linux/include/linux/perf_event.h
<<
>>
Prefs
   1/*
   2 * Performance events:
   3 *
   4 *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
   5 *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
   6 *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
   7 *
   8 * Data type definitions, declarations, prototypes.
   9 *
  10 *    Started by: Thomas Gleixner and Ingo Molnar
  11 *
  12 * For licencing details see kernel-base/COPYING
  13 */
  14#ifndef _LINUX_PERF_EVENT_H
  15#define _LINUX_PERF_EVENT_H
  16
  17#include <uapi/linux/perf_event.h>
  18#include <uapi/linux/bpf_perf_event.h>
  19
  20/*
  21 * Kernel-internal data types and definitions:
  22 */
  23
  24#ifdef CONFIG_PERF_EVENTS
  25# include <asm/perf_event.h>
  26# include <asm/local64.h>
  27#endif
  28
  29struct perf_guest_info_callbacks {
  30        int                             (*is_in_guest)(void);
  31        int                             (*is_user_mode)(void);
  32        unsigned long                   (*get_guest_ip)(void);
  33        void                            (*handle_intel_pt_intr)(void);
  34};
  35
  36#ifdef CONFIG_HAVE_HW_BREAKPOINT
  37#include <asm/hw_breakpoint.h>
  38#endif
  39
  40#include <linux/list.h>
  41#include <linux/mutex.h>
  42#include <linux/rculist.h>
  43#include <linux/rcupdate.h>
  44#include <linux/spinlock.h>
  45#include <linux/hrtimer.h>
  46#include <linux/fs.h>
  47#include <linux/pid_namespace.h>
  48#include <linux/workqueue.h>
  49#include <linux/ftrace.h>
  50#include <linux/cpu.h>
  51#include <linux/irq_work.h>
  52#include <linux/static_key.h>
  53#include <linux/jump_label_ratelimit.h>
  54#include <linux/atomic.h>
  55#include <linux/sysfs.h>
  56#include <linux/perf_regs.h>
  57#include <linux/cgroup.h>
  58#include <linux/refcount.h>
  59#include <linux/security.h>
  60#include <linux/static_call.h>
  61#include <asm/local.h>
  62
  63struct perf_callchain_entry {
  64        __u64                           nr;
  65        __u64                           ip[]; /* /proc/sys/kernel/perf_event_max_stack */
  66};
  67
  68struct perf_callchain_entry_ctx {
  69        struct perf_callchain_entry *entry;
  70        u32                         max_stack;
  71        u32                         nr;
  72        short                       contexts;
  73        bool                        contexts_maxed;
  74};
  75
  76typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
  77                                     unsigned long off, unsigned long len);
  78
  79struct perf_raw_frag {
  80        union {
  81                struct perf_raw_frag    *next;
  82                unsigned long           pad;
  83        };
  84        perf_copy_f                     copy;
  85        void                            *data;
  86        u32                             size;
  87} __packed;
  88
  89struct perf_raw_record {
  90        struct perf_raw_frag            frag;
  91        u32                             size;
  92};
  93
  94/*
  95 * branch stack layout:
  96 *  nr: number of taken branches stored in entries[]
  97 *  hw_idx: The low level index of raw branch records
  98 *          for the most recent branch.
  99 *          -1ULL means invalid/unknown.
 100 *
 101 * Note that nr can vary from sample to sample
 102 * branches (to, from) are stored from most recent
 103 * to least recent, i.e., entries[0] contains the most
 104 * recent branch.
 105 * The entries[] is an abstraction of raw branch records,
 106 * which may not be stored in age order in HW, e.g. Intel LBR.
 107 * The hw_idx is to expose the low level index of raw
 108 * branch record for the most recent branch aka entries[0].
 109 * The hw_idx index is between -1 (unknown) and max depth,
 110 * which can be retrieved in /sys/devices/cpu/caps/branches.
 111 * For the architectures whose raw branch records are
 112 * already stored in age order, the hw_idx should be 0.
 113 */
 114struct perf_branch_stack {
 115        __u64                           nr;
 116        __u64                           hw_idx;
 117        struct perf_branch_entry        entries[];
 118};
 119
 120struct task_struct;
 121
 122/*
 123 * extra PMU register associated with an event
 124 */
 125struct hw_perf_event_extra {
 126        u64             config; /* register value */
 127        unsigned int    reg;    /* register address or index */
 128        int             alloc;  /* extra register already allocated */
 129        int             idx;    /* index in shared_regs->regs[] */
 130};
 131
 132/**
 133 * struct hw_perf_event - performance event hardware details:
 134 */
 135struct hw_perf_event {
 136#ifdef CONFIG_PERF_EVENTS
 137        union {
 138                struct { /* hardware */
 139                        u64             config;
 140                        u64             last_tag;
 141                        unsigned long   config_base;
 142                        unsigned long   event_base;
 143                        int             event_base_rdpmc;
 144                        int             idx;
 145                        int             last_cpu;
 146                        int             flags;
 147
 148                        struct hw_perf_event_extra extra_reg;
 149                        struct hw_perf_event_extra branch_reg;
 150                };
 151                struct { /* software */
 152                        struct hrtimer  hrtimer;
 153                };
 154                struct { /* tracepoint */
 155                        /* for tp_event->class */
 156                        struct list_head        tp_list;
 157                };
 158                struct { /* amd_power */
 159                        u64     pwr_acc;
 160                        u64     ptsc;
 161                };
 162#ifdef CONFIG_HAVE_HW_BREAKPOINT
 163                struct { /* breakpoint */
 164                        /*
 165                         * Crufty hack to avoid the chicken and egg
 166                         * problem hw_breakpoint has with context
 167                         * creation and event initalization.
 168                         */
 169                        struct arch_hw_breakpoint       info;
 170                        struct list_head                bp_list;
 171                };
 172#endif
 173                struct { /* amd_iommu */
 174                        u8      iommu_bank;
 175                        u8      iommu_cntr;
 176                        u16     padding;
 177                        u64     conf;
 178                        u64     conf1;
 179                };
 180        };
 181        /*
 182         * If the event is a per task event, this will point to the task in
 183         * question. See the comment in perf_event_alloc().
 184         */
 185        struct task_struct              *target;
 186
 187        /*
 188         * PMU would store hardware filter configuration
 189         * here.
 190         */
 191        void                            *addr_filters;
 192
 193        /* Last sync'ed generation of filters */
 194        unsigned long                   addr_filters_gen;
 195
 196/*
 197 * hw_perf_event::state flags; used to track the PERF_EF_* state.
 198 */
 199#define PERF_HES_STOPPED        0x01 /* the counter is stopped */
 200#define PERF_HES_UPTODATE       0x02 /* event->count up-to-date */
 201#define PERF_HES_ARCH           0x04
 202
 203        int                             state;
 204
 205        /*
 206         * The last observed hardware counter value, updated with a
 207         * local64_cmpxchg() such that pmu::read() can be called nested.
 208         */
 209        local64_t                       prev_count;
 210
 211        /*
 212         * The period to start the next sample with.
 213         */
 214        u64                             sample_period;
 215
 216        union {
 217                struct { /* Sampling */
 218                        /*
 219                         * The period we started this sample with.
 220                         */
 221                        u64                             last_period;
 222
 223                        /*
 224                         * However much is left of the current period;
 225                         * note that this is a full 64bit value and
 226                         * allows for generation of periods longer
 227                         * than hardware might allow.
 228                         */
 229                        local64_t                       period_left;
 230                };
 231                struct { /* Topdown events counting for context switch */
 232                        u64                             saved_metric;
 233                        u64                             saved_slots;
 234                };
 235        };
 236
 237        /*
 238         * State for throttling the event, see __perf_event_overflow() and
 239         * perf_adjust_freq_unthr_context().
 240         */
 241        u64                             interrupts_seq;
 242        u64                             interrupts;
 243
 244        /*
 245         * State for freq target events, see __perf_event_overflow() and
 246         * perf_adjust_freq_unthr_context().
 247         */
 248        u64                             freq_time_stamp;
 249        u64                             freq_count_stamp;
 250#endif
 251};
 252
 253struct perf_event;
 254
 255/*
 256 * Common implementation detail of pmu::{start,commit,cancel}_txn
 257 */
 258#define PERF_PMU_TXN_ADD  0x1           /* txn to add/schedule event on PMU */
 259#define PERF_PMU_TXN_READ 0x2           /* txn to read event group from PMU */
 260
 261/**
 262 * pmu::capabilities flags
 263 */
 264#define PERF_PMU_CAP_NO_INTERRUPT               0x0001
 265#define PERF_PMU_CAP_NO_NMI                     0x0002
 266#define PERF_PMU_CAP_AUX_NO_SG                  0x0004
 267#define PERF_PMU_CAP_EXTENDED_REGS              0x0008
 268#define PERF_PMU_CAP_EXCLUSIVE                  0x0010
 269#define PERF_PMU_CAP_ITRACE                     0x0020
 270#define PERF_PMU_CAP_HETEROGENEOUS_CPUS         0x0040
 271#define PERF_PMU_CAP_NO_EXCLUDE                 0x0080
 272#define PERF_PMU_CAP_AUX_OUTPUT                 0x0100
 273#define PERF_PMU_CAP_EXTENDED_HW_TYPE           0x0200
 274
 275struct perf_output_handle;
 276
 277/**
 278 * struct pmu - generic performance monitoring unit
 279 */
 280struct pmu {
 281        struct list_head                entry;
 282
 283        struct module                   *module;
 284        struct device                   *dev;
 285        const struct attribute_group    **attr_groups;
 286        const struct attribute_group    **attr_update;
 287        const char                      *name;
 288        int                             type;
 289
 290        /*
 291         * various common per-pmu feature flags
 292         */
 293        int                             capabilities;
 294
 295        int __percpu                    *pmu_disable_count;
 296        struct perf_cpu_context __percpu *pmu_cpu_context;
 297        atomic_t                        exclusive_cnt; /* < 0: cpu; > 0: tsk */
 298        int                             task_ctx_nr;
 299        int                             hrtimer_interval_ms;
 300
 301        /* number of address filters this PMU can do */
 302        unsigned int                    nr_addr_filters;
 303
 304        /*
 305         * Fully disable/enable this PMU, can be used to protect from the PMI
 306         * as well as for lazy/batch writing of the MSRs.
 307         */
 308        void (*pmu_enable)              (struct pmu *pmu); /* optional */
 309        void (*pmu_disable)             (struct pmu *pmu); /* optional */
 310
 311        /*
 312         * Try and initialize the event for this PMU.
 313         *
 314         * Returns:
 315         *  -ENOENT     -- @event is not for this PMU
 316         *
 317         *  -ENODEV     -- @event is for this PMU but PMU not present
 318         *  -EBUSY      -- @event is for this PMU but PMU temporarily unavailable
 319         *  -EINVAL     -- @event is for this PMU but @event is not valid
 320         *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
 321         *  -EACCES     -- @event is for this PMU, @event is valid, but no privileges
 322         *
 323         *  0           -- @event is for this PMU and valid
 324         *
 325         * Other error return values are allowed.
 326         */
 327        int (*event_init)               (struct perf_event *event);
 328
 329        /*
 330         * Notification that the event was mapped or unmapped.  Called
 331         * in the context of the mapping task.
 332         */
 333        void (*event_mapped)            (struct perf_event *event, struct mm_struct *mm); /* optional */
 334        void (*event_unmapped)          (struct perf_event *event, struct mm_struct *mm); /* optional */
 335
 336        /*
 337         * Flags for ->add()/->del()/ ->start()/->stop(). There are
 338         * matching hw_perf_event::state flags.
 339         */
 340#define PERF_EF_START   0x01            /* start the counter when adding    */
 341#define PERF_EF_RELOAD  0x02            /* reload the counter when starting */
 342#define PERF_EF_UPDATE  0x04            /* update the counter when stopping */
 343
 344        /*
 345         * Adds/Removes a counter to/from the PMU, can be done inside a
 346         * transaction, see the ->*_txn() methods.
 347         *
 348         * The add/del callbacks will reserve all hardware resources required
 349         * to service the event, this includes any counter constraint
 350         * scheduling etc.
 351         *
 352         * Called with IRQs disabled and the PMU disabled on the CPU the event
 353         * is on.
 354         *
 355         * ->add() called without PERF_EF_START should result in the same state
 356         *  as ->add() followed by ->stop().
 357         *
 358         * ->del() must always PERF_EF_UPDATE stop an event. If it calls
 359         *  ->stop() that must deal with already being stopped without
 360         *  PERF_EF_UPDATE.
 361         */
 362        int  (*add)                     (struct perf_event *event, int flags);
 363        void (*del)                     (struct perf_event *event, int flags);
 364
 365        /*
 366         * Starts/Stops a counter present on the PMU.
 367         *
 368         * The PMI handler should stop the counter when perf_event_overflow()
 369         * returns !0. ->start() will be used to continue.
 370         *
 371         * Also used to change the sample period.
 372         *
 373         * Called with IRQs disabled and the PMU disabled on the CPU the event
 374         * is on -- will be called from NMI context with the PMU generates
 375         * NMIs.
 376         *
 377         * ->stop() with PERF_EF_UPDATE will read the counter and update
 378         *  period/count values like ->read() would.
 379         *
 380         * ->start() with PERF_EF_RELOAD will reprogram the counter
 381         *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
 382         */
 383        void (*start)                   (struct perf_event *event, int flags);
 384        void (*stop)                    (struct perf_event *event, int flags);
 385
 386        /*
 387         * Updates the counter value of the event.
 388         *
 389         * For sampling capable PMUs this will also update the software period
 390         * hw_perf_event::period_left field.
 391         */
 392        void (*read)                    (struct perf_event *event);
 393
 394        /*
 395         * Group events scheduling is treated as a transaction, add
 396         * group events as a whole and perform one schedulability test.
 397         * If the test fails, roll back the whole group
 398         *
 399         * Start the transaction, after this ->add() doesn't need to
 400         * do schedulability tests.
 401         *
 402         * Optional.
 403         */
 404        void (*start_txn)               (struct pmu *pmu, unsigned int txn_flags);
 405        /*
 406         * If ->start_txn() disabled the ->add() schedulability test
 407         * then ->commit_txn() is required to perform one. On success
 408         * the transaction is closed. On error the transaction is kept
 409         * open until ->cancel_txn() is called.
 410         *
 411         * Optional.
 412         */
 413        int  (*commit_txn)              (struct pmu *pmu);
 414        /*
 415         * Will cancel the transaction, assumes ->del() is called
 416         * for each successful ->add() during the transaction.
 417         *
 418         * Optional.
 419         */
 420        void (*cancel_txn)              (struct pmu *pmu);
 421
 422        /*
 423         * Will return the value for perf_event_mmap_page::index for this event,
 424         * if no implementation is provided it will default to: event->hw.idx + 1.
 425         */
 426        int (*event_idx)                (struct perf_event *event); /*optional */
 427
 428        /*
 429         * context-switches callback
 430         */
 431        void (*sched_task)              (struct perf_event_context *ctx,
 432                                        bool sched_in);
 433
 434        /*
 435         * Kmem cache of PMU specific data
 436         */
 437        struct kmem_cache               *task_ctx_cache;
 438
 439        /*
 440         * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
 441         * can be synchronized using this function. See Intel LBR callstack support
 442         * implementation and Perf core context switch handling callbacks for usage
 443         * examples.
 444         */
 445        void (*swap_task_ctx)           (struct perf_event_context *prev,
 446                                         struct perf_event_context *next);
 447                                        /* optional */
 448
 449        /*
 450         * Set up pmu-private data structures for an AUX area
 451         */
 452        void *(*setup_aux)              (struct perf_event *event, void **pages,
 453                                         int nr_pages, bool overwrite);
 454                                        /* optional */
 455
 456        /*
 457         * Free pmu-private AUX data structures
 458         */
 459        void (*free_aux)                (void *aux); /* optional */
 460
 461        /*
 462         * Take a snapshot of the AUX buffer without touching the event
 463         * state, so that preempting ->start()/->stop() callbacks does
 464         * not interfere with their logic. Called in PMI context.
 465         *
 466         * Returns the size of AUX data copied to the output handle.
 467         *
 468         * Optional.
 469         */
 470        long (*snapshot_aux)            (struct perf_event *event,
 471                                         struct perf_output_handle *handle,
 472                                         unsigned long size);
 473
 474        /*
 475         * Validate address range filters: make sure the HW supports the
 476         * requested configuration and number of filters; return 0 if the
 477         * supplied filters are valid, -errno otherwise.
 478         *
 479         * Runs in the context of the ioctl()ing process and is not serialized
 480         * with the rest of the PMU callbacks.
 481         */
 482        int (*addr_filters_validate)    (struct list_head *filters);
 483                                        /* optional */
 484
 485        /*
 486         * Synchronize address range filter configuration:
 487         * translate hw-agnostic filters into hardware configuration in
 488         * event::hw::addr_filters.
 489         *
 490         * Runs as a part of filter sync sequence that is done in ->start()
 491         * callback by calling perf_event_addr_filters_sync().
 492         *
 493         * May (and should) traverse event::addr_filters::list, for which its
 494         * caller provides necessary serialization.
 495         */
 496        void (*addr_filters_sync)       (struct perf_event *event);
 497                                        /* optional */
 498
 499        /*
 500         * Check if event can be used for aux_output purposes for
 501         * events of this PMU.
 502         *
 503         * Runs from perf_event_open(). Should return 0 for "no match"
 504         * or non-zero for "match".
 505         */
 506        int (*aux_output_match)         (struct perf_event *event);
 507                                        /* optional */
 508
 509        /*
 510         * Filter events for PMU-specific reasons.
 511         */
 512        int (*filter_match)             (struct perf_event *event); /* optional */
 513
 514        /*
 515         * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
 516         */
 517        int (*check_period)             (struct perf_event *event, u64 value); /* optional */
 518};
 519
 520enum perf_addr_filter_action_t {
 521        PERF_ADDR_FILTER_ACTION_STOP = 0,
 522        PERF_ADDR_FILTER_ACTION_START,
 523        PERF_ADDR_FILTER_ACTION_FILTER,
 524};
 525
 526/**
 527 * struct perf_addr_filter - address range filter definition
 528 * @entry:      event's filter list linkage
 529 * @path:       object file's path for file-based filters
 530 * @offset:     filter range offset
 531 * @size:       filter range size (size==0 means single address trigger)
 532 * @action:     filter/start/stop
 533 *
 534 * This is a hardware-agnostic filter configuration as specified by the user.
 535 */
 536struct perf_addr_filter {
 537        struct list_head        entry;
 538        struct path             path;
 539        unsigned long           offset;
 540        unsigned long           size;
 541        enum perf_addr_filter_action_t  action;
 542};
 543
 544/**
 545 * struct perf_addr_filters_head - container for address range filters
 546 * @list:       list of filters for this event
 547 * @lock:       spinlock that serializes accesses to the @list and event's
 548 *              (and its children's) filter generations.
 549 * @nr_file_filters:    number of file-based filters
 550 *
 551 * A child event will use parent's @list (and therefore @lock), so they are
 552 * bundled together; see perf_event_addr_filters().
 553 */
 554struct perf_addr_filters_head {
 555        struct list_head        list;
 556        raw_spinlock_t          lock;
 557        unsigned int            nr_file_filters;
 558};
 559
 560struct perf_addr_filter_range {
 561        unsigned long           start;
 562        unsigned long           size;
 563};
 564
 565/**
 566 * enum perf_event_state - the states of an event:
 567 */
 568enum perf_event_state {
 569        PERF_EVENT_STATE_DEAD           = -4,
 570        PERF_EVENT_STATE_EXIT           = -3,
 571        PERF_EVENT_STATE_ERROR          = -2,
 572        PERF_EVENT_STATE_OFF            = -1,
 573        PERF_EVENT_STATE_INACTIVE       =  0,
 574        PERF_EVENT_STATE_ACTIVE         =  1,
 575};
 576
 577struct file;
 578struct perf_sample_data;
 579
 580typedef void (*perf_overflow_handler_t)(struct perf_event *,
 581                                        struct perf_sample_data *,
 582                                        struct pt_regs *regs);
 583
 584/*
 585 * Event capabilities. For event_caps and groups caps.
 586 *
 587 * PERF_EV_CAP_SOFTWARE: Is a software event.
 588 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
 589 * from any CPU in the package where it is active.
 590 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
 591 * cannot be a group leader. If an event with this flag is detached from the
 592 * group it is scheduled out and moved into an unrecoverable ERROR state.
 593 */
 594#define PERF_EV_CAP_SOFTWARE            BIT(0)
 595#define PERF_EV_CAP_READ_ACTIVE_PKG     BIT(1)
 596#define PERF_EV_CAP_SIBLING             BIT(2)
 597
 598#define SWEVENT_HLIST_BITS              8
 599#define SWEVENT_HLIST_SIZE              (1 << SWEVENT_HLIST_BITS)
 600
 601struct swevent_hlist {
 602        struct hlist_head               heads[SWEVENT_HLIST_SIZE];
 603        struct rcu_head                 rcu_head;
 604};
 605
 606#define PERF_ATTACH_CONTEXT     0x01
 607#define PERF_ATTACH_GROUP       0x02
 608#define PERF_ATTACH_TASK        0x04
 609#define PERF_ATTACH_TASK_DATA   0x08
 610#define PERF_ATTACH_ITRACE      0x10
 611#define PERF_ATTACH_SCHED_CB    0x20
 612#define PERF_ATTACH_CHILD       0x40
 613
 614struct perf_cgroup;
 615struct perf_buffer;
 616
 617struct pmu_event_list {
 618        raw_spinlock_t          lock;
 619        struct list_head        list;
 620};
 621
 622#define for_each_sibling_event(sibling, event)                  \
 623        if ((event)->group_leader == (event))                   \
 624                list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
 625
 626/**
 627 * struct perf_event - performance event kernel representation:
 628 */
 629struct perf_event {
 630#ifdef CONFIG_PERF_EVENTS
 631        /*
 632         * entry onto perf_event_context::event_list;
 633         *   modifications require ctx->lock
 634         *   RCU safe iterations.
 635         */
 636        struct list_head                event_entry;
 637
 638        /*
 639         * Locked for modification by both ctx->mutex and ctx->lock; holding
 640         * either sufficies for read.
 641         */
 642        struct list_head                sibling_list;
 643        struct list_head                active_list;
 644        /*
 645         * Node on the pinned or flexible tree located at the event context;
 646         */
 647        struct rb_node                  group_node;
 648        u64                             group_index;
 649        /*
 650         * We need storage to track the entries in perf_pmu_migrate_context; we
 651         * cannot use the event_entry because of RCU and we want to keep the
 652         * group in tact which avoids us using the other two entries.
 653         */
 654        struct list_head                migrate_entry;
 655
 656        struct hlist_node               hlist_entry;
 657        struct list_head                active_entry;
 658        int                             nr_siblings;
 659
 660        /* Not serialized. Only written during event initialization. */
 661        int                             event_caps;
 662        /* The cumulative AND of all event_caps for events in this group. */
 663        int                             group_caps;
 664
 665        struct perf_event               *group_leader;
 666        struct pmu                      *pmu;
 667        void                            *pmu_private;
 668
 669        enum perf_event_state           state;
 670        unsigned int                    attach_state;
 671        local64_t                       count;
 672        atomic64_t                      child_count;
 673
 674        /*
 675         * These are the total time in nanoseconds that the event
 676         * has been enabled (i.e. eligible to run, and the task has
 677         * been scheduled in, if this is a per-task event)
 678         * and running (scheduled onto the CPU), respectively.
 679         */
 680        u64                             total_time_enabled;
 681        u64                             total_time_running;
 682        u64                             tstamp;
 683
 684        /*
 685         * timestamp shadows the actual context timing but it can
 686         * be safely used in NMI interrupt context. It reflects the
 687         * context time as it was when the event was last scheduled in,
 688         * or when ctx_sched_in failed to schedule the event because we
 689         * run out of PMC.
 690         *
 691         * ctx_time already accounts for ctx->timestamp. Therefore to
 692         * compute ctx_time for a sample, simply add perf_clock().
 693         */
 694        u64                             shadow_ctx_time;
 695
 696        struct perf_event_attr          attr;
 697        u16                             header_size;
 698        u16                             id_header_size;
 699        u16                             read_size;
 700        struct hw_perf_event            hw;
 701
 702        struct perf_event_context       *ctx;
 703        atomic_long_t                   refcount;
 704
 705        /*
 706         * These accumulate total time (in nanoseconds) that children
 707         * events have been enabled and running, respectively.
 708         */
 709        atomic64_t                      child_total_time_enabled;
 710        atomic64_t                      child_total_time_running;
 711
 712        /*
 713         * Protect attach/detach and child_list:
 714         */
 715        struct mutex                    child_mutex;
 716        struct list_head                child_list;
 717        struct perf_event               *parent;
 718
 719        int                             oncpu;
 720        int                             cpu;
 721
 722        struct list_head                owner_entry;
 723        struct task_struct              *owner;
 724
 725        /* mmap bits */
 726        struct mutex                    mmap_mutex;
 727        atomic_t                        mmap_count;
 728
 729        struct perf_buffer              *rb;
 730        struct list_head                rb_entry;
 731        unsigned long                   rcu_batches;
 732        int                             rcu_pending;
 733
 734        /* poll related */
 735        wait_queue_head_t               waitq;
 736        struct fasync_struct            *fasync;
 737
 738        /* delayed work for NMIs and such */
 739        int                             pending_wakeup;
 740        int                             pending_kill;
 741        int                             pending_disable;
 742        unsigned long                   pending_addr;   /* SIGTRAP */
 743        struct irq_work                 pending;
 744
 745        atomic_t                        event_limit;
 746
 747        /* address range filters */
 748        struct perf_addr_filters_head   addr_filters;
 749        /* vma address array for file-based filders */
 750        struct perf_addr_filter_range   *addr_filter_ranges;
 751        unsigned long                   addr_filters_gen;
 752
 753        /* for aux_output events */
 754        struct perf_event               *aux_event;
 755
 756        void (*destroy)(struct perf_event *);
 757        struct rcu_head                 rcu_head;
 758
 759        struct pid_namespace            *ns;
 760        u64                             id;
 761
 762        u64                             (*clock)(void);
 763        perf_overflow_handler_t         overflow_handler;
 764        void                            *overflow_handler_context;
 765#ifdef CONFIG_BPF_SYSCALL
 766        perf_overflow_handler_t         orig_overflow_handler;
 767        struct bpf_prog                 *prog;
 768        u64                             bpf_cookie;
 769#endif
 770
 771#ifdef CONFIG_EVENT_TRACING
 772        struct trace_event_call         *tp_event;
 773        struct event_filter             *filter;
 774#ifdef CONFIG_FUNCTION_TRACER
 775        struct ftrace_ops               ftrace_ops;
 776#endif
 777#endif
 778
 779#ifdef CONFIG_CGROUP_PERF
 780        struct perf_cgroup              *cgrp; /* cgroup event is attach to */
 781#endif
 782
 783#ifdef CONFIG_SECURITY
 784        void *security;
 785#endif
 786        struct list_head                sb_list;
 787#endif /* CONFIG_PERF_EVENTS */
 788};
 789
 790
 791struct perf_event_groups {
 792        struct rb_root  tree;
 793        u64             index;
 794};
 795
 796/**
 797 * struct perf_event_context - event context structure
 798 *
 799 * Used as a container for task events and CPU events as well:
 800 */
 801struct perf_event_context {
 802        struct pmu                      *pmu;
 803        /*
 804         * Protect the states of the events in the list,
 805         * nr_active, and the list:
 806         */
 807        raw_spinlock_t                  lock;
 808        /*
 809         * Protect the list of events.  Locking either mutex or lock
 810         * is sufficient to ensure the list doesn't change; to change
 811         * the list you need to lock both the mutex and the spinlock.
 812         */
 813        struct mutex                    mutex;
 814
 815        struct list_head                active_ctx_list;
 816        struct perf_event_groups        pinned_groups;
 817        struct perf_event_groups        flexible_groups;
 818        struct list_head                event_list;
 819
 820        struct list_head                pinned_active;
 821        struct list_head                flexible_active;
 822
 823        int                             nr_events;
 824        int                             nr_active;
 825        int                             is_active;
 826        int                             nr_stat;
 827        int                             nr_freq;
 828        int                             rotate_disable;
 829        /*
 830         * Set when nr_events != nr_active, except tolerant to events not
 831         * necessary to be active due to scheduling constraints, such as cgroups.
 832         */
 833        int                             rotate_necessary;
 834        refcount_t                      refcount;
 835        struct task_struct              *task;
 836
 837        /*
 838         * Context clock, runs when context enabled.
 839         */
 840        u64                             time;
 841        u64                             timestamp;
 842
 843        /*
 844         * These fields let us detect when two contexts have both
 845         * been cloned (inherited) from a common ancestor.
 846         */
 847        struct perf_event_context       *parent_ctx;
 848        u64                             parent_gen;
 849        u64                             generation;
 850        int                             pin_count;
 851#ifdef CONFIG_CGROUP_PERF
 852        int                             nr_cgroups;      /* cgroup evts */
 853#endif
 854        void                            *task_ctx_data; /* pmu specific data */
 855        struct rcu_head                 rcu_head;
 856};
 857
 858/*
 859 * Number of contexts where an event can trigger:
 860 *      task, softirq, hardirq, nmi.
 861 */
 862#define PERF_NR_CONTEXTS        4
 863
 864/**
 865 * struct perf_event_cpu_context - per cpu event context structure
 866 */
 867struct perf_cpu_context {
 868        struct perf_event_context       ctx;
 869        struct perf_event_context       *task_ctx;
 870        int                             active_oncpu;
 871        int                             exclusive;
 872
 873        raw_spinlock_t                  hrtimer_lock;
 874        struct hrtimer                  hrtimer;
 875        ktime_t                         hrtimer_interval;
 876        unsigned int                    hrtimer_active;
 877
 878#ifdef CONFIG_CGROUP_PERF
 879        struct perf_cgroup              *cgrp;
 880        struct list_head                cgrp_cpuctx_entry;
 881#endif
 882
 883        struct list_head                sched_cb_entry;
 884        int                             sched_cb_usage;
 885
 886        int                             online;
 887        /*
 888         * Per-CPU storage for iterators used in visit_groups_merge. The default
 889         * storage is of size 2 to hold the CPU and any CPU event iterators.
 890         */
 891        int                             heap_size;
 892        struct perf_event               **heap;
 893        struct perf_event               *heap_default[2];
 894};
 895
 896struct perf_output_handle {
 897        struct perf_event               *event;
 898        struct perf_buffer              *rb;
 899        unsigned long                   wakeup;
 900        unsigned long                   size;
 901        u64                             aux_flags;
 902        union {
 903                void                    *addr;
 904                unsigned long           head;
 905        };
 906        int                             page;
 907};
 908
 909struct bpf_perf_event_data_kern {
 910        bpf_user_pt_regs_t *regs;
 911        struct perf_sample_data *data;
 912        struct perf_event *event;
 913};
 914
 915#ifdef CONFIG_CGROUP_PERF
 916
 917/*
 918 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 919 * This is a per-cpu dynamically allocated data structure.
 920 */
 921struct perf_cgroup_info {
 922        u64                             time;
 923        u64                             timestamp;
 924};
 925
 926struct perf_cgroup {
 927        struct cgroup_subsys_state      css;
 928        struct perf_cgroup_info __percpu *info;
 929};
 930
 931/*
 932 * Must ensure cgroup is pinned (css_get) before calling
 933 * this function. In other words, we cannot call this function
 934 * if there is no cgroup event for the current CPU context.
 935 */
 936static inline struct perf_cgroup *
 937perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
 938{
 939        return container_of(task_css_check(task, perf_event_cgrp_id,
 940                                           ctx ? lockdep_is_held(&ctx->lock)
 941                                               : true),
 942                            struct perf_cgroup, css);
 943}
 944#endif /* CONFIG_CGROUP_PERF */
 945
 946#ifdef CONFIG_PERF_EVENTS
 947
 948extern void *perf_aux_output_begin(struct perf_output_handle *handle,
 949                                   struct perf_event *event);
 950extern void perf_aux_output_end(struct perf_output_handle *handle,
 951                                unsigned long size);
 952extern int perf_aux_output_skip(struct perf_output_handle *handle,
 953                                unsigned long size);
 954extern void *perf_get_aux(struct perf_output_handle *handle);
 955extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
 956extern void perf_event_itrace_started(struct perf_event *event);
 957
 958extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
 959extern void perf_pmu_unregister(struct pmu *pmu);
 960
 961extern void __perf_event_task_sched_in(struct task_struct *prev,
 962                                       struct task_struct *task);
 963extern void __perf_event_task_sched_out(struct task_struct *prev,
 964                                        struct task_struct *next);
 965extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
 966extern void perf_event_exit_task(struct task_struct *child);
 967extern void perf_event_free_task(struct task_struct *task);
 968extern void perf_event_delayed_put(struct task_struct *task);
 969extern struct file *perf_event_get(unsigned int fd);
 970extern const struct perf_event *perf_get_event(struct file *file);
 971extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
 972extern void perf_event_print_debug(void);
 973extern void perf_pmu_disable(struct pmu *pmu);
 974extern void perf_pmu_enable(struct pmu *pmu);
 975extern void perf_sched_cb_dec(struct pmu *pmu);
 976extern void perf_sched_cb_inc(struct pmu *pmu);
 977extern int perf_event_task_disable(void);
 978extern int perf_event_task_enable(void);
 979
 980extern void perf_pmu_resched(struct pmu *pmu);
 981
 982extern int perf_event_refresh(struct perf_event *event, int refresh);
 983extern void perf_event_update_userpage(struct perf_event *event);
 984extern int perf_event_release_kernel(struct perf_event *event);
 985extern struct perf_event *
 986perf_event_create_kernel_counter(struct perf_event_attr *attr,
 987                                int cpu,
 988                                struct task_struct *task,
 989                                perf_overflow_handler_t callback,
 990                                void *context);
 991extern void perf_pmu_migrate_context(struct pmu *pmu,
 992                                int src_cpu, int dst_cpu);
 993int perf_event_read_local(struct perf_event *event, u64 *value,
 994                          u64 *enabled, u64 *running);
 995extern u64 perf_event_read_value(struct perf_event *event,
 996                                 u64 *enabled, u64 *running);
 997
 998
 999struct perf_sample_data {
1000        /*
1001         * Fields set by perf_sample_data_init(), group so as to
1002         * minimize the cachelines touched.
1003         */
1004        u64                             addr;
1005        struct perf_raw_record          *raw;
1006        struct perf_branch_stack        *br_stack;
1007        u64                             period;
1008        union perf_sample_weight        weight;
1009        u64                             txn;
1010        union  perf_mem_data_src        data_src;
1011
1012        /*
1013         * The other fields, optionally {set,used} by
1014         * perf_{prepare,output}_sample().
1015         */
1016        u64                             type;
1017        u64                             ip;
1018        struct {
1019                u32     pid;
1020                u32     tid;
1021        }                               tid_entry;
1022        u64                             time;
1023        u64                             id;
1024        u64                             stream_id;
1025        struct {
1026                u32     cpu;
1027                u32     reserved;
1028        }                               cpu_entry;
1029        struct perf_callchain_entry     *callchain;
1030        u64                             aux_size;
1031
1032        struct perf_regs                regs_user;
1033        struct perf_regs                regs_intr;
1034        u64                             stack_user_size;
1035
1036        u64                             phys_addr;
1037        u64                             cgroup;
1038        u64                             data_page_size;
1039        u64                             code_page_size;
1040} ____cacheline_aligned;
1041
1042/* default value for data source */
1043#define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
1044                    PERF_MEM_S(LVL, NA)   |\
1045                    PERF_MEM_S(SNOOP, NA) |\
1046                    PERF_MEM_S(LOCK, NA)  |\
1047                    PERF_MEM_S(TLB, NA))
1048
1049static inline void perf_sample_data_init(struct perf_sample_data *data,
1050                                         u64 addr, u64 period)
1051{
1052        /* remaining struct members initialized in perf_prepare_sample() */
1053        data->addr = addr;
1054        data->raw  = NULL;
1055        data->br_stack = NULL;
1056        data->period = period;
1057        data->weight.full = 0;
1058        data->data_src.val = PERF_MEM_NA;
1059        data->txn = 0;
1060}
1061
1062extern void perf_output_sample(struct perf_output_handle *handle,
1063                               struct perf_event_header *header,
1064                               struct perf_sample_data *data,
1065                               struct perf_event *event);
1066extern void perf_prepare_sample(struct perf_event_header *header,
1067                                struct perf_sample_data *data,
1068                                struct perf_event *event,
1069                                struct pt_regs *regs);
1070
1071extern int perf_event_overflow(struct perf_event *event,
1072                                 struct perf_sample_data *data,
1073                                 struct pt_regs *regs);
1074
1075extern void perf_event_output_forward(struct perf_event *event,
1076                                     struct perf_sample_data *data,
1077                                     struct pt_regs *regs);
1078extern void perf_event_output_backward(struct perf_event *event,
1079                                       struct perf_sample_data *data,
1080                                       struct pt_regs *regs);
1081extern int perf_event_output(struct perf_event *event,
1082                             struct perf_sample_data *data,
1083                             struct pt_regs *regs);
1084
1085static inline bool
1086is_default_overflow_handler(struct perf_event *event)
1087{
1088        if (likely(event->overflow_handler == perf_event_output_forward))
1089                return true;
1090        if (unlikely(event->overflow_handler == perf_event_output_backward))
1091                return true;
1092        return false;
1093}
1094
1095extern void
1096perf_event_header__init_id(struct perf_event_header *header,
1097                           struct perf_sample_data *data,
1098                           struct perf_event *event);
1099extern void
1100perf_event__output_id_sample(struct perf_event *event,
1101                             struct perf_output_handle *handle,
1102                             struct perf_sample_data *sample);
1103
1104extern void
1105perf_log_lost_samples(struct perf_event *event, u64 lost);
1106
1107static inline bool event_has_any_exclude_flag(struct perf_event *event)
1108{
1109        struct perf_event_attr *attr = &event->attr;
1110
1111        return attr->exclude_idle || attr->exclude_user ||
1112               attr->exclude_kernel || attr->exclude_hv ||
1113               attr->exclude_guest || attr->exclude_host;
1114}
1115
1116static inline bool is_sampling_event(struct perf_event *event)
1117{
1118        return event->attr.sample_period != 0;
1119}
1120
1121/*
1122 * Return 1 for a software event, 0 for a hardware event
1123 */
1124static inline int is_software_event(struct perf_event *event)
1125{
1126        return event->event_caps & PERF_EV_CAP_SOFTWARE;
1127}
1128
1129/*
1130 * Return 1 for event in sw context, 0 for event in hw context
1131 */
1132static inline int in_software_context(struct perf_event *event)
1133{
1134        return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1135}
1136
1137static inline int is_exclusive_pmu(struct pmu *pmu)
1138{
1139        return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1140}
1141
1142extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1143
1144extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1145extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1146
1147#ifndef perf_arch_fetch_caller_regs
1148static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1149#endif
1150
1151/*
1152 * When generating a perf sample in-line, instead of from an interrupt /
1153 * exception, we lack a pt_regs. This is typically used from software events
1154 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1155 *
1156 * We typically don't need a full set, but (for x86) do require:
1157 * - ip for PERF_SAMPLE_IP
1158 * - cs for user_mode() tests
1159 * - sp for PERF_SAMPLE_CALLCHAIN
1160 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1161 *
1162 * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1163 * things like PERF_SAMPLE_REGS_INTR.
1164 */
1165static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1166{
1167        perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1168}
1169
1170static __always_inline void
1171perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1172{
1173        if (static_key_false(&perf_swevent_enabled[event_id]))
1174                __perf_sw_event(event_id, nr, regs, addr);
1175}
1176
1177DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1178
1179/*
1180 * 'Special' version for the scheduler, it hard assumes no recursion,
1181 * which is guaranteed by us not actually scheduling inside other swevents
1182 * because those disable preemption.
1183 */
1184static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1185{
1186        struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1187
1188        perf_fetch_caller_regs(regs);
1189        ___perf_sw_event(event_id, nr, regs, addr);
1190}
1191
1192extern struct static_key_false perf_sched_events;
1193
1194static __always_inline bool __perf_sw_enabled(int swevt)
1195{
1196        return static_key_false(&perf_swevent_enabled[swevt]);
1197}
1198
1199static inline void perf_event_task_migrate(struct task_struct *task)
1200{
1201        if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
1202                task->sched_migrated = 1;
1203}
1204
1205static inline void perf_event_task_sched_in(struct task_struct *prev,
1206                                            struct task_struct *task)
1207{
1208        if (static_branch_unlikely(&perf_sched_events))
1209                __perf_event_task_sched_in(prev, task);
1210
1211        if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
1212            task->sched_migrated) {
1213                __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1214                task->sched_migrated = 0;
1215        }
1216}
1217
1218static inline void perf_event_task_sched_out(struct task_struct *prev,
1219                                             struct task_struct *next)
1220{
1221        if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
1222                __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1223
1224#ifdef CONFIG_CGROUP_PERF
1225        if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
1226            perf_cgroup_from_task(prev, NULL) !=
1227            perf_cgroup_from_task(next, NULL))
1228                __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
1229#endif
1230
1231        if (static_branch_unlikely(&perf_sched_events))
1232                __perf_event_task_sched_out(prev, next);
1233}
1234
1235extern void perf_event_mmap(struct vm_area_struct *vma);
1236
1237extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1238                               bool unregister, const char *sym);
1239extern void perf_event_bpf_event(struct bpf_prog *prog,
1240                                 enum perf_bpf_event_type type,
1241                                 u16 flags);
1242
1243extern struct perf_guest_info_callbacks *perf_guest_cbs;
1244extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1245extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1246
1247extern void perf_event_exec(void);
1248extern void perf_event_comm(struct task_struct *tsk, bool exec);
1249extern void perf_event_namespaces(struct task_struct *tsk);
1250extern void perf_event_fork(struct task_struct *tsk);
1251extern void perf_event_text_poke(const void *addr,
1252                                 const void *old_bytes, size_t old_len,
1253                                 const void *new_bytes, size_t new_len);
1254
1255/* Callchains */
1256DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1257
1258extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1259extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1260extern struct perf_callchain_entry *
1261get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1262                   u32 max_stack, bool crosstask, bool add_mark);
1263extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1264extern int get_callchain_buffers(int max_stack);
1265extern void put_callchain_buffers(void);
1266extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1267extern void put_callchain_entry(int rctx);
1268
1269extern int sysctl_perf_event_max_stack;
1270extern int sysctl_perf_event_max_contexts_per_stack;
1271
1272static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1273{
1274        if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1275                struct perf_callchain_entry *entry = ctx->entry;
1276                entry->ip[entry->nr++] = ip;
1277                ++ctx->contexts;
1278                return 0;
1279        } else {
1280                ctx->contexts_maxed = true;
1281                return -1; /* no more room, stop walking the stack */
1282        }
1283}
1284
1285static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1286{
1287        if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1288                struct perf_callchain_entry *entry = ctx->entry;
1289                entry->ip[entry->nr++] = ip;
1290                ++ctx->nr;
1291                return 0;
1292        } else {
1293                return -1; /* no more room, stop walking the stack */
1294        }
1295}
1296
1297extern int sysctl_perf_event_paranoid;
1298extern int sysctl_perf_event_mlock;
1299extern int sysctl_perf_event_sample_rate;
1300extern int sysctl_perf_cpu_time_max_percent;
1301
1302extern void perf_sample_event_took(u64 sample_len_ns);
1303
1304int perf_proc_update_handler(struct ctl_table *table, int write,
1305                void *buffer, size_t *lenp, loff_t *ppos);
1306int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1307                void *buffer, size_t *lenp, loff_t *ppos);
1308int perf_event_max_stack_handler(struct ctl_table *table, int write,
1309                void *buffer, size_t *lenp, loff_t *ppos);
1310
1311/* Access to perf_event_open(2) syscall. */
1312#define PERF_SECURITY_OPEN              0
1313
1314/* Finer grained perf_event_open(2) access control. */
1315#define PERF_SECURITY_CPU               1
1316#define PERF_SECURITY_KERNEL            2
1317#define PERF_SECURITY_TRACEPOINT        3
1318
1319static inline int perf_is_paranoid(void)
1320{
1321        return sysctl_perf_event_paranoid > -1;
1322}
1323
1324static inline int perf_allow_kernel(struct perf_event_attr *attr)
1325{
1326        if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1327                return -EACCES;
1328
1329        return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1330}
1331
1332static inline int perf_allow_cpu(struct perf_event_attr *attr)
1333{
1334        if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1335                return -EACCES;
1336
1337        return security_perf_event_open(attr, PERF_SECURITY_CPU);
1338}
1339
1340static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1341{
1342        if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1343                return -EPERM;
1344
1345        return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1346}
1347
1348extern void perf_event_init(void);
1349extern void perf_tp_event(u16 event_type, u64 count, void *record,
1350                          int entry_size, struct pt_regs *regs,
1351                          struct hlist_head *head, int rctx,
1352                          struct task_struct *task);
1353extern void perf_bp_event(struct perf_event *event, void *data);
1354
1355#ifndef perf_misc_flags
1356# define perf_misc_flags(regs) \
1357                (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1358# define perf_instruction_pointer(regs) instruction_pointer(regs)
1359#endif
1360#ifndef perf_arch_bpf_user_pt_regs
1361# define perf_arch_bpf_user_pt_regs(regs) regs
1362#endif
1363
1364static inline bool has_branch_stack(struct perf_event *event)
1365{
1366        return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1367}
1368
1369static inline bool needs_branch_stack(struct perf_event *event)
1370{
1371        return event->attr.branch_sample_type != 0;
1372}
1373
1374static inline bool has_aux(struct perf_event *event)
1375{
1376        return event->pmu->setup_aux;
1377}
1378
1379static inline bool is_write_backward(struct perf_event *event)
1380{
1381        return !!event->attr.write_backward;
1382}
1383
1384static inline bool has_addr_filter(struct perf_event *event)
1385{
1386        return event->pmu->nr_addr_filters;
1387}
1388
1389/*
1390 * An inherited event uses parent's filters
1391 */
1392static inline struct perf_addr_filters_head *
1393perf_event_addr_filters(struct perf_event *event)
1394{
1395        struct perf_addr_filters_head *ifh = &event->addr_filters;
1396
1397        if (event->parent)
1398                ifh = &event->parent->addr_filters;
1399
1400        return ifh;
1401}
1402
1403extern void perf_event_addr_filters_sync(struct perf_event *event);
1404extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id);
1405
1406extern int perf_output_begin(struct perf_output_handle *handle,
1407                             struct perf_sample_data *data,
1408                             struct perf_event *event, unsigned int size);
1409extern int perf_output_begin_forward(struct perf_output_handle *handle,
1410                                     struct perf_sample_data *data,
1411                                     struct perf_event *event,
1412                                     unsigned int size);
1413extern int perf_output_begin_backward(struct perf_output_handle *handle,
1414                                      struct perf_sample_data *data,
1415                                      struct perf_event *event,
1416                                      unsigned int size);
1417
1418extern void perf_output_end(struct perf_output_handle *handle);
1419extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1420                             const void *buf, unsigned int len);
1421extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1422                                     unsigned int len);
1423extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1424                                 struct perf_output_handle *handle,
1425                                 unsigned long from, unsigned long to);
1426extern int perf_swevent_get_recursion_context(void);
1427extern void perf_swevent_put_recursion_context(int rctx);
1428extern u64 perf_swevent_set_period(struct perf_event *event);
1429extern void perf_event_enable(struct perf_event *event);
1430extern void perf_event_disable(struct perf_event *event);
1431extern void perf_event_disable_local(struct perf_event *event);
1432extern void perf_event_disable_inatomic(struct perf_event *event);
1433extern void perf_event_task_tick(void);
1434extern int perf_event_account_interrupt(struct perf_event *event);
1435extern int perf_event_period(struct perf_event *event, u64 value);
1436extern u64 perf_event_pause(struct perf_event *event, bool reset);
1437#else /* !CONFIG_PERF_EVENTS: */
1438static inline void *
1439perf_aux_output_begin(struct perf_output_handle *handle,
1440                      struct perf_event *event)                         { return NULL; }
1441static inline void
1442perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1443                                                                        { }
1444static inline int
1445perf_aux_output_skip(struct perf_output_handle *handle,
1446                     unsigned long size)                                { return -EINVAL; }
1447static inline void *
1448perf_get_aux(struct perf_output_handle *handle)                         { return NULL; }
1449static inline void
1450perf_event_task_migrate(struct task_struct *task)                       { }
1451static inline void
1452perf_event_task_sched_in(struct task_struct *prev,
1453                         struct task_struct *task)                      { }
1454static inline void
1455perf_event_task_sched_out(struct task_struct *prev,
1456                          struct task_struct *next)                     { }
1457static inline int perf_event_init_task(struct task_struct *child,
1458                                       u64 clone_flags)                 { return 0; }
1459static inline void perf_event_exit_task(struct task_struct *child)      { }
1460static inline void perf_event_free_task(struct task_struct *task)       { }
1461static inline void perf_event_delayed_put(struct task_struct *task)     { }
1462static inline struct file *perf_event_get(unsigned int fd)      { return ERR_PTR(-EINVAL); }
1463static inline const struct perf_event *perf_get_event(struct file *file)
1464{
1465        return ERR_PTR(-EINVAL);
1466}
1467static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1468{
1469        return ERR_PTR(-EINVAL);
1470}
1471static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1472                                        u64 *enabled, u64 *running)
1473{
1474        return -EINVAL;
1475}
1476static inline void perf_event_print_debug(void)                         { }
1477static inline int perf_event_task_disable(void)                         { return -EINVAL; }
1478static inline int perf_event_task_enable(void)                          { return -EINVAL; }
1479static inline int perf_event_refresh(struct perf_event *event, int refresh)
1480{
1481        return -EINVAL;
1482}
1483
1484static inline void
1485perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)     { }
1486static inline void
1487perf_bp_event(struct perf_event *event, void *data)                     { }
1488
1489static inline int perf_register_guest_info_callbacks
1490(struct perf_guest_info_callbacks *callbacks)                           { return 0; }
1491static inline int perf_unregister_guest_info_callbacks
1492(struct perf_guest_info_callbacks *callbacks)                           { return 0; }
1493
1494static inline void perf_event_mmap(struct vm_area_struct *vma)          { }
1495
1496typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1497static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1498                                      bool unregister, const char *sym) { }
1499static inline void perf_event_bpf_event(struct bpf_prog *prog,
1500                                        enum perf_bpf_event_type type,
1501                                        u16 flags)                      { }
1502static inline void perf_event_exec(void)                                { }
1503static inline void perf_event_comm(struct task_struct *tsk, bool exec)  { }
1504static inline void perf_event_namespaces(struct task_struct *tsk)       { }
1505static inline void perf_event_fork(struct task_struct *tsk)             { }
1506static inline void perf_event_text_poke(const void *addr,
1507                                        const void *old_bytes,
1508                                        size_t old_len,
1509                                        const void *new_bytes,
1510                                        size_t new_len)                 { }
1511static inline void perf_event_init(void)                                { }
1512static inline int  perf_swevent_get_recursion_context(void)             { return -1; }
1513static inline void perf_swevent_put_recursion_context(int rctx)         { }
1514static inline u64 perf_swevent_set_period(struct perf_event *event)     { return 0; }
1515static inline void perf_event_enable(struct perf_event *event)          { }
1516static inline void perf_event_disable(struct perf_event *event)         { }
1517static inline int __perf_event_disable(void *info)                      { return -1; }
1518static inline void perf_event_task_tick(void)                           { }
1519static inline int perf_event_release_kernel(struct perf_event *event)   { return 0; }
1520static inline int perf_event_period(struct perf_event *event, u64 value)
1521{
1522        return -EINVAL;
1523}
1524static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1525{
1526        return 0;
1527}
1528#endif
1529
1530#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1531extern void perf_restore_debug_store(void);
1532#else
1533static inline void perf_restore_debug_store(void)                       { }
1534#endif
1535
1536static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1537{
1538        return frag->pad < sizeof(u64);
1539}
1540
1541#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1542
1543struct perf_pmu_events_attr {
1544        struct device_attribute attr;
1545        u64 id;
1546        const char *event_str;
1547};
1548
1549struct perf_pmu_events_ht_attr {
1550        struct device_attribute                 attr;
1551        u64                                     id;
1552        const char                              *event_str_ht;
1553        const char                              *event_str_noht;
1554};
1555
1556struct perf_pmu_events_hybrid_attr {
1557        struct device_attribute                 attr;
1558        u64                                     id;
1559        const char                              *event_str;
1560        u64                                     pmu_type;
1561};
1562
1563struct perf_pmu_format_hybrid_attr {
1564        struct device_attribute                 attr;
1565        u64                                     pmu_type;
1566};
1567
1568ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1569                              char *page);
1570
1571#define PMU_EVENT_ATTR(_name, _var, _id, _show)                         \
1572static struct perf_pmu_events_attr _var = {                             \
1573        .attr = __ATTR(_name, 0444, _show, NULL),                       \
1574        .id   =  _id,                                                   \
1575};
1576
1577#define PMU_EVENT_ATTR_STRING(_name, _var, _str)                            \
1578static struct perf_pmu_events_attr _var = {                                 \
1579        .attr           = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1580        .id             = 0,                                                \
1581        .event_str      = _str,                                             \
1582};
1583
1584#define PMU_EVENT_ATTR_ID(_name, _show, _id)                            \
1585        (&((struct perf_pmu_events_attr[]) {                            \
1586                { .attr = __ATTR(_name, 0444, _show, NULL),             \
1587                  .id = _id, }                                          \
1588        })[0].attr.attr)
1589
1590#define PMU_FORMAT_ATTR(_name, _format)                                 \
1591static ssize_t                                                          \
1592_name##_show(struct device *dev,                                        \
1593                               struct device_attribute *attr,           \
1594                               char *page)                              \
1595{                                                                       \
1596        BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);                     \
1597        return sprintf(page, _format "\n");                             \
1598}                                                                       \
1599                                                                        \
1600static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1601
1602/* Performance counter hotplug functions */
1603#ifdef CONFIG_PERF_EVENTS
1604int perf_event_init_cpu(unsigned int cpu);
1605int perf_event_exit_cpu(unsigned int cpu);
1606#else
1607#define perf_event_init_cpu     NULL
1608#define perf_event_exit_cpu     NULL
1609#endif
1610
1611extern void __weak arch_perf_update_userpage(struct perf_event *event,
1612                                             struct perf_event_mmap_page *userpg,
1613                                             u64 now);
1614
1615#ifdef CONFIG_MMU
1616extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr);
1617#endif
1618
1619/*
1620 * Snapshot branch stack on software events.
1621 *
1622 * Branch stack can be very useful in understanding software events. For
1623 * example, when a long function, e.g. sys_perf_event_open, returns an
1624 * errno, it is not obvious why the function failed. Branch stack could
1625 * provide very helpful information in this type of scenarios.
1626 *
1627 * On software event, it is necessary to stop the hardware branch recorder
1628 * fast. Otherwise, the hardware register/buffer will be flushed with
1629 * entries of the triggering event. Therefore, static call is used to
1630 * stop the hardware recorder.
1631 */
1632
1633/*
1634 * cnt is the number of entries allocated for entries.
1635 * Return number of entries copied to .
1636 */
1637typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries,
1638                                           unsigned int cnt);
1639DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
1640
1641#endif /* _LINUX_PERF_EVENT_H */
1642