1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_TYPES_H 3#define _LINUX_MM_TYPES_H 4 5#include <linux/mm_types_task.h> 6 7#include <linux/auxvec.h> 8#include <linux/list.h> 9#include <linux/spinlock.h> 10#include <linux/rbtree.h> 11#include <linux/rwsem.h> 12#include <linux/completion.h> 13#include <linux/cpumask.h> 14#include <linux/uprobes.h> 15#include <linux/rcupdate.h> 16#include <linux/page-flags-layout.h> 17#include <linux/workqueue.h> 18#include <linux/seqlock.h> 19 20#include <asm/mmu.h> 21 22#ifndef AT_VECTOR_SIZE_ARCH 23#define AT_VECTOR_SIZE_ARCH 0 24#endif 25#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 26 27#define INIT_PASID 0 28 29struct address_space; 30struct mem_cgroup; 31 32/* 33 * Each physical page in the system has a struct page associated with 34 * it to keep track of whatever it is we are using the page for at the 35 * moment. Note that we have no way to track which tasks are using 36 * a page, though if it is a pagecache page, rmap structures can tell us 37 * who is mapping it. 38 * 39 * If you allocate the page using alloc_pages(), you can use some of the 40 * space in struct page for your own purposes. The five words in the main 41 * union are available, except for bit 0 of the first word which must be 42 * kept clear. Many users use this word to store a pointer to an object 43 * which is guaranteed to be aligned. If you use the same storage as 44 * page->mapping, you must restore it to NULL before freeing the page. 45 * 46 * If your page will not be mapped to userspace, you can also use the four 47 * bytes in the mapcount union, but you must call page_mapcount_reset() 48 * before freeing it. 49 * 50 * If you want to use the refcount field, it must be used in such a way 51 * that other CPUs temporarily incrementing and then decrementing the 52 * refcount does not cause problems. On receiving the page from 53 * alloc_pages(), the refcount will be positive. 54 * 55 * If you allocate pages of order > 0, you can use some of the fields 56 * in each subpage, but you may need to restore some of their values 57 * afterwards. 58 * 59 * SLUB uses cmpxchg_double() to atomically update its freelist and 60 * counters. That requires that freelist & counters be adjacent and 61 * double-word aligned. We align all struct pages to double-word 62 * boundaries, and ensure that 'freelist' is aligned within the 63 * struct. 64 */ 65#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 66#define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) 67#else 68#define _struct_page_alignment 69#endif 70 71struct page { 72 unsigned long flags; /* Atomic flags, some possibly 73 * updated asynchronously */ 74 /* 75 * Five words (20/40 bytes) are available in this union. 76 * WARNING: bit 0 of the first word is used for PageTail(). That 77 * means the other users of this union MUST NOT use the bit to 78 * avoid collision and false-positive PageTail(). 79 */ 80 union { 81 struct { /* Page cache and anonymous pages */ 82 /** 83 * @lru: Pageout list, eg. active_list protected by 84 * lruvec->lru_lock. Sometimes used as a generic list 85 * by the page owner. 86 */ 87 struct list_head lru; 88 /* See page-flags.h for PAGE_MAPPING_FLAGS */ 89 struct address_space *mapping; 90 pgoff_t index; /* Our offset within mapping. */ 91 /** 92 * @private: Mapping-private opaque data. 93 * Usually used for buffer_heads if PagePrivate. 94 * Used for swp_entry_t if PageSwapCache. 95 * Indicates order in the buddy system if PageBuddy. 96 */ 97 unsigned long private; 98 }; 99 struct { /* page_pool used by netstack */ 100 /** 101 * @pp_magic: magic value to avoid recycling non 102 * page_pool allocated pages. 103 */ 104 unsigned long pp_magic; 105 struct page_pool *pp; 106 unsigned long _pp_mapping_pad; 107 unsigned long dma_addr; 108 union { 109 /** 110 * dma_addr_upper: might require a 64-bit 111 * value on 32-bit architectures. 112 */ 113 unsigned long dma_addr_upper; 114 /** 115 * For frag page support, not supported in 116 * 32-bit architectures with 64-bit DMA. 117 */ 118 atomic_long_t pp_frag_count; 119 }; 120 }; 121 struct { /* slab, slob and slub */ 122 union { 123 struct list_head slab_list; 124 struct { /* Partial pages */ 125 struct page *next; 126#ifdef CONFIG_64BIT 127 int pages; /* Nr of pages left */ 128#else 129 short int pages; 130#endif 131 }; 132 }; 133 struct kmem_cache *slab_cache; /* not slob */ 134 /* Double-word boundary */ 135 void *freelist; /* first free object */ 136 union { 137 void *s_mem; /* slab: first object */ 138 unsigned long counters; /* SLUB */ 139 struct { /* SLUB */ 140 unsigned inuse:16; 141 unsigned objects:15; 142 unsigned frozen:1; 143 }; 144 }; 145 }; 146 struct { /* Tail pages of compound page */ 147 unsigned long compound_head; /* Bit zero is set */ 148 149 /* First tail page only */ 150 unsigned char compound_dtor; 151 unsigned char compound_order; 152 atomic_t compound_mapcount; 153 unsigned int compound_nr; /* 1 << compound_order */ 154 }; 155 struct { /* Second tail page of compound page */ 156 unsigned long _compound_pad_1; /* compound_head */ 157 atomic_t hpage_pinned_refcount; 158 /* For both global and memcg */ 159 struct list_head deferred_list; 160 }; 161 struct { /* Page table pages */ 162 unsigned long _pt_pad_1; /* compound_head */ 163 pgtable_t pmd_huge_pte; /* protected by page->ptl */ 164 unsigned long _pt_pad_2; /* mapping */ 165 union { 166 struct mm_struct *pt_mm; /* x86 pgds only */ 167 atomic_t pt_frag_refcount; /* powerpc */ 168 }; 169#if ALLOC_SPLIT_PTLOCKS 170 spinlock_t *ptl; 171#else 172 spinlock_t ptl; 173#endif 174 }; 175 struct { /* ZONE_DEVICE pages */ 176 /** @pgmap: Points to the hosting device page map. */ 177 struct dev_pagemap *pgmap; 178 void *zone_device_data; 179 /* 180 * ZONE_DEVICE private pages are counted as being 181 * mapped so the next 3 words hold the mapping, index, 182 * and private fields from the source anonymous or 183 * page cache page while the page is migrated to device 184 * private memory. 185 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also 186 * use the mapping, index, and private fields when 187 * pmem backed DAX files are mapped. 188 */ 189 }; 190 191 /** @rcu_head: You can use this to free a page by RCU. */ 192 struct rcu_head rcu_head; 193 }; 194 195 union { /* This union is 4 bytes in size. */ 196 /* 197 * If the page can be mapped to userspace, encodes the number 198 * of times this page is referenced by a page table. 199 */ 200 atomic_t _mapcount; 201 202 /* 203 * If the page is neither PageSlab nor mappable to userspace, 204 * the value stored here may help determine what this page 205 * is used for. See page-flags.h for a list of page types 206 * which are currently stored here. 207 */ 208 unsigned int page_type; 209 210 unsigned int active; /* SLAB */ 211 int units; /* SLOB */ 212 }; 213 214 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ 215 atomic_t _refcount; 216 217#ifdef CONFIG_MEMCG 218 unsigned long memcg_data; 219#endif 220 221 /* 222 * On machines where all RAM is mapped into kernel address space, 223 * we can simply calculate the virtual address. On machines with 224 * highmem some memory is mapped into kernel virtual memory 225 * dynamically, so we need a place to store that address. 226 * Note that this field could be 16 bits on x86 ... ;) 227 * 228 * Architectures with slow multiplication can define 229 * WANT_PAGE_VIRTUAL in asm/page.h 230 */ 231#if defined(WANT_PAGE_VIRTUAL) 232 void *virtual; /* Kernel virtual address (NULL if 233 not kmapped, ie. highmem) */ 234#endif /* WANT_PAGE_VIRTUAL */ 235 236#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 237 int _last_cpupid; 238#endif 239} _struct_page_alignment; 240 241/** 242 * struct folio - Represents a contiguous set of bytes. 243 * @flags: Identical to the page flags. 244 * @lru: Least Recently Used list; tracks how recently this folio was used. 245 * @mapping: The file this page belongs to, or refers to the anon_vma for 246 * anonymous memory. 247 * @index: Offset within the file, in units of pages. For anonymous memory, 248 * this is the index from the beginning of the mmap. 249 * @private: Filesystem per-folio data (see folio_attach_private()). 250 * Used for swp_entry_t if folio_test_swapcache(). 251 * @_mapcount: Do not access this member directly. Use folio_mapcount() to 252 * find out how many times this folio is mapped by userspace. 253 * @_refcount: Do not access this member directly. Use folio_ref_count() 254 * to find how many references there are to this folio. 255 * @memcg_data: Memory Control Group data. 256 * 257 * A folio is a physically, virtually and logically contiguous set 258 * of bytes. It is a power-of-two in size, and it is aligned to that 259 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is 260 * in the page cache, it is at a file offset which is a multiple of that 261 * power-of-two. It may be mapped into userspace at an address which is 262 * at an arbitrary page offset, but its kernel virtual address is aligned 263 * to its size. 264 */ 265struct folio { 266 /* private: don't document the anon union */ 267 union { 268 struct { 269 /* public: */ 270 unsigned long flags; 271 struct list_head lru; 272 struct address_space *mapping; 273 pgoff_t index; 274 void *private; 275 atomic_t _mapcount; 276 atomic_t _refcount; 277#ifdef CONFIG_MEMCG 278 unsigned long memcg_data; 279#endif 280 /* private: the union with struct page is transitional */ 281 }; 282 struct page page; 283 }; 284}; 285 286static_assert(sizeof(struct page) == sizeof(struct folio)); 287#define FOLIO_MATCH(pg, fl) \ 288 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl)) 289FOLIO_MATCH(flags, flags); 290FOLIO_MATCH(lru, lru); 291FOLIO_MATCH(compound_head, lru); 292FOLIO_MATCH(index, index); 293FOLIO_MATCH(private, private); 294FOLIO_MATCH(_mapcount, _mapcount); 295FOLIO_MATCH(_refcount, _refcount); 296#ifdef CONFIG_MEMCG 297FOLIO_MATCH(memcg_data, memcg_data); 298#endif 299#undef FOLIO_MATCH 300 301static inline atomic_t *folio_mapcount_ptr(struct folio *folio) 302{ 303 struct page *tail = &folio->page + 1; 304 return &tail->compound_mapcount; 305} 306 307static inline atomic_t *compound_mapcount_ptr(struct page *page) 308{ 309 return &page[1].compound_mapcount; 310} 311 312static inline atomic_t *compound_pincount_ptr(struct page *page) 313{ 314 return &page[2].hpage_pinned_refcount; 315} 316 317/* 318 * Used for sizing the vmemmap region on some architectures 319 */ 320#define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) 321 322#define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 323#define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 324 325/* 326 * page_private can be used on tail pages. However, PagePrivate is only 327 * checked by the VM on the head page. So page_private on the tail pages 328 * should be used for data that's ancillary to the head page (eg attaching 329 * buffer heads to tail pages after attaching buffer heads to the head page) 330 */ 331#define page_private(page) ((page)->private) 332 333static inline void set_page_private(struct page *page, unsigned long private) 334{ 335 page->private = private; 336} 337 338static inline void *folio_get_private(struct folio *folio) 339{ 340 return folio->private; 341} 342 343struct page_frag_cache { 344 void * va; 345#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 346 __u16 offset; 347 __u16 size; 348#else 349 __u32 offset; 350#endif 351 /* we maintain a pagecount bias, so that we dont dirty cache line 352 * containing page->_refcount every time we allocate a fragment. 353 */ 354 unsigned int pagecnt_bias; 355 bool pfmemalloc; 356}; 357 358typedef unsigned long vm_flags_t; 359 360/* 361 * A region containing a mapping of a non-memory backed file under NOMMU 362 * conditions. These are held in a global tree and are pinned by the VMAs that 363 * map parts of them. 364 */ 365struct vm_region { 366 struct rb_node vm_rb; /* link in global region tree */ 367 vm_flags_t vm_flags; /* VMA vm_flags */ 368 unsigned long vm_start; /* start address of region */ 369 unsigned long vm_end; /* region initialised to here */ 370 unsigned long vm_top; /* region allocated to here */ 371 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 372 struct file *vm_file; /* the backing file or NULL */ 373 374 int vm_usage; /* region usage count (access under nommu_region_sem) */ 375 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 376 * this region */ 377}; 378 379#ifdef CONFIG_USERFAULTFD 380#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 381struct vm_userfaultfd_ctx { 382 struct userfaultfd_ctx *ctx; 383}; 384#else /* CONFIG_USERFAULTFD */ 385#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 386struct vm_userfaultfd_ctx {}; 387#endif /* CONFIG_USERFAULTFD */ 388 389/* 390 * This struct describes a virtual memory area. There is one of these 391 * per VM-area/task. A VM area is any part of the process virtual memory 392 * space that has a special rule for the page-fault handlers (ie a shared 393 * library, the executable area etc). 394 */ 395struct vm_area_struct { 396 /* The first cache line has the info for VMA tree walking. */ 397 398 unsigned long vm_start; /* Our start address within vm_mm. */ 399 unsigned long vm_end; /* The first byte after our end address 400 within vm_mm. */ 401 402 /* linked list of VM areas per task, sorted by address */ 403 struct vm_area_struct *vm_next, *vm_prev; 404 405 struct rb_node vm_rb; 406 407 /* 408 * Largest free memory gap in bytes to the left of this VMA. 409 * Either between this VMA and vma->vm_prev, or between one of the 410 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps 411 * get_unmapped_area find a free area of the right size. 412 */ 413 unsigned long rb_subtree_gap; 414 415 /* Second cache line starts here. */ 416 417 struct mm_struct *vm_mm; /* The address space we belong to. */ 418 419 /* 420 * Access permissions of this VMA. 421 * See vmf_insert_mixed_prot() for discussion. 422 */ 423 pgprot_t vm_page_prot; 424 unsigned long vm_flags; /* Flags, see mm.h. */ 425 426 /* 427 * For areas with an address space and backing store, 428 * linkage into the address_space->i_mmap interval tree. 429 */ 430 struct { 431 struct rb_node rb; 432 unsigned long rb_subtree_last; 433 } shared; 434 435 /* 436 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 437 * list, after a COW of one of the file pages. A MAP_SHARED vma 438 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 439 * or brk vma (with NULL file) can only be in an anon_vma list. 440 */ 441 struct list_head anon_vma_chain; /* Serialized by mmap_lock & 442 * page_table_lock */ 443 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 444 445 /* Function pointers to deal with this struct. */ 446 const struct vm_operations_struct *vm_ops; 447 448 /* Information about our backing store: */ 449 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 450 units */ 451 struct file * vm_file; /* File we map to (can be NULL). */ 452 void * vm_private_data; /* was vm_pte (shared mem) */ 453 454#ifdef CONFIG_SWAP 455 atomic_long_t swap_readahead_info; 456#endif 457#ifndef CONFIG_MMU 458 struct vm_region *vm_region; /* NOMMU mapping region */ 459#endif 460#ifdef CONFIG_NUMA 461 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 462#endif 463 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 464} __randomize_layout; 465 466struct kioctx_table; 467struct mm_struct { 468 struct { 469 struct vm_area_struct *mmap; /* list of VMAs */ 470 struct rb_root mm_rb; 471 u64 vmacache_seqnum; /* per-thread vmacache */ 472#ifdef CONFIG_MMU 473 unsigned long (*get_unmapped_area) (struct file *filp, 474 unsigned long addr, unsigned long len, 475 unsigned long pgoff, unsigned long flags); 476#endif 477 unsigned long mmap_base; /* base of mmap area */ 478 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 479#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 480 /* Base addresses for compatible mmap() */ 481 unsigned long mmap_compat_base; 482 unsigned long mmap_compat_legacy_base; 483#endif 484 unsigned long task_size; /* size of task vm space */ 485 unsigned long highest_vm_end; /* highest vma end address */ 486 pgd_t * pgd; 487 488#ifdef CONFIG_MEMBARRIER 489 /** 490 * @membarrier_state: Flags controlling membarrier behavior. 491 * 492 * This field is close to @pgd to hopefully fit in the same 493 * cache-line, which needs to be touched by switch_mm(). 494 */ 495 atomic_t membarrier_state; 496#endif 497 498 /** 499 * @mm_users: The number of users including userspace. 500 * 501 * Use mmget()/mmget_not_zero()/mmput() to modify. When this 502 * drops to 0 (i.e. when the task exits and there are no other 503 * temporary reference holders), we also release a reference on 504 * @mm_count (which may then free the &struct mm_struct if 505 * @mm_count also drops to 0). 506 */ 507 atomic_t mm_users; 508 509 /** 510 * @mm_count: The number of references to &struct mm_struct 511 * (@mm_users count as 1). 512 * 513 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the 514 * &struct mm_struct is freed. 515 */ 516 atomic_t mm_count; 517 518#ifdef CONFIG_MMU 519 atomic_long_t pgtables_bytes; /* PTE page table pages */ 520#endif 521 int map_count; /* number of VMAs */ 522 523 spinlock_t page_table_lock; /* Protects page tables and some 524 * counters 525 */ 526 /* 527 * With some kernel config, the current mmap_lock's offset 528 * inside 'mm_struct' is at 0x120, which is very optimal, as 529 * its two hot fields 'count' and 'owner' sit in 2 different 530 * cachelines, and when mmap_lock is highly contended, both 531 * of the 2 fields will be accessed frequently, current layout 532 * will help to reduce cache bouncing. 533 * 534 * So please be careful with adding new fields before 535 * mmap_lock, which can easily push the 2 fields into one 536 * cacheline. 537 */ 538 struct rw_semaphore mmap_lock; 539 540 struct list_head mmlist; /* List of maybe swapped mm's. These 541 * are globally strung together off 542 * init_mm.mmlist, and are protected 543 * by mmlist_lock 544 */ 545 546 547 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 548 unsigned long hiwater_vm; /* High-water virtual memory usage */ 549 550 unsigned long total_vm; /* Total pages mapped */ 551 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 552 atomic64_t pinned_vm; /* Refcount permanently increased */ 553 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 554 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 555 unsigned long stack_vm; /* VM_STACK */ 556 unsigned long def_flags; 557 558 /** 559 * @write_protect_seq: Locked when any thread is write 560 * protecting pages mapped by this mm to enforce a later COW, 561 * for instance during page table copying for fork(). 562 */ 563 seqcount_t write_protect_seq; 564 565 spinlock_t arg_lock; /* protect the below fields */ 566 567 unsigned long start_code, end_code, start_data, end_data; 568 unsigned long start_brk, brk, start_stack; 569 unsigned long arg_start, arg_end, env_start, env_end; 570 571 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 572 573 /* 574 * Special counters, in some configurations protected by the 575 * page_table_lock, in other configurations by being atomic. 576 */ 577 struct mm_rss_stat rss_stat; 578 579 struct linux_binfmt *binfmt; 580 581 /* Architecture-specific MM context */ 582 mm_context_t context; 583 584 unsigned long flags; /* Must use atomic bitops to access */ 585 586#ifdef CONFIG_AIO 587 spinlock_t ioctx_lock; 588 struct kioctx_table __rcu *ioctx_table; 589#endif 590#ifdef CONFIG_MEMCG 591 /* 592 * "owner" points to a task that is regarded as the canonical 593 * user/owner of this mm. All of the following must be true in 594 * order for it to be changed: 595 * 596 * current == mm->owner 597 * current->mm != mm 598 * new_owner->mm == mm 599 * new_owner->alloc_lock is held 600 */ 601 struct task_struct __rcu *owner; 602#endif 603 struct user_namespace *user_ns; 604 605 /* store ref to file /proc/<pid>/exe symlink points to */ 606 struct file __rcu *exe_file; 607#ifdef CONFIG_MMU_NOTIFIER 608 struct mmu_notifier_subscriptions *notifier_subscriptions; 609#endif 610#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 611 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 612#endif 613#ifdef CONFIG_NUMA_BALANCING 614 /* 615 * numa_next_scan is the next time that the PTEs will be marked 616 * pte_numa. NUMA hinting faults will gather statistics and 617 * migrate pages to new nodes if necessary. 618 */ 619 unsigned long numa_next_scan; 620 621 /* Restart point for scanning and setting pte_numa */ 622 unsigned long numa_scan_offset; 623 624 /* numa_scan_seq prevents two threads setting pte_numa */ 625 int numa_scan_seq; 626#endif 627 /* 628 * An operation with batched TLB flushing is going on. Anything 629 * that can move process memory needs to flush the TLB when 630 * moving a PROT_NONE or PROT_NUMA mapped page. 631 */ 632 atomic_t tlb_flush_pending; 633#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 634 /* See flush_tlb_batched_pending() */ 635 bool tlb_flush_batched; 636#endif 637 struct uprobes_state uprobes_state; 638#ifdef CONFIG_PREEMPT_RT 639 struct rcu_head delayed_drop; 640#endif 641#ifdef CONFIG_HUGETLB_PAGE 642 atomic_long_t hugetlb_usage; 643#endif 644 struct work_struct async_put_work; 645 646#ifdef CONFIG_IOMMU_SUPPORT 647 u32 pasid; 648#endif 649 } __randomize_layout; 650 651 /* 652 * The mm_cpumask needs to be at the end of mm_struct, because it 653 * is dynamically sized based on nr_cpu_ids. 654 */ 655 unsigned long cpu_bitmap[]; 656}; 657 658extern struct mm_struct init_mm; 659 660/* Pointer magic because the dynamic array size confuses some compilers. */ 661static inline void mm_init_cpumask(struct mm_struct *mm) 662{ 663 unsigned long cpu_bitmap = (unsigned long)mm; 664 665 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); 666 cpumask_clear((struct cpumask *)cpu_bitmap); 667} 668 669/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 670static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 671{ 672 return (struct cpumask *)&mm->cpu_bitmap; 673} 674 675struct mmu_gather; 676extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm); 677extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm); 678extern void tlb_finish_mmu(struct mmu_gather *tlb); 679 680static inline void init_tlb_flush_pending(struct mm_struct *mm) 681{ 682 atomic_set(&mm->tlb_flush_pending, 0); 683} 684 685static inline void inc_tlb_flush_pending(struct mm_struct *mm) 686{ 687 atomic_inc(&mm->tlb_flush_pending); 688 /* 689 * The only time this value is relevant is when there are indeed pages 690 * to flush. And we'll only flush pages after changing them, which 691 * requires the PTL. 692 * 693 * So the ordering here is: 694 * 695 * atomic_inc(&mm->tlb_flush_pending); 696 * spin_lock(&ptl); 697 * ... 698 * set_pte_at(); 699 * spin_unlock(&ptl); 700 * 701 * spin_lock(&ptl) 702 * mm_tlb_flush_pending(); 703 * .... 704 * spin_unlock(&ptl); 705 * 706 * flush_tlb_range(); 707 * atomic_dec(&mm->tlb_flush_pending); 708 * 709 * Where the increment if constrained by the PTL unlock, it thus 710 * ensures that the increment is visible if the PTE modification is 711 * visible. After all, if there is no PTE modification, nobody cares 712 * about TLB flushes either. 713 * 714 * This very much relies on users (mm_tlb_flush_pending() and 715 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and 716 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc 717 * locks (PPC) the unlock of one doesn't order against the lock of 718 * another PTL. 719 * 720 * The decrement is ordered by the flush_tlb_range(), such that 721 * mm_tlb_flush_pending() will not return false unless all flushes have 722 * completed. 723 */ 724} 725 726static inline void dec_tlb_flush_pending(struct mm_struct *mm) 727{ 728 /* 729 * See inc_tlb_flush_pending(). 730 * 731 * This cannot be smp_mb__before_atomic() because smp_mb() simply does 732 * not order against TLB invalidate completion, which is what we need. 733 * 734 * Therefore we must rely on tlb_flush_*() to guarantee order. 735 */ 736 atomic_dec(&mm->tlb_flush_pending); 737} 738 739static inline bool mm_tlb_flush_pending(struct mm_struct *mm) 740{ 741 /* 742 * Must be called after having acquired the PTL; orders against that 743 * PTLs release and therefore ensures that if we observe the modified 744 * PTE we must also observe the increment from inc_tlb_flush_pending(). 745 * 746 * That is, it only guarantees to return true if there is a flush 747 * pending for _this_ PTL. 748 */ 749 return atomic_read(&mm->tlb_flush_pending); 750} 751 752static inline bool mm_tlb_flush_nested(struct mm_struct *mm) 753{ 754 /* 755 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL 756 * for which there is a TLB flush pending in order to guarantee 757 * we've seen both that PTE modification and the increment. 758 * 759 * (no requirement on actually still holding the PTL, that is irrelevant) 760 */ 761 return atomic_read(&mm->tlb_flush_pending) > 1; 762} 763 764struct vm_fault; 765 766/** 767 * typedef vm_fault_t - Return type for page fault handlers. 768 * 769 * Page fault handlers return a bitmask of %VM_FAULT values. 770 */ 771typedef __bitwise unsigned int vm_fault_t; 772 773/** 774 * enum vm_fault_reason - Page fault handlers return a bitmask of 775 * these values to tell the core VM what happened when handling the 776 * fault. Used to decide whether a process gets delivered SIGBUS or 777 * just gets major/minor fault counters bumped up. 778 * 779 * @VM_FAULT_OOM: Out Of Memory 780 * @VM_FAULT_SIGBUS: Bad access 781 * @VM_FAULT_MAJOR: Page read from storage 782 * @VM_FAULT_WRITE: Special case for get_user_pages 783 * @VM_FAULT_HWPOISON: Hit poisoned small page 784 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded 785 * in upper bits 786 * @VM_FAULT_SIGSEGV: segmentation fault 787 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page 788 * @VM_FAULT_LOCKED: ->fault locked the returned page 789 * @VM_FAULT_RETRY: ->fault blocked, must retry 790 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small 791 * @VM_FAULT_DONE_COW: ->fault has fully handled COW 792 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs 793 * fsync() to complete (for synchronous page faults 794 * in DAX) 795 * @VM_FAULT_HINDEX_MASK: mask HINDEX value 796 * 797 */ 798enum vm_fault_reason { 799 VM_FAULT_OOM = (__force vm_fault_t)0x000001, 800 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002, 801 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004, 802 VM_FAULT_WRITE = (__force vm_fault_t)0x000008, 803 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010, 804 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020, 805 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040, 806 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100, 807 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200, 808 VM_FAULT_RETRY = (__force vm_fault_t)0x000400, 809 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800, 810 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000, 811 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000, 812 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000, 813}; 814 815/* Encode hstate index for a hwpoisoned large page */ 816#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16)) 817#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf) 818 819#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \ 820 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \ 821 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK) 822 823#define VM_FAULT_RESULT_TRACE \ 824 { VM_FAULT_OOM, "OOM" }, \ 825 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 826 { VM_FAULT_MAJOR, "MAJOR" }, \ 827 { VM_FAULT_WRITE, "WRITE" }, \ 828 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 829 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 830 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 831 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 832 { VM_FAULT_LOCKED, "LOCKED" }, \ 833 { VM_FAULT_RETRY, "RETRY" }, \ 834 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 835 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 836 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 837 838struct vm_special_mapping { 839 const char *name; /* The name, e.g. "[vdso]". */ 840 841 /* 842 * If .fault is not provided, this points to a 843 * NULL-terminated array of pages that back the special mapping. 844 * 845 * This must not be NULL unless .fault is provided. 846 */ 847 struct page **pages; 848 849 /* 850 * If non-NULL, then this is called to resolve page faults 851 * on the special mapping. If used, .pages is not checked. 852 */ 853 vm_fault_t (*fault)(const struct vm_special_mapping *sm, 854 struct vm_area_struct *vma, 855 struct vm_fault *vmf); 856 857 int (*mremap)(const struct vm_special_mapping *sm, 858 struct vm_area_struct *new_vma); 859}; 860 861enum tlb_flush_reason { 862 TLB_FLUSH_ON_TASK_SWITCH, 863 TLB_REMOTE_SHOOTDOWN, 864 TLB_LOCAL_SHOOTDOWN, 865 TLB_LOCAL_MM_SHOOTDOWN, 866 TLB_REMOTE_SEND_IPI, 867 NR_TLB_FLUSH_REASONS, 868}; 869 870 /* 871 * A swap entry has to fit into a "unsigned long", as the entry is hidden 872 * in the "index" field of the swapper address space. 873 */ 874typedef struct { 875 unsigned long val; 876} swp_entry_t; 877 878#endif /* _LINUX_MM_TYPES_H */ 879