2068}
2069
2070static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2071                                    struct scrub_page *spage)
2072{
2073        struct scrub_block *sblock = spage->sblock;
2074        struct scrub_bio *sbio;
2075        const u32 sectorsize = sctx->fs_info->sectorsize;
2076        int ret;
2077
2078again:
2079        /*
2080         * grab a fresh bio or wait for one to become available
2081         */
2082        while (sctx->curr == -1) {
2083                spin_lock(&sctx->list_lock);
2084                sctx->curr = sctx->first_free;
2085                if (sctx->curr != -1) {
2086                        sctx->first_free = sctx->bios[sctx->curr]->next_free;
2087                        sctx->bios[sctx->curr]->next_free = -1;
2088                        sctx->bios[sctx->curr]->page_count = 0;
2089                        spin_unlock(&sctx->list_lock);
2090                } else {
2091                        spin_unlock(&sctx->list_lock);
2092                        wait_event(sctx->list_wait, sctx->first_free != -1);
2093                }
2094        }
2095        sbio = sctx->bios[sctx->curr];
2096        if (sbio->page_count == 0) {
2097                struct bio *bio;
2098
2099                sbio->physical = spage->physical;
2100                sbio->logical = spage->logical;
2101                sbio->dev = spage->dev;
2102                bio = sbio->bio;
2103                if (!bio) {
2104                        bio = btrfs_bio_alloc(sctx->pages_per_rd_bio);
2105                        sbio->bio = bio;
2106                }
2107
2108                bio->bi_private = sbio;
2109                bio->bi_end_io = scrub_bio_end_io;
2110                bio_set_dev(bio, sbio->dev->bdev);
2111                bio->bi_iter.bi_sector = sbio->physical >> 9;
2112                bio->bi_opf = REQ_OP_READ;
2113                sbio->status = 0;
2114        } else if (sbio->physical + sbio->page_count * sectorsize !=
2115                   spage->physical ||
2116                   sbio->logical + sbio->page_count * sectorsize !=
2117                   spage->logical ||
2118                   sbio->dev != spage->dev) {
2119                scrub_submit(sctx);
2120                goto again;
2121        }
2122
2123        sbio->pagev[sbio->page_count] = spage;
2124        ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0);
2125        if (ret != sectorsize) {
2126                if (sbio->page_count < 1) {
2127                        bio_put(sbio->bio);
2128                        sbio->bio = NULL;
2129                        return -EIO;
2130                }
2131                scrub_submit(sctx);
2132                goto again;
2133        }
2134
2135        scrub_block_get(sblock); /* one for the page added to the bio */
2136        atomic_inc(&sblock->outstanding_pages);
2137        sbio->page_count++;
2138        if (sbio->page_count == sctx->pages_per_rd_bio)
2139                scrub_submit(sctx);
2140
2141        return 0;
2142}
2143
2144static void scrub_missing_raid56_end_io(struct bio *bio)
2145{
2146        struct scrub_block *sblock = bio->bi_private;
2147        struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2148
2149        if (bio->bi_status)
2150                sblock->no_io_error_seen = 0;
2151
2152        bio_put(bio);
2153
2154        btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2155}
2156
2157static void scrub_missing_raid56_worker(struct btrfs_work *work)
2158{
2159        struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2160        struct scrub_ctx *sctx = sblock->sctx;
2161        struct btrfs_fs_info *fs_info = sctx->fs_info;
2162        u64 logical;
2163        struct btrfs_device *dev;
2164
2165        logical = sblock->pagev[0]->logical;
2166        dev = sblock->pagev[0]->dev;
2167
2168        if (sblock->no_io_error_seen)
2169                scrub_recheck_block_checksum(sblock);
2170
2171        if (!sblock->no_io_error_seen) {
2172                spin_lock(&sctx->stat_lock);
2173                sctx->stat.read_errors++;
2174                spin_unlock(&sctx->stat_lock);
2175                btrfs_err_rl_in_rcu(fs_info,
2176                        "IO error rebuilding logical %llu for dev %s",
2177                        logical, rcu_str_deref(dev->name));
2178        } else if (sblock->header_error || sblock->checksum_error) {
2179                spin_lock(&sctx->stat_lock);
2180                sctx->stat.uncorrectable_errors++;
2181                spin_unlock(&sctx->stat_lock);
2182                btrfs_err_rl_in_rcu(fs_info,
2183                        "failed to rebuild valid logical %llu for dev %s",
2184                        logical, rcu_str_deref(dev->name));
2185        } else {
2186                scrub_write_block_to_dev_replace(sblock);
2187        }
2188
2189        if (sctx->is_dev_replace && sctx->flush_all_writes) {
2190                mutex_lock(&sctx->wr_lock);
2191                scrub_wr_submit(sctx);
2192                mutex_unlock(&sctx->wr_lock);
2193        }
2194
2195        scrub_block_put(sblock);
2196        scrub_pending_bio_dec(sctx);
2197}
2198
2199static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2200{
2201        struct scrub_ctx *sctx = sblock->sctx;
2202        struct btrfs_fs_info *fs_info = sctx->fs_info;
2203        u64 length = sblock->page_count * PAGE_SIZE;
2204        u64 logical = sblock->pagev[0]->logical;
2205        struct btrfs_io_context *bioc = NULL;
2206        struct bio *bio;
2207        struct btrfs_raid_bio *rbio;
2208        int ret;
2209        int i;
2210
2211        btrfs_bio_counter_inc_blocked(fs_info);
2212        ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2213                               &length, &bioc);
2214        if (ret || !bioc || !bioc->raid_map)
2215                goto bioc_out;
2216
2217        if (WARN_ON(!sctx->is_dev_replace ||
2218                    !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2219                /*
2220                 * We shouldn't be scrubbing a missing device. Even for dev
2221                 * replace, we should only get here for RAID 5/6. We either
2222                 * managed to mount something with no mirrors remaining or
2223                 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2224                 */
2225                goto bioc_out;
2226        }
2227
2228        bio = btrfs_bio_alloc(BIO_MAX_VECS);
2229        bio->bi_iter.bi_sector = logical >> 9;
2230        bio->bi_private = sblock;
2231        bio->bi_end_io = scrub_missing_raid56_end_io;
2232
2233        rbio = raid56_alloc_missing_rbio(bio, bioc, length);
2234        if (!rbio)
2235                goto rbio_out;
2236
2237        for (i = 0; i < sblock->page_count; i++) {
2238                struct scrub_page *spage = sblock->pagev[i];
2239
2240                raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2241        }
2242
2243        btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2244        scrub_block_get(sblock);
2245        scrub_pending_bio_inc(sctx);
2246        raid56_submit_missing_rbio(rbio);
2247        return;
2248
2249rbio_out:
2250        bio_put(bio);
2251bioc_out:
2252        btrfs_bio_counter_dec(fs_info);
2253        btrfs_put_bioc(bioc);
2254        spin_lock(&sctx->stat_lock);
2255        sctx->stat.malloc_errors++;
2256        spin_unlock(&sctx->stat_lock);
2257}
2258
2259static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
2260                       u64 physical, struct btrfs_device *dev, u64 flags,
2261                       u64 gen, int mirror_num, u8 *csum,
2262                       u64 physical_for_dev_replace)
2263{
2264        struct scrub_block *sblock;
2265        const u32 sectorsize = sctx->fs_info->sectorsize;
2266        int index;
2267
2268        sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2269        if (!sblock) {
2270                spin_lock(&sctx->stat_lock);
2271                sctx->stat.malloc_errors++;
2272                spin_unlock(&sctx->stat_lock);
2273                return -ENOMEM;
2274        }
2275
2276        /* one ref inside this function, plus one for each page added to
2277         * a bio later on */
2278        refcount_set(&sblock->refs, 1);
2279        sblock->sctx = sctx;
2280        sblock->no_io_error_seen = 1;
2281
2282        for (index = 0; len > 0; index++) {
2283                struct scrub_page *spage;
2284                /*
2285                 * Here we will allocate one page for one sector to scrub.
2286                 * This is fine if PAGE_SIZE == sectorsize, but will cost
2287                 * more memory for PAGE_SIZE > sectorsize case.
2288                 */
2289                u32 l = min(sectorsize, len);
2290
2291                spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2292                if (!spage) {
2293leave_nomem:
2294                        spin_lock(&sctx->stat_lock);
2295                        sctx->stat.malloc_errors++;
2296                        spin_unlock(&sctx->stat_lock);
2297                        scrub_block_put(sblock);
2298                        return -ENOMEM;
2299                }
2300                BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2301                scrub_page_get(spage);
2302                sblock->pagev[index] = spage;
2303                spage->sblock = sblock;
2304                spage->dev = dev;
2305                spage->flags = flags;
2306                spage->generation = gen;
2307                spage->logical = logical;
2308                spage->physical = physical;
2309                spage->physical_for_dev_replace = physical_for_dev_replace;
2310                spage->mirror_num = mirror_num;
2311                if (csum) {
2312                        spage->have_csum = 1;
2313                        memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2314                } else {
2315                        spage->have_csum = 0;
2316                }
2317                sblock->page_count++;
2318                spage->page = alloc_page(GFP_KERNEL);
2319                if (!spage->page)
2320                        goto leave_nomem;
2321                len -= l;
2322                logical += l;
2323                physical += l;
2324                physical_for_dev_replace += l;
2325        }
2326
2327        WARN_ON(sblock->page_count == 0);
2328        if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2329                /*
2330                 * This case should only be hit for RAID 5/6 device replace. See
2331                 * the comment in scrub_missing_raid56_pages() for details.
2332                 */
2333                scrub_missing_raid56_pages(sblock);
2334        } else {
2335                for (index = 0; index < sblock->page_count; index++) {
2336                        struct scrub_page *spage = sblock->pagev[index];
2337                        int ret;
2338
2339                        ret = scrub_add_page_to_rd_bio(sctx, spage);
2340                        if (ret) {
2341                                scrub_block_put(sblock);
2342                                return ret;
2343                        }
2344                }
2345
2346                if (flags & BTRFS_EXTENT_FLAG_SUPER)
2347                        scrub_submit(sctx);
2348        }
2349
2350        /* last one frees, either here or in bio completion for last page */
2351        scrub_block_put(sblock);
2352        return 0;
2353}
2354
2355static void scrub_bio_end_io(struct bio *bio)
2356{
2357        struct scrub_bio *sbio = bio->bi_private;
2358        struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2359
2360        sbio->status = bio->bi_status;
2361        sbio->bio = bio;
2362
2363        btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2364}
2365
2366static void scrub_bio_end_io_worker(struct btrfs_work *work)
2367{
2368        struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2369        struct scrub_ctx *sctx = sbio->sctx;
2370        int i;
2371
2372        BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2373        if (sbio->status) {
2374                for (i = 0; i < sbio->page_count; i++) {
2375                        struct scrub_page *spage = sbio->pagev[i];
2376
2377                        spage->io_error = 1;
2378                        spage->sblock->no_io_error_seen = 0;
2379                }
2380        }
2381
2382        /* now complete the scrub_block items that have all pages completed */
2383        for (i = 0; i < sbio->page_count; i++) {
2384                struct scrub_page *spage = sbio->pagev[i];
2385                struct scrub_block *sblock = spage->sblock;
2386
2387                if (atomic_dec_and_test(&sblock->outstanding_pages))
2388                        scrub_block_complete(sblock);
2389                scrub_block_put(sblock);
2390        }
2391
2392        bio_put(sbio->bio);
2393        sbio->bio = NULL;
2394        spin_lock(&sctx->list_lock);
2395        sbio->next_free = sctx->first_free;
2396        sctx->first_free = sbio->index;
2397        spin_unlock(&sctx->list_lock);
2398
2399        if (sctx->is_dev_replace && sctx->flush_all_writes) {
2400                mutex_lock(&sctx->wr_lock);
2401                scrub_wr_submit(sctx);
2402                mutex_unlock(&sctx->wr_lock);
2403        }
2404
2405        scrub_pending_bio_dec(sctx);
2406}
2407
2408static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2409                                       unsigned long *bitmap,
2410                                       u64 start, u32 len)
2411{
2412        u64 offset;
2413        u32 nsectors;
2414        u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2415
2416        if (len >= sparity->stripe_len) {
2417                bitmap_set(bitmap, 0, sparity->nsectors);
2418                return;
2419        }
2420
2421        start -= sparity->logic_start;
2422        start = div64_u64_rem(start, sparity->stripe_len, &offset);
2423        offset = offset >> sectorsize_bits;
2424        nsectors = len >> sectorsize_bits;
2425
2426        if (offset + nsectors <= sparity->nsectors) {
2427                bitmap_set(bitmap, offset, nsectors);
2428                return;
2429        }
2430
2431        bitmap_set(bitmap, offset, sparity->nsectors - offset);
2432        bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2433}
2434
2435static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2436                                                   u64 start, u32 len)
2437{
2438        __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2439}
2440
2441static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2442                                                  u64 start, u32 len)
2443{
2444        __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2445}
2446
2447static void scrub_block_complete(struct scrub_block *sblock)
2448{
2449        int corrupted = 0;
2450
2451        if (!sblock->no_io_error_seen) {
2452                corrupted = 1;
2453                scrub_handle_errored_block(sblock);
2454        } else {
2455                /*
2456                 * if has checksum error, write via repair mechanism in
2457                 * dev replace case, otherwise write here in dev replace
2458                 * case.
2459                 */
2460                corrupted = scrub_checksum(sblock);
2461                if (!corrupted && sblock->sctx->is_dev_replace)
2462                        scrub_write_block_to_dev_replace(sblock);
2463        }
2464
2465        if (sblock->sparity && corrupted && !sblock->data_corrected) {
2466                u64 start = sblock->pagev[0]->logical;
2467                u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2468                          sblock->sctx->fs_info->sectorsize;
2469
2470                ASSERT(end - start <= U32_MAX);
2471                scrub_parity_mark_sectors_error(sblock->sparity,
2472                                                start, end - start);
2473        }
2474}
2475
2476static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
2477{
2478        sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
2479        list_del(&sum->list);
2480        kfree(sum);
2481}
2482
2483/*
2484 * Find the desired csum for range [logical, logical + sectorsize), and store
2485 * the csum into @csum.
2486 *
2487 * The search source is sctx->csum_list, which is a pre-populated list
2488 * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
2489 * that is before @logical.
2490 *
2491 * Return 0 if there is no csum for the range.
2492 * Return 1 if there is csum for the range and copied to @csum.
2493 */
2494static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2495{
2496        bool found = false;
2497
2498        while (!list_empty(&sctx->csum_list)) {
2499                struct btrfs_ordered_sum *sum = NULL;
2500                unsigned long index;
2501                unsigned long num_sectors;
2502
2503                sum = list_first_entry(&sctx->csum_list,
2504                                       struct btrfs_ordered_sum, list);
2505                /* The current csum range is beyond our range, no csum found */
2506                if (sum->bytenr > logical)
2507                        break;
2508
2509                /*
2510                 * The current sum is before our bytenr, since scrub is always
2511                 * done in bytenr order, the csum will never be used anymore,
2512                 * clean it up so that later calls won't bother with the range,
2513                 * and continue search the next range.
2514                 */
2515                if (sum->bytenr + sum->len <= logical) {
2516                        drop_csum_range(sctx, sum);
2517                        continue;
2518                }
2519
2520                /* Now the csum range covers our bytenr, copy the csum */
2521                found = true;
2522                index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
2523                num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2524
2525                memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
2526                       sctx->fs_info->csum_size);
2527
2528                /* Cleanup the range if we're at the end of the csum range */
2529                if (index == num_sectors - 1)
2530                        drop_csum_range(sctx, sum);
2531                break;
2532        }
2533        if (!found)
2534                return 0;
2535        return 1;
2536}
2537
2538/* scrub extent tries to collect up to 64 kB for each bio */
2539static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2540                        u64 logical, u32 len,
2541                        u64 physical, struct btrfs_device *dev, u64 flags,
2542                        u64 gen, int mirror_num, u64 physical_for_dev_replace)
2543{
2544        int ret;
2545        u8 csum[BTRFS_CSUM_SIZE];
2546        u32 blocksize;
2547
2548        if (flags & BTRFS_EXTENT_FLAG_DATA) {
2549                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2550                        blocksize = map->stripe_len;
2551                else
2552                        blocksize = sctx->fs_info->sectorsize;
2553                spin_lock(&sctx->stat_lock);
2554                sctx->stat.data_extents_scrubbed++;
2555                sctx->stat.data_bytes_scrubbed += len;
2556                spin_unlock(&sctx->stat_lock);
2557        } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2558                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2559                        blocksize = map->stripe_len;
2560                else
2561                        blocksize = sctx->fs_info->nodesize;
2562                spin_lock(&sctx->stat_lock);
2563                sctx->stat.tree_extents_scrubbed++;
2564                sctx->stat.tree_bytes_scrubbed += len;
2565                spin_unlock(&sctx->stat_lock);
2566        } else {
2567                blocksize = sctx->fs_info->sectorsize;
2568                WARN_ON(1);
2569        }
2570
2571        while (len) {
2572                u32 l = min(len, blocksize);
2573                int have_csum = 0;
2574
2575                if (flags & BTRFS_EXTENT_FLAG_DATA) {
2576                        /* push csums to sbio */
2577                        have_csum = scrub_find_csum(sctx, logical, csum);
2578                        if (have_csum == 0)
2579                                ++sctx->stat.no_csum;
2580                }
2581                ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2582                                  mirror_num, have_csum ? csum : NULL,
2583                                  physical_for_dev_replace);
2584                if (ret)
2585                        return ret;
2586                len -= l;
2587                logical += l;
2588                physical += l;
2589                physical_for_dev_replace += l;
2590        }
2591        return 0;
2592}
2593
2594static int scrub_pages_for_parity(struct scrub_parity *sparity,
2595                                  u64 logical, u32 len,
2596                                  u64 physical, struct btrfs_device *dev,
2597                                  u64 flags, u64 gen, int mirror_num, u8 *csum)
2598{
2599        struct scrub_ctx *sctx = sparity->sctx;
2600        struct scrub_block *sblock;
2601        const u32 sectorsize = sctx->fs_info->sectorsize;
2602        int index;
2603
2604        ASSERT(IS_ALIGNED(len, sectorsize));
2605
2606        sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2607        if (!sblock) {
2608                spin_lock(&sctx->stat_lock);
2609                sctx->stat.malloc_errors++;
2610                spin_unlock(&sctx->stat_lock);
2611                return -ENOMEM;
2612        }
2613
2614        /* one ref inside this function, plus one for each page added to
2615         * a bio later on */
2616        refcount_set(&sblock->refs, 1);
2617        sblock->sctx = sctx;
2618        sblock->no_io_error_seen = 1;
2619        sblock->sparity = sparity;
2620        scrub_parity_get(sparity);
2621
2622        for (index = 0; len > 0; index++) {
2623                struct scrub_page *spage;
2624
2625                spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2626                if (!spage) {
2627leave_nomem:
2628                        spin_lock(&sctx->stat_lock);
2629                        sctx->stat.malloc_errors++;
2630                        spin_unlock(&sctx->stat_lock);
2631                        scrub_block_put(sblock);
2632                        return -ENOMEM;
2633                }
2634                BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2635                /* For scrub block */
2636                scrub_page_get(spage);
2637                sblock->pagev[index] = spage;
2638                /* For scrub parity */
2639                scrub_page_get(spage);
2640                list_add_tail(&spage->list, &sparity->spages);
2641                spage->sblock = sblock;
2642                spage->dev = dev;
2643                spage->flags = flags;
2644                spage->generation = gen;
2645                spage->logical = logical;
2646                spage->physical = physical;
2647                spage->mirror_num = mirror_num;
2648                if (csum) {
2649                        spage->have_csum = 1;
2650                        memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2651                } else {
2652                        spage->have_csum = 0;
2653                }
2654                sblock->page_count++;
2655                spage->page = alloc_page(GFP_KERNEL);
2656                if (!spage->page)
2657                        goto leave_nomem;
2658
2659
2660                /* Iterate over the stripe range in sectorsize steps */
2661                len -= sectorsize;
2662                logical += sectorsize;
2663                physical += sectorsize;
2664        }
2665
2666        WARN_ON(sblock->page_count == 0);
2667        for (index = 0; index < sblock->page_count; index++) {
2668                struct scrub_page *spage = sblock->pagev[index];
2669                int ret;
2670
2671                ret = scrub_add_page_to_rd_bio(sctx, spage);
2672                if (ret) {
2673                        scrub_block_put(sblock);
2674                        return ret;
2675                }
2676        }
2677
2678        /* last one frees, either here or in bio completion for last page */
2679        scrub_block_put(sblock);
2680        return 0;
2681}
2682
2683static int scrub_extent_for_parity(struct scrub_parity *sparity,
2684                                   u64 logical, u32 len,
2685                                   u64 physical, struct btrfs_device *dev,
2686                                   u64 flags, u64 gen, int mirror_num)
2687{
2688        struct scrub_ctx *sctx = sparity->sctx;
2689        int ret;
2690        u8 csum[BTRFS_CSUM_SIZE];
2691        u32 blocksize;
2692
2693        if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2694                scrub_parity_mark_sectors_error(sparity, logical, len);
2695                return 0;
2696        }
2697
2698        if (flags & BTRFS_EXTENT_FLAG_DATA) {
2699                blocksize = sparity->stripe_len;
2700        } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2701                blocksize = sparity->stripe_len;
2702        } else {
2703                blocksize = sctx->fs_info->sectorsize;
2704                WARN_ON(1);
2705        }
2706
2707        while (len) {
2708                u32 l = min(len, blocksize);
2709                int have_csum = 0;
2710
2711                if (flags & BTRFS_EXTENT_FLAG_DATA) {
2712                        /* push csums to sbio */
2713                        have_csum = scrub_find_csum(sctx, logical, csum);
2714                        if (have_csum == 0)
2715                                goto skip;
2716                }
2717                ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2718                                             flags, gen, mirror_num,
2719                                             have_csum ? csum : NULL);
2720                if (ret)
2721                        return ret;
2722skip:
2723                len -= l;
2724                logical += l;
2725                physical += l;
2726        }
2727        return 0;
2728}
2729
2730/*
2731 * Given a physical address, this will calculate it's
2732 * logical offset. if this is a parity stripe, it will return
2733 * the most left data stripe's logical offset.
2734 *
2735 * return 0 if it is a data stripe, 1 means parity stripe.
2736 */
2737static int get_raid56_logic_offset(u64 physical, int num,
2738                                   struct map_lookup *map, u64 *offset,
2739                                   u64 *stripe_start)
2740{
2741        int i;
2742        int j = 0;
2743        u64 stripe_nr;
2744        u64 last_offset;
2745        u32 stripe_index;
2746        u32 rot;
2747        const int data_stripes = nr_data_stripes(map);
2748
2749        last_offset = (physical - map->stripes[num].physical) * data_stripes;
2750        if (stripe_start)
2751                *stripe_start = last_offset;
2752
2753        *offset = last_offset;
2754        for (i = 0; i < data_stripes; i++) {
2755                *offset = last_offset + i * map->stripe_len;
2756
2757                stripe_nr = div64_u64(*offset, map->stripe_len);
2758                stripe_nr = div_u64(stripe_nr, data_stripes);
2759
2760                /* Work out the disk rotation on this stripe-set */
2761                stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2762                /* calculate which stripe this data locates */
2763                rot += i;
2764                stripe_index = rot % map->num_stripes;
2765                if (stripe_index == num)
2766                        return 0;
2767                if (stripe_index < num)
2768                        j++;
2769        }
2770        *offset = last_offset + j * map->stripe_len;
2771        return 1;
2772}
2773
2774static void scrub_free_parity(struct scrub_parity *sparity)
2775{
2776        struct scrub_ctx *sctx = sparity->sctx;
2777        struct scrub_page *curr, *next;
2778        int nbits;
2779
2780        nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2781        if (nbits) {
2782                spin_lock(&sctx->stat_lock);
2783                sctx->stat.read_errors += nbits;
2784                sctx->stat.uncorrectable_errors += nbits;
2785                spin_unlock(&sctx->stat_lock);
2786        }
2787
2788        list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2789                list_del_init(&curr->list);
2790                scrub_page_put(curr);
2791        }
2792
2793        kfree(sparity);
2794}
2795
2796static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2797{
2798        struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2799                                                    work);
2800        struct scrub_ctx *sctx = sparity->sctx;
2801
2802        scrub_free_parity(sparity);
2803        scrub_pending_bio_dec(sctx);
2804}
2805
2806static void scrub_parity_bio_endio(struct bio *bio)
2807{
2808        struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2809        struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2810
2811        if (bio->bi_status)
2812                bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2813                          sparity->nsectors);
2814
2815        bio_put(bio);
2816
2817        btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
2818                        NULL);
2819        btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2820}
2821
2822static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2823{
2824        struct scrub_ctx *sctx = sparity->sctx;
2825        struct btrfs_fs_info *fs_info = sctx->fs_info;
2826        struct bio *bio;
2827        struct btrfs_raid_bio *rbio;
2828        struct btrfs_io_context *bioc = NULL;
2829        u64 length;
2830        int ret;
2831
2832        if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2833                           sparity->nsectors))
2834                goto out;
2835
2836        length = sparity->logic_end - sparity->logic_start;
2837
2838        btrfs_bio_counter_inc_blocked(fs_info);
2839        ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2840                               &length, &bioc);
2841        if (ret || !bioc || !bioc->raid_map)
2842                goto bioc_out;
2843
2844        bio = btrfs_bio_alloc(BIO_MAX_VECS);
2845        bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2846        bio->bi_private = sparity;
2847        bio->bi_end_io = scrub_parity_bio_endio;
2848
2849        rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, length,
2850                                              sparity->scrub_dev,
2851                                              sparity->dbitmap,
2852                                              sparity->nsectors);
2853        if (!rbio)
2854                goto rbio_out;
2855
2856        scrub_pending_bio_inc(sctx);
2857        raid56_parity_submit_scrub_rbio(rbio);
2858        return;
2859
2860rbio_out:
2861        bio_put(bio);
2862bioc_out:
2863        btrfs_bio_counter_dec(fs_info);
2864        btrfs_put_bioc(bioc);
2865        bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2866                  sparity->nsectors);
2867        spin_lock(&sctx->stat_lock);
2868        sctx->stat.malloc_errors++;
2869        spin_unlock(&sctx->stat_lock);
2870out:
2871        scrub_free_parity(sparity);
2872}
2873
2874static inline int scrub_calc_parity_bitmap_len(int nsectors)
2875{
2876        return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2877}
2878
2879static void scrub_parity_get(struct scrub_parity *sparity)
2880{
2881        refcount_inc(&sparity->refs);
2882}
2883
2884static void scrub_parity_put(struct scrub_parity *sparity)
2885{
2886        if (!refcount_dec_and_test(&sparity->refs))
2887                return;
2888
2889        scrub_parity_check_and_repair(sparity);
2890}
2891
2892static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2893                                                  struct map_lookup *map,
2894                                                  struct btrfs_device *sdev,
2895                                                  struct btrfs_path *path,
2896                                                  u64 logic_start,
2897                                                  u64 logic_end)
2898{
2899        struct btrfs_fs_info *fs_info = sctx->fs_info;
2900        struct btrfs_root *root = fs_info->extent_root;
2901        struct btrfs_root *csum_root = fs_info->csum_root;
2902        struct btrfs_extent_item *extent;
2903        struct btrfs_io_context *bioc = NULL;
2904        u64 flags;
2905        int ret;
2906        int slot;
2907        struct extent_buffer *l;
2908        struct btrfs_key key;
2909        u64 generation;
2910        u64 extent_logical;
2911        u64 extent_physical;
2912        /* Check the comment in scrub_stripe() for why u32 is enough here */
2913        u32 extent_len;
2914        u64 mapped_length;
2915        struct btrfs_device *extent_dev;
2916        struct scrub_parity *sparity;
2917        int nsectors;
2918        int bitmap_len;
2919        int extent_mirror_num;
2920        int stop_loop = 0;
2921
2922        ASSERT(map->stripe_len <= U32_MAX);
2923        nsectors = map->stripe_len >> fs_info->sectorsize_bits;
2924        bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2925        sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2926                          GFP_NOFS);
2927        if (!sparity) {
2928                spin_lock(&sctx->stat_lock);
2929                sctx->stat.malloc_errors++;
2930                spin_unlock(&sctx->stat_lock);
2931                return -ENOMEM;
2932        }
2933
2934        ASSERT(map->stripe_len <= U32_MAX);
2935        sparity->stripe_len = map->stripe_len;
2936        sparity->nsectors = nsectors;
2937        sparity->sctx = sctx;
2938        sparity->scrub_dev = sdev;
2939        sparity->logic_start = logic_start;
2940        sparity->logic_end = logic_end;
2941        refcount_set(&sparity->refs, 1);
2942        INIT_LIST_HEAD(&sparity->spages);
2943        sparity->dbitmap = sparity->bitmap;
2944        sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2945
2946        ret = 0;
2947        while (logic_start < logic_end) {
2948                if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2949                        key.type = BTRFS_METADATA_ITEM_KEY;
2950                else
2951                        key.type = BTRFS_EXTENT_ITEM_KEY;
2952                key.objectid = logic_start;
2953                key.offset = (u64)-1;
2954
2955                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2956                if (ret < 0)
2957                        goto out;
2958
2959                if (ret > 0) {
2960                        ret = btrfs_previous_extent_item(root, path, 0);
2961                        if (ret < 0)
2962                                goto out;
2963                        if (ret > 0) {
2964                                btrfs_release_path(path);
2965                                ret = btrfs_search_slot(NULL, root, &key,
2966                                                        path, 0, 0);
2967                                if (ret < 0)
2968                                        goto out;
2969                        }
2970                }
2971
2972                stop_loop = 0;
2973                while (1) {
2974                        u64 bytes;
2975
2976                        l = path->nodes[0];
2977                        slot = path->slots[0];
2978                        if (slot >= btrfs_header_nritems(l)) {
2979                                ret = btrfs_next_leaf(root, path);
2980                                if (ret == 0)
2981                                        continue;
2982                                if (ret < 0)
2983                                        goto out;
2984
2985                                stop_loop = 1;
2986                                break;
2987                        }
2988                        btrfs_item_key_to_cpu(l, &key, slot);
2989
2990                        if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2991                            key.type != BTRFS_METADATA_ITEM_KEY)
2992                                goto next;
2993
2994                        if (key.type == BTRFS_METADATA_ITEM_KEY)
2995                                bytes = fs_info->nodesize;
2996                        else
2997                                bytes = key.offset;
2998
2999                        if (key.objectid + bytes <= logic_start)
3000                                goto next;
3001
3002                        if (key.objectid >= logic_end) {
3003                                stop_loop = 1;
3004                                break;
3005                        }
3006
3007                        while (key.objectid >= logic_start + map->stripe_len)
3008                                logic_start += map->stripe_len;
3009
3010                        extent = btrfs_item_ptr(l, slot,
3011                                                struct btrfs_extent_item);
3012                        flags = btrfs_extent_flags(l, extent);
3013                        generation = btrfs_extent_generation(l, extent);
3014
3015                        if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3016                            (key.objectid < logic_start ||
3017                             key.objectid + bytes >
3018                             logic_start + map->stripe_len)) {
3019                                btrfs_err(fs_info,
3020                                          "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3021                                          key.objectid, logic_start);
3022                                spin_lock(&sctx->stat_lock);
3023                                sctx->stat.uncorrectable_errors++;
3024                                spin_unlock(&sctx->stat_lock);
3025                                goto next;
3026                        }
3027again:
3028                        extent_logical = key.objectid;
3029                        ASSERT(bytes <= U32_MAX);
3030                        extent_len = bytes;
3031
3032                        if (extent_logical < logic_start) {
3033                                extent_len -= logic_start - extent_logical;
3034                                extent_logical = logic_start;
3035                        }
3036
3037                        if (extent_logical + extent_len >
3038                            logic_start + map->stripe_len)
3039                                extent_len = logic_start + map->stripe_len -
3040                                             extent_logical;
3041
3042                        scrub_parity_mark_sectors_data(sparity, extent_logical,
3043                                                       extent_len);
3044
3045                        mapped_length = extent_len;
3046                        bioc = NULL;
3047                        ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
3048                                        extent_logical, &mapped_length, &bioc,
3049                                        0);
3050                        if (!ret) {
3051                                if (!bioc || mapped_length < extent_len)
3052                                        ret = -EIO;
3053                        }
3054                        if (ret) {
3055                                btrfs_put_bioc(bioc);
3056                                goto out;
3057                        }
3058                        extent_physical = bioc->stripes[0].physical;
3059                        extent_mirror_num = bioc->mirror_num;
3060                        extent_dev = bioc->stripes[0].dev;
3061                        btrfs_put_bioc(bioc);
3062
3063                        ret = btrfs_lookup_csums_range(csum_root,
3064                                                extent_logical,
3065                                                extent_logical + extent_len - 1,
3066                                                &sctx->csum_list, 1);
3067                        if (ret)
3068                                goto out;
3069
3070                        ret = scrub_extent_for_parity(sparity, extent_logical,
3071                                                      extent_len,
3072                                                      extent_physical,
3073                                                      extent_dev, flags,
3074                                                      generation,
3075                                                      extent_mirror_num);
3076
3077                        scrub_free_csums(sctx);
3078
3079                        if (ret)
3080                                goto out;
3081
3082                        if (extent_logical + extent_len <
3083                            key.objectid + bytes) {
3084                                logic_start += map->stripe_len;
3085
3086                                if (logic_start >= logic_end) {
3087                                        stop_loop = 1;
3088                                        break;
3089                                }
3090
3091                                if (logic_start < key.objectid + bytes) {
3092                                        cond_resched();
3093                                        goto again;
3094                                }
3095                        }
3096next:
3097                        path->slots[0]++;
3098                }
3099
3100                btrfs_release_path(path);
3101
3102                if (stop_loop)
3103                        break;
3104
3105                logic_start += map->stripe_len;
3106        }
3107out:
3108        if (ret < 0) {
3109                ASSERT(logic_end - logic_start <= U32_MAX);
3110                scrub_parity_mark_sectors_error(sparity, logic_start,
3111                                                logic_end - logic_start);
3112        }
3113        scrub_parity_put(sparity);
3114        scrub_submit(sctx);
3115        mutex_lock(&sctx->wr_lock);
3116        scrub_wr_submit(sctx);
3117        mutex_unlock(&sctx->wr_lock);
3118
3119        btrfs_release_path(path);
3120        return ret < 0 ? ret : 0;
3121}
3122
3123static void sync_replace_for_zoned(struct scrub_ctx *sctx)
3124{
3125        if (!btrfs_is_zoned(sctx->fs_info))
3126                return;
3127
3128        sctx->flush_all_writes = true;
3129        scrub_submit(sctx);
3130        mutex_lock(&sctx->wr_lock);
3131        scrub_wr_submit(sctx);
3132        mutex_unlock(&sctx->wr_lock);
3133
3134        wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3135}
3136
3137static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
3138                                        u64 physical, u64 physical_end)
3139{
3140        struct btrfs_fs_info *fs_info = sctx->fs_info;
3141        int ret = 0;
3142
3143        if (!btrfs_is_zoned(fs_info))
3144                return 0;
3145
3146        wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3147
3148        mutex_lock(&sctx->wr_lock);
3149        if (sctx->write_pointer < physical_end) {
3150                ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
3151                                                    physical,
3152                                                    sctx->write_pointer);
3153                if (ret)
3154                        btrfs_err(fs_info,
3155                                  "zoned: failed to recover write pointer");
3156        }
3157        mutex_unlock(&sctx->wr_lock);
3158        btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
3159
3160        return ret;
3161}
3162
3163static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3164                                           struct map_lookup *map,
3165                                           struct btrfs_device *scrub_dev,
3166                                           int num, u64 base, u64 length,
3167                                           struct btrfs_block_group *cache)
3168{
3169        struct btrfs_path *path, *ppath;
3170        struct btrfs_fs_info *fs_info = sctx->fs_info;
3171        struct btrfs_root *root = fs_info->extent_root;
3172        struct btrfs_root *csum_root = fs_info->csum_root;
3173        struct btrfs_extent_item *extent;
3174        struct blk_plug plug;
3175        u64 flags;
3176        int ret;
3177        int slot;
3178        u64 nstripes;
3179        struct extent_buffer *l;
3180        u64 physical;
3181        u64 logical;
3182        u64 logic_end;
3183        u64 physical_end;
3184        u64 generation;
3185        int mirror_num;
3186        struct reada_control *reada1;
3187        struct reada_control *reada2;
3188        struct btrfs_key key;
3189        struct btrfs_key key_end;
3190        u64 increment = map->stripe_len;
3191        u64 offset;
3192        u64 extent_logical;
3193        u64 extent_physical;
3194        /*
3195         * Unlike chunk length, extent length should never go beyond
3196         * BTRFS_MAX_EXTENT_SIZE, thus u32 is enough here.
3197         */
3198        u32 extent_len;
3199        u64 stripe_logical;
3200        u64 stripe_end;
3201        struct btrfs_device *extent_dev;
3202        int extent_mirror_num;
3203        int stop_loop = 0;
3204
3205        physical = map->stripes[num].physical;
3206        offset = 0;
3207        nstripes = div64_u64(length, map->stripe_len);
3208        mirror_num = 1;
3209        increment = map->stripe_len;
3210        if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3211                offset = map->stripe_len * num;
3212                increment = map->stripe_len * map->num_stripes;
3213        } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3214                int factor = map->num_stripes / map->sub_stripes;
3215                offset = map->stripe_len * (num / map->sub_stripes);
3216                increment = map->stripe_len * factor;
3217                mirror_num = num % map->sub_stripes + 1;
3218        } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
3219                mirror_num = num % map->num_stripes + 1;
3220        } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3221                mirror_num = num % map->num_stripes + 1;
3222        } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3223                get_raid56_logic_offset(physical, num, map, &offset, NULL);
3224                increment = map->stripe_len * nr_data_stripes(map);
3225        }
3226
3227        path = btrfs_alloc_path();
3228        if (!path)
3229                return -ENOMEM;
3230
3231        ppath = btrfs_alloc_path();
3232        if (!ppath) {
3233                btrfs_free_path(path);
3234                return -ENOMEM;
3235        }
3236
3237        /*
3238         * work on commit root. The related disk blocks are static as
3239         * long as COW is applied. This means, it is save to rewrite
3240         * them to repair disk errors without any race conditions
3241         */
3242        path->search_commit_root = 1;
3243        path->skip_locking = 1;
3244
3245        ppath->search_commit_root = 1;
3246        ppath->skip_locking = 1;
3247        /*
3248         * trigger the readahead for extent tree csum tree and wait for
3249         * completion. During readahead, the scrub is officially paused
3250         * to not hold off transaction commits
3251         */
3252        logical = base + offset;
3253        physical_end = physical + nstripes * map->stripe_len;
3254        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3255                get_raid56_logic_offset(physical_end, num,
3256                                        map, &logic_end, NULL);
3257                logic_end += base;
3258        } else {
3259                logic_end = logical + increment * nstripes;
3260        }
3261        wait_event(sctx->list_wait,
3262                   atomic_read(&sctx->bios_in_flight) == 0);
3263        scrub_blocked_if_needed(fs_info);
3264
3265        /* FIXME it might be better to start readahead at commit root */
3266        key.objectid = logical;
3267        key.type = BTRFS_EXTENT_ITEM_KEY;
3268        key.offset = (u64)0;
3269        key_end.objectid = logic_end;
3270        key_end.type = BTRFS_METADATA_ITEM_KEY;
3271        key_end.offset = (u64)-1;
3272        reada1 = btrfs_reada_add(root, &key, &key_end);
3273
3274        if (cache->flags & BTRFS_BLOCK_GROUP_DATA) {
3275                key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3276                key.type = BTRFS_EXTENT_CSUM_KEY;
3277                key.offset = logical;
3278                key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3279                key_end.type = BTRFS_EXTENT_CSUM_KEY;
3280                key_end.offset = logic_end;
3281                reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3282        } else {
3283                reada2 = NULL;
3284        }
3285
3286        if (!IS_ERR(reada1))
3287                btrfs_reada_wait(reada1);
3288        if (!IS_ERR_OR_NULL(reada2))
3289                btrfs_reada_wait(reada2);
3290
3291
3292        /*
3293         * collect all data csums for the stripe to avoid seeking during
3294         * the scrub. This might currently (crc32) end up to be about 1MB
3295         */
3296        blk_start_plug(&plug);
3297
3298        if (sctx->is_dev_replace &&
3299            btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
3300                mutex_lock(&sctx->wr_lock);
3301                sctx->write_pointer = physical;
3302                mutex_unlock(&sctx->wr_lock);
3303                sctx->flush_all_writes = true;
3304        }
3305
3306        /*
3307         * now find all extents for each stripe and scrub them
3308         */
3309        ret = 0;
3310        while (physical < physical_end) {
3311                /*
3312                 * canceled?
3313                 */
3314                if (atomic_read(&fs_info->scrub_cancel_req) ||
3315                    atomic_read(&sctx->cancel_req)) {
3316                        ret = -ECANCELED;
3317                        goto out;
3318                }
3319                /*
3320                 * check to see if we have to pause
3321                 */
3322                if (atomic_read(&fs_info->scrub_pause_req)) {
3323                        /* push queued extents */
3324                        sctx->flush_all_writes = true;
3325                        scrub_submit(sctx);
3326                        mutex_lock(&sctx->wr_lock);
3327                        scrub_wr_submit(sctx);
3328                        mutex_unlock(&sctx->wr_lock);
3329                        wait_event(sctx->list_wait,
3330                                   atomic_read(&sctx->bios_in_flight) == 0);
3331                        sctx->flush_all_writes = false;
3332                        scrub_blocked_if_needed(fs_info);
3333                }
3334
3335                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3336                        ret = get_raid56_logic_offset(physical, num, map,
3337                                                      &logical,
3338                                                      &stripe_logical);
3339                        logical += base;
3340                        if (ret) {
3341                                /* it is parity strip */
3342                                stripe_logical += base;
3343                                stripe_end = stripe_logical + increment;
3344                                ret = scrub_raid56_parity(sctx, map, scrub_dev,
3345                                                          ppath, stripe_logical,
3346                                                          stripe_end);
3347                                if (ret)
3348                                        goto out;
3349                                goto skip;
3350                        }
3351                }
3352
3353                if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3354                        key.type = BTRFS_METADATA_ITEM_KEY;
3355                else
3356                        key.type = BTRFS_EXTENT_ITEM_KEY;
3357                key.objectid = logical;
3358                key.offset = (u64)-1;
3359
3360                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3361                if (ret < 0)
3362                        goto out;
3363
3364                if (ret > 0) {
3365                        ret = btrfs_previous_extent_item(root, path, 0);
3366                        if (ret < 0)
3367                                goto out;
3368                        if (ret > 0) {
3369                                /* there's no smaller item, so stick with the
3370                                 * larger one */
3371                                btrfs_release_path(path);
3372                                ret = btrfs_search_slot(NULL, root, &key,
3373                                                        path, 0, 0);
3374                                if (ret < 0)
3375                                        goto out;
3376                        }
3377                }
3378
3379                stop_loop = 0;
3380                while (1) {
3381                        u64 bytes;
3382
3383                        l = path->nodes[0];
3384                        slot = path->slots[0];
3385                        if (slot >= btrfs_header_nritems(l)) {
3386                                ret = btrfs_next_leaf(root, path);
3387                                if (ret == 0)
3388                                        continue;
3389                                if (ret < 0)
3390                                        goto out;
3391
3392                                stop_loop = 1;
3393                                break;
3394                        }
3395                        btrfs_item_key_to_cpu(l, &key, slot);
3396
3397                        if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3398                            key.type != BTRFS_METADATA_ITEM_KEY)
3399                                goto next;
3400
3401                        if (key.type == BTRFS_METADATA_ITEM_KEY)
3402                                bytes = fs_info->nodesize;
3403                        else
3404                                bytes = key.offset;
3405
3406                        if (key.objectid + bytes <= logical)
3407                                goto next;
3408
3409                        if (key.objectid >= logical + map->stripe_len) {
3410                                /* out of this device extent */
3411                                if (key.objectid >= logic_end)
3412                                        stop_loop = 1;
3413                                break;
3414                        }
3415
3416                        /*
3417                         * If our block group was removed in the meanwhile, just
3418                         * stop scrubbing since there is no point in continuing.
3419                         * Continuing would prevent reusing its device extents
3420                         * for new block groups for a long time.
3421                         */
3422                        spin_lock(&cache->lock);
3423                        if (cache->removed) {
3424                                spin_unlock(&cache->lock);
3425                                ret = 0;
3426                                goto out;
3427                        }
3428                        spin_unlock(&cache->lock);
3429
3430                        extent = btrfs_item_ptr(l, slot,
3431                                                struct btrfs_extent_item);
3432                        flags = btrfs_extent_flags(l, extent);
3433                        generation = btrfs_extent_generation(l, extent);
3434
3435                        if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3436                            (key.objectid < logical ||
3437                             key.objectid + bytes >
3438                             logical + map->stripe_len)) {
3439                                btrfs_err(fs_info,
3440                                           "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3441                                       key.objectid, logical);
3442                                spin_lock(&sctx->stat_lock);
3443                                sctx->stat.uncorrectable_errors++;
3444                                spin_unlock(&sctx->stat_lock);
3445                                goto next;
3446                        }
3447
3448again:
3449                        extent_logical = key.objectid;
3450                        ASSERT(bytes <= U32_MAX);
3451                        extent_len = bytes;
3452
3453                        /*
3454                         * trim extent to this stripe
3455                         */
3456                        if (extent_logical < logical) {
3457                                extent_len -= logical - extent_logical;
3458                                extent_logical = logical;
3459                        }
3460                        if (extent_logical + extent_len >
3461                            logical + map->stripe_len) {
3462                                extent_len = logical + map->stripe_len -
3463                                             extent_logical;
3464                        }
3465
3466                        extent_physical = extent_logical - logical + physical;
3467                        extent_dev = scrub_dev;
3468                        extent_mirror_num = mirror_num;
3469                        if (sctx->is_dev_replace)
3470                                scrub_remap_extent(fs_info, extent_logical,
3471                                                   extent_len, &extent_physical,
3472                                                   &extent_dev,
3473                                                   &extent_mirror_num);
3474
3475                        if (flags & BTRFS_EXTENT_FLAG_DATA) {
3476                                ret = btrfs_lookup_csums_range(csum_root,
3477                                                extent_logical,
3478                                                extent_logical + extent_len - 1,
3479                                                &sctx->csum_list, 1);
3480                                if (ret)
3481                                        goto out;
3482                        }
3483
3484                        ret = scrub_extent(sctx, map, extent_logical, extent_len,
3485                                           extent_physical, extent_dev, flags,
3486                                           generation, extent_mirror_num,
3487                                           extent_logical - logical + physical);
3488
3489                        scrub_free_csums(sctx);
3490
3491                        if (ret)
3492                                goto out;
3493
3494                        if (sctx->is_dev_replace)
3495                                sync_replace_for_zoned(sctx);
3496
3497                        if (extent_logical + extent_len <
3498                            key.objectid + bytes) {
3499                                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3500                                        /*
3501                                         * loop until we find next data stripe
3502                                         * or we have finished all stripes.
3503                                         */
3504loop:
3505                                        physical += map->stripe_len;
3506                                        ret = get_raid56_logic_offset(physical,
3507                                                        num, map, &logical,
3508                                                        &stripe_logical);
3509                                        logical += base;
3510
3511                                        if (ret && physical < physical_end) {
3512                                                stripe_logical += base;
3513                                                stripe_end = stripe_logical +
3514                                                                increment;
3515                                                ret = scrub_raid56_parity(sctx,
3516                                                        map, scrub_dev, ppath,
3517                                                        stripe_logical,
3518                                                        stripe_end);
3519                                                if (ret)
3520                                                        goto out;
3521                                                goto loop;
3522                                        }
3523                                } else {
3524                                        physical += map->stripe_len;
3525                                        logical += increment;
3526                                }
3527                                if (logical < key.objectid + bytes) {
3528                                        cond_resched();
3529                                        goto again;
3530                                }
3531
3532                                if (physical >= physical_end) {
3533                                        stop_loop = 1;
3534                                        break;
3535                                }
3536                        }
3537next:
3538                        path->slots[0]++;
3539                }
3540                btrfs_release_path(path);
3541skip:
3542                logical += increment;
3543                physical += map->stripe_len;
3544                spin_lock(&sctx->stat_lock);
3545                if (stop_loop)
3546                        sctx->stat.last_physical = map->stripes[num].physical +
3547                                                   length;
3548                else
3549                        sctx->stat.last_physical = physical;
3550                spin_unlock(&sctx->stat_lock);
3551                if (stop_loop)
3552                        break;
3553        }
3554out:
3555        /* push queued extents */
3556        scrub_submit(sctx);
3557        mutex_lock(&sctx->wr_lock);
3558        scrub_wr_submit(sctx);
3559        mutex_unlock(&sctx->wr_lock);
3560
3561        blk_finish_plug(&plug);
3562        btrfs_free_path(path);
3563        btrfs_free_path(ppath);
3564
3565        if (sctx->is_dev_replace && ret >= 0) {
3566                int ret2;
3567
3568                ret2 = sync_write_pointer_for_zoned(sctx, base + offset,
3569                                                    map->stripes[num].physical,
3570                                                    physical_end);
3571                if (ret2)
3572                        ret = ret2;
3573        }
3574
3575        return ret < 0 ? ret : 0;
3576}
3577
3578static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3579                                          struct btrfs_device *scrub_dev,
3580                                          u64 chunk_offset, u64 length,
3581                                          u64 dev_offset,
3582                                          struct btrfs_block_group *cache)
3583{
3584        struct btrfs_fs_info *fs_info = sctx->fs_info;
3585        struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3586        struct map_lookup *map;
3587        struct extent_map *em;
3588        int i;
3589        int ret = 0;
3590
3591        read_lock(&map_tree->lock);
3592        em = lookup_extent_mapping(map_tree, chunk_offset, 1);
3593        read_unlock(&map_tree->lock);
3594
3595        if (!em) {
3596                /*
3597                 * Might have been an unused block group deleted by the cleaner
3598                 * kthread or relocation.
3599                 */
3600                spin_lock(&cache->lock);
3601                if (!cache->removed)
3602                        ret = -EINVAL;
3603                spin_unlock(&cache->lock);
3604
3605                return ret;
3606        }
3607
3608        map = em->map_lookup;
3609        if (em->start != chunk_offset)
3610                goto out;
3611
3612        if (em->len < length)
3613                goto out;
3614
3615        for (i = 0; i < map->num_stripes; ++i) {
3616                if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3617                    map->stripes[i].physical == dev_offset) {
3618                        ret = scrub_stripe(sctx, map, scrub_dev, i,
3619                                           chunk_offset, length, cache);
3620                        if (ret)
3621                                goto out;
3622                }
3623        }
3624out:
3625        free_extent_map(em);
3626
3627        return ret;
3628}
3629
3630static int finish_extent_writes_for_zoned(struct btrfs_root *root,
3631                                          struct btrfs_block_group *cache)
3632{
3633        struct btrfs_fs_info *fs_info = cache->fs_info;
3634        struct btrfs_trans_handle *trans;
3635
3636        if (!btrfs_is_zoned(fs_info))
3637                return 0;
3638
3639        btrfs_wait_block_group_reservations(cache);
3640        btrfs_wait_nocow_writers(cache);
3641        btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
3642
3643        trans = btrfs_join_transaction(root);
3644        if (IS_ERR(trans))
3645                return PTR_ERR(trans);
3646        return btrfs_commit_transaction(trans);
3647}
3648
3649static noinline_for_stack
3650int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3651                           struct btrfs_device *scrub_dev, u64 start, u64 end)
3652{
3653        struct btrfs_dev_extent *dev_extent = NULL;
3654        struct btrfs_path *path;
3655        struct btrfs_fs_info *fs_info = sctx->fs_info;
3656        struct btrfs_root *root = fs_info->dev_root;
3657        u64 length;
3658        u64 chunk_offset;
3659        int ret = 0;
3660        int ro_set;
3661        int slot;
3662        struct extent_buffer *l;
3663        struct btrfs_key key;
3664        struct btrfs_key found_key;
3665        struct btrfs_block_group *cache;
3666        struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3667
3668        path = btrfs_alloc_path();
3669        if (!path)
3670                return -ENOMEM;
3671
3672        path->reada = READA_FORWARD;
3673        path->search_commit_root = 1;
3674        path->skip_locking = 1;
3675
3676        key.objectid = scrub_dev->devid;
3677        key.offset = 0ull;
3678        key.type = BTRFS_DEV_EXTENT_KEY;
3679
3680        while (1) {
3681                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3682                if (ret < 0)
3683                        break;
3684                if (ret > 0) {
3685                        if (path->slots[0] >=
3686                            btrfs_header_nritems(path->nodes[0])) {
3687                                ret = btrfs_next_leaf(root, path);
3688                                if (ret < 0)
3689                                        break;
3690                                if (ret > 0) {
3691                                        ret = 0;
3692                                        break;
3693                                }
3694                        } else {
3695                                ret = 0;
3696                        }
3697                }
3698
3699                l = path->nodes[0];
3700                slot = path->slots[0];
3701
3702                btrfs_item_key_to_cpu(l, &found_key, slot);
3703
3704                if (found_key.objectid != scrub_dev->devid)
3705                        break;
3706
3707                if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3708                        break;
3709
3710                if (found_key.offset >= end)
3711                        break;
3712
3713                if (found_key.offset < key.offset)
3714                        break;
3715
3716                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3717                length = btrfs_dev_extent_length(l, dev_extent);
3718
3719                if (found_key.offset + length <= start)
3720                        goto skip;
3721
3722                chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3723
3724                /*
3725                 * get a reference on the corresponding block group to prevent
3726                 * the chunk from going away while we scrub it
3727                 */
3728                cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3729
3730                /* some chunks are removed but not committed to disk yet,
3731                 * continue scrubbing */
3732                if (!cache)
3733                        goto skip;
3734
3735                if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
3736                        spin_lock(&cache->lock);
3737                        if (!cache->to_copy) {
3738                                spin_unlock(&cache->lock);
3739                                btrfs_put_block_group(cache);
3740                                goto skip;
3741                        }
3742                        spin_unlock(&cache->lock);
3743                }
3744
3745                /*
3746                 * Make sure that while we are scrubbing the corresponding block
3747                 * group doesn't get its logical address and its device extents
3748                 * reused for another block group, which can possibly be of a
3749                 * different type and different profile. We do this to prevent
3750                 * false error detections and crashes due to bogus attempts to
3751                 * repair extents.
3752                 */
3753                spin_lock(&cache->lock);
3754                if (cache->removed) {
3755                        spin_unlock(&cache->lock);
3756                        btrfs_put_block_group(cache);
3757                        goto skip;
3758                }
3759                btrfs_freeze_block_group(cache);
3760                spin_unlock(&cache->lock);
3761
3762                /*
3763                 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3764                 * to avoid deadlock caused by:
3765                 * btrfs_inc_block_group_ro()
3766                 * -> btrfs_wait_for_commit()
3767                 * -> btrfs_commit_transaction()
3768                 * -> btrfs_scrub_pause()
3769                 */
3770                scrub_pause_on(fs_info);
3771
3772                /*
3773                 * Don't do chunk preallocation for scrub.
3774                 *
3775                 * This is especially important for SYSTEM bgs, or we can hit
3776                 * -EFBIG from btrfs_finish_chunk_alloc() like:
3777                 * 1. The only SYSTEM bg is marked RO.
3778                 *    Since SYSTEM bg is small, that's pretty common.
3779                 * 2. New SYSTEM bg will be allocated
3780                 *    Due to regular version will allocate new chunk.
3781                 * 3. New SYSTEM bg is empty and will get cleaned up
3782                 *    Before cleanup really happens, it's marked RO again.
3783                 * 4. Empty SYSTEM bg get scrubbed
3784                 *    We go back to 2.
3785                 *
3786                 * This can easily boost the amount of SYSTEM chunks if cleaner
3787                 * thread can't be triggered fast enough, and use up all space
3788                 * of btrfs_super_block::sys_chunk_array
3789                 *
3790                 * While for dev replace, we need to try our best to mark block
3791                 * group RO, to prevent race between:
3792                 * - Write duplication
3793                 *   Contains latest data
3794                 * - Scrub copy
3795                 *   Contains data from commit tree
3796                 *
3797                 * If target block group is not marked RO, nocow writes can
3798                 * be overwritten by scrub copy, causing data corruption.
3799                 * So for dev-replace, it's not allowed to continue if a block
3800                 * group is not RO.
3801                 */
3802                ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3803                if (!ret && sctx->is_dev_replace) {
3804                        ret = finish_extent_writes_for_zoned(root, cache);
3805                        if (ret) {
3806                                btrfs_dec_block_group_ro(cache);
3807                                scrub_pause_off(fs_info);
3808                                btrfs_put_block_group(cache);
3809                                break;
3810                        }
3811                }
3812
3813                if (ret == 0) {
3814                        ro_set = 1;
3815                } else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3816                        /*
3817                         * btrfs_inc_block_group_ro return -ENOSPC when it
3818                         * failed in creating new chunk for metadata.
3819                         * It is not a problem for scrub, because
3820                         * metadata are always cowed, and our scrub paused
3821                         * commit_transactions.
3822                         */
3823                        ro_set = 0;
3824                } else if (ret == -ETXTBSY) {
3825                        btrfs_warn(fs_info,
3826                   "skipping scrub of block group %llu due to active swapfile",
3827                                   cache->start);
3828                        scrub_pause_off(fs_info);
3829                        ret = 0;
3830                        goto skip_unfreeze;
3831                } else {
3832                        btrfs_warn(fs_info,
3833                                   "failed setting block group ro: %d", ret);
3834                        btrfs_unfreeze_block_group(cache);
3835                        btrfs_put_block_group(cache);
3836                        scrub_pause_off(fs_info);
3837                        break;
3838                }
3839
3840                /*
3841                 * Now the target block is marked RO, wait for nocow writes to
3842                 * finish before dev-replace.
3843                 * COW is fine, as COW never overwrites extents in commit tree.
3844                 */
3845                if (sctx->is_dev_replace) {
3846                        btrfs_wait_nocow_writers(cache);
3847                        btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
3848                                        cache->length);
3849                }
3850
3851                scrub_pause_off(fs_info);
3852                down_write(&dev_replace->rwsem);
3853                dev_replace->cursor_right = found_key.offset + length;
3854                dev_replace->cursor_left = found_key.offset;
3855                dev_replace->item_needs_writeback = 1;
3856                up_write(&dev_replace->rwsem);
3857
3858                ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3859                                  found_key.offset, cache);
3860
3861                /*
3862                 * flush, submit all pending read and write bios, afterwards
3863                 * wait for them.
3864                 * Note that in the dev replace case, a read request causes
3865                 * write requests that are submitted in the read completion
3866                 * worker. Therefore in the current situation, it is required
3867                 * that all write requests are flushed, so that all read and
3868                 * write requests are really completed when bios_in_flight
3869                 * changes to 0.
3870                 */
3871                sctx->flush_all_writes = true;
3872                scrub_submit(sctx);
3873                mutex_lock(&sctx->wr_lock);
3874                scrub_wr_submit(sctx);
3875                mutex_unlock(&sctx->wr_lock);
3876
3877                wait_event(sctx->list_wait,
3878                           atomic_read(&sctx->bios_in_flight) == 0);
3879
3880                scrub_pause_on(fs_info);
3881
3882                /*
3883                 * must be called before we decrease @scrub_paused.
3884                 * make sure we don't block transaction commit while
3885                 * we are waiting pending workers finished.
3886                 */
3887                wait_event(sctx->list_wait,
3888                           atomic_read(&sctx->workers_pending) == 0);
3889                sctx->flush_all_writes = false;
3890
3891                scrub_pause_off(fs_info);
3892
3893                if (sctx->is_dev_replace &&
3894                    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
3895                                                      cache, found_key.offset))
3896                        ro_set = 0;
3897
3898                down_write(&dev_replace->rwsem);
3899                dev_replace->cursor_left = dev_replace->cursor_right;
3900                dev_replace->item_needs_writeback = 1;
3901                up_write(&dev_replace->rwsem);
3902
3903                if (ro_set)
3904                        btrfs_dec_block_group_ro(cache);
3905
3906                /*
3907                 * We might have prevented the cleaner kthread from deleting
3908                 * this block group if it was already unused because we raced
3909                 * and set it to RO mode first. So add it back to the unused
3910                 * list, otherwise it might not ever be deleted unless a manual
3911                 * balance is triggered or it becomes used and unused again.
3912                 */
3913                spin_lock(&cache->lock);
3914                if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3915                    cache->used == 0) {
3916                        spin_unlock(&cache->lock);
3917                        if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
3918                                btrfs_discard_queue_work(&fs_info->discard_ctl,
3919                                                         cache);
3920                        else
3921                                btrfs_mark_bg_unused(cache);
3922                } else {
3923                        spin_unlock(&cache->lock);
3924                }
3925skip_unfreeze:
3926                btrfs_unfreeze_block_group(cache);
3927                btrfs_put_block_group(cache);
3928                if (ret)
3929                        break;
3930                if (sctx->is_dev_replace &&
3931                    atomic64_read(&dev_replace->num_write_errors) > 0) {
3932                        ret = -EIO;
3933                        break;
3934                }
3935                if (sctx->stat.malloc_errors > 0) {
3936                        ret = -ENOMEM;
3937                        break;
3938                }
3939skip:
3940                key.offset = found_key.offset + length;
3941                btrfs_release_path(path);
3942        }
3943
3944        btrfs_free_path(path);
3945
3946        return ret;
3947}
3948
3949static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3950                                           struct btrfs_device *scrub_dev)
3951{
3952        int     i;
3953        u64     bytenr;
3954        u64     gen;
3955        int     ret;
3956        struct btrfs_fs_info *fs_info = sctx->fs_info;
3957
3958        if (BTRFS_FS_ERROR(fs_info))
3959                return -EROFS;
3960
3961        /* Seed devices of a new filesystem has their own generation. */
3962        if (scrub_dev->fs_devices != fs_info->fs_devices)
3963                gen = scrub_dev->generation;
3964        else
3965                gen = fs_info->last_trans_committed;
3966
3967        for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3968                bytenr = btrfs_sb_offset(i);
3969                if (bytenr + BTRFS_SUPER_INFO_SIZE >
3970                    scrub_dev->commit_total_bytes)
3971                        break;
3972                if (!btrfs_check_super_location(scrub_dev, bytenr))
3973                        continue;
3974
3975                ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3976                                  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3977                                  NULL, bytenr);
3978                if (ret)
3979                        return ret;
3980        }
3981        wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3982
3983        return 0;
3984}
3985
3986static void scrub_workers_put(struct btrfs_fs_info *fs_info)
3987{
3988        if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
3989                                        &fs_info->scrub_lock)) {
3990                struct btrfs_workqueue *scrub_workers = NULL;
3991                struct btrfs_workqueue *scrub_wr_comp = NULL;
3992                struct btrfs_workqueue *scrub_parity = NULL;
3993
3994                scrub_workers = fs_info->scrub_workers;
3995                scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3996                scrub_parity = fs_info->scrub_parity_workers;
3997
3998                fs_info->scrub_workers = NULL;
3999                fs_info->scrub_wr_completion_workers = NULL;
4000                fs_info->scrub_parity_workers = NULL;
4001                mutex_unlock(&fs_info->scrub_lock);
4002
4003                btrfs_destroy_workqueue(scrub_workers);
4004                btrfs_destroy_workqueue(scrub_wr_comp);
4005                btrfs_destroy_workqueue(scrub_parity);
4006        }
4007}
4008
4009/*
4010 * get a reference count on fs_info->scrub_workers. start worker if necessary
4011 */
4012static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4013                                                int is_dev_replace)
4014{
4015        struct btrfs_workqueue *scrub_workers = NULL;
4016        struct btrfs_workqueue *scrub_wr_comp = NULL;
4017        struct btrfs_workqueue *scrub_parity = NULL;
4018        unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4019        int max_active = fs_info->thread_pool_size;
4020        int ret = -ENOMEM;
4021
4022        if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
4023                return 0;
4024
4025        scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags,
4026                                              is_dev_replace ? 1 : max_active, 4);
4027        if (!scrub_workers)
4028                goto fail_scrub_workers;
4029
4030        scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4031                                              max_active, 2);
4032        if (!scrub_wr_comp)
4033                goto fail_scrub_wr_completion_workers;
4034
4035        scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4036                                             max_active, 2);
4037        if (!scrub_parity)
4038                goto fail_scrub_parity_workers;
4039
4040        mutex_lock(&fs_info->scrub_lock);
4041        if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
4042                ASSERT(fs_info->scrub_workers == NULL &&
4043                       fs_info->scrub_wr_completion_workers == NULL &&
4044                       fs_info->scrub_parity_workers == NULL);
4045                fs_info->scrub_workers = scrub_workers;
4046                fs_info->scrub_wr_completion_workers = scrub_wr_comp;
4047                fs_info->scrub_parity_workers = scrub_parity;
4048                refcount_set(&fs_info->scrub_workers_refcnt, 1);
4049                mutex_unlock(&fs_info->scrub_lock);
4050                return 0;
4051        }
4052        /* Other thread raced in and created the workers for us */
4053        refcount_inc(&fs_info->scrub_workers_refcnt);
4054        mutex_unlock(&fs_info->scrub_lock);
4055
4056        ret = 0;
4057        btrfs_destroy_workqueue(scrub_parity);
4058fail_scrub_parity_workers:
4059        btrfs_destroy_workqueue(scrub_wr_comp);
4060fail_scrub_wr_completion_workers:
4061        btrfs_destroy_workqueue(scrub_workers);
4062fail_scrub_workers:
4063        return ret;
4064}
4065
4066int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4067                    u64 end, struct btrfs_scrub_progress *progress,
4068                    int readonly, int is_dev_replace)
4069{
4070        struct btrfs_dev_lookup_args args = { .devid = devid };
4071        struct scrub_ctx *sctx;
4072        int ret;
4073        struct btrfs_device *dev;
4074        unsigned int nofs_flag;
4075
4076        if (btrfs_fs_closing(fs_info))
4077                return -EAGAIN;
4078
4079        if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4080                /*
4081                 * in this case scrub is unable to calculate the checksum
4082                 * the way scrub is implemented. Do not handle this
4083                 * situation at all because it won't ever happen.
4084                 */
4085                btrfs_err(fs_info,
4086                           "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4087                       fs_info->nodesize,
4088                       BTRFS_STRIPE_LEN);
4089                return -EINVAL;
4090        }
4091
4092        if (fs_info->nodesize >
4093            PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4094            fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4095                /*
4096                 * would exhaust the array bounds of pagev member in
4097                 * struct scrub_block
4098                 */
4099                btrfs_err(fs_info,
4100                          "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4101                       fs_info->nodesize,
4102                       SCRUB_MAX_PAGES_PER_BLOCK,
4103                       fs_info->sectorsize,
4104                       SCRUB_MAX_PAGES_PER_BLOCK);
4105                return -EINVAL;
4106        }
4107
4108        /* Allocate outside of device_list_mutex */
4109        sctx = scrub_setup_ctx(fs_info, is_dev_replace);
4110        if (IS_ERR(sctx))
4111                return PTR_ERR(sctx);
4112
4113        ret = scrub_workers_get(fs_info, is_dev_replace);
4114        if (ret)
4115                goto out_free_ctx;
4116
4117        mutex_lock(&fs_info->fs_devices->device_list_mutex);
4118        dev = btrfs_find_device(fs_info->fs_devices, &args);
4119        if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4120                     !is_dev_replace)) {
4121                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4122                ret = -ENODEV;
4123                goto out;
4124        }
4125
4126        if (!is_dev_replace && !readonly &&
4127            !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4128                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4129                btrfs_err_in_rcu(fs_info,
4130                        "scrub on devid %llu: filesystem on %s is not writable",
4131                                 devid, rcu_str_deref(dev->name));
4132                ret = -EROFS;
4133                goto out;
4134        }
4135
4136        mutex_lock(&fs_info->scrub_lock);
4137        if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4138            test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4139                mutex_unlock(&fs_info->scrub_lock);
4140                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4141                ret = -EIO;
4142                goto out;
4143        }
4144
4145        down_read(&fs_info->dev_replace.rwsem);
4146        if (dev->scrub_ctx ||
4147            (!is_dev_replace &&
4148             btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4149                up_read(&fs_info->dev_replace.rwsem);
4150                mutex_unlock(&fs_info->scrub_lock);
4151                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4152                ret = -EINPROGRESS;
4153                goto out;
4154        }
4155        up_read(&fs_info->dev_replace.rwsem);
4156
4157        sctx->readonly = readonly;
4158        dev->scrub_ctx = sctx;
4159        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4160
4161        /*
4162         * checking @scrub_pause_req here, we can avoid
4163         * race between committing transaction and scrubbing.
4164         */
4165        __scrub_blocked_if_needed(fs_info);
4166        atomic_inc(&fs_info->scrubs_running);
4167        mutex_unlock(&fs_info->scrub_lock);
4168
4169        /*
4170         * In order to avoid deadlock with reclaim when there is a transaction
4171         * trying to pause scrub, make sure we use GFP_NOFS for all the
4172         * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
4173         * invoked by our callees. The pausing request is done when the
4174         * transaction commit starts, and it blocks the transaction until scrub
4175         * is paused (done at specific points at scrub_stripe() or right above
4176         * before incrementing fs_info->scrubs_running).
4177         */
4178        nofs_flag = memalloc_nofs_save();
4179        if (!is_dev_replace) {
4180                btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4181                /*
4182                 * by holding device list mutex, we can
4183                 * kick off writing super in log tree sync.
4184                 */
4185                mutex_lock(&fs_info->fs_devices->device_list_mutex);
4186                ret = scrub_supers(sctx, dev);
4187                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4188        }
4189
4190        if (!ret)
4191                ret = scrub_enumerate_chunks(sctx, dev, start, end);
4192        memalloc_nofs_restore(nofs_flag);
4193
4194        wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4195        atomic_dec(&fs_info->scrubs_running);
4196        wake_up(&fs_info->scrub_pause_wait);
4197
4198        wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4199
4200        if (progress)
4201                memcpy(progress, &sctx->stat, sizeof(*progress));
4202
4203        if (!is_dev_replace)
4204                btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
4205                        ret ? "not finished" : "finished", devid, ret);
4206
4207        mutex_lock(&fs_info->scrub_lock);
4208        dev->scrub_ctx = NULL;
4209        mutex_unlock(&fs_info->scrub_lock);
4210
4211        scrub_workers_put(fs_info);
4212        scrub_put_ctx(sctx);
4213
4214        return ret;
4215out:
4216        scrub_workers_put(fs_info);
4217out_free_ctx:
4218        scrub_free_ctx(sctx);
4219
4220        return ret;
4221}
4222
4223void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4224{
4225        mutex_lock(&fs_info->scrub_lock);
4226        atomic_inc(&fs_info->scrub_pause_req);
4227        while (atomic_read(&fs_info->scrubs_paused) !=
4228               atomic_read(&fs_info->scrubs_running)) {
4229                mutex_unlock(&fs_info->scrub_lock);
4230                wait_event(fs_info->scrub_pause_wait,
4231                           atomic_read(&fs_info->scrubs_paused) ==
4232                           atomic_read(&fs_info->scrubs_running));
4233                mutex_lock(&fs_info->scrub_lock);
4234        }
4235        mutex_unlock(&fs_info->scrub_lock);
4236}
4237
4238void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4239{
4240        atomic_dec(&fs_info->scrub_pause_req);
4241        wake_up(&fs_info->scrub_pause_wait);
4242}
4243
4244int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4245{
4246        mutex_lock(&fs_info->scrub_lock);
4247        if (!atomic_read(&fs_info->scrubs_running)) {
4248                mutex_unlock(&fs_info->scrub_lock);
4249                return -ENOTCONN;
4250        }
4251
4252        atomic_inc(&fs_info->scrub_cancel_req);
4253        while (atomic_read(&fs_info->scrubs_running)) {
4254                mutex_unlock(&fs_info->scrub_lock);
4255                wait_event(fs_info->scrub_pause_wait,
4256                           atomic_read(&fs_info->scrubs_running) == 0);
4257                mutex_lock(&fs_info->scrub_lock);
4258        }
4259        atomic_dec(&fs_info->scrub_cancel_req);
4260        mutex_unlock(&fs_info->scrub_lock);
4261
4262        return 0;
4263}
4264
4265int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4266{
4267        struct btrfs_fs_info *fs_info = dev->fs_info;
4268        struct scrub_ctx *sctx;
4269
4270        mutex_lock(&fs_info->scrub_lock);
4271        sctx = dev->scrub_ctx;
4272        if (!sctx) {
4273                mutex_unlock(&fs_info->scrub_lock);
4274                return -ENOTCONN;
4275        }
4276        atomic_inc(&sctx->cancel_req);
4277        while (dev->scrub_ctx) {
4278                mutex_unlock(&fs_info->scrub_lock);
4279                wait_event(fs_info->scrub_pause_wait,
4280                           dev->scrub_ctx == NULL);
4281                mutex_lock(&fs_info->scrub_lock);
4282        }
4283        mutex_unlock(&fs_info->scrub_lock);
4284
4285        return 0;
4286}
4287
4288int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4289                         struct btrfs_scrub_progress *progress)
4290{
4291        struct btrfs_dev_lookup_args args = { .devid = devid };
4292        struct btrfs_device *dev;
4293        struct scrub_ctx *sctx = NULL;
4294
4295        mutex_lock(&fs_info->fs_devices->device_list_mutex);
4296        dev = btrfs_find_device(fs_info->fs_devices, &args);
4297        if (dev)
4298                sctx = dev->scrub_ctx;
4299        if (sctx)
4300                memcpy(progress, &sctx->stat, sizeof(*progress));
4301        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4302
4303        return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4304}
4305
4306static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4307                               u64 extent_logical, u32 extent_len,
4308                               u64 *extent_physical,
4309                               struct btrfs_device **extent_dev,
4310                               int *extent_mirror_num)
4311{
4312        u64 mapped_length;
4313        struct btrfs_io_context *bioc = NULL;
4314        int ret;
4315
4316        mapped_length = extent_len;
4317        ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4318                              &mapped_length, &bioc, 0);
4319        if (ret || !bioc || mapped_length < extent_len ||
4320            !bioc->stripes[0].dev->bdev) {
4321                btrfs_put_bioc(bioc);
4322                return;
4323        }
4324
4325        *extent_physical = bioc->stripes[0].physical;
4326        *extent_mirror_num = bioc->mirror_num;
4327        *extent_dev = bioc->stripes[0].dev;
4328        btrfs_put_bioc(bioc);
4329}
4330