1
2
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/blkdev.h>
6#include <linux/sched/mm.h>
7#include <linux/atomic.h>
8#include "ctree.h"
9#include "volumes.h"
10#include "zoned.h"
11#include "rcu-string.h"
12#include "disk-io.h"
13#include "block-group.h"
14#include "transaction.h"
15#include "dev-replace.h"
16#include "space-info.h"
17
18
19#define BTRFS_REPORT_NR_ZONES 4096
20
21#define WP_MISSING_DEV ((u64)-1)
22
23#define WP_CONVENTIONAL ((u64)-2)
24
25
26
27
28
29
30
31
32#define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL)
33#define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G)
34#define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G)
35
36#define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
37#define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
38
39
40#define BTRFS_NR_SB_LOG_ZONES 2
41
42
43
44
45
46
47
48
49
50#define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5)
51
52
53
54
55
56
57#define BTRFS_MAX_ZONE_SIZE SZ_8G
58
59#define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
60
61static inline bool sb_zone_is_full(const struct blk_zone *zone)
62{
63 return (zone->cond == BLK_ZONE_COND_FULL) ||
64 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
65}
66
67static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
68{
69 struct blk_zone *zones = data;
70
71 memcpy(&zones[idx], zone, sizeof(*zone));
72
73 return 0;
74}
75
76static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
77 u64 *wp_ret)
78{
79 bool empty[BTRFS_NR_SB_LOG_ZONES];
80 bool full[BTRFS_NR_SB_LOG_ZONES];
81 sector_t sector;
82 int i;
83
84 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
85 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
86 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
87 full[i] = sb_zone_is_full(&zones[i]);
88 }
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107 if (empty[0] && empty[1]) {
108
109 *wp_ret = zones[0].start << SECTOR_SHIFT;
110 return -ENOENT;
111 } else if (full[0] && full[1]) {
112
113 struct address_space *mapping = bdev->bd_inode->i_mapping;
114 struct page *page[BTRFS_NR_SB_LOG_ZONES];
115 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
116 int i;
117
118 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
119 u64 bytenr;
120
121 bytenr = ((zones[i].start + zones[i].len)
122 << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE;
123
124 page[i] = read_cache_page_gfp(mapping,
125 bytenr >> PAGE_SHIFT, GFP_NOFS);
126 if (IS_ERR(page[i])) {
127 if (i == 1)
128 btrfs_release_disk_super(super[0]);
129 return PTR_ERR(page[i]);
130 }
131 super[i] = page_address(page[i]);
132 }
133
134 if (super[0]->generation > super[1]->generation)
135 sector = zones[1].start;
136 else
137 sector = zones[0].start;
138
139 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
140 btrfs_release_disk_super(super[i]);
141 } else if (!full[0] && (empty[1] || full[1])) {
142 sector = zones[0].wp;
143 } else if (full[0]) {
144 sector = zones[1].wp;
145 } else {
146 return -EUCLEAN;
147 }
148 *wp_ret = sector << SECTOR_SHIFT;
149 return 0;
150}
151
152
153
154
155static inline u32 sb_zone_number(int shift, int mirror)
156{
157 u64 zone;
158
159 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
160 switch (mirror) {
161 case 0: zone = 0; break;
162 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
163 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
164 }
165
166 ASSERT(zone <= U32_MAX);
167
168 return (u32)zone;
169}
170
171static inline sector_t zone_start_sector(u32 zone_number,
172 struct block_device *bdev)
173{
174 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
175}
176
177static inline u64 zone_start_physical(u32 zone_number,
178 struct btrfs_zoned_device_info *zone_info)
179{
180 return (u64)zone_number << zone_info->zone_size_shift;
181}
182
183
184
185
186
187
188static int emulate_report_zones(struct btrfs_device *device, u64 pos,
189 struct blk_zone *zones, unsigned int nr_zones)
190{
191 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
192 sector_t bdev_size = bdev_nr_sectors(device->bdev);
193 unsigned int i;
194
195 pos >>= SECTOR_SHIFT;
196 for (i = 0; i < nr_zones; i++) {
197 zones[i].start = i * zone_sectors + pos;
198 zones[i].len = zone_sectors;
199 zones[i].capacity = zone_sectors;
200 zones[i].wp = zones[i].start + zone_sectors;
201 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
202 zones[i].cond = BLK_ZONE_COND_NOT_WP;
203
204 if (zones[i].wp >= bdev_size) {
205 i++;
206 break;
207 }
208 }
209
210 return i;
211}
212
213static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
214 struct blk_zone *zones, unsigned int *nr_zones)
215{
216 int ret;
217
218 if (!*nr_zones)
219 return 0;
220
221 if (!bdev_is_zoned(device->bdev)) {
222 ret = emulate_report_zones(device, pos, zones, *nr_zones);
223 *nr_zones = ret;
224 return 0;
225 }
226
227 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
228 copy_zone_info_cb, zones);
229 if (ret < 0) {
230 btrfs_err_in_rcu(device->fs_info,
231 "zoned: failed to read zone %llu on %s (devid %llu)",
232 pos, rcu_str_deref(device->name),
233 device->devid);
234 return ret;
235 }
236 *nr_zones = ret;
237 if (!ret)
238 return -EIO;
239
240 return 0;
241}
242
243
244static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
245{
246 struct btrfs_path *path;
247 struct btrfs_root *root = fs_info->dev_root;
248 struct btrfs_key key;
249 struct extent_buffer *leaf;
250 struct btrfs_dev_extent *dext;
251 int ret = 0;
252
253 key.objectid = 1;
254 key.type = BTRFS_DEV_EXTENT_KEY;
255 key.offset = 0;
256
257 path = btrfs_alloc_path();
258 if (!path)
259 return -ENOMEM;
260
261 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
262 if (ret < 0)
263 goto out;
264
265 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
266 ret = btrfs_next_leaf(root, path);
267 if (ret < 0)
268 goto out;
269
270 if (ret > 0) {
271 ret = -EUCLEAN;
272 goto out;
273 }
274 }
275
276 leaf = path->nodes[0];
277 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
278 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
279 ret = 0;
280
281out:
282 btrfs_free_path(path);
283
284 return ret;
285}
286
287int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
288{
289 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
290 struct btrfs_device *device;
291 int ret = 0;
292
293
294 if (!btrfs_fs_incompat(fs_info, ZONED))
295 return 0;
296
297 mutex_lock(&fs_devices->device_list_mutex);
298 list_for_each_entry(device, &fs_devices->devices, dev_list) {
299
300 if (!device->bdev)
301 continue;
302
303 ret = btrfs_get_dev_zone_info(device);
304 if (ret)
305 break;
306 }
307 mutex_unlock(&fs_devices->device_list_mutex);
308
309 return ret;
310}
311
312int btrfs_get_dev_zone_info(struct btrfs_device *device)
313{
314 struct btrfs_fs_info *fs_info = device->fs_info;
315 struct btrfs_zoned_device_info *zone_info = NULL;
316 struct block_device *bdev = device->bdev;
317 struct request_queue *queue = bdev_get_queue(bdev);
318 unsigned int max_active_zones;
319 unsigned int nactive;
320 sector_t nr_sectors;
321 sector_t sector = 0;
322 struct blk_zone *zones = NULL;
323 unsigned int i, nreported = 0, nr_zones;
324 sector_t zone_sectors;
325 char *model, *emulated;
326 int ret;
327
328
329
330
331
332 if (!btrfs_fs_incompat(fs_info, ZONED))
333 return 0;
334
335 if (device->zone_info)
336 return 0;
337
338 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
339 if (!zone_info)
340 return -ENOMEM;
341
342 if (!bdev_is_zoned(bdev)) {
343 if (!fs_info->zone_size) {
344 ret = calculate_emulated_zone_size(fs_info);
345 if (ret)
346 goto out;
347 }
348
349 ASSERT(fs_info->zone_size);
350 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
351 } else {
352 zone_sectors = bdev_zone_sectors(bdev);
353 }
354
355
356 ASSERT(zone_sectors != 0 && (zone_sectors & (zone_sectors - 1)) == 0);
357 zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
358
359
360 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
361 btrfs_err_in_rcu(fs_info,
362 "zoned: %s: zone size %llu larger than supported maximum %llu",
363 rcu_str_deref(device->name),
364 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
365 ret = -EINVAL;
366 goto out;
367 }
368
369 nr_sectors = bdev_nr_sectors(bdev);
370 zone_info->zone_size_shift = ilog2(zone_info->zone_size);
371 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
372 if (!IS_ALIGNED(nr_sectors, zone_sectors))
373 zone_info->nr_zones++;
374
375 max_active_zones = queue_max_active_zones(queue);
376 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
377 btrfs_err_in_rcu(fs_info,
378"zoned: %s: max active zones %u is too small, need at least %u active zones",
379 rcu_str_deref(device->name), max_active_zones,
380 BTRFS_MIN_ACTIVE_ZONES);
381 ret = -EINVAL;
382 goto out;
383 }
384 zone_info->max_active_zones = max_active_zones;
385
386 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
387 if (!zone_info->seq_zones) {
388 ret = -ENOMEM;
389 goto out;
390 }
391
392 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
393 if (!zone_info->empty_zones) {
394 ret = -ENOMEM;
395 goto out;
396 }
397
398 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
399 if (!zone_info->active_zones) {
400 ret = -ENOMEM;
401 goto out;
402 }
403
404 zones = kcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
405 if (!zones) {
406 ret = -ENOMEM;
407 goto out;
408 }
409
410
411 nactive = 0;
412 while (sector < nr_sectors) {
413 nr_zones = BTRFS_REPORT_NR_ZONES;
414 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
415 &nr_zones);
416 if (ret)
417 goto out;
418
419 for (i = 0; i < nr_zones; i++) {
420 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
421 __set_bit(nreported, zone_info->seq_zones);
422 switch (zones[i].cond) {
423 case BLK_ZONE_COND_EMPTY:
424 __set_bit(nreported, zone_info->empty_zones);
425 break;
426 case BLK_ZONE_COND_IMP_OPEN:
427 case BLK_ZONE_COND_EXP_OPEN:
428 case BLK_ZONE_COND_CLOSED:
429 __set_bit(nreported, zone_info->active_zones);
430 nactive++;
431 break;
432 }
433 nreported++;
434 }
435 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
436 }
437
438 if (nreported != zone_info->nr_zones) {
439 btrfs_err_in_rcu(device->fs_info,
440 "inconsistent number of zones on %s (%u/%u)",
441 rcu_str_deref(device->name), nreported,
442 zone_info->nr_zones);
443 ret = -EIO;
444 goto out;
445 }
446
447 if (max_active_zones) {
448 if (nactive > max_active_zones) {
449 btrfs_err_in_rcu(device->fs_info,
450 "zoned: %u active zones on %s exceeds max_active_zones %u",
451 nactive, rcu_str_deref(device->name),
452 max_active_zones);
453 ret = -EIO;
454 goto out;
455 }
456 atomic_set(&zone_info->active_zones_left,
457 max_active_zones - nactive);
458 }
459
460
461 nr_zones = BTRFS_NR_SB_LOG_ZONES;
462 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
463 u32 sb_zone;
464 u64 sb_wp;
465 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
466
467 sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
468 if (sb_zone + 1 >= zone_info->nr_zones)
469 continue;
470
471 ret = btrfs_get_dev_zones(device,
472 zone_start_physical(sb_zone, zone_info),
473 &zone_info->sb_zones[sb_pos],
474 &nr_zones);
475 if (ret)
476 goto out;
477
478 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
479 btrfs_err_in_rcu(device->fs_info,
480 "zoned: failed to read super block log zone info at devid %llu zone %u",
481 device->devid, sb_zone);
482 ret = -EUCLEAN;
483 goto out;
484 }
485
486
487
488
489
490 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
491 BLK_ZONE_TYPE_CONVENTIONAL)
492 continue;
493
494 ret = sb_write_pointer(device->bdev,
495 &zone_info->sb_zones[sb_pos], &sb_wp);
496 if (ret != -ENOENT && ret) {
497 btrfs_err_in_rcu(device->fs_info,
498 "zoned: super block log zone corrupted devid %llu zone %u",
499 device->devid, sb_zone);
500 ret = -EUCLEAN;
501 goto out;
502 }
503 }
504
505
506 kfree(zones);
507
508 device->zone_info = zone_info;
509
510 switch (bdev_zoned_model(bdev)) {
511 case BLK_ZONED_HM:
512 model = "host-managed zoned";
513 emulated = "";
514 break;
515 case BLK_ZONED_HA:
516 model = "host-aware zoned";
517 emulated = "";
518 break;
519 case BLK_ZONED_NONE:
520 model = "regular";
521 emulated = "emulated ";
522 break;
523 default:
524
525 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
526 bdev_zoned_model(bdev),
527 rcu_str_deref(device->name));
528 ret = -EOPNOTSUPP;
529 goto out_free_zone_info;
530 }
531
532 btrfs_info_in_rcu(fs_info,
533 "%s block device %s, %u %szones of %llu bytes",
534 model, rcu_str_deref(device->name), zone_info->nr_zones,
535 emulated, zone_info->zone_size);
536
537 return 0;
538
539out:
540 kfree(zones);
541out_free_zone_info:
542 bitmap_free(zone_info->active_zones);
543 bitmap_free(zone_info->empty_zones);
544 bitmap_free(zone_info->seq_zones);
545 kfree(zone_info);
546 device->zone_info = NULL;
547
548 return ret;
549}
550
551void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
552{
553 struct btrfs_zoned_device_info *zone_info = device->zone_info;
554
555 if (!zone_info)
556 return;
557
558 bitmap_free(zone_info->active_zones);
559 bitmap_free(zone_info->seq_zones);
560 bitmap_free(zone_info->empty_zones);
561 kfree(zone_info);
562 device->zone_info = NULL;
563}
564
565int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
566 struct blk_zone *zone)
567{
568 unsigned int nr_zones = 1;
569 int ret;
570
571 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
572 if (ret != 0 || !nr_zones)
573 return ret ? ret : -EIO;
574
575 return 0;
576}
577
578int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
579{
580 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
581 struct btrfs_device *device;
582 u64 zoned_devices = 0;
583 u64 nr_devices = 0;
584 u64 zone_size = 0;
585 const bool incompat_zoned = btrfs_fs_incompat(fs_info, ZONED);
586 int ret = 0;
587
588
589 list_for_each_entry(device, &fs_devices->devices, dev_list) {
590 enum blk_zoned_model model;
591
592 if (!device->bdev)
593 continue;
594
595 model = bdev_zoned_model(device->bdev);
596
597
598
599
600
601
602 if (model == BLK_ZONED_HM ||
603 (model == BLK_ZONED_HA && incompat_zoned) ||
604 (model == BLK_ZONED_NONE && incompat_zoned)) {
605 struct btrfs_zoned_device_info *zone_info =
606 device->zone_info;
607
608 zone_info = device->zone_info;
609 zoned_devices++;
610 if (!zone_size) {
611 zone_size = zone_info->zone_size;
612 } else if (zone_info->zone_size != zone_size) {
613 btrfs_err(fs_info,
614 "zoned: unequal block device zone sizes: have %llu found %llu",
615 device->zone_info->zone_size,
616 zone_size);
617 ret = -EINVAL;
618 goto out;
619 }
620 }
621 nr_devices++;
622 }
623
624 if (!zoned_devices && !incompat_zoned)
625 goto out;
626
627 if (!zoned_devices && incompat_zoned) {
628
629 btrfs_err(fs_info,
630 "zoned: no zoned devices found on a zoned filesystem");
631 ret = -EINVAL;
632 goto out;
633 }
634
635 if (zoned_devices && !incompat_zoned) {
636 btrfs_err(fs_info,
637 "zoned: mode not enabled but zoned device found");
638 ret = -EINVAL;
639 goto out;
640 }
641
642 if (zoned_devices != nr_devices) {
643 btrfs_err(fs_info,
644 "zoned: cannot mix zoned and regular devices");
645 ret = -EINVAL;
646 goto out;
647 }
648
649
650
651
652
653
654 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
655 btrfs_err(fs_info,
656 "zoned: zone size %llu not aligned to stripe %u",
657 zone_size, BTRFS_STRIPE_LEN);
658 ret = -EINVAL;
659 goto out;
660 }
661
662 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
663 btrfs_err(fs_info, "zoned: mixed block groups not supported");
664 ret = -EINVAL;
665 goto out;
666 }
667
668 fs_info->zone_size = zone_size;
669 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
670
671
672
673
674
675 ret = btrfs_check_mountopts_zoned(fs_info);
676 if (ret)
677 goto out;
678
679 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
680out:
681 return ret;
682}
683
684int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
685{
686 if (!btrfs_is_zoned(info))
687 return 0;
688
689
690
691
692
693 if (btrfs_test_opt(info, SPACE_CACHE)) {
694 btrfs_err(info, "zoned: space cache v1 is not supported");
695 return -EINVAL;
696 }
697
698 if (btrfs_test_opt(info, NODATACOW)) {
699 btrfs_err(info, "zoned: NODATACOW not supported");
700 return -EINVAL;
701 }
702
703 return 0;
704}
705
706static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
707 int rw, u64 *bytenr_ret)
708{
709 u64 wp;
710 int ret;
711
712 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
713 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
714 return 0;
715 }
716
717 ret = sb_write_pointer(bdev, zones, &wp);
718 if (ret != -ENOENT && ret < 0)
719 return ret;
720
721 if (rw == WRITE) {
722 struct blk_zone *reset = NULL;
723
724 if (wp == zones[0].start << SECTOR_SHIFT)
725 reset = &zones[0];
726 else if (wp == zones[1].start << SECTOR_SHIFT)
727 reset = &zones[1];
728
729 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
730 ASSERT(sb_zone_is_full(reset));
731
732 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
733 reset->start, reset->len,
734 GFP_NOFS);
735 if (ret)
736 return ret;
737
738 reset->cond = BLK_ZONE_COND_EMPTY;
739 reset->wp = reset->start;
740 }
741 } else if (ret != -ENOENT) {
742
743
744
745
746 u64 zone_end = 0;
747
748 if (wp == zones[0].start << SECTOR_SHIFT)
749 zone_end = zones[1].start + zones[1].capacity;
750 else if (wp == zones[1].start << SECTOR_SHIFT)
751 zone_end = zones[0].start + zones[0].capacity;
752 if (zone_end)
753 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
754 BTRFS_SUPER_INFO_SIZE);
755
756 wp -= BTRFS_SUPER_INFO_SIZE;
757 }
758
759 *bytenr_ret = wp;
760 return 0;
761
762}
763
764int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
765 u64 *bytenr_ret)
766{
767 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
768 sector_t zone_sectors;
769 u32 sb_zone;
770 int ret;
771 u8 zone_sectors_shift;
772 sector_t nr_sectors;
773 u32 nr_zones;
774
775 if (!bdev_is_zoned(bdev)) {
776 *bytenr_ret = btrfs_sb_offset(mirror);
777 return 0;
778 }
779
780 ASSERT(rw == READ || rw == WRITE);
781
782 zone_sectors = bdev_zone_sectors(bdev);
783 if (!is_power_of_2(zone_sectors))
784 return -EINVAL;
785 zone_sectors_shift = ilog2(zone_sectors);
786 nr_sectors = bdev_nr_sectors(bdev);
787 nr_zones = nr_sectors >> zone_sectors_shift;
788
789 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
790 if (sb_zone + 1 >= nr_zones)
791 return -ENOENT;
792
793 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
794 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
795 zones);
796 if (ret < 0)
797 return ret;
798 if (ret != BTRFS_NR_SB_LOG_ZONES)
799 return -EIO;
800
801 return sb_log_location(bdev, zones, rw, bytenr_ret);
802}
803
804int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
805 u64 *bytenr_ret)
806{
807 struct btrfs_zoned_device_info *zinfo = device->zone_info;
808 u32 zone_num;
809
810
811
812
813
814
815
816 if (!bdev_is_zoned(device->bdev)) {
817 *bytenr_ret = btrfs_sb_offset(mirror);
818 return 0;
819 }
820
821 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
822 if (zone_num + 1 >= zinfo->nr_zones)
823 return -ENOENT;
824
825 return sb_log_location(device->bdev,
826 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
827 rw, bytenr_ret);
828}
829
830static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
831 int mirror)
832{
833 u32 zone_num;
834
835 if (!zinfo)
836 return false;
837
838 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
839 if (zone_num + 1 >= zinfo->nr_zones)
840 return false;
841
842 if (!test_bit(zone_num, zinfo->seq_zones))
843 return false;
844
845 return true;
846}
847
848int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
849{
850 struct btrfs_zoned_device_info *zinfo = device->zone_info;
851 struct blk_zone *zone;
852 int i;
853
854 if (!is_sb_log_zone(zinfo, mirror))
855 return 0;
856
857 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
858 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
859
860 if (zone->cond == BLK_ZONE_COND_FULL) {
861 zone++;
862 continue;
863 }
864
865 if (zone->cond == BLK_ZONE_COND_EMPTY)
866 zone->cond = BLK_ZONE_COND_IMP_OPEN;
867
868 zone->wp += SUPER_INFO_SECTORS;
869
870 if (sb_zone_is_full(zone)) {
871
872
873
874
875
876
877
878
879 if (zone->wp != zone->start + zone->capacity) {
880 int ret;
881
882 ret = blkdev_zone_mgmt(device->bdev,
883 REQ_OP_ZONE_FINISH, zone->start,
884 zone->len, GFP_NOFS);
885 if (ret)
886 return ret;
887 }
888
889 zone->wp = zone->start + zone->len;
890 zone->cond = BLK_ZONE_COND_FULL;
891 }
892 return 0;
893 }
894
895
896 ASSERT(0);
897 return -EIO;
898}
899
900int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
901{
902 sector_t zone_sectors;
903 sector_t nr_sectors;
904 u8 zone_sectors_shift;
905 u32 sb_zone;
906 u32 nr_zones;
907
908 zone_sectors = bdev_zone_sectors(bdev);
909 zone_sectors_shift = ilog2(zone_sectors);
910 nr_sectors = bdev_nr_sectors(bdev);
911 nr_zones = nr_sectors >> zone_sectors_shift;
912
913 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
914 if (sb_zone + 1 >= nr_zones)
915 return -ENOENT;
916
917 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
918 zone_start_sector(sb_zone, bdev),
919 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
920}
921
922
923
924
925
926
927
928
929
930
931
932
933u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
934 u64 hole_end, u64 num_bytes)
935{
936 struct btrfs_zoned_device_info *zinfo = device->zone_info;
937 const u8 shift = zinfo->zone_size_shift;
938 u64 nzones = num_bytes >> shift;
939 u64 pos = hole_start;
940 u64 begin, end;
941 bool have_sb;
942 int i;
943
944 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
945 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
946
947 while (pos < hole_end) {
948 begin = pos >> shift;
949 end = begin + nzones;
950
951 if (end > zinfo->nr_zones)
952 return hole_end;
953
954
955 if (btrfs_dev_is_sequential(device, pos) &&
956 find_next_zero_bit(zinfo->empty_zones, end, begin) != end) {
957 pos += zinfo->zone_size;
958 continue;
959 }
960
961 have_sb = false;
962 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
963 u32 sb_zone;
964 u64 sb_pos;
965
966 sb_zone = sb_zone_number(shift, i);
967 if (!(end <= sb_zone ||
968 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
969 have_sb = true;
970 pos = zone_start_physical(
971 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
972 break;
973 }
974
975
976 sb_pos = btrfs_sb_offset(i);
977 if (!(pos + num_bytes <= sb_pos ||
978 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
979 have_sb = true;
980 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
981 zinfo->zone_size);
982 break;
983 }
984 }
985 if (!have_sb)
986 break;
987 }
988
989 return pos;
990}
991
992static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
993{
994 struct btrfs_zoned_device_info *zone_info = device->zone_info;
995 unsigned int zno = (pos >> zone_info->zone_size_shift);
996
997
998 if (zone_info->max_active_zones == 0)
999 return true;
1000
1001 if (!test_bit(zno, zone_info->active_zones)) {
1002
1003 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1004 return false;
1005 if (test_and_set_bit(zno, zone_info->active_zones)) {
1006
1007 atomic_inc(&zone_info->active_zones_left);
1008 }
1009 }
1010
1011 return true;
1012}
1013
1014static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1015{
1016 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1017 unsigned int zno = (pos >> zone_info->zone_size_shift);
1018
1019
1020 if (zone_info->max_active_zones == 0)
1021 return;
1022
1023 if (test_and_clear_bit(zno, zone_info->active_zones))
1024 atomic_inc(&zone_info->active_zones_left);
1025}
1026
1027int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1028 u64 length, u64 *bytes)
1029{
1030 int ret;
1031
1032 *bytes = 0;
1033 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1034 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1035 GFP_NOFS);
1036 if (ret)
1037 return ret;
1038
1039 *bytes = length;
1040 while (length) {
1041 btrfs_dev_set_zone_empty(device, physical);
1042 btrfs_dev_clear_active_zone(device, physical);
1043 physical += device->zone_info->zone_size;
1044 length -= device->zone_info->zone_size;
1045 }
1046
1047 return 0;
1048}
1049
1050int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1051{
1052 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1053 const u8 shift = zinfo->zone_size_shift;
1054 unsigned long begin = start >> shift;
1055 unsigned long end = (start + size) >> shift;
1056 u64 pos;
1057 int ret;
1058
1059 ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1060 ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1061
1062 if (end > zinfo->nr_zones)
1063 return -ERANGE;
1064
1065
1066 if (find_next_bit(zinfo->seq_zones, begin, end) == end)
1067 return 0;
1068
1069
1070 if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end &&
1071 find_next_zero_bit(zinfo->empty_zones, begin, end) == end)
1072 return 0;
1073
1074 for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1075 u64 reset_bytes;
1076
1077 if (!btrfs_dev_is_sequential(device, pos) ||
1078 btrfs_dev_is_empty_zone(device, pos))
1079 continue;
1080
1081
1082 btrfs_warn_in_rcu(
1083 device->fs_info,
1084 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
1085 rcu_str_deref(device->name), device->devid, pos >> shift);
1086 WARN_ON_ONCE(1);
1087
1088 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1089 &reset_bytes);
1090 if (ret)
1091 return ret;
1092 }
1093
1094 return 0;
1095}
1096
1097
1098
1099
1100
1101
1102
1103static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1104 u64 *offset_ret)
1105{
1106 struct btrfs_fs_info *fs_info = cache->fs_info;
1107 struct btrfs_root *root = fs_info->extent_root;
1108 struct btrfs_path *path;
1109 struct btrfs_key key;
1110 struct btrfs_key found_key;
1111 int ret;
1112 u64 length;
1113
1114 path = btrfs_alloc_path();
1115 if (!path)
1116 return -ENOMEM;
1117
1118 key.objectid = cache->start + cache->length;
1119 key.type = 0;
1120 key.offset = 0;
1121
1122 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1123
1124 if (!ret)
1125 ret = -EUCLEAN;
1126 if (ret < 0)
1127 goto out;
1128
1129 ret = btrfs_previous_extent_item(root, path, cache->start);
1130 if (ret) {
1131 if (ret == 1) {
1132 ret = 0;
1133 *offset_ret = 0;
1134 }
1135 goto out;
1136 }
1137
1138 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1139
1140 if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1141 length = found_key.offset;
1142 else
1143 length = fs_info->nodesize;
1144
1145 if (!(found_key.objectid >= cache->start &&
1146 found_key.objectid + length <= cache->start + cache->length)) {
1147 ret = -EUCLEAN;
1148 goto out;
1149 }
1150 *offset_ret = found_key.objectid + length - cache->start;
1151 ret = 0;
1152
1153out:
1154 btrfs_free_path(path);
1155 return ret;
1156}
1157
1158int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1159{
1160 struct btrfs_fs_info *fs_info = cache->fs_info;
1161 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1162 struct extent_map *em;
1163 struct map_lookup *map;
1164 struct btrfs_device *device;
1165 u64 logical = cache->start;
1166 u64 length = cache->length;
1167 u64 physical = 0;
1168 int ret;
1169 int i;
1170 unsigned int nofs_flag;
1171 u64 *alloc_offsets = NULL;
1172 u64 *caps = NULL;
1173 unsigned long *active = NULL;
1174 u64 last_alloc = 0;
1175 u32 num_sequential = 0, num_conventional = 0;
1176
1177 if (!btrfs_is_zoned(fs_info))
1178 return 0;
1179
1180
1181 if (!IS_ALIGNED(length, fs_info->zone_size)) {
1182 btrfs_err(fs_info,
1183 "zoned: block group %llu len %llu unaligned to zone size %llu",
1184 logical, length, fs_info->zone_size);
1185 return -EIO;
1186 }
1187
1188
1189 read_lock(&em_tree->lock);
1190 em = lookup_extent_mapping(em_tree, logical, length);
1191 read_unlock(&em_tree->lock);
1192
1193 if (!em)
1194 return -EINVAL;
1195
1196 map = em->map_lookup;
1197
1198 cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
1199 if (!cache->physical_map) {
1200 ret = -ENOMEM;
1201 goto out;
1202 }
1203
1204 alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1205 if (!alloc_offsets) {
1206 ret = -ENOMEM;
1207 goto out;
1208 }
1209
1210 caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
1211 if (!caps) {
1212 ret = -ENOMEM;
1213 goto out;
1214 }
1215
1216 active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1217 if (!active) {
1218 ret = -ENOMEM;
1219 goto out;
1220 }
1221
1222 for (i = 0; i < map->num_stripes; i++) {
1223 bool is_sequential;
1224 struct blk_zone zone;
1225 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1226 int dev_replace_is_ongoing = 0;
1227
1228 device = map->stripes[i].dev;
1229 physical = map->stripes[i].physical;
1230
1231 if (device->bdev == NULL) {
1232 alloc_offsets[i] = WP_MISSING_DEV;
1233 continue;
1234 }
1235
1236 is_sequential = btrfs_dev_is_sequential(device, physical);
1237 if (is_sequential)
1238 num_sequential++;
1239 else
1240 num_conventional++;
1241
1242 if (!is_sequential) {
1243 alloc_offsets[i] = WP_CONVENTIONAL;
1244 continue;
1245 }
1246
1247
1248
1249
1250
1251 btrfs_dev_clear_zone_empty(device, physical);
1252
1253 down_read(&dev_replace->rwsem);
1254 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1255 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1256 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical);
1257 up_read(&dev_replace->rwsem);
1258
1259
1260
1261
1262
1263 WARN_ON(!IS_ALIGNED(physical, fs_info->zone_size));
1264 nofs_flag = memalloc_nofs_save();
1265 ret = btrfs_get_dev_zone(device, physical, &zone);
1266 memalloc_nofs_restore(nofs_flag);
1267 if (ret == -EIO || ret == -EOPNOTSUPP) {
1268 ret = 0;
1269 alloc_offsets[i] = WP_MISSING_DEV;
1270 continue;
1271 } else if (ret) {
1272 goto out;
1273 }
1274
1275 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1276 btrfs_err_in_rcu(fs_info,
1277 "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1278 zone.start << SECTOR_SHIFT,
1279 rcu_str_deref(device->name), device->devid);
1280 ret = -EIO;
1281 goto out;
1282 }
1283
1284 caps[i] = (zone.capacity << SECTOR_SHIFT);
1285
1286 switch (zone.cond) {
1287 case BLK_ZONE_COND_OFFLINE:
1288 case BLK_ZONE_COND_READONLY:
1289 btrfs_err(fs_info,
1290 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
1291 physical >> device->zone_info->zone_size_shift,
1292 rcu_str_deref(device->name), device->devid);
1293 alloc_offsets[i] = WP_MISSING_DEV;
1294 break;
1295 case BLK_ZONE_COND_EMPTY:
1296 alloc_offsets[i] = 0;
1297 break;
1298 case BLK_ZONE_COND_FULL:
1299 alloc_offsets[i] = caps[i];
1300 break;
1301 default:
1302
1303 alloc_offsets[i] =
1304 ((zone.wp - zone.start) << SECTOR_SHIFT);
1305 __set_bit(i, active);
1306 break;
1307 }
1308
1309
1310
1311
1312
1313 if (!device->zone_info->max_active_zones)
1314 __set_bit(i, active);
1315 }
1316
1317 if (num_sequential > 0)
1318 cache->seq_zone = true;
1319
1320 if (num_conventional > 0) {
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334 cache->zone_capacity = cache->length;
1335 if (new) {
1336 cache->alloc_offset = 0;
1337 goto out;
1338 }
1339 ret = calculate_alloc_pointer(cache, &last_alloc);
1340 if (ret || map->num_stripes == num_conventional) {
1341 if (!ret)
1342 cache->alloc_offset = last_alloc;
1343 else
1344 btrfs_err(fs_info,
1345 "zoned: failed to determine allocation offset of bg %llu",
1346 cache->start);
1347 goto out;
1348 }
1349 }
1350
1351 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1352 case 0:
1353 if (alloc_offsets[0] == WP_MISSING_DEV) {
1354 btrfs_err(fs_info,
1355 "zoned: cannot recover write pointer for zone %llu",
1356 physical);
1357 ret = -EIO;
1358 goto out;
1359 }
1360 cache->alloc_offset = alloc_offsets[0];
1361 cache->zone_capacity = caps[0];
1362 cache->zone_is_active = test_bit(0, active);
1363 break;
1364 case BTRFS_BLOCK_GROUP_DUP:
1365 case BTRFS_BLOCK_GROUP_RAID1:
1366 case BTRFS_BLOCK_GROUP_RAID0:
1367 case BTRFS_BLOCK_GROUP_RAID10:
1368 case BTRFS_BLOCK_GROUP_RAID5:
1369 case BTRFS_BLOCK_GROUP_RAID6:
1370
1371 default:
1372 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1373 btrfs_bg_type_to_raid_name(map->type));
1374 ret = -EINVAL;
1375 goto out;
1376 }
1377
1378 if (cache->zone_is_active) {
1379 btrfs_get_block_group(cache);
1380 spin_lock(&fs_info->zone_active_bgs_lock);
1381 list_add_tail(&cache->active_bg_list, &fs_info->zone_active_bgs);
1382 spin_unlock(&fs_info->zone_active_bgs_lock);
1383 }
1384
1385out:
1386 if (cache->alloc_offset > fs_info->zone_size) {
1387 btrfs_err(fs_info,
1388 "zoned: invalid write pointer %llu in block group %llu",
1389 cache->alloc_offset, cache->start);
1390 ret = -EIO;
1391 }
1392
1393 if (cache->alloc_offset > cache->zone_capacity) {
1394 btrfs_err(fs_info,
1395"zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1396 cache->alloc_offset, cache->zone_capacity,
1397 cache->start);
1398 ret = -EIO;
1399 }
1400
1401
1402 if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1403 btrfs_err(fs_info,
1404 "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1405 logical, last_alloc, cache->alloc_offset);
1406 ret = -EIO;
1407 }
1408
1409 if (!ret)
1410 cache->meta_write_pointer = cache->alloc_offset + cache->start;
1411
1412 if (ret) {
1413 kfree(cache->physical_map);
1414 cache->physical_map = NULL;
1415 }
1416 bitmap_free(active);
1417 kfree(caps);
1418 kfree(alloc_offsets);
1419 free_extent_map(em);
1420
1421 return ret;
1422}
1423
1424void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1425{
1426 u64 unusable, free;
1427
1428 if (!btrfs_is_zoned(cache->fs_info))
1429 return;
1430
1431 WARN_ON(cache->bytes_super != 0);
1432 unusable = (cache->alloc_offset - cache->used) +
1433 (cache->length - cache->zone_capacity);
1434 free = cache->zone_capacity - cache->alloc_offset;
1435
1436
1437 cache->last_byte_to_unpin = (u64)-1;
1438 cache->cached = BTRFS_CACHE_FINISHED;
1439 cache->free_space_ctl->free_space = free;
1440 cache->zone_unusable = unusable;
1441}
1442
1443void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1444 struct extent_buffer *eb)
1445{
1446 struct btrfs_fs_info *fs_info = eb->fs_info;
1447
1448 if (!btrfs_is_zoned(fs_info) ||
1449 btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) ||
1450 !list_empty(&eb->release_list))
1451 return;
1452
1453 set_extent_buffer_dirty(eb);
1454 set_extent_bits_nowait(&trans->dirty_pages, eb->start,
1455 eb->start + eb->len - 1, EXTENT_DIRTY);
1456 memzero_extent_buffer(eb, 0, eb->len);
1457 set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1458
1459 spin_lock(&trans->releasing_ebs_lock);
1460 list_add_tail(&eb->release_list, &trans->releasing_ebs);
1461 spin_unlock(&trans->releasing_ebs_lock);
1462 atomic_inc(&eb->refs);
1463}
1464
1465void btrfs_free_redirty_list(struct btrfs_transaction *trans)
1466{
1467 spin_lock(&trans->releasing_ebs_lock);
1468 while (!list_empty(&trans->releasing_ebs)) {
1469 struct extent_buffer *eb;
1470
1471 eb = list_first_entry(&trans->releasing_ebs,
1472 struct extent_buffer, release_list);
1473 list_del_init(&eb->release_list);
1474 free_extent_buffer(eb);
1475 }
1476 spin_unlock(&trans->releasing_ebs_lock);
1477}
1478
1479bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start)
1480{
1481 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1482 struct btrfs_block_group *cache;
1483 bool ret = false;
1484
1485 if (!btrfs_is_zoned(fs_info))
1486 return false;
1487
1488 if (!is_data_inode(&inode->vfs_inode))
1489 return false;
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499 if (btrfs_is_data_reloc_root(inode->root))
1500 return false;
1501
1502 cache = btrfs_lookup_block_group(fs_info, start);
1503 ASSERT(cache);
1504 if (!cache)
1505 return false;
1506
1507 ret = cache->seq_zone;
1508 btrfs_put_block_group(cache);
1509
1510 return ret;
1511}
1512
1513void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset,
1514 struct bio *bio)
1515{
1516 struct btrfs_ordered_extent *ordered;
1517 const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
1518
1519 if (bio_op(bio) != REQ_OP_ZONE_APPEND)
1520 return;
1521
1522 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset);
1523 if (WARN_ON(!ordered))
1524 return;
1525
1526 ordered->physical = physical;
1527 ordered->bdev = bio->bi_bdev;
1528
1529 btrfs_put_ordered_extent(ordered);
1530}
1531
1532void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered)
1533{
1534 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1535 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1536 struct extent_map_tree *em_tree;
1537 struct extent_map *em;
1538 struct btrfs_ordered_sum *sum;
1539 u64 orig_logical = ordered->disk_bytenr;
1540 u64 *logical = NULL;
1541 int nr, stripe_len;
1542
1543
1544 ASSERT(!bdev_is_partition(ordered->bdev));
1545 if (WARN_ON(!ordered->bdev))
1546 return;
1547
1548 if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev,
1549 ordered->physical, &logical, &nr,
1550 &stripe_len)))
1551 goto out;
1552
1553 WARN_ON(nr != 1);
1554
1555 if (orig_logical == *logical)
1556 goto out;
1557
1558 ordered->disk_bytenr = *logical;
1559
1560 em_tree = &inode->extent_tree;
1561 write_lock(&em_tree->lock);
1562 em = search_extent_mapping(em_tree, ordered->file_offset,
1563 ordered->num_bytes);
1564 em->block_start = *logical;
1565 free_extent_map(em);
1566 write_unlock(&em_tree->lock);
1567
1568 list_for_each_entry(sum, &ordered->list, list) {
1569 if (*logical < orig_logical)
1570 sum->bytenr -= orig_logical - *logical;
1571 else
1572 sum->bytenr += *logical - orig_logical;
1573 }
1574
1575out:
1576 kfree(logical);
1577}
1578
1579bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1580 struct extent_buffer *eb,
1581 struct btrfs_block_group **cache_ret)
1582{
1583 struct btrfs_block_group *cache;
1584 bool ret = true;
1585
1586 if (!btrfs_is_zoned(fs_info))
1587 return true;
1588
1589 cache = *cache_ret;
1590
1591 if (cache && (eb->start < cache->start ||
1592 cache->start + cache->length <= eb->start)) {
1593 btrfs_put_block_group(cache);
1594 cache = NULL;
1595 *cache_ret = NULL;
1596 }
1597
1598 if (!cache)
1599 cache = btrfs_lookup_block_group(fs_info, eb->start);
1600
1601 if (cache) {
1602 if (cache->meta_write_pointer != eb->start) {
1603 btrfs_put_block_group(cache);
1604 cache = NULL;
1605 ret = false;
1606 } else {
1607 cache->meta_write_pointer = eb->start + eb->len;
1608 }
1609
1610 *cache_ret = cache;
1611 }
1612
1613 return ret;
1614}
1615
1616void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
1617 struct extent_buffer *eb)
1618{
1619 if (!btrfs_is_zoned(eb->fs_info) || !cache)
1620 return;
1621
1622 ASSERT(cache->meta_write_pointer == eb->start + eb->len);
1623 cache->meta_write_pointer = eb->start;
1624}
1625
1626int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1627{
1628 if (!btrfs_dev_is_sequential(device, physical))
1629 return -EOPNOTSUPP;
1630
1631 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1632 length >> SECTOR_SHIFT, GFP_NOFS, 0);
1633}
1634
1635static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1636 struct blk_zone *zone)
1637{
1638 struct btrfs_io_context *bioc = NULL;
1639 u64 mapped_length = PAGE_SIZE;
1640 unsigned int nofs_flag;
1641 int nmirrors;
1642 int i, ret;
1643
1644 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1645 &mapped_length, &bioc);
1646 if (ret || !bioc || mapped_length < PAGE_SIZE) {
1647 btrfs_put_bioc(bioc);
1648 return -EIO;
1649 }
1650
1651 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1652 return -EINVAL;
1653
1654 nofs_flag = memalloc_nofs_save();
1655 nmirrors = (int)bioc->num_stripes;
1656 for (i = 0; i < nmirrors; i++) {
1657 u64 physical = bioc->stripes[i].physical;
1658 struct btrfs_device *dev = bioc->stripes[i].dev;
1659
1660
1661 if (!dev->bdev)
1662 continue;
1663
1664 ret = btrfs_get_dev_zone(dev, physical, zone);
1665
1666 if (ret == -EIO || ret == -EOPNOTSUPP)
1667 continue;
1668 break;
1669 }
1670 memalloc_nofs_restore(nofs_flag);
1671
1672 return ret;
1673}
1674
1675
1676
1677
1678
1679
1680int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1681 u64 physical_start, u64 physical_pos)
1682{
1683 struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1684 struct blk_zone zone;
1685 u64 length;
1686 u64 wp;
1687 int ret;
1688
1689 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1690 return 0;
1691
1692 ret = read_zone_info(fs_info, logical, &zone);
1693 if (ret)
1694 return ret;
1695
1696 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1697
1698 if (physical_pos == wp)
1699 return 0;
1700
1701 if (physical_pos > wp)
1702 return -EUCLEAN;
1703
1704 length = wp - physical_pos;
1705 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1706}
1707
1708struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info,
1709 u64 logical, u64 length)
1710{
1711 struct btrfs_device *device;
1712 struct extent_map *em;
1713 struct map_lookup *map;
1714
1715 em = btrfs_get_chunk_map(fs_info, logical, length);
1716 if (IS_ERR(em))
1717 return ERR_CAST(em);
1718
1719 map = em->map_lookup;
1720
1721 ASSERT(map->num_stripes == 1);
1722 device = map->stripes[0].dev;
1723
1724 free_extent_map(em);
1725
1726 return device;
1727}
1728
1729
1730
1731
1732
1733
1734
1735
1736bool btrfs_zone_activate(struct btrfs_block_group *block_group)
1737{
1738 struct btrfs_fs_info *fs_info = block_group->fs_info;
1739 struct map_lookup *map;
1740 struct btrfs_device *device;
1741 u64 physical;
1742 bool ret;
1743
1744 if (!btrfs_is_zoned(block_group->fs_info))
1745 return true;
1746
1747 map = block_group->physical_map;
1748
1749 ASSERT(map->num_stripes == 1);
1750 device = map->stripes[0].dev;
1751 physical = map->stripes[0].physical;
1752
1753 if (device->zone_info->max_active_zones == 0)
1754 return true;
1755
1756 spin_lock(&block_group->lock);
1757
1758 if (block_group->zone_is_active) {
1759 ret = true;
1760 goto out_unlock;
1761 }
1762
1763
1764 if (block_group->alloc_offset == block_group->zone_capacity) {
1765 ret = false;
1766 goto out_unlock;
1767 }
1768
1769 if (!btrfs_dev_set_active_zone(device, physical)) {
1770
1771 ret = false;
1772 goto out_unlock;
1773 }
1774
1775
1776 block_group->zone_is_active = 1;
1777
1778 spin_unlock(&block_group->lock);
1779
1780
1781 btrfs_get_block_group(block_group);
1782
1783 spin_lock(&fs_info->zone_active_bgs_lock);
1784 ASSERT(list_empty(&block_group->active_bg_list));
1785 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
1786 spin_unlock(&fs_info->zone_active_bgs_lock);
1787
1788 return true;
1789
1790out_unlock:
1791 spin_unlock(&block_group->lock);
1792 return ret;
1793}
1794
1795int btrfs_zone_finish(struct btrfs_block_group *block_group)
1796{
1797 struct btrfs_fs_info *fs_info = block_group->fs_info;
1798 struct map_lookup *map;
1799 struct btrfs_device *device;
1800 u64 physical;
1801 int ret = 0;
1802
1803 if (!btrfs_is_zoned(fs_info))
1804 return 0;
1805
1806 map = block_group->physical_map;
1807
1808 ASSERT(map->num_stripes == 1);
1809
1810 device = map->stripes[0].dev;
1811 physical = map->stripes[0].physical;
1812
1813 if (device->zone_info->max_active_zones == 0)
1814 return 0;
1815
1816 spin_lock(&block_group->lock);
1817 if (!block_group->zone_is_active) {
1818 spin_unlock(&block_group->lock);
1819 return 0;
1820 }
1821
1822
1823 if ((block_group->flags &
1824 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)) &&
1825 block_group->alloc_offset > block_group->meta_write_pointer) {
1826 spin_unlock(&block_group->lock);
1827 return -EAGAIN;
1828 }
1829 spin_unlock(&block_group->lock);
1830
1831 ret = btrfs_inc_block_group_ro(block_group, false);
1832 if (ret)
1833 return ret;
1834
1835
1836 btrfs_wait_block_group_reservations(block_group);
1837
1838 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
1839 block_group->length);
1840
1841 spin_lock(&block_group->lock);
1842
1843
1844
1845
1846
1847 if (!block_group->zone_is_active) {
1848 spin_unlock(&block_group->lock);
1849 btrfs_dec_block_group_ro(block_group);
1850 return 0;
1851 }
1852
1853 if (block_group->reserved) {
1854 spin_unlock(&block_group->lock);
1855 btrfs_dec_block_group_ro(block_group);
1856 return -EAGAIN;
1857 }
1858
1859 block_group->zone_is_active = 0;
1860 block_group->alloc_offset = block_group->zone_capacity;
1861 block_group->free_space_ctl->free_space = 0;
1862 btrfs_clear_treelog_bg(block_group);
1863 btrfs_clear_data_reloc_bg(block_group);
1864 spin_unlock(&block_group->lock);
1865
1866 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
1867 physical >> SECTOR_SHIFT,
1868 device->zone_info->zone_size >> SECTOR_SHIFT,
1869 GFP_NOFS);
1870 btrfs_dec_block_group_ro(block_group);
1871
1872 if (!ret) {
1873 btrfs_dev_clear_active_zone(device, physical);
1874
1875 spin_lock(&fs_info->zone_active_bgs_lock);
1876 ASSERT(!list_empty(&block_group->active_bg_list));
1877 list_del_init(&block_group->active_bg_list);
1878 spin_unlock(&fs_info->zone_active_bgs_lock);
1879
1880
1881 btrfs_put_block_group(block_group);
1882 }
1883
1884 return ret;
1885}
1886
1887bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, int raid_index)
1888{
1889 struct btrfs_device *device;
1890 bool ret = false;
1891
1892 if (!btrfs_is_zoned(fs_devices->fs_info))
1893 return true;
1894
1895
1896 if (raid_index != BTRFS_RAID_SINGLE)
1897 return false;
1898
1899
1900 mutex_lock(&fs_devices->device_list_mutex);
1901 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1902 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1903
1904 if (!device->bdev)
1905 continue;
1906
1907 if (!zinfo->max_active_zones ||
1908 atomic_read(&zinfo->active_zones_left)) {
1909 ret = true;
1910 break;
1911 }
1912 }
1913 mutex_unlock(&fs_devices->device_list_mutex);
1914
1915 return ret;
1916}
1917
1918void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
1919{
1920 struct btrfs_block_group *block_group;
1921 struct map_lookup *map;
1922 struct btrfs_device *device;
1923 u64 physical;
1924
1925 if (!btrfs_is_zoned(fs_info))
1926 return;
1927
1928 block_group = btrfs_lookup_block_group(fs_info, logical);
1929 ASSERT(block_group);
1930
1931 if (logical + length < block_group->start + block_group->zone_capacity)
1932 goto out;
1933
1934 spin_lock(&block_group->lock);
1935
1936 if (!block_group->zone_is_active) {
1937 spin_unlock(&block_group->lock);
1938 goto out;
1939 }
1940
1941 block_group->zone_is_active = 0;
1942
1943 ASSERT(block_group->alloc_offset == block_group->zone_capacity);
1944 ASSERT(block_group->free_space_ctl->free_space == 0);
1945 btrfs_clear_treelog_bg(block_group);
1946 btrfs_clear_data_reloc_bg(block_group);
1947 spin_unlock(&block_group->lock);
1948
1949 map = block_group->physical_map;
1950 device = map->stripes[0].dev;
1951 physical = map->stripes[0].physical;
1952
1953 if (!device->zone_info->max_active_zones)
1954 goto out;
1955
1956 btrfs_dev_clear_active_zone(device, physical);
1957
1958 spin_lock(&fs_info->zone_active_bgs_lock);
1959 ASSERT(!list_empty(&block_group->active_bg_list));
1960 list_del_init(&block_group->active_bg_list);
1961 spin_unlock(&fs_info->zone_active_bgs_lock);
1962
1963 btrfs_put_block_group(block_group);
1964
1965out:
1966 btrfs_put_block_group(block_group);
1967}
1968
1969void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
1970{
1971 struct btrfs_fs_info *fs_info = bg->fs_info;
1972
1973 spin_lock(&fs_info->relocation_bg_lock);
1974 if (fs_info->data_reloc_bg == bg->start)
1975 fs_info->data_reloc_bg = 0;
1976 spin_unlock(&fs_info->relocation_bg_lock);
1977}
1978