linux/include/linux/preempt.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef __LINUX_PREEMPT_H
   3#define __LINUX_PREEMPT_H
   4
   5/*
   6 * include/linux/preempt.h - macros for accessing and manipulating
   7 * preempt_count (used for kernel preemption, interrupt count, etc.)
   8 */
   9
  10#include <linux/linkage.h>
  11#include <linux/list.h>
  12
  13/*
  14 * We put the hardirq and softirq counter into the preemption
  15 * counter. The bitmask has the following meaning:
  16 *
  17 * - bits 0-7 are the preemption count (max preemption depth: 256)
  18 * - bits 8-15 are the softirq count (max # of softirqs: 256)
  19 *
  20 * The hardirq count could in theory be the same as the number of
  21 * interrupts in the system, but we run all interrupt handlers with
  22 * interrupts disabled, so we cannot have nesting interrupts. Though
  23 * there are a few palaeontologic drivers which reenable interrupts in
  24 * the handler, so we need more than one bit here.
  25 *
  26 *         PREEMPT_MASK:        0x000000ff
  27 *         SOFTIRQ_MASK:        0x0000ff00
  28 *         HARDIRQ_MASK:        0x000f0000
  29 *             NMI_MASK:        0x00f00000
  30 * PREEMPT_NEED_RESCHED:        0x80000000
  31 */
  32#define PREEMPT_BITS    8
  33#define SOFTIRQ_BITS    8
  34#define HARDIRQ_BITS    4
  35#define NMI_BITS        4
  36
  37#define PREEMPT_SHIFT   0
  38#define SOFTIRQ_SHIFT   (PREEMPT_SHIFT + PREEMPT_BITS)
  39#define HARDIRQ_SHIFT   (SOFTIRQ_SHIFT + SOFTIRQ_BITS)
  40#define NMI_SHIFT       (HARDIRQ_SHIFT + HARDIRQ_BITS)
  41
  42#define __IRQ_MASK(x)   ((1UL << (x))-1)
  43
  44#define PREEMPT_MASK    (__IRQ_MASK(PREEMPT_BITS) << PREEMPT_SHIFT)
  45#define SOFTIRQ_MASK    (__IRQ_MASK(SOFTIRQ_BITS) << SOFTIRQ_SHIFT)
  46#define HARDIRQ_MASK    (__IRQ_MASK(HARDIRQ_BITS) << HARDIRQ_SHIFT)
  47#define NMI_MASK        (__IRQ_MASK(NMI_BITS)     << NMI_SHIFT)
  48
  49#define PREEMPT_OFFSET  (1UL << PREEMPT_SHIFT)
  50#define SOFTIRQ_OFFSET  (1UL << SOFTIRQ_SHIFT)
  51#define HARDIRQ_OFFSET  (1UL << HARDIRQ_SHIFT)
  52#define NMI_OFFSET      (1UL << NMI_SHIFT)
  53
  54#define SOFTIRQ_DISABLE_OFFSET  (2 * SOFTIRQ_OFFSET)
  55
  56#define PREEMPT_DISABLED        (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
  57
  58/*
  59 * Disable preemption until the scheduler is running -- use an unconditional
  60 * value so that it also works on !PREEMPT_COUNT kernels.
  61 *
  62 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
  63 */
  64#define INIT_PREEMPT_COUNT      PREEMPT_OFFSET
  65
  66/*
  67 * Initial preempt_count value; reflects the preempt_count schedule invariant
  68 * which states that during context switches:
  69 *
  70 *    preempt_count() == 2*PREEMPT_DISABLE_OFFSET
  71 *
  72 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
  73 * Note: See finish_task_switch().
  74 */
  75#define FORK_PREEMPT_COUNT      (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
  76
  77/* preempt_count() and related functions, depends on PREEMPT_NEED_RESCHED */
  78#include <asm/preempt.h>
  79
  80/**
  81 * interrupt_context_level - return interrupt context level
  82 *
  83 * Returns the current interrupt context level.
  84 *  0 - normal context
  85 *  1 - softirq context
  86 *  2 - hardirq context
  87 *  3 - NMI context
  88 */
  89static __always_inline unsigned char interrupt_context_level(void)
  90{
  91        unsigned long pc = preempt_count();
  92        unsigned char level = 0;
  93
  94        level += !!(pc & (NMI_MASK));
  95        level += !!(pc & (NMI_MASK | HARDIRQ_MASK));
  96        level += !!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET));
  97
  98        return level;
  99}
 100
 101#define nmi_count()     (preempt_count() & NMI_MASK)
 102#define hardirq_count() (preempt_count() & HARDIRQ_MASK)
 103#ifdef CONFIG_PREEMPT_RT
 104# define softirq_count()        (current->softirq_disable_cnt & SOFTIRQ_MASK)
 105#else
 106# define softirq_count()        (preempt_count() & SOFTIRQ_MASK)
 107#endif
 108#define irq_count()     (nmi_count() | hardirq_count() | softirq_count())
 109
 110/*
 111 * Macros to retrieve the current execution context:
 112 *
 113 * in_nmi()             - We're in NMI context
 114 * in_hardirq()         - We're in hard IRQ context
 115 * in_serving_softirq() - We're in softirq context
 116 * in_task()            - We're in task context
 117 */
 118#define in_nmi()                (nmi_count())
 119#define in_hardirq()            (hardirq_count())
 120#define in_serving_softirq()    (softirq_count() & SOFTIRQ_OFFSET)
 121#define in_task()               (!(in_nmi() | in_hardirq() | in_serving_softirq()))
 122
 123/*
 124 * The following macros are deprecated and should not be used in new code:
 125 * in_irq()       - Obsolete version of in_hardirq()
 126 * in_softirq()   - We have BH disabled, or are processing softirqs
 127 * in_interrupt() - We're in NMI,IRQ,SoftIRQ context or have BH disabled
 128 */
 129#define in_irq()                (hardirq_count())
 130#define in_softirq()            (softirq_count())
 131#define in_interrupt()          (irq_count())
 132
 133/*
 134 * The preempt_count offset after preempt_disable();
 135 */
 136#if defined(CONFIG_PREEMPT_COUNT)
 137# define PREEMPT_DISABLE_OFFSET PREEMPT_OFFSET
 138#else
 139# define PREEMPT_DISABLE_OFFSET 0
 140#endif
 141
 142/*
 143 * The preempt_count offset after spin_lock()
 144 */
 145#if !defined(CONFIG_PREEMPT_RT)
 146#define PREEMPT_LOCK_OFFSET             PREEMPT_DISABLE_OFFSET
 147#else
 148/* Locks on RT do not disable preemption */
 149#define PREEMPT_LOCK_OFFSET             0
 150#endif
 151
 152/*
 153 * The preempt_count offset needed for things like:
 154 *
 155 *  spin_lock_bh()
 156 *
 157 * Which need to disable both preemption (CONFIG_PREEMPT_COUNT) and
 158 * softirqs, such that unlock sequences of:
 159 *
 160 *  spin_unlock();
 161 *  local_bh_enable();
 162 *
 163 * Work as expected.
 164 */
 165#define SOFTIRQ_LOCK_OFFSET (SOFTIRQ_DISABLE_OFFSET + PREEMPT_LOCK_OFFSET)
 166
 167/*
 168 * Are we running in atomic context?  WARNING: this macro cannot
 169 * always detect atomic context; in particular, it cannot know about
 170 * held spinlocks in non-preemptible kernels.  Thus it should not be
 171 * used in the general case to determine whether sleeping is possible.
 172 * Do not use in_atomic() in driver code.
 173 */
 174#define in_atomic()     (preempt_count() != 0)
 175
 176/*
 177 * Check whether we were atomic before we did preempt_disable():
 178 * (used by the scheduler)
 179 */
 180#define in_atomic_preempt_off() (preempt_count() != PREEMPT_DISABLE_OFFSET)
 181
 182#if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
 183extern void preempt_count_add(int val);
 184extern void preempt_count_sub(int val);
 185#define preempt_count_dec_and_test() \
 186        ({ preempt_count_sub(1); should_resched(0); })
 187#else
 188#define preempt_count_add(val)  __preempt_count_add(val)
 189#define preempt_count_sub(val)  __preempt_count_sub(val)
 190#define preempt_count_dec_and_test() __preempt_count_dec_and_test()
 191#endif
 192
 193#define __preempt_count_inc() __preempt_count_add(1)
 194#define __preempt_count_dec() __preempt_count_sub(1)
 195
 196#define preempt_count_inc() preempt_count_add(1)
 197#define preempt_count_dec() preempt_count_sub(1)
 198
 199#ifdef CONFIG_PREEMPT_COUNT
 200
 201#define preempt_disable() \
 202do { \
 203        preempt_count_inc(); \
 204        barrier(); \
 205} while (0)
 206
 207#define sched_preempt_enable_no_resched() \
 208do { \
 209        barrier(); \
 210        preempt_count_dec(); \
 211} while (0)
 212
 213#define preempt_enable_no_resched() sched_preempt_enable_no_resched()
 214
 215#define preemptible()   (preempt_count() == 0 && !irqs_disabled())
 216
 217#ifdef CONFIG_PREEMPTION
 218#define preempt_enable() \
 219do { \
 220        barrier(); \
 221        if (unlikely(preempt_count_dec_and_test())) \
 222                __preempt_schedule(); \
 223} while (0)
 224
 225#define preempt_enable_notrace() \
 226do { \
 227        barrier(); \
 228        if (unlikely(__preempt_count_dec_and_test())) \
 229                __preempt_schedule_notrace(); \
 230} while (0)
 231
 232#define preempt_check_resched() \
 233do { \
 234        if (should_resched(0)) \
 235                __preempt_schedule(); \
 236} while (0)
 237
 238#else /* !CONFIG_PREEMPTION */
 239#define preempt_enable() \
 240do { \
 241        barrier(); \
 242        preempt_count_dec(); \
 243} while (0)
 244
 245#define preempt_enable_notrace() \
 246do { \
 247        barrier(); \
 248        __preempt_count_dec(); \
 249} while (0)
 250
 251#define preempt_check_resched() do { } while (0)
 252#endif /* CONFIG_PREEMPTION */
 253
 254#define preempt_disable_notrace() \
 255do { \
 256        __preempt_count_inc(); \
 257        barrier(); \
 258} while (0)
 259
 260#define preempt_enable_no_resched_notrace() \
 261do { \
 262        barrier(); \
 263        __preempt_count_dec(); \
 264} while (0)
 265
 266#else /* !CONFIG_PREEMPT_COUNT */
 267
 268/*
 269 * Even if we don't have any preemption, we need preempt disable/enable
 270 * to be barriers, so that we don't have things like get_user/put_user
 271 * that can cause faults and scheduling migrate into our preempt-protected
 272 * region.
 273 */
 274#define preempt_disable()                       barrier()
 275#define sched_preempt_enable_no_resched()       barrier()
 276#define preempt_enable_no_resched()             barrier()
 277#define preempt_enable()                        barrier()
 278#define preempt_check_resched()                 do { } while (0)
 279
 280#define preempt_disable_notrace()               barrier()
 281#define preempt_enable_no_resched_notrace()     barrier()
 282#define preempt_enable_notrace()                barrier()
 283#define preemptible()                           0
 284
 285#endif /* CONFIG_PREEMPT_COUNT */
 286
 287#ifdef MODULE
 288/*
 289 * Modules have no business playing preemption tricks.
 290 */
 291#undef sched_preempt_enable_no_resched
 292#undef preempt_enable_no_resched
 293#undef preempt_enable_no_resched_notrace
 294#undef preempt_check_resched
 295#endif
 296
 297#define preempt_set_need_resched() \
 298do { \
 299        set_preempt_need_resched(); \
 300} while (0)
 301#define preempt_fold_need_resched() \
 302do { \
 303        if (tif_need_resched()) \
 304                set_preempt_need_resched(); \
 305} while (0)
 306
 307#ifdef CONFIG_PREEMPT_NOTIFIERS
 308
 309struct preempt_notifier;
 310
 311/**
 312 * preempt_ops - notifiers called when a task is preempted and rescheduled
 313 * @sched_in: we're about to be rescheduled:
 314 *    notifier: struct preempt_notifier for the task being scheduled
 315 *    cpu:  cpu we're scheduled on
 316 * @sched_out: we've just been preempted
 317 *    notifier: struct preempt_notifier for the task being preempted
 318 *    next: the task that's kicking us out
 319 *
 320 * Please note that sched_in and out are called under different
 321 * contexts.  sched_out is called with rq lock held and irq disabled
 322 * while sched_in is called without rq lock and irq enabled.  This
 323 * difference is intentional and depended upon by its users.
 324 */
 325struct preempt_ops {
 326        void (*sched_in)(struct preempt_notifier *notifier, int cpu);
 327        void (*sched_out)(struct preempt_notifier *notifier,
 328                          struct task_struct *next);
 329};
 330
 331/**
 332 * preempt_notifier - key for installing preemption notifiers
 333 * @link: internal use
 334 * @ops: defines the notifier functions to be called
 335 *
 336 * Usually used in conjunction with container_of().
 337 */
 338struct preempt_notifier {
 339        struct hlist_node link;
 340        struct preempt_ops *ops;
 341};
 342
 343void preempt_notifier_inc(void);
 344void preempt_notifier_dec(void);
 345void preempt_notifier_register(struct preempt_notifier *notifier);
 346void preempt_notifier_unregister(struct preempt_notifier *notifier);
 347
 348static inline void preempt_notifier_init(struct preempt_notifier *notifier,
 349                                     struct preempt_ops *ops)
 350{
 351        INIT_HLIST_NODE(&notifier->link);
 352        notifier->ops = ops;
 353}
 354
 355#endif
 356
 357#ifdef CONFIG_SMP
 358
 359/*
 360 * Migrate-Disable and why it is undesired.
 361 *
 362 * When a preempted task becomes elegible to run under the ideal model (IOW it
 363 * becomes one of the M highest priority tasks), it might still have to wait
 364 * for the preemptee's migrate_disable() section to complete. Thereby suffering
 365 * a reduction in bandwidth in the exact duration of the migrate_disable()
 366 * section.
 367 *
 368 * Per this argument, the change from preempt_disable() to migrate_disable()
 369 * gets us:
 370 *
 371 * - a higher priority tasks gains reduced wake-up latency; with preempt_disable()
 372 *   it would have had to wait for the lower priority task.
 373 *
 374 * - a lower priority tasks; which under preempt_disable() could've instantly
 375 *   migrated away when another CPU becomes available, is now constrained
 376 *   by the ability to push the higher priority task away, which might itself be
 377 *   in a migrate_disable() section, reducing it's available bandwidth.
 378 *
 379 * IOW it trades latency / moves the interference term, but it stays in the
 380 * system, and as long as it remains unbounded, the system is not fully
 381 * deterministic.
 382 *
 383 *
 384 * The reason we have it anyway.
 385 *
 386 * PREEMPT_RT breaks a number of assumptions traditionally held. By forcing a
 387 * number of primitives into becoming preemptible, they would also allow
 388 * migration. This turns out to break a bunch of per-cpu usage. To this end,
 389 * all these primitives employ migirate_disable() to restore this implicit
 390 * assumption.
 391 *
 392 * This is a 'temporary' work-around at best. The correct solution is getting
 393 * rid of the above assumptions and reworking the code to employ explicit
 394 * per-cpu locking or short preempt-disable regions.
 395 *
 396 * The end goal must be to get rid of migrate_disable(), alternatively we need
 397 * a schedulability theory that does not depend on abritrary migration.
 398 *
 399 *
 400 * Notes on the implementation.
 401 *
 402 * The implementation is particularly tricky since existing code patterns
 403 * dictate neither migrate_disable() nor migrate_enable() is allowed to block.
 404 * This means that it cannot use cpus_read_lock() to serialize against hotplug,
 405 * nor can it easily migrate itself into a pending affinity mask change on
 406 * migrate_enable().
 407 *
 408 *
 409 * Note: even non-work-conserving schedulers like semi-partitioned depends on
 410 *       migration, so migrate_disable() is not only a problem for
 411 *       work-conserving schedulers.
 412 *
 413 */
 414extern void migrate_disable(void);
 415extern void migrate_enable(void);
 416
 417#else
 418
 419static inline void migrate_disable(void) { }
 420static inline void migrate_enable(void) { }
 421
 422#endif /* CONFIG_SMP */
 423
 424#endif /* __LINUX_PREEMPT_H */
 425