linux/include/linux/mm_types.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_MM_TYPES_H
   3#define _LINUX_MM_TYPES_H
   4
   5#include <linux/mm_types_task.h>
   6
   7#include <linux/auxvec.h>
   8#include <linux/list.h>
   9#include <linux/spinlock.h>
  10#include <linux/rbtree.h>
  11#include <linux/rwsem.h>
  12#include <linux/completion.h>
  13#include <linux/cpumask.h>
  14#include <linux/uprobes.h>
  15#include <linux/rcupdate.h>
  16#include <linux/page-flags-layout.h>
  17#include <linux/workqueue.h>
  18#include <linux/seqlock.h>
  19
  20#include <asm/mmu.h>
  21
  22#ifndef AT_VECTOR_SIZE_ARCH
  23#define AT_VECTOR_SIZE_ARCH 0
  24#endif
  25#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
  26
  27#define INIT_PASID      0
  28
  29struct address_space;
  30struct mem_cgroup;
  31
  32/*
  33 * Each physical page in the system has a struct page associated with
  34 * it to keep track of whatever it is we are using the page for at the
  35 * moment. Note that we have no way to track which tasks are using
  36 * a page, though if it is a pagecache page, rmap structures can tell us
  37 * who is mapping it.
  38 *
  39 * If you allocate the page using alloc_pages(), you can use some of the
  40 * space in struct page for your own purposes.  The five words in the main
  41 * union are available, except for bit 0 of the first word which must be
  42 * kept clear.  Many users use this word to store a pointer to an object
  43 * which is guaranteed to be aligned.  If you use the same storage as
  44 * page->mapping, you must restore it to NULL before freeing the page.
  45 *
  46 * If your page will not be mapped to userspace, you can also use the four
  47 * bytes in the mapcount union, but you must call page_mapcount_reset()
  48 * before freeing it.
  49 *
  50 * If you want to use the refcount field, it must be used in such a way
  51 * that other CPUs temporarily incrementing and then decrementing the
  52 * refcount does not cause problems.  On receiving the page from
  53 * alloc_pages(), the refcount will be positive.
  54 *
  55 * If you allocate pages of order > 0, you can use some of the fields
  56 * in each subpage, but you may need to restore some of their values
  57 * afterwards.
  58 *
  59 * SLUB uses cmpxchg_double() to atomically update its freelist and
  60 * counters.  That requires that freelist & counters be adjacent and
  61 * double-word aligned.  We align all struct pages to double-word
  62 * boundaries, and ensure that 'freelist' is aligned within the
  63 * struct.
  64 */
  65#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
  66#define _struct_page_alignment  __aligned(2 * sizeof(unsigned long))
  67#else
  68#define _struct_page_alignment
  69#endif
  70
  71struct page {
  72        unsigned long flags;            /* Atomic flags, some possibly
  73                                         * updated asynchronously */
  74        /*
  75         * Five words (20/40 bytes) are available in this union.
  76         * WARNING: bit 0 of the first word is used for PageTail(). That
  77         * means the other users of this union MUST NOT use the bit to
  78         * avoid collision and false-positive PageTail().
  79         */
  80        union {
  81                struct {        /* Page cache and anonymous pages */
  82                        /**
  83                         * @lru: Pageout list, eg. active_list protected by
  84                         * lruvec->lru_lock.  Sometimes used as a generic list
  85                         * by the page owner.
  86                         */
  87                        struct list_head lru;
  88                        /* See page-flags.h for PAGE_MAPPING_FLAGS */
  89                        struct address_space *mapping;
  90                        pgoff_t index;          /* Our offset within mapping. */
  91                        /**
  92                         * @private: Mapping-private opaque data.
  93                         * Usually used for buffer_heads if PagePrivate.
  94                         * Used for swp_entry_t if PageSwapCache.
  95                         * Indicates order in the buddy system if PageBuddy.
  96                         */
  97                        unsigned long private;
  98                };
  99                struct {        /* page_pool used by netstack */
 100                        /**
 101                         * @pp_magic: magic value to avoid recycling non
 102                         * page_pool allocated pages.
 103                         */
 104                        unsigned long pp_magic;
 105                        struct page_pool *pp;
 106                        unsigned long _pp_mapping_pad;
 107                        unsigned long dma_addr;
 108                        union {
 109                                /**
 110                                 * dma_addr_upper: might require a 64-bit
 111                                 * value on 32-bit architectures.
 112                                 */
 113                                unsigned long dma_addr_upper;
 114                                /**
 115                                 * For frag page support, not supported in
 116                                 * 32-bit architectures with 64-bit DMA.
 117                                 */
 118                                atomic_long_t pp_frag_count;
 119                        };
 120                };
 121                struct {        /* slab, slob and slub */
 122                        union {
 123                                struct list_head slab_list;
 124                                struct {        /* Partial pages */
 125                                        struct page *next;
 126#ifdef CONFIG_64BIT
 127                                        int pages;      /* Nr of pages left */
 128#else
 129                                        short int pages;
 130#endif
 131                                };
 132                        };
 133                        struct kmem_cache *slab_cache; /* not slob */
 134                        /* Double-word boundary */
 135                        void *freelist;         /* first free object */
 136                        union {
 137                                void *s_mem;    /* slab: first object */
 138                                unsigned long counters;         /* SLUB */
 139                                struct {                        /* SLUB */
 140                                        unsigned inuse:16;
 141                                        unsigned objects:15;
 142                                        unsigned frozen:1;
 143                                };
 144                        };
 145                };
 146                struct {        /* Tail pages of compound page */
 147                        unsigned long compound_head;    /* Bit zero is set */
 148
 149                        /* First tail page only */
 150                        unsigned char compound_dtor;
 151                        unsigned char compound_order;
 152                        atomic_t compound_mapcount;
 153                        unsigned int compound_nr; /* 1 << compound_order */
 154                };
 155                struct {        /* Second tail page of compound page */
 156                        unsigned long _compound_pad_1;  /* compound_head */
 157                        atomic_t hpage_pinned_refcount;
 158                        /* For both global and memcg */
 159                        struct list_head deferred_list;
 160                };
 161                struct {        /* Page table pages */
 162                        unsigned long _pt_pad_1;        /* compound_head */
 163                        pgtable_t pmd_huge_pte; /* protected by page->ptl */
 164                        unsigned long _pt_pad_2;        /* mapping */
 165                        union {
 166                                struct mm_struct *pt_mm; /* x86 pgds only */
 167                                atomic_t pt_frag_refcount; /* powerpc */
 168                        };
 169#if ALLOC_SPLIT_PTLOCKS
 170                        spinlock_t *ptl;
 171#else
 172                        spinlock_t ptl;
 173#endif
 174                };
 175                struct {        /* ZONE_DEVICE pages */
 176                        /** @pgmap: Points to the hosting device page map. */
 177                        struct dev_pagemap *pgmap;
 178                        void *zone_device_data;
 179                        /*
 180                         * ZONE_DEVICE private pages are counted as being
 181                         * mapped so the next 3 words hold the mapping, index,
 182                         * and private fields from the source anonymous or
 183                         * page cache page while the page is migrated to device
 184                         * private memory.
 185                         * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
 186                         * use the mapping, index, and private fields when
 187                         * pmem backed DAX files are mapped.
 188                         */
 189                };
 190
 191                /** @rcu_head: You can use this to free a page by RCU. */
 192                struct rcu_head rcu_head;
 193        };
 194
 195        union {         /* This union is 4 bytes in size. */
 196                /*
 197                 * If the page can be mapped to userspace, encodes the number
 198                 * of times this page is referenced by a page table.
 199                 */
 200                atomic_t _mapcount;
 201
 202                /*
 203                 * If the page is neither PageSlab nor mappable to userspace,
 204                 * the value stored here may help determine what this page
 205                 * is used for.  See page-flags.h for a list of page types
 206                 * which are currently stored here.
 207                 */
 208                unsigned int page_type;
 209
 210                unsigned int active;            /* SLAB */
 211                int units;                      /* SLOB */
 212        };
 213
 214        /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
 215        atomic_t _refcount;
 216
 217#ifdef CONFIG_MEMCG
 218        unsigned long memcg_data;
 219#endif
 220
 221        /*
 222         * On machines where all RAM is mapped into kernel address space,
 223         * we can simply calculate the virtual address. On machines with
 224         * highmem some memory is mapped into kernel virtual memory
 225         * dynamically, so we need a place to store that address.
 226         * Note that this field could be 16 bits on x86 ... ;)
 227         *
 228         * Architectures with slow multiplication can define
 229         * WANT_PAGE_VIRTUAL in asm/page.h
 230         */
 231#if defined(WANT_PAGE_VIRTUAL)
 232        void *virtual;                  /* Kernel virtual address (NULL if
 233                                           not kmapped, ie. highmem) */
 234#endif /* WANT_PAGE_VIRTUAL */
 235
 236#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
 237        int _last_cpupid;
 238#endif
 239} _struct_page_alignment;
 240
 241/**
 242 * struct folio - Represents a contiguous set of bytes.
 243 * @flags: Identical to the page flags.
 244 * @lru: Least Recently Used list; tracks how recently this folio was used.
 245 * @mapping: The file this page belongs to, or refers to the anon_vma for
 246 *    anonymous memory.
 247 * @index: Offset within the file, in units of pages.  For anonymous memory,
 248 *    this is the index from the beginning of the mmap.
 249 * @private: Filesystem per-folio data (see folio_attach_private()).
 250 *    Used for swp_entry_t if folio_test_swapcache().
 251 * @_mapcount: Do not access this member directly.  Use folio_mapcount() to
 252 *    find out how many times this folio is mapped by userspace.
 253 * @_refcount: Do not access this member directly.  Use folio_ref_count()
 254 *    to find how many references there are to this folio.
 255 * @memcg_data: Memory Control Group data.
 256 *
 257 * A folio is a physically, virtually and logically contiguous set
 258 * of bytes.  It is a power-of-two in size, and it is aligned to that
 259 * same power-of-two.  It is at least as large as %PAGE_SIZE.  If it is
 260 * in the page cache, it is at a file offset which is a multiple of that
 261 * power-of-two.  It may be mapped into userspace at an address which is
 262 * at an arbitrary page offset, but its kernel virtual address is aligned
 263 * to its size.
 264 */
 265struct folio {
 266        /* private: don't document the anon union */
 267        union {
 268                struct {
 269        /* public: */
 270                        unsigned long flags;
 271                        struct list_head lru;
 272                        struct address_space *mapping;
 273                        pgoff_t index;
 274                        void *private;
 275                        atomic_t _mapcount;
 276                        atomic_t _refcount;
 277#ifdef CONFIG_MEMCG
 278                        unsigned long memcg_data;
 279#endif
 280        /* private: the union with struct page is transitional */
 281                };
 282                struct page page;
 283        };
 284};
 285
 286static_assert(sizeof(struct page) == sizeof(struct folio));
 287#define FOLIO_MATCH(pg, fl)                                             \
 288        static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl))
 289FOLIO_MATCH(flags, flags);
 290FOLIO_MATCH(lru, lru);
 291FOLIO_MATCH(compound_head, lru);
 292FOLIO_MATCH(index, index);
 293FOLIO_MATCH(private, private);
 294FOLIO_MATCH(_mapcount, _mapcount);
 295FOLIO_MATCH(_refcount, _refcount);
 296#ifdef CONFIG_MEMCG
 297FOLIO_MATCH(memcg_data, memcg_data);
 298#endif
 299#undef FOLIO_MATCH
 300
 301static inline atomic_t *folio_mapcount_ptr(struct folio *folio)
 302{
 303        struct page *tail = &folio->page + 1;
 304        return &tail->compound_mapcount;
 305}
 306
 307static inline atomic_t *compound_mapcount_ptr(struct page *page)
 308{
 309        return &page[1].compound_mapcount;
 310}
 311
 312static inline atomic_t *compound_pincount_ptr(struct page *page)
 313{
 314        return &page[2].hpage_pinned_refcount;
 315}
 316
 317/*
 318 * Used for sizing the vmemmap region on some architectures
 319 */
 320#define STRUCT_PAGE_MAX_SHIFT   (order_base_2(sizeof(struct page)))
 321
 322#define PAGE_FRAG_CACHE_MAX_SIZE        __ALIGN_MASK(32768, ~PAGE_MASK)
 323#define PAGE_FRAG_CACHE_MAX_ORDER       get_order(PAGE_FRAG_CACHE_MAX_SIZE)
 324
 325/*
 326 * page_private can be used on tail pages.  However, PagePrivate is only
 327 * checked by the VM on the head page.  So page_private on the tail pages
 328 * should be used for data that's ancillary to the head page (eg attaching
 329 * buffer heads to tail pages after attaching buffer heads to the head page)
 330 */
 331#define page_private(page)              ((page)->private)
 332
 333static inline void set_page_private(struct page *page, unsigned long private)
 334{
 335        page->private = private;
 336}
 337
 338static inline void *folio_get_private(struct folio *folio)
 339{
 340        return folio->private;
 341}
 342
 343struct page_frag_cache {
 344        void * va;
 345#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
 346        __u16 offset;
 347        __u16 size;
 348#else
 349        __u32 offset;
 350#endif
 351        /* we maintain a pagecount bias, so that we dont dirty cache line
 352         * containing page->_refcount every time we allocate a fragment.
 353         */
 354        unsigned int            pagecnt_bias;
 355        bool pfmemalloc;
 356};
 357
 358typedef unsigned long vm_flags_t;
 359
 360/*
 361 * A region containing a mapping of a non-memory backed file under NOMMU
 362 * conditions.  These are held in a global tree and are pinned by the VMAs that
 363 * map parts of them.
 364 */
 365struct vm_region {
 366        struct rb_node  vm_rb;          /* link in global region tree */
 367        vm_flags_t      vm_flags;       /* VMA vm_flags */
 368        unsigned long   vm_start;       /* start address of region */
 369        unsigned long   vm_end;         /* region initialised to here */
 370        unsigned long   vm_top;         /* region allocated to here */
 371        unsigned long   vm_pgoff;       /* the offset in vm_file corresponding to vm_start */
 372        struct file     *vm_file;       /* the backing file or NULL */
 373
 374        int             vm_usage;       /* region usage count (access under nommu_region_sem) */
 375        bool            vm_icache_flushed : 1; /* true if the icache has been flushed for
 376                                                * this region */
 377};
 378
 379#ifdef CONFIG_USERFAULTFD
 380#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
 381struct vm_userfaultfd_ctx {
 382        struct userfaultfd_ctx *ctx;
 383};
 384#else /* CONFIG_USERFAULTFD */
 385#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
 386struct vm_userfaultfd_ctx {};
 387#endif /* CONFIG_USERFAULTFD */
 388
 389/*
 390 * This struct describes a virtual memory area. There is one of these
 391 * per VM-area/task. A VM area is any part of the process virtual memory
 392 * space that has a special rule for the page-fault handlers (ie a shared
 393 * library, the executable area etc).
 394 */
 395struct vm_area_struct {
 396        /* The first cache line has the info for VMA tree walking. */
 397
 398        unsigned long vm_start;         /* Our start address within vm_mm. */
 399        unsigned long vm_end;           /* The first byte after our end address
 400                                           within vm_mm. */
 401
 402        /* linked list of VM areas per task, sorted by address */
 403        struct vm_area_struct *vm_next, *vm_prev;
 404
 405        struct rb_node vm_rb;
 406
 407        /*
 408         * Largest free memory gap in bytes to the left of this VMA.
 409         * Either between this VMA and vma->vm_prev, or between one of the
 410         * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
 411         * get_unmapped_area find a free area of the right size.
 412         */
 413        unsigned long rb_subtree_gap;
 414
 415        /* Second cache line starts here. */
 416
 417        struct mm_struct *vm_mm;        /* The address space we belong to. */
 418
 419        /*
 420         * Access permissions of this VMA.
 421         * See vmf_insert_mixed_prot() for discussion.
 422         */
 423        pgprot_t vm_page_prot;
 424        unsigned long vm_flags;         /* Flags, see mm.h. */
 425
 426        /*
 427         * For areas with an address space and backing store,
 428         * linkage into the address_space->i_mmap interval tree.
 429         */
 430        struct {
 431                struct rb_node rb;
 432                unsigned long rb_subtree_last;
 433        } shared;
 434
 435        /*
 436         * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
 437         * list, after a COW of one of the file pages.  A MAP_SHARED vma
 438         * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
 439         * or brk vma (with NULL file) can only be in an anon_vma list.
 440         */
 441        struct list_head anon_vma_chain; /* Serialized by mmap_lock &
 442                                          * page_table_lock */
 443        struct anon_vma *anon_vma;      /* Serialized by page_table_lock */
 444
 445        /* Function pointers to deal with this struct. */
 446        const struct vm_operations_struct *vm_ops;
 447
 448        /* Information about our backing store: */
 449        unsigned long vm_pgoff;         /* Offset (within vm_file) in PAGE_SIZE
 450                                           units */
 451        struct file * vm_file;          /* File we map to (can be NULL). */
 452        void * vm_private_data;         /* was vm_pte (shared mem) */
 453
 454#ifdef CONFIG_SWAP
 455        atomic_long_t swap_readahead_info;
 456#endif
 457#ifndef CONFIG_MMU
 458        struct vm_region *vm_region;    /* NOMMU mapping region */
 459#endif
 460#ifdef CONFIG_NUMA
 461        struct mempolicy *vm_policy;    /* NUMA policy for the VMA */
 462#endif
 463        struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
 464} __randomize_layout;
 465
 466struct kioctx_table;
 467struct mm_struct {
 468        struct {
 469                struct vm_area_struct *mmap;            /* list of VMAs */
 470                struct rb_root mm_rb;
 471                u64 vmacache_seqnum;                   /* per-thread vmacache */
 472#ifdef CONFIG_MMU
 473                unsigned long (*get_unmapped_area) (struct file *filp,
 474                                unsigned long addr, unsigned long len,
 475                                unsigned long pgoff, unsigned long flags);
 476#endif
 477                unsigned long mmap_base;        /* base of mmap area */
 478                unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
 479#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
 480                /* Base addresses for compatible mmap() */
 481                unsigned long mmap_compat_base;
 482                unsigned long mmap_compat_legacy_base;
 483#endif
 484                unsigned long task_size;        /* size of task vm space */
 485                unsigned long highest_vm_end;   /* highest vma end address */
 486                pgd_t * pgd;
 487
 488#ifdef CONFIG_MEMBARRIER
 489                /**
 490                 * @membarrier_state: Flags controlling membarrier behavior.
 491                 *
 492                 * This field is close to @pgd to hopefully fit in the same
 493                 * cache-line, which needs to be touched by switch_mm().
 494                 */
 495                atomic_t membarrier_state;
 496#endif
 497
 498                /**
 499                 * @mm_users: The number of users including userspace.
 500                 *
 501                 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
 502                 * drops to 0 (i.e. when the task exits and there are no other
 503                 * temporary reference holders), we also release a reference on
 504                 * @mm_count (which may then free the &struct mm_struct if
 505                 * @mm_count also drops to 0).
 506                 */
 507                atomic_t mm_users;
 508
 509                /**
 510                 * @mm_count: The number of references to &struct mm_struct
 511                 * (@mm_users count as 1).
 512                 *
 513                 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
 514                 * &struct mm_struct is freed.
 515                 */
 516                atomic_t mm_count;
 517
 518#ifdef CONFIG_MMU
 519                atomic_long_t pgtables_bytes;   /* PTE page table pages */
 520#endif
 521                int map_count;                  /* number of VMAs */
 522
 523                spinlock_t page_table_lock; /* Protects page tables and some
 524                                             * counters
 525                                             */
 526                /*
 527                 * With some kernel config, the current mmap_lock's offset
 528                 * inside 'mm_struct' is at 0x120, which is very optimal, as
 529                 * its two hot fields 'count' and 'owner' sit in 2 different
 530                 * cachelines,  and when mmap_lock is highly contended, both
 531                 * of the 2 fields will be accessed frequently, current layout
 532                 * will help to reduce cache bouncing.
 533                 *
 534                 * So please be careful with adding new fields before
 535                 * mmap_lock, which can easily push the 2 fields into one
 536                 * cacheline.
 537                 */
 538                struct rw_semaphore mmap_lock;
 539
 540                struct list_head mmlist; /* List of maybe swapped mm's. These
 541                                          * are globally strung together off
 542                                          * init_mm.mmlist, and are protected
 543                                          * by mmlist_lock
 544                                          */
 545
 546
 547                unsigned long hiwater_rss; /* High-watermark of RSS usage */
 548                unsigned long hiwater_vm;  /* High-water virtual memory usage */
 549
 550                unsigned long total_vm;    /* Total pages mapped */
 551                unsigned long locked_vm;   /* Pages that have PG_mlocked set */
 552                atomic64_t    pinned_vm;   /* Refcount permanently increased */
 553                unsigned long data_vm;     /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
 554                unsigned long exec_vm;     /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
 555                unsigned long stack_vm;    /* VM_STACK */
 556                unsigned long def_flags;
 557
 558                /**
 559                 * @write_protect_seq: Locked when any thread is write
 560                 * protecting pages mapped by this mm to enforce a later COW,
 561                 * for instance during page table copying for fork().
 562                 */
 563                seqcount_t write_protect_seq;
 564
 565                spinlock_t arg_lock; /* protect the below fields */
 566
 567                unsigned long start_code, end_code, start_data, end_data;
 568                unsigned long start_brk, brk, start_stack;
 569                unsigned long arg_start, arg_end, env_start, env_end;
 570
 571                unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
 572
 573                /*
 574                 * Special counters, in some configurations protected by the
 575                 * page_table_lock, in other configurations by being atomic.
 576                 */
 577                struct mm_rss_stat rss_stat;
 578
 579                struct linux_binfmt *binfmt;
 580
 581                /* Architecture-specific MM context */
 582                mm_context_t context;
 583
 584                unsigned long flags; /* Must use atomic bitops to access */
 585
 586#ifdef CONFIG_AIO
 587                spinlock_t                      ioctx_lock;
 588                struct kioctx_table __rcu       *ioctx_table;
 589#endif
 590#ifdef CONFIG_MEMCG
 591                /*
 592                 * "owner" points to a task that is regarded as the canonical
 593                 * user/owner of this mm. All of the following must be true in
 594                 * order for it to be changed:
 595                 *
 596                 * current == mm->owner
 597                 * current->mm != mm
 598                 * new_owner->mm == mm
 599                 * new_owner->alloc_lock is held
 600                 */
 601                struct task_struct __rcu *owner;
 602#endif
 603                struct user_namespace *user_ns;
 604
 605                /* store ref to file /proc/<pid>/exe symlink points to */
 606                struct file __rcu *exe_file;
 607#ifdef CONFIG_MMU_NOTIFIER
 608                struct mmu_notifier_subscriptions *notifier_subscriptions;
 609#endif
 610#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 611                pgtable_t pmd_huge_pte; /* protected by page_table_lock */
 612#endif
 613#ifdef CONFIG_NUMA_BALANCING
 614                /*
 615                 * numa_next_scan is the next time that the PTEs will be marked
 616                 * pte_numa. NUMA hinting faults will gather statistics and
 617                 * migrate pages to new nodes if necessary.
 618                 */
 619                unsigned long numa_next_scan;
 620
 621                /* Restart point for scanning and setting pte_numa */
 622                unsigned long numa_scan_offset;
 623
 624                /* numa_scan_seq prevents two threads setting pte_numa */
 625                int numa_scan_seq;
 626#endif
 627                /*
 628                 * An operation with batched TLB flushing is going on. Anything
 629                 * that can move process memory needs to flush the TLB when
 630                 * moving a PROT_NONE or PROT_NUMA mapped page.
 631                 */
 632                atomic_t tlb_flush_pending;
 633#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 634                /* See flush_tlb_batched_pending() */
 635                bool tlb_flush_batched;
 636#endif
 637                struct uprobes_state uprobes_state;
 638#ifdef CONFIG_PREEMPT_RT
 639                struct rcu_head delayed_drop;
 640#endif
 641#ifdef CONFIG_HUGETLB_PAGE
 642                atomic_long_t hugetlb_usage;
 643#endif
 644                struct work_struct async_put_work;
 645
 646#ifdef CONFIG_IOMMU_SUPPORT
 647                u32 pasid;
 648#endif
 649        } __randomize_layout;
 650
 651        /*
 652         * The mm_cpumask needs to be at the end of mm_struct, because it
 653         * is dynamically sized based on nr_cpu_ids.
 654         */
 655        unsigned long cpu_bitmap[];
 656};
 657
 658extern struct mm_struct init_mm;
 659
 660/* Pointer magic because the dynamic array size confuses some compilers. */
 661static inline void mm_init_cpumask(struct mm_struct *mm)
 662{
 663        unsigned long cpu_bitmap = (unsigned long)mm;
 664
 665        cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
 666        cpumask_clear((struct cpumask *)cpu_bitmap);
 667}
 668
 669/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
 670static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
 671{
 672        return (struct cpumask *)&mm->cpu_bitmap;
 673}
 674
 675struct mmu_gather;
 676extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
 677extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
 678extern void tlb_finish_mmu(struct mmu_gather *tlb);
 679
 680static inline void init_tlb_flush_pending(struct mm_struct *mm)
 681{
 682        atomic_set(&mm->tlb_flush_pending, 0);
 683}
 684
 685static inline void inc_tlb_flush_pending(struct mm_struct *mm)
 686{
 687        atomic_inc(&mm->tlb_flush_pending);
 688        /*
 689         * The only time this value is relevant is when there are indeed pages
 690         * to flush. And we'll only flush pages after changing them, which
 691         * requires the PTL.
 692         *
 693         * So the ordering here is:
 694         *
 695         *      atomic_inc(&mm->tlb_flush_pending);
 696         *      spin_lock(&ptl);
 697         *      ...
 698         *      set_pte_at();
 699         *      spin_unlock(&ptl);
 700         *
 701         *                              spin_lock(&ptl)
 702         *                              mm_tlb_flush_pending();
 703         *                              ....
 704         *                              spin_unlock(&ptl);
 705         *
 706         *      flush_tlb_range();
 707         *      atomic_dec(&mm->tlb_flush_pending);
 708         *
 709         * Where the increment if constrained by the PTL unlock, it thus
 710         * ensures that the increment is visible if the PTE modification is
 711         * visible. After all, if there is no PTE modification, nobody cares
 712         * about TLB flushes either.
 713         *
 714         * This very much relies on users (mm_tlb_flush_pending() and
 715         * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
 716         * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
 717         * locks (PPC) the unlock of one doesn't order against the lock of
 718         * another PTL.
 719         *
 720         * The decrement is ordered by the flush_tlb_range(), such that
 721         * mm_tlb_flush_pending() will not return false unless all flushes have
 722         * completed.
 723         */
 724}
 725
 726static inline void dec_tlb_flush_pending(struct mm_struct *mm)
 727{
 728        /*
 729         * See inc_tlb_flush_pending().
 730         *
 731         * This cannot be smp_mb__before_atomic() because smp_mb() simply does
 732         * not order against TLB invalidate completion, which is what we need.
 733         *
 734         * Therefore we must rely on tlb_flush_*() to guarantee order.
 735         */
 736        atomic_dec(&mm->tlb_flush_pending);
 737}
 738
 739static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
 740{
 741        /*
 742         * Must be called after having acquired the PTL; orders against that
 743         * PTLs release and therefore ensures that if we observe the modified
 744         * PTE we must also observe the increment from inc_tlb_flush_pending().
 745         *
 746         * That is, it only guarantees to return true if there is a flush
 747         * pending for _this_ PTL.
 748         */
 749        return atomic_read(&mm->tlb_flush_pending);
 750}
 751
 752static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
 753{
 754        /*
 755         * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
 756         * for which there is a TLB flush pending in order to guarantee
 757         * we've seen both that PTE modification and the increment.
 758         *
 759         * (no requirement on actually still holding the PTL, that is irrelevant)
 760         */
 761        return atomic_read(&mm->tlb_flush_pending) > 1;
 762}
 763
 764struct vm_fault;
 765
 766/**
 767 * typedef vm_fault_t - Return type for page fault handlers.
 768 *
 769 * Page fault handlers return a bitmask of %VM_FAULT values.
 770 */
 771typedef __bitwise unsigned int vm_fault_t;
 772
 773/**
 774 * enum vm_fault_reason - Page fault handlers return a bitmask of
 775 * these values to tell the core VM what happened when handling the
 776 * fault. Used to decide whether a process gets delivered SIGBUS or
 777 * just gets major/minor fault counters bumped up.
 778 *
 779 * @VM_FAULT_OOM:               Out Of Memory
 780 * @VM_FAULT_SIGBUS:            Bad access
 781 * @VM_FAULT_MAJOR:             Page read from storage
 782 * @VM_FAULT_WRITE:             Special case for get_user_pages
 783 * @VM_FAULT_HWPOISON:          Hit poisoned small page
 784 * @VM_FAULT_HWPOISON_LARGE:    Hit poisoned large page. Index encoded
 785 *                              in upper bits
 786 * @VM_FAULT_SIGSEGV:           segmentation fault
 787 * @VM_FAULT_NOPAGE:            ->fault installed the pte, not return page
 788 * @VM_FAULT_LOCKED:            ->fault locked the returned page
 789 * @VM_FAULT_RETRY:             ->fault blocked, must retry
 790 * @VM_FAULT_FALLBACK:          huge page fault failed, fall back to small
 791 * @VM_FAULT_DONE_COW:          ->fault has fully handled COW
 792 * @VM_FAULT_NEEDDSYNC:         ->fault did not modify page tables and needs
 793 *                              fsync() to complete (for synchronous page faults
 794 *                              in DAX)
 795 * @VM_FAULT_HINDEX_MASK:       mask HINDEX value
 796 *
 797 */
 798enum vm_fault_reason {
 799        VM_FAULT_OOM            = (__force vm_fault_t)0x000001,
 800        VM_FAULT_SIGBUS         = (__force vm_fault_t)0x000002,
 801        VM_FAULT_MAJOR          = (__force vm_fault_t)0x000004,
 802        VM_FAULT_WRITE          = (__force vm_fault_t)0x000008,
 803        VM_FAULT_HWPOISON       = (__force vm_fault_t)0x000010,
 804        VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
 805        VM_FAULT_SIGSEGV        = (__force vm_fault_t)0x000040,
 806        VM_FAULT_NOPAGE         = (__force vm_fault_t)0x000100,
 807        VM_FAULT_LOCKED         = (__force vm_fault_t)0x000200,
 808        VM_FAULT_RETRY          = (__force vm_fault_t)0x000400,
 809        VM_FAULT_FALLBACK       = (__force vm_fault_t)0x000800,
 810        VM_FAULT_DONE_COW       = (__force vm_fault_t)0x001000,
 811        VM_FAULT_NEEDDSYNC      = (__force vm_fault_t)0x002000,
 812        VM_FAULT_HINDEX_MASK    = (__force vm_fault_t)0x0f0000,
 813};
 814
 815/* Encode hstate index for a hwpoisoned large page */
 816#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
 817#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
 818
 819#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS |        \
 820                        VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON |  \
 821                        VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
 822
 823#define VM_FAULT_RESULT_TRACE \
 824        { VM_FAULT_OOM,                 "OOM" },        \
 825        { VM_FAULT_SIGBUS,              "SIGBUS" },     \
 826        { VM_FAULT_MAJOR,               "MAJOR" },      \
 827        { VM_FAULT_WRITE,               "WRITE" },      \
 828        { VM_FAULT_HWPOISON,            "HWPOISON" },   \
 829        { VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" },     \
 830        { VM_FAULT_SIGSEGV,             "SIGSEGV" },    \
 831        { VM_FAULT_NOPAGE,              "NOPAGE" },     \
 832        { VM_FAULT_LOCKED,              "LOCKED" },     \
 833        { VM_FAULT_RETRY,               "RETRY" },      \
 834        { VM_FAULT_FALLBACK,            "FALLBACK" },   \
 835        { VM_FAULT_DONE_COW,            "DONE_COW" },   \
 836        { VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" }
 837
 838struct vm_special_mapping {
 839        const char *name;       /* The name, e.g. "[vdso]". */
 840
 841        /*
 842         * If .fault is not provided, this points to a
 843         * NULL-terminated array of pages that back the special mapping.
 844         *
 845         * This must not be NULL unless .fault is provided.
 846         */
 847        struct page **pages;
 848
 849        /*
 850         * If non-NULL, then this is called to resolve page faults
 851         * on the special mapping.  If used, .pages is not checked.
 852         */
 853        vm_fault_t (*fault)(const struct vm_special_mapping *sm,
 854                                struct vm_area_struct *vma,
 855                                struct vm_fault *vmf);
 856
 857        int (*mremap)(const struct vm_special_mapping *sm,
 858                     struct vm_area_struct *new_vma);
 859};
 860
 861enum tlb_flush_reason {
 862        TLB_FLUSH_ON_TASK_SWITCH,
 863        TLB_REMOTE_SHOOTDOWN,
 864        TLB_LOCAL_SHOOTDOWN,
 865        TLB_LOCAL_MM_SHOOTDOWN,
 866        TLB_REMOTE_SEND_IPI,
 867        NR_TLB_FLUSH_REASONS,
 868};
 869
 870 /*
 871  * A swap entry has to fit into a "unsigned long", as the entry is hidden
 872  * in the "index" field of the swapper address space.
 873  */
 874typedef struct {
 875        unsigned long val;
 876} swp_entry_t;
 877
 878#endif /* _LINUX_MM_TYPES_H */
 879