linux/include/linux/memcontrol.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/* memcontrol.h - Memory Controller
   3 *
   4 * Copyright IBM Corporation, 2007
   5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   6 *
   7 * Copyright 2007 OpenVZ SWsoft Inc
   8 * Author: Pavel Emelianov <xemul@openvz.org>
   9 */
  10
  11#ifndef _LINUX_MEMCONTROL_H
  12#define _LINUX_MEMCONTROL_H
  13#include <linux/cgroup.h>
  14#include <linux/vm_event_item.h>
  15#include <linux/hardirq.h>
  16#include <linux/jump_label.h>
  17#include <linux/page_counter.h>
  18#include <linux/vmpressure.h>
  19#include <linux/eventfd.h>
  20#include <linux/mm.h>
  21#include <linux/vmstat.h>
  22#include <linux/writeback.h>
  23#include <linux/page-flags.h>
  24
  25struct mem_cgroup;
  26struct obj_cgroup;
  27struct page;
  28struct mm_struct;
  29struct kmem_cache;
  30
  31/* Cgroup-specific page state, on top of universal node page state */
  32enum memcg_stat_item {
  33        MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
  34        MEMCG_SOCK,
  35        MEMCG_PERCPU_B,
  36        MEMCG_NR_STAT,
  37};
  38
  39enum memcg_memory_event {
  40        MEMCG_LOW,
  41        MEMCG_HIGH,
  42        MEMCG_MAX,
  43        MEMCG_OOM,
  44        MEMCG_OOM_KILL,
  45        MEMCG_SWAP_HIGH,
  46        MEMCG_SWAP_MAX,
  47        MEMCG_SWAP_FAIL,
  48        MEMCG_NR_MEMORY_EVENTS,
  49};
  50
  51struct mem_cgroup_reclaim_cookie {
  52        pg_data_t *pgdat;
  53        unsigned int generation;
  54};
  55
  56#ifdef CONFIG_MEMCG
  57
  58#define MEM_CGROUP_ID_SHIFT     16
  59#define MEM_CGROUP_ID_MAX       USHRT_MAX
  60
  61struct mem_cgroup_id {
  62        int id;
  63        refcount_t ref;
  64};
  65
  66/*
  67 * Per memcg event counter is incremented at every pagein/pageout. With THP,
  68 * it will be incremented by the number of pages. This counter is used
  69 * to trigger some periodic events. This is straightforward and better
  70 * than using jiffies etc. to handle periodic memcg event.
  71 */
  72enum mem_cgroup_events_target {
  73        MEM_CGROUP_TARGET_THRESH,
  74        MEM_CGROUP_TARGET_SOFTLIMIT,
  75        MEM_CGROUP_NTARGETS,
  76};
  77
  78struct memcg_vmstats_percpu {
  79        /* Local (CPU and cgroup) page state & events */
  80        long                    state[MEMCG_NR_STAT];
  81        unsigned long           events[NR_VM_EVENT_ITEMS];
  82
  83        /* Delta calculation for lockless upward propagation */
  84        long                    state_prev[MEMCG_NR_STAT];
  85        unsigned long           events_prev[NR_VM_EVENT_ITEMS];
  86
  87        /* Cgroup1: threshold notifications & softlimit tree updates */
  88        unsigned long           nr_page_events;
  89        unsigned long           targets[MEM_CGROUP_NTARGETS];
  90};
  91
  92struct memcg_vmstats {
  93        /* Aggregated (CPU and subtree) page state & events */
  94        long                    state[MEMCG_NR_STAT];
  95        unsigned long           events[NR_VM_EVENT_ITEMS];
  96
  97        /* Pending child counts during tree propagation */
  98        long                    state_pending[MEMCG_NR_STAT];
  99        unsigned long           events_pending[NR_VM_EVENT_ITEMS];
 100};
 101
 102struct mem_cgroup_reclaim_iter {
 103        struct mem_cgroup *position;
 104        /* scan generation, increased every round-trip */
 105        unsigned int generation;
 106};
 107
 108/*
 109 * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
 110 * shrinkers, which have elements charged to this memcg.
 111 */
 112struct shrinker_info {
 113        struct rcu_head rcu;
 114        atomic_long_t *nr_deferred;
 115        unsigned long *map;
 116};
 117
 118struct lruvec_stats_percpu {
 119        /* Local (CPU and cgroup) state */
 120        long state[NR_VM_NODE_STAT_ITEMS];
 121
 122        /* Delta calculation for lockless upward propagation */
 123        long state_prev[NR_VM_NODE_STAT_ITEMS];
 124};
 125
 126struct lruvec_stats {
 127        /* Aggregated (CPU and subtree) state */
 128        long state[NR_VM_NODE_STAT_ITEMS];
 129
 130        /* Pending child counts during tree propagation */
 131        long state_pending[NR_VM_NODE_STAT_ITEMS];
 132};
 133
 134/*
 135 * per-node information in memory controller.
 136 */
 137struct mem_cgroup_per_node {
 138        struct lruvec           lruvec;
 139
 140        struct lruvec_stats_percpu __percpu     *lruvec_stats_percpu;
 141        struct lruvec_stats                     lruvec_stats;
 142
 143        unsigned long           lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
 144
 145        struct mem_cgroup_reclaim_iter  iter;
 146
 147        struct shrinker_info __rcu      *shrinker_info;
 148
 149        struct rb_node          tree_node;      /* RB tree node */
 150        unsigned long           usage_in_excess;/* Set to the value by which */
 151                                                /* the soft limit is exceeded*/
 152        bool                    on_tree;
 153        struct mem_cgroup       *memcg;         /* Back pointer, we cannot */
 154                                                /* use container_of        */
 155};
 156
 157struct mem_cgroup_threshold {
 158        struct eventfd_ctx *eventfd;
 159        unsigned long threshold;
 160};
 161
 162/* For threshold */
 163struct mem_cgroup_threshold_ary {
 164        /* An array index points to threshold just below or equal to usage. */
 165        int current_threshold;
 166        /* Size of entries[] */
 167        unsigned int size;
 168        /* Array of thresholds */
 169        struct mem_cgroup_threshold entries[];
 170};
 171
 172struct mem_cgroup_thresholds {
 173        /* Primary thresholds array */
 174        struct mem_cgroup_threshold_ary *primary;
 175        /*
 176         * Spare threshold array.
 177         * This is needed to make mem_cgroup_unregister_event() "never fail".
 178         * It must be able to store at least primary->size - 1 entries.
 179         */
 180        struct mem_cgroup_threshold_ary *spare;
 181};
 182
 183#if defined(CONFIG_SMP)
 184struct memcg_padding {
 185        char x[0];
 186} ____cacheline_internodealigned_in_smp;
 187#define MEMCG_PADDING(name)      struct memcg_padding name
 188#else
 189#define MEMCG_PADDING(name)
 190#endif
 191
 192/*
 193 * Remember four most recent foreign writebacks with dirty pages in this
 194 * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
 195 * one in a given round, we're likely to catch it later if it keeps
 196 * foreign-dirtying, so a fairly low count should be enough.
 197 *
 198 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
 199 */
 200#define MEMCG_CGWB_FRN_CNT      4
 201
 202struct memcg_cgwb_frn {
 203        u64 bdi_id;                     /* bdi->id of the foreign inode */
 204        int memcg_id;                   /* memcg->css.id of foreign inode */
 205        u64 at;                         /* jiffies_64 at the time of dirtying */
 206        struct wb_completion done;      /* tracks in-flight foreign writebacks */
 207};
 208
 209/*
 210 * Bucket for arbitrarily byte-sized objects charged to a memory
 211 * cgroup. The bucket can be reparented in one piece when the cgroup
 212 * is destroyed, without having to round up the individual references
 213 * of all live memory objects in the wild.
 214 */
 215struct obj_cgroup {
 216        struct percpu_ref refcnt;
 217        struct mem_cgroup *memcg;
 218        atomic_t nr_charged_bytes;
 219        union {
 220                struct list_head list;
 221                struct rcu_head rcu;
 222        };
 223};
 224
 225/*
 226 * The memory controller data structure. The memory controller controls both
 227 * page cache and RSS per cgroup. We would eventually like to provide
 228 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 229 * to help the administrator determine what knobs to tune.
 230 */
 231struct mem_cgroup {
 232        struct cgroup_subsys_state css;
 233
 234        /* Private memcg ID. Used to ID objects that outlive the cgroup */
 235        struct mem_cgroup_id id;
 236
 237        /* Accounted resources */
 238        struct page_counter memory;             /* Both v1 & v2 */
 239
 240        union {
 241                struct page_counter swap;       /* v2 only */
 242                struct page_counter memsw;      /* v1 only */
 243        };
 244
 245        /* Legacy consumer-oriented counters */
 246        struct page_counter kmem;               /* v1 only */
 247        struct page_counter tcpmem;             /* v1 only */
 248
 249        /* Range enforcement for interrupt charges */
 250        struct work_struct high_work;
 251
 252        unsigned long soft_limit;
 253
 254        /* vmpressure notifications */
 255        struct vmpressure vmpressure;
 256
 257        /*
 258         * Should the OOM killer kill all belonging tasks, had it kill one?
 259         */
 260        bool oom_group;
 261
 262        /* protected by memcg_oom_lock */
 263        bool            oom_lock;
 264        int             under_oom;
 265
 266        int     swappiness;
 267        /* OOM-Killer disable */
 268        int             oom_kill_disable;
 269
 270        /* memory.events and memory.events.local */
 271        struct cgroup_file events_file;
 272        struct cgroup_file events_local_file;
 273
 274        /* handle for "memory.swap.events" */
 275        struct cgroup_file swap_events_file;
 276
 277        /* protect arrays of thresholds */
 278        struct mutex thresholds_lock;
 279
 280        /* thresholds for memory usage. RCU-protected */
 281        struct mem_cgroup_thresholds thresholds;
 282
 283        /* thresholds for mem+swap usage. RCU-protected */
 284        struct mem_cgroup_thresholds memsw_thresholds;
 285
 286        /* For oom notifier event fd */
 287        struct list_head oom_notify;
 288
 289        /*
 290         * Should we move charges of a task when a task is moved into this
 291         * mem_cgroup ? And what type of charges should we move ?
 292         */
 293        unsigned long move_charge_at_immigrate;
 294        /* taken only while moving_account > 0 */
 295        spinlock_t              move_lock;
 296        unsigned long           move_lock_flags;
 297
 298        MEMCG_PADDING(_pad1_);
 299
 300        /* memory.stat */
 301        struct memcg_vmstats    vmstats;
 302
 303        /* memory.events */
 304        atomic_long_t           memory_events[MEMCG_NR_MEMORY_EVENTS];
 305        atomic_long_t           memory_events_local[MEMCG_NR_MEMORY_EVENTS];
 306
 307        unsigned long           socket_pressure;
 308
 309        /* Legacy tcp memory accounting */
 310        bool                    tcpmem_active;
 311        int                     tcpmem_pressure;
 312
 313#ifdef CONFIG_MEMCG_KMEM
 314        int kmemcg_id;
 315        struct obj_cgroup __rcu *objcg;
 316        struct list_head objcg_list; /* list of inherited objcgs */
 317#endif
 318
 319        MEMCG_PADDING(_pad2_);
 320
 321        /*
 322         * set > 0 if pages under this cgroup are moving to other cgroup.
 323         */
 324        atomic_t                moving_account;
 325        struct task_struct      *move_lock_task;
 326
 327        struct memcg_vmstats_percpu __percpu *vmstats_percpu;
 328
 329#ifdef CONFIG_CGROUP_WRITEBACK
 330        struct list_head cgwb_list;
 331        struct wb_domain cgwb_domain;
 332        struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
 333#endif
 334
 335        /* List of events which userspace want to receive */
 336        struct list_head event_list;
 337        spinlock_t event_list_lock;
 338
 339#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 340        struct deferred_split deferred_split_queue;
 341#endif
 342
 343        struct mem_cgroup_per_node *nodeinfo[];
 344};
 345
 346/*
 347 * size of first charge trial. "32" comes from vmscan.c's magic value.
 348 * TODO: maybe necessary to use big numbers in big irons.
 349 */
 350#define MEMCG_CHARGE_BATCH 32U
 351
 352extern struct mem_cgroup *root_mem_cgroup;
 353
 354enum page_memcg_data_flags {
 355        /* page->memcg_data is a pointer to an objcgs vector */
 356        MEMCG_DATA_OBJCGS = (1UL << 0),
 357        /* page has been accounted as a non-slab kernel page */
 358        MEMCG_DATA_KMEM = (1UL << 1),
 359        /* the next bit after the last actual flag */
 360        __NR_MEMCG_DATA_FLAGS  = (1UL << 2),
 361};
 362
 363#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
 364
 365static inline bool folio_memcg_kmem(struct folio *folio);
 366
 367/*
 368 * After the initialization objcg->memcg is always pointing at
 369 * a valid memcg, but can be atomically swapped to the parent memcg.
 370 *
 371 * The caller must ensure that the returned memcg won't be released:
 372 * e.g. acquire the rcu_read_lock or css_set_lock.
 373 */
 374static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
 375{
 376        return READ_ONCE(objcg->memcg);
 377}
 378
 379/*
 380 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
 381 * @folio: Pointer to the folio.
 382 *
 383 * Returns a pointer to the memory cgroup associated with the folio,
 384 * or NULL. This function assumes that the folio is known to have a
 385 * proper memory cgroup pointer. It's not safe to call this function
 386 * against some type of folios, e.g. slab folios or ex-slab folios or
 387 * kmem folios.
 388 */
 389static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
 390{
 391        unsigned long memcg_data = folio->memcg_data;
 392
 393        VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
 394        VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
 395        VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
 396
 397        return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 398}
 399
 400/*
 401 * __folio_objcg - get the object cgroup associated with a kmem folio.
 402 * @folio: Pointer to the folio.
 403 *
 404 * Returns a pointer to the object cgroup associated with the folio,
 405 * or NULL. This function assumes that the folio is known to have a
 406 * proper object cgroup pointer. It's not safe to call this function
 407 * against some type of folios, e.g. slab folios or ex-slab folios or
 408 * LRU folios.
 409 */
 410static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
 411{
 412        unsigned long memcg_data = folio->memcg_data;
 413
 414        VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
 415        VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
 416        VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
 417
 418        return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 419}
 420
 421/*
 422 * folio_memcg - Get the memory cgroup associated with a folio.
 423 * @folio: Pointer to the folio.
 424 *
 425 * Returns a pointer to the memory cgroup associated with the folio,
 426 * or NULL. This function assumes that the folio is known to have a
 427 * proper memory cgroup pointer. It's not safe to call this function
 428 * against some type of folios, e.g. slab folios or ex-slab folios.
 429 *
 430 * For a non-kmem folio any of the following ensures folio and memcg binding
 431 * stability:
 432 *
 433 * - the folio lock
 434 * - LRU isolation
 435 * - lock_page_memcg()
 436 * - exclusive reference
 437 *
 438 * For a kmem folio a caller should hold an rcu read lock to protect memcg
 439 * associated with a kmem folio from being released.
 440 */
 441static inline struct mem_cgroup *folio_memcg(struct folio *folio)
 442{
 443        if (folio_memcg_kmem(folio))
 444                return obj_cgroup_memcg(__folio_objcg(folio));
 445        return __folio_memcg(folio);
 446}
 447
 448static inline struct mem_cgroup *page_memcg(struct page *page)
 449{
 450        return folio_memcg(page_folio(page));
 451}
 452
 453/**
 454 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
 455 * @folio: Pointer to the folio.
 456 *
 457 * This function assumes that the folio is known to have a
 458 * proper memory cgroup pointer. It's not safe to call this function
 459 * against some type of folios, e.g. slab folios or ex-slab folios.
 460 *
 461 * Return: A pointer to the memory cgroup associated with the folio,
 462 * or NULL.
 463 */
 464static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
 465{
 466        unsigned long memcg_data = READ_ONCE(folio->memcg_data);
 467
 468        VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
 469        WARN_ON_ONCE(!rcu_read_lock_held());
 470
 471        if (memcg_data & MEMCG_DATA_KMEM) {
 472                struct obj_cgroup *objcg;
 473
 474                objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 475                return obj_cgroup_memcg(objcg);
 476        }
 477
 478        return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 479}
 480
 481/*
 482 * page_memcg_check - get the memory cgroup associated with a page
 483 * @page: a pointer to the page struct
 484 *
 485 * Returns a pointer to the memory cgroup associated with the page,
 486 * or NULL. This function unlike page_memcg() can take any page
 487 * as an argument. It has to be used in cases when it's not known if a page
 488 * has an associated memory cgroup pointer or an object cgroups vector or
 489 * an object cgroup.
 490 *
 491 * For a non-kmem page any of the following ensures page and memcg binding
 492 * stability:
 493 *
 494 * - the page lock
 495 * - LRU isolation
 496 * - lock_page_memcg()
 497 * - exclusive reference
 498 *
 499 * For a kmem page a caller should hold an rcu read lock to protect memcg
 500 * associated with a kmem page from being released.
 501 */
 502static inline struct mem_cgroup *page_memcg_check(struct page *page)
 503{
 504        /*
 505         * Because page->memcg_data might be changed asynchronously
 506         * for slab pages, READ_ONCE() should be used here.
 507         */
 508        unsigned long memcg_data = READ_ONCE(page->memcg_data);
 509
 510        if (memcg_data & MEMCG_DATA_OBJCGS)
 511                return NULL;
 512
 513        if (memcg_data & MEMCG_DATA_KMEM) {
 514                struct obj_cgroup *objcg;
 515
 516                objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 517                return obj_cgroup_memcg(objcg);
 518        }
 519
 520        return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 521}
 522
 523#ifdef CONFIG_MEMCG_KMEM
 524/*
 525 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
 526 * @folio: Pointer to the folio.
 527 *
 528 * Checks if the folio has MemcgKmem flag set. The caller must ensure
 529 * that the folio has an associated memory cgroup. It's not safe to call
 530 * this function against some types of folios, e.g. slab folios.
 531 */
 532static inline bool folio_memcg_kmem(struct folio *folio)
 533{
 534        VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
 535        VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
 536        return folio->memcg_data & MEMCG_DATA_KMEM;
 537}
 538
 539/*
 540 * page_objcgs - get the object cgroups vector associated with a page
 541 * @page: a pointer to the page struct
 542 *
 543 * Returns a pointer to the object cgroups vector associated with the page,
 544 * or NULL. This function assumes that the page is known to have an
 545 * associated object cgroups vector. It's not safe to call this function
 546 * against pages, which might have an associated memory cgroup: e.g.
 547 * kernel stack pages.
 548 */
 549static inline struct obj_cgroup **page_objcgs(struct page *page)
 550{
 551        unsigned long memcg_data = READ_ONCE(page->memcg_data);
 552
 553        VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page);
 554        VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
 555
 556        return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 557}
 558
 559/*
 560 * page_objcgs_check - get the object cgroups vector associated with a page
 561 * @page: a pointer to the page struct
 562 *
 563 * Returns a pointer to the object cgroups vector associated with the page,
 564 * or NULL. This function is safe to use if the page can be directly associated
 565 * with a memory cgroup.
 566 */
 567static inline struct obj_cgroup **page_objcgs_check(struct page *page)
 568{
 569        unsigned long memcg_data = READ_ONCE(page->memcg_data);
 570
 571        if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS))
 572                return NULL;
 573
 574        VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
 575
 576        return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 577}
 578
 579#else
 580static inline bool folio_memcg_kmem(struct folio *folio)
 581{
 582        return false;
 583}
 584
 585static inline struct obj_cgroup **page_objcgs(struct page *page)
 586{
 587        return NULL;
 588}
 589
 590static inline struct obj_cgroup **page_objcgs_check(struct page *page)
 591{
 592        return NULL;
 593}
 594#endif
 595
 596static inline bool PageMemcgKmem(struct page *page)
 597{
 598        return folio_memcg_kmem(page_folio(page));
 599}
 600
 601static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
 602{
 603        return (memcg == root_mem_cgroup);
 604}
 605
 606static inline bool mem_cgroup_disabled(void)
 607{
 608        return !cgroup_subsys_enabled(memory_cgrp_subsys);
 609}
 610
 611static inline void mem_cgroup_protection(struct mem_cgroup *root,
 612                                         struct mem_cgroup *memcg,
 613                                         unsigned long *min,
 614                                         unsigned long *low)
 615{
 616        *min = *low = 0;
 617
 618        if (mem_cgroup_disabled())
 619                return;
 620
 621        /*
 622         * There is no reclaim protection applied to a targeted reclaim.
 623         * We are special casing this specific case here because
 624         * mem_cgroup_protected calculation is not robust enough to keep
 625         * the protection invariant for calculated effective values for
 626         * parallel reclaimers with different reclaim target. This is
 627         * especially a problem for tail memcgs (as they have pages on LRU)
 628         * which would want to have effective values 0 for targeted reclaim
 629         * but a different value for external reclaim.
 630         *
 631         * Example
 632         * Let's have global and A's reclaim in parallel:
 633         *  |
 634         *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
 635         *  |\
 636         *  | C (low = 1G, usage = 2.5G)
 637         *  B (low = 1G, usage = 0.5G)
 638         *
 639         * For the global reclaim
 640         * A.elow = A.low
 641         * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
 642         * C.elow = min(C.usage, C.low)
 643         *
 644         * With the effective values resetting we have A reclaim
 645         * A.elow = 0
 646         * B.elow = B.low
 647         * C.elow = C.low
 648         *
 649         * If the global reclaim races with A's reclaim then
 650         * B.elow = C.elow = 0 because children_low_usage > A.elow)
 651         * is possible and reclaiming B would be violating the protection.
 652         *
 653         */
 654        if (root == memcg)
 655                return;
 656
 657        *min = READ_ONCE(memcg->memory.emin);
 658        *low = READ_ONCE(memcg->memory.elow);
 659}
 660
 661void mem_cgroup_calculate_protection(struct mem_cgroup *root,
 662                                     struct mem_cgroup *memcg);
 663
 664static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
 665{
 666        /*
 667         * The root memcg doesn't account charges, and doesn't support
 668         * protection.
 669         */
 670        return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
 671
 672}
 673
 674static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
 675{
 676        if (!mem_cgroup_supports_protection(memcg))
 677                return false;
 678
 679        return READ_ONCE(memcg->memory.elow) >=
 680                page_counter_read(&memcg->memory);
 681}
 682
 683static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
 684{
 685        if (!mem_cgroup_supports_protection(memcg))
 686                return false;
 687
 688        return READ_ONCE(memcg->memory.emin) >=
 689                page_counter_read(&memcg->memory);
 690}
 691
 692int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
 693
 694/**
 695 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
 696 * @folio: Folio to charge.
 697 * @mm: mm context of the allocating task.
 698 * @gfp: Reclaim mode.
 699 *
 700 * Try to charge @folio to the memcg that @mm belongs to, reclaiming
 701 * pages according to @gfp if necessary.  If @mm is NULL, try to
 702 * charge to the active memcg.
 703 *
 704 * Do not use this for folios allocated for swapin.
 705 *
 706 * Return: 0 on success. Otherwise, an error code is returned.
 707 */
 708static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
 709                                    gfp_t gfp)
 710{
 711        if (mem_cgroup_disabled())
 712                return 0;
 713        return __mem_cgroup_charge(folio, mm, gfp);
 714}
 715
 716int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
 717                                  gfp_t gfp, swp_entry_t entry);
 718void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
 719
 720void __mem_cgroup_uncharge(struct folio *folio);
 721
 722/**
 723 * mem_cgroup_uncharge - Uncharge a folio.
 724 * @folio: Folio to uncharge.
 725 *
 726 * Uncharge a folio previously charged with mem_cgroup_charge().
 727 */
 728static inline void mem_cgroup_uncharge(struct folio *folio)
 729{
 730        if (mem_cgroup_disabled())
 731                return;
 732        __mem_cgroup_uncharge(folio);
 733}
 734
 735void __mem_cgroup_uncharge_list(struct list_head *page_list);
 736static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
 737{
 738        if (mem_cgroup_disabled())
 739                return;
 740        __mem_cgroup_uncharge_list(page_list);
 741}
 742
 743void mem_cgroup_migrate(struct folio *old, struct folio *new);
 744
 745/**
 746 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
 747 * @memcg: memcg of the wanted lruvec
 748 * @pgdat: pglist_data
 749 *
 750 * Returns the lru list vector holding pages for a given @memcg &
 751 * @pgdat combination. This can be the node lruvec, if the memory
 752 * controller is disabled.
 753 */
 754static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
 755                                               struct pglist_data *pgdat)
 756{
 757        struct mem_cgroup_per_node *mz;
 758        struct lruvec *lruvec;
 759
 760        if (mem_cgroup_disabled()) {
 761                lruvec = &pgdat->__lruvec;
 762                goto out;
 763        }
 764
 765        if (!memcg)
 766                memcg = root_mem_cgroup;
 767
 768        mz = memcg->nodeinfo[pgdat->node_id];
 769        lruvec = &mz->lruvec;
 770out:
 771        /*
 772         * Since a node can be onlined after the mem_cgroup was created,
 773         * we have to be prepared to initialize lruvec->pgdat here;
 774         * and if offlined then reonlined, we need to reinitialize it.
 775         */
 776        if (unlikely(lruvec->pgdat != pgdat))
 777                lruvec->pgdat = pgdat;
 778        return lruvec;
 779}
 780
 781/**
 782 * folio_lruvec - return lruvec for isolating/putting an LRU folio
 783 * @folio: Pointer to the folio.
 784 *
 785 * This function relies on folio->mem_cgroup being stable.
 786 */
 787static inline struct lruvec *folio_lruvec(struct folio *folio)
 788{
 789        struct mem_cgroup *memcg = folio_memcg(folio);
 790
 791        VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
 792        return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
 793}
 794
 795struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
 796
 797struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
 798
 799struct lruvec *folio_lruvec_lock(struct folio *folio);
 800struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
 801struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
 802                                                unsigned long *flags);
 803
 804#ifdef CONFIG_DEBUG_VM
 805void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
 806#else
 807static inline
 808void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
 809{
 810}
 811#endif
 812
 813static inline
 814struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
 815        return css ? container_of(css, struct mem_cgroup, css) : NULL;
 816}
 817
 818static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
 819{
 820        return percpu_ref_tryget(&objcg->refcnt);
 821}
 822
 823static inline void obj_cgroup_get(struct obj_cgroup *objcg)
 824{
 825        percpu_ref_get(&objcg->refcnt);
 826}
 827
 828static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
 829                                       unsigned long nr)
 830{
 831        percpu_ref_get_many(&objcg->refcnt, nr);
 832}
 833
 834static inline void obj_cgroup_put(struct obj_cgroup *objcg)
 835{
 836        percpu_ref_put(&objcg->refcnt);
 837}
 838
 839static inline void mem_cgroup_put(struct mem_cgroup *memcg)
 840{
 841        if (memcg)
 842                css_put(&memcg->css);
 843}
 844
 845#define mem_cgroup_from_counter(counter, member)        \
 846        container_of(counter, struct mem_cgroup, member)
 847
 848struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
 849                                   struct mem_cgroup *,
 850                                   struct mem_cgroup_reclaim_cookie *);
 851void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
 852int mem_cgroup_scan_tasks(struct mem_cgroup *,
 853                          int (*)(struct task_struct *, void *), void *);
 854
 855static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
 856{
 857        if (mem_cgroup_disabled())
 858                return 0;
 859
 860        return memcg->id.id;
 861}
 862struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
 863
 864static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
 865{
 866        return mem_cgroup_from_css(seq_css(m));
 867}
 868
 869static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
 870{
 871        struct mem_cgroup_per_node *mz;
 872
 873        if (mem_cgroup_disabled())
 874                return NULL;
 875
 876        mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 877        return mz->memcg;
 878}
 879
 880/**
 881 * parent_mem_cgroup - find the accounting parent of a memcg
 882 * @memcg: memcg whose parent to find
 883 *
 884 * Returns the parent memcg, or NULL if this is the root or the memory
 885 * controller is in legacy no-hierarchy mode.
 886 */
 887static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
 888{
 889        if (!memcg->memory.parent)
 890                return NULL;
 891        return mem_cgroup_from_counter(memcg->memory.parent, memory);
 892}
 893
 894static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
 895                              struct mem_cgroup *root)
 896{
 897        if (root == memcg)
 898                return true;
 899        return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
 900}
 901
 902static inline bool mm_match_cgroup(struct mm_struct *mm,
 903                                   struct mem_cgroup *memcg)
 904{
 905        struct mem_cgroup *task_memcg;
 906        bool match = false;
 907
 908        rcu_read_lock();
 909        task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 910        if (task_memcg)
 911                match = mem_cgroup_is_descendant(task_memcg, memcg);
 912        rcu_read_unlock();
 913        return match;
 914}
 915
 916struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
 917ino_t page_cgroup_ino(struct page *page);
 918
 919static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
 920{
 921        if (mem_cgroup_disabled())
 922                return true;
 923        return !!(memcg->css.flags & CSS_ONLINE);
 924}
 925
 926void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
 927                int zid, int nr_pages);
 928
 929static inline
 930unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
 931                enum lru_list lru, int zone_idx)
 932{
 933        struct mem_cgroup_per_node *mz;
 934
 935        mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 936        return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
 937}
 938
 939void mem_cgroup_handle_over_high(void);
 940
 941unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
 942
 943unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
 944
 945void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
 946                                struct task_struct *p);
 947
 948void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
 949
 950static inline void mem_cgroup_enter_user_fault(void)
 951{
 952        WARN_ON(current->in_user_fault);
 953        current->in_user_fault = 1;
 954}
 955
 956static inline void mem_cgroup_exit_user_fault(void)
 957{
 958        WARN_ON(!current->in_user_fault);
 959        current->in_user_fault = 0;
 960}
 961
 962static inline bool task_in_memcg_oom(struct task_struct *p)
 963{
 964        return p->memcg_in_oom;
 965}
 966
 967bool mem_cgroup_oom_synchronize(bool wait);
 968struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
 969                                            struct mem_cgroup *oom_domain);
 970void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
 971
 972#ifdef CONFIG_MEMCG_SWAP
 973extern bool cgroup_memory_noswap;
 974#endif
 975
 976void folio_memcg_lock(struct folio *folio);
 977void folio_memcg_unlock(struct folio *folio);
 978void lock_page_memcg(struct page *page);
 979void unlock_page_memcg(struct page *page);
 980
 981void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
 982
 983/* idx can be of type enum memcg_stat_item or node_stat_item */
 984static inline void mod_memcg_state(struct mem_cgroup *memcg,
 985                                   int idx, int val)
 986{
 987        unsigned long flags;
 988
 989        local_irq_save(flags);
 990        __mod_memcg_state(memcg, idx, val);
 991        local_irq_restore(flags);
 992}
 993
 994static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
 995{
 996        return READ_ONCE(memcg->vmstats.state[idx]);
 997}
 998
 999static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1000                                              enum node_stat_item idx)
1001{
1002        struct mem_cgroup_per_node *pn;
1003
1004        if (mem_cgroup_disabled())
1005                return node_page_state(lruvec_pgdat(lruvec), idx);
1006
1007        pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1008        return READ_ONCE(pn->lruvec_stats.state[idx]);
1009}
1010
1011static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1012                                                    enum node_stat_item idx)
1013{
1014        struct mem_cgroup_per_node *pn;
1015        long x = 0;
1016        int cpu;
1017
1018        if (mem_cgroup_disabled())
1019                return node_page_state(lruvec_pgdat(lruvec), idx);
1020
1021        pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1022        for_each_possible_cpu(cpu)
1023                x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu);
1024#ifdef CONFIG_SMP
1025        if (x < 0)
1026                x = 0;
1027#endif
1028        return x;
1029}
1030
1031void mem_cgroup_flush_stats(void);
1032
1033void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1034                              int val);
1035void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1036
1037static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1038                                         int val)
1039{
1040        unsigned long flags;
1041
1042        local_irq_save(flags);
1043        __mod_lruvec_kmem_state(p, idx, val);
1044        local_irq_restore(flags);
1045}
1046
1047static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1048                                          enum node_stat_item idx, int val)
1049{
1050        unsigned long flags;
1051
1052        local_irq_save(flags);
1053        __mod_memcg_lruvec_state(lruvec, idx, val);
1054        local_irq_restore(flags);
1055}
1056
1057void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1058                          unsigned long count);
1059
1060static inline void count_memcg_events(struct mem_cgroup *memcg,
1061                                      enum vm_event_item idx,
1062                                      unsigned long count)
1063{
1064        unsigned long flags;
1065
1066        local_irq_save(flags);
1067        __count_memcg_events(memcg, idx, count);
1068        local_irq_restore(flags);
1069}
1070
1071static inline void count_memcg_page_event(struct page *page,
1072                                          enum vm_event_item idx)
1073{
1074        struct mem_cgroup *memcg = page_memcg(page);
1075
1076        if (memcg)
1077                count_memcg_events(memcg, idx, 1);
1078}
1079
1080static inline void count_memcg_event_mm(struct mm_struct *mm,
1081                                        enum vm_event_item idx)
1082{
1083        struct mem_cgroup *memcg;
1084
1085        if (mem_cgroup_disabled())
1086                return;
1087
1088        rcu_read_lock();
1089        memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1090        if (likely(memcg))
1091                count_memcg_events(memcg, idx, 1);
1092        rcu_read_unlock();
1093}
1094
1095static inline void memcg_memory_event(struct mem_cgroup *memcg,
1096                                      enum memcg_memory_event event)
1097{
1098        bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1099                          event == MEMCG_SWAP_FAIL;
1100
1101        atomic_long_inc(&memcg->memory_events_local[event]);
1102        if (!swap_event)
1103                cgroup_file_notify(&memcg->events_local_file);
1104
1105        do {
1106                atomic_long_inc(&memcg->memory_events[event]);
1107                if (swap_event)
1108                        cgroup_file_notify(&memcg->swap_events_file);
1109                else
1110                        cgroup_file_notify(&memcg->events_file);
1111
1112                if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1113                        break;
1114                if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1115                        break;
1116        } while ((memcg = parent_mem_cgroup(memcg)) &&
1117                 !mem_cgroup_is_root(memcg));
1118}
1119
1120static inline void memcg_memory_event_mm(struct mm_struct *mm,
1121                                         enum memcg_memory_event event)
1122{
1123        struct mem_cgroup *memcg;
1124
1125        if (mem_cgroup_disabled())
1126                return;
1127
1128        rcu_read_lock();
1129        memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1130        if (likely(memcg))
1131                memcg_memory_event(memcg, event);
1132        rcu_read_unlock();
1133}
1134
1135void split_page_memcg(struct page *head, unsigned int nr);
1136
1137unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1138                                                gfp_t gfp_mask,
1139                                                unsigned long *total_scanned);
1140
1141#else /* CONFIG_MEMCG */
1142
1143#define MEM_CGROUP_ID_SHIFT     0
1144#define MEM_CGROUP_ID_MAX       0
1145
1146static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1147{
1148        return NULL;
1149}
1150
1151static inline struct mem_cgroup *page_memcg(struct page *page)
1152{
1153        return NULL;
1154}
1155
1156static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1157{
1158        WARN_ON_ONCE(!rcu_read_lock_held());
1159        return NULL;
1160}
1161
1162static inline struct mem_cgroup *page_memcg_check(struct page *page)
1163{
1164        return NULL;
1165}
1166
1167static inline bool folio_memcg_kmem(struct folio *folio)
1168{
1169        return false;
1170}
1171
1172static inline bool PageMemcgKmem(struct page *page)
1173{
1174        return false;
1175}
1176
1177static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1178{
1179        return true;
1180}
1181
1182static inline bool mem_cgroup_disabled(void)
1183{
1184        return true;
1185}
1186
1187static inline void memcg_memory_event(struct mem_cgroup *memcg,
1188                                      enum memcg_memory_event event)
1189{
1190}
1191
1192static inline void memcg_memory_event_mm(struct mm_struct *mm,
1193                                         enum memcg_memory_event event)
1194{
1195}
1196
1197static inline void mem_cgroup_protection(struct mem_cgroup *root,
1198                                         struct mem_cgroup *memcg,
1199                                         unsigned long *min,
1200                                         unsigned long *low)
1201{
1202        *min = *low = 0;
1203}
1204
1205static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1206                                                   struct mem_cgroup *memcg)
1207{
1208}
1209
1210static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1211{
1212        return false;
1213}
1214
1215static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1216{
1217        return false;
1218}
1219
1220static inline int mem_cgroup_charge(struct folio *folio,
1221                struct mm_struct *mm, gfp_t gfp)
1222{
1223        return 0;
1224}
1225
1226static inline int mem_cgroup_swapin_charge_page(struct page *page,
1227                        struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1228{
1229        return 0;
1230}
1231
1232static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1233{
1234}
1235
1236static inline void mem_cgroup_uncharge(struct folio *folio)
1237{
1238}
1239
1240static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1241{
1242}
1243
1244static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1245{
1246}
1247
1248static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1249                                               struct pglist_data *pgdat)
1250{
1251        return &pgdat->__lruvec;
1252}
1253
1254static inline struct lruvec *folio_lruvec(struct folio *folio)
1255{
1256        struct pglist_data *pgdat = folio_pgdat(folio);
1257        return &pgdat->__lruvec;
1258}
1259
1260static inline
1261void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1262{
1263}
1264
1265static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1266{
1267        return NULL;
1268}
1269
1270static inline bool mm_match_cgroup(struct mm_struct *mm,
1271                struct mem_cgroup *memcg)
1272{
1273        return true;
1274}
1275
1276static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1277{
1278        return NULL;
1279}
1280
1281static inline
1282struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1283{
1284        return NULL;
1285}
1286
1287static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1288{
1289}
1290
1291static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1292{
1293        struct pglist_data *pgdat = folio_pgdat(folio);
1294
1295        spin_lock(&pgdat->__lruvec.lru_lock);
1296        return &pgdat->__lruvec;
1297}
1298
1299static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1300{
1301        struct pglist_data *pgdat = folio_pgdat(folio);
1302
1303        spin_lock_irq(&pgdat->__lruvec.lru_lock);
1304        return &pgdat->__lruvec;
1305}
1306
1307static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1308                unsigned long *flagsp)
1309{
1310        struct pglist_data *pgdat = folio_pgdat(folio);
1311
1312        spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1313        return &pgdat->__lruvec;
1314}
1315
1316static inline struct mem_cgroup *
1317mem_cgroup_iter(struct mem_cgroup *root,
1318                struct mem_cgroup *prev,
1319                struct mem_cgroup_reclaim_cookie *reclaim)
1320{
1321        return NULL;
1322}
1323
1324static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1325                                         struct mem_cgroup *prev)
1326{
1327}
1328
1329static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1330                int (*fn)(struct task_struct *, void *), void *arg)
1331{
1332        return 0;
1333}
1334
1335static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1336{
1337        return 0;
1338}
1339
1340static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1341{
1342        WARN_ON_ONCE(id);
1343        /* XXX: This should always return root_mem_cgroup */
1344        return NULL;
1345}
1346
1347static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1348{
1349        return NULL;
1350}
1351
1352static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1353{
1354        return NULL;
1355}
1356
1357static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1358{
1359        return true;
1360}
1361
1362static inline
1363unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1364                enum lru_list lru, int zone_idx)
1365{
1366        return 0;
1367}
1368
1369static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1370{
1371        return 0;
1372}
1373
1374static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1375{
1376        return 0;
1377}
1378
1379static inline void
1380mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1381{
1382}
1383
1384static inline void
1385mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1386{
1387}
1388
1389static inline void lock_page_memcg(struct page *page)
1390{
1391}
1392
1393static inline void unlock_page_memcg(struct page *page)
1394{
1395}
1396
1397static inline void folio_memcg_lock(struct folio *folio)
1398{
1399}
1400
1401static inline void folio_memcg_unlock(struct folio *folio)
1402{
1403}
1404
1405static inline void mem_cgroup_handle_over_high(void)
1406{
1407}
1408
1409static inline void mem_cgroup_enter_user_fault(void)
1410{
1411}
1412
1413static inline void mem_cgroup_exit_user_fault(void)
1414{
1415}
1416
1417static inline bool task_in_memcg_oom(struct task_struct *p)
1418{
1419        return false;
1420}
1421
1422static inline bool mem_cgroup_oom_synchronize(bool wait)
1423{
1424        return false;
1425}
1426
1427static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1428        struct task_struct *victim, struct mem_cgroup *oom_domain)
1429{
1430        return NULL;
1431}
1432
1433static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1434{
1435}
1436
1437static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1438                                     int idx,
1439                                     int nr)
1440{
1441}
1442
1443static inline void mod_memcg_state(struct mem_cgroup *memcg,
1444                                   int idx,
1445                                   int nr)
1446{
1447}
1448
1449static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1450{
1451        return 0;
1452}
1453
1454static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1455                                              enum node_stat_item idx)
1456{
1457        return node_page_state(lruvec_pgdat(lruvec), idx);
1458}
1459
1460static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1461                                                    enum node_stat_item idx)
1462{
1463        return node_page_state(lruvec_pgdat(lruvec), idx);
1464}
1465
1466static inline void mem_cgroup_flush_stats(void)
1467{
1468}
1469
1470static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1471                                            enum node_stat_item idx, int val)
1472{
1473}
1474
1475static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1476                                           int val)
1477{
1478        struct page *page = virt_to_head_page(p);
1479
1480        __mod_node_page_state(page_pgdat(page), idx, val);
1481}
1482
1483static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1484                                         int val)
1485{
1486        struct page *page = virt_to_head_page(p);
1487
1488        mod_node_page_state(page_pgdat(page), idx, val);
1489}
1490
1491static inline void count_memcg_events(struct mem_cgroup *memcg,
1492                                      enum vm_event_item idx,
1493                                      unsigned long count)
1494{
1495}
1496
1497static inline void __count_memcg_events(struct mem_cgroup *memcg,
1498                                        enum vm_event_item idx,
1499                                        unsigned long count)
1500{
1501}
1502
1503static inline void count_memcg_page_event(struct page *page,
1504                                          int idx)
1505{
1506}
1507
1508static inline
1509void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1510{
1511}
1512
1513static inline void split_page_memcg(struct page *head, unsigned int nr)
1514{
1515}
1516
1517static inline
1518unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1519                                            gfp_t gfp_mask,
1520                                            unsigned long *total_scanned)
1521{
1522        return 0;
1523}
1524#endif /* CONFIG_MEMCG */
1525
1526static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1527{
1528        __mod_lruvec_kmem_state(p, idx, 1);
1529}
1530
1531static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1532{
1533        __mod_lruvec_kmem_state(p, idx, -1);
1534}
1535
1536static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1537{
1538        struct mem_cgroup *memcg;
1539
1540        memcg = lruvec_memcg(lruvec);
1541        if (!memcg)
1542                return NULL;
1543        memcg = parent_mem_cgroup(memcg);
1544        if (!memcg)
1545                return NULL;
1546        return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1547}
1548
1549static inline void unlock_page_lruvec(struct lruvec *lruvec)
1550{
1551        spin_unlock(&lruvec->lru_lock);
1552}
1553
1554static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1555{
1556        spin_unlock_irq(&lruvec->lru_lock);
1557}
1558
1559static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1560                unsigned long flags)
1561{
1562        spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1563}
1564
1565/* Test requires a stable page->memcg binding, see page_memcg() */
1566static inline bool folio_matches_lruvec(struct folio *folio,
1567                struct lruvec *lruvec)
1568{
1569        return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1570               lruvec_memcg(lruvec) == folio_memcg(folio);
1571}
1572
1573/* Don't lock again iff page's lruvec locked */
1574static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1575                struct lruvec *locked_lruvec)
1576{
1577        if (locked_lruvec) {
1578                if (folio_matches_lruvec(folio, locked_lruvec))
1579                        return locked_lruvec;
1580
1581                unlock_page_lruvec_irq(locked_lruvec);
1582        }
1583
1584        return folio_lruvec_lock_irq(folio);
1585}
1586
1587/* Don't lock again iff page's lruvec locked */
1588static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1589                struct lruvec *locked_lruvec, unsigned long *flags)
1590{
1591        if (locked_lruvec) {
1592                if (folio_matches_lruvec(folio, locked_lruvec))
1593                        return locked_lruvec;
1594
1595                unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1596        }
1597
1598        return folio_lruvec_lock_irqsave(folio, flags);
1599}
1600
1601#ifdef CONFIG_CGROUP_WRITEBACK
1602
1603struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1604void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1605                         unsigned long *pheadroom, unsigned long *pdirty,
1606                         unsigned long *pwriteback);
1607
1608void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1609                                             struct bdi_writeback *wb);
1610
1611static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1612                                                  struct bdi_writeback *wb)
1613{
1614        if (mem_cgroup_disabled())
1615                return;
1616
1617        if (unlikely(&folio_memcg(folio)->css != wb->memcg_css))
1618                mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1619}
1620
1621void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1622
1623#else   /* CONFIG_CGROUP_WRITEBACK */
1624
1625static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1626{
1627        return NULL;
1628}
1629
1630static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1631                                       unsigned long *pfilepages,
1632                                       unsigned long *pheadroom,
1633                                       unsigned long *pdirty,
1634                                       unsigned long *pwriteback)
1635{
1636}
1637
1638static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1639                                                  struct bdi_writeback *wb)
1640{
1641}
1642
1643static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1644{
1645}
1646
1647#endif  /* CONFIG_CGROUP_WRITEBACK */
1648
1649struct sock;
1650bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1651                             gfp_t gfp_mask);
1652void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1653#ifdef CONFIG_MEMCG
1654extern struct static_key_false memcg_sockets_enabled_key;
1655#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1656void mem_cgroup_sk_alloc(struct sock *sk);
1657void mem_cgroup_sk_free(struct sock *sk);
1658static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1659{
1660        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1661                return true;
1662        do {
1663                if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1664                        return true;
1665        } while ((memcg = parent_mem_cgroup(memcg)));
1666        return false;
1667}
1668
1669int alloc_shrinker_info(struct mem_cgroup *memcg);
1670void free_shrinker_info(struct mem_cgroup *memcg);
1671void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1672void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1673#else
1674#define mem_cgroup_sockets_enabled 0
1675static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1676static inline void mem_cgroup_sk_free(struct sock *sk) { };
1677static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1678{
1679        return false;
1680}
1681
1682static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1683                                    int nid, int shrinker_id)
1684{
1685}
1686#endif
1687
1688#ifdef CONFIG_MEMCG_KMEM
1689bool mem_cgroup_kmem_disabled(void);
1690int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1691void __memcg_kmem_uncharge_page(struct page *page, int order);
1692
1693struct obj_cgroup *get_obj_cgroup_from_current(void);
1694
1695int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1696void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1697
1698extern struct static_key_false memcg_kmem_enabled_key;
1699
1700extern int memcg_nr_cache_ids;
1701void memcg_get_cache_ids(void);
1702void memcg_put_cache_ids(void);
1703
1704/*
1705 * Helper macro to loop through all memcg-specific caches. Callers must still
1706 * check if the cache is valid (it is either valid or NULL).
1707 * the slab_mutex must be held when looping through those caches
1708 */
1709#define for_each_memcg_cache_index(_idx)        \
1710        for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1711
1712static inline bool memcg_kmem_enabled(void)
1713{
1714        return static_branch_likely(&memcg_kmem_enabled_key);
1715}
1716
1717static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1718                                         int order)
1719{
1720        if (memcg_kmem_enabled())
1721                return __memcg_kmem_charge_page(page, gfp, order);
1722        return 0;
1723}
1724
1725static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1726{
1727        if (memcg_kmem_enabled())
1728                __memcg_kmem_uncharge_page(page, order);
1729}
1730
1731/*
1732 * A helper for accessing memcg's kmem_id, used for getting
1733 * corresponding LRU lists.
1734 */
1735static inline int memcg_cache_id(struct mem_cgroup *memcg)
1736{
1737        return memcg ? memcg->kmemcg_id : -1;
1738}
1739
1740struct mem_cgroup *mem_cgroup_from_obj(void *p);
1741
1742#else
1743static inline bool mem_cgroup_kmem_disabled(void)
1744{
1745        return true;
1746}
1747
1748static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1749                                         int order)
1750{
1751        return 0;
1752}
1753
1754static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1755{
1756}
1757
1758static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1759                                           int order)
1760{
1761        return 0;
1762}
1763
1764static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1765{
1766}
1767
1768#define for_each_memcg_cache_index(_idx)        \
1769        for (; NULL; )
1770
1771static inline bool memcg_kmem_enabled(void)
1772{
1773        return false;
1774}
1775
1776static inline int memcg_cache_id(struct mem_cgroup *memcg)
1777{
1778        return -1;
1779}
1780
1781static inline void memcg_get_cache_ids(void)
1782{
1783}
1784
1785static inline void memcg_put_cache_ids(void)
1786{
1787}
1788
1789static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1790{
1791       return NULL;
1792}
1793
1794#endif /* CONFIG_MEMCG_KMEM */
1795
1796#endif /* _LINUX_MEMCONTROL_H */
1797