linux/fs/dax.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/dax.c - Direct Access filesystem code
   4 * Copyright (c) 2013-2014 Intel Corporation
   5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
   6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
   7 */
   8
   9#include <linux/atomic.h>
  10#include <linux/blkdev.h>
  11#include <linux/buffer_head.h>
  12#include <linux/dax.h>
  13#include <linux/fs.h>
  14#include <linux/genhd.h>
  15#include <linux/highmem.h>
  16#include <linux/memcontrol.h>
  17#include <linux/mm.h>
  18#include <linux/mutex.h>
  19#include <linux/pagevec.h>
  20#include <linux/sched.h>
  21#include <linux/sched/signal.h>
  22#include <linux/uio.h>
  23#include <linux/vmstat.h>
  24#include <linux/pfn_t.h>
  25#include <linux/sizes.h>
  26#include <linux/mmu_notifier.h>
  27#include <linux/iomap.h>
  28#include <asm/pgalloc.h>
  29
  30#define CREATE_TRACE_POINTS
  31#include <trace/events/fs_dax.h>
  32
  33static inline unsigned int pe_order(enum page_entry_size pe_size)
  34{
  35        if (pe_size == PE_SIZE_PTE)
  36                return PAGE_SHIFT - PAGE_SHIFT;
  37        if (pe_size == PE_SIZE_PMD)
  38                return PMD_SHIFT - PAGE_SHIFT;
  39        if (pe_size == PE_SIZE_PUD)
  40                return PUD_SHIFT - PAGE_SHIFT;
  41        return ~0;
  42}
  43
  44/* We choose 4096 entries - same as per-zone page wait tables */
  45#define DAX_WAIT_TABLE_BITS 12
  46#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
  47
  48/* The 'colour' (ie low bits) within a PMD of a page offset.  */
  49#define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
  50#define PG_PMD_NR       (PMD_SIZE >> PAGE_SHIFT)
  51
  52/* The order of a PMD entry */
  53#define PMD_ORDER       (PMD_SHIFT - PAGE_SHIFT)
  54
  55static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
  56
  57static int __init init_dax_wait_table(void)
  58{
  59        int i;
  60
  61        for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
  62                init_waitqueue_head(wait_table + i);
  63        return 0;
  64}
  65fs_initcall(init_dax_wait_table);
  66
  67/*
  68 * DAX pagecache entries use XArray value entries so they can't be mistaken
  69 * for pages.  We use one bit for locking, one bit for the entry size (PMD)
  70 * and two more to tell us if the entry is a zero page or an empty entry that
  71 * is just used for locking.  In total four special bits.
  72 *
  73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
  74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
  75 * block allocation.
  76 */
  77#define DAX_SHIFT       (4)
  78#define DAX_LOCKED      (1UL << 0)
  79#define DAX_PMD         (1UL << 1)
  80#define DAX_ZERO_PAGE   (1UL << 2)
  81#define DAX_EMPTY       (1UL << 3)
  82
  83static unsigned long dax_to_pfn(void *entry)
  84{
  85        return xa_to_value(entry) >> DAX_SHIFT;
  86}
  87
  88static void *dax_make_entry(pfn_t pfn, unsigned long flags)
  89{
  90        return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
  91}
  92
  93static bool dax_is_locked(void *entry)
  94{
  95        return xa_to_value(entry) & DAX_LOCKED;
  96}
  97
  98static unsigned int dax_entry_order(void *entry)
  99{
 100        if (xa_to_value(entry) & DAX_PMD)
 101                return PMD_ORDER;
 102        return 0;
 103}
 104
 105static unsigned long dax_is_pmd_entry(void *entry)
 106{
 107        return xa_to_value(entry) & DAX_PMD;
 108}
 109
 110static bool dax_is_pte_entry(void *entry)
 111{
 112        return !(xa_to_value(entry) & DAX_PMD);
 113}
 114
 115static int dax_is_zero_entry(void *entry)
 116{
 117        return xa_to_value(entry) & DAX_ZERO_PAGE;
 118}
 119
 120static int dax_is_empty_entry(void *entry)
 121{
 122        return xa_to_value(entry) & DAX_EMPTY;
 123}
 124
 125/*
 126 * true if the entry that was found is of a smaller order than the entry
 127 * we were looking for
 128 */
 129static bool dax_is_conflict(void *entry)
 130{
 131        return entry == XA_RETRY_ENTRY;
 132}
 133
 134/*
 135 * DAX page cache entry locking
 136 */
 137struct exceptional_entry_key {
 138        struct xarray *xa;
 139        pgoff_t entry_start;
 140};
 141
 142struct wait_exceptional_entry_queue {
 143        wait_queue_entry_t wait;
 144        struct exceptional_entry_key key;
 145};
 146
 147/**
 148 * enum dax_wake_mode: waitqueue wakeup behaviour
 149 * @WAKE_ALL: wake all waiters in the waitqueue
 150 * @WAKE_NEXT: wake only the first waiter in the waitqueue
 151 */
 152enum dax_wake_mode {
 153        WAKE_ALL,
 154        WAKE_NEXT,
 155};
 156
 157static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
 158                void *entry, struct exceptional_entry_key *key)
 159{
 160        unsigned long hash;
 161        unsigned long index = xas->xa_index;
 162
 163        /*
 164         * If 'entry' is a PMD, align the 'index' that we use for the wait
 165         * queue to the start of that PMD.  This ensures that all offsets in
 166         * the range covered by the PMD map to the same bit lock.
 167         */
 168        if (dax_is_pmd_entry(entry))
 169                index &= ~PG_PMD_COLOUR;
 170        key->xa = xas->xa;
 171        key->entry_start = index;
 172
 173        hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
 174        return wait_table + hash;
 175}
 176
 177static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
 178                unsigned int mode, int sync, void *keyp)
 179{
 180        struct exceptional_entry_key *key = keyp;
 181        struct wait_exceptional_entry_queue *ewait =
 182                container_of(wait, struct wait_exceptional_entry_queue, wait);
 183
 184        if (key->xa != ewait->key.xa ||
 185            key->entry_start != ewait->key.entry_start)
 186                return 0;
 187        return autoremove_wake_function(wait, mode, sync, NULL);
 188}
 189
 190/*
 191 * @entry may no longer be the entry at the index in the mapping.
 192 * The important information it's conveying is whether the entry at
 193 * this index used to be a PMD entry.
 194 */
 195static void dax_wake_entry(struct xa_state *xas, void *entry,
 196                           enum dax_wake_mode mode)
 197{
 198        struct exceptional_entry_key key;
 199        wait_queue_head_t *wq;
 200
 201        wq = dax_entry_waitqueue(xas, entry, &key);
 202
 203        /*
 204         * Checking for locked entry and prepare_to_wait_exclusive() happens
 205         * under the i_pages lock, ditto for entry handling in our callers.
 206         * So at this point all tasks that could have seen our entry locked
 207         * must be in the waitqueue and the following check will see them.
 208         */
 209        if (waitqueue_active(wq))
 210                __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
 211}
 212
 213/*
 214 * Look up entry in page cache, wait for it to become unlocked if it
 215 * is a DAX entry and return it.  The caller must subsequently call
 216 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
 217 * if it did.  The entry returned may have a larger order than @order.
 218 * If @order is larger than the order of the entry found in i_pages, this
 219 * function returns a dax_is_conflict entry.
 220 *
 221 * Must be called with the i_pages lock held.
 222 */
 223static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
 224{
 225        void *entry;
 226        struct wait_exceptional_entry_queue ewait;
 227        wait_queue_head_t *wq;
 228
 229        init_wait(&ewait.wait);
 230        ewait.wait.func = wake_exceptional_entry_func;
 231
 232        for (;;) {
 233                entry = xas_find_conflict(xas);
 234                if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
 235                        return entry;
 236                if (dax_entry_order(entry) < order)
 237                        return XA_RETRY_ENTRY;
 238                if (!dax_is_locked(entry))
 239                        return entry;
 240
 241                wq = dax_entry_waitqueue(xas, entry, &ewait.key);
 242                prepare_to_wait_exclusive(wq, &ewait.wait,
 243                                          TASK_UNINTERRUPTIBLE);
 244                xas_unlock_irq(xas);
 245                xas_reset(xas);
 246                schedule();
 247                finish_wait(wq, &ewait.wait);
 248                xas_lock_irq(xas);
 249        }
 250}
 251
 252/*
 253 * The only thing keeping the address space around is the i_pages lock
 254 * (it's cycled in clear_inode() after removing the entries from i_pages)
 255 * After we call xas_unlock_irq(), we cannot touch xas->xa.
 256 */
 257static void wait_entry_unlocked(struct xa_state *xas, void *entry)
 258{
 259        struct wait_exceptional_entry_queue ewait;
 260        wait_queue_head_t *wq;
 261
 262        init_wait(&ewait.wait);
 263        ewait.wait.func = wake_exceptional_entry_func;
 264
 265        wq = dax_entry_waitqueue(xas, entry, &ewait.key);
 266        /*
 267         * Unlike get_unlocked_entry() there is no guarantee that this
 268         * path ever successfully retrieves an unlocked entry before an
 269         * inode dies. Perform a non-exclusive wait in case this path
 270         * never successfully performs its own wake up.
 271         */
 272        prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
 273        xas_unlock_irq(xas);
 274        schedule();
 275        finish_wait(wq, &ewait.wait);
 276}
 277
 278static void put_unlocked_entry(struct xa_state *xas, void *entry,
 279                               enum dax_wake_mode mode)
 280{
 281        if (entry && !dax_is_conflict(entry))
 282                dax_wake_entry(xas, entry, mode);
 283}
 284
 285/*
 286 * We used the xa_state to get the entry, but then we locked the entry and
 287 * dropped the xa_lock, so we know the xa_state is stale and must be reset
 288 * before use.
 289 */
 290static void dax_unlock_entry(struct xa_state *xas, void *entry)
 291{
 292        void *old;
 293
 294        BUG_ON(dax_is_locked(entry));
 295        xas_reset(xas);
 296        xas_lock_irq(xas);
 297        old = xas_store(xas, entry);
 298        xas_unlock_irq(xas);
 299        BUG_ON(!dax_is_locked(old));
 300        dax_wake_entry(xas, entry, WAKE_NEXT);
 301}
 302
 303/*
 304 * Return: The entry stored at this location before it was locked.
 305 */
 306static void *dax_lock_entry(struct xa_state *xas, void *entry)
 307{
 308        unsigned long v = xa_to_value(entry);
 309        return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
 310}
 311
 312static unsigned long dax_entry_size(void *entry)
 313{
 314        if (dax_is_zero_entry(entry))
 315                return 0;
 316        else if (dax_is_empty_entry(entry))
 317                return 0;
 318        else if (dax_is_pmd_entry(entry))
 319                return PMD_SIZE;
 320        else
 321                return PAGE_SIZE;
 322}
 323
 324static unsigned long dax_end_pfn(void *entry)
 325{
 326        return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
 327}
 328
 329/*
 330 * Iterate through all mapped pfns represented by an entry, i.e. skip
 331 * 'empty' and 'zero' entries.
 332 */
 333#define for_each_mapped_pfn(entry, pfn) \
 334        for (pfn = dax_to_pfn(entry); \
 335                        pfn < dax_end_pfn(entry); pfn++)
 336
 337/*
 338 * TODO: for reflink+dax we need a way to associate a single page with
 339 * multiple address_space instances at different linear_page_index()
 340 * offsets.
 341 */
 342static void dax_associate_entry(void *entry, struct address_space *mapping,
 343                struct vm_area_struct *vma, unsigned long address)
 344{
 345        unsigned long size = dax_entry_size(entry), pfn, index;
 346        int i = 0;
 347
 348        if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
 349                return;
 350
 351        index = linear_page_index(vma, address & ~(size - 1));
 352        for_each_mapped_pfn(entry, pfn) {
 353                struct page *page = pfn_to_page(pfn);
 354
 355                WARN_ON_ONCE(page->mapping);
 356                page->mapping = mapping;
 357                page->index = index + i++;
 358        }
 359}
 360
 361static void dax_disassociate_entry(void *entry, struct address_space *mapping,
 362                bool trunc)
 363{
 364        unsigned long pfn;
 365
 366        if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
 367                return;
 368
 369        for_each_mapped_pfn(entry, pfn) {
 370                struct page *page = pfn_to_page(pfn);
 371
 372                WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
 373                WARN_ON_ONCE(page->mapping && page->mapping != mapping);
 374                page->mapping = NULL;
 375                page->index = 0;
 376        }
 377}
 378
 379static struct page *dax_busy_page(void *entry)
 380{
 381        unsigned long pfn;
 382
 383        for_each_mapped_pfn(entry, pfn) {
 384                struct page *page = pfn_to_page(pfn);
 385
 386                if (page_ref_count(page) > 1)
 387                        return page;
 388        }
 389        return NULL;
 390}
 391
 392/*
 393 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
 394 * @page: The page whose entry we want to lock
 395 *
 396 * Context: Process context.
 397 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
 398 * not be locked.
 399 */
 400dax_entry_t dax_lock_page(struct page *page)
 401{
 402        XA_STATE(xas, NULL, 0);
 403        void *entry;
 404
 405        /* Ensure page->mapping isn't freed while we look at it */
 406        rcu_read_lock();
 407        for (;;) {
 408                struct address_space *mapping = READ_ONCE(page->mapping);
 409
 410                entry = NULL;
 411                if (!mapping || !dax_mapping(mapping))
 412                        break;
 413
 414                /*
 415                 * In the device-dax case there's no need to lock, a
 416                 * struct dev_pagemap pin is sufficient to keep the
 417                 * inode alive, and we assume we have dev_pagemap pin
 418                 * otherwise we would not have a valid pfn_to_page()
 419                 * translation.
 420                 */
 421                entry = (void *)~0UL;
 422                if (S_ISCHR(mapping->host->i_mode))
 423                        break;
 424
 425                xas.xa = &mapping->i_pages;
 426                xas_lock_irq(&xas);
 427                if (mapping != page->mapping) {
 428                        xas_unlock_irq(&xas);
 429                        continue;
 430                }
 431                xas_set(&xas, page->index);
 432                entry = xas_load(&xas);
 433                if (dax_is_locked(entry)) {
 434                        rcu_read_unlock();
 435                        wait_entry_unlocked(&xas, entry);
 436                        rcu_read_lock();
 437                        continue;
 438                }
 439                dax_lock_entry(&xas, entry);
 440                xas_unlock_irq(&xas);
 441                break;
 442        }
 443        rcu_read_unlock();
 444        return (dax_entry_t)entry;
 445}
 446
 447void dax_unlock_page(struct page *page, dax_entry_t cookie)
 448{
 449        struct address_space *mapping = page->mapping;
 450        XA_STATE(xas, &mapping->i_pages, page->index);
 451
 452        if (S_ISCHR(mapping->host->i_mode))
 453                return;
 454
 455        dax_unlock_entry(&xas, (void *)cookie);
 456}
 457
 458/*
 459 * Find page cache entry at given index. If it is a DAX entry, return it
 460 * with the entry locked. If the page cache doesn't contain an entry at
 461 * that index, add a locked empty entry.
 462 *
 463 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
 464 * either return that locked entry or will return VM_FAULT_FALLBACK.
 465 * This will happen if there are any PTE entries within the PMD range
 466 * that we are requesting.
 467 *
 468 * We always favor PTE entries over PMD entries. There isn't a flow where we
 469 * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
 470 * insertion will fail if it finds any PTE entries already in the tree, and a
 471 * PTE insertion will cause an existing PMD entry to be unmapped and
 472 * downgraded to PTE entries.  This happens for both PMD zero pages as
 473 * well as PMD empty entries.
 474 *
 475 * The exception to this downgrade path is for PMD entries that have
 476 * real storage backing them.  We will leave these real PMD entries in
 477 * the tree, and PTE writes will simply dirty the entire PMD entry.
 478 *
 479 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
 480 * persistent memory the benefit is doubtful. We can add that later if we can
 481 * show it helps.
 482 *
 483 * On error, this function does not return an ERR_PTR.  Instead it returns
 484 * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
 485 * overlap with xarray value entries.
 486 */
 487static void *grab_mapping_entry(struct xa_state *xas,
 488                struct address_space *mapping, unsigned int order)
 489{
 490        unsigned long index = xas->xa_index;
 491        bool pmd_downgrade;     /* splitting PMD entry into PTE entries? */
 492        void *entry;
 493
 494retry:
 495        pmd_downgrade = false;
 496        xas_lock_irq(xas);
 497        entry = get_unlocked_entry(xas, order);
 498
 499        if (entry) {
 500                if (dax_is_conflict(entry))
 501                        goto fallback;
 502                if (!xa_is_value(entry)) {
 503                        xas_set_err(xas, -EIO);
 504                        goto out_unlock;
 505                }
 506
 507                if (order == 0) {
 508                        if (dax_is_pmd_entry(entry) &&
 509                            (dax_is_zero_entry(entry) ||
 510                             dax_is_empty_entry(entry))) {
 511                                pmd_downgrade = true;
 512                        }
 513                }
 514        }
 515
 516        if (pmd_downgrade) {
 517                /*
 518                 * Make sure 'entry' remains valid while we drop
 519                 * the i_pages lock.
 520                 */
 521                dax_lock_entry(xas, entry);
 522
 523                /*
 524                 * Besides huge zero pages the only other thing that gets
 525                 * downgraded are empty entries which don't need to be
 526                 * unmapped.
 527                 */
 528                if (dax_is_zero_entry(entry)) {
 529                        xas_unlock_irq(xas);
 530                        unmap_mapping_pages(mapping,
 531                                        xas->xa_index & ~PG_PMD_COLOUR,
 532                                        PG_PMD_NR, false);
 533                        xas_reset(xas);
 534                        xas_lock_irq(xas);
 535                }
 536
 537                dax_disassociate_entry(entry, mapping, false);
 538                xas_store(xas, NULL);   /* undo the PMD join */
 539                dax_wake_entry(xas, entry, WAKE_ALL);
 540                mapping->nrpages -= PG_PMD_NR;
 541                entry = NULL;
 542                xas_set(xas, index);
 543        }
 544
 545        if (entry) {
 546                dax_lock_entry(xas, entry);
 547        } else {
 548                unsigned long flags = DAX_EMPTY;
 549
 550                if (order > 0)
 551                        flags |= DAX_PMD;
 552                entry = dax_make_entry(pfn_to_pfn_t(0), flags);
 553                dax_lock_entry(xas, entry);
 554                if (xas_error(xas))
 555                        goto out_unlock;
 556                mapping->nrpages += 1UL << order;
 557        }
 558
 559out_unlock:
 560        xas_unlock_irq(xas);
 561        if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
 562                goto retry;
 563        if (xas->xa_node == XA_ERROR(-ENOMEM))
 564                return xa_mk_internal(VM_FAULT_OOM);
 565        if (xas_error(xas))
 566                return xa_mk_internal(VM_FAULT_SIGBUS);
 567        return entry;
 568fallback:
 569        xas_unlock_irq(xas);
 570        return xa_mk_internal(VM_FAULT_FALLBACK);
 571}
 572
 573/**
 574 * dax_layout_busy_page_range - find first pinned page in @mapping
 575 * @mapping: address space to scan for a page with ref count > 1
 576 * @start: Starting offset. Page containing 'start' is included.
 577 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
 578 *       pages from 'start' till the end of file are included.
 579 *
 580 * DAX requires ZONE_DEVICE mapped pages. These pages are never
 581 * 'onlined' to the page allocator so they are considered idle when
 582 * page->count == 1. A filesystem uses this interface to determine if
 583 * any page in the mapping is busy, i.e. for DMA, or other
 584 * get_user_pages() usages.
 585 *
 586 * It is expected that the filesystem is holding locks to block the
 587 * establishment of new mappings in this address_space. I.e. it expects
 588 * to be able to run unmap_mapping_range() and subsequently not race
 589 * mapping_mapped() becoming true.
 590 */
 591struct page *dax_layout_busy_page_range(struct address_space *mapping,
 592                                        loff_t start, loff_t end)
 593{
 594        void *entry;
 595        unsigned int scanned = 0;
 596        struct page *page = NULL;
 597        pgoff_t start_idx = start >> PAGE_SHIFT;
 598        pgoff_t end_idx;
 599        XA_STATE(xas, &mapping->i_pages, start_idx);
 600
 601        /*
 602         * In the 'limited' case get_user_pages() for dax is disabled.
 603         */
 604        if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
 605                return NULL;
 606
 607        if (!dax_mapping(mapping) || !mapping_mapped(mapping))
 608                return NULL;
 609
 610        /* If end == LLONG_MAX, all pages from start to till end of file */
 611        if (end == LLONG_MAX)
 612                end_idx = ULONG_MAX;
 613        else
 614                end_idx = end >> PAGE_SHIFT;
 615        /*
 616         * If we race get_user_pages_fast() here either we'll see the
 617         * elevated page count in the iteration and wait, or
 618         * get_user_pages_fast() will see that the page it took a reference
 619         * against is no longer mapped in the page tables and bail to the
 620         * get_user_pages() slow path.  The slow path is protected by
 621         * pte_lock() and pmd_lock(). New references are not taken without
 622         * holding those locks, and unmap_mapping_pages() will not zero the
 623         * pte or pmd without holding the respective lock, so we are
 624         * guaranteed to either see new references or prevent new
 625         * references from being established.
 626         */
 627        unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
 628
 629        xas_lock_irq(&xas);
 630        xas_for_each(&xas, entry, end_idx) {
 631                if (WARN_ON_ONCE(!xa_is_value(entry)))
 632                        continue;
 633                if (unlikely(dax_is_locked(entry)))
 634                        entry = get_unlocked_entry(&xas, 0);
 635                if (entry)
 636                        page = dax_busy_page(entry);
 637                put_unlocked_entry(&xas, entry, WAKE_NEXT);
 638                if (page)
 639                        break;
 640                if (++scanned % XA_CHECK_SCHED)
 641                        continue;
 642
 643                xas_pause(&xas);
 644                xas_unlock_irq(&xas);
 645                cond_resched();
 646                xas_lock_irq(&xas);
 647        }
 648        xas_unlock_irq(&xas);
 649        return page;
 650}
 651EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
 652
 653struct page *dax_layout_busy_page(struct address_space *mapping)
 654{
 655        return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
 656}
 657EXPORT_SYMBOL_GPL(dax_layout_busy_page);
 658
 659static int __dax_invalidate_entry(struct address_space *mapping,
 660                                          pgoff_t index, bool trunc)
 661{
 662        XA_STATE(xas, &mapping->i_pages, index);
 663        int ret = 0;
 664        void *entry;
 665
 666        xas_lock_irq(&xas);
 667        entry = get_unlocked_entry(&xas, 0);
 668        if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
 669                goto out;
 670        if (!trunc &&
 671            (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
 672             xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
 673                goto out;
 674        dax_disassociate_entry(entry, mapping, trunc);
 675        xas_store(&xas, NULL);
 676        mapping->nrpages -= 1UL << dax_entry_order(entry);
 677        ret = 1;
 678out:
 679        put_unlocked_entry(&xas, entry, WAKE_ALL);
 680        xas_unlock_irq(&xas);
 681        return ret;
 682}
 683
 684/*
 685 * Delete DAX entry at @index from @mapping.  Wait for it
 686 * to be unlocked before deleting it.
 687 */
 688int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
 689{
 690        int ret = __dax_invalidate_entry(mapping, index, true);
 691
 692        /*
 693         * This gets called from truncate / punch_hole path. As such, the caller
 694         * must hold locks protecting against concurrent modifications of the
 695         * page cache (usually fs-private i_mmap_sem for writing). Since the
 696         * caller has seen a DAX entry for this index, we better find it
 697         * at that index as well...
 698         */
 699        WARN_ON_ONCE(!ret);
 700        return ret;
 701}
 702
 703/*
 704 * Invalidate DAX entry if it is clean.
 705 */
 706int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
 707                                      pgoff_t index)
 708{
 709        return __dax_invalidate_entry(mapping, index, false);
 710}
 711
 712static int copy_cow_page_dax(struct block_device *bdev, struct dax_device *dax_dev,
 713                             sector_t sector, struct page *to, unsigned long vaddr)
 714{
 715        void *vto, *kaddr;
 716        pgoff_t pgoff;
 717        long rc;
 718        int id;
 719
 720        rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
 721        if (rc)
 722                return rc;
 723
 724        id = dax_read_lock();
 725        rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
 726        if (rc < 0) {
 727                dax_read_unlock(id);
 728                return rc;
 729        }
 730        vto = kmap_atomic(to);
 731        copy_user_page(vto, (void __force *)kaddr, vaddr, to);
 732        kunmap_atomic(vto);
 733        dax_read_unlock(id);
 734        return 0;
 735}
 736
 737/*
 738 * By this point grab_mapping_entry() has ensured that we have a locked entry
 739 * of the appropriate size so we don't have to worry about downgrading PMDs to
 740 * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
 741 * already in the tree, we will skip the insertion and just dirty the PMD as
 742 * appropriate.
 743 */
 744static void *dax_insert_entry(struct xa_state *xas,
 745                struct address_space *mapping, struct vm_fault *vmf,
 746                void *entry, pfn_t pfn, unsigned long flags, bool dirty)
 747{
 748        void *new_entry = dax_make_entry(pfn, flags);
 749
 750        if (dirty)
 751                __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 752
 753        if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
 754                unsigned long index = xas->xa_index;
 755                /* we are replacing a zero page with block mapping */
 756                if (dax_is_pmd_entry(entry))
 757                        unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
 758                                        PG_PMD_NR, false);
 759                else /* pte entry */
 760                        unmap_mapping_pages(mapping, index, 1, false);
 761        }
 762
 763        xas_reset(xas);
 764        xas_lock_irq(xas);
 765        if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
 766                void *old;
 767
 768                dax_disassociate_entry(entry, mapping, false);
 769                dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
 770                /*
 771                 * Only swap our new entry into the page cache if the current
 772                 * entry is a zero page or an empty entry.  If a normal PTE or
 773                 * PMD entry is already in the cache, we leave it alone.  This
 774                 * means that if we are trying to insert a PTE and the
 775                 * existing entry is a PMD, we will just leave the PMD in the
 776                 * tree and dirty it if necessary.
 777                 */
 778                old = dax_lock_entry(xas, new_entry);
 779                WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
 780                                        DAX_LOCKED));
 781                entry = new_entry;
 782        } else {
 783                xas_load(xas);  /* Walk the xa_state */
 784        }
 785
 786        if (dirty)
 787                xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
 788
 789        xas_unlock_irq(xas);
 790        return entry;
 791}
 792
 793static inline
 794unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
 795{
 796        unsigned long address;
 797
 798        address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 799        VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
 800        return address;
 801}
 802
 803/* Walk all mappings of a given index of a file and writeprotect them */
 804static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
 805                unsigned long pfn)
 806{
 807        struct vm_area_struct *vma;
 808        pte_t pte, *ptep = NULL;
 809        pmd_t *pmdp = NULL;
 810        spinlock_t *ptl;
 811
 812        i_mmap_lock_read(mapping);
 813        vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
 814                struct mmu_notifier_range range;
 815                unsigned long address;
 816
 817                cond_resched();
 818
 819                if (!(vma->vm_flags & VM_SHARED))
 820                        continue;
 821
 822                address = pgoff_address(index, vma);
 823
 824                /*
 825                 * follow_invalidate_pte() will use the range to call
 826                 * mmu_notifier_invalidate_range_start() on our behalf before
 827                 * taking any lock.
 828                 */
 829                if (follow_invalidate_pte(vma->vm_mm, address, &range, &ptep,
 830                                          &pmdp, &ptl))
 831                        continue;
 832
 833                /*
 834                 * No need to call mmu_notifier_invalidate_range() as we are
 835                 * downgrading page table protection not changing it to point
 836                 * to a new page.
 837                 *
 838                 * See Documentation/vm/mmu_notifier.rst
 839                 */
 840                if (pmdp) {
 841#ifdef CONFIG_FS_DAX_PMD
 842                        pmd_t pmd;
 843
 844                        if (pfn != pmd_pfn(*pmdp))
 845                                goto unlock_pmd;
 846                        if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
 847                                goto unlock_pmd;
 848
 849                        flush_cache_page(vma, address, pfn);
 850                        pmd = pmdp_invalidate(vma, address, pmdp);
 851                        pmd = pmd_wrprotect(pmd);
 852                        pmd = pmd_mkclean(pmd);
 853                        set_pmd_at(vma->vm_mm, address, pmdp, pmd);
 854unlock_pmd:
 855#endif
 856                        spin_unlock(ptl);
 857                } else {
 858                        if (pfn != pte_pfn(*ptep))
 859                                goto unlock_pte;
 860                        if (!pte_dirty(*ptep) && !pte_write(*ptep))
 861                                goto unlock_pte;
 862
 863                        flush_cache_page(vma, address, pfn);
 864                        pte = ptep_clear_flush(vma, address, ptep);
 865                        pte = pte_wrprotect(pte);
 866                        pte = pte_mkclean(pte);
 867                        set_pte_at(vma->vm_mm, address, ptep, pte);
 868unlock_pte:
 869                        pte_unmap_unlock(ptep, ptl);
 870                }
 871
 872                mmu_notifier_invalidate_range_end(&range);
 873        }
 874        i_mmap_unlock_read(mapping);
 875}
 876
 877static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
 878                struct address_space *mapping, void *entry)
 879{
 880        unsigned long pfn, index, count;
 881        long ret = 0;
 882
 883        /*
 884         * A page got tagged dirty in DAX mapping? Something is seriously
 885         * wrong.
 886         */
 887        if (WARN_ON(!xa_is_value(entry)))
 888                return -EIO;
 889
 890        if (unlikely(dax_is_locked(entry))) {
 891                void *old_entry = entry;
 892
 893                entry = get_unlocked_entry(xas, 0);
 894
 895                /* Entry got punched out / reallocated? */
 896                if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
 897                        goto put_unlocked;
 898                /*
 899                 * Entry got reallocated elsewhere? No need to writeback.
 900                 * We have to compare pfns as we must not bail out due to
 901                 * difference in lockbit or entry type.
 902                 */
 903                if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
 904                        goto put_unlocked;
 905                if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
 906                                        dax_is_zero_entry(entry))) {
 907                        ret = -EIO;
 908                        goto put_unlocked;
 909                }
 910
 911                /* Another fsync thread may have already done this entry */
 912                if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
 913                        goto put_unlocked;
 914        }
 915
 916        /* Lock the entry to serialize with page faults */
 917        dax_lock_entry(xas, entry);
 918
 919        /*
 920         * We can clear the tag now but we have to be careful so that concurrent
 921         * dax_writeback_one() calls for the same index cannot finish before we
 922         * actually flush the caches. This is achieved as the calls will look
 923         * at the entry only under the i_pages lock and once they do that
 924         * they will see the entry locked and wait for it to unlock.
 925         */
 926        xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
 927        xas_unlock_irq(xas);
 928
 929        /*
 930         * If dax_writeback_mapping_range() was given a wbc->range_start
 931         * in the middle of a PMD, the 'index' we use needs to be
 932         * aligned to the start of the PMD.
 933         * This allows us to flush for PMD_SIZE and not have to worry about
 934         * partial PMD writebacks.
 935         */
 936        pfn = dax_to_pfn(entry);
 937        count = 1UL << dax_entry_order(entry);
 938        index = xas->xa_index & ~(count - 1);
 939
 940        dax_entry_mkclean(mapping, index, pfn);
 941        dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
 942        /*
 943         * After we have flushed the cache, we can clear the dirty tag. There
 944         * cannot be new dirty data in the pfn after the flush has completed as
 945         * the pfn mappings are writeprotected and fault waits for mapping
 946         * entry lock.
 947         */
 948        xas_reset(xas);
 949        xas_lock_irq(xas);
 950        xas_store(xas, entry);
 951        xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
 952        dax_wake_entry(xas, entry, WAKE_NEXT);
 953
 954        trace_dax_writeback_one(mapping->host, index, count);
 955        return ret;
 956
 957 put_unlocked:
 958        put_unlocked_entry(xas, entry, WAKE_NEXT);
 959        return ret;
 960}
 961
 962/*
 963 * Flush the mapping to the persistent domain within the byte range of [start,
 964 * end]. This is required by data integrity operations to ensure file data is
 965 * on persistent storage prior to completion of the operation.
 966 */
 967int dax_writeback_mapping_range(struct address_space *mapping,
 968                struct dax_device *dax_dev, struct writeback_control *wbc)
 969{
 970        XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
 971        struct inode *inode = mapping->host;
 972        pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
 973        void *entry;
 974        int ret = 0;
 975        unsigned int scanned = 0;
 976
 977        if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
 978                return -EIO;
 979
 980        if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
 981                return 0;
 982
 983        trace_dax_writeback_range(inode, xas.xa_index, end_index);
 984
 985        tag_pages_for_writeback(mapping, xas.xa_index, end_index);
 986
 987        xas_lock_irq(&xas);
 988        xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
 989                ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
 990                if (ret < 0) {
 991                        mapping_set_error(mapping, ret);
 992                        break;
 993                }
 994                if (++scanned % XA_CHECK_SCHED)
 995                        continue;
 996
 997                xas_pause(&xas);
 998                xas_unlock_irq(&xas);
 999                cond_resched();
1000                xas_lock_irq(&xas);
1001        }
1002        xas_unlock_irq(&xas);
1003        trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1004        return ret;
1005}
1006EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1007
1008static sector_t dax_iomap_sector(const struct iomap *iomap, loff_t pos)
1009{
1010        return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
1011}
1012
1013static int dax_iomap_pfn(const struct iomap *iomap, loff_t pos, size_t size,
1014                         pfn_t *pfnp)
1015{
1016        const sector_t sector = dax_iomap_sector(iomap, pos);
1017        pgoff_t pgoff;
1018        int id, rc;
1019        long length;
1020
1021        rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
1022        if (rc)
1023                return rc;
1024        id = dax_read_lock();
1025        length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1026                                   NULL, pfnp);
1027        if (length < 0) {
1028                rc = length;
1029                goto out;
1030        }
1031        rc = -EINVAL;
1032        if (PFN_PHYS(length) < size)
1033                goto out;
1034        if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1035                goto out;
1036        /* For larger pages we need devmap */
1037        if (length > 1 && !pfn_t_devmap(*pfnp))
1038                goto out;
1039        rc = 0;
1040out:
1041        dax_read_unlock(id);
1042        return rc;
1043}
1044
1045/*
1046 * The user has performed a load from a hole in the file.  Allocating a new
1047 * page in the file would cause excessive storage usage for workloads with
1048 * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1049 * If this page is ever written to we will re-fault and change the mapping to
1050 * point to real DAX storage instead.
1051 */
1052static vm_fault_t dax_load_hole(struct xa_state *xas,
1053                struct address_space *mapping, void **entry,
1054                struct vm_fault *vmf)
1055{
1056        struct inode *inode = mapping->host;
1057        unsigned long vaddr = vmf->address;
1058        pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1059        vm_fault_t ret;
1060
1061        *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1062                        DAX_ZERO_PAGE, false);
1063
1064        ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1065        trace_dax_load_hole(inode, vmf, ret);
1066        return ret;
1067}
1068
1069#ifdef CONFIG_FS_DAX_PMD
1070static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1071                const struct iomap *iomap, void **entry)
1072{
1073        struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1074        unsigned long pmd_addr = vmf->address & PMD_MASK;
1075        struct vm_area_struct *vma = vmf->vma;
1076        struct inode *inode = mapping->host;
1077        pgtable_t pgtable = NULL;
1078        struct page *zero_page;
1079        spinlock_t *ptl;
1080        pmd_t pmd_entry;
1081        pfn_t pfn;
1082
1083        zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1084
1085        if (unlikely(!zero_page))
1086                goto fallback;
1087
1088        pfn = page_to_pfn_t(zero_page);
1089        *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1090                        DAX_PMD | DAX_ZERO_PAGE, false);
1091
1092        if (arch_needs_pgtable_deposit()) {
1093                pgtable = pte_alloc_one(vma->vm_mm);
1094                if (!pgtable)
1095                        return VM_FAULT_OOM;
1096        }
1097
1098        ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1099        if (!pmd_none(*(vmf->pmd))) {
1100                spin_unlock(ptl);
1101                goto fallback;
1102        }
1103
1104        if (pgtable) {
1105                pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1106                mm_inc_nr_ptes(vma->vm_mm);
1107        }
1108        pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1109        pmd_entry = pmd_mkhuge(pmd_entry);
1110        set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1111        spin_unlock(ptl);
1112        trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1113        return VM_FAULT_NOPAGE;
1114
1115fallback:
1116        if (pgtable)
1117                pte_free(vma->vm_mm, pgtable);
1118        trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1119        return VM_FAULT_FALLBACK;
1120}
1121#else
1122static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1123                const struct iomap *iomap, void **entry)
1124{
1125        return VM_FAULT_FALLBACK;
1126}
1127#endif /* CONFIG_FS_DAX_PMD */
1128
1129s64 dax_iomap_zero(loff_t pos, u64 length, struct iomap *iomap)
1130{
1131        sector_t sector = iomap_sector(iomap, pos & PAGE_MASK);
1132        pgoff_t pgoff;
1133        long rc, id;
1134        void *kaddr;
1135        bool page_aligned = false;
1136        unsigned offset = offset_in_page(pos);
1137        unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1138
1139        if (IS_ALIGNED(sector << SECTOR_SHIFT, PAGE_SIZE) &&
1140            (size == PAGE_SIZE))
1141                page_aligned = true;
1142
1143        rc = bdev_dax_pgoff(iomap->bdev, sector, PAGE_SIZE, &pgoff);
1144        if (rc)
1145                return rc;
1146
1147        id = dax_read_lock();
1148
1149        if (page_aligned)
1150                rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1151        else
1152                rc = dax_direct_access(iomap->dax_dev, pgoff, 1, &kaddr, NULL);
1153        if (rc < 0) {
1154                dax_read_unlock(id);
1155                return rc;
1156        }
1157
1158        if (!page_aligned) {
1159                memset(kaddr + offset, 0, size);
1160                dax_flush(iomap->dax_dev, kaddr + offset, size);
1161        }
1162        dax_read_unlock(id);
1163        return size;
1164}
1165
1166static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
1167                struct iov_iter *iter)
1168{
1169        const struct iomap *iomap = &iomi->iomap;
1170        loff_t length = iomap_length(iomi);
1171        loff_t pos = iomi->pos;
1172        struct block_device *bdev = iomap->bdev;
1173        struct dax_device *dax_dev = iomap->dax_dev;
1174        loff_t end = pos + length, done = 0;
1175        ssize_t ret = 0;
1176        size_t xfer;
1177        int id;
1178
1179        if (iov_iter_rw(iter) == READ) {
1180                end = min(end, i_size_read(iomi->inode));
1181                if (pos >= end)
1182                        return 0;
1183
1184                if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1185                        return iov_iter_zero(min(length, end - pos), iter);
1186        }
1187
1188        if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1189                return -EIO;
1190
1191        /*
1192         * Write can allocate block for an area which has a hole page mapped
1193         * into page tables. We have to tear down these mappings so that data
1194         * written by write(2) is visible in mmap.
1195         */
1196        if (iomap->flags & IOMAP_F_NEW) {
1197                invalidate_inode_pages2_range(iomi->inode->i_mapping,
1198                                              pos >> PAGE_SHIFT,
1199                                              (end - 1) >> PAGE_SHIFT);
1200        }
1201
1202        id = dax_read_lock();
1203        while (pos < end) {
1204                unsigned offset = pos & (PAGE_SIZE - 1);
1205                const size_t size = ALIGN(length + offset, PAGE_SIZE);
1206                const sector_t sector = dax_iomap_sector(iomap, pos);
1207                ssize_t map_len;
1208                pgoff_t pgoff;
1209                void *kaddr;
1210
1211                if (fatal_signal_pending(current)) {
1212                        ret = -EINTR;
1213                        break;
1214                }
1215
1216                ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1217                if (ret)
1218                        break;
1219
1220                map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1221                                &kaddr, NULL);
1222                if (map_len < 0) {
1223                        ret = map_len;
1224                        break;
1225                }
1226
1227                map_len = PFN_PHYS(map_len);
1228                kaddr += offset;
1229                map_len -= offset;
1230                if (map_len > end - pos)
1231                        map_len = end - pos;
1232
1233                /*
1234                 * The userspace address for the memory copy has already been
1235                 * validated via access_ok() in either vfs_read() or
1236                 * vfs_write(), depending on which operation we are doing.
1237                 */
1238                if (iov_iter_rw(iter) == WRITE)
1239                        xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1240                                        map_len, iter);
1241                else
1242                        xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1243                                        map_len, iter);
1244
1245                pos += xfer;
1246                length -= xfer;
1247                done += xfer;
1248
1249                if (xfer == 0)
1250                        ret = -EFAULT;
1251                if (xfer < map_len)
1252                        break;
1253        }
1254        dax_read_unlock(id);
1255
1256        return done ? done : ret;
1257}
1258
1259/**
1260 * dax_iomap_rw - Perform I/O to a DAX file
1261 * @iocb:       The control block for this I/O
1262 * @iter:       The addresses to do I/O from or to
1263 * @ops:        iomap ops passed from the file system
1264 *
1265 * This function performs read and write operations to directly mapped
1266 * persistent memory.  The callers needs to take care of read/write exclusion
1267 * and evicting any page cache pages in the region under I/O.
1268 */
1269ssize_t
1270dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1271                const struct iomap_ops *ops)
1272{
1273        struct iomap_iter iomi = {
1274                .inode          = iocb->ki_filp->f_mapping->host,
1275                .pos            = iocb->ki_pos,
1276                .len            = iov_iter_count(iter),
1277        };
1278        loff_t done = 0;
1279        int ret;
1280
1281        if (iov_iter_rw(iter) == WRITE) {
1282                lockdep_assert_held_write(&iomi.inode->i_rwsem);
1283                iomi.flags |= IOMAP_WRITE;
1284        } else {
1285                lockdep_assert_held(&iomi.inode->i_rwsem);
1286        }
1287
1288        if (iocb->ki_flags & IOCB_NOWAIT)
1289                iomi.flags |= IOMAP_NOWAIT;
1290
1291        while ((ret = iomap_iter(&iomi, ops)) > 0)
1292                iomi.processed = dax_iomap_iter(&iomi, iter);
1293
1294        done = iomi.pos - iocb->ki_pos;
1295        iocb->ki_pos = iomi.pos;
1296        return done ? done : ret;
1297}
1298EXPORT_SYMBOL_GPL(dax_iomap_rw);
1299
1300static vm_fault_t dax_fault_return(int error)
1301{
1302        if (error == 0)
1303                return VM_FAULT_NOPAGE;
1304        return vmf_error(error);
1305}
1306
1307/*
1308 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1309 * flushed on write-faults (non-cow), but not read-faults.
1310 */
1311static bool dax_fault_is_synchronous(unsigned long flags,
1312                struct vm_area_struct *vma, const struct iomap *iomap)
1313{
1314        return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1315                && (iomap->flags & IOMAP_F_DIRTY);
1316}
1317
1318/*
1319 * When handling a synchronous page fault and the inode need a fsync, we can
1320 * insert the PTE/PMD into page tables only after that fsync happened. Skip
1321 * insertion for now and return the pfn so that caller can insert it after the
1322 * fsync is done.
1323 */
1324static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
1325{
1326        if (WARN_ON_ONCE(!pfnp))
1327                return VM_FAULT_SIGBUS;
1328        *pfnp = pfn;
1329        return VM_FAULT_NEEDDSYNC;
1330}
1331
1332static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1333                const struct iomap_iter *iter)
1334{
1335        sector_t sector = dax_iomap_sector(&iter->iomap, iter->pos);
1336        unsigned long vaddr = vmf->address;
1337        vm_fault_t ret;
1338        int error = 0;
1339
1340        switch (iter->iomap.type) {
1341        case IOMAP_HOLE:
1342        case IOMAP_UNWRITTEN:
1343                clear_user_highpage(vmf->cow_page, vaddr);
1344                break;
1345        case IOMAP_MAPPED:
1346                error = copy_cow_page_dax(iter->iomap.bdev, iter->iomap.dax_dev,
1347                                          sector, vmf->cow_page, vaddr);
1348                break;
1349        default:
1350                WARN_ON_ONCE(1);
1351                error = -EIO;
1352                break;
1353        }
1354
1355        if (error)
1356                return dax_fault_return(error);
1357
1358        __SetPageUptodate(vmf->cow_page);
1359        ret = finish_fault(vmf);
1360        if (!ret)
1361                return VM_FAULT_DONE_COW;
1362        return ret;
1363}
1364
1365/**
1366 * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
1367 * @vmf:        vm fault instance
1368 * @iter:       iomap iter
1369 * @pfnp:       pfn to be returned
1370 * @xas:        the dax mapping tree of a file
1371 * @entry:      an unlocked dax entry to be inserted
1372 * @pmd:        distinguish whether it is a pmd fault
1373 */
1374static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1375                const struct iomap_iter *iter, pfn_t *pfnp,
1376                struct xa_state *xas, void **entry, bool pmd)
1377{
1378        struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1379        const struct iomap *iomap = &iter->iomap;
1380        size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1381        loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
1382        bool write = vmf->flags & FAULT_FLAG_WRITE;
1383        bool sync = dax_fault_is_synchronous(iter->flags, vmf->vma, iomap);
1384        unsigned long entry_flags = pmd ? DAX_PMD : 0;
1385        int err = 0;
1386        pfn_t pfn;
1387
1388        if (!pmd && vmf->cow_page)
1389                return dax_fault_cow_page(vmf, iter);
1390
1391        /* if we are reading UNWRITTEN and HOLE, return a hole. */
1392        if (!write &&
1393            (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1394                if (!pmd)
1395                        return dax_load_hole(xas, mapping, entry, vmf);
1396                return dax_pmd_load_hole(xas, vmf, iomap, entry);
1397        }
1398
1399        if (iomap->type != IOMAP_MAPPED) {
1400                WARN_ON_ONCE(1);
1401                return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1402        }
1403
1404        err = dax_iomap_pfn(&iter->iomap, pos, size, &pfn);
1405        if (err)
1406                return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1407
1408        *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, entry_flags,
1409                                  write && !sync);
1410
1411        if (sync)
1412                return dax_fault_synchronous_pfnp(pfnp, pfn);
1413
1414        /* insert PMD pfn */
1415        if (pmd)
1416                return vmf_insert_pfn_pmd(vmf, pfn, write);
1417
1418        /* insert PTE pfn */
1419        if (write)
1420                return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1421        return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
1422}
1423
1424static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1425                               int *iomap_errp, const struct iomap_ops *ops)
1426{
1427        struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1428        XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1429        struct iomap_iter iter = {
1430                .inode          = mapping->host,
1431                .pos            = (loff_t)vmf->pgoff << PAGE_SHIFT,
1432                .len            = PAGE_SIZE,
1433                .flags          = IOMAP_FAULT,
1434        };
1435        vm_fault_t ret = 0;
1436        void *entry;
1437        int error;
1438
1439        trace_dax_pte_fault(iter.inode, vmf, ret);
1440        /*
1441         * Check whether offset isn't beyond end of file now. Caller is supposed
1442         * to hold locks serializing us with truncate / punch hole so this is
1443         * a reliable test.
1444         */
1445        if (iter.pos >= i_size_read(iter.inode)) {
1446                ret = VM_FAULT_SIGBUS;
1447                goto out;
1448        }
1449
1450        if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1451                iter.flags |= IOMAP_WRITE;
1452
1453        entry = grab_mapping_entry(&xas, mapping, 0);
1454        if (xa_is_internal(entry)) {
1455                ret = xa_to_internal(entry);
1456                goto out;
1457        }
1458
1459        /*
1460         * It is possible, particularly with mixed reads & writes to private
1461         * mappings, that we have raced with a PMD fault that overlaps with
1462         * the PTE we need to set up.  If so just return and the fault will be
1463         * retried.
1464         */
1465        if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1466                ret = VM_FAULT_NOPAGE;
1467                goto unlock_entry;
1468        }
1469
1470        while ((error = iomap_iter(&iter, ops)) > 0) {
1471                if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1472                        iter.processed = -EIO;  /* fs corruption? */
1473                        continue;
1474                }
1475
1476                ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1477                if (ret != VM_FAULT_SIGBUS &&
1478                    (iter.iomap.flags & IOMAP_F_NEW)) {
1479                        count_vm_event(PGMAJFAULT);
1480                        count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1481                        ret |= VM_FAULT_MAJOR;
1482                }
1483
1484                if (!(ret & VM_FAULT_ERROR))
1485                        iter.processed = PAGE_SIZE;
1486        }
1487
1488        if (iomap_errp)
1489                *iomap_errp = error;
1490        if (!ret && error)
1491                ret = dax_fault_return(error);
1492
1493unlock_entry:
1494        dax_unlock_entry(&xas, entry);
1495out:
1496        trace_dax_pte_fault_done(iter.inode, vmf, ret);
1497        return ret;
1498}
1499
1500#ifdef CONFIG_FS_DAX_PMD
1501static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1502                pgoff_t max_pgoff)
1503{
1504        unsigned long pmd_addr = vmf->address & PMD_MASK;
1505        bool write = vmf->flags & FAULT_FLAG_WRITE;
1506
1507        /*
1508         * Make sure that the faulting address's PMD offset (color) matches
1509         * the PMD offset from the start of the file.  This is necessary so
1510         * that a PMD range in the page table overlaps exactly with a PMD
1511         * range in the page cache.
1512         */
1513        if ((vmf->pgoff & PG_PMD_COLOUR) !=
1514            ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1515                return true;
1516
1517        /* Fall back to PTEs if we're going to COW */
1518        if (write && !(vmf->vma->vm_flags & VM_SHARED))
1519                return true;
1520
1521        /* If the PMD would extend outside the VMA */
1522        if (pmd_addr < vmf->vma->vm_start)
1523                return true;
1524        if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
1525                return true;
1526
1527        /* If the PMD would extend beyond the file size */
1528        if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
1529                return true;
1530
1531        return false;
1532}
1533
1534static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1535                               const struct iomap_ops *ops)
1536{
1537        struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1538        XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1539        struct iomap_iter iter = {
1540                .inode          = mapping->host,
1541                .len            = PMD_SIZE,
1542                .flags          = IOMAP_FAULT,
1543        };
1544        vm_fault_t ret = VM_FAULT_FALLBACK;
1545        pgoff_t max_pgoff;
1546        void *entry;
1547        int error;
1548
1549        if (vmf->flags & FAULT_FLAG_WRITE)
1550                iter.flags |= IOMAP_WRITE;
1551
1552        /*
1553         * Check whether offset isn't beyond end of file now. Caller is
1554         * supposed to hold locks serializing us with truncate / punch hole so
1555         * this is a reliable test.
1556         */
1557        max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
1558
1559        trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
1560
1561        if (xas.xa_index >= max_pgoff) {
1562                ret = VM_FAULT_SIGBUS;
1563                goto out;
1564        }
1565
1566        if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
1567                goto fallback;
1568
1569        /*
1570         * grab_mapping_entry() will make sure we get an empty PMD entry,
1571         * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1572         * entry is already in the array, for instance), it will return
1573         * VM_FAULT_FALLBACK.
1574         */
1575        entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1576        if (xa_is_internal(entry)) {
1577                ret = xa_to_internal(entry);
1578                goto fallback;
1579        }
1580
1581        /*
1582         * It is possible, particularly with mixed reads & writes to private
1583         * mappings, that we have raced with a PTE fault that overlaps with
1584         * the PMD we need to set up.  If so just return and the fault will be
1585         * retried.
1586         */
1587        if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1588                        !pmd_devmap(*vmf->pmd)) {
1589                ret = 0;
1590                goto unlock_entry;
1591        }
1592
1593        iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1594        while ((error = iomap_iter(&iter, ops)) > 0) {
1595                if (iomap_length(&iter) < PMD_SIZE)
1596                        continue; /* actually breaks out of the loop */
1597
1598                ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
1599                if (ret != VM_FAULT_FALLBACK)
1600                        iter.processed = PMD_SIZE;
1601        }
1602
1603unlock_entry:
1604        dax_unlock_entry(&xas, entry);
1605fallback:
1606        if (ret == VM_FAULT_FALLBACK) {
1607                split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
1608                count_vm_event(THP_FAULT_FALLBACK);
1609        }
1610out:
1611        trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
1612        return ret;
1613}
1614#else
1615static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1616                               const struct iomap_ops *ops)
1617{
1618        return VM_FAULT_FALLBACK;
1619}
1620#endif /* CONFIG_FS_DAX_PMD */
1621
1622/**
1623 * dax_iomap_fault - handle a page fault on a DAX file
1624 * @vmf: The description of the fault
1625 * @pe_size: Size of the page to fault in
1626 * @pfnp: PFN to insert for synchronous faults if fsync is required
1627 * @iomap_errp: Storage for detailed error code in case of error
1628 * @ops: Iomap ops passed from the file system
1629 *
1630 * When a page fault occurs, filesystems may call this helper in
1631 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1632 * has done all the necessary locking for page fault to proceed
1633 * successfully.
1634 */
1635vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1636                    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1637{
1638        switch (pe_size) {
1639        case PE_SIZE_PTE:
1640                return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1641        case PE_SIZE_PMD:
1642                return dax_iomap_pmd_fault(vmf, pfnp, ops);
1643        default:
1644                return VM_FAULT_FALLBACK;
1645        }
1646}
1647EXPORT_SYMBOL_GPL(dax_iomap_fault);
1648
1649/*
1650 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1651 * @vmf: The description of the fault
1652 * @pfn: PFN to insert
1653 * @order: Order of entry to insert.
1654 *
1655 * This function inserts a writeable PTE or PMD entry into the page tables
1656 * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1657 */
1658static vm_fault_t
1659dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1660{
1661        struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1662        XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1663        void *entry;
1664        vm_fault_t ret;
1665
1666        xas_lock_irq(&xas);
1667        entry = get_unlocked_entry(&xas, order);
1668        /* Did we race with someone splitting entry or so? */
1669        if (!entry || dax_is_conflict(entry) ||
1670            (order == 0 && !dax_is_pte_entry(entry))) {
1671                put_unlocked_entry(&xas, entry, WAKE_NEXT);
1672                xas_unlock_irq(&xas);
1673                trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1674                                                      VM_FAULT_NOPAGE);
1675                return VM_FAULT_NOPAGE;
1676        }
1677        xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1678        dax_lock_entry(&xas, entry);
1679        xas_unlock_irq(&xas);
1680        if (order == 0)
1681                ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1682#ifdef CONFIG_FS_DAX_PMD
1683        else if (order == PMD_ORDER)
1684                ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1685#endif
1686        else
1687                ret = VM_FAULT_FALLBACK;
1688        dax_unlock_entry(&xas, entry);
1689        trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1690        return ret;
1691}
1692
1693/**
1694 * dax_finish_sync_fault - finish synchronous page fault
1695 * @vmf: The description of the fault
1696 * @pe_size: Size of entry to be inserted
1697 * @pfn: PFN to insert
1698 *
1699 * This function ensures that the file range touched by the page fault is
1700 * stored persistently on the media and handles inserting of appropriate page
1701 * table entry.
1702 */
1703vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1704                enum page_entry_size pe_size, pfn_t pfn)
1705{
1706        int err;
1707        loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1708        unsigned int order = pe_order(pe_size);
1709        size_t len = PAGE_SIZE << order;
1710
1711        err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1712        if (err)
1713                return VM_FAULT_SIGBUS;
1714        return dax_insert_pfn_mkwrite(vmf, pfn, order);
1715}
1716EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1717