linux/fs/xfs/xfs_reflink.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright (C) 2016 Oracle.  All Rights Reserved.
   4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_defer.h"
  14#include "xfs_inode.h"
  15#include "xfs_trans.h"
  16#include "xfs_bmap.h"
  17#include "xfs_bmap_util.h"
  18#include "xfs_trace.h"
  19#include "xfs_icache.h"
  20#include "xfs_btree.h"
  21#include "xfs_refcount_btree.h"
  22#include "xfs_refcount.h"
  23#include "xfs_bmap_btree.h"
  24#include "xfs_trans_space.h"
  25#include "xfs_bit.h"
  26#include "xfs_alloc.h"
  27#include "xfs_quota.h"
  28#include "xfs_reflink.h"
  29#include "xfs_iomap.h"
  30#include "xfs_ag.h"
  31#include "xfs_ag_resv.h"
  32
  33/*
  34 * Copy on Write of Shared Blocks
  35 *
  36 * XFS must preserve "the usual" file semantics even when two files share
  37 * the same physical blocks.  This means that a write to one file must not
  38 * alter the blocks in a different file; the way that we'll do that is
  39 * through the use of a copy-on-write mechanism.  At a high level, that
  40 * means that when we want to write to a shared block, we allocate a new
  41 * block, write the data to the new block, and if that succeeds we map the
  42 * new block into the file.
  43 *
  44 * XFS provides a "delayed allocation" mechanism that defers the allocation
  45 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
  46 * possible.  This reduces fragmentation by enabling the filesystem to ask
  47 * for bigger chunks less often, which is exactly what we want for CoW.
  48 *
  49 * The delalloc mechanism begins when the kernel wants to make a block
  50 * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
  51 * create a delalloc mapping, which is a regular in-core extent, but without
  52 * a real startblock.  (For delalloc mappings, the startblock encodes both
  53 * a flag that this is a delalloc mapping, and a worst-case estimate of how
  54 * many blocks might be required to put the mapping into the BMBT.)  delalloc
  55 * mappings are a reservation against the free space in the filesystem;
  56 * adjacent mappings can also be combined into fewer larger mappings.
  57 *
  58 * As an optimization, the CoW extent size hint (cowextsz) creates
  59 * outsized aligned delalloc reservations in the hope of landing out of
  60 * order nearby CoW writes in a single extent on disk, thereby reducing
  61 * fragmentation and improving future performance.
  62 *
  63 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
  64 * C: ------DDDDDDD--------- (CoW fork)
  65 *
  66 * When dirty pages are being written out (typically in writepage), the
  67 * delalloc reservations are converted into unwritten mappings by
  68 * allocating blocks and replacing the delalloc mapping with real ones.
  69 * A delalloc mapping can be replaced by several unwritten ones if the
  70 * free space is fragmented.
  71 *
  72 * D: --RRRRRRSSSRRRRRRRR---
  73 * C: ------UUUUUUU---------
  74 *
  75 * We want to adapt the delalloc mechanism for copy-on-write, since the
  76 * write paths are similar.  The first two steps (creating the reservation
  77 * and allocating the blocks) are exactly the same as delalloc except that
  78 * the mappings must be stored in a separate CoW fork because we do not want
  79 * to disturb the mapping in the data fork until we're sure that the write
  80 * succeeded.  IO completion in this case is the process of removing the old
  81 * mapping from the data fork and moving the new mapping from the CoW fork to
  82 * the data fork.  This will be discussed shortly.
  83 *
  84 * For now, unaligned directio writes will be bounced back to the page cache.
  85 * Block-aligned directio writes will use the same mechanism as buffered
  86 * writes.
  87 *
  88 * Just prior to submitting the actual disk write requests, we convert
  89 * the extents representing the range of the file actually being written
  90 * (as opposed to extra pieces created for the cowextsize hint) to real
  91 * extents.  This will become important in the next step:
  92 *
  93 * D: --RRRRRRSSSRRRRRRRR---
  94 * C: ------UUrrUUU---------
  95 *
  96 * CoW remapping must be done after the data block write completes,
  97 * because we don't want to destroy the old data fork map until we're sure
  98 * the new block has been written.  Since the new mappings are kept in a
  99 * separate fork, we can simply iterate these mappings to find the ones
 100 * that cover the file blocks that we just CoW'd.  For each extent, simply
 101 * unmap the corresponding range in the data fork, map the new range into
 102 * the data fork, and remove the extent from the CoW fork.  Because of
 103 * the presence of the cowextsize hint, however, we must be careful
 104 * only to remap the blocks that we've actually written out --  we must
 105 * never remap delalloc reservations nor CoW staging blocks that have
 106 * yet to be written.  This corresponds exactly to the real extents in
 107 * the CoW fork:
 108 *
 109 * D: --RRRRRRrrSRRRRRRRR---
 110 * C: ------UU--UUU---------
 111 *
 112 * Since the remapping operation can be applied to an arbitrary file
 113 * range, we record the need for the remap step as a flag in the ioend
 114 * instead of declaring a new IO type.  This is required for direct io
 115 * because we only have ioend for the whole dio, and we have to be able to
 116 * remember the presence of unwritten blocks and CoW blocks with a single
 117 * ioend structure.  Better yet, the more ground we can cover with one
 118 * ioend, the better.
 119 */
 120
 121/*
 122 * Given an AG extent, find the lowest-numbered run of shared blocks
 123 * within that range and return the range in fbno/flen.  If
 124 * find_end_of_shared is true, return the longest contiguous extent of
 125 * shared blocks.  If there are no shared extents, fbno and flen will
 126 * be set to NULLAGBLOCK and 0, respectively.
 127 */
 128int
 129xfs_reflink_find_shared(
 130        struct xfs_mount        *mp,
 131        struct xfs_trans        *tp,
 132        xfs_agnumber_t          agno,
 133        xfs_agblock_t           agbno,
 134        xfs_extlen_t            aglen,
 135        xfs_agblock_t           *fbno,
 136        xfs_extlen_t            *flen,
 137        bool                    find_end_of_shared)
 138{
 139        struct xfs_buf          *agbp;
 140        struct xfs_btree_cur    *cur;
 141        int                     error;
 142
 143        error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
 144        if (error)
 145                return error;
 146
 147        cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agbp->b_pag);
 148
 149        error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
 150                        find_end_of_shared);
 151
 152        xfs_btree_del_cursor(cur, error);
 153
 154        xfs_trans_brelse(tp, agbp);
 155        return error;
 156}
 157
 158/*
 159 * Trim the mapping to the next block where there's a change in the
 160 * shared/unshared status.  More specifically, this means that we
 161 * find the lowest-numbered extent of shared blocks that coincides with
 162 * the given block mapping.  If the shared extent overlaps the start of
 163 * the mapping, trim the mapping to the end of the shared extent.  If
 164 * the shared region intersects the mapping, trim the mapping to the
 165 * start of the shared extent.  If there are no shared regions that
 166 * overlap, just return the original extent.
 167 */
 168int
 169xfs_reflink_trim_around_shared(
 170        struct xfs_inode        *ip,
 171        struct xfs_bmbt_irec    *irec,
 172        bool                    *shared)
 173{
 174        xfs_agnumber_t          agno;
 175        xfs_agblock_t           agbno;
 176        xfs_extlen_t            aglen;
 177        xfs_agblock_t           fbno;
 178        xfs_extlen_t            flen;
 179        int                     error = 0;
 180
 181        /* Holes, unwritten, and delalloc extents cannot be shared */
 182        if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) {
 183                *shared = false;
 184                return 0;
 185        }
 186
 187        trace_xfs_reflink_trim_around_shared(ip, irec);
 188
 189        agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
 190        agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
 191        aglen = irec->br_blockcount;
 192
 193        error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
 194                        aglen, &fbno, &flen, true);
 195        if (error)
 196                return error;
 197
 198        *shared = false;
 199        if (fbno == NULLAGBLOCK) {
 200                /* No shared blocks at all. */
 201                return 0;
 202        } else if (fbno == agbno) {
 203                /*
 204                 * The start of this extent is shared.  Truncate the
 205                 * mapping at the end of the shared region so that a
 206                 * subsequent iteration starts at the start of the
 207                 * unshared region.
 208                 */
 209                irec->br_blockcount = flen;
 210                *shared = true;
 211                return 0;
 212        } else {
 213                /*
 214                 * There's a shared extent midway through this extent.
 215                 * Truncate the mapping at the start of the shared
 216                 * extent so that a subsequent iteration starts at the
 217                 * start of the shared region.
 218                 */
 219                irec->br_blockcount = fbno - agbno;
 220                return 0;
 221        }
 222}
 223
 224int
 225xfs_bmap_trim_cow(
 226        struct xfs_inode        *ip,
 227        struct xfs_bmbt_irec    *imap,
 228        bool                    *shared)
 229{
 230        /* We can't update any real extents in always COW mode. */
 231        if (xfs_is_always_cow_inode(ip) &&
 232            !isnullstartblock(imap->br_startblock)) {
 233                *shared = true;
 234                return 0;
 235        }
 236
 237        /* Trim the mapping to the nearest shared extent boundary. */
 238        return xfs_reflink_trim_around_shared(ip, imap, shared);
 239}
 240
 241static int
 242xfs_reflink_convert_cow_locked(
 243        struct xfs_inode        *ip,
 244        xfs_fileoff_t           offset_fsb,
 245        xfs_filblks_t           count_fsb)
 246{
 247        struct xfs_iext_cursor  icur;
 248        struct xfs_bmbt_irec    got;
 249        struct xfs_btree_cur    *dummy_cur = NULL;
 250        int                     dummy_logflags;
 251        int                     error = 0;
 252
 253        if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
 254                return 0;
 255
 256        do {
 257                if (got.br_startoff >= offset_fsb + count_fsb)
 258                        break;
 259                if (got.br_state == XFS_EXT_NORM)
 260                        continue;
 261                if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
 262                        return -EIO;
 263
 264                xfs_trim_extent(&got, offset_fsb, count_fsb);
 265                if (!got.br_blockcount)
 266                        continue;
 267
 268                got.br_state = XFS_EXT_NORM;
 269                error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
 270                                XFS_COW_FORK, &icur, &dummy_cur, &got,
 271                                &dummy_logflags);
 272                if (error)
 273                        return error;
 274        } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
 275
 276        return error;
 277}
 278
 279/* Convert all of the unwritten CoW extents in a file's range to real ones. */
 280int
 281xfs_reflink_convert_cow(
 282        struct xfs_inode        *ip,
 283        xfs_off_t               offset,
 284        xfs_off_t               count)
 285{
 286        struct xfs_mount        *mp = ip->i_mount;
 287        xfs_fileoff_t           offset_fsb = XFS_B_TO_FSBT(mp, offset);
 288        xfs_fileoff_t           end_fsb = XFS_B_TO_FSB(mp, offset + count);
 289        xfs_filblks_t           count_fsb = end_fsb - offset_fsb;
 290        int                     error;
 291
 292        ASSERT(count != 0);
 293
 294        xfs_ilock(ip, XFS_ILOCK_EXCL);
 295        error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
 296        xfs_iunlock(ip, XFS_ILOCK_EXCL);
 297        return error;
 298}
 299
 300/*
 301 * Find the extent that maps the given range in the COW fork. Even if the extent
 302 * is not shared we might have a preallocation for it in the COW fork. If so we
 303 * use it that rather than trigger a new allocation.
 304 */
 305static int
 306xfs_find_trim_cow_extent(
 307        struct xfs_inode        *ip,
 308        struct xfs_bmbt_irec    *imap,
 309        struct xfs_bmbt_irec    *cmap,
 310        bool                    *shared,
 311        bool                    *found)
 312{
 313        xfs_fileoff_t           offset_fsb = imap->br_startoff;
 314        xfs_filblks_t           count_fsb = imap->br_blockcount;
 315        struct xfs_iext_cursor  icur;
 316
 317        *found = false;
 318
 319        /*
 320         * If we don't find an overlapping extent, trim the range we need to
 321         * allocate to fit the hole we found.
 322         */
 323        if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap))
 324                cmap->br_startoff = offset_fsb + count_fsb;
 325        if (cmap->br_startoff > offset_fsb) {
 326                xfs_trim_extent(imap, imap->br_startoff,
 327                                cmap->br_startoff - imap->br_startoff);
 328                return xfs_bmap_trim_cow(ip, imap, shared);
 329        }
 330
 331        *shared = true;
 332        if (isnullstartblock(cmap->br_startblock)) {
 333                xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount);
 334                return 0;
 335        }
 336
 337        /* real extent found - no need to allocate */
 338        xfs_trim_extent(cmap, offset_fsb, count_fsb);
 339        *found = true;
 340        return 0;
 341}
 342
 343/* Allocate all CoW reservations covering a range of blocks in a file. */
 344int
 345xfs_reflink_allocate_cow(
 346        struct xfs_inode        *ip,
 347        struct xfs_bmbt_irec    *imap,
 348        struct xfs_bmbt_irec    *cmap,
 349        bool                    *shared,
 350        uint                    *lockmode,
 351        bool                    convert_now)
 352{
 353        struct xfs_mount        *mp = ip->i_mount;
 354        xfs_fileoff_t           offset_fsb = imap->br_startoff;
 355        xfs_filblks_t           count_fsb = imap->br_blockcount;
 356        struct xfs_trans        *tp;
 357        int                     nimaps, error = 0;
 358        bool                    found;
 359        xfs_filblks_t           resaligned;
 360        xfs_extlen_t            resblks = 0;
 361
 362        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 363        if (!ip->i_cowfp) {
 364                ASSERT(!xfs_is_reflink_inode(ip));
 365                xfs_ifork_init_cow(ip);
 366        }
 367
 368        error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
 369        if (error || !*shared)
 370                return error;
 371        if (found)
 372                goto convert;
 373
 374        resaligned = xfs_aligned_fsb_count(imap->br_startoff,
 375                imap->br_blockcount, xfs_get_cowextsz_hint(ip));
 376        resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
 377
 378        xfs_iunlock(ip, *lockmode);
 379        *lockmode = 0;
 380
 381        error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0,
 382                        false, &tp);
 383        if (error)
 384                return error;
 385
 386        *lockmode = XFS_ILOCK_EXCL;
 387
 388        /*
 389         * Check for an overlapping extent again now that we dropped the ilock.
 390         */
 391        error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
 392        if (error || !*shared)
 393                goto out_trans_cancel;
 394        if (found) {
 395                xfs_trans_cancel(tp);
 396                goto convert;
 397        }
 398
 399        /* Allocate the entire reservation as unwritten blocks. */
 400        nimaps = 1;
 401        error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
 402                        XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap,
 403                        &nimaps);
 404        if (error)
 405                goto out_trans_cancel;
 406
 407        xfs_inode_set_cowblocks_tag(ip);
 408        error = xfs_trans_commit(tp);
 409        if (error)
 410                return error;
 411
 412        /*
 413         * Allocation succeeded but the requested range was not even partially
 414         * satisfied?  Bail out!
 415         */
 416        if (nimaps == 0)
 417                return -ENOSPC;
 418convert:
 419        xfs_trim_extent(cmap, offset_fsb, count_fsb);
 420        /*
 421         * COW fork extents are supposed to remain unwritten until we're ready
 422         * to initiate a disk write.  For direct I/O we are going to write the
 423         * data and need the conversion, but for buffered writes we're done.
 424         */
 425        if (!convert_now || cmap->br_state == XFS_EXT_NORM)
 426                return 0;
 427        trace_xfs_reflink_convert_cow(ip, cmap);
 428        return xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
 429
 430out_trans_cancel:
 431        xfs_trans_cancel(tp);
 432        return error;
 433}
 434
 435/*
 436 * Cancel CoW reservations for some block range of an inode.
 437 *
 438 * If cancel_real is true this function cancels all COW fork extents for the
 439 * inode; if cancel_real is false, real extents are not cleared.
 440 *
 441 * Caller must have already joined the inode to the current transaction. The
 442 * inode will be joined to the transaction returned to the caller.
 443 */
 444int
 445xfs_reflink_cancel_cow_blocks(
 446        struct xfs_inode                *ip,
 447        struct xfs_trans                **tpp,
 448        xfs_fileoff_t                   offset_fsb,
 449        xfs_fileoff_t                   end_fsb,
 450        bool                            cancel_real)
 451{
 452        struct xfs_ifork                *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
 453        struct xfs_bmbt_irec            got, del;
 454        struct xfs_iext_cursor          icur;
 455        int                             error = 0;
 456
 457        if (!xfs_inode_has_cow_data(ip))
 458                return 0;
 459        if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
 460                return 0;
 461
 462        /* Walk backwards until we're out of the I/O range... */
 463        while (got.br_startoff + got.br_blockcount > offset_fsb) {
 464                del = got;
 465                xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
 466
 467                /* Extent delete may have bumped ext forward */
 468                if (!del.br_blockcount) {
 469                        xfs_iext_prev(ifp, &icur);
 470                        goto next_extent;
 471                }
 472
 473                trace_xfs_reflink_cancel_cow(ip, &del);
 474
 475                if (isnullstartblock(del.br_startblock)) {
 476                        error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
 477                                        &icur, &got, &del);
 478                        if (error)
 479                                break;
 480                } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
 481                        ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
 482
 483                        /* Free the CoW orphan record. */
 484                        xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
 485                                        del.br_blockcount);
 486
 487                        xfs_free_extent_later(*tpp, del.br_startblock,
 488                                          del.br_blockcount, NULL);
 489
 490                        /* Roll the transaction */
 491                        error = xfs_defer_finish(tpp);
 492                        if (error)
 493                                break;
 494
 495                        /* Remove the mapping from the CoW fork. */
 496                        xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
 497
 498                        /* Remove the quota reservation */
 499                        error = xfs_quota_unreserve_blkres(ip,
 500                                        del.br_blockcount);
 501                        if (error)
 502                                break;
 503                } else {
 504                        /* Didn't do anything, push cursor back. */
 505                        xfs_iext_prev(ifp, &icur);
 506                }
 507next_extent:
 508                if (!xfs_iext_get_extent(ifp, &icur, &got))
 509                        break;
 510        }
 511
 512        /* clear tag if cow fork is emptied */
 513        if (!ifp->if_bytes)
 514                xfs_inode_clear_cowblocks_tag(ip);
 515        return error;
 516}
 517
 518/*
 519 * Cancel CoW reservations for some byte range of an inode.
 520 *
 521 * If cancel_real is true this function cancels all COW fork extents for the
 522 * inode; if cancel_real is false, real extents are not cleared.
 523 */
 524int
 525xfs_reflink_cancel_cow_range(
 526        struct xfs_inode        *ip,
 527        xfs_off_t               offset,
 528        xfs_off_t               count,
 529        bool                    cancel_real)
 530{
 531        struct xfs_trans        *tp;
 532        xfs_fileoff_t           offset_fsb;
 533        xfs_fileoff_t           end_fsb;
 534        int                     error;
 535
 536        trace_xfs_reflink_cancel_cow_range(ip, offset, count);
 537        ASSERT(ip->i_cowfp);
 538
 539        offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
 540        if (count == NULLFILEOFF)
 541                end_fsb = NULLFILEOFF;
 542        else
 543                end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
 544
 545        /* Start a rolling transaction to remove the mappings */
 546        error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
 547                        0, 0, 0, &tp);
 548        if (error)
 549                goto out;
 550
 551        xfs_ilock(ip, XFS_ILOCK_EXCL);
 552        xfs_trans_ijoin(tp, ip, 0);
 553
 554        /* Scrape out the old CoW reservations */
 555        error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
 556                        cancel_real);
 557        if (error)
 558                goto out_cancel;
 559
 560        error = xfs_trans_commit(tp);
 561
 562        xfs_iunlock(ip, XFS_ILOCK_EXCL);
 563        return error;
 564
 565out_cancel:
 566        xfs_trans_cancel(tp);
 567        xfs_iunlock(ip, XFS_ILOCK_EXCL);
 568out:
 569        trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
 570        return error;
 571}
 572
 573/*
 574 * Remap part of the CoW fork into the data fork.
 575 *
 576 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
 577 * into the data fork; this function will remap what it can (at the end of the
 578 * range) and update @end_fsb appropriately.  Each remap gets its own
 579 * transaction because we can end up merging and splitting bmbt blocks for
 580 * every remap operation and we'd like to keep the block reservation
 581 * requirements as low as possible.
 582 */
 583STATIC int
 584xfs_reflink_end_cow_extent(
 585        struct xfs_inode        *ip,
 586        xfs_fileoff_t           offset_fsb,
 587        xfs_fileoff_t           *end_fsb)
 588{
 589        struct xfs_bmbt_irec    got, del;
 590        struct xfs_iext_cursor  icur;
 591        struct xfs_mount        *mp = ip->i_mount;
 592        struct xfs_trans        *tp;
 593        struct xfs_ifork        *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
 594        xfs_filblks_t           rlen;
 595        unsigned int            resblks;
 596        int                     error;
 597
 598        /* No COW extents?  That's easy! */
 599        if (ifp->if_bytes == 0) {
 600                *end_fsb = offset_fsb;
 601                return 0;
 602        }
 603
 604        resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
 605        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
 606                        XFS_TRANS_RESERVE, &tp);
 607        if (error)
 608                return error;
 609
 610        /*
 611         * Lock the inode.  We have to ijoin without automatic unlock because
 612         * the lead transaction is the refcountbt record deletion; the data
 613         * fork update follows as a deferred log item.
 614         */
 615        xfs_ilock(ip, XFS_ILOCK_EXCL);
 616        xfs_trans_ijoin(tp, ip, 0);
 617
 618        error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
 619                        XFS_IEXT_REFLINK_END_COW_CNT);
 620        if (error)
 621                goto out_cancel;
 622
 623        /*
 624         * In case of racing, overlapping AIO writes no COW extents might be
 625         * left by the time I/O completes for the loser of the race.  In that
 626         * case we are done.
 627         */
 628        if (!xfs_iext_lookup_extent_before(ip, ifp, end_fsb, &icur, &got) ||
 629            got.br_startoff + got.br_blockcount <= offset_fsb) {
 630                *end_fsb = offset_fsb;
 631                goto out_cancel;
 632        }
 633
 634        /*
 635         * Structure copy @got into @del, then trim @del to the range that we
 636         * were asked to remap.  We preserve @got for the eventual CoW fork
 637         * deletion; from now on @del represents the mapping that we're
 638         * actually remapping.
 639         */
 640        del = got;
 641        xfs_trim_extent(&del, offset_fsb, *end_fsb - offset_fsb);
 642
 643        ASSERT(del.br_blockcount > 0);
 644
 645        /*
 646         * Only remap real extents that contain data.  With AIO, speculative
 647         * preallocations can leak into the range we are called upon, and we
 648         * need to skip them.
 649         */
 650        if (!xfs_bmap_is_written_extent(&got)) {
 651                *end_fsb = del.br_startoff;
 652                goto out_cancel;
 653        }
 654
 655        /* Unmap the old blocks in the data fork. */
 656        rlen = del.br_blockcount;
 657        error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
 658        if (error)
 659                goto out_cancel;
 660
 661        /* Trim the extent to whatever got unmapped. */
 662        xfs_trim_extent(&del, del.br_startoff + rlen, del.br_blockcount - rlen);
 663        trace_xfs_reflink_cow_remap(ip, &del);
 664
 665        /* Free the CoW orphan record. */
 666        xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
 667
 668        /* Map the new blocks into the data fork. */
 669        xfs_bmap_map_extent(tp, ip, &del);
 670
 671        /* Charge this new data fork mapping to the on-disk quota. */
 672        xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
 673                        (long)del.br_blockcount);
 674
 675        /* Remove the mapping from the CoW fork. */
 676        xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
 677
 678        error = xfs_trans_commit(tp);
 679        xfs_iunlock(ip, XFS_ILOCK_EXCL);
 680        if (error)
 681                return error;
 682
 683        /* Update the caller about how much progress we made. */
 684        *end_fsb = del.br_startoff;
 685        return 0;
 686
 687out_cancel:
 688        xfs_trans_cancel(tp);
 689        xfs_iunlock(ip, XFS_ILOCK_EXCL);
 690        return error;
 691}
 692
 693/*
 694 * Remap parts of a file's data fork after a successful CoW.
 695 */
 696int
 697xfs_reflink_end_cow(
 698        struct xfs_inode                *ip,
 699        xfs_off_t                       offset,
 700        xfs_off_t                       count)
 701{
 702        xfs_fileoff_t                   offset_fsb;
 703        xfs_fileoff_t                   end_fsb;
 704        int                             error = 0;
 705
 706        trace_xfs_reflink_end_cow(ip, offset, count);
 707
 708        offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
 709        end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
 710
 711        /*
 712         * Walk backwards until we're out of the I/O range.  The loop function
 713         * repeatedly cycles the ILOCK to allocate one transaction per remapped
 714         * extent.
 715         *
 716         * If we're being called by writeback then the pages will still
 717         * have PageWriteback set, which prevents races with reflink remapping
 718         * and truncate.  Reflink remapping prevents races with writeback by
 719         * taking the iolock and mmaplock before flushing the pages and
 720         * remapping, which means there won't be any further writeback or page
 721         * cache dirtying until the reflink completes.
 722         *
 723         * We should never have two threads issuing writeback for the same file
 724         * region.  There are also have post-eof checks in the writeback
 725         * preparation code so that we don't bother writing out pages that are
 726         * about to be truncated.
 727         *
 728         * If we're being called as part of directio write completion, the dio
 729         * count is still elevated, which reflink and truncate will wait for.
 730         * Reflink remapping takes the iolock and mmaplock and waits for
 731         * pending dio to finish, which should prevent any directio until the
 732         * remap completes.  Multiple concurrent directio writes to the same
 733         * region are handled by end_cow processing only occurring for the
 734         * threads which succeed; the outcome of multiple overlapping direct
 735         * writes is not well defined anyway.
 736         *
 737         * It's possible that a buffered write and a direct write could collide
 738         * here (the buffered write stumbles in after the dio flushes and
 739         * invalidates the page cache and immediately queues writeback), but we
 740         * have never supported this 100%.  If either disk write succeeds the
 741         * blocks will be remapped.
 742         */
 743        while (end_fsb > offset_fsb && !error)
 744                error = xfs_reflink_end_cow_extent(ip, offset_fsb, &end_fsb);
 745
 746        if (error)
 747                trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
 748        return error;
 749}
 750
 751/*
 752 * Free leftover CoW reservations that didn't get cleaned out.
 753 */
 754int
 755xfs_reflink_recover_cow(
 756        struct xfs_mount        *mp)
 757{
 758        struct xfs_perag        *pag;
 759        xfs_agnumber_t          agno;
 760        int                     error = 0;
 761
 762        if (!xfs_has_reflink(mp))
 763                return 0;
 764
 765        for_each_perag(mp, agno, pag) {
 766                error = xfs_refcount_recover_cow_leftovers(mp, pag);
 767                if (error) {
 768                        xfs_perag_put(pag);
 769                        break;
 770                }
 771        }
 772
 773        return error;
 774}
 775
 776/*
 777 * Reflinking (Block) Ranges of Two Files Together
 778 *
 779 * First, ensure that the reflink flag is set on both inodes.  The flag is an
 780 * optimization to avoid unnecessary refcount btree lookups in the write path.
 781 *
 782 * Now we can iteratively remap the range of extents (and holes) in src to the
 783 * corresponding ranges in dest.  Let drange and srange denote the ranges of
 784 * logical blocks in dest and src touched by the reflink operation.
 785 *
 786 * While the length of drange is greater than zero,
 787 *    - Read src's bmbt at the start of srange ("imap")
 788 *    - If imap doesn't exist, make imap appear to start at the end of srange
 789 *      with zero length.
 790 *    - If imap starts before srange, advance imap to start at srange.
 791 *    - If imap goes beyond srange, truncate imap to end at the end of srange.
 792 *    - Punch (imap start - srange start + imap len) blocks from dest at
 793 *      offset (drange start).
 794 *    - If imap points to a real range of pblks,
 795 *         > Increase the refcount of the imap's pblks
 796 *         > Map imap's pblks into dest at the offset
 797 *           (drange start + imap start - srange start)
 798 *    - Advance drange and srange by (imap start - srange start + imap len)
 799 *
 800 * Finally, if the reflink made dest longer, update both the in-core and
 801 * on-disk file sizes.
 802 *
 803 * ASCII Art Demonstration:
 804 *
 805 * Let's say we want to reflink this source file:
 806 *
 807 * ----SSSSSSS-SSSSS----SSSSSS (src file)
 808 *   <-------------------->
 809 *
 810 * into this destination file:
 811 *
 812 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
 813 *        <-------------------->
 814 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
 815 * Observe that the range has different logical offsets in either file.
 816 *
 817 * Consider that the first extent in the source file doesn't line up with our
 818 * reflink range.  Unmapping  and remapping are separate operations, so we can
 819 * unmap more blocks from the destination file than we remap.
 820 *
 821 * ----SSSSSSS-SSSSS----SSSSSS
 822 *   <------->
 823 * --DDDDD---------DDDDD--DDD
 824 *        <------->
 825 *
 826 * Now remap the source extent into the destination file:
 827 *
 828 * ----SSSSSSS-SSSSS----SSSSSS
 829 *   <------->
 830 * --DDDDD--SSSSSSSDDDDD--DDD
 831 *        <------->
 832 *
 833 * Do likewise with the second hole and extent in our range.  Holes in the
 834 * unmap range don't affect our operation.
 835 *
 836 * ----SSSSSSS-SSSSS----SSSSSS
 837 *            <---->
 838 * --DDDDD--SSSSSSS-SSSSS-DDD
 839 *                 <---->
 840 *
 841 * Finally, unmap and remap part of the third extent.  This will increase the
 842 * size of the destination file.
 843 *
 844 * ----SSSSSSS-SSSSS----SSSSSS
 845 *                  <----->
 846 * --DDDDD--SSSSSSS-SSSSS----SSS
 847 *                       <----->
 848 *
 849 * Once we update the destination file's i_size, we're done.
 850 */
 851
 852/*
 853 * Ensure the reflink bit is set in both inodes.
 854 */
 855STATIC int
 856xfs_reflink_set_inode_flag(
 857        struct xfs_inode        *src,
 858        struct xfs_inode        *dest)
 859{
 860        struct xfs_mount        *mp = src->i_mount;
 861        int                     error;
 862        struct xfs_trans        *tp;
 863
 864        if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
 865                return 0;
 866
 867        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
 868        if (error)
 869                goto out_error;
 870
 871        /* Lock both files against IO */
 872        if (src->i_ino == dest->i_ino)
 873                xfs_ilock(src, XFS_ILOCK_EXCL);
 874        else
 875                xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
 876
 877        if (!xfs_is_reflink_inode(src)) {
 878                trace_xfs_reflink_set_inode_flag(src);
 879                xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
 880                src->i_diflags2 |= XFS_DIFLAG2_REFLINK;
 881                xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
 882                xfs_ifork_init_cow(src);
 883        } else
 884                xfs_iunlock(src, XFS_ILOCK_EXCL);
 885
 886        if (src->i_ino == dest->i_ino)
 887                goto commit_flags;
 888
 889        if (!xfs_is_reflink_inode(dest)) {
 890                trace_xfs_reflink_set_inode_flag(dest);
 891                xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
 892                dest->i_diflags2 |= XFS_DIFLAG2_REFLINK;
 893                xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
 894                xfs_ifork_init_cow(dest);
 895        } else
 896                xfs_iunlock(dest, XFS_ILOCK_EXCL);
 897
 898commit_flags:
 899        error = xfs_trans_commit(tp);
 900        if (error)
 901                goto out_error;
 902        return error;
 903
 904out_error:
 905        trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
 906        return error;
 907}
 908
 909/*
 910 * Update destination inode size & cowextsize hint, if necessary.
 911 */
 912int
 913xfs_reflink_update_dest(
 914        struct xfs_inode        *dest,
 915        xfs_off_t               newlen,
 916        xfs_extlen_t            cowextsize,
 917        unsigned int            remap_flags)
 918{
 919        struct xfs_mount        *mp = dest->i_mount;
 920        struct xfs_trans        *tp;
 921        int                     error;
 922
 923        if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
 924                return 0;
 925
 926        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
 927        if (error)
 928                goto out_error;
 929
 930        xfs_ilock(dest, XFS_ILOCK_EXCL);
 931        xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
 932
 933        if (newlen > i_size_read(VFS_I(dest))) {
 934                trace_xfs_reflink_update_inode_size(dest, newlen);
 935                i_size_write(VFS_I(dest), newlen);
 936                dest->i_disk_size = newlen;
 937        }
 938
 939        if (cowextsize) {
 940                dest->i_cowextsize = cowextsize;
 941                dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
 942        }
 943
 944        xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
 945
 946        error = xfs_trans_commit(tp);
 947        if (error)
 948                goto out_error;
 949        return error;
 950
 951out_error:
 952        trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
 953        return error;
 954}
 955
 956/*
 957 * Do we have enough reserve in this AG to handle a reflink?  The refcount
 958 * btree already reserved all the space it needs, but the rmap btree can grow
 959 * infinitely, so we won't allow more reflinks when the AG is down to the
 960 * btree reserves.
 961 */
 962static int
 963xfs_reflink_ag_has_free_space(
 964        struct xfs_mount        *mp,
 965        xfs_agnumber_t          agno)
 966{
 967        struct xfs_perag        *pag;
 968        int                     error = 0;
 969
 970        if (!xfs_has_rmapbt(mp))
 971                return 0;
 972
 973        pag = xfs_perag_get(mp, agno);
 974        if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
 975            xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
 976                error = -ENOSPC;
 977        xfs_perag_put(pag);
 978        return error;
 979}
 980
 981/*
 982 * Remap the given extent into the file.  The dmap blockcount will be set to
 983 * the number of blocks that were actually remapped.
 984 */
 985STATIC int
 986xfs_reflink_remap_extent(
 987        struct xfs_inode        *ip,
 988        struct xfs_bmbt_irec    *dmap,
 989        xfs_off_t               new_isize)
 990{
 991        struct xfs_bmbt_irec    smap;
 992        struct xfs_mount        *mp = ip->i_mount;
 993        struct xfs_trans        *tp;
 994        xfs_off_t               newlen;
 995        int64_t                 qdelta = 0;
 996        unsigned int            resblks;
 997        bool                    quota_reserved = true;
 998        bool                    smap_real;
 999        bool                    dmap_written = xfs_bmap_is_written_extent(dmap);
1000        int                     iext_delta = 0;
1001        int                     nimaps;
1002        int                     error;
1003
1004        /*
1005         * Start a rolling transaction to switch the mappings.
1006         *
1007         * Adding a written extent to the extent map can cause a bmbt split,
1008         * and removing a mapped extent from the extent can cause a bmbt split.
1009         * The two operations cannot both cause a split since they operate on
1010         * the same index in the bmap btree, so we only need a reservation for
1011         * one bmbt split if either thing is happening.  However, we haven't
1012         * locked the inode yet, so we reserve assuming this is the case.
1013         *
1014         * The first allocation call tries to reserve enough space to handle
1015         * mapping dmap into a sparse part of the file plus the bmbt split.  We
1016         * haven't locked the inode or read the existing mapping yet, so we do
1017         * not know for sure that we need the space.  This should succeed most
1018         * of the time.
1019         *
1020         * If the first attempt fails, try again but reserving only enough
1021         * space to handle a bmbt split.  This is the hard minimum requirement,
1022         * and we revisit quota reservations later when we know more about what
1023         * we're remapping.
1024         */
1025        resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
1026        error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1027                        resblks + dmap->br_blockcount, 0, false, &tp);
1028        if (error == -EDQUOT || error == -ENOSPC) {
1029                quota_reserved = false;
1030                error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1031                                resblks, 0, false, &tp);
1032        }
1033        if (error)
1034                goto out;
1035
1036        /*
1037         * Read what's currently mapped in the destination file into smap.
1038         * If smap isn't a hole, we will have to remove it before we can add
1039         * dmap to the destination file.
1040         */
1041        nimaps = 1;
1042        error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount,
1043                        &smap, &nimaps, 0);
1044        if (error)
1045                goto out_cancel;
1046        ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff);
1047        smap_real = xfs_bmap_is_real_extent(&smap);
1048
1049        /*
1050         * We can only remap as many blocks as the smaller of the two extent
1051         * maps, because we can only remap one extent at a time.
1052         */
1053        dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount);
1054        ASSERT(dmap->br_blockcount == smap.br_blockcount);
1055
1056        trace_xfs_reflink_remap_extent_dest(ip, &smap);
1057
1058        /*
1059         * Two extents mapped to the same physical block must not have
1060         * different states; that's filesystem corruption.  Move on to the next
1061         * extent if they're both holes or both the same physical extent.
1062         */
1063        if (dmap->br_startblock == smap.br_startblock) {
1064                if (dmap->br_state != smap.br_state)
1065                        error = -EFSCORRUPTED;
1066                goto out_cancel;
1067        }
1068
1069        /* If both extents are unwritten, leave them alone. */
1070        if (dmap->br_state == XFS_EXT_UNWRITTEN &&
1071            smap.br_state == XFS_EXT_UNWRITTEN)
1072                goto out_cancel;
1073
1074        /* No reflinking if the AG of the dest mapping is low on space. */
1075        if (dmap_written) {
1076                error = xfs_reflink_ag_has_free_space(mp,
1077                                XFS_FSB_TO_AGNO(mp, dmap->br_startblock));
1078                if (error)
1079                        goto out_cancel;
1080        }
1081
1082        /*
1083         * Increase quota reservation if we think the quota block counter for
1084         * this file could increase.
1085         *
1086         * If we are mapping a written extent into the file, we need to have
1087         * enough quota block count reservation to handle the blocks in that
1088         * extent.  We log only the delta to the quota block counts, so if the
1089         * extent we're unmapping also has blocks allocated to it, we don't
1090         * need a quota reservation for the extent itself.
1091         *
1092         * Note that if we're replacing a delalloc reservation with a written
1093         * extent, we have to take the full quota reservation because removing
1094         * the delalloc reservation gives the block count back to the quota
1095         * count.  This is suboptimal, but the VFS flushed the dest range
1096         * before we started.  That should have removed all the delalloc
1097         * reservations, but we code defensively.
1098         *
1099         * xfs_trans_alloc_inode above already tried to grab an even larger
1100         * quota reservation, and kicked off a blockgc scan if it couldn't.
1101         * If we can't get a potentially smaller quota reservation now, we're
1102         * done.
1103         */
1104        if (!quota_reserved && !smap_real && dmap_written) {
1105                error = xfs_trans_reserve_quota_nblks(tp, ip,
1106                                dmap->br_blockcount, 0, false);
1107                if (error)
1108                        goto out_cancel;
1109        }
1110
1111        if (smap_real)
1112                ++iext_delta;
1113
1114        if (dmap_written)
1115                ++iext_delta;
1116
1117        error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, iext_delta);
1118        if (error)
1119                goto out_cancel;
1120
1121        if (smap_real) {
1122                /*
1123                 * If the extent we're unmapping is backed by storage (written
1124                 * or not), unmap the extent and drop its refcount.
1125                 */
1126                xfs_bmap_unmap_extent(tp, ip, &smap);
1127                xfs_refcount_decrease_extent(tp, &smap);
1128                qdelta -= smap.br_blockcount;
1129        } else if (smap.br_startblock == DELAYSTARTBLOCK) {
1130                xfs_filblks_t   len = smap.br_blockcount;
1131
1132                /*
1133                 * If the extent we're unmapping is a delalloc reservation,
1134                 * we can use the regular bunmapi function to release the
1135                 * incore state.  Dropping the delalloc reservation takes care
1136                 * of the quota reservation for us.
1137                 */
1138                error = __xfs_bunmapi(NULL, ip, smap.br_startoff, &len, 0, 1);
1139                if (error)
1140                        goto out_cancel;
1141                ASSERT(len == 0);
1142        }
1143
1144        /*
1145         * If the extent we're sharing is backed by written storage, increase
1146         * its refcount and map it into the file.
1147         */
1148        if (dmap_written) {
1149                xfs_refcount_increase_extent(tp, dmap);
1150                xfs_bmap_map_extent(tp, ip, dmap);
1151                qdelta += dmap->br_blockcount;
1152        }
1153
1154        xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta);
1155
1156        /* Update dest isize if needed. */
1157        newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount);
1158        newlen = min_t(xfs_off_t, newlen, new_isize);
1159        if (newlen > i_size_read(VFS_I(ip))) {
1160                trace_xfs_reflink_update_inode_size(ip, newlen);
1161                i_size_write(VFS_I(ip), newlen);
1162                ip->i_disk_size = newlen;
1163                xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1164        }
1165
1166        /* Commit everything and unlock. */
1167        error = xfs_trans_commit(tp);
1168        goto out_unlock;
1169
1170out_cancel:
1171        xfs_trans_cancel(tp);
1172out_unlock:
1173        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1174out:
1175        if (error)
1176                trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1177        return error;
1178}
1179
1180/* Remap a range of one file to the other. */
1181int
1182xfs_reflink_remap_blocks(
1183        struct xfs_inode        *src,
1184        loff_t                  pos_in,
1185        struct xfs_inode        *dest,
1186        loff_t                  pos_out,
1187        loff_t                  remap_len,
1188        loff_t                  *remapped)
1189{
1190        struct xfs_bmbt_irec    imap;
1191        struct xfs_mount        *mp = src->i_mount;
1192        xfs_fileoff_t           srcoff = XFS_B_TO_FSBT(mp, pos_in);
1193        xfs_fileoff_t           destoff = XFS_B_TO_FSBT(mp, pos_out);
1194        xfs_filblks_t           len;
1195        xfs_filblks_t           remapped_len = 0;
1196        xfs_off_t               new_isize = pos_out + remap_len;
1197        int                     nimaps;
1198        int                     error = 0;
1199
1200        len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len),
1201                        XFS_MAX_FILEOFF);
1202
1203        trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff);
1204
1205        while (len > 0) {
1206                unsigned int    lock_mode;
1207
1208                /* Read extent from the source file */
1209                nimaps = 1;
1210                lock_mode = xfs_ilock_data_map_shared(src);
1211                error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1212                xfs_iunlock(src, lock_mode);
1213                if (error)
1214                        break;
1215                /*
1216                 * The caller supposedly flushed all dirty pages in the source
1217                 * file range, which means that writeback should have allocated
1218                 * or deleted all delalloc reservations in that range.  If we
1219                 * find one, that's a good sign that something is seriously
1220                 * wrong here.
1221                 */
1222                ASSERT(nimaps == 1 && imap.br_startoff == srcoff);
1223                if (imap.br_startblock == DELAYSTARTBLOCK) {
1224                        ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1225                        error = -EFSCORRUPTED;
1226                        break;
1227                }
1228
1229                trace_xfs_reflink_remap_extent_src(src, &imap);
1230
1231                /* Remap into the destination file at the given offset. */
1232                imap.br_startoff = destoff;
1233                error = xfs_reflink_remap_extent(dest, &imap, new_isize);
1234                if (error)
1235                        break;
1236
1237                if (fatal_signal_pending(current)) {
1238                        error = -EINTR;
1239                        break;
1240                }
1241
1242                /* Advance drange/srange */
1243                srcoff += imap.br_blockcount;
1244                destoff += imap.br_blockcount;
1245                len -= imap.br_blockcount;
1246                remapped_len += imap.br_blockcount;
1247        }
1248
1249        if (error)
1250                trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1251        *remapped = min_t(loff_t, remap_len,
1252                          XFS_FSB_TO_B(src->i_mount, remapped_len));
1253        return error;
1254}
1255
1256/*
1257 * If we're reflinking to a point past the destination file's EOF, we must
1258 * zero any speculative post-EOF preallocations that sit between the old EOF
1259 * and the destination file offset.
1260 */
1261static int
1262xfs_reflink_zero_posteof(
1263        struct xfs_inode        *ip,
1264        loff_t                  pos)
1265{
1266        loff_t                  isize = i_size_read(VFS_I(ip));
1267
1268        if (pos <= isize)
1269                return 0;
1270
1271        trace_xfs_zero_eof(ip, isize, pos - isize);
1272        return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL,
1273                        &xfs_buffered_write_iomap_ops);
1274}
1275
1276/*
1277 * Prepare two files for range cloning.  Upon a successful return both inodes
1278 * will have the iolock and mmaplock held, the page cache of the out file will
1279 * be truncated, and any leases on the out file will have been broken.  This
1280 * function borrows heavily from xfs_file_aio_write_checks.
1281 *
1282 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1283 * checked that the bytes beyond EOF physically match. Hence we cannot use the
1284 * EOF block in the source dedupe range because it's not a complete block match,
1285 * hence can introduce a corruption into the file that has it's block replaced.
1286 *
1287 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1288 * "block aligned" for the purposes of cloning entire files.  However, if the
1289 * source file range includes the EOF block and it lands within the existing EOF
1290 * of the destination file, then we can expose stale data from beyond the source
1291 * file EOF in the destination file.
1292 *
1293 * XFS doesn't support partial block sharing, so in both cases we have check
1294 * these cases ourselves. For dedupe, we can simply round the length to dedupe
1295 * down to the previous whole block and ignore the partial EOF block. While this
1296 * means we can't dedupe the last block of a file, this is an acceptible
1297 * tradeoff for simplicity on implementation.
1298 *
1299 * For cloning, we want to share the partial EOF block if it is also the new EOF
1300 * block of the destination file. If the partial EOF block lies inside the
1301 * existing destination EOF, then we have to abort the clone to avoid exposing
1302 * stale data in the destination file. Hence we reject these clone attempts with
1303 * -EINVAL in this case.
1304 */
1305int
1306xfs_reflink_remap_prep(
1307        struct file             *file_in,
1308        loff_t                  pos_in,
1309        struct file             *file_out,
1310        loff_t                  pos_out,
1311        loff_t                  *len,
1312        unsigned int            remap_flags)
1313{
1314        struct inode            *inode_in = file_inode(file_in);
1315        struct xfs_inode        *src = XFS_I(inode_in);
1316        struct inode            *inode_out = file_inode(file_out);
1317        struct xfs_inode        *dest = XFS_I(inode_out);
1318        int                     ret;
1319
1320        /* Lock both files against IO */
1321        ret = xfs_ilock2_io_mmap(src, dest);
1322        if (ret)
1323                return ret;
1324
1325        /* Check file eligibility and prepare for block sharing. */
1326        ret = -EINVAL;
1327        /* Don't reflink realtime inodes */
1328        if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1329                goto out_unlock;
1330
1331        /* Don't share DAX file data for now. */
1332        if (IS_DAX(inode_in) || IS_DAX(inode_out))
1333                goto out_unlock;
1334
1335        ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
1336                        len, remap_flags);
1337        if (ret || *len == 0)
1338                goto out_unlock;
1339
1340        /* Attach dquots to dest inode before changing block map */
1341        ret = xfs_qm_dqattach(dest);
1342        if (ret)
1343                goto out_unlock;
1344
1345        /*
1346         * Zero existing post-eof speculative preallocations in the destination
1347         * file.
1348         */
1349        ret = xfs_reflink_zero_posteof(dest, pos_out);
1350        if (ret)
1351                goto out_unlock;
1352
1353        /* Set flags and remap blocks. */
1354        ret = xfs_reflink_set_inode_flag(src, dest);
1355        if (ret)
1356                goto out_unlock;
1357
1358        /*
1359         * If pos_out > EOF, we may have dirtied blocks between EOF and
1360         * pos_out. In that case, we need to extend the flush and unmap to cover
1361         * from EOF to the end of the copy length.
1362         */
1363        if (pos_out > XFS_ISIZE(dest)) {
1364                loff_t  flen = *len + (pos_out - XFS_ISIZE(dest));
1365                ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1366        } else {
1367                ret = xfs_flush_unmap_range(dest, pos_out, *len);
1368        }
1369        if (ret)
1370                goto out_unlock;
1371
1372        return 0;
1373out_unlock:
1374        xfs_iunlock2_io_mmap(src, dest);
1375        return ret;
1376}
1377
1378/* Does this inode need the reflink flag? */
1379int
1380xfs_reflink_inode_has_shared_extents(
1381        struct xfs_trans                *tp,
1382        struct xfs_inode                *ip,
1383        bool                            *has_shared)
1384{
1385        struct xfs_bmbt_irec            got;
1386        struct xfs_mount                *mp = ip->i_mount;
1387        struct xfs_ifork                *ifp;
1388        xfs_agnumber_t                  agno;
1389        xfs_agblock_t                   agbno;
1390        xfs_extlen_t                    aglen;
1391        xfs_agblock_t                   rbno;
1392        xfs_extlen_t                    rlen;
1393        struct xfs_iext_cursor          icur;
1394        bool                            found;
1395        int                             error;
1396
1397        ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1398        error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1399        if (error)
1400                return error;
1401
1402        *has_shared = false;
1403        found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1404        while (found) {
1405                if (isnullstartblock(got.br_startblock) ||
1406                    got.br_state != XFS_EXT_NORM)
1407                        goto next;
1408                agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1409                agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1410                aglen = got.br_blockcount;
1411
1412                error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1413                                &rbno, &rlen, false);
1414                if (error)
1415                        return error;
1416                /* Is there still a shared block here? */
1417                if (rbno != NULLAGBLOCK) {
1418                        *has_shared = true;
1419                        return 0;
1420                }
1421next:
1422                found = xfs_iext_next_extent(ifp, &icur, &got);
1423        }
1424
1425        return 0;
1426}
1427
1428/*
1429 * Clear the inode reflink flag if there are no shared extents.
1430 *
1431 * The caller is responsible for joining the inode to the transaction passed in.
1432 * The inode will be joined to the transaction that is returned to the caller.
1433 */
1434int
1435xfs_reflink_clear_inode_flag(
1436        struct xfs_inode        *ip,
1437        struct xfs_trans        **tpp)
1438{
1439        bool                    needs_flag;
1440        int                     error = 0;
1441
1442        ASSERT(xfs_is_reflink_inode(ip));
1443
1444        error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1445        if (error || needs_flag)
1446                return error;
1447
1448        /*
1449         * We didn't find any shared blocks so turn off the reflink flag.
1450         * First, get rid of any leftover CoW mappings.
1451         */
1452        error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF,
1453                        true);
1454        if (error)
1455                return error;
1456
1457        /* Clear the inode flag. */
1458        trace_xfs_reflink_unset_inode_flag(ip);
1459        ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1460        xfs_inode_clear_cowblocks_tag(ip);
1461        xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1462
1463        return error;
1464}
1465
1466/*
1467 * Clear the inode reflink flag if there are no shared extents and the size
1468 * hasn't changed.
1469 */
1470STATIC int
1471xfs_reflink_try_clear_inode_flag(
1472        struct xfs_inode        *ip)
1473{
1474        struct xfs_mount        *mp = ip->i_mount;
1475        struct xfs_trans        *tp;
1476        int                     error = 0;
1477
1478        /* Start a rolling transaction to remove the mappings */
1479        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1480        if (error)
1481                return error;
1482
1483        xfs_ilock(ip, XFS_ILOCK_EXCL);
1484        xfs_trans_ijoin(tp, ip, 0);
1485
1486        error = xfs_reflink_clear_inode_flag(ip, &tp);
1487        if (error)
1488                goto cancel;
1489
1490        error = xfs_trans_commit(tp);
1491        if (error)
1492                goto out;
1493
1494        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1495        return 0;
1496cancel:
1497        xfs_trans_cancel(tp);
1498out:
1499        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1500        return error;
1501}
1502
1503/*
1504 * Pre-COW all shared blocks within a given byte range of a file and turn off
1505 * the reflink flag if we unshare all of the file's blocks.
1506 */
1507int
1508xfs_reflink_unshare(
1509        struct xfs_inode        *ip,
1510        xfs_off_t               offset,
1511        xfs_off_t               len)
1512{
1513        struct inode            *inode = VFS_I(ip);
1514        int                     error;
1515
1516        if (!xfs_is_reflink_inode(ip))
1517                return 0;
1518
1519        trace_xfs_reflink_unshare(ip, offset, len);
1520
1521        inode_dio_wait(inode);
1522
1523        error = iomap_file_unshare(inode, offset, len,
1524                        &xfs_buffered_write_iomap_ops);
1525        if (error)
1526                goto out;
1527
1528        error = filemap_write_and_wait_range(inode->i_mapping, offset,
1529                        offset + len - 1);
1530        if (error)
1531                goto out;
1532
1533        /* Turn off the reflink flag if possible. */
1534        error = xfs_reflink_try_clear_inode_flag(ip);
1535        if (error)
1536                goto out;
1537        return 0;
1538
1539out:
1540        trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1541        return error;
1542}
1543