linux/fs/nfs/nfs42xattr.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2
   3/*
   4 * Copyright 2019, 2020 Amazon.com, Inc. or its affiliates. All rights reserved.
   5 *
   6 * User extended attribute client side cache functions.
   7 *
   8 * Author: Frank van der Linden <fllinden@amazon.com>
   9 */
  10#include <linux/errno.h>
  11#include <linux/nfs_fs.h>
  12#include <linux/hashtable.h>
  13#include <linux/refcount.h>
  14#include <uapi/linux/xattr.h>
  15
  16#include "nfs4_fs.h"
  17#include "internal.h"
  18
  19/*
  20 * User extended attributes client side caching is implemented by having
  21 * a cache structure attached to NFS inodes. This structure is allocated
  22 * when needed, and freed when the cache is zapped.
  23 *
  24 * The cache structure contains as hash table of entries, and a pointer
  25 * to a special-cased entry for the listxattr cache.
  26 *
  27 * Accessing and allocating / freeing the caches is done via reference
  28 * counting. The cache entries use a similar refcounting scheme.
  29 *
  30 * This makes freeing a cache, both from the shrinker and from the
  31 * zap cache path, easy. It also means that, in current use cases,
  32 * the large majority of inodes will not waste any memory, as they
  33 * will never have any user extended attributes assigned to them.
  34 *
  35 * Attribute entries are hashed in to a simple hash table. They are
  36 * also part of an LRU.
  37 *
  38 * There are three shrinkers.
  39 *
  40 * Two shrinkers deal with the cache entries themselves: one for
  41 * large entries (> PAGE_SIZE), and one for smaller entries. The
  42 * shrinker for the larger entries works more aggressively than
  43 * those for the smaller entries.
  44 *
  45 * The other shrinker frees the cache structures themselves.
  46 */
  47
  48/*
  49 * 64 buckets is a good default. There is likely no reasonable
  50 * workload that uses more than even 64 user extended attributes.
  51 * You can certainly add a lot more - but you get what you ask for
  52 * in those circumstances.
  53 */
  54#define NFS4_XATTR_HASH_SIZE    64
  55
  56#define NFSDBG_FACILITY NFSDBG_XATTRCACHE
  57
  58struct nfs4_xattr_cache;
  59struct nfs4_xattr_entry;
  60
  61struct nfs4_xattr_bucket {
  62        spinlock_t lock;
  63        struct hlist_head hlist;
  64        struct nfs4_xattr_cache *cache;
  65        bool draining;
  66};
  67
  68struct nfs4_xattr_cache {
  69        struct kref ref;
  70        struct nfs4_xattr_bucket buckets[NFS4_XATTR_HASH_SIZE];
  71        struct list_head lru;
  72        struct list_head dispose;
  73        atomic_long_t nent;
  74        spinlock_t listxattr_lock;
  75        struct inode *inode;
  76        struct nfs4_xattr_entry *listxattr;
  77};
  78
  79struct nfs4_xattr_entry {
  80        struct kref ref;
  81        struct hlist_node hnode;
  82        struct list_head lru;
  83        struct list_head dispose;
  84        char *xattr_name;
  85        void *xattr_value;
  86        size_t xattr_size;
  87        struct nfs4_xattr_bucket *bucket;
  88        uint32_t flags;
  89};
  90
  91#define NFS4_XATTR_ENTRY_EXTVAL 0x0001
  92
  93/*
  94 * LRU list of NFS inodes that have xattr caches.
  95 */
  96static struct list_lru nfs4_xattr_cache_lru;
  97static struct list_lru nfs4_xattr_entry_lru;
  98static struct list_lru nfs4_xattr_large_entry_lru;
  99
 100static struct kmem_cache *nfs4_xattr_cache_cachep;
 101
 102/*
 103 * Hashing helper functions.
 104 */
 105static void
 106nfs4_xattr_hash_init(struct nfs4_xattr_cache *cache)
 107{
 108        unsigned int i;
 109
 110        for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
 111                INIT_HLIST_HEAD(&cache->buckets[i].hlist);
 112                spin_lock_init(&cache->buckets[i].lock);
 113                cache->buckets[i].cache = cache;
 114                cache->buckets[i].draining = false;
 115        }
 116}
 117
 118/*
 119 * Locking order:
 120 * 1. inode i_lock or bucket lock
 121 * 2. list_lru lock (taken by list_lru_* functions)
 122 */
 123
 124/*
 125 * Wrapper functions to add a cache entry to the right LRU.
 126 */
 127static bool
 128nfs4_xattr_entry_lru_add(struct nfs4_xattr_entry *entry)
 129{
 130        struct list_lru *lru;
 131
 132        lru = (entry->flags & NFS4_XATTR_ENTRY_EXTVAL) ?
 133            &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
 134
 135        return list_lru_add(lru, &entry->lru);
 136}
 137
 138static bool
 139nfs4_xattr_entry_lru_del(struct nfs4_xattr_entry *entry)
 140{
 141        struct list_lru *lru;
 142
 143        lru = (entry->flags & NFS4_XATTR_ENTRY_EXTVAL) ?
 144            &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
 145
 146        return list_lru_del(lru, &entry->lru);
 147}
 148
 149/*
 150 * This function allocates cache entries. They are the normal
 151 * extended attribute name/value pairs, but may also be a listxattr
 152 * cache. Those allocations use the same entry so that they can be
 153 * treated as one by the memory shrinker.
 154 *
 155 * xattr cache entries are allocated together with names. If the
 156 * value fits in to one page with the entry structure and the name,
 157 * it will also be part of the same allocation (kmalloc). This is
 158 * expected to be the vast majority of cases. Larger allocations
 159 * have a value pointer that is allocated separately by kvmalloc.
 160 *
 161 * Parameters:
 162 *
 163 * @name:  Name of the extended attribute. NULL for listxattr cache
 164 *         entry.
 165 * @value: Value of attribute, or listxattr cache. NULL if the
 166 *         value is to be copied from pages instead.
 167 * @pages: Pages to copy the value from, if not NULL. Passed in to
 168 *         make it easier to copy the value after an RPC, even if
 169 *         the value will not be passed up to application (e.g.
 170 *         for a 'query' getxattr with NULL buffer).
 171 * @len:   Length of the value. Can be 0 for zero-length attributes.
 172 *         @value and @pages will be NULL if @len is 0.
 173 */
 174static struct nfs4_xattr_entry *
 175nfs4_xattr_alloc_entry(const char *name, const void *value,
 176                       struct page **pages, size_t len)
 177{
 178        struct nfs4_xattr_entry *entry;
 179        void *valp;
 180        char *namep;
 181        size_t alloclen, slen;
 182        char *buf;
 183        uint32_t flags;
 184
 185        BUILD_BUG_ON(sizeof(struct nfs4_xattr_entry) +
 186            XATTR_NAME_MAX + 1 > PAGE_SIZE);
 187
 188        alloclen = sizeof(struct nfs4_xattr_entry);
 189        if (name != NULL) {
 190                slen = strlen(name) + 1;
 191                alloclen += slen;
 192        } else
 193                slen = 0;
 194
 195        if (alloclen + len <= PAGE_SIZE) {
 196                alloclen += len;
 197                flags = 0;
 198        } else {
 199                flags = NFS4_XATTR_ENTRY_EXTVAL;
 200        }
 201
 202        buf = kmalloc(alloclen, GFP_KERNEL_ACCOUNT | GFP_NOFS);
 203        if (buf == NULL)
 204                return NULL;
 205        entry = (struct nfs4_xattr_entry *)buf;
 206
 207        if (name != NULL) {
 208                namep = buf + sizeof(struct nfs4_xattr_entry);
 209                memcpy(namep, name, slen);
 210        } else {
 211                namep = NULL;
 212        }
 213
 214
 215        if (flags & NFS4_XATTR_ENTRY_EXTVAL) {
 216                valp = kvmalloc(len, GFP_KERNEL_ACCOUNT | GFP_NOFS);
 217                if (valp == NULL) {
 218                        kfree(buf);
 219                        return NULL;
 220                }
 221        } else if (len != 0) {
 222                valp = buf + sizeof(struct nfs4_xattr_entry) + slen;
 223        } else
 224                valp = NULL;
 225
 226        if (valp != NULL) {
 227                if (value != NULL)
 228                        memcpy(valp, value, len);
 229                else
 230                        _copy_from_pages(valp, pages, 0, len);
 231        }
 232
 233        entry->flags = flags;
 234        entry->xattr_value = valp;
 235        kref_init(&entry->ref);
 236        entry->xattr_name = namep;
 237        entry->xattr_size = len;
 238        entry->bucket = NULL;
 239        INIT_LIST_HEAD(&entry->lru);
 240        INIT_LIST_HEAD(&entry->dispose);
 241        INIT_HLIST_NODE(&entry->hnode);
 242
 243        return entry;
 244}
 245
 246static void
 247nfs4_xattr_free_entry(struct nfs4_xattr_entry *entry)
 248{
 249        if (entry->flags & NFS4_XATTR_ENTRY_EXTVAL)
 250                kvfree(entry->xattr_value);
 251        kfree(entry);
 252}
 253
 254static void
 255nfs4_xattr_free_entry_cb(struct kref *kref)
 256{
 257        struct nfs4_xattr_entry *entry;
 258
 259        entry = container_of(kref, struct nfs4_xattr_entry, ref);
 260
 261        if (WARN_ON(!list_empty(&entry->lru)))
 262                return;
 263
 264        nfs4_xattr_free_entry(entry);
 265}
 266
 267static void
 268nfs4_xattr_free_cache_cb(struct kref *kref)
 269{
 270        struct nfs4_xattr_cache *cache;
 271        int i;
 272
 273        cache = container_of(kref, struct nfs4_xattr_cache, ref);
 274
 275        for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
 276                if (WARN_ON(!hlist_empty(&cache->buckets[i].hlist)))
 277                        return;
 278                cache->buckets[i].draining = false;
 279        }
 280
 281        cache->listxattr = NULL;
 282
 283        kmem_cache_free(nfs4_xattr_cache_cachep, cache);
 284
 285}
 286
 287static struct nfs4_xattr_cache *
 288nfs4_xattr_alloc_cache(void)
 289{
 290        struct nfs4_xattr_cache *cache;
 291
 292        cache = kmem_cache_alloc(nfs4_xattr_cache_cachep,
 293            GFP_KERNEL_ACCOUNT | GFP_NOFS);
 294        if (cache == NULL)
 295                return NULL;
 296
 297        kref_init(&cache->ref);
 298        atomic_long_set(&cache->nent, 0);
 299
 300        return cache;
 301}
 302
 303/*
 304 * Set the listxattr cache, which is a special-cased cache entry.
 305 * The special value ERR_PTR(-ESTALE) is used to indicate that
 306 * the cache is being drained - this prevents a new listxattr
 307 * cache from being added to what is now a stale cache.
 308 */
 309static int
 310nfs4_xattr_set_listcache(struct nfs4_xattr_cache *cache,
 311                         struct nfs4_xattr_entry *new)
 312{
 313        struct nfs4_xattr_entry *old;
 314        int ret = 1;
 315
 316        spin_lock(&cache->listxattr_lock);
 317
 318        old = cache->listxattr;
 319
 320        if (old == ERR_PTR(-ESTALE)) {
 321                ret = 0;
 322                goto out;
 323        }
 324
 325        cache->listxattr = new;
 326        if (new != NULL && new != ERR_PTR(-ESTALE))
 327                nfs4_xattr_entry_lru_add(new);
 328
 329        if (old != NULL) {
 330                nfs4_xattr_entry_lru_del(old);
 331                kref_put(&old->ref, nfs4_xattr_free_entry_cb);
 332        }
 333out:
 334        spin_unlock(&cache->listxattr_lock);
 335
 336        return ret;
 337}
 338
 339/*
 340 * Unlink a cache from its parent inode, clearing out an invalid
 341 * cache. Must be called with i_lock held.
 342 */
 343static struct nfs4_xattr_cache *
 344nfs4_xattr_cache_unlink(struct inode *inode)
 345{
 346        struct nfs_inode *nfsi;
 347        struct nfs4_xattr_cache *oldcache;
 348
 349        nfsi = NFS_I(inode);
 350
 351        oldcache = nfsi->xattr_cache;
 352        if (oldcache != NULL) {
 353                list_lru_del(&nfs4_xattr_cache_lru, &oldcache->lru);
 354                oldcache->inode = NULL;
 355        }
 356        nfsi->xattr_cache = NULL;
 357        nfsi->cache_validity &= ~NFS_INO_INVALID_XATTR;
 358
 359        return oldcache;
 360
 361}
 362
 363/*
 364 * Discard a cache. Called by get_cache() if there was an old,
 365 * invalid cache. Can also be called from a shrinker callback.
 366 *
 367 * The cache is dead, it has already been unlinked from its inode,
 368 * and no longer appears on the cache LRU list.
 369 *
 370 * Mark all buckets as draining, so that no new entries are added. This
 371 * could still happen in the unlikely, but possible case that another
 372 * thread had grabbed a reference before it was unlinked from the inode,
 373 * and is still holding it for an add operation.
 374 *
 375 * Remove all entries from the LRU lists, so that there is no longer
 376 * any way to 'find' this cache. Then, remove the entries from the hash
 377 * table.
 378 *
 379 * At that point, the cache will remain empty and can be freed when the final
 380 * reference drops, which is very likely the kref_put at the end of
 381 * this function, or the one called immediately afterwards in the
 382 * shrinker callback.
 383 */
 384static void
 385nfs4_xattr_discard_cache(struct nfs4_xattr_cache *cache)
 386{
 387        unsigned int i;
 388        struct nfs4_xattr_entry *entry;
 389        struct nfs4_xattr_bucket *bucket;
 390        struct hlist_node *n;
 391
 392        nfs4_xattr_set_listcache(cache, ERR_PTR(-ESTALE));
 393
 394        for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
 395                bucket = &cache->buckets[i];
 396
 397                spin_lock(&bucket->lock);
 398                bucket->draining = true;
 399                hlist_for_each_entry_safe(entry, n, &bucket->hlist, hnode) {
 400                        nfs4_xattr_entry_lru_del(entry);
 401                        hlist_del_init(&entry->hnode);
 402                        kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
 403                }
 404                spin_unlock(&bucket->lock);
 405        }
 406
 407        atomic_long_set(&cache->nent, 0);
 408
 409        kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
 410}
 411
 412/*
 413 * Get a referenced copy of the cache structure. Avoid doing allocs
 414 * while holding i_lock. Which means that we do some optimistic allocation,
 415 * and might have to free the result in rare cases.
 416 *
 417 * This function only checks the NFS_INO_INVALID_XATTR cache validity bit
 418 * and acts accordingly, replacing the cache when needed. For the read case
 419 * (!add), this means that the caller must make sure that the cache
 420 * is valid before caling this function. getxattr and listxattr call
 421 * revalidate_inode to do this. The attribute cache timeout (for the
 422 * non-delegated case) is expected to be dealt with in the revalidate
 423 * call.
 424 */
 425
 426static struct nfs4_xattr_cache *
 427nfs4_xattr_get_cache(struct inode *inode, int add)
 428{
 429        struct nfs_inode *nfsi;
 430        struct nfs4_xattr_cache *cache, *oldcache, *newcache;
 431
 432        nfsi = NFS_I(inode);
 433
 434        cache = oldcache = NULL;
 435
 436        spin_lock(&inode->i_lock);
 437
 438        if (nfsi->cache_validity & NFS_INO_INVALID_XATTR)
 439                oldcache = nfs4_xattr_cache_unlink(inode);
 440        else
 441                cache = nfsi->xattr_cache;
 442
 443        if (cache != NULL)
 444                kref_get(&cache->ref);
 445
 446        spin_unlock(&inode->i_lock);
 447
 448        if (add && cache == NULL) {
 449                newcache = NULL;
 450
 451                cache = nfs4_xattr_alloc_cache();
 452                if (cache == NULL)
 453                        goto out;
 454
 455                spin_lock(&inode->i_lock);
 456                if (nfsi->cache_validity & NFS_INO_INVALID_XATTR) {
 457                        /*
 458                         * The cache was invalidated again. Give up,
 459                         * since what we want to enter is now likely
 460                         * outdated anyway.
 461                         */
 462                        spin_unlock(&inode->i_lock);
 463                        kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
 464                        cache = NULL;
 465                        goto out;
 466                }
 467
 468                /*
 469                 * Check if someone beat us to it.
 470                 */
 471                if (nfsi->xattr_cache != NULL) {
 472                        newcache = nfsi->xattr_cache;
 473                        kref_get(&newcache->ref);
 474                } else {
 475                        kref_get(&cache->ref);
 476                        nfsi->xattr_cache = cache;
 477                        cache->inode = inode;
 478                        list_lru_add(&nfs4_xattr_cache_lru, &cache->lru);
 479                }
 480
 481                spin_unlock(&inode->i_lock);
 482
 483                /*
 484                 * If there was a race, throw away the cache we just
 485                 * allocated, and use the new one allocated by someone
 486                 * else.
 487                 */
 488                if (newcache != NULL) {
 489                        kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
 490                        cache = newcache;
 491                }
 492        }
 493
 494out:
 495        /*
 496         * Discard the now orphaned old cache.
 497         */
 498        if (oldcache != NULL)
 499                nfs4_xattr_discard_cache(oldcache);
 500
 501        return cache;
 502}
 503
 504static inline struct nfs4_xattr_bucket *
 505nfs4_xattr_hash_bucket(struct nfs4_xattr_cache *cache, const char *name)
 506{
 507        return &cache->buckets[jhash(name, strlen(name), 0) &
 508            (ARRAY_SIZE(cache->buckets) - 1)];
 509}
 510
 511static struct nfs4_xattr_entry *
 512nfs4_xattr_get_entry(struct nfs4_xattr_bucket *bucket, const char *name)
 513{
 514        struct nfs4_xattr_entry *entry;
 515
 516        entry = NULL;
 517
 518        hlist_for_each_entry(entry, &bucket->hlist, hnode) {
 519                if (!strcmp(entry->xattr_name, name))
 520                        break;
 521        }
 522
 523        return entry;
 524}
 525
 526static int
 527nfs4_xattr_hash_add(struct nfs4_xattr_cache *cache,
 528                    struct nfs4_xattr_entry *entry)
 529{
 530        struct nfs4_xattr_bucket *bucket;
 531        struct nfs4_xattr_entry *oldentry = NULL;
 532        int ret = 1;
 533
 534        bucket = nfs4_xattr_hash_bucket(cache, entry->xattr_name);
 535        entry->bucket = bucket;
 536
 537        spin_lock(&bucket->lock);
 538
 539        if (bucket->draining) {
 540                ret = 0;
 541                goto out;
 542        }
 543
 544        oldentry = nfs4_xattr_get_entry(bucket, entry->xattr_name);
 545        if (oldentry != NULL) {
 546                hlist_del_init(&oldentry->hnode);
 547                nfs4_xattr_entry_lru_del(oldentry);
 548        } else {
 549                atomic_long_inc(&cache->nent);
 550        }
 551
 552        hlist_add_head(&entry->hnode, &bucket->hlist);
 553        nfs4_xattr_entry_lru_add(entry);
 554
 555out:
 556        spin_unlock(&bucket->lock);
 557
 558        if (oldentry != NULL)
 559                kref_put(&oldentry->ref, nfs4_xattr_free_entry_cb);
 560
 561        return ret;
 562}
 563
 564static void
 565nfs4_xattr_hash_remove(struct nfs4_xattr_cache *cache, const char *name)
 566{
 567        struct nfs4_xattr_bucket *bucket;
 568        struct nfs4_xattr_entry *entry;
 569
 570        bucket = nfs4_xattr_hash_bucket(cache, name);
 571
 572        spin_lock(&bucket->lock);
 573
 574        entry = nfs4_xattr_get_entry(bucket, name);
 575        if (entry != NULL) {
 576                hlist_del_init(&entry->hnode);
 577                nfs4_xattr_entry_lru_del(entry);
 578                atomic_long_dec(&cache->nent);
 579        }
 580
 581        spin_unlock(&bucket->lock);
 582
 583        if (entry != NULL)
 584                kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
 585}
 586
 587static struct nfs4_xattr_entry *
 588nfs4_xattr_hash_find(struct nfs4_xattr_cache *cache, const char *name)
 589{
 590        struct nfs4_xattr_bucket *bucket;
 591        struct nfs4_xattr_entry *entry;
 592
 593        bucket = nfs4_xattr_hash_bucket(cache, name);
 594
 595        spin_lock(&bucket->lock);
 596
 597        entry = nfs4_xattr_get_entry(bucket, name);
 598        if (entry != NULL)
 599                kref_get(&entry->ref);
 600
 601        spin_unlock(&bucket->lock);
 602
 603        return entry;
 604}
 605
 606/*
 607 * Entry point to retrieve an entry from the cache.
 608 */
 609ssize_t nfs4_xattr_cache_get(struct inode *inode, const char *name, char *buf,
 610                         ssize_t buflen)
 611{
 612        struct nfs4_xattr_cache *cache;
 613        struct nfs4_xattr_entry *entry;
 614        ssize_t ret;
 615
 616        cache = nfs4_xattr_get_cache(inode, 0);
 617        if (cache == NULL)
 618                return -ENOENT;
 619
 620        ret = 0;
 621        entry = nfs4_xattr_hash_find(cache, name);
 622
 623        if (entry != NULL) {
 624                dprintk("%s: cache hit '%s', len %lu\n", __func__,
 625                    entry->xattr_name, (unsigned long)entry->xattr_size);
 626                if (buflen == 0) {
 627                        /* Length probe only */
 628                        ret = entry->xattr_size;
 629                } else if (buflen < entry->xattr_size)
 630                        ret = -ERANGE;
 631                else {
 632                        memcpy(buf, entry->xattr_value, entry->xattr_size);
 633                        ret = entry->xattr_size;
 634                }
 635                kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
 636        } else {
 637                dprintk("%s: cache miss '%s'\n", __func__, name);
 638                ret = -ENOENT;
 639        }
 640
 641        kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
 642
 643        return ret;
 644}
 645
 646/*
 647 * Retrieve a cached list of xattrs from the cache.
 648 */
 649ssize_t nfs4_xattr_cache_list(struct inode *inode, char *buf, ssize_t buflen)
 650{
 651        struct nfs4_xattr_cache *cache;
 652        struct nfs4_xattr_entry *entry;
 653        ssize_t ret;
 654
 655        cache = nfs4_xattr_get_cache(inode, 0);
 656        if (cache == NULL)
 657                return -ENOENT;
 658
 659        spin_lock(&cache->listxattr_lock);
 660
 661        entry = cache->listxattr;
 662
 663        if (entry != NULL && entry != ERR_PTR(-ESTALE)) {
 664                if (buflen == 0) {
 665                        /* Length probe only */
 666                        ret = entry->xattr_size;
 667                } else if (entry->xattr_size > buflen)
 668                        ret = -ERANGE;
 669                else {
 670                        memcpy(buf, entry->xattr_value, entry->xattr_size);
 671                        ret = entry->xattr_size;
 672                }
 673        } else {
 674                ret = -ENOENT;
 675        }
 676
 677        spin_unlock(&cache->listxattr_lock);
 678
 679        kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
 680
 681        return ret;
 682}
 683
 684/*
 685 * Add an xattr to the cache.
 686 *
 687 * This also invalidates the xattr list cache.
 688 */
 689void nfs4_xattr_cache_add(struct inode *inode, const char *name,
 690                          const char *buf, struct page **pages, ssize_t buflen)
 691{
 692        struct nfs4_xattr_cache *cache;
 693        struct nfs4_xattr_entry *entry;
 694
 695        dprintk("%s: add '%s' len %lu\n", __func__,
 696            name, (unsigned long)buflen);
 697
 698        cache = nfs4_xattr_get_cache(inode, 1);
 699        if (cache == NULL)
 700                return;
 701
 702        entry = nfs4_xattr_alloc_entry(name, buf, pages, buflen);
 703        if (entry == NULL)
 704                goto out;
 705
 706        (void)nfs4_xattr_set_listcache(cache, NULL);
 707
 708        if (!nfs4_xattr_hash_add(cache, entry))
 709                kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
 710
 711out:
 712        kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
 713}
 714
 715
 716/*
 717 * Remove an xattr from the cache.
 718 *
 719 * This also invalidates the xattr list cache.
 720 */
 721void nfs4_xattr_cache_remove(struct inode *inode, const char *name)
 722{
 723        struct nfs4_xattr_cache *cache;
 724
 725        dprintk("%s: remove '%s'\n", __func__, name);
 726
 727        cache = nfs4_xattr_get_cache(inode, 0);
 728        if (cache == NULL)
 729                return;
 730
 731        (void)nfs4_xattr_set_listcache(cache, NULL);
 732        nfs4_xattr_hash_remove(cache, name);
 733
 734        kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
 735}
 736
 737/*
 738 * Cache listxattr output, replacing any possible old one.
 739 */
 740void nfs4_xattr_cache_set_list(struct inode *inode, const char *buf,
 741                               ssize_t buflen)
 742{
 743        struct nfs4_xattr_cache *cache;
 744        struct nfs4_xattr_entry *entry;
 745
 746        cache = nfs4_xattr_get_cache(inode, 1);
 747        if (cache == NULL)
 748                return;
 749
 750        entry = nfs4_xattr_alloc_entry(NULL, buf, NULL, buflen);
 751        if (entry == NULL)
 752                goto out;
 753
 754        /*
 755         * This is just there to be able to get to bucket->cache,
 756         * which is obviously the same for all buckets, so just
 757         * use bucket 0.
 758         */
 759        entry->bucket = &cache->buckets[0];
 760
 761        if (!nfs4_xattr_set_listcache(cache, entry))
 762                kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
 763
 764out:
 765        kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
 766}
 767
 768/*
 769 * Zap the entire cache. Called when an inode is evicted.
 770 */
 771void nfs4_xattr_cache_zap(struct inode *inode)
 772{
 773        struct nfs4_xattr_cache *oldcache;
 774
 775        spin_lock(&inode->i_lock);
 776        oldcache = nfs4_xattr_cache_unlink(inode);
 777        spin_unlock(&inode->i_lock);
 778
 779        if (oldcache)
 780                nfs4_xattr_discard_cache(oldcache);
 781}
 782
 783/*
 784 * The entry LRU is shrunk more aggressively than the cache LRU,
 785 * by settings @seeks to 1.
 786 *
 787 * Cache structures are freed only when they've become empty, after
 788 * pruning all but one entry.
 789 */
 790
 791static unsigned long nfs4_xattr_cache_count(struct shrinker *shrink,
 792                                            struct shrink_control *sc);
 793static unsigned long nfs4_xattr_entry_count(struct shrinker *shrink,
 794                                            struct shrink_control *sc);
 795static unsigned long nfs4_xattr_cache_scan(struct shrinker *shrink,
 796                                           struct shrink_control *sc);
 797static unsigned long nfs4_xattr_entry_scan(struct shrinker *shrink,
 798                                           struct shrink_control *sc);
 799
 800static struct shrinker nfs4_xattr_cache_shrinker = {
 801        .count_objects  = nfs4_xattr_cache_count,
 802        .scan_objects   = nfs4_xattr_cache_scan,
 803        .seeks          = DEFAULT_SEEKS,
 804        .flags          = SHRINKER_MEMCG_AWARE,
 805};
 806
 807static struct shrinker nfs4_xattr_entry_shrinker = {
 808        .count_objects  = nfs4_xattr_entry_count,
 809        .scan_objects   = nfs4_xattr_entry_scan,
 810        .seeks          = DEFAULT_SEEKS,
 811        .batch          = 512,
 812        .flags          = SHRINKER_MEMCG_AWARE,
 813};
 814
 815static struct shrinker nfs4_xattr_large_entry_shrinker = {
 816        .count_objects  = nfs4_xattr_entry_count,
 817        .scan_objects   = nfs4_xattr_entry_scan,
 818        .seeks          = 1,
 819        .batch          = 512,
 820        .flags          = SHRINKER_MEMCG_AWARE,
 821};
 822
 823static enum lru_status
 824cache_lru_isolate(struct list_head *item,
 825        struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
 826{
 827        struct list_head *dispose = arg;
 828        struct inode *inode;
 829        struct nfs4_xattr_cache *cache = container_of(item,
 830            struct nfs4_xattr_cache, lru);
 831
 832        if (atomic_long_read(&cache->nent) > 1)
 833                return LRU_SKIP;
 834
 835        /*
 836         * If a cache structure is on the LRU list, we know that
 837         * its inode is valid. Try to lock it to break the link.
 838         * Since we're inverting the lock order here, only try.
 839         */
 840        inode = cache->inode;
 841
 842        if (!spin_trylock(&inode->i_lock))
 843                return LRU_SKIP;
 844
 845        kref_get(&cache->ref);
 846
 847        cache->inode = NULL;
 848        NFS_I(inode)->xattr_cache = NULL;
 849        NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_XATTR;
 850        list_lru_isolate(lru, &cache->lru);
 851
 852        spin_unlock(&inode->i_lock);
 853
 854        list_add_tail(&cache->dispose, dispose);
 855        return LRU_REMOVED;
 856}
 857
 858static unsigned long
 859nfs4_xattr_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
 860{
 861        LIST_HEAD(dispose);
 862        unsigned long freed;
 863        struct nfs4_xattr_cache *cache;
 864
 865        freed = list_lru_shrink_walk(&nfs4_xattr_cache_lru, sc,
 866            cache_lru_isolate, &dispose);
 867        while (!list_empty(&dispose)) {
 868                cache = list_first_entry(&dispose, struct nfs4_xattr_cache,
 869                    dispose);
 870                list_del_init(&cache->dispose);
 871                nfs4_xattr_discard_cache(cache);
 872                kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
 873        }
 874
 875        return freed;
 876}
 877
 878
 879static unsigned long
 880nfs4_xattr_cache_count(struct shrinker *shrink, struct shrink_control *sc)
 881{
 882        unsigned long count;
 883
 884        count = list_lru_shrink_count(&nfs4_xattr_cache_lru, sc);
 885        return vfs_pressure_ratio(count);
 886}
 887
 888static enum lru_status
 889entry_lru_isolate(struct list_head *item,
 890        struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
 891{
 892        struct list_head *dispose = arg;
 893        struct nfs4_xattr_bucket *bucket;
 894        struct nfs4_xattr_cache *cache;
 895        struct nfs4_xattr_entry *entry = container_of(item,
 896            struct nfs4_xattr_entry, lru);
 897
 898        bucket = entry->bucket;
 899        cache = bucket->cache;
 900
 901        /*
 902         * Unhook the entry from its parent (either a cache bucket
 903         * or a cache structure if it's a listxattr buf), so that
 904         * it's no longer found. Then add it to the isolate list,
 905         * to be freed later.
 906         *
 907         * In both cases, we're reverting lock order, so use
 908         * trylock and skip the entry if we can't get the lock.
 909         */
 910        if (entry->xattr_name != NULL) {
 911                /* Regular cache entry */
 912                if (!spin_trylock(&bucket->lock))
 913                        return LRU_SKIP;
 914
 915                kref_get(&entry->ref);
 916
 917                hlist_del_init(&entry->hnode);
 918                atomic_long_dec(&cache->nent);
 919                list_lru_isolate(lru, &entry->lru);
 920
 921                spin_unlock(&bucket->lock);
 922        } else {
 923                /* Listxattr cache entry */
 924                if (!spin_trylock(&cache->listxattr_lock))
 925                        return LRU_SKIP;
 926
 927                kref_get(&entry->ref);
 928
 929                cache->listxattr = NULL;
 930                list_lru_isolate(lru, &entry->lru);
 931
 932                spin_unlock(&cache->listxattr_lock);
 933        }
 934
 935        list_add_tail(&entry->dispose, dispose);
 936        return LRU_REMOVED;
 937}
 938
 939static unsigned long
 940nfs4_xattr_entry_scan(struct shrinker *shrink, struct shrink_control *sc)
 941{
 942        LIST_HEAD(dispose);
 943        unsigned long freed;
 944        struct nfs4_xattr_entry *entry;
 945        struct list_lru *lru;
 946
 947        lru = (shrink == &nfs4_xattr_large_entry_shrinker) ?
 948            &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
 949
 950        freed = list_lru_shrink_walk(lru, sc, entry_lru_isolate, &dispose);
 951
 952        while (!list_empty(&dispose)) {
 953                entry = list_first_entry(&dispose, struct nfs4_xattr_entry,
 954                    dispose);
 955                list_del_init(&entry->dispose);
 956
 957                /*
 958                 * Drop two references: the one that we just grabbed
 959                 * in entry_lru_isolate, and the one that was set
 960                 * when the entry was first allocated.
 961                 */
 962                kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
 963                kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
 964        }
 965
 966        return freed;
 967}
 968
 969static unsigned long
 970nfs4_xattr_entry_count(struct shrinker *shrink, struct shrink_control *sc)
 971{
 972        unsigned long count;
 973        struct list_lru *lru;
 974
 975        lru = (shrink == &nfs4_xattr_large_entry_shrinker) ?
 976            &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
 977
 978        count = list_lru_shrink_count(lru, sc);
 979        return vfs_pressure_ratio(count);
 980}
 981
 982
 983static void nfs4_xattr_cache_init_once(void *p)
 984{
 985        struct nfs4_xattr_cache *cache = (struct nfs4_xattr_cache *)p;
 986
 987        spin_lock_init(&cache->listxattr_lock);
 988        atomic_long_set(&cache->nent, 0);
 989        nfs4_xattr_hash_init(cache);
 990        cache->listxattr = NULL;
 991        INIT_LIST_HEAD(&cache->lru);
 992        INIT_LIST_HEAD(&cache->dispose);
 993}
 994
 995int __init nfs4_xattr_cache_init(void)
 996{
 997        int ret = 0;
 998
 999        nfs4_xattr_cache_cachep = kmem_cache_create("nfs4_xattr_cache_cache",
1000            sizeof(struct nfs4_xattr_cache), 0,
1001            (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1002            nfs4_xattr_cache_init_once);
1003        if (nfs4_xattr_cache_cachep == NULL)
1004                return -ENOMEM;
1005
1006        ret = list_lru_init_memcg(&nfs4_xattr_large_entry_lru,
1007            &nfs4_xattr_large_entry_shrinker);
1008        if (ret)
1009                goto out4;
1010
1011        ret = list_lru_init_memcg(&nfs4_xattr_entry_lru,
1012            &nfs4_xattr_entry_shrinker);
1013        if (ret)
1014                goto out3;
1015
1016        ret = list_lru_init_memcg(&nfs4_xattr_cache_lru,
1017            &nfs4_xattr_cache_shrinker);
1018        if (ret)
1019                goto out2;
1020
1021        ret = register_shrinker(&nfs4_xattr_cache_shrinker);
1022        if (ret)
1023                goto out1;
1024
1025        ret = register_shrinker(&nfs4_xattr_entry_shrinker);
1026        if (ret)
1027                goto out;
1028
1029        ret = register_shrinker(&nfs4_xattr_large_entry_shrinker);
1030        if (!ret)
1031                return 0;
1032
1033        unregister_shrinker(&nfs4_xattr_entry_shrinker);
1034out:
1035        unregister_shrinker(&nfs4_xattr_cache_shrinker);
1036out1:
1037        list_lru_destroy(&nfs4_xattr_cache_lru);
1038out2:
1039        list_lru_destroy(&nfs4_xattr_entry_lru);
1040out3:
1041        list_lru_destroy(&nfs4_xattr_large_entry_lru);
1042out4:
1043        kmem_cache_destroy(nfs4_xattr_cache_cachep);
1044
1045        return ret;
1046}
1047
1048void nfs4_xattr_cache_exit(void)
1049{
1050        unregister_shrinker(&nfs4_xattr_large_entry_shrinker);
1051        unregister_shrinker(&nfs4_xattr_entry_shrinker);
1052        unregister_shrinker(&nfs4_xattr_cache_shrinker);
1053        list_lru_destroy(&nfs4_xattr_large_entry_lru);
1054        list_lru_destroy(&nfs4_xattr_entry_lru);
1055        list_lru_destroy(&nfs4_xattr_cache_lru);
1056        kmem_cache_destroy(nfs4_xattr_cache_cachep);
1057}
1058