linux/fs/libfs.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *      fs/libfs.c
   4 *      Library for filesystems writers.
   5 */
   6
   7#include <linux/blkdev.h>
   8#include <linux/export.h>
   9#include <linux/pagemap.h>
  10#include <linux/slab.h>
  11#include <linux/cred.h>
  12#include <linux/mount.h>
  13#include <linux/vfs.h>
  14#include <linux/quotaops.h>
  15#include <linux/mutex.h>
  16#include <linux/namei.h>
  17#include <linux/exportfs.h>
  18#include <linux/writeback.h>
  19#include <linux/buffer_head.h> /* sync_mapping_buffers */
  20#include <linux/fs_context.h>
  21#include <linux/pseudo_fs.h>
  22#include <linux/fsnotify.h>
  23#include <linux/unicode.h>
  24#include <linux/fscrypt.h>
  25
  26#include <linux/uaccess.h>
  27
  28#include "internal.h"
  29
  30int simple_getattr(struct user_namespace *mnt_userns, const struct path *path,
  31                   struct kstat *stat, u32 request_mask,
  32                   unsigned int query_flags)
  33{
  34        struct inode *inode = d_inode(path->dentry);
  35        generic_fillattr(&init_user_ns, inode, stat);
  36        stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
  37        return 0;
  38}
  39EXPORT_SYMBOL(simple_getattr);
  40
  41int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  42{
  43        buf->f_type = dentry->d_sb->s_magic;
  44        buf->f_bsize = PAGE_SIZE;
  45        buf->f_namelen = NAME_MAX;
  46        return 0;
  47}
  48EXPORT_SYMBOL(simple_statfs);
  49
  50/*
  51 * Retaining negative dentries for an in-memory filesystem just wastes
  52 * memory and lookup time: arrange for them to be deleted immediately.
  53 */
  54int always_delete_dentry(const struct dentry *dentry)
  55{
  56        return 1;
  57}
  58EXPORT_SYMBOL(always_delete_dentry);
  59
  60const struct dentry_operations simple_dentry_operations = {
  61        .d_delete = always_delete_dentry,
  62};
  63EXPORT_SYMBOL(simple_dentry_operations);
  64
  65/*
  66 * Lookup the data. This is trivial - if the dentry didn't already
  67 * exist, we know it is negative.  Set d_op to delete negative dentries.
  68 */
  69struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
  70{
  71        if (dentry->d_name.len > NAME_MAX)
  72                return ERR_PTR(-ENAMETOOLONG);
  73        if (!dentry->d_sb->s_d_op)
  74                d_set_d_op(dentry, &simple_dentry_operations);
  75        d_add(dentry, NULL);
  76        return NULL;
  77}
  78EXPORT_SYMBOL(simple_lookup);
  79
  80int dcache_dir_open(struct inode *inode, struct file *file)
  81{
  82        file->private_data = d_alloc_cursor(file->f_path.dentry);
  83
  84        return file->private_data ? 0 : -ENOMEM;
  85}
  86EXPORT_SYMBOL(dcache_dir_open);
  87
  88int dcache_dir_close(struct inode *inode, struct file *file)
  89{
  90        dput(file->private_data);
  91        return 0;
  92}
  93EXPORT_SYMBOL(dcache_dir_close);
  94
  95/* parent is locked at least shared */
  96/*
  97 * Returns an element of siblings' list.
  98 * We are looking for <count>th positive after <p>; if
  99 * found, dentry is grabbed and returned to caller.
 100 * If no such element exists, NULL is returned.
 101 */
 102static struct dentry *scan_positives(struct dentry *cursor,
 103                                        struct list_head *p,
 104                                        loff_t count,
 105                                        struct dentry *last)
 106{
 107        struct dentry *dentry = cursor->d_parent, *found = NULL;
 108
 109        spin_lock(&dentry->d_lock);
 110        while ((p = p->next) != &dentry->d_subdirs) {
 111                struct dentry *d = list_entry(p, struct dentry, d_child);
 112                // we must at least skip cursors, to avoid livelocks
 113                if (d->d_flags & DCACHE_DENTRY_CURSOR)
 114                        continue;
 115                if (simple_positive(d) && !--count) {
 116                        spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
 117                        if (simple_positive(d))
 118                                found = dget_dlock(d);
 119                        spin_unlock(&d->d_lock);
 120                        if (likely(found))
 121                                break;
 122                        count = 1;
 123                }
 124                if (need_resched()) {
 125                        list_move(&cursor->d_child, p);
 126                        p = &cursor->d_child;
 127                        spin_unlock(&dentry->d_lock);
 128                        cond_resched();
 129                        spin_lock(&dentry->d_lock);
 130                }
 131        }
 132        spin_unlock(&dentry->d_lock);
 133        dput(last);
 134        return found;
 135}
 136
 137loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
 138{
 139        struct dentry *dentry = file->f_path.dentry;
 140        switch (whence) {
 141                case 1:
 142                        offset += file->f_pos;
 143                        fallthrough;
 144                case 0:
 145                        if (offset >= 0)
 146                                break;
 147                        fallthrough;
 148                default:
 149                        return -EINVAL;
 150        }
 151        if (offset != file->f_pos) {
 152                struct dentry *cursor = file->private_data;
 153                struct dentry *to = NULL;
 154
 155                inode_lock_shared(dentry->d_inode);
 156
 157                if (offset > 2)
 158                        to = scan_positives(cursor, &dentry->d_subdirs,
 159                                            offset - 2, NULL);
 160                spin_lock(&dentry->d_lock);
 161                if (to)
 162                        list_move(&cursor->d_child, &to->d_child);
 163                else
 164                        list_del_init(&cursor->d_child);
 165                spin_unlock(&dentry->d_lock);
 166                dput(to);
 167
 168                file->f_pos = offset;
 169
 170                inode_unlock_shared(dentry->d_inode);
 171        }
 172        return offset;
 173}
 174EXPORT_SYMBOL(dcache_dir_lseek);
 175
 176/* Relationship between i_mode and the DT_xxx types */
 177static inline unsigned char dt_type(struct inode *inode)
 178{
 179        return (inode->i_mode >> 12) & 15;
 180}
 181
 182/*
 183 * Directory is locked and all positive dentries in it are safe, since
 184 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 185 * both impossible due to the lock on directory.
 186 */
 187
 188int dcache_readdir(struct file *file, struct dir_context *ctx)
 189{
 190        struct dentry *dentry = file->f_path.dentry;
 191        struct dentry *cursor = file->private_data;
 192        struct list_head *anchor = &dentry->d_subdirs;
 193        struct dentry *next = NULL;
 194        struct list_head *p;
 195
 196        if (!dir_emit_dots(file, ctx))
 197                return 0;
 198
 199        if (ctx->pos == 2)
 200                p = anchor;
 201        else if (!list_empty(&cursor->d_child))
 202                p = &cursor->d_child;
 203        else
 204                return 0;
 205
 206        while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
 207                if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
 208                              d_inode(next)->i_ino, dt_type(d_inode(next))))
 209                        break;
 210                ctx->pos++;
 211                p = &next->d_child;
 212        }
 213        spin_lock(&dentry->d_lock);
 214        if (next)
 215                list_move_tail(&cursor->d_child, &next->d_child);
 216        else
 217                list_del_init(&cursor->d_child);
 218        spin_unlock(&dentry->d_lock);
 219        dput(next);
 220
 221        return 0;
 222}
 223EXPORT_SYMBOL(dcache_readdir);
 224
 225ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 226{
 227        return -EISDIR;
 228}
 229EXPORT_SYMBOL(generic_read_dir);
 230
 231const struct file_operations simple_dir_operations = {
 232        .open           = dcache_dir_open,
 233        .release        = dcache_dir_close,
 234        .llseek         = dcache_dir_lseek,
 235        .read           = generic_read_dir,
 236        .iterate_shared = dcache_readdir,
 237        .fsync          = noop_fsync,
 238};
 239EXPORT_SYMBOL(simple_dir_operations);
 240
 241const struct inode_operations simple_dir_inode_operations = {
 242        .lookup         = simple_lookup,
 243};
 244EXPORT_SYMBOL(simple_dir_inode_operations);
 245
 246static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
 247{
 248        struct dentry *child = NULL;
 249        struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
 250
 251        spin_lock(&parent->d_lock);
 252        while ((p = p->next) != &parent->d_subdirs) {
 253                struct dentry *d = container_of(p, struct dentry, d_child);
 254                if (simple_positive(d)) {
 255                        spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
 256                        if (simple_positive(d))
 257                                child = dget_dlock(d);
 258                        spin_unlock(&d->d_lock);
 259                        if (likely(child))
 260                                break;
 261                }
 262        }
 263        spin_unlock(&parent->d_lock);
 264        dput(prev);
 265        return child;
 266}
 267
 268void simple_recursive_removal(struct dentry *dentry,
 269                              void (*callback)(struct dentry *))
 270{
 271        struct dentry *this = dget(dentry);
 272        while (true) {
 273                struct dentry *victim = NULL, *child;
 274                struct inode *inode = this->d_inode;
 275
 276                inode_lock(inode);
 277                if (d_is_dir(this))
 278                        inode->i_flags |= S_DEAD;
 279                while ((child = find_next_child(this, victim)) == NULL) {
 280                        // kill and ascend
 281                        // update metadata while it's still locked
 282                        inode->i_ctime = current_time(inode);
 283                        clear_nlink(inode);
 284                        inode_unlock(inode);
 285                        victim = this;
 286                        this = this->d_parent;
 287                        inode = this->d_inode;
 288                        inode_lock(inode);
 289                        if (simple_positive(victim)) {
 290                                d_invalidate(victim);   // avoid lost mounts
 291                                if (d_is_dir(victim))
 292                                        fsnotify_rmdir(inode, victim);
 293                                else
 294                                        fsnotify_unlink(inode, victim);
 295                                if (callback)
 296                                        callback(victim);
 297                                dput(victim);           // unpin it
 298                        }
 299                        if (victim == dentry) {
 300                                inode->i_ctime = inode->i_mtime =
 301                                        current_time(inode);
 302                                if (d_is_dir(dentry))
 303                                        drop_nlink(inode);
 304                                inode_unlock(inode);
 305                                dput(dentry);
 306                                return;
 307                        }
 308                }
 309                inode_unlock(inode);
 310                this = child;
 311        }
 312}
 313EXPORT_SYMBOL(simple_recursive_removal);
 314
 315static const struct super_operations simple_super_operations = {
 316        .statfs         = simple_statfs,
 317};
 318
 319static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
 320{
 321        struct pseudo_fs_context *ctx = fc->fs_private;
 322        struct inode *root;
 323
 324        s->s_maxbytes = MAX_LFS_FILESIZE;
 325        s->s_blocksize = PAGE_SIZE;
 326        s->s_blocksize_bits = PAGE_SHIFT;
 327        s->s_magic = ctx->magic;
 328        s->s_op = ctx->ops ?: &simple_super_operations;
 329        s->s_xattr = ctx->xattr;
 330        s->s_time_gran = 1;
 331        root = new_inode(s);
 332        if (!root)
 333                return -ENOMEM;
 334
 335        /*
 336         * since this is the first inode, make it number 1. New inodes created
 337         * after this must take care not to collide with it (by passing
 338         * max_reserved of 1 to iunique).
 339         */
 340        root->i_ino = 1;
 341        root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 342        root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
 343        s->s_root = d_make_root(root);
 344        if (!s->s_root)
 345                return -ENOMEM;
 346        s->s_d_op = ctx->dops;
 347        return 0;
 348}
 349
 350static int pseudo_fs_get_tree(struct fs_context *fc)
 351{
 352        return get_tree_nodev(fc, pseudo_fs_fill_super);
 353}
 354
 355static void pseudo_fs_free(struct fs_context *fc)
 356{
 357        kfree(fc->fs_private);
 358}
 359
 360static const struct fs_context_operations pseudo_fs_context_ops = {
 361        .free           = pseudo_fs_free,
 362        .get_tree       = pseudo_fs_get_tree,
 363};
 364
 365/*
 366 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 367 * will never be mountable)
 368 */
 369struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
 370                                        unsigned long magic)
 371{
 372        struct pseudo_fs_context *ctx;
 373
 374        ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
 375        if (likely(ctx)) {
 376                ctx->magic = magic;
 377                fc->fs_private = ctx;
 378                fc->ops = &pseudo_fs_context_ops;
 379                fc->sb_flags |= SB_NOUSER;
 380                fc->global = true;
 381        }
 382        return ctx;
 383}
 384EXPORT_SYMBOL(init_pseudo);
 385
 386int simple_open(struct inode *inode, struct file *file)
 387{
 388        if (inode->i_private)
 389                file->private_data = inode->i_private;
 390        return 0;
 391}
 392EXPORT_SYMBOL(simple_open);
 393
 394int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 395{
 396        struct inode *inode = d_inode(old_dentry);
 397
 398        inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 399        inc_nlink(inode);
 400        ihold(inode);
 401        dget(dentry);
 402        d_instantiate(dentry, inode);
 403        return 0;
 404}
 405EXPORT_SYMBOL(simple_link);
 406
 407int simple_empty(struct dentry *dentry)
 408{
 409        struct dentry *child;
 410        int ret = 0;
 411
 412        spin_lock(&dentry->d_lock);
 413        list_for_each_entry(child, &dentry->d_subdirs, d_child) {
 414                spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 415                if (simple_positive(child)) {
 416                        spin_unlock(&child->d_lock);
 417                        goto out;
 418                }
 419                spin_unlock(&child->d_lock);
 420        }
 421        ret = 1;
 422out:
 423        spin_unlock(&dentry->d_lock);
 424        return ret;
 425}
 426EXPORT_SYMBOL(simple_empty);
 427
 428int simple_unlink(struct inode *dir, struct dentry *dentry)
 429{
 430        struct inode *inode = d_inode(dentry);
 431
 432        inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 433        drop_nlink(inode);
 434        dput(dentry);
 435        return 0;
 436}
 437EXPORT_SYMBOL(simple_unlink);
 438
 439int simple_rmdir(struct inode *dir, struct dentry *dentry)
 440{
 441        if (!simple_empty(dentry))
 442                return -ENOTEMPTY;
 443
 444        drop_nlink(d_inode(dentry));
 445        simple_unlink(dir, dentry);
 446        drop_nlink(dir);
 447        return 0;
 448}
 449EXPORT_SYMBOL(simple_rmdir);
 450
 451int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
 452                           struct inode *new_dir, struct dentry *new_dentry)
 453{
 454        bool old_is_dir = d_is_dir(old_dentry);
 455        bool new_is_dir = d_is_dir(new_dentry);
 456
 457        if (old_dir != new_dir && old_is_dir != new_is_dir) {
 458                if (old_is_dir) {
 459                        drop_nlink(old_dir);
 460                        inc_nlink(new_dir);
 461                } else {
 462                        drop_nlink(new_dir);
 463                        inc_nlink(old_dir);
 464                }
 465        }
 466        old_dir->i_ctime = old_dir->i_mtime =
 467        new_dir->i_ctime = new_dir->i_mtime =
 468        d_inode(old_dentry)->i_ctime =
 469        d_inode(new_dentry)->i_ctime = current_time(old_dir);
 470
 471        return 0;
 472}
 473EXPORT_SYMBOL_GPL(simple_rename_exchange);
 474
 475int simple_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
 476                  struct dentry *old_dentry, struct inode *new_dir,
 477                  struct dentry *new_dentry, unsigned int flags)
 478{
 479        struct inode *inode = d_inode(old_dentry);
 480        int they_are_dirs = d_is_dir(old_dentry);
 481
 482        if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
 483                return -EINVAL;
 484
 485        if (flags & RENAME_EXCHANGE)
 486                return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
 487
 488        if (!simple_empty(new_dentry))
 489                return -ENOTEMPTY;
 490
 491        if (d_really_is_positive(new_dentry)) {
 492                simple_unlink(new_dir, new_dentry);
 493                if (they_are_dirs) {
 494                        drop_nlink(d_inode(new_dentry));
 495                        drop_nlink(old_dir);
 496                }
 497        } else if (they_are_dirs) {
 498                drop_nlink(old_dir);
 499                inc_nlink(new_dir);
 500        }
 501
 502        old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 503                new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
 504
 505        return 0;
 506}
 507EXPORT_SYMBOL(simple_rename);
 508
 509/**
 510 * simple_setattr - setattr for simple filesystem
 511 * @mnt_userns: user namespace of the target mount
 512 * @dentry: dentry
 513 * @iattr: iattr structure
 514 *
 515 * Returns 0 on success, -error on failure.
 516 *
 517 * simple_setattr is a simple ->setattr implementation without a proper
 518 * implementation of size changes.
 519 *
 520 * It can either be used for in-memory filesystems or special files
 521 * on simple regular filesystems.  Anything that needs to change on-disk
 522 * or wire state on size changes needs its own setattr method.
 523 */
 524int simple_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
 525                   struct iattr *iattr)
 526{
 527        struct inode *inode = d_inode(dentry);
 528        int error;
 529
 530        error = setattr_prepare(mnt_userns, dentry, iattr);
 531        if (error)
 532                return error;
 533
 534        if (iattr->ia_valid & ATTR_SIZE)
 535                truncate_setsize(inode, iattr->ia_size);
 536        setattr_copy(mnt_userns, inode, iattr);
 537        mark_inode_dirty(inode);
 538        return 0;
 539}
 540EXPORT_SYMBOL(simple_setattr);
 541
 542static int simple_readpage(struct file *file, struct page *page)
 543{
 544        clear_highpage(page);
 545        flush_dcache_page(page);
 546        SetPageUptodate(page);
 547        unlock_page(page);
 548        return 0;
 549}
 550
 551int simple_write_begin(struct file *file, struct address_space *mapping,
 552                        loff_t pos, unsigned len, unsigned flags,
 553                        struct page **pagep, void **fsdata)
 554{
 555        struct page *page;
 556        pgoff_t index;
 557
 558        index = pos >> PAGE_SHIFT;
 559
 560        page = grab_cache_page_write_begin(mapping, index, flags);
 561        if (!page)
 562                return -ENOMEM;
 563
 564        *pagep = page;
 565
 566        if (!PageUptodate(page) && (len != PAGE_SIZE)) {
 567                unsigned from = pos & (PAGE_SIZE - 1);
 568
 569                zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
 570        }
 571        return 0;
 572}
 573EXPORT_SYMBOL(simple_write_begin);
 574
 575/**
 576 * simple_write_end - .write_end helper for non-block-device FSes
 577 * @file: See .write_end of address_space_operations
 578 * @mapping:            "
 579 * @pos:                "
 580 * @len:                "
 581 * @copied:             "
 582 * @page:               "
 583 * @fsdata:             "
 584 *
 585 * simple_write_end does the minimum needed for updating a page after writing is
 586 * done. It has the same API signature as the .write_end of
 587 * address_space_operations vector. So it can just be set onto .write_end for
 588 * FSes that don't need any other processing. i_mutex is assumed to be held.
 589 * Block based filesystems should use generic_write_end().
 590 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 591 * is not called, so a filesystem that actually does store data in .write_inode
 592 * should extend on what's done here with a call to mark_inode_dirty() in the
 593 * case that i_size has changed.
 594 *
 595 * Use *ONLY* with simple_readpage()
 596 */
 597static int simple_write_end(struct file *file, struct address_space *mapping,
 598                        loff_t pos, unsigned len, unsigned copied,
 599                        struct page *page, void *fsdata)
 600{
 601        struct inode *inode = page->mapping->host;
 602        loff_t last_pos = pos + copied;
 603
 604        /* zero the stale part of the page if we did a short copy */
 605        if (!PageUptodate(page)) {
 606                if (copied < len) {
 607                        unsigned from = pos & (PAGE_SIZE - 1);
 608
 609                        zero_user(page, from + copied, len - copied);
 610                }
 611                SetPageUptodate(page);
 612        }
 613        /*
 614         * No need to use i_size_read() here, the i_size
 615         * cannot change under us because we hold the i_mutex.
 616         */
 617        if (last_pos > inode->i_size)
 618                i_size_write(inode, last_pos);
 619
 620        set_page_dirty(page);
 621        unlock_page(page);
 622        put_page(page);
 623
 624        return copied;
 625}
 626
 627/*
 628 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
 629 */
 630const struct address_space_operations ram_aops = {
 631        .readpage       = simple_readpage,
 632        .write_begin    = simple_write_begin,
 633        .write_end      = simple_write_end,
 634        .set_page_dirty = __set_page_dirty_no_writeback,
 635};
 636EXPORT_SYMBOL(ram_aops);
 637
 638/*
 639 * the inodes created here are not hashed. If you use iunique to generate
 640 * unique inode values later for this filesystem, then you must take care
 641 * to pass it an appropriate max_reserved value to avoid collisions.
 642 */
 643int simple_fill_super(struct super_block *s, unsigned long magic,
 644                      const struct tree_descr *files)
 645{
 646        struct inode *inode;
 647        struct dentry *root;
 648        struct dentry *dentry;
 649        int i;
 650
 651        s->s_blocksize = PAGE_SIZE;
 652        s->s_blocksize_bits = PAGE_SHIFT;
 653        s->s_magic = magic;
 654        s->s_op = &simple_super_operations;
 655        s->s_time_gran = 1;
 656
 657        inode = new_inode(s);
 658        if (!inode)
 659                return -ENOMEM;
 660        /*
 661         * because the root inode is 1, the files array must not contain an
 662         * entry at index 1
 663         */
 664        inode->i_ino = 1;
 665        inode->i_mode = S_IFDIR | 0755;
 666        inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 667        inode->i_op = &simple_dir_inode_operations;
 668        inode->i_fop = &simple_dir_operations;
 669        set_nlink(inode, 2);
 670        root = d_make_root(inode);
 671        if (!root)
 672                return -ENOMEM;
 673        for (i = 0; !files->name || files->name[0]; i++, files++) {
 674                if (!files->name)
 675                        continue;
 676
 677                /* warn if it tries to conflict with the root inode */
 678                if (unlikely(i == 1))
 679                        printk(KERN_WARNING "%s: %s passed in a files array"
 680                                "with an index of 1!\n", __func__,
 681                                s->s_type->name);
 682
 683                dentry = d_alloc_name(root, files->name);
 684                if (!dentry)
 685                        goto out;
 686                inode = new_inode(s);
 687                if (!inode) {
 688                        dput(dentry);
 689                        goto out;
 690                }
 691                inode->i_mode = S_IFREG | files->mode;
 692                inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 693                inode->i_fop = files->ops;
 694                inode->i_ino = i;
 695                d_add(dentry, inode);
 696        }
 697        s->s_root = root;
 698        return 0;
 699out:
 700        d_genocide(root);
 701        shrink_dcache_parent(root);
 702        dput(root);
 703        return -ENOMEM;
 704}
 705EXPORT_SYMBOL(simple_fill_super);
 706
 707static DEFINE_SPINLOCK(pin_fs_lock);
 708
 709int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 710{
 711        struct vfsmount *mnt = NULL;
 712        spin_lock(&pin_fs_lock);
 713        if (unlikely(!*mount)) {
 714                spin_unlock(&pin_fs_lock);
 715                mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
 716                if (IS_ERR(mnt))
 717                        return PTR_ERR(mnt);
 718                spin_lock(&pin_fs_lock);
 719                if (!*mount)
 720                        *mount = mnt;
 721        }
 722        mntget(*mount);
 723        ++*count;
 724        spin_unlock(&pin_fs_lock);
 725        mntput(mnt);
 726        return 0;
 727}
 728EXPORT_SYMBOL(simple_pin_fs);
 729
 730void simple_release_fs(struct vfsmount **mount, int *count)
 731{
 732        struct vfsmount *mnt;
 733        spin_lock(&pin_fs_lock);
 734        mnt = *mount;
 735        if (!--*count)
 736                *mount = NULL;
 737        spin_unlock(&pin_fs_lock);
 738        mntput(mnt);
 739}
 740EXPORT_SYMBOL(simple_release_fs);
 741
 742/**
 743 * simple_read_from_buffer - copy data from the buffer to user space
 744 * @to: the user space buffer to read to
 745 * @count: the maximum number of bytes to read
 746 * @ppos: the current position in the buffer
 747 * @from: the buffer to read from
 748 * @available: the size of the buffer
 749 *
 750 * The simple_read_from_buffer() function reads up to @count bytes from the
 751 * buffer @from at offset @ppos into the user space address starting at @to.
 752 *
 753 * On success, the number of bytes read is returned and the offset @ppos is
 754 * advanced by this number, or negative value is returned on error.
 755 **/
 756ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 757                                const void *from, size_t available)
 758{
 759        loff_t pos = *ppos;
 760        size_t ret;
 761
 762        if (pos < 0)
 763                return -EINVAL;
 764        if (pos >= available || !count)
 765                return 0;
 766        if (count > available - pos)
 767                count = available - pos;
 768        ret = copy_to_user(to, from + pos, count);
 769        if (ret == count)
 770                return -EFAULT;
 771        count -= ret;
 772        *ppos = pos + count;
 773        return count;
 774}
 775EXPORT_SYMBOL(simple_read_from_buffer);
 776
 777/**
 778 * simple_write_to_buffer - copy data from user space to the buffer
 779 * @to: the buffer to write to
 780 * @available: the size of the buffer
 781 * @ppos: the current position in the buffer
 782 * @from: the user space buffer to read from
 783 * @count: the maximum number of bytes to read
 784 *
 785 * The simple_write_to_buffer() function reads up to @count bytes from the user
 786 * space address starting at @from into the buffer @to at offset @ppos.
 787 *
 788 * On success, the number of bytes written is returned and the offset @ppos is
 789 * advanced by this number, or negative value is returned on error.
 790 **/
 791ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
 792                const void __user *from, size_t count)
 793{
 794        loff_t pos = *ppos;
 795        size_t res;
 796
 797        if (pos < 0)
 798                return -EINVAL;
 799        if (pos >= available || !count)
 800                return 0;
 801        if (count > available - pos)
 802                count = available - pos;
 803        res = copy_from_user(to + pos, from, count);
 804        if (res == count)
 805                return -EFAULT;
 806        count -= res;
 807        *ppos = pos + count;
 808        return count;
 809}
 810EXPORT_SYMBOL(simple_write_to_buffer);
 811
 812/**
 813 * memory_read_from_buffer - copy data from the buffer
 814 * @to: the kernel space buffer to read to
 815 * @count: the maximum number of bytes to read
 816 * @ppos: the current position in the buffer
 817 * @from: the buffer to read from
 818 * @available: the size of the buffer
 819 *
 820 * The memory_read_from_buffer() function reads up to @count bytes from the
 821 * buffer @from at offset @ppos into the kernel space address starting at @to.
 822 *
 823 * On success, the number of bytes read is returned and the offset @ppos is
 824 * advanced by this number, or negative value is returned on error.
 825 **/
 826ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 827                                const void *from, size_t available)
 828{
 829        loff_t pos = *ppos;
 830
 831        if (pos < 0)
 832                return -EINVAL;
 833        if (pos >= available)
 834                return 0;
 835        if (count > available - pos)
 836                count = available - pos;
 837        memcpy(to, from + pos, count);
 838        *ppos = pos + count;
 839
 840        return count;
 841}
 842EXPORT_SYMBOL(memory_read_from_buffer);
 843
 844/*
 845 * Transaction based IO.
 846 * The file expects a single write which triggers the transaction, and then
 847 * possibly a read which collects the result - which is stored in a
 848 * file-local buffer.
 849 */
 850
 851void simple_transaction_set(struct file *file, size_t n)
 852{
 853        struct simple_transaction_argresp *ar = file->private_data;
 854
 855        BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 856
 857        /*
 858         * The barrier ensures that ar->size will really remain zero until
 859         * ar->data is ready for reading.
 860         */
 861        smp_mb();
 862        ar->size = n;
 863}
 864EXPORT_SYMBOL(simple_transaction_set);
 865
 866char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 867{
 868        struct simple_transaction_argresp *ar;
 869        static DEFINE_SPINLOCK(simple_transaction_lock);
 870
 871        if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 872                return ERR_PTR(-EFBIG);
 873
 874        ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 875        if (!ar)
 876                return ERR_PTR(-ENOMEM);
 877
 878        spin_lock(&simple_transaction_lock);
 879
 880        /* only one write allowed per open */
 881        if (file->private_data) {
 882                spin_unlock(&simple_transaction_lock);
 883                free_page((unsigned long)ar);
 884                return ERR_PTR(-EBUSY);
 885        }
 886
 887        file->private_data = ar;
 888
 889        spin_unlock(&simple_transaction_lock);
 890
 891        if (copy_from_user(ar->data, buf, size))
 892                return ERR_PTR(-EFAULT);
 893
 894        return ar->data;
 895}
 896EXPORT_SYMBOL(simple_transaction_get);
 897
 898ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 899{
 900        struct simple_transaction_argresp *ar = file->private_data;
 901
 902        if (!ar)
 903                return 0;
 904        return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 905}
 906EXPORT_SYMBOL(simple_transaction_read);
 907
 908int simple_transaction_release(struct inode *inode, struct file *file)
 909{
 910        free_page((unsigned long)file->private_data);
 911        return 0;
 912}
 913EXPORT_SYMBOL(simple_transaction_release);
 914
 915/* Simple attribute files */
 916
 917struct simple_attr {
 918        int (*get)(void *, u64 *);
 919        int (*set)(void *, u64);
 920        char get_buf[24];       /* enough to store a u64 and "\n\0" */
 921        char set_buf[24];
 922        void *data;
 923        const char *fmt;        /* format for read operation */
 924        struct mutex mutex;     /* protects access to these buffers */
 925};
 926
 927/* simple_attr_open is called by an actual attribute open file operation
 928 * to set the attribute specific access operations. */
 929int simple_attr_open(struct inode *inode, struct file *file,
 930                     int (*get)(void *, u64 *), int (*set)(void *, u64),
 931                     const char *fmt)
 932{
 933        struct simple_attr *attr;
 934
 935        attr = kzalloc(sizeof(*attr), GFP_KERNEL);
 936        if (!attr)
 937                return -ENOMEM;
 938
 939        attr->get = get;
 940        attr->set = set;
 941        attr->data = inode->i_private;
 942        attr->fmt = fmt;
 943        mutex_init(&attr->mutex);
 944
 945        file->private_data = attr;
 946
 947        return nonseekable_open(inode, file);
 948}
 949EXPORT_SYMBOL_GPL(simple_attr_open);
 950
 951int simple_attr_release(struct inode *inode, struct file *file)
 952{
 953        kfree(file->private_data);
 954        return 0;
 955}
 956EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only?  This?  Really? */
 957
 958/* read from the buffer that is filled with the get function */
 959ssize_t simple_attr_read(struct file *file, char __user *buf,
 960                         size_t len, loff_t *ppos)
 961{
 962        struct simple_attr *attr;
 963        size_t size;
 964        ssize_t ret;
 965
 966        attr = file->private_data;
 967
 968        if (!attr->get)
 969                return -EACCES;
 970
 971        ret = mutex_lock_interruptible(&attr->mutex);
 972        if (ret)
 973                return ret;
 974
 975        if (*ppos && attr->get_buf[0]) {
 976                /* continued read */
 977                size = strlen(attr->get_buf);
 978        } else {
 979                /* first read */
 980                u64 val;
 981                ret = attr->get(attr->data, &val);
 982                if (ret)
 983                        goto out;
 984
 985                size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 986                                 attr->fmt, (unsigned long long)val);
 987        }
 988
 989        ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 990out:
 991        mutex_unlock(&attr->mutex);
 992        return ret;
 993}
 994EXPORT_SYMBOL_GPL(simple_attr_read);
 995
 996/* interpret the buffer as a number to call the set function with */
 997ssize_t simple_attr_write(struct file *file, const char __user *buf,
 998                          size_t len, loff_t *ppos)
 999{
1000        struct simple_attr *attr;
1001        unsigned long long val;
1002        size_t size;
1003        ssize_t ret;
1004
1005        attr = file->private_data;
1006        if (!attr->set)
1007                return -EACCES;
1008
1009        ret = mutex_lock_interruptible(&attr->mutex);
1010        if (ret)
1011                return ret;
1012
1013        ret = -EFAULT;
1014        size = min(sizeof(attr->set_buf) - 1, len);
1015        if (copy_from_user(attr->set_buf, buf, size))
1016                goto out;
1017
1018        attr->set_buf[size] = '\0';
1019        ret = kstrtoull(attr->set_buf, 0, &val);
1020        if (ret)
1021                goto out;
1022        ret = attr->set(attr->data, val);
1023        if (ret == 0)
1024                ret = len; /* on success, claim we got the whole input */
1025out:
1026        mutex_unlock(&attr->mutex);
1027        return ret;
1028}
1029EXPORT_SYMBOL_GPL(simple_attr_write);
1030
1031/**
1032 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1033 * @sb:         filesystem to do the file handle conversion on
1034 * @fid:        file handle to convert
1035 * @fh_len:     length of the file handle in bytes
1036 * @fh_type:    type of file handle
1037 * @get_inode:  filesystem callback to retrieve inode
1038 *
1039 * This function decodes @fid as long as it has one of the well-known
1040 * Linux filehandle types and calls @get_inode on it to retrieve the
1041 * inode for the object specified in the file handle.
1042 */
1043struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1044                int fh_len, int fh_type, struct inode *(*get_inode)
1045                        (struct super_block *sb, u64 ino, u32 gen))
1046{
1047        struct inode *inode = NULL;
1048
1049        if (fh_len < 2)
1050                return NULL;
1051
1052        switch (fh_type) {
1053        case FILEID_INO32_GEN:
1054        case FILEID_INO32_GEN_PARENT:
1055                inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1056                break;
1057        }
1058
1059        return d_obtain_alias(inode);
1060}
1061EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1062
1063/**
1064 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1065 * @sb:         filesystem to do the file handle conversion on
1066 * @fid:        file handle to convert
1067 * @fh_len:     length of the file handle in bytes
1068 * @fh_type:    type of file handle
1069 * @get_inode:  filesystem callback to retrieve inode
1070 *
1071 * This function decodes @fid as long as it has one of the well-known
1072 * Linux filehandle types and calls @get_inode on it to retrieve the
1073 * inode for the _parent_ object specified in the file handle if it
1074 * is specified in the file handle, or NULL otherwise.
1075 */
1076struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1077                int fh_len, int fh_type, struct inode *(*get_inode)
1078                        (struct super_block *sb, u64 ino, u32 gen))
1079{
1080        struct inode *inode = NULL;
1081
1082        if (fh_len <= 2)
1083                return NULL;
1084
1085        switch (fh_type) {
1086        case FILEID_INO32_GEN_PARENT:
1087                inode = get_inode(sb, fid->i32.parent_ino,
1088                                  (fh_len > 3 ? fid->i32.parent_gen : 0));
1089                break;
1090        }
1091
1092        return d_obtain_alias(inode);
1093}
1094EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1095
1096/**
1097 * __generic_file_fsync - generic fsync implementation for simple filesystems
1098 *
1099 * @file:       file to synchronize
1100 * @start:      start offset in bytes
1101 * @end:        end offset in bytes (inclusive)
1102 * @datasync:   only synchronize essential metadata if true
1103 *
1104 * This is a generic implementation of the fsync method for simple
1105 * filesystems which track all non-inode metadata in the buffers list
1106 * hanging off the address_space structure.
1107 */
1108int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1109                                 int datasync)
1110{
1111        struct inode *inode = file->f_mapping->host;
1112        int err;
1113        int ret;
1114
1115        err = file_write_and_wait_range(file, start, end);
1116        if (err)
1117                return err;
1118
1119        inode_lock(inode);
1120        ret = sync_mapping_buffers(inode->i_mapping);
1121        if (!(inode->i_state & I_DIRTY_ALL))
1122                goto out;
1123        if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1124                goto out;
1125
1126        err = sync_inode_metadata(inode, 1);
1127        if (ret == 0)
1128                ret = err;
1129
1130out:
1131        inode_unlock(inode);
1132        /* check and advance again to catch errors after syncing out buffers */
1133        err = file_check_and_advance_wb_err(file);
1134        if (ret == 0)
1135                ret = err;
1136        return ret;
1137}
1138EXPORT_SYMBOL(__generic_file_fsync);
1139
1140/**
1141 * generic_file_fsync - generic fsync implementation for simple filesystems
1142 *                      with flush
1143 * @file:       file to synchronize
1144 * @start:      start offset in bytes
1145 * @end:        end offset in bytes (inclusive)
1146 * @datasync:   only synchronize essential metadata if true
1147 *
1148 */
1149
1150int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1151                       int datasync)
1152{
1153        struct inode *inode = file->f_mapping->host;
1154        int err;
1155
1156        err = __generic_file_fsync(file, start, end, datasync);
1157        if (err)
1158                return err;
1159        return blkdev_issue_flush(inode->i_sb->s_bdev);
1160}
1161EXPORT_SYMBOL(generic_file_fsync);
1162
1163/**
1164 * generic_check_addressable - Check addressability of file system
1165 * @blocksize_bits:     log of file system block size
1166 * @num_blocks:         number of blocks in file system
1167 *
1168 * Determine whether a file system with @num_blocks blocks (and a
1169 * block size of 2**@blocksize_bits) is addressable by the sector_t
1170 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1171 */
1172int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1173{
1174        u64 last_fs_block = num_blocks - 1;
1175        u64 last_fs_page =
1176                last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1177
1178        if (unlikely(num_blocks == 0))
1179                return 0;
1180
1181        if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1182                return -EINVAL;
1183
1184        if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1185            (last_fs_page > (pgoff_t)(~0ULL))) {
1186                return -EFBIG;
1187        }
1188        return 0;
1189}
1190EXPORT_SYMBOL(generic_check_addressable);
1191
1192/*
1193 * No-op implementation of ->fsync for in-memory filesystems.
1194 */
1195int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1196{
1197        return 0;
1198}
1199EXPORT_SYMBOL(noop_fsync);
1200
1201void noop_invalidatepage(struct page *page, unsigned int offset,
1202                unsigned int length)
1203{
1204        /*
1205         * There is no page cache to invalidate in the dax case, however
1206         * we need this callback defined to prevent falling back to
1207         * block_invalidatepage() in do_invalidatepage().
1208         */
1209}
1210EXPORT_SYMBOL_GPL(noop_invalidatepage);
1211
1212ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1213{
1214        /*
1215         * iomap based filesystems support direct I/O without need for
1216         * this callback. However, it still needs to be set in
1217         * inode->a_ops so that open/fcntl know that direct I/O is
1218         * generally supported.
1219         */
1220        return -EINVAL;
1221}
1222EXPORT_SYMBOL_GPL(noop_direct_IO);
1223
1224/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1225void kfree_link(void *p)
1226{
1227        kfree(p);
1228}
1229EXPORT_SYMBOL(kfree_link);
1230
1231struct inode *alloc_anon_inode(struct super_block *s)
1232{
1233        static const struct address_space_operations anon_aops = {
1234                .set_page_dirty = __set_page_dirty_no_writeback,
1235        };
1236        struct inode *inode = new_inode_pseudo(s);
1237
1238        if (!inode)
1239                return ERR_PTR(-ENOMEM);
1240
1241        inode->i_ino = get_next_ino();
1242        inode->i_mapping->a_ops = &anon_aops;
1243
1244        /*
1245         * Mark the inode dirty from the very beginning,
1246         * that way it will never be moved to the dirty
1247         * list because mark_inode_dirty() will think
1248         * that it already _is_ on the dirty list.
1249         */
1250        inode->i_state = I_DIRTY;
1251        inode->i_mode = S_IRUSR | S_IWUSR;
1252        inode->i_uid = current_fsuid();
1253        inode->i_gid = current_fsgid();
1254        inode->i_flags |= S_PRIVATE;
1255        inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1256        return inode;
1257}
1258EXPORT_SYMBOL(alloc_anon_inode);
1259
1260/**
1261 * simple_nosetlease - generic helper for prohibiting leases
1262 * @filp: file pointer
1263 * @arg: type of lease to obtain
1264 * @flp: new lease supplied for insertion
1265 * @priv: private data for lm_setup operation
1266 *
1267 * Generic helper for filesystems that do not wish to allow leases to be set.
1268 * All arguments are ignored and it just returns -EINVAL.
1269 */
1270int
1271simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1272                  void **priv)
1273{
1274        return -EINVAL;
1275}
1276EXPORT_SYMBOL(simple_nosetlease);
1277
1278/**
1279 * simple_get_link - generic helper to get the target of "fast" symlinks
1280 * @dentry: not used here
1281 * @inode: the symlink inode
1282 * @done: not used here
1283 *
1284 * Generic helper for filesystems to use for symlink inodes where a pointer to
1285 * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1286 * since as an optimization the path lookup code uses any non-NULL ->i_link
1287 * directly, without calling ->get_link().  But ->get_link() still must be set,
1288 * to mark the inode_operations as being for a symlink.
1289 *
1290 * Return: the symlink target
1291 */
1292const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1293                            struct delayed_call *done)
1294{
1295        return inode->i_link;
1296}
1297EXPORT_SYMBOL(simple_get_link);
1298
1299const struct inode_operations simple_symlink_inode_operations = {
1300        .get_link = simple_get_link,
1301};
1302EXPORT_SYMBOL(simple_symlink_inode_operations);
1303
1304/*
1305 * Operations for a permanently empty directory.
1306 */
1307static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1308{
1309        return ERR_PTR(-ENOENT);
1310}
1311
1312static int empty_dir_getattr(struct user_namespace *mnt_userns,
1313                             const struct path *path, struct kstat *stat,
1314                             u32 request_mask, unsigned int query_flags)
1315{
1316        struct inode *inode = d_inode(path->dentry);
1317        generic_fillattr(&init_user_ns, inode, stat);
1318        return 0;
1319}
1320
1321static int empty_dir_setattr(struct user_namespace *mnt_userns,
1322                             struct dentry *dentry, struct iattr *attr)
1323{
1324        return -EPERM;
1325}
1326
1327static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1328{
1329        return -EOPNOTSUPP;
1330}
1331
1332static const struct inode_operations empty_dir_inode_operations = {
1333        .lookup         = empty_dir_lookup,
1334        .permission     = generic_permission,
1335        .setattr        = empty_dir_setattr,
1336        .getattr        = empty_dir_getattr,
1337        .listxattr      = empty_dir_listxattr,
1338};
1339
1340static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1341{
1342        /* An empty directory has two entries . and .. at offsets 0 and 1 */
1343        return generic_file_llseek_size(file, offset, whence, 2, 2);
1344}
1345
1346static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1347{
1348        dir_emit_dots(file, ctx);
1349        return 0;
1350}
1351
1352static const struct file_operations empty_dir_operations = {
1353        .llseek         = empty_dir_llseek,
1354        .read           = generic_read_dir,
1355        .iterate_shared = empty_dir_readdir,
1356        .fsync          = noop_fsync,
1357};
1358
1359
1360void make_empty_dir_inode(struct inode *inode)
1361{
1362        set_nlink(inode, 2);
1363        inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1364        inode->i_uid = GLOBAL_ROOT_UID;
1365        inode->i_gid = GLOBAL_ROOT_GID;
1366        inode->i_rdev = 0;
1367        inode->i_size = 0;
1368        inode->i_blkbits = PAGE_SHIFT;
1369        inode->i_blocks = 0;
1370
1371        inode->i_op = &empty_dir_inode_operations;
1372        inode->i_opflags &= ~IOP_XATTR;
1373        inode->i_fop = &empty_dir_operations;
1374}
1375
1376bool is_empty_dir_inode(struct inode *inode)
1377{
1378        return (inode->i_fop == &empty_dir_operations) &&
1379                (inode->i_op == &empty_dir_inode_operations);
1380}
1381
1382#ifdef CONFIG_UNICODE
1383/*
1384 * Determine if the name of a dentry should be casefolded.
1385 *
1386 * Return: if names will need casefolding
1387 */
1388static bool needs_casefold(const struct inode *dir)
1389{
1390        return IS_CASEFOLDED(dir) && dir->i_sb->s_encoding;
1391}
1392
1393/**
1394 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1395 * @dentry:     dentry whose name we are checking against
1396 * @len:        len of name of dentry
1397 * @str:        str pointer to name of dentry
1398 * @name:       Name to compare against
1399 *
1400 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1401 */
1402static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1403                                const char *str, const struct qstr *name)
1404{
1405        const struct dentry *parent = READ_ONCE(dentry->d_parent);
1406        const struct inode *dir = READ_ONCE(parent->d_inode);
1407        const struct super_block *sb = dentry->d_sb;
1408        const struct unicode_map *um = sb->s_encoding;
1409        struct qstr qstr = QSTR_INIT(str, len);
1410        char strbuf[DNAME_INLINE_LEN];
1411        int ret;
1412
1413        if (!dir || !needs_casefold(dir))
1414                goto fallback;
1415        /*
1416         * If the dentry name is stored in-line, then it may be concurrently
1417         * modified by a rename.  If this happens, the VFS will eventually retry
1418         * the lookup, so it doesn't matter what ->d_compare() returns.
1419         * However, it's unsafe to call utf8_strncasecmp() with an unstable
1420         * string.  Therefore, we have to copy the name into a temporary buffer.
1421         */
1422        if (len <= DNAME_INLINE_LEN - 1) {
1423                memcpy(strbuf, str, len);
1424                strbuf[len] = 0;
1425                qstr.name = strbuf;
1426                /* prevent compiler from optimizing out the temporary buffer */
1427                barrier();
1428        }
1429        ret = utf8_strncasecmp(um, name, &qstr);
1430        if (ret >= 0)
1431                return ret;
1432
1433        if (sb_has_strict_encoding(sb))
1434                return -EINVAL;
1435fallback:
1436        if (len != name->len)
1437                return 1;
1438        return !!memcmp(str, name->name, len);
1439}
1440
1441/**
1442 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1443 * @dentry:     dentry of the parent directory
1444 * @str:        qstr of name whose hash we should fill in
1445 *
1446 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1447 */
1448static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1449{
1450        const struct inode *dir = READ_ONCE(dentry->d_inode);
1451        struct super_block *sb = dentry->d_sb;
1452        const struct unicode_map *um = sb->s_encoding;
1453        int ret = 0;
1454
1455        if (!dir || !needs_casefold(dir))
1456                return 0;
1457
1458        ret = utf8_casefold_hash(um, dentry, str);
1459        if (ret < 0 && sb_has_strict_encoding(sb))
1460                return -EINVAL;
1461        return 0;
1462}
1463
1464static const struct dentry_operations generic_ci_dentry_ops = {
1465        .d_hash = generic_ci_d_hash,
1466        .d_compare = generic_ci_d_compare,
1467};
1468#endif
1469
1470#ifdef CONFIG_FS_ENCRYPTION
1471static const struct dentry_operations generic_encrypted_dentry_ops = {
1472        .d_revalidate = fscrypt_d_revalidate,
1473};
1474#endif
1475
1476#if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE)
1477static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1478        .d_hash = generic_ci_d_hash,
1479        .d_compare = generic_ci_d_compare,
1480        .d_revalidate = fscrypt_d_revalidate,
1481};
1482#endif
1483
1484/**
1485 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1486 * @dentry:     dentry to set ops on
1487 *
1488 * Casefolded directories need d_hash and d_compare set, so that the dentries
1489 * contained in them are handled case-insensitively.  Note that these operations
1490 * are needed on the parent directory rather than on the dentries in it, and
1491 * while the casefolding flag can be toggled on and off on an empty directory,
1492 * dentry_operations can't be changed later.  As a result, if the filesystem has
1493 * casefolding support enabled at all, we have to give all dentries the
1494 * casefolding operations even if their inode doesn't have the casefolding flag
1495 * currently (and thus the casefolding ops would be no-ops for now).
1496 *
1497 * Encryption works differently in that the only dentry operation it needs is
1498 * d_revalidate, which it only needs on dentries that have the no-key name flag.
1499 * The no-key flag can't be set "later", so we don't have to worry about that.
1500 *
1501 * Finally, to maximize compatibility with overlayfs (which isn't compatible
1502 * with certain dentry operations) and to avoid taking an unnecessary
1503 * performance hit, we use custom dentry_operations for each possible
1504 * combination rather than always installing all operations.
1505 */
1506void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1507{
1508#ifdef CONFIG_FS_ENCRYPTION
1509        bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1510#endif
1511#ifdef CONFIG_UNICODE
1512        bool needs_ci_ops = dentry->d_sb->s_encoding;
1513#endif
1514#if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE)
1515        if (needs_encrypt_ops && needs_ci_ops) {
1516                d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1517                return;
1518        }
1519#endif
1520#ifdef CONFIG_FS_ENCRYPTION
1521        if (needs_encrypt_ops) {
1522                d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1523                return;
1524        }
1525#endif
1526#ifdef CONFIG_UNICODE
1527        if (needs_ci_ops) {
1528                d_set_d_op(dentry, &generic_ci_dentry_ops);
1529                return;
1530        }
1531#endif
1532}
1533EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1534