linux/fs/inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * (C) 1997 Linus Torvalds
   4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
   5 */
   6#include <linux/export.h>
   7#include <linux/fs.h>
   8#include <linux/mm.h>
   9#include <linux/backing-dev.h>
  10#include <linux/hash.h>
  11#include <linux/swap.h>
  12#include <linux/security.h>
  13#include <linux/cdev.h>
  14#include <linux/memblock.h>
  15#include <linux/fsnotify.h>
  16#include <linux/mount.h>
  17#include <linux/posix_acl.h>
  18#include <linux/prefetch.h>
  19#include <linux/buffer_head.h> /* for inode_has_buffers */
  20#include <linux/ratelimit.h>
  21#include <linux/list_lru.h>
  22#include <linux/iversion.h>
  23#include <trace/events/writeback.h>
  24#include "internal.h"
  25
  26/*
  27 * Inode locking rules:
  28 *
  29 * inode->i_lock protects:
  30 *   inode->i_state, inode->i_hash, __iget()
  31 * Inode LRU list locks protect:
  32 *   inode->i_sb->s_inode_lru, inode->i_lru
  33 * inode->i_sb->s_inode_list_lock protects:
  34 *   inode->i_sb->s_inodes, inode->i_sb_list
  35 * bdi->wb.list_lock protects:
  36 *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
  37 * inode_hash_lock protects:
  38 *   inode_hashtable, inode->i_hash
  39 *
  40 * Lock ordering:
  41 *
  42 * inode->i_sb->s_inode_list_lock
  43 *   inode->i_lock
  44 *     Inode LRU list locks
  45 *
  46 * bdi->wb.list_lock
  47 *   inode->i_lock
  48 *
  49 * inode_hash_lock
  50 *   inode->i_sb->s_inode_list_lock
  51 *   inode->i_lock
  52 *
  53 * iunique_lock
  54 *   inode_hash_lock
  55 */
  56
  57static unsigned int i_hash_mask __read_mostly;
  58static unsigned int i_hash_shift __read_mostly;
  59static struct hlist_head *inode_hashtable __read_mostly;
  60static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
  61
  62/*
  63 * Empty aops. Can be used for the cases where the user does not
  64 * define any of the address_space operations.
  65 */
  66const struct address_space_operations empty_aops = {
  67};
  68EXPORT_SYMBOL(empty_aops);
  69
  70/*
  71 * Statistics gathering..
  72 */
  73struct inodes_stat_t inodes_stat;
  74
  75static DEFINE_PER_CPU(unsigned long, nr_inodes);
  76static DEFINE_PER_CPU(unsigned long, nr_unused);
  77
  78static struct kmem_cache *inode_cachep __read_mostly;
  79
  80static long get_nr_inodes(void)
  81{
  82        int i;
  83        long sum = 0;
  84        for_each_possible_cpu(i)
  85                sum += per_cpu(nr_inodes, i);
  86        return sum < 0 ? 0 : sum;
  87}
  88
  89static inline long get_nr_inodes_unused(void)
  90{
  91        int i;
  92        long sum = 0;
  93        for_each_possible_cpu(i)
  94                sum += per_cpu(nr_unused, i);
  95        return sum < 0 ? 0 : sum;
  96}
  97
  98long get_nr_dirty_inodes(void)
  99{
 100        /* not actually dirty inodes, but a wild approximation */
 101        long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
 102        return nr_dirty > 0 ? nr_dirty : 0;
 103}
 104
 105/*
 106 * Handle nr_inode sysctl
 107 */
 108#ifdef CONFIG_SYSCTL
 109int proc_nr_inodes(struct ctl_table *table, int write,
 110                   void *buffer, size_t *lenp, loff_t *ppos)
 111{
 112        inodes_stat.nr_inodes = get_nr_inodes();
 113        inodes_stat.nr_unused = get_nr_inodes_unused();
 114        return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 115}
 116#endif
 117
 118static int no_open(struct inode *inode, struct file *file)
 119{
 120        return -ENXIO;
 121}
 122
 123/**
 124 * inode_init_always - perform inode structure initialisation
 125 * @sb: superblock inode belongs to
 126 * @inode: inode to initialise
 127 *
 128 * These are initializations that need to be done on every inode
 129 * allocation as the fields are not initialised by slab allocation.
 130 */
 131int inode_init_always(struct super_block *sb, struct inode *inode)
 132{
 133        static const struct inode_operations empty_iops;
 134        static const struct file_operations no_open_fops = {.open = no_open};
 135        struct address_space *const mapping = &inode->i_data;
 136
 137        inode->i_sb = sb;
 138        inode->i_blkbits = sb->s_blocksize_bits;
 139        inode->i_flags = 0;
 140        atomic64_set(&inode->i_sequence, 0);
 141        atomic_set(&inode->i_count, 1);
 142        inode->i_op = &empty_iops;
 143        inode->i_fop = &no_open_fops;
 144        inode->i_ino = 0;
 145        inode->__i_nlink = 1;
 146        inode->i_opflags = 0;
 147        if (sb->s_xattr)
 148                inode->i_opflags |= IOP_XATTR;
 149        i_uid_write(inode, 0);
 150        i_gid_write(inode, 0);
 151        atomic_set(&inode->i_writecount, 0);
 152        inode->i_size = 0;
 153        inode->i_write_hint = WRITE_LIFE_NOT_SET;
 154        inode->i_blocks = 0;
 155        inode->i_bytes = 0;
 156        inode->i_generation = 0;
 157        inode->i_pipe = NULL;
 158        inode->i_cdev = NULL;
 159        inode->i_link = NULL;
 160        inode->i_dir_seq = 0;
 161        inode->i_rdev = 0;
 162        inode->dirtied_when = 0;
 163
 164#ifdef CONFIG_CGROUP_WRITEBACK
 165        inode->i_wb_frn_winner = 0;
 166        inode->i_wb_frn_avg_time = 0;
 167        inode->i_wb_frn_history = 0;
 168#endif
 169
 170        if (security_inode_alloc(inode))
 171                goto out;
 172        spin_lock_init(&inode->i_lock);
 173        lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 174
 175        init_rwsem(&inode->i_rwsem);
 176        lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
 177
 178        atomic_set(&inode->i_dio_count, 0);
 179
 180        mapping->a_ops = &empty_aops;
 181        mapping->host = inode;
 182        mapping->flags = 0;
 183        mapping->wb_err = 0;
 184        atomic_set(&mapping->i_mmap_writable, 0);
 185#ifdef CONFIG_READ_ONLY_THP_FOR_FS
 186        atomic_set(&mapping->nr_thps, 0);
 187#endif
 188        mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
 189        mapping->private_data = NULL;
 190        mapping->writeback_index = 0;
 191        init_rwsem(&mapping->invalidate_lock);
 192        lockdep_set_class_and_name(&mapping->invalidate_lock,
 193                                   &sb->s_type->invalidate_lock_key,
 194                                   "mapping.invalidate_lock");
 195        inode->i_private = NULL;
 196        inode->i_mapping = mapping;
 197        INIT_HLIST_HEAD(&inode->i_dentry);      /* buggered by rcu freeing */
 198#ifdef CONFIG_FS_POSIX_ACL
 199        inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
 200#endif
 201
 202#ifdef CONFIG_FSNOTIFY
 203        inode->i_fsnotify_mask = 0;
 204#endif
 205        inode->i_flctx = NULL;
 206        this_cpu_inc(nr_inodes);
 207
 208        return 0;
 209out:
 210        return -ENOMEM;
 211}
 212EXPORT_SYMBOL(inode_init_always);
 213
 214void free_inode_nonrcu(struct inode *inode)
 215{
 216        kmem_cache_free(inode_cachep, inode);
 217}
 218EXPORT_SYMBOL(free_inode_nonrcu);
 219
 220static void i_callback(struct rcu_head *head)
 221{
 222        struct inode *inode = container_of(head, struct inode, i_rcu);
 223        if (inode->free_inode)
 224                inode->free_inode(inode);
 225        else
 226                free_inode_nonrcu(inode);
 227}
 228
 229static struct inode *alloc_inode(struct super_block *sb)
 230{
 231        const struct super_operations *ops = sb->s_op;
 232        struct inode *inode;
 233
 234        if (ops->alloc_inode)
 235                inode = ops->alloc_inode(sb);
 236        else
 237                inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
 238
 239        if (!inode)
 240                return NULL;
 241
 242        if (unlikely(inode_init_always(sb, inode))) {
 243                if (ops->destroy_inode) {
 244                        ops->destroy_inode(inode);
 245                        if (!ops->free_inode)
 246                                return NULL;
 247                }
 248                inode->free_inode = ops->free_inode;
 249                i_callback(&inode->i_rcu);
 250                return NULL;
 251        }
 252
 253        return inode;
 254}
 255
 256void __destroy_inode(struct inode *inode)
 257{
 258        BUG_ON(inode_has_buffers(inode));
 259        inode_detach_wb(inode);
 260        security_inode_free(inode);
 261        fsnotify_inode_delete(inode);
 262        locks_free_lock_context(inode);
 263        if (!inode->i_nlink) {
 264                WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
 265                atomic_long_dec(&inode->i_sb->s_remove_count);
 266        }
 267
 268#ifdef CONFIG_FS_POSIX_ACL
 269        if (inode->i_acl && !is_uncached_acl(inode->i_acl))
 270                posix_acl_release(inode->i_acl);
 271        if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
 272                posix_acl_release(inode->i_default_acl);
 273#endif
 274        this_cpu_dec(nr_inodes);
 275}
 276EXPORT_SYMBOL(__destroy_inode);
 277
 278static void destroy_inode(struct inode *inode)
 279{
 280        const struct super_operations *ops = inode->i_sb->s_op;
 281
 282        BUG_ON(!list_empty(&inode->i_lru));
 283        __destroy_inode(inode);
 284        if (ops->destroy_inode) {
 285                ops->destroy_inode(inode);
 286                if (!ops->free_inode)
 287                        return;
 288        }
 289        inode->free_inode = ops->free_inode;
 290        call_rcu(&inode->i_rcu, i_callback);
 291}
 292
 293/**
 294 * drop_nlink - directly drop an inode's link count
 295 * @inode: inode
 296 *
 297 * This is a low-level filesystem helper to replace any
 298 * direct filesystem manipulation of i_nlink.  In cases
 299 * where we are attempting to track writes to the
 300 * filesystem, a decrement to zero means an imminent
 301 * write when the file is truncated and actually unlinked
 302 * on the filesystem.
 303 */
 304void drop_nlink(struct inode *inode)
 305{
 306        WARN_ON(inode->i_nlink == 0);
 307        inode->__i_nlink--;
 308        if (!inode->i_nlink)
 309                atomic_long_inc(&inode->i_sb->s_remove_count);
 310}
 311EXPORT_SYMBOL(drop_nlink);
 312
 313/**
 314 * clear_nlink - directly zero an inode's link count
 315 * @inode: inode
 316 *
 317 * This is a low-level filesystem helper to replace any
 318 * direct filesystem manipulation of i_nlink.  See
 319 * drop_nlink() for why we care about i_nlink hitting zero.
 320 */
 321void clear_nlink(struct inode *inode)
 322{
 323        if (inode->i_nlink) {
 324                inode->__i_nlink = 0;
 325                atomic_long_inc(&inode->i_sb->s_remove_count);
 326        }
 327}
 328EXPORT_SYMBOL(clear_nlink);
 329
 330/**
 331 * set_nlink - directly set an inode's link count
 332 * @inode: inode
 333 * @nlink: new nlink (should be non-zero)
 334 *
 335 * This is a low-level filesystem helper to replace any
 336 * direct filesystem manipulation of i_nlink.
 337 */
 338void set_nlink(struct inode *inode, unsigned int nlink)
 339{
 340        if (!nlink) {
 341                clear_nlink(inode);
 342        } else {
 343                /* Yes, some filesystems do change nlink from zero to one */
 344                if (inode->i_nlink == 0)
 345                        atomic_long_dec(&inode->i_sb->s_remove_count);
 346
 347                inode->__i_nlink = nlink;
 348        }
 349}
 350EXPORT_SYMBOL(set_nlink);
 351
 352/**
 353 * inc_nlink - directly increment an inode's link count
 354 * @inode: inode
 355 *
 356 * This is a low-level filesystem helper to replace any
 357 * direct filesystem manipulation of i_nlink.  Currently,
 358 * it is only here for parity with dec_nlink().
 359 */
 360void inc_nlink(struct inode *inode)
 361{
 362        if (unlikely(inode->i_nlink == 0)) {
 363                WARN_ON(!(inode->i_state & I_LINKABLE));
 364                atomic_long_dec(&inode->i_sb->s_remove_count);
 365        }
 366
 367        inode->__i_nlink++;
 368}
 369EXPORT_SYMBOL(inc_nlink);
 370
 371static void __address_space_init_once(struct address_space *mapping)
 372{
 373        xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
 374        init_rwsem(&mapping->i_mmap_rwsem);
 375        INIT_LIST_HEAD(&mapping->private_list);
 376        spin_lock_init(&mapping->private_lock);
 377        mapping->i_mmap = RB_ROOT_CACHED;
 378}
 379
 380void address_space_init_once(struct address_space *mapping)
 381{
 382        memset(mapping, 0, sizeof(*mapping));
 383        __address_space_init_once(mapping);
 384}
 385EXPORT_SYMBOL(address_space_init_once);
 386
 387/*
 388 * These are initializations that only need to be done
 389 * once, because the fields are idempotent across use
 390 * of the inode, so let the slab aware of that.
 391 */
 392void inode_init_once(struct inode *inode)
 393{
 394        memset(inode, 0, sizeof(*inode));
 395        INIT_HLIST_NODE(&inode->i_hash);
 396        INIT_LIST_HEAD(&inode->i_devices);
 397        INIT_LIST_HEAD(&inode->i_io_list);
 398        INIT_LIST_HEAD(&inode->i_wb_list);
 399        INIT_LIST_HEAD(&inode->i_lru);
 400        __address_space_init_once(&inode->i_data);
 401        i_size_ordered_init(inode);
 402}
 403EXPORT_SYMBOL(inode_init_once);
 404
 405static void init_once(void *foo)
 406{
 407        struct inode *inode = (struct inode *) foo;
 408
 409        inode_init_once(inode);
 410}
 411
 412/*
 413 * inode->i_lock must be held
 414 */
 415void __iget(struct inode *inode)
 416{
 417        atomic_inc(&inode->i_count);
 418}
 419
 420/*
 421 * get additional reference to inode; caller must already hold one.
 422 */
 423void ihold(struct inode *inode)
 424{
 425        WARN_ON(atomic_inc_return(&inode->i_count) < 2);
 426}
 427EXPORT_SYMBOL(ihold);
 428
 429static void __inode_add_lru(struct inode *inode, bool rotate)
 430{
 431        if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
 432                return;
 433        if (atomic_read(&inode->i_count))
 434                return;
 435        if (!(inode->i_sb->s_flags & SB_ACTIVE))
 436                return;
 437        if (!mapping_shrinkable(&inode->i_data))
 438                return;
 439
 440        if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
 441                this_cpu_inc(nr_unused);
 442        else if (rotate)
 443                inode->i_state |= I_REFERENCED;
 444}
 445
 446/*
 447 * Add inode to LRU if needed (inode is unused and clean).
 448 *
 449 * Needs inode->i_lock held.
 450 */
 451void inode_add_lru(struct inode *inode)
 452{
 453        __inode_add_lru(inode, false);
 454}
 455
 456static void inode_lru_list_del(struct inode *inode)
 457{
 458        if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
 459                this_cpu_dec(nr_unused);
 460}
 461
 462/**
 463 * inode_sb_list_add - add inode to the superblock list of inodes
 464 * @inode: inode to add
 465 */
 466void inode_sb_list_add(struct inode *inode)
 467{
 468        spin_lock(&inode->i_sb->s_inode_list_lock);
 469        list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 470        spin_unlock(&inode->i_sb->s_inode_list_lock);
 471}
 472EXPORT_SYMBOL_GPL(inode_sb_list_add);
 473
 474static inline void inode_sb_list_del(struct inode *inode)
 475{
 476        if (!list_empty(&inode->i_sb_list)) {
 477                spin_lock(&inode->i_sb->s_inode_list_lock);
 478                list_del_init(&inode->i_sb_list);
 479                spin_unlock(&inode->i_sb->s_inode_list_lock);
 480        }
 481}
 482
 483static unsigned long hash(struct super_block *sb, unsigned long hashval)
 484{
 485        unsigned long tmp;
 486
 487        tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 488                        L1_CACHE_BYTES;
 489        tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
 490        return tmp & i_hash_mask;
 491}
 492
 493/**
 494 *      __insert_inode_hash - hash an inode
 495 *      @inode: unhashed inode
 496 *      @hashval: unsigned long value used to locate this object in the
 497 *              inode_hashtable.
 498 *
 499 *      Add an inode to the inode hash for this superblock.
 500 */
 501void __insert_inode_hash(struct inode *inode, unsigned long hashval)
 502{
 503        struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
 504
 505        spin_lock(&inode_hash_lock);
 506        spin_lock(&inode->i_lock);
 507        hlist_add_head_rcu(&inode->i_hash, b);
 508        spin_unlock(&inode->i_lock);
 509        spin_unlock(&inode_hash_lock);
 510}
 511EXPORT_SYMBOL(__insert_inode_hash);
 512
 513/**
 514 *      __remove_inode_hash - remove an inode from the hash
 515 *      @inode: inode to unhash
 516 *
 517 *      Remove an inode from the superblock.
 518 */
 519void __remove_inode_hash(struct inode *inode)
 520{
 521        spin_lock(&inode_hash_lock);
 522        spin_lock(&inode->i_lock);
 523        hlist_del_init_rcu(&inode->i_hash);
 524        spin_unlock(&inode->i_lock);
 525        spin_unlock(&inode_hash_lock);
 526}
 527EXPORT_SYMBOL(__remove_inode_hash);
 528
 529void clear_inode(struct inode *inode)
 530{
 531        /*
 532         * We have to cycle the i_pages lock here because reclaim can be in the
 533         * process of removing the last page (in __delete_from_page_cache())
 534         * and we must not free the mapping under it.
 535         */
 536        xa_lock_irq(&inode->i_data.i_pages);
 537        BUG_ON(inode->i_data.nrpages);
 538        /*
 539         * Almost always, mapping_empty(&inode->i_data) here; but there are
 540         * two known and long-standing ways in which nodes may get left behind
 541         * (when deep radix-tree node allocation failed partway; or when THP
 542         * collapse_file() failed). Until those two known cases are cleaned up,
 543         * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
 544         * nor even WARN_ON(!mapping_empty).
 545         */
 546        xa_unlock_irq(&inode->i_data.i_pages);
 547        BUG_ON(!list_empty(&inode->i_data.private_list));
 548        BUG_ON(!(inode->i_state & I_FREEING));
 549        BUG_ON(inode->i_state & I_CLEAR);
 550        BUG_ON(!list_empty(&inode->i_wb_list));
 551        /* don't need i_lock here, no concurrent mods to i_state */
 552        inode->i_state = I_FREEING | I_CLEAR;
 553}
 554EXPORT_SYMBOL(clear_inode);
 555
 556/*
 557 * Free the inode passed in, removing it from the lists it is still connected
 558 * to. We remove any pages still attached to the inode and wait for any IO that
 559 * is still in progress before finally destroying the inode.
 560 *
 561 * An inode must already be marked I_FREEING so that we avoid the inode being
 562 * moved back onto lists if we race with other code that manipulates the lists
 563 * (e.g. writeback_single_inode). The caller is responsible for setting this.
 564 *
 565 * An inode must already be removed from the LRU list before being evicted from
 566 * the cache. This should occur atomically with setting the I_FREEING state
 567 * flag, so no inodes here should ever be on the LRU when being evicted.
 568 */
 569static void evict(struct inode *inode)
 570{
 571        const struct super_operations *op = inode->i_sb->s_op;
 572
 573        BUG_ON(!(inode->i_state & I_FREEING));
 574        BUG_ON(!list_empty(&inode->i_lru));
 575
 576        if (!list_empty(&inode->i_io_list))
 577                inode_io_list_del(inode);
 578
 579        inode_sb_list_del(inode);
 580
 581        /*
 582         * Wait for flusher thread to be done with the inode so that filesystem
 583         * does not start destroying it while writeback is still running. Since
 584         * the inode has I_FREEING set, flusher thread won't start new work on
 585         * the inode.  We just have to wait for running writeback to finish.
 586         */
 587        inode_wait_for_writeback(inode);
 588
 589        if (op->evict_inode) {
 590                op->evict_inode(inode);
 591        } else {
 592                truncate_inode_pages_final(&inode->i_data);
 593                clear_inode(inode);
 594        }
 595        if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 596                cd_forget(inode);
 597
 598        remove_inode_hash(inode);
 599
 600        spin_lock(&inode->i_lock);
 601        wake_up_bit(&inode->i_state, __I_NEW);
 602        BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
 603        spin_unlock(&inode->i_lock);
 604
 605        destroy_inode(inode);
 606}
 607
 608/*
 609 * dispose_list - dispose of the contents of a local list
 610 * @head: the head of the list to free
 611 *
 612 * Dispose-list gets a local list with local inodes in it, so it doesn't
 613 * need to worry about list corruption and SMP locks.
 614 */
 615static void dispose_list(struct list_head *head)
 616{
 617        while (!list_empty(head)) {
 618                struct inode *inode;
 619
 620                inode = list_first_entry(head, struct inode, i_lru);
 621                list_del_init(&inode->i_lru);
 622
 623                evict(inode);
 624                cond_resched();
 625        }
 626}
 627
 628/**
 629 * evict_inodes - evict all evictable inodes for a superblock
 630 * @sb:         superblock to operate on
 631 *
 632 * Make sure that no inodes with zero refcount are retained.  This is
 633 * called by superblock shutdown after having SB_ACTIVE flag removed,
 634 * so any inode reaching zero refcount during or after that call will
 635 * be immediately evicted.
 636 */
 637void evict_inodes(struct super_block *sb)
 638{
 639        struct inode *inode, *next;
 640        LIST_HEAD(dispose);
 641
 642again:
 643        spin_lock(&sb->s_inode_list_lock);
 644        list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 645                if (atomic_read(&inode->i_count))
 646                        continue;
 647
 648                spin_lock(&inode->i_lock);
 649                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 650                        spin_unlock(&inode->i_lock);
 651                        continue;
 652                }
 653
 654                inode->i_state |= I_FREEING;
 655                inode_lru_list_del(inode);
 656                spin_unlock(&inode->i_lock);
 657                list_add(&inode->i_lru, &dispose);
 658
 659                /*
 660                 * We can have a ton of inodes to evict at unmount time given
 661                 * enough memory, check to see if we need to go to sleep for a
 662                 * bit so we don't livelock.
 663                 */
 664                if (need_resched()) {
 665                        spin_unlock(&sb->s_inode_list_lock);
 666                        cond_resched();
 667                        dispose_list(&dispose);
 668                        goto again;
 669                }
 670        }
 671        spin_unlock(&sb->s_inode_list_lock);
 672
 673        dispose_list(&dispose);
 674}
 675EXPORT_SYMBOL_GPL(evict_inodes);
 676
 677/**
 678 * invalidate_inodes    - attempt to free all inodes on a superblock
 679 * @sb:         superblock to operate on
 680 * @kill_dirty: flag to guide handling of dirty inodes
 681 *
 682 * Attempts to free all inodes for a given superblock.  If there were any
 683 * busy inodes return a non-zero value, else zero.
 684 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
 685 * them as busy.
 686 */
 687int invalidate_inodes(struct super_block *sb, bool kill_dirty)
 688{
 689        int busy = 0;
 690        struct inode *inode, *next;
 691        LIST_HEAD(dispose);
 692
 693again:
 694        spin_lock(&sb->s_inode_list_lock);
 695        list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 696                spin_lock(&inode->i_lock);
 697                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 698                        spin_unlock(&inode->i_lock);
 699                        continue;
 700                }
 701                if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
 702                        spin_unlock(&inode->i_lock);
 703                        busy = 1;
 704                        continue;
 705                }
 706                if (atomic_read(&inode->i_count)) {
 707                        spin_unlock(&inode->i_lock);
 708                        busy = 1;
 709                        continue;
 710                }
 711
 712                inode->i_state |= I_FREEING;
 713                inode_lru_list_del(inode);
 714                spin_unlock(&inode->i_lock);
 715                list_add(&inode->i_lru, &dispose);
 716                if (need_resched()) {
 717                        spin_unlock(&sb->s_inode_list_lock);
 718                        cond_resched();
 719                        dispose_list(&dispose);
 720                        goto again;
 721                }
 722        }
 723        spin_unlock(&sb->s_inode_list_lock);
 724
 725        dispose_list(&dispose);
 726
 727        return busy;
 728}
 729
 730/*
 731 * Isolate the inode from the LRU in preparation for freeing it.
 732 *
 733 * If the inode has the I_REFERENCED flag set, then it means that it has been
 734 * used recently - the flag is set in iput_final(). When we encounter such an
 735 * inode, clear the flag and move it to the back of the LRU so it gets another
 736 * pass through the LRU before it gets reclaimed. This is necessary because of
 737 * the fact we are doing lazy LRU updates to minimise lock contention so the
 738 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
 739 * with this flag set because they are the inodes that are out of order.
 740 */
 741static enum lru_status inode_lru_isolate(struct list_head *item,
 742                struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
 743{
 744        struct list_head *freeable = arg;
 745        struct inode    *inode = container_of(item, struct inode, i_lru);
 746
 747        /*
 748         * We are inverting the lru lock/inode->i_lock here, so use a
 749         * trylock. If we fail to get the lock, just skip it.
 750         */
 751        if (!spin_trylock(&inode->i_lock))
 752                return LRU_SKIP;
 753
 754        /*
 755         * Inodes can get referenced, redirtied, or repopulated while
 756         * they're already on the LRU, and this can make them
 757         * unreclaimable for a while. Remove them lazily here; iput,
 758         * sync, or the last page cache deletion will requeue them.
 759         */
 760        if (atomic_read(&inode->i_count) ||
 761            (inode->i_state & ~I_REFERENCED) ||
 762            !mapping_shrinkable(&inode->i_data)) {
 763                list_lru_isolate(lru, &inode->i_lru);
 764                spin_unlock(&inode->i_lock);
 765                this_cpu_dec(nr_unused);
 766                return LRU_REMOVED;
 767        }
 768
 769        /* Recently referenced inodes get one more pass */
 770        if (inode->i_state & I_REFERENCED) {
 771                inode->i_state &= ~I_REFERENCED;
 772                spin_unlock(&inode->i_lock);
 773                return LRU_ROTATE;
 774        }
 775
 776        /*
 777         * On highmem systems, mapping_shrinkable() permits dropping
 778         * page cache in order to free up struct inodes: lowmem might
 779         * be under pressure before the cache inside the highmem zone.
 780         */
 781        if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
 782                __iget(inode);
 783                spin_unlock(&inode->i_lock);
 784                spin_unlock(lru_lock);
 785                if (remove_inode_buffers(inode)) {
 786                        unsigned long reap;
 787                        reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
 788                        if (current_is_kswapd())
 789                                __count_vm_events(KSWAPD_INODESTEAL, reap);
 790                        else
 791                                __count_vm_events(PGINODESTEAL, reap);
 792                        if (current->reclaim_state)
 793                                current->reclaim_state->reclaimed_slab += reap;
 794                }
 795                iput(inode);
 796                spin_lock(lru_lock);
 797                return LRU_RETRY;
 798        }
 799
 800        WARN_ON(inode->i_state & I_NEW);
 801        inode->i_state |= I_FREEING;
 802        list_lru_isolate_move(lru, &inode->i_lru, freeable);
 803        spin_unlock(&inode->i_lock);
 804
 805        this_cpu_dec(nr_unused);
 806        return LRU_REMOVED;
 807}
 808
 809/*
 810 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
 811 * This is called from the superblock shrinker function with a number of inodes
 812 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
 813 * then are freed outside inode_lock by dispose_list().
 814 */
 815long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
 816{
 817        LIST_HEAD(freeable);
 818        long freed;
 819
 820        freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
 821                                     inode_lru_isolate, &freeable);
 822        dispose_list(&freeable);
 823        return freed;
 824}
 825
 826static void __wait_on_freeing_inode(struct inode *inode);
 827/*
 828 * Called with the inode lock held.
 829 */
 830static struct inode *find_inode(struct super_block *sb,
 831                                struct hlist_head *head,
 832                                int (*test)(struct inode *, void *),
 833                                void *data)
 834{
 835        struct inode *inode = NULL;
 836
 837repeat:
 838        hlist_for_each_entry(inode, head, i_hash) {
 839                if (inode->i_sb != sb)
 840                        continue;
 841                if (!test(inode, data))
 842                        continue;
 843                spin_lock(&inode->i_lock);
 844                if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 845                        __wait_on_freeing_inode(inode);
 846                        goto repeat;
 847                }
 848                if (unlikely(inode->i_state & I_CREATING)) {
 849                        spin_unlock(&inode->i_lock);
 850                        return ERR_PTR(-ESTALE);
 851                }
 852                __iget(inode);
 853                spin_unlock(&inode->i_lock);
 854                return inode;
 855        }
 856        return NULL;
 857}
 858
 859/*
 860 * find_inode_fast is the fast path version of find_inode, see the comment at
 861 * iget_locked for details.
 862 */
 863static struct inode *find_inode_fast(struct super_block *sb,
 864                                struct hlist_head *head, unsigned long ino)
 865{
 866        struct inode *inode = NULL;
 867
 868repeat:
 869        hlist_for_each_entry(inode, head, i_hash) {
 870                if (inode->i_ino != ino)
 871                        continue;
 872                if (inode->i_sb != sb)
 873                        continue;
 874                spin_lock(&inode->i_lock);
 875                if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 876                        __wait_on_freeing_inode(inode);
 877                        goto repeat;
 878                }
 879                if (unlikely(inode->i_state & I_CREATING)) {
 880                        spin_unlock(&inode->i_lock);
 881                        return ERR_PTR(-ESTALE);
 882                }
 883                __iget(inode);
 884                spin_unlock(&inode->i_lock);
 885                return inode;
 886        }
 887        return NULL;
 888}
 889
 890/*
 891 * Each cpu owns a range of LAST_INO_BATCH numbers.
 892 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
 893 * to renew the exhausted range.
 894 *
 895 * This does not significantly increase overflow rate because every CPU can
 896 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
 897 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
 898 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
 899 * overflow rate by 2x, which does not seem too significant.
 900 *
 901 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 902 * error if st_ino won't fit in target struct field. Use 32bit counter
 903 * here to attempt to avoid that.
 904 */
 905#define LAST_INO_BATCH 1024
 906static DEFINE_PER_CPU(unsigned int, last_ino);
 907
 908unsigned int get_next_ino(void)
 909{
 910        unsigned int *p = &get_cpu_var(last_ino);
 911        unsigned int res = *p;
 912
 913#ifdef CONFIG_SMP
 914        if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
 915                static atomic_t shared_last_ino;
 916                int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
 917
 918                res = next - LAST_INO_BATCH;
 919        }
 920#endif
 921
 922        res++;
 923        /* get_next_ino should not provide a 0 inode number */
 924        if (unlikely(!res))
 925                res++;
 926        *p = res;
 927        put_cpu_var(last_ino);
 928        return res;
 929}
 930EXPORT_SYMBOL(get_next_ino);
 931
 932/**
 933 *      new_inode_pseudo        - obtain an inode
 934 *      @sb: superblock
 935 *
 936 *      Allocates a new inode for given superblock.
 937 *      Inode wont be chained in superblock s_inodes list
 938 *      This means :
 939 *      - fs can't be unmount
 940 *      - quotas, fsnotify, writeback can't work
 941 */
 942struct inode *new_inode_pseudo(struct super_block *sb)
 943{
 944        struct inode *inode = alloc_inode(sb);
 945
 946        if (inode) {
 947                spin_lock(&inode->i_lock);
 948                inode->i_state = 0;
 949                spin_unlock(&inode->i_lock);
 950                INIT_LIST_HEAD(&inode->i_sb_list);
 951        }
 952        return inode;
 953}
 954
 955/**
 956 *      new_inode       - obtain an inode
 957 *      @sb: superblock
 958 *
 959 *      Allocates a new inode for given superblock. The default gfp_mask
 960 *      for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
 961 *      If HIGHMEM pages are unsuitable or it is known that pages allocated
 962 *      for the page cache are not reclaimable or migratable,
 963 *      mapping_set_gfp_mask() must be called with suitable flags on the
 964 *      newly created inode's mapping
 965 *
 966 */
 967struct inode *new_inode(struct super_block *sb)
 968{
 969        struct inode *inode;
 970
 971        spin_lock_prefetch(&sb->s_inode_list_lock);
 972
 973        inode = new_inode_pseudo(sb);
 974        if (inode)
 975                inode_sb_list_add(inode);
 976        return inode;
 977}
 978EXPORT_SYMBOL(new_inode);
 979
 980#ifdef CONFIG_DEBUG_LOCK_ALLOC
 981void lockdep_annotate_inode_mutex_key(struct inode *inode)
 982{
 983        if (S_ISDIR(inode->i_mode)) {
 984                struct file_system_type *type = inode->i_sb->s_type;
 985
 986                /* Set new key only if filesystem hasn't already changed it */
 987                if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
 988                        /*
 989                         * ensure nobody is actually holding i_mutex
 990                         */
 991                        // mutex_destroy(&inode->i_mutex);
 992                        init_rwsem(&inode->i_rwsem);
 993                        lockdep_set_class(&inode->i_rwsem,
 994                                          &type->i_mutex_dir_key);
 995                }
 996        }
 997}
 998EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
 999#endif
1000
1001/**
1002 * unlock_new_inode - clear the I_NEW state and wake up any waiters
1003 * @inode:      new inode to unlock
1004 *
1005 * Called when the inode is fully initialised to clear the new state of the
1006 * inode and wake up anyone waiting for the inode to finish initialisation.
1007 */
1008void unlock_new_inode(struct inode *inode)
1009{
1010        lockdep_annotate_inode_mutex_key(inode);
1011        spin_lock(&inode->i_lock);
1012        WARN_ON(!(inode->i_state & I_NEW));
1013        inode->i_state &= ~I_NEW & ~I_CREATING;
1014        smp_mb();
1015        wake_up_bit(&inode->i_state, __I_NEW);
1016        spin_unlock(&inode->i_lock);
1017}
1018EXPORT_SYMBOL(unlock_new_inode);
1019
1020void discard_new_inode(struct inode *inode)
1021{
1022        lockdep_annotate_inode_mutex_key(inode);
1023        spin_lock(&inode->i_lock);
1024        WARN_ON(!(inode->i_state & I_NEW));
1025        inode->i_state &= ~I_NEW;
1026        smp_mb();
1027        wake_up_bit(&inode->i_state, __I_NEW);
1028        spin_unlock(&inode->i_lock);
1029        iput(inode);
1030}
1031EXPORT_SYMBOL(discard_new_inode);
1032
1033/**
1034 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1035 *
1036 * Lock any non-NULL argument that is not a directory.
1037 * Zero, one or two objects may be locked by this function.
1038 *
1039 * @inode1: first inode to lock
1040 * @inode2: second inode to lock
1041 */
1042void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1043{
1044        if (inode1 > inode2)
1045                swap(inode1, inode2);
1046
1047        if (inode1 && !S_ISDIR(inode1->i_mode))
1048                inode_lock(inode1);
1049        if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1050                inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1051}
1052EXPORT_SYMBOL(lock_two_nondirectories);
1053
1054/**
1055 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1056 * @inode1: first inode to unlock
1057 * @inode2: second inode to unlock
1058 */
1059void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1060{
1061        if (inode1 && !S_ISDIR(inode1->i_mode))
1062                inode_unlock(inode1);
1063        if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1064                inode_unlock(inode2);
1065}
1066EXPORT_SYMBOL(unlock_two_nondirectories);
1067
1068/**
1069 * inode_insert5 - obtain an inode from a mounted file system
1070 * @inode:      pre-allocated inode to use for insert to cache
1071 * @hashval:    hash value (usually inode number) to get
1072 * @test:       callback used for comparisons between inodes
1073 * @set:        callback used to initialize a new struct inode
1074 * @data:       opaque data pointer to pass to @test and @set
1075 *
1076 * Search for the inode specified by @hashval and @data in the inode cache,
1077 * and if present it is return it with an increased reference count. This is
1078 * a variant of iget5_locked() for callers that don't want to fail on memory
1079 * allocation of inode.
1080 *
1081 * If the inode is not in cache, insert the pre-allocated inode to cache and
1082 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1083 * to fill it in before unlocking it via unlock_new_inode().
1084 *
1085 * Note both @test and @set are called with the inode_hash_lock held, so can't
1086 * sleep.
1087 */
1088struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1089                            int (*test)(struct inode *, void *),
1090                            int (*set)(struct inode *, void *), void *data)
1091{
1092        struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1093        struct inode *old;
1094        bool creating = inode->i_state & I_CREATING;
1095
1096again:
1097        spin_lock(&inode_hash_lock);
1098        old = find_inode(inode->i_sb, head, test, data);
1099        if (unlikely(old)) {
1100                /*
1101                 * Uhhuh, somebody else created the same inode under us.
1102                 * Use the old inode instead of the preallocated one.
1103                 */
1104                spin_unlock(&inode_hash_lock);
1105                if (IS_ERR(old))
1106                        return NULL;
1107                wait_on_inode(old);
1108                if (unlikely(inode_unhashed(old))) {
1109                        iput(old);
1110                        goto again;
1111                }
1112                return old;
1113        }
1114
1115        if (set && unlikely(set(inode, data))) {
1116                inode = NULL;
1117                goto unlock;
1118        }
1119
1120        /*
1121         * Return the locked inode with I_NEW set, the
1122         * caller is responsible for filling in the contents
1123         */
1124        spin_lock(&inode->i_lock);
1125        inode->i_state |= I_NEW;
1126        hlist_add_head_rcu(&inode->i_hash, head);
1127        spin_unlock(&inode->i_lock);
1128        if (!creating)
1129                inode_sb_list_add(inode);
1130unlock:
1131        spin_unlock(&inode_hash_lock);
1132
1133        return inode;
1134}
1135EXPORT_SYMBOL(inode_insert5);
1136
1137/**
1138 * iget5_locked - obtain an inode from a mounted file system
1139 * @sb:         super block of file system
1140 * @hashval:    hash value (usually inode number) to get
1141 * @test:       callback used for comparisons between inodes
1142 * @set:        callback used to initialize a new struct inode
1143 * @data:       opaque data pointer to pass to @test and @set
1144 *
1145 * Search for the inode specified by @hashval and @data in the inode cache,
1146 * and if present it is return it with an increased reference count. This is
1147 * a generalized version of iget_locked() for file systems where the inode
1148 * number is not sufficient for unique identification of an inode.
1149 *
1150 * If the inode is not in cache, allocate a new inode and return it locked,
1151 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1152 * before unlocking it via unlock_new_inode().
1153 *
1154 * Note both @test and @set are called with the inode_hash_lock held, so can't
1155 * sleep.
1156 */
1157struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1158                int (*test)(struct inode *, void *),
1159                int (*set)(struct inode *, void *), void *data)
1160{
1161        struct inode *inode = ilookup5(sb, hashval, test, data);
1162
1163        if (!inode) {
1164                struct inode *new = alloc_inode(sb);
1165
1166                if (new) {
1167                        new->i_state = 0;
1168                        inode = inode_insert5(new, hashval, test, set, data);
1169                        if (unlikely(inode != new))
1170                                destroy_inode(new);
1171                }
1172        }
1173        return inode;
1174}
1175EXPORT_SYMBOL(iget5_locked);
1176
1177/**
1178 * iget_locked - obtain an inode from a mounted file system
1179 * @sb:         super block of file system
1180 * @ino:        inode number to get
1181 *
1182 * Search for the inode specified by @ino in the inode cache and if present
1183 * return it with an increased reference count. This is for file systems
1184 * where the inode number is sufficient for unique identification of an inode.
1185 *
1186 * If the inode is not in cache, allocate a new inode and return it locked,
1187 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1188 * before unlocking it via unlock_new_inode().
1189 */
1190struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1191{
1192        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1193        struct inode *inode;
1194again:
1195        spin_lock(&inode_hash_lock);
1196        inode = find_inode_fast(sb, head, ino);
1197        spin_unlock(&inode_hash_lock);
1198        if (inode) {
1199                if (IS_ERR(inode))
1200                        return NULL;
1201                wait_on_inode(inode);
1202                if (unlikely(inode_unhashed(inode))) {
1203                        iput(inode);
1204                        goto again;
1205                }
1206                return inode;
1207        }
1208
1209        inode = alloc_inode(sb);
1210        if (inode) {
1211                struct inode *old;
1212
1213                spin_lock(&inode_hash_lock);
1214                /* We released the lock, so.. */
1215                old = find_inode_fast(sb, head, ino);
1216                if (!old) {
1217                        inode->i_ino = ino;
1218                        spin_lock(&inode->i_lock);
1219                        inode->i_state = I_NEW;
1220                        hlist_add_head_rcu(&inode->i_hash, head);
1221                        spin_unlock(&inode->i_lock);
1222                        inode_sb_list_add(inode);
1223                        spin_unlock(&inode_hash_lock);
1224
1225                        /* Return the locked inode with I_NEW set, the
1226                         * caller is responsible for filling in the contents
1227                         */
1228                        return inode;
1229                }
1230
1231                /*
1232                 * Uhhuh, somebody else created the same inode under
1233                 * us. Use the old inode instead of the one we just
1234                 * allocated.
1235                 */
1236                spin_unlock(&inode_hash_lock);
1237                destroy_inode(inode);
1238                if (IS_ERR(old))
1239                        return NULL;
1240                inode = old;
1241                wait_on_inode(inode);
1242                if (unlikely(inode_unhashed(inode))) {
1243                        iput(inode);
1244                        goto again;
1245                }
1246        }
1247        return inode;
1248}
1249EXPORT_SYMBOL(iget_locked);
1250
1251/*
1252 * search the inode cache for a matching inode number.
1253 * If we find one, then the inode number we are trying to
1254 * allocate is not unique and so we should not use it.
1255 *
1256 * Returns 1 if the inode number is unique, 0 if it is not.
1257 */
1258static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1259{
1260        struct hlist_head *b = inode_hashtable + hash(sb, ino);
1261        struct inode *inode;
1262
1263        hlist_for_each_entry_rcu(inode, b, i_hash) {
1264                if (inode->i_ino == ino && inode->i_sb == sb)
1265                        return 0;
1266        }
1267        return 1;
1268}
1269
1270/**
1271 *      iunique - get a unique inode number
1272 *      @sb: superblock
1273 *      @max_reserved: highest reserved inode number
1274 *
1275 *      Obtain an inode number that is unique on the system for a given
1276 *      superblock. This is used by file systems that have no natural
1277 *      permanent inode numbering system. An inode number is returned that
1278 *      is higher than the reserved limit but unique.
1279 *
1280 *      BUGS:
1281 *      With a large number of inodes live on the file system this function
1282 *      currently becomes quite slow.
1283 */
1284ino_t iunique(struct super_block *sb, ino_t max_reserved)
1285{
1286        /*
1287         * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1288         * error if st_ino won't fit in target struct field. Use 32bit counter
1289         * here to attempt to avoid that.
1290         */
1291        static DEFINE_SPINLOCK(iunique_lock);
1292        static unsigned int counter;
1293        ino_t res;
1294
1295        rcu_read_lock();
1296        spin_lock(&iunique_lock);
1297        do {
1298                if (counter <= max_reserved)
1299                        counter = max_reserved + 1;
1300                res = counter++;
1301        } while (!test_inode_iunique(sb, res));
1302        spin_unlock(&iunique_lock);
1303        rcu_read_unlock();
1304
1305        return res;
1306}
1307EXPORT_SYMBOL(iunique);
1308
1309struct inode *igrab(struct inode *inode)
1310{
1311        spin_lock(&inode->i_lock);
1312        if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1313                __iget(inode);
1314                spin_unlock(&inode->i_lock);
1315        } else {
1316                spin_unlock(&inode->i_lock);
1317                /*
1318                 * Handle the case where s_op->clear_inode is not been
1319                 * called yet, and somebody is calling igrab
1320                 * while the inode is getting freed.
1321                 */
1322                inode = NULL;
1323        }
1324        return inode;
1325}
1326EXPORT_SYMBOL(igrab);
1327
1328/**
1329 * ilookup5_nowait - search for an inode in the inode cache
1330 * @sb:         super block of file system to search
1331 * @hashval:    hash value (usually inode number) to search for
1332 * @test:       callback used for comparisons between inodes
1333 * @data:       opaque data pointer to pass to @test
1334 *
1335 * Search for the inode specified by @hashval and @data in the inode cache.
1336 * If the inode is in the cache, the inode is returned with an incremented
1337 * reference count.
1338 *
1339 * Note: I_NEW is not waited upon so you have to be very careful what you do
1340 * with the returned inode.  You probably should be using ilookup5() instead.
1341 *
1342 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1343 */
1344struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1345                int (*test)(struct inode *, void *), void *data)
1346{
1347        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1348        struct inode *inode;
1349
1350        spin_lock(&inode_hash_lock);
1351        inode = find_inode(sb, head, test, data);
1352        spin_unlock(&inode_hash_lock);
1353
1354        return IS_ERR(inode) ? NULL : inode;
1355}
1356EXPORT_SYMBOL(ilookup5_nowait);
1357
1358/**
1359 * ilookup5 - search for an inode in the inode cache
1360 * @sb:         super block of file system to search
1361 * @hashval:    hash value (usually inode number) to search for
1362 * @test:       callback used for comparisons between inodes
1363 * @data:       opaque data pointer to pass to @test
1364 *
1365 * Search for the inode specified by @hashval and @data in the inode cache,
1366 * and if the inode is in the cache, return the inode with an incremented
1367 * reference count.  Waits on I_NEW before returning the inode.
1368 * returned with an incremented reference count.
1369 *
1370 * This is a generalized version of ilookup() for file systems where the
1371 * inode number is not sufficient for unique identification of an inode.
1372 *
1373 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1374 */
1375struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1376                int (*test)(struct inode *, void *), void *data)
1377{
1378        struct inode *inode;
1379again:
1380        inode = ilookup5_nowait(sb, hashval, test, data);
1381        if (inode) {
1382                wait_on_inode(inode);
1383                if (unlikely(inode_unhashed(inode))) {
1384                        iput(inode);
1385                        goto again;
1386                }
1387        }
1388        return inode;
1389}
1390EXPORT_SYMBOL(ilookup5);
1391
1392/**
1393 * ilookup - search for an inode in the inode cache
1394 * @sb:         super block of file system to search
1395 * @ino:        inode number to search for
1396 *
1397 * Search for the inode @ino in the inode cache, and if the inode is in the
1398 * cache, the inode is returned with an incremented reference count.
1399 */
1400struct inode *ilookup(struct super_block *sb, unsigned long ino)
1401{
1402        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1403        struct inode *inode;
1404again:
1405        spin_lock(&inode_hash_lock);
1406        inode = find_inode_fast(sb, head, ino);
1407        spin_unlock(&inode_hash_lock);
1408
1409        if (inode) {
1410                if (IS_ERR(inode))
1411                        return NULL;
1412                wait_on_inode(inode);
1413                if (unlikely(inode_unhashed(inode))) {
1414                        iput(inode);
1415                        goto again;
1416                }
1417        }
1418        return inode;
1419}
1420EXPORT_SYMBOL(ilookup);
1421
1422/**
1423 * find_inode_nowait - find an inode in the inode cache
1424 * @sb:         super block of file system to search
1425 * @hashval:    hash value (usually inode number) to search for
1426 * @match:      callback used for comparisons between inodes
1427 * @data:       opaque data pointer to pass to @match
1428 *
1429 * Search for the inode specified by @hashval and @data in the inode
1430 * cache, where the helper function @match will return 0 if the inode
1431 * does not match, 1 if the inode does match, and -1 if the search
1432 * should be stopped.  The @match function must be responsible for
1433 * taking the i_lock spin_lock and checking i_state for an inode being
1434 * freed or being initialized, and incrementing the reference count
1435 * before returning 1.  It also must not sleep, since it is called with
1436 * the inode_hash_lock spinlock held.
1437 *
1438 * This is a even more generalized version of ilookup5() when the
1439 * function must never block --- find_inode() can block in
1440 * __wait_on_freeing_inode() --- or when the caller can not increment
1441 * the reference count because the resulting iput() might cause an
1442 * inode eviction.  The tradeoff is that the @match funtion must be
1443 * very carefully implemented.
1444 */
1445struct inode *find_inode_nowait(struct super_block *sb,
1446                                unsigned long hashval,
1447                                int (*match)(struct inode *, unsigned long,
1448                                             void *),
1449                                void *data)
1450{
1451        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1452        struct inode *inode, *ret_inode = NULL;
1453        int mval;
1454
1455        spin_lock(&inode_hash_lock);
1456        hlist_for_each_entry(inode, head, i_hash) {
1457                if (inode->i_sb != sb)
1458                        continue;
1459                mval = match(inode, hashval, data);
1460                if (mval == 0)
1461                        continue;
1462                if (mval == 1)
1463                        ret_inode = inode;
1464                goto out;
1465        }
1466out:
1467        spin_unlock(&inode_hash_lock);
1468        return ret_inode;
1469}
1470EXPORT_SYMBOL(find_inode_nowait);
1471
1472/**
1473 * find_inode_rcu - find an inode in the inode cache
1474 * @sb:         Super block of file system to search
1475 * @hashval:    Key to hash
1476 * @test:       Function to test match on an inode
1477 * @data:       Data for test function
1478 *
1479 * Search for the inode specified by @hashval and @data in the inode cache,
1480 * where the helper function @test will return 0 if the inode does not match
1481 * and 1 if it does.  The @test function must be responsible for taking the
1482 * i_lock spin_lock and checking i_state for an inode being freed or being
1483 * initialized.
1484 *
1485 * If successful, this will return the inode for which the @test function
1486 * returned 1 and NULL otherwise.
1487 *
1488 * The @test function is not permitted to take a ref on any inode presented.
1489 * It is also not permitted to sleep.
1490 *
1491 * The caller must hold the RCU read lock.
1492 */
1493struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1494                             int (*test)(struct inode *, void *), void *data)
1495{
1496        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1497        struct inode *inode;
1498
1499        RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1500                         "suspicious find_inode_rcu() usage");
1501
1502        hlist_for_each_entry_rcu(inode, head, i_hash) {
1503                if (inode->i_sb == sb &&
1504                    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1505                    test(inode, data))
1506                        return inode;
1507        }
1508        return NULL;
1509}
1510EXPORT_SYMBOL(find_inode_rcu);
1511
1512/**
1513 * find_inode_by_ino_rcu - Find an inode in the inode cache
1514 * @sb:         Super block of file system to search
1515 * @ino:        The inode number to match
1516 *
1517 * Search for the inode specified by @hashval and @data in the inode cache,
1518 * where the helper function @test will return 0 if the inode does not match
1519 * and 1 if it does.  The @test function must be responsible for taking the
1520 * i_lock spin_lock and checking i_state for an inode being freed or being
1521 * initialized.
1522 *
1523 * If successful, this will return the inode for which the @test function
1524 * returned 1 and NULL otherwise.
1525 *
1526 * The @test function is not permitted to take a ref on any inode presented.
1527 * It is also not permitted to sleep.
1528 *
1529 * The caller must hold the RCU read lock.
1530 */
1531struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1532                                    unsigned long ino)
1533{
1534        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1535        struct inode *inode;
1536
1537        RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1538                         "suspicious find_inode_by_ino_rcu() usage");
1539
1540        hlist_for_each_entry_rcu(inode, head, i_hash) {
1541                if (inode->i_ino == ino &&
1542                    inode->i_sb == sb &&
1543                    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1544                    return inode;
1545        }
1546        return NULL;
1547}
1548EXPORT_SYMBOL(find_inode_by_ino_rcu);
1549
1550int insert_inode_locked(struct inode *inode)
1551{
1552        struct super_block *sb = inode->i_sb;
1553        ino_t ino = inode->i_ino;
1554        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1555
1556        while (1) {
1557                struct inode *old = NULL;
1558                spin_lock(&inode_hash_lock);
1559                hlist_for_each_entry(old, head, i_hash) {
1560                        if (old->i_ino != ino)
1561                                continue;
1562                        if (old->i_sb != sb)
1563                                continue;
1564                        spin_lock(&old->i_lock);
1565                        if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1566                                spin_unlock(&old->i_lock);
1567                                continue;
1568                        }
1569                        break;
1570                }
1571                if (likely(!old)) {
1572                        spin_lock(&inode->i_lock);
1573                        inode->i_state |= I_NEW | I_CREATING;
1574                        hlist_add_head_rcu(&inode->i_hash, head);
1575                        spin_unlock(&inode->i_lock);
1576                        spin_unlock(&inode_hash_lock);
1577                        return 0;
1578                }
1579                if (unlikely(old->i_state & I_CREATING)) {
1580                        spin_unlock(&old->i_lock);
1581                        spin_unlock(&inode_hash_lock);
1582                        return -EBUSY;
1583                }
1584                __iget(old);
1585                spin_unlock(&old->i_lock);
1586                spin_unlock(&inode_hash_lock);
1587                wait_on_inode(old);
1588                if (unlikely(!inode_unhashed(old))) {
1589                        iput(old);
1590                        return -EBUSY;
1591                }
1592                iput(old);
1593        }
1594}
1595EXPORT_SYMBOL(insert_inode_locked);
1596
1597int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1598                int (*test)(struct inode *, void *), void *data)
1599{
1600        struct inode *old;
1601
1602        inode->i_state |= I_CREATING;
1603        old = inode_insert5(inode, hashval, test, NULL, data);
1604
1605        if (old != inode) {
1606                iput(old);
1607                return -EBUSY;
1608        }
1609        return 0;
1610}
1611EXPORT_SYMBOL(insert_inode_locked4);
1612
1613
1614int generic_delete_inode(struct inode *inode)
1615{
1616        return 1;
1617}
1618EXPORT_SYMBOL(generic_delete_inode);
1619
1620/*
1621 * Called when we're dropping the last reference
1622 * to an inode.
1623 *
1624 * Call the FS "drop_inode()" function, defaulting to
1625 * the legacy UNIX filesystem behaviour.  If it tells
1626 * us to evict inode, do so.  Otherwise, retain inode
1627 * in cache if fs is alive, sync and evict if fs is
1628 * shutting down.
1629 */
1630static void iput_final(struct inode *inode)
1631{
1632        struct super_block *sb = inode->i_sb;
1633        const struct super_operations *op = inode->i_sb->s_op;
1634        unsigned long state;
1635        int drop;
1636
1637        WARN_ON(inode->i_state & I_NEW);
1638
1639        if (op->drop_inode)
1640                drop = op->drop_inode(inode);
1641        else
1642                drop = generic_drop_inode(inode);
1643
1644        if (!drop &&
1645            !(inode->i_state & I_DONTCACHE) &&
1646            (sb->s_flags & SB_ACTIVE)) {
1647                __inode_add_lru(inode, true);
1648                spin_unlock(&inode->i_lock);
1649                return;
1650        }
1651
1652        state = inode->i_state;
1653        if (!drop) {
1654                WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1655                spin_unlock(&inode->i_lock);
1656
1657                write_inode_now(inode, 1);
1658
1659                spin_lock(&inode->i_lock);
1660                state = inode->i_state;
1661                WARN_ON(state & I_NEW);
1662                state &= ~I_WILL_FREE;
1663        }
1664
1665        WRITE_ONCE(inode->i_state, state | I_FREEING);
1666        if (!list_empty(&inode->i_lru))
1667                inode_lru_list_del(inode);
1668        spin_unlock(&inode->i_lock);
1669
1670        evict(inode);
1671}
1672
1673/**
1674 *      iput    - put an inode
1675 *      @inode: inode to put
1676 *
1677 *      Puts an inode, dropping its usage count. If the inode use count hits
1678 *      zero, the inode is then freed and may also be destroyed.
1679 *
1680 *      Consequently, iput() can sleep.
1681 */
1682void iput(struct inode *inode)
1683{
1684        if (!inode)
1685                return;
1686        BUG_ON(inode->i_state & I_CLEAR);
1687retry:
1688        if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1689                if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1690                        atomic_inc(&inode->i_count);
1691                        spin_unlock(&inode->i_lock);
1692                        trace_writeback_lazytime_iput(inode);
1693                        mark_inode_dirty_sync(inode);
1694                        goto retry;
1695                }
1696                iput_final(inode);
1697        }
1698}
1699EXPORT_SYMBOL(iput);
1700
1701#ifdef CONFIG_BLOCK
1702/**
1703 *      bmap    - find a block number in a file
1704 *      @inode:  inode owning the block number being requested
1705 *      @block: pointer containing the block to find
1706 *
1707 *      Replaces the value in ``*block`` with the block number on the device holding
1708 *      corresponding to the requested block number in the file.
1709 *      That is, asked for block 4 of inode 1 the function will replace the
1710 *      4 in ``*block``, with disk block relative to the disk start that holds that
1711 *      block of the file.
1712 *
1713 *      Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1714 *      hole, returns 0 and ``*block`` is also set to 0.
1715 */
1716int bmap(struct inode *inode, sector_t *block)
1717{
1718        if (!inode->i_mapping->a_ops->bmap)
1719                return -EINVAL;
1720
1721        *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1722        return 0;
1723}
1724EXPORT_SYMBOL(bmap);
1725#endif
1726
1727/*
1728 * With relative atime, only update atime if the previous atime is
1729 * earlier than either the ctime or mtime or if at least a day has
1730 * passed since the last atime update.
1731 */
1732static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1733                             struct timespec64 now)
1734{
1735
1736        if (!(mnt->mnt_flags & MNT_RELATIME))
1737                return 1;
1738        /*
1739         * Is mtime younger than atime? If yes, update atime:
1740         */
1741        if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1742                return 1;
1743        /*
1744         * Is ctime younger than atime? If yes, update atime:
1745         */
1746        if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1747                return 1;
1748
1749        /*
1750         * Is the previous atime value older than a day? If yes,
1751         * update atime:
1752         */
1753        if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1754                return 1;
1755        /*
1756         * Good, we can skip the atime update:
1757         */
1758        return 0;
1759}
1760
1761int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1762{
1763        int dirty_flags = 0;
1764
1765        if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1766                if (flags & S_ATIME)
1767                        inode->i_atime = *time;
1768                if (flags & S_CTIME)
1769                        inode->i_ctime = *time;
1770                if (flags & S_MTIME)
1771                        inode->i_mtime = *time;
1772
1773                if (inode->i_sb->s_flags & SB_LAZYTIME)
1774                        dirty_flags |= I_DIRTY_TIME;
1775                else
1776                        dirty_flags |= I_DIRTY_SYNC;
1777        }
1778
1779        if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1780                dirty_flags |= I_DIRTY_SYNC;
1781
1782        __mark_inode_dirty(inode, dirty_flags);
1783        return 0;
1784}
1785EXPORT_SYMBOL(generic_update_time);
1786
1787/*
1788 * This does the actual work of updating an inodes time or version.  Must have
1789 * had called mnt_want_write() before calling this.
1790 */
1791int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
1792{
1793        if (inode->i_op->update_time)
1794                return inode->i_op->update_time(inode, time, flags);
1795        return generic_update_time(inode, time, flags);
1796}
1797EXPORT_SYMBOL(inode_update_time);
1798
1799/**
1800 *      atime_needs_update      -       update the access time
1801 *      @path: the &struct path to update
1802 *      @inode: inode to update
1803 *
1804 *      Update the accessed time on an inode and mark it for writeback.
1805 *      This function automatically handles read only file systems and media,
1806 *      as well as the "noatime" flag and inode specific "noatime" markers.
1807 */
1808bool atime_needs_update(const struct path *path, struct inode *inode)
1809{
1810        struct vfsmount *mnt = path->mnt;
1811        struct timespec64 now;
1812
1813        if (inode->i_flags & S_NOATIME)
1814                return false;
1815
1816        /* Atime updates will likely cause i_uid and i_gid to be written
1817         * back improprely if their true value is unknown to the vfs.
1818         */
1819        if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
1820                return false;
1821
1822        if (IS_NOATIME(inode))
1823                return false;
1824        if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1825                return false;
1826
1827        if (mnt->mnt_flags & MNT_NOATIME)
1828                return false;
1829        if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1830                return false;
1831
1832        now = current_time(inode);
1833
1834        if (!relatime_need_update(mnt, inode, now))
1835                return false;
1836
1837        if (timespec64_equal(&inode->i_atime, &now))
1838                return false;
1839
1840        return true;
1841}
1842
1843void touch_atime(const struct path *path)
1844{
1845        struct vfsmount *mnt = path->mnt;
1846        struct inode *inode = d_inode(path->dentry);
1847        struct timespec64 now;
1848
1849        if (!atime_needs_update(path, inode))
1850                return;
1851
1852        if (!sb_start_write_trylock(inode->i_sb))
1853                return;
1854
1855        if (__mnt_want_write(mnt) != 0)
1856                goto skip_update;
1857        /*
1858         * File systems can error out when updating inodes if they need to
1859         * allocate new space to modify an inode (such is the case for
1860         * Btrfs), but since we touch atime while walking down the path we
1861         * really don't care if we failed to update the atime of the file,
1862         * so just ignore the return value.
1863         * We may also fail on filesystems that have the ability to make parts
1864         * of the fs read only, e.g. subvolumes in Btrfs.
1865         */
1866        now = current_time(inode);
1867        inode_update_time(inode, &now, S_ATIME);
1868        __mnt_drop_write(mnt);
1869skip_update:
1870        sb_end_write(inode->i_sb);
1871}
1872EXPORT_SYMBOL(touch_atime);
1873
1874/*
1875 * The logic we want is
1876 *
1877 *      if suid or (sgid and xgrp)
1878 *              remove privs
1879 */
1880int should_remove_suid(struct dentry *dentry)
1881{
1882        umode_t mode = d_inode(dentry)->i_mode;
1883        int kill = 0;
1884
1885        /* suid always must be killed */
1886        if (unlikely(mode & S_ISUID))
1887                kill = ATTR_KILL_SUID;
1888
1889        /*
1890         * sgid without any exec bits is just a mandatory locking mark; leave
1891         * it alone.  If some exec bits are set, it's a real sgid; kill it.
1892         */
1893        if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1894                kill |= ATTR_KILL_SGID;
1895
1896        if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1897                return kill;
1898
1899        return 0;
1900}
1901EXPORT_SYMBOL(should_remove_suid);
1902
1903/*
1904 * Return mask of changes for notify_change() that need to be done as a
1905 * response to write or truncate. Return 0 if nothing has to be changed.
1906 * Negative value on error (change should be denied).
1907 */
1908int dentry_needs_remove_privs(struct dentry *dentry)
1909{
1910        struct inode *inode = d_inode(dentry);
1911        int mask = 0;
1912        int ret;
1913
1914        if (IS_NOSEC(inode))
1915                return 0;
1916
1917        mask = should_remove_suid(dentry);
1918        ret = security_inode_need_killpriv(dentry);
1919        if (ret < 0)
1920                return ret;
1921        if (ret)
1922                mask |= ATTR_KILL_PRIV;
1923        return mask;
1924}
1925
1926static int __remove_privs(struct user_namespace *mnt_userns,
1927                          struct dentry *dentry, int kill)
1928{
1929        struct iattr newattrs;
1930
1931        newattrs.ia_valid = ATTR_FORCE | kill;
1932        /*
1933         * Note we call this on write, so notify_change will not
1934         * encounter any conflicting delegations:
1935         */
1936        return notify_change(mnt_userns, dentry, &newattrs, NULL);
1937}
1938
1939/*
1940 * Remove special file priviledges (suid, capabilities) when file is written
1941 * to or truncated.
1942 */
1943int file_remove_privs(struct file *file)
1944{
1945        struct dentry *dentry = file_dentry(file);
1946        struct inode *inode = file_inode(file);
1947        int kill;
1948        int error = 0;
1949
1950        /*
1951         * Fast path for nothing security related.
1952         * As well for non-regular files, e.g. blkdev inodes.
1953         * For example, blkdev_write_iter() might get here
1954         * trying to remove privs which it is not allowed to.
1955         */
1956        if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1957                return 0;
1958
1959        kill = dentry_needs_remove_privs(dentry);
1960        if (kill < 0)
1961                return kill;
1962        if (kill)
1963                error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
1964        if (!error)
1965                inode_has_no_xattr(inode);
1966
1967        return error;
1968}
1969EXPORT_SYMBOL(file_remove_privs);
1970
1971/**
1972 *      file_update_time        -       update mtime and ctime time
1973 *      @file: file accessed
1974 *
1975 *      Update the mtime and ctime members of an inode and mark the inode
1976 *      for writeback.  Note that this function is meant exclusively for
1977 *      usage in the file write path of filesystems, and filesystems may
1978 *      choose to explicitly ignore update via this function with the
1979 *      S_NOCMTIME inode flag, e.g. for network filesystem where these
1980 *      timestamps are handled by the server.  This can return an error for
1981 *      file systems who need to allocate space in order to update an inode.
1982 */
1983
1984int file_update_time(struct file *file)
1985{
1986        struct inode *inode = file_inode(file);
1987        struct timespec64 now;
1988        int sync_it = 0;
1989        int ret;
1990
1991        /* First try to exhaust all avenues to not sync */
1992        if (IS_NOCMTIME(inode))
1993                return 0;
1994
1995        now = current_time(inode);
1996        if (!timespec64_equal(&inode->i_mtime, &now))
1997                sync_it = S_MTIME;
1998
1999        if (!timespec64_equal(&inode->i_ctime, &now))
2000                sync_it |= S_CTIME;
2001
2002        if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2003                sync_it |= S_VERSION;
2004
2005        if (!sync_it)
2006                return 0;
2007
2008        /* Finally allowed to write? Takes lock. */
2009        if (__mnt_want_write_file(file))
2010                return 0;
2011
2012        ret = inode_update_time(inode, &now, sync_it);
2013        __mnt_drop_write_file(file);
2014
2015        return ret;
2016}
2017EXPORT_SYMBOL(file_update_time);
2018
2019/* Caller must hold the file's inode lock */
2020int file_modified(struct file *file)
2021{
2022        int err;
2023
2024        /*
2025         * Clear the security bits if the process is not being run by root.
2026         * This keeps people from modifying setuid and setgid binaries.
2027         */
2028        err = file_remove_privs(file);
2029        if (err)
2030                return err;
2031
2032        if (unlikely(file->f_mode & FMODE_NOCMTIME))
2033                return 0;
2034
2035        return file_update_time(file);
2036}
2037EXPORT_SYMBOL(file_modified);
2038
2039int inode_needs_sync(struct inode *inode)
2040{
2041        if (IS_SYNC(inode))
2042                return 1;
2043        if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2044                return 1;
2045        return 0;
2046}
2047EXPORT_SYMBOL(inode_needs_sync);
2048
2049/*
2050 * If we try to find an inode in the inode hash while it is being
2051 * deleted, we have to wait until the filesystem completes its
2052 * deletion before reporting that it isn't found.  This function waits
2053 * until the deletion _might_ have completed.  Callers are responsible
2054 * to recheck inode state.
2055 *
2056 * It doesn't matter if I_NEW is not set initially, a call to
2057 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2058 * will DTRT.
2059 */
2060static void __wait_on_freeing_inode(struct inode *inode)
2061{
2062        wait_queue_head_t *wq;
2063        DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2064        wq = bit_waitqueue(&inode->i_state, __I_NEW);
2065        prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2066        spin_unlock(&inode->i_lock);
2067        spin_unlock(&inode_hash_lock);
2068        schedule();
2069        finish_wait(wq, &wait.wq_entry);
2070        spin_lock(&inode_hash_lock);
2071}
2072
2073static __initdata unsigned long ihash_entries;
2074static int __init set_ihash_entries(char *str)
2075{
2076        if (!str)
2077                return 0;
2078        ihash_entries = simple_strtoul(str, &str, 0);
2079        return 1;
2080}
2081__setup("ihash_entries=", set_ihash_entries);
2082
2083/*
2084 * Initialize the waitqueues and inode hash table.
2085 */
2086void __init inode_init_early(void)
2087{
2088        /* If hashes are distributed across NUMA nodes, defer
2089         * hash allocation until vmalloc space is available.
2090         */
2091        if (hashdist)
2092                return;
2093
2094        inode_hashtable =
2095                alloc_large_system_hash("Inode-cache",
2096                                        sizeof(struct hlist_head),
2097                                        ihash_entries,
2098                                        14,
2099                                        HASH_EARLY | HASH_ZERO,
2100                                        &i_hash_shift,
2101                                        &i_hash_mask,
2102                                        0,
2103                                        0);
2104}
2105
2106void __init inode_init(void)
2107{
2108        /* inode slab cache */
2109        inode_cachep = kmem_cache_create("inode_cache",
2110                                         sizeof(struct inode),
2111                                         0,
2112                                         (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2113                                         SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2114                                         init_once);
2115
2116        /* Hash may have been set up in inode_init_early */
2117        if (!hashdist)
2118                return;
2119
2120        inode_hashtable =
2121                alloc_large_system_hash("Inode-cache",
2122                                        sizeof(struct hlist_head),
2123                                        ihash_entries,
2124                                        14,
2125                                        HASH_ZERO,
2126                                        &i_hash_shift,
2127                                        &i_hash_mask,
2128                                        0,
2129                                        0);
2130}
2131
2132void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2133{
2134        inode->i_mode = mode;
2135        if (S_ISCHR(mode)) {
2136                inode->i_fop = &def_chr_fops;
2137                inode->i_rdev = rdev;
2138        } else if (S_ISBLK(mode)) {
2139                inode->i_fop = &def_blk_fops;
2140                inode->i_rdev = rdev;
2141        } else if (S_ISFIFO(mode))
2142                inode->i_fop = &pipefifo_fops;
2143        else if (S_ISSOCK(mode))
2144                ;       /* leave it no_open_fops */
2145        else
2146                printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2147                                  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2148                                  inode->i_ino);
2149}
2150EXPORT_SYMBOL(init_special_inode);
2151
2152/**
2153 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2154 * @mnt_userns: User namespace of the mount the inode was created from
2155 * @inode: New inode
2156 * @dir: Directory inode
2157 * @mode: mode of the new inode
2158 *
2159 * If the inode has been created through an idmapped mount the user namespace of
2160 * the vfsmount must be passed through @mnt_userns. This function will then take
2161 * care to map the inode according to @mnt_userns before checking permissions
2162 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2163 * checking is to be performed on the raw inode simply passs init_user_ns.
2164 */
2165void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
2166                      const struct inode *dir, umode_t mode)
2167{
2168        inode_fsuid_set(inode, mnt_userns);
2169        if (dir && dir->i_mode & S_ISGID) {
2170                inode->i_gid = dir->i_gid;
2171
2172                /* Directories are special, and always inherit S_ISGID */
2173                if (S_ISDIR(mode))
2174                        mode |= S_ISGID;
2175                else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2176                         !in_group_p(i_gid_into_mnt(mnt_userns, dir)) &&
2177                         !capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID))
2178                        mode &= ~S_ISGID;
2179        } else
2180                inode_fsgid_set(inode, mnt_userns);
2181        inode->i_mode = mode;
2182}
2183EXPORT_SYMBOL(inode_init_owner);
2184
2185/**
2186 * inode_owner_or_capable - check current task permissions to inode
2187 * @mnt_userns: user namespace of the mount the inode was found from
2188 * @inode: inode being checked
2189 *
2190 * Return true if current either has CAP_FOWNER in a namespace with the
2191 * inode owner uid mapped, or owns the file.
2192 *
2193 * If the inode has been found through an idmapped mount the user namespace of
2194 * the vfsmount must be passed through @mnt_userns. This function will then take
2195 * care to map the inode according to @mnt_userns before checking permissions.
2196 * On non-idmapped mounts or if permission checking is to be performed on the
2197 * raw inode simply passs init_user_ns.
2198 */
2199bool inode_owner_or_capable(struct user_namespace *mnt_userns,
2200                            const struct inode *inode)
2201{
2202        kuid_t i_uid;
2203        struct user_namespace *ns;
2204
2205        i_uid = i_uid_into_mnt(mnt_userns, inode);
2206        if (uid_eq(current_fsuid(), i_uid))
2207                return true;
2208
2209        ns = current_user_ns();
2210        if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER))
2211                return true;
2212        return false;
2213}
2214EXPORT_SYMBOL(inode_owner_or_capable);
2215
2216/*
2217 * Direct i/o helper functions
2218 */
2219static void __inode_dio_wait(struct inode *inode)
2220{
2221        wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2222        DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2223
2224        do {
2225                prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2226                if (atomic_read(&inode->i_dio_count))
2227                        schedule();
2228        } while (atomic_read(&inode->i_dio_count));
2229        finish_wait(wq, &q.wq_entry);
2230}
2231
2232/**
2233 * inode_dio_wait - wait for outstanding DIO requests to finish
2234 * @inode: inode to wait for
2235 *
2236 * Waits for all pending direct I/O requests to finish so that we can
2237 * proceed with a truncate or equivalent operation.
2238 *
2239 * Must be called under a lock that serializes taking new references
2240 * to i_dio_count, usually by inode->i_mutex.
2241 */
2242void inode_dio_wait(struct inode *inode)
2243{
2244        if (atomic_read(&inode->i_dio_count))
2245                __inode_dio_wait(inode);
2246}
2247EXPORT_SYMBOL(inode_dio_wait);
2248
2249/*
2250 * inode_set_flags - atomically set some inode flags
2251 *
2252 * Note: the caller should be holding i_mutex, or else be sure that
2253 * they have exclusive access to the inode structure (i.e., while the
2254 * inode is being instantiated).  The reason for the cmpxchg() loop
2255 * --- which wouldn't be necessary if all code paths which modify
2256 * i_flags actually followed this rule, is that there is at least one
2257 * code path which doesn't today so we use cmpxchg() out of an abundance
2258 * of caution.
2259 *
2260 * In the long run, i_mutex is overkill, and we should probably look
2261 * at using the i_lock spinlock to protect i_flags, and then make sure
2262 * it is so documented in include/linux/fs.h and that all code follows
2263 * the locking convention!!
2264 */
2265void inode_set_flags(struct inode *inode, unsigned int flags,
2266                     unsigned int mask)
2267{
2268        WARN_ON_ONCE(flags & ~mask);
2269        set_mask_bits(&inode->i_flags, mask, flags);
2270}
2271EXPORT_SYMBOL(inode_set_flags);
2272
2273void inode_nohighmem(struct inode *inode)
2274{
2275        mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2276}
2277EXPORT_SYMBOL(inode_nohighmem);
2278
2279/**
2280 * timestamp_truncate - Truncate timespec to a granularity
2281 * @t: Timespec
2282 * @inode: inode being updated
2283 *
2284 * Truncate a timespec to the granularity supported by the fs
2285 * containing the inode. Always rounds down. gran must
2286 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2287 */
2288struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2289{
2290        struct super_block *sb = inode->i_sb;
2291        unsigned int gran = sb->s_time_gran;
2292
2293        t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2294        if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2295                t.tv_nsec = 0;
2296
2297        /* Avoid division in the common cases 1 ns and 1 s. */
2298        if (gran == 1)
2299                ; /* nothing */
2300        else if (gran == NSEC_PER_SEC)
2301                t.tv_nsec = 0;
2302        else if (gran > 1 && gran < NSEC_PER_SEC)
2303                t.tv_nsec -= t.tv_nsec % gran;
2304        else
2305                WARN(1, "invalid file time granularity: %u", gran);
2306        return t;
2307}
2308EXPORT_SYMBOL(timestamp_truncate);
2309
2310/**
2311 * current_time - Return FS time
2312 * @inode: inode.
2313 *
2314 * Return the current time truncated to the time granularity supported by
2315 * the fs.
2316 *
2317 * Note that inode and inode->sb cannot be NULL.
2318 * Otherwise, the function warns and returns time without truncation.
2319 */
2320struct timespec64 current_time(struct inode *inode)
2321{
2322        struct timespec64 now;
2323
2324        ktime_get_coarse_real_ts64(&now);
2325
2326        if (unlikely(!inode->i_sb)) {
2327                WARN(1, "current_time() called with uninitialized super_block in the inode");
2328                return now;
2329        }
2330
2331        return timestamp_truncate(now, inode);
2332}
2333EXPORT_SYMBOL(current_time);
2334